Science.gov

Sample records for resonant optical phonon

  1. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  2. Resonant raman scattering and dispersion of polar optical and acoustic phonons in hexagonal inn

    SciTech Connect

    Davydov, V. Yu. Klochikhin, A. A.; Smirnov, A. N.; Strashkova, I. Yu.; Krylov, A. S.; Lu Hai; Schaff, William J.; Lee, H.-M.; Hong, Y.-L.; Gwo, S.

    2010-02-15

    It is shown that a study of the dependence of impurity-related resonant first-order Raman scattering on the frequency of excitation light makes it possible to observe the dispersion of polar optical and acoustic branches of vibrational spectrum in hexagonal InN within a wide range of wave vectors. It is established that the wave vectors of excited phonons are uniquely related to the energy of excitation photon. Frequencies of longitudinal optical phonons E{sub 1}(LO) and A{sub 1}(LO) in hexagonal InN were measured in the range of excitation-photon energies from 2.81 to 1.17 eV and the frequencies of longitudinal acoustic phonons were measured in the range 2.81-1.83 eV of excitation-photon energies. The obtained dependences made it possible to extrapolate the dispersion of phonons A{sub 1}(LO) and E{sub 1}(LO) to as far as the point {Gamma} in the Brillouin zone and estimate the center-band energies of these phonons (these energies have not been uniquely determined so far).

  3. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.

    PubMed

    Wang, Tao; Li, Peining; Hauer, Benedikt; Chigrin, Dmitry N; Taubner, Thomas

    2013-11-13

    Plasmonic antennas are crucial components for nano-optics and have been extensively used to enhance sensing, spectroscopy, light emission, photodetection, and others. Recently, there is a trend to search for new plasmonic materials with low intrinsic loss at new plasmon frequencies. As an alternative to metals, polar crystals have a negative real part of permittivity in the Reststrahlen band and support surface phonon polaritons (SPhPs) with weak damping. Here, we experimentally demonstrate the resonance of single circular microcavities in a thin gold film deposited on a silicon carbide (SiC) substrate in the mid-infrared range. Specifically, the negative permittivity of SiC leads to a well-defined, size-tunable SPhP resonance with a Q factor of around 60 which is much higher than those in surface plasmon polariton (SPP) resonators with similar structures. These infrared resonant microcavities provide new possibilities for widespread applications such as enhanced spectroscopy, sensing, coherent thermal emission, and infrared photodetectors among others throughout the infrared frequency range.

  4. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)

    2007-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  5. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  6. Resonant acousto-optics in the terahertz range: TO-phonon polaritons driven by an ultrasonic wave

    NASA Astrophysics Data System (ADS)

    Muljarov, E. A.; Poolman, R. H.; Ivanov, A. L.

    2011-03-01

    The resonant acousto-optic effect is studied both analytically and numerically in the terahertz range where the transverse-optical (TO) phonons play the role of a mediator which strongly couples the ultrasound and light fields. A propagating acoustic wave interacts with the TO phonons via anharmonic channels and opens band gaps in the TO-phonon polariton energy dispersion that results in pronounced Bragg scattering and reflection of the incoming light. The separation in frequency of different Bragg replicas, which is at the heart of acousto-optics, allows us to study the resonant acousto-optic effect in the most simple and efficient geometry of collinear propagation of electromagnetic and ultrasonic waves. The acoustically induced energy gaps, Bragg reflection spectra, and the spatial distribution of the electric field and polarization are calculated for CuCl parameters, in a wide range of frequencies and intensities of the pumping acoustic wave. Our results show drastic changes in terahertz spectra of semiconductor crystals that open the way for efficient and accessible manipulation of their infrared properties by tuning the parameters of the acoustic wave.

  7. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    NASA Astrophysics Data System (ADS)

    Milekhin, Alexander G.; Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E.; Dzhagan, Volodymyr M.; Sheremet, Evgeniya; Gordan, Ovidiu D.; Himcinschi, Cameliu; Latyshev, Alexander V.; Zahn, Dietrich R. T.

    2016-05-01

    Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir-Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 103 which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  8. Resonant squeezing and the anharmonic decay of coherent phonons

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Éamonn D.; Reis, David A.

    2016-04-01

    We show that the anharmonic decay of large-amplitude coherent phonons in a solid generates strongly enhanced squeezing of the phonon modes near points of the Brillouin zone where energy conservation in the three-phonon decay process is satisfied. The squeezing process leads to temporal oscillations of the mean-square displacement of target modes in resonance with the coherent phonon, which are characteristic of coherent phonon decay and do not occur in the decay of a phonon in a well-defined number state. For realistic material parameters of optically excited group-V semimetals, we predict that this squeezing results in strongly enhanced oscillations of the x-ray diffuse scattering intensity at sharply defined values of the x-ray momentum transfer. Numerical simulations of the phonon dynamics and the x-ray diffuse scattering in optically excited bismuth, using harmonic and anharmonic force parameters calculated with constrained density functional theory, demonstrate oscillations of the diffuse scattering intensity of magnitude 10%-20% of the thermal background at points of the Brillouin zone, where resonance occurs. Such oscillations should be observable using time-resolved optical-pump and x-ray-probe facilities available at current x-ray free-electron laser sources.

  9. Phonon-Josephson resonances in atomtronic circuits

    NASA Astrophysics Data System (ADS)

    Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.

    2016-09-01

    We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.

  10. Phonon assisted resonant tunnelling and its phonons control

    NASA Astrophysics Data System (ADS)

    Kusmartsev, F. V.; Krevchik, V. D.; Semenov, M. B.; Filatov, D. O.; Shorokhov, A. V.; Bukharaev, A. A.; Dakhnovsky, Y.; Nikolaev, A. V.; Pyataev, N. A.; Zaytsev, R. V.; Krevchik, P. V.; Egorov, I. A.; Yamamoto, K.; Aringazin, A. K.

    2016-09-01

    We observe a series of sharp resonant features in the tunnelling differential conductance of InAs quantum dots. We found that dissipative quantum tunnelling has a strong influence on the operation of nano-devices. Because of such tunnelling the current-voltage characteristics of tunnel contact created between atomic force microscope tip and a surface of InAs/GaAs quantum dots display many interesting peaks. We found that the number, position, and heights of these peaks are associated with the phonon modes involved. To describe the found effect we use a quasi-classical approximation. There the tunnelling current is related to a creation of a dilute instanton-anti-instanton gas. Our experimental data are well described with exactly solvable model where one charged particle is weakly interacting with two promoting phonon modes associated with external medium. We conclude that the characteristics of the tunnel nanoelectronic devices can thus be controlled by a proper choice of phonons existing in materials, which are involved.

  11. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  12. Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots

    NASA Astrophysics Data System (ADS)

    Bragas, A. V.; Aku-Leh, C.; Costantino, S.; Ingale, Alka; Zhao, J.; Merlin, R.

    2004-05-01

    We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump-probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons.

  13. Phonon-tunnelling dissipation in mechanical resonators.

    PubMed

    Cole, Garrett D; Wilson-Rae, Ignacio; Werbach, Katharina; Vanner, Michael R; Aspelmeyer, Markus

    2011-01-01

    Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor.

  14. Phonon counting and intensity interferometry of a nanomechanical resonator.

    PubMed

    Cohen, Justin D; Meenehan, Seán M; MacCabe, Gregory S; Gröblacher, Simon; Safavi-Naeini, Amir H; Marsili, Francesco; Shaw, Matthew D; Painter, Oskar

    2015-04-23

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 ± 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  15. Phonon counting and intensity interferometry of a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-04-01

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  16. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  17. Optical phonon lasing and its detection in transport through semiconduc- tor double quantum dots

    NASA Astrophysics Data System (ADS)

    Okuyama, Rin; Eto, Mikio; Brandes, Tobias

    2014-03-01

    We theoretically propose optical phonon lasing for a double quantum dot (DQD) fabricated in a semiconductor substrate. No additional cavity or resonator is required. We show that the DQD couples to only two phonon modes that act as a natural cavity. The pumping to the upper level is realized by an electric current through the DQD under a finite bias. Using the rate equation in the Born-Markov-Secular approximation, we analyze the enhanced phonon emission when the level spacing in the DQD is tuned to the phonon energy. We find the phonon lasing when the pumping rate is much larger than the phonon decay rate, whereas anti-bunching of phonon emission is observed when the pumping rate is smaller.[1] Our theory can be also applicable to DQDs embedded in nanomechanical resonators to control the vibrating modes. We discuss detection of amplified modes using the electric current and its noise through the DQD, and another DQD fabricated nearby.

  18. Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction

    NASA Astrophysics Data System (ADS)

    Melnick, Corey; Kaviany, Massoud

    2016-03-01

    The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.

  19. Microwave-frequency electromechanical resonators incorporating phononic crystals

    NASA Astrophysics Data System (ADS)

    Satzinger, K. J.; Peairs, G.; Vainsencher, A.; Cleland, A. N.

    Piezoelectric micromechanical resonators at gigahertz frequencies have been operated in the quantum limit, with quantum control and measurement achieved using superconducting qubits. However, experiments to date have been limited by mechanical dissipation, due to a combination of internal and radiative losses. In this talk, we explore the incorporation of phononic crystals into resonator designs. In phononic crystals, periodic patterning manipulates the acoustic band structure of the material. Through appropriately chosen geometries, these periodic patterns lead to full acoustic bandgaps which can be used to greatly reduce radiation losses from resonant structures. Alternatively, the crystal geometry can be manipulated to allow isolated modes within the bandgap, giving fine control over the spatial structure of the resonator modes. In this talk, we will describe the design, fabrication, and measurement of resonators with phononic crystals.

  20. Raman spectroscopy of magneto-phonon resonances in graphene and graphite

    NASA Astrophysics Data System (ADS)

    Goler, Sarah; Yan, Jun; Pellegrini, Vittorio; Pinczuk, Aron

    2012-08-01

    The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magneto-excitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.

  1. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.

    PubMed

    Hillenbrand, Rainer

    2004-08-01

    Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10nm scale, independent of the wavelength used (lambda=633 nm and 10 microm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics-a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.

  2. Mode- and Direction-Dependent Mechanical Energy Dissipation in Single-Crystal Resonators due to Anharmonic Phonon-Phonon Scattering

    NASA Astrophysics Data System (ADS)

    Iyer, Srikanth S.; Candler, Robert N.

    2016-03-01

    In this work, we determine the intrinsic mechanical energy dissipation limit for single-crystal resonators due to anharmonic phonon-phonon scattering in the Akhiezer (Ω τ ≪1 ) regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction- and polarization-dependent mode-Grüneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. This expression reveals the fundamental differences among the internal friction limits for different types of bulk-mode elastic waves. For cubic crystals, 2D-extensional modes have increased dissipation compared to width-extensional modes because the biaxial deformation opposes the natural Poisson contraction of the solid. Additionally, we show that shear-mode vibrations, which preserve volume, have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to pure-shear phonon branches, indicating that Lamé- or wineglass-mode resonators will have the highest upper limit on mechanical efficiency. Finally, we employ key simplifications to evaluate the quality factor limits for common mode shapes in single-crystal silicon devices, explicitly including the correct effective elastic storage moduli for different vibration modes and crystal orientations. Our expression satisfies the pressing need for a reliable analytical model that can predict the phonon-phonon dissipation limits for modern resonant microelectromechanical systems, where precise manufacturing techniques and accurate finite-element methods can be used to select particular vibrational mode shapes and crystal orientations.

  3. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  4. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  5. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  6. Long-range interatomic forces can minimize heat transfer: From slowdown of longitudinal optical phonons to thermal conductivity minimum

    NASA Astrophysics Data System (ADS)

    Han, Haoxue; Feng, Lei; Xiong, Shiyun; Shiga, Takuma; Shiomi, Junichiro; Volz, Sebastian; Kosevich, Yuriy A.

    2016-08-01

    We investigate the role of interatomic forces beyond the nearest neighbors on the thermal transport through an atomic junction with a heavy isotope impurity and in a silicon-germanium-like alloy with atomistic calculations. The thermal conductance of the junction incorporating second-nearest-neighbors forces reaches its minimum when the longitudinal optical phonon resonances in the phonon transmission are minimized. We relate the weakening of the optical phonon resonance with the flattening of the longitudinal optical phonon band of the infinite diatomic lattice with second-nearest-neighbors forces, which is the limit of an extended junction. We emphasize that the bypass of the heavy-atom components in the diatomic lattice by long-range interatomic bonds is crucial for the realization of the minimum in bulk thermal conductivity. We highlight the connection between the minimal thermal conductivity of a SiGe-like alloy with the flattening of the longitudinal optical phonon band of the diatomic lattice due to the second-nearest-neighbors forces, in combination with enhanced anharmonic phonon processes and phonon localizations.

  7. Phonons, defects and optical damage in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.

    1986-04-01

    Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.

  8. Temperature performance of terahertz quantum-cascade lasers with resonant-phonon active-regions

    NASA Astrophysics Data System (ADS)

    Khanal, Sudeep; Zhao, Le; Reno, John L.; Kumar, Sushil

    2014-09-01

    Significant progress has recently been made toward improving the power output, beam quality and spectral characteristics of terahertz quantum cascade lasers (QCLs). However, the maximum operating temperature of the best-performing devices has become relatively stagnant and is in the range of 150-200 K for QCLs designed to emit in the frequency range of 2-4 THz. Such QCLs are primarily designed with resonant-phonon depopulation schemes. The requirement to cryogenically cool terahertz QCLs leads to stringent limitations on their use for various applications. Although significant advances have been made to model quantum transport in quantum cascade superlattices, the relative role of various electron transport mechanisms as a function of temperature is not clear. This article discusses temperature behavior of resonant-phonon terahertz QCLs with respect to a variety of active-region design schemes, and argues that precise understanding of high-temperature transport remains elusive for terahertz QCLs. The role of electron-phonon scattering, collisional-broadening, thermal leakage, and interface-roughness scattering towards the degradation of intersubband optical gain at higher temperatures is discussed for the popular terahertz QCL designs.

  9. Edge waves and resonances in two-dimensional phononic crystal plates

    SciTech Connect

    Hsu, Jin-Chen Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.

  10. Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Optical Microcavity Phonon Mode

    NASA Astrophysics Data System (ADS)

    Carmon, Tal; Rokhsari, Hossein; Yang, Lan; Kippenberg, Tobias J.; Vahala, Kerry J.

    2005-06-01

    We analyze experimentally and theoretically mechanical oscillation within an optical cavity stimulated by the pressure of circulating optical radiation. The resulting radio frequency cavity vibrations (phonon mode) cause modulation of the incident, continuous-wave (cw) input pump beam. Furthermore, with increasing cw pump power, an evolution from sinusoidal modulation to random oscillations is observed in the pump power coupled from the resonator. The temporal evolution with pump power is studied, and agreement was found with theory. In addition to applications in quantum optomechanics, the present work suggests that radiation-pressure-induced effects can establish a practical limit for the miniaturization of optical silica microcavities.

  11. Stochastic Approach to Phonon-Assisted Optical Absorption

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-10-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon using an importance sampling Monte Carlo scheme, and we obtain temperature-dependent line shapes and band gaps in good agreement with experiment. The present approach opens the way to predictive calculations of the optical properties of solids at finite temperature.

  12. Optical phonons in PbTe/CdTe multilayer heterostructures

    SciTech Connect

    Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.; Karczewski, G.; Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N.

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  13. Optical Haroche and Hanle resonances

    NASA Astrophysics Data System (ADS)

    Ruyten, Wilhelmus M.

    1990-07-01

    It is shown that Haroche and Hanle resonances, known from magnetic resonance, should be observable in an optical resonance experiment in which a narrowband, phase-modulated laser resonantly excites a two-level system. The narrow Haroche resonances should allow the first observation of an optical Bloch-Siegert shift, and may find applications in modulation spectroscopy.

  14. Sideband Raman Cooling of Optical Phonons in Semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Kwek, Leong Chuan; Xiong, Qihua

    2014-03-01

    Last century has witnessed a tremendous success of laser cooling technology from trapped atomic ions to solid-state optical refrigeration. As one of the laser cooling techniques, sideband Raman cooling plays an important role in quantum ground state preparation, coherent quantum-state manipulation and quantum phenomena study. However, those studies still limited in trapped atomic ions and cavity optomechanics, which need be cooled it below than 0.1 Kelvin even tens of nano-Kelvin due to very low frequency of phonons from several kHz to GHz. Here we report sideband Raman cooling and heating experiments of longitudinal optical phonon (LOP) with a 6.23 THz in semiconductor ZnTe nano-ribbons. By using of red-sideband laser, we cool the LOP from 225 to 55 Kelvin, corresponding to an average occupation number reduced from 0.36 to 0.005. We also observe a LOPs heating from 230 to 384 Kelvin with a blue-sideband pumping. Our experiment opens a possibility of all solid state quantum applications using semiconductor optical phonon mediated coupling at room temperature. We gratefully acknowledge funding from Singapore NRF, MOE and NTU.

  15. Resonant interactions between discrete phonons in quinhydrone driven by nonlinear electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.

    2016-06-01

    This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.

  16. Interaction of an electron-hole plasma with optical phonons in GaP

    NASA Astrophysics Data System (ADS)

    Smith, G. O.; Juhasz, T.; Bron, W. E.; Levinson, Y. B.

    1992-04-01

    The interaction of an optically induced nonstationary electron-hole plasma with coherently excited optical phonons in GaP has been investigated through time-resolved coherent anti-Stokes Raman spectroscopy. Nonexponential optical-phonon dephasing is observed in the presence of the electron-hole plasma. A model describing the interaction between the optical phonons and the electron-hole plasma is presented. A comparison of results from the theoretical model and from the experimental data indicates good agreement.

  17. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy.

    PubMed

    Del Corro, E; Botello-Méndez, A; Gillet, Y; Elias, A L; Terrones, H; Feng, S; Fantini, C; Rhodes, Daniel; Pradhan, N; Balicas, L; Gonze, X; Charlier, J-C; Terrones, M; Pimenta, M A

    2016-04-13

    Resonant Raman spectroscopy is a powerful tool for providing information about excitons and exciton-phonon coupling in two-dimensional materials. We present here resonant Raman experiments of single-layered WS2 and WSe2 using more than 25 laser lines. The Raman excitation profiles of both materials show unexpected differences. All Raman features of WS2 monolayers are enhanced by the first-optical excitations (with an asymmetric response for the spin-orbit related XA and XB excitons), whereas Raman bands of WSe2 are not enhanced at XA/B energies. Such an intriguing phenomenon is addressed by DFT calculations and by solving the Bethe-Salpeter equation. These two materials are very similar. They prefer the same crystal arrangement, and their electronic structure is akin, with comparable spin-orbit coupling. However, we reveal that WS2 and WSe2 exhibit quite different exciton-phonon interactions. In this sense, we demonstrate that the interaction between XC and XA excitons with phonons explains the different Raman responses of WS2 and WSe2, and the absence of Raman enhancement for the WSe2 modes at XA/B energies. These results reveal unusual exciton-phonon interactions and open new avenues for understanding the two-dimensional materials physics, where weak interactions play a key role coupling different degrees of freedom (spin, optic, and electronic). PMID:26998817

  18. Optical microbubble resonator.

    PubMed

    Sumetsky, M; Dulashko, Y; Windeler, R S

    2010-04-01

    We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO(2) laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 microm diameter, 2 microm wall thickness, and a Q factor exceeding 10(6). PMID:20364162

  19. Cross resonant optical antenna.

    PubMed

    Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B

    2009-06-26

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  20. Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth

    NASA Astrophysics Data System (ADS)

    Chudzinski, Piotr

    2015-12-01

    Using diagrammatic methods we derive an effective interaction between a low energy collective movement of fermionic liquid (acoustic plasmon) and acoustic phonon. We show that the coupling between the plasmon and the lattice has a very non-trivial, resonant structure. When real and imaginary parts of the acoustic plasmon's velocity are of the same order as the phonon's velocity, the resonance qualitatively changes the nature of phonon-drag. In the following we study how magneto-thermoelectric properties are affected. Our result suggests that the novel mechanism of energy transfer between electron liquid and crystal lattice can be behind the huge Nernst effect in bismuth.

  1. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Isaienko, Oleksandr; Robel, István

    2016-03-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.

  2. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    PubMed Central

    Isaienko, Oleksandr; Robel, István

    2016-01-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves. PMID:26975881

  3. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers.

    PubMed

    Isaienko, Oleksandr; Robel, István

    2016-01-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ((2)) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P(NL) of the impulsively excited phonons and those of parametrically amplified waves. PMID:26975881

  4. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    DOE PAGES

    Isaienko, Oleksandr; Robel, Istvan

    2016-03-15

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.« less

  5. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures.

    PubMed

    Ellis, Chase T; Tischler, Joseph G; Glembocki, Orest J; Bezares, Francisco J; Giles, Alexander J; Kasica, Richard; Shirey, Loretta; Owrutsky, Jeffrey C; Chigrin, Dmitry N; Caldwell, Joshua D

    2016-01-01

    Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared. PMID:27622525

  6. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures

    NASA Astrophysics Data System (ADS)

    Ellis, Chase T.; Tischler, Joseph G.; Glembocki, Orest J.; Bezares, Francisco J.; Giles, Alexander J.; Kasica, Richard; Shirey, Loretta; Owrutsky, Jeffrey C.; Chigrin, Dmitry N.; Caldwell, Joshua D.

    2016-09-01

    Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared.

  7. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures.

    PubMed

    Ellis, Chase T; Tischler, Joseph G; Glembocki, Orest J; Bezares, Francisco J; Giles, Alexander J; Kasica, Richard; Shirey, Loretta; Owrutsky, Jeffrey C; Chigrin, Dmitry N; Caldwell, Joshua D

    2016-01-01

    Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared.

  8. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures

    PubMed Central

    Ellis, Chase T.; Tischler, Joseph G.; Glembocki, Orest J.; Bezares, Francisco J.; Giles, Alexander J.; Kasica, Richard; Shirey, Loretta; Owrutsky, Jeffrey C.; Chigrin, Dmitry N.; Caldwell, Joshua D.

    2016-01-01

    Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared. PMID:27622525

  9. Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting

    2015-06-01

    We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.

  10. Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.

    PubMed

    Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu

    2012-05-01

    Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

  11. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  12. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals

    PubMed Central

    He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-hu; Xiao, Min

    2016-01-01

    A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction. PMID:27457385

  13. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.

    PubMed

    He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min

    2016-07-26

    A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction.

  14. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min

    2016-07-01

    A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction.

  15. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.

    PubMed

    He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min

    2016-01-01

    A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction. PMID:27457385

  16. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  17. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Qing; Wang, Xingzhi; Kwek, Leong Chuan; Xiong, Qihua

    2016-09-01

    The radiation pressure of light has been widely used to cool trapped atoms or the mechanical vibrational modes of optomechanical systems. Recently, by using the electrostrictive forces of light, spontaneous Brillouin cooling and stimulated Brillouin excitation of acoustic modes of the whispering-gallery-type resonator have been demonstrated. The laser cooling of specific lattice vibrations in solids (that is, phonons) proposed by Dykman in the late 1970s, however, still remains sparsely investigated. Here, we demonstrate the first strong spontaneous Raman cooling and heating of a longitudinal optical phonon (LOP) with a 6.23 THz frequency in polar semiconductor zinc telluride nanobelts. We use the exciton to resonate and assist photoelastic Raman scattering from the LOPs caused by a strong exciton–LOP coupling. By detuning the laser pump to a lower (higher) energy-resolved sideband to make a spontaneous scattering photon resonate with an exciton at an anti-Stokes (Stokes) frequency, the dipole oscillation of the LOPs is photoelastically attenuated (enhanced) to a colder (hotter) state.

  18. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Qing; Wang, Xingzhi; Kwek, Leong Chuan; Xiong, Qihua

    2016-09-01

    The radiation pressure of light has been widely used to cool trapped atoms or the mechanical vibrational modes of optomechanical systems. Recently, by using the electrostrictive forces of light, spontaneous Brillouin cooling and stimulated Brillouin excitation of acoustic modes of the whispering-gallery-type resonator have been demonstrated. The laser cooling of specific lattice vibrations in solids (that is, phonons) proposed by Dykman in the late 1970s, however, still remains sparsely investigated. Here, we demonstrate the first strong spontaneous Raman cooling and heating of a longitudinal optical phonon (LOP) with a 6.23 THz frequency in polar semiconductor zinc telluride nanobelts. We use the exciton to resonate and assist photoelastic Raman scattering from the LOPs caused by a strong exciton-LOP coupling. By detuning the laser pump to a lower (higher) energy-resolved sideband to make a spontaneous scattering photon resonate with an exciton at an anti-Stokes (Stokes) frequency, the dipole oscillation of the LOPs is photoelastically attenuated (enhanced) to a colder (hotter) state.

  19. Raman selection rule for surface optical phonons in ZnS nanobelts.

    PubMed

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-03-21

    We report Raman scattering results for high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In the Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm(-1) and 350 cm(-1), corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition to a strong surface optical (SO) phonon mode at 329 cm(-1). The existence of the SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectra were recorded on a single ZnS NB and for the first time a SO phonon band has been detected on a single nanobelt. Different selection rules for the SO phonon mode are shown from their corresponding E1/A1 phonon modes, and were attributed to the breaking of anisotropic translational symmetry on the NB surface. PMID:26924069

  20. Dynamics of electron-phonon scattering: crystal- and angular-momentum transfer probed by resonant inelastic x-ray scattering.

    PubMed

    Beye, M; Hennies, F; Deppe, M; Suljoti, E; Nagasono, M; Wurth, W; Föhlisch, A

    2009-12-01

    Experimentally, we observe angular-momentum transfer in electron-phonon scattering, although it is commonly agreed that phonons transfer mostly linear momentum. Therefore, the incorporation of angular momentum to describe phonons is necessary already for simple semiconductors and bears significant implications for the formation of new quasiparticles in correlated functional materials. Separation of linear and angular-momentum transfer in electron-phonon scattering is achieved by highly selective excitations on the femtosecond time scale of resonant inelastic x-ray scattering.

  1. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  2. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  3. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    PubMed

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-01

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states. PMID:27203338

  4. Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Wen, Jihong; Huang, Lingzhi; Wen, Xisen

    2014-01-01

    We present theoretical examination and experimental demonstration of locally resonant (LR) phononic plates consisting of a periodic array of beam-like resonators attached to a thin homogeneous plate. Such phononic plates feature unique wave physics due to the coexistence of localized resonance and structural periodicity. We demonstrate that a low-frequency complete band gap for flexural plate waves can be created in the proposed structure owing to the interaction between the localized resonant modes of the beam-like resonators and the flexural wave modes of the host plate. We show that the location and width of the complete band gap can be dramatically tuned by changing the properties of the beam-like resonators. To understand the opening mechanism and evolution behaviour of the complete band gap, some approximate but explicit models are provided and discussed. We further perform experimental measurements of a specimen fabricated by an array of double-stacked aluminum beam-like resonators attached to a thin aluminum plate with 5 cm structure periodicity. The experimental results evidence a complete band gap extending from 465 to 860 Hz, matching well with our theoretical prediction. The LR phononic plates proposed in this work can find potential applications in attenuation of low-frequency mechanical vibrations and insulation of low-frequency audible sound.

  5. Femtosecond optical excitation of coherent acoustic phonons in a piezoelectric p-n junction

    NASA Astrophysics Data System (ADS)

    Wen, Yu-Chieh; Chern, Gia-Wei; Lin, Kung-Hsuan; Yeh, Jeffrey Jarren; Sun, Chi-Kuang

    2011-11-01

    We present a theoretical model for the photogeneration of coherent acoustic phonons in a piezoelectric p-n junction. In our model, the transport of photoexcited carriers is governed by the drift-diffusion equation, whereas the dynamics of acoustic phonons obeys a loaded string equation. Among various mechanisms, the piezoelectric coupling is found to dominate the acoustic-phonon generation process. The waveform of the photogenerated acoustic pulse is strongly influenced by the various dynamics of the photoexcited carriers, especially the picosecond hole drifting. Our calculation also confirms the crucial role of the built-in electric field in the formation of coherent acoustic phonons under optical excitations.

  6. Optical properties of amorphous Ge1- x Se x and Ge1- x- y Se x As y thin films — optical gap bowing and phonon modes

    NASA Astrophysics Data System (ADS)

    Lee, Hosuk; So, Hyeon Seob; Lee, Hosun; Shin, Hae-Young; Yoon, Seokhyun; Ahn, Hyung-Woo; Kim, Su-Dong; Lee, Suyoun; Jeong, Doo-Seok; Cheong, Byung-ki

    2014-06-01

    We investigated the optical properties of Ge1- x Se x and Ge1- x- y Se x As y amorphous films by using spectroscopic ellipsometry and Raman spectroscopy. The dielectric functions and absorption coefficients ( α) of the amorphous films were determined from the measured ellipsometric angles (Ψ,Δ). We obtained the optical gap energies and the Urbach energies from the absorption coefficients and found a strong bowing effect in the optical gap energy of Ge1- x- y Se x As y , where the endpoint binaries were Ge0.50Se0.50 and Ge0.31As0.69. Based on the correlation between the optical gap energies and the Urbach energies, we attributed the large bowing parameter to electronic disorder. Using Raman spectroscopy, we measured the phonon modes and discussed the composition dependence of the phonon peak frequencies and lineshapes in terms of structural units. Based on the composition dependence of the phonons in Ge1- x- y Se x As y , we identified the phonon modes of Ge0.31As0.69. A resonant Raman phenomenon was observed in Ge0.40Se0.60 at a laser excitation of 514 nm (2.41 eV). We verified that this laser energy corresponded to the transition energy of Ge0.40Se0.60 by using the second derivative of the dielectric function of Ge0.40Se0.60.

  7. Optical Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

    2014-08-01

    Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the λ/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

  8. Planar modes free piezoelectric resonators using a phononic crystal with holes.

    PubMed

    Aragón, J L; Quintero-Torres, R; Domínguez-Juárez, J L; Iglesias, E; Ronda, S; Montero de Espinosa, F

    2016-09-01

    By using the principles behind phononic crystals, a periodic array of circular holes made along the polarization thickness direction of piezoceramic resonators are used to stop the planar resonances around the thickness mode band. In this way, a piezoceramic resonator adequate for operation in the thickness mode with an in phase vibration surface is obtained, independently of its lateral shape. Laser vibrometry, electric impedance tests and finite element models are used to corroborate the performances of different resonators made with this procedure. This method can be useful in power ultrasonic devices, physiotherapy and other external medical power ultrasound applications where piston-like vibration in a narrow band is required.

  9. Planar modes free piezoelectric resonators using a phononic crystal with holes.

    PubMed

    Aragón, J L; Quintero-Torres, R; Domínguez-Juárez, J L; Iglesias, E; Ronda, S; Montero de Espinosa, F

    2016-09-01

    By using the principles behind phononic crystals, a periodic array of circular holes made along the polarization thickness direction of piezoceramic resonators are used to stop the planar resonances around the thickness mode band. In this way, a piezoceramic resonator adequate for operation in the thickness mode with an in phase vibration surface is obtained, independently of its lateral shape. Laser vibrometry, electric impedance tests and finite element models are used to corroborate the performances of different resonators made with this procedure. This method can be useful in power ultrasonic devices, physiotherapy and other external medical power ultrasound applications where piston-like vibration in a narrow band is required. PMID:27387418

  10. Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions.

    PubMed

    Dey, P; Paul, J; Wang, Z; Stevens, C E; Liu, C; Romero, A H; Shan, J; Hilton, D J; Karaiskaj, D

    2016-03-25

    We systematically investigate the excitonic dephasing of three representative transition-metal dichalcogenides, namely, MoS_{2}, MoSe_{2}, and WSe_{2} atomic monolayer thick and bulk crystals, in order to gain a proper understanding of the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy and temperature dependent absorption, combined with theoretical calculations of the phonon spectra, indicate electron-phonon interactions, to be the limiting factor. Surprisingly, the excitonic dephasing, differs only slightly between atomic monolayers and high quality bulk crystals, which indicates that material imperfections are not the limiting factor in atomically thin monolayer samples. The temperature dependence of the electronic band gap and the excitonic linewidth combined with "ab initio" calculations of the phonon energies and the phonon density of states reveal a strong interaction with the E' and E" phonon modes.

  11. Localized surface phonon polariton resonances in polar gallium nitride

    SciTech Connect

    Feng, Kaijun Islam, S. M.; Verma, Jai; Hoffman, Anthony J.; Streyer, William; Wasserman, Daniel; Jena, Debdeep

    2015-08-24

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  12. Localized surface phonon polariton resonances in polar gallium nitride

    NASA Astrophysics Data System (ADS)

    Feng, Kaijun; Streyer, William; Islam, S. M.; Verma, Jai; Jena, Debdeep; Wasserman, Daniel; Hoffman, Anthony J.

    2015-08-01

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4-18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  13. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators.

    PubMed

    Gokhale, Vikrant J; Rais-Zadeh, Mina

    2014-07-08

    This work presents the first comprehensive investigation of phonon-electron interactions in bulk acoustic standing wave (BAW) resonators made from piezoelectric semiconductor (PS) materials. We show that these interactions constitute a significant energy loss mechanism and can set practical loss limits lower than anharmonic phonon scattering limits or thermoelastic damping limits. Secondly, we theoretically and experimentally demonstrate that phonon-electron interactions, under appropriate conditions, can result in a significant acoustic gain manifested as an improved quality factor (Q). Measurements on GaN resonators are consistent with the presented interaction model and demonstrate up to 35% dynamic improvement in Q. The strong dependencies of electron-mediated acoustic loss/gain on resonance frequency and material properties are investigated. Piezoelectric semiconductors are an extremely important class of electromechanical materials, and this work provides crucial insights for material choice, material properties, and device design to achieve low-loss PS-BAW resonators along with the unprecedented ability to dynamically tune resonator Q.

  14. Phonon-Electron Interactions in Piezoelectric Semiconductor Bulk Acoustic Wave Resonators

    PubMed Central

    Gokhale, Vikrant J.; Rais-Zadeh, Mina

    2014-01-01

    This work presents the first comprehensive investigation of phonon-electron interactions in bulk acoustic standing wave (BAW) resonators made from piezoelectric semiconductor (PS) materials. We show that these interactions constitute a significant energy loss mechanism and can set practical loss limits lower than anharmonic phonon scattering limits or thermoelastic damping limits. Secondly, we theoretically and experimentally demonstrate that phonon-electron interactions, under appropriate conditions, can result in a significant acoustic gain manifested as an improved quality factor (Q). Measurements on GaN resonators are consistent with the presented interaction model and demonstrate up to 35% dynamic improvement in Q. The strong dependencies of electron-mediated acoustic loss/gain on resonance frequency and material properties are investigated. Piezoelectric semiconductors are an extremely important class of electromechanical materials, and this work provides crucial insights for material choice, material properties, and device design to achieve low-loss PS-BAW resonators along with the unprecedented ability to dynamically tune resonator Q. PMID:25001100

  15. Phonon-Electron Interactions in Piezoelectric Semiconductor Bulk Acoustic Wave Resonators

    NASA Astrophysics Data System (ADS)

    Gokhale, Vikrant J.; Rais-Zadeh, Mina

    2014-07-01

    This work presents the first comprehensive investigation of phonon-electron interactions in bulk acoustic standing wave (BAW) resonators made from piezoelectric semiconductor (PS) materials. We show that these interactions constitute a significant energy loss mechanism and can set practical loss limits lower than anharmonic phonon scattering limits or thermoelastic damping limits. Secondly, we theoretically and experimentally demonstrate that phonon-electron interactions, under appropriate conditions, can result in a significant acoustic gain manifested as an improved quality factor (Q). Measurements on GaN resonators are consistent with the presented interaction model and demonstrate up to 35% dynamic improvement in Q. The strong dependencies of electron-mediated acoustic loss/gain on resonance frequency and material properties are investigated. Piezoelectric semiconductors are an extremely important class of electromechanical materials, and this work provides crucial insights for material choice, material properties, and device design to achieve low-loss PS-BAW resonators along with the unprecedented ability to dynamically tune resonator Q.

  16. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  17. Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2016-06-01

    Phonon blockade is a purely quantum phenomenon, analogous to Coulomb and photon blockades, in which a single phonon in an anharmonic mechanical resonator can impede the excitation of a second phonon. We propose an experimental method to realize phonon blockade in a driven harmonic nanomechanical resonator coupled to a qubit, where the coupling is proportional to the second-order nonlinear susceptibility χ(2 ). This is in contrast to the standard realizations of phonon and photon blockade effects in Kerr-type χ(3 ) nonlinear systems. The nonlinear coupling strength can be adjusted conveniently by changing the coherent drive field. As an example, we apply this model to predict and describe phonon blockade in a nanomechanical resonator coupled to a Cooper-pair box (i.e., a charge qubit) with a linear longitudinal coupling. By obtaining the solutions of the steady state for this composite system, we give the conditions for observing strong antibunching and sub-Poissonian phonon-number statistics in this induced second-order nonlinear system. Besides using the qubit to produce phonon blockade states, the qubit itself can also be employed to detect blockade effects by measuring its states. Numerical simulations indicate that the robustness of the phonon blockade, and the sensitivity of detecting it, will benefit from this strong induced nonlinear coupling.

  18. Coherent control of optically generated and detected picosecond surface acoustic phonons

    SciTech Connect

    David Hurley

    2007-07-01

    Coherent control of electronic and phononic excitations in solids, as well as chemical and biological systems on ultrafast time scales is of current research interest. In semiconductors, coherent control of phonons has been demonstrated for acoustic and optical phonons generated in superlattice structures. The bandwidth of these approaches is typically fully utilized by employing a 1-D geometry where the laser spot size is much larger than the superlattice repeat length. In this article we demonstrate coherent control of optically generated picosecond surface acoustic phonons using sub-optical wavelength absorption gratings. The generation and detection characteristics of two material systems are investigated (aluminum absorption gratings on Si and GaAs substrates). Constructive and complete destructive interference conditions are demonstrated using two pump pulses derived from a single Michelson interferometer.

  19. Dispersion relation of the optical phonon frequencies in AlN/GaN superlattices

    NASA Astrophysics Data System (ADS)

    Medeiros, S. K.; Albuquerque, E. L.; Farias, G. A.; Vasconcelos, M. S.; Anselmo, D. H. A. L.

    2005-05-01

    In this work we study the dispersion relation of the phonon frequencies in heterojunctions composed by III-V nitride materials (GaN and AlN). We are concerned with the superlattice structure, namely /substrate /AlN /AlxGa1-xN/GaN/AlxGa1-xN/, where the substrate is here considered to be a transparent dielectric medium like sapphire. We make use of a model based on the Fröhlich Hamiltonian, taking into account the macroscopic theory known as the continuum dielectric model. The optical phonon modes are modelled considering only the electromagnetic boundary conditions, in the absence of charge transfer between ions. Numerical results of the confined optical phonon dispersion are presented, characterizing three distinct optical phonon classes designated as interface (IF), half-space (HS) and propagating (PR) modes. Furthermore, due to the dielectric anisotropy presented in the nitride, some additional peculiarities will be presented, like dispersive confined modes.

  20. Silicon-based filters, resonators and acoustic channels with phononic crystal structures

    NASA Astrophysics Data System (ADS)

    Huang, Zi-Gui

    2011-06-01

    This paper discusses the phenomenon of phononic crystal silicon-based filters, resonators and acoustic channels structured in geometrical periodic arrays created by a single silicon material. Component structured geometrical periodic array refers to a structure of square stubbed rods arranged in repeated arrays on a silicon plate. The study discovered that the band gap of the phononic crystal structure can be modulated under different heights and rotational angles of periodically arrayed square stubbed rods. In addition to band gap modulation, we used the finite element method (FEM) and supercell techniques to analyse the resonance characteristics of defect-containing phononic crystal structures with a larger band gap size design. In addition, the paper also investigated the effects on acoustic channels. Previous studies have already analysed defect-containing resonator and channel phenomenon by the plane-wave expansion method with supercell techniques. However, the FEM can solve numerical issues of extreme difficulty to reach convergence. The results of this study elaborated on the manufacturing feasibility of silicon-based acoustic resonance and filter devices under a complementary metal-oxide-semiconductor synchronization process.

  1. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    SciTech Connect

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-28

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  2. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    NASA Astrophysics Data System (ADS)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-01

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  3. Optical antennas as nanoscale resonators.

    PubMed

    Agio, Mario

    2012-02-01

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  4. Improved model of optical phonon confinement in silicon nanocrystals

    SciTech Connect

    Volodin, V. A.; Sachkov, V. A.

    2013-01-15

    We develop a model for calculating the Raman scattering spectra from phonons confined in for silicon nanocrystals, which is based on the familiar approach taking into account the uncertainty in the quasi-momentum of phonons localized in the nanocrystals. The model is considerably improved by taking into account dispersion of phonons not only in the magnitude of the quasi-momentum, but also in its direction. A significant refinement of the model is also due to the fact that phonon dispersion is calculated using the widely approved Keating model instead of being approximated by empirical expressions as was done in earlier approaches. The calculations based on this model make it possible to determine the sizes of silicon nanocrystals more precisely from analysis of the experimental Raman spectra.

  5. An ab initio study of multiple phonon scattering resonances in silicon germanium alloys

    NASA Astrophysics Data System (ADS)

    Mendoza, Jonathan; Esfarjani, Keivan; Chen, Gang

    2015-05-01

    We have computed phonon scattering rates and density of states in silicon germanium alloys using Green's function calculations and density functional theory. This method contrasts with the virtual crystal approximation (VCA) used in conjunction with Fermi's golden rule, which cannot capture resonance states occurring through the interaction of substitutional impurities with the host lattice. These resonances are demonstrated by density of states and scattering rate calculations in the dilute limit and show broadening as the concentration increases. Although these deviations become significant from the VCA at high frequencies, the relaxation times obtained for these phonon modes are small in both the full scattering theory and the VCA, resulting in their negligible contribution to thermal transport.

  6. Topological phononic states of underwater sound based on coupled ring resonators

    NASA Astrophysics Data System (ADS)

    He, Cheng; Li, Zheng; Ni, Xu; Sun, Xiao-Chen; Yu, Si-Yuan; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-01-01

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracy is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.

  7. Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion

    NASA Astrophysics Data System (ADS)

    Pop, Eric; Dutton, Robert W.; Goodson, Kenneth E.

    2004-11-01

    We describe the implementation of a Monte Carlo model for electron transport in silicon. The model uses analytic, nonparabolic electron energy bands, which are computationally efficient and sufficiently accurate for future low-voltage (<1V) nanoscale device applications. The electron-lattice scattering is incorporated using an isotropic, analytic phonon-dispersion model, which distinguishes between the optical/acoustic and the longitudinal/transverse phonon branches. We show that this approach avoids introducing unphysical thresholds in the electron distribution function, and that it has further applications in computing detailed phonon generation spectra from Joule heating. A set of deformation potentials for electron-phonon scattering is introduced and shown to yield accurate transport simulations in bulk silicon across a wide range of electric fields and temperatures. The shear deformation potential is empirically determined at Ξu=6.8eV, and consequently, the isotropically averaged scattering potentials with longitudinal and transverse acoustic phonons are DLA=6.39eV and DTA=3.01eV, respectively, in reasonable agreement with previous studies. The room-temperature electron mobility in strained silicon is also computed and shown to be in better agreement with the most recent phonon-limited data available. As a result, we find that electron coupling with g-type phonons is about 40% lower, and the coupling with f-type phonons is almost twice as strong as previously reported.

  8. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    SciTech Connect

    Ceban, V. Macovei, M. A.

    2015-11-15

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  9. Effects of ternary mixed crystal and size on optical phonons in wurtzite nitride core-shell nanowires

    SciTech Connect

    Li, J.; Guan, J. Y.; Zhang, S. F.; Ban, S. L.; Qu, Y.

    2014-04-21

    Within the framework of dielectric continuum and Loudon's uniaxial crystal models, existence conditions dependent on components and frequencies for optical phonons in wurtzite nitride core-shell nanowires (CSNWs) are discussed to obtain dispersion relations and electrostatic potentials of optical phonons in In{sub x}Ga{sub 1−x}N/GaN CSNWs. The results show that there may be four types of optical phonons in In{sub x}Ga{sub 1−x}N/GaN CSNWs for a given ternary mixed crystal (TMC) component due to the phonon dispersion anisotropy. This property is analogous to wurtzite planar heterojunctions. Among the optical phonons, there are two types of quasi-confined optical (QCO) phonons (named, respectively, as QCO-A and QCO-B), one type of interface (IF) phonons and propagating (PR) phonons existing in certain component and frequency domains while the dispersion relations and electrostatic potentials of same type of optical phonons vary with components. Furthermore, the size effect on optical phonons in CSNWs is also discussed. The dispersion relations of IF and QCO-A are independent of the boundary location of CSNWs. Meanwhile, dispersion relations and electrostatic potentials of QCO-B and PR phonons vary obviously with size, especially, when the ratio of a core radius to a shell radius is small, and dispersion relation curves of PR phonons appear to be close to each other, whereas, this phenomenon disappears when the ratio becomes large. Based on our conclusions, one can further discuss photoelectric properties in nitride CSNWs consisting of TMCs associated with optical phonons.

  10. Effects of ternary mixed crystal and size on optical phonons in wurtzite nitride core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Li, J.; Guan, J. Y.; Zhang, S. F.; Ban, S. L.; Qu, Y.

    2014-04-01

    Within the framework of dielectric continuum and Loudon's uniaxial crystal models, existence conditions dependent on components and frequencies for optical phonons in wurtzite nitride core-shell nanowires (CSNWs) are discussed to obtain dispersion relations and electrostatic potentials of optical phonons in InxGa1-xN/GaN CSNWs. The results show that there may be four types of optical phonons in InxGa1-xN/GaN CSNWs for a given ternary mixed crystal (TMC) component due to the phonon dispersion anisotropy. This property is analogous to wurtzite planar heterojunctions. Among the optical phonons, there are two types of quasi-confined optical (QCO) phonons (named, respectively, as QCO-A and QCO-B), one type of interface (IF) phonons and propagating (PR) phonons existing in certain component and frequency domains while the dispersion relations and electrostatic potentials of same type of optical phonons vary with components. Furthermore, the size effect on optical phonons in CSNWs is also discussed. The dispersion relations of IF and QCO-A are independent of the boundary location of CSNWs. Meanwhile, dispersion relations and electrostatic potentials of QCO-B and PR phonons vary obviously with size, especially, when the ratio of a core radius to a shell radius is small, and dispersion relation curves of PR phonons appear to be close to each other, whereas, this phenomenon disappears when the ratio becomes large. Based on our conclusions, one can further discuss photoelectric properties in nitride CSNWs consisting of TMCs associated with optical phonons.

  11. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  12. Optical-phonon-mediated photocurrent in terahertz quantum-well photodetectors

    SciTech Connect

    Gu, L. L.; Guo, X. G. Fu, Z. L.; Wan, W. J.; Zhang, R.; Tan, Z. Y.; Cao, J. C.

    2015-03-16

    Strong and sharp photocurrent peak at longitudinal optical (LO) phonon frequency (8.87 THz) is found in GaAs/(Al,Ga)As terahertz quantum-well photodetectors (QWPs). Two mesa-structure terahertz QWPs with and without one-dimensional metal grating are fabricated to investigate the behavior of such photoresponse peak. The experimental and simulation results indicate that the photocurrent peak originates from a two-step process. First, at the LO phonon frequency, a large number of non-equilibrium LO phonons are excited by the incident electromagnetic field, and the electromagnetic energy is localized and enhanced in the thin multi-quantum-well layer. Second, through the Frohlich interaction, the localized electrons are excited to continuum states by absorbing the non-equilibrium LO phonons, which leads to the strong photoresponse peak. This finding is useful for exploring strong light-matter interaction and realizing high sensitive terahertz photodetectors.

  13. Instability of insulating states in optical lattices due to collective phonon excitations

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Ziegler, K.

    2015-02-01

    The effect of collective phonon excitations on the properties of cold atoms in optical lattices is investigated. These phonon excitations are collective excitations, whose appearance is caused by intersite atomic interactions correlating the atoms, and they do not arise without such interactions. These collective excitations should not be confused with lattice vibrations produced by an external force. No such force is assumed. But the considered phonons are purely self-organized collective excitations, characterizing atomic oscillations around lattice sites, due to intersite atomic interactions. It is shown that these excitations can essentially influence the possibility of atoms' being localized. The states that would be insulating in the absence of phonon excitations can become delocalized when these excitations are taken into account. This concerns long-range as well as local atomic interactions. To characterize the region of stability, the Lindemann criterion is used.

  14. Interaction of optical and interface phonons and their anisotropy in GaAs/AlAs superlattices: Experiment and calculations

    SciTech Connect

    Volodin, V. A.; Sachkov, V. A.; Sinyukov, M. P.

    2015-05-15

    The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.

  15. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.

    PubMed

    Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A; Han, Haoxue; Donadio, Davide; Volz, Sebastian

    2016-07-01

    Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications. PMID:27447516

  16. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A.; Han, Haoxue; Donadio, Davide; Volz, Sebastian

    2016-07-01

    Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications.

  17. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.

    PubMed

    Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A; Han, Haoxue; Donadio, Davide; Volz, Sebastian

    2016-07-01

    Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications.

  18. Imaging carrier and phonon transport in Si using ultrashort optical pulses

    SciTech Connect

    David H. Hurley; O. B. Wright; O. Matsuda; B. E. McCandless; S. Shinde

    2009-01-01

    A series of experiments have been conducted that microscopically image thermal diffusion and surface acoustic phonon propagation within a single crystallite of a polycrystalline Si sample. The experimental approach employs ultrashort optical pulses to generate an electron-hole plasma and a second probe pulse is used to image the evolution of the plasma. By decomposing the signal into a component that varies with delay time and a steady state component that varies with pump modulation frequency, the respective influence of carrier recombination and thermal diffusion are identified. Additionally, the coherent surface acoustic phonon component to the signal is imaged using a Sagnac interferometer to monitor optical phase.

  19. Coherent phonon spectroscopy of non-fully symmetric modes using resonant terahertz excitation

    SciTech Connect

    Huber, T. Huber, L.; Johnson, S. L.; Ranke, M.; Ferrer, A.

    2015-08-31

    We use intense terahertz (THz) frequency electromagnetic pulses generated via optical rectification in an organic crystal to drive vibrational lattice modes in single crystal Tellurium. The coherent modes are detected by measuring the polarization changes of femtosecond laser pulses reflecting from the sample surface, resulting in a phase-resolved detection of the coherent lattice motion. We compare the data to a model of Lorentz oscillators driven by the near-single-cycle broadband THz pulse. The demonstrated technique of optically probed coherent phonon spectroscopy with THz frequency excitation could prove to be a viable alternative to other time-resolved spectroscopic methods like standard THz time domain spectroscopy.

  20. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  1. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  2. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    NASA Astrophysics Data System (ADS)

    Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.

    2015-10-01

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  3. Multilayer-split-tube resonators with low-frequency band gaps in phononic crystals

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Gao, Nansha

    2014-09-01

    In this paper, low-frequency band gaps in two-dimensional Helmholtz resonant phononic crystals (PCs) composed of multilayer-split-tube resonators are investigated. The band structures, transmission spectra, and pressure field of the acoustic modes of these PCs are calculated by using a finite element method (FEM). The numerical results show that the first band gap of the structure is from 88 to 140 Hz. The transmission spectra are in accordance with those of the dispersion relation calculations. The acoustic modes of the bands are analyzed to reveal the nature of this phenomenon. It is found that the interaction between the local resonance and the traveling wave modes in proposed structure is responsible for the formation of the first band gap. The influences of the structural parameters on the band gaps are investigated by using FEM and the electrical circuit analogy. Numerical results show that the band gaps can be modulated in an even wider frequency range by changing the structural parameters, such as the rotation angle, the number of tubes, and the radius of the outer tube. The structural design results provide an effective way for phononic crystals to obtain the low-frequency band gaps, which have potential application in the low-frequency noise reduction.

  4. Exchange narrowing of the phonon contribution to the electron spin resonance line width in exchange-coupled magnetic insulators.

    PubMed

    Huber, D L

    2014-02-01

    In this paper we extend earlier calculations of the phonon contribution to the electron spin resonance line width at high temperatures in exchange-coupled magnetic insulators. We show that the one-phonon contribution is exchange-narrowed, similar to the static anisotropy contribution. The effect of the exchange narrowing is to limit contributing phonons to those modes whose energies are less than a cutoff, γ(max), that is proportional to the exchange interaction. Linear-T behavior in the line width occurs when kBT is greater than γ(max).

  5. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing

    PubMed Central

    Li, Peining; Lewin, Martin; Kretinin, Andrey V.; Caldwell, Joshua D.; Novoselov, Kostya S.; Taniguchi, Takashi; Watanabe, Kenji; Gaussmann, Fabian; Taubner, Thomas

    2015-01-01

    Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications. PMID:26112474

  6. Quantum Generation Dynamics of Coherent Phonon in Semiconductors: Transient and Nonlinear Fano Resonance

    NASA Astrophysics Data System (ADS)

    Watanabe, Yohei; Hino, Ken-Ichi; Hase, Muneaki; Maeshima, Nobuya

    The coherent phonon (CP) generation is one of the representative phenomena induced by ultrashort pulsed laser. In particular, in the initial stage of the CP generation in lightly n-doped Si, the vestige of Fano resonance (FR) manifested in a flash was observed in time-resolved spectroscopy experiments, in which it was speculated that this phenomenon results from the birth of transient polaronic quasiparticles composed of electrons and phonons strongly interacting each other. This study is aimed at constructing a fully-quantum-mechanical model for the CP generation and tracking the origin of the transient FR. We calculate two physical quantities in both of polar and non-polar semiconductors such as GaAs and undoped Si. One is a retarded longitudinal susceptibility which allows one to calculate a transient induced photoemission spectrum. The other is the Fourier-transform of LO-phonon displacement into frequency domain. We have succeeded in showing that the transient FR is exclusively caused in Si in harmony with the experiments, though, not observed in GaAs.

  7. Resonant behaviour of GaAs LO phonons in a GaAs-AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Shulin; T, A. Gant; M, Delaney; M, V. Klein; J, Klem; H, Morkoc

    1988-03-01

    Resonant Raman scattering from GaAs LO phonons in a 59Å GaAs/20Å AlAs superlattice was studied. The relevant intersubband energies were determined. The results suggest that all of the exciton transitions from the hole subbands HH1, LH1, HH2, HH3, LH2 and HH4 to the electron subbands CB1 and CB2 in the energy region covered by our incident dye laser were observed and a justificative analysis may involve effects due to valence band mixing and to 3D electronic miniband structure.

  8. Optically induced parametric magnetic resonances

    NASA Astrophysics Data System (ADS)

    Jimenez, Ricardo; Knappe, Svenja; Kitching, John

    2011-05-01

    Optically pumped vector magnetometers based on zero-field resonances have reached very high sensitivities by operating at high atomic densities where dephasing due to spin-exchange collisions can be suppressed. Simplified setups, with just one laser beam have measured magnetic fields from the human brain and heart. A key feature in these magnetometers is the introduction of an rf magnetic field along the measurement axis to generate a parametric resonance. Lock-in detection of the transmitted light, at an odd harmonic of the modulation frequency, allows the reduction of the low frequency noise and generates a resonance with dispersive shape. Here we study a zero-field vector magnetometer where the parametric resonances are induced by the vector AC stark-shift of light. This approach does not produce any external magnetic field that could disturb the reading of other magnetometers in the vicinity and could provide an alternative in applications where an applied AC-field cannot be used. We have characterized the vector AC stark-shift effect of light on Rb atoms contained in a micromachined vapor cell with buffer gas. We have obtained parametric resonances induced by modulation of the light-shift. We also analyze the detunings and intensities of the light-shift beam that maintain the magnetometer within the spin-exchange relaxation-free regime.

  9. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material.

    PubMed

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W W; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors. PMID:27213955

  10. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Phonon States and Dispersive Spectra of Polar Optical Phonons in Quasi-One-Dimensional Nanowires of Wurtzite ZnO and Zinc-Blend MgO Semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2011-01-01

    Within the framework of the macroscopic dielectric continuum model and Loudon's uniaxial crystal model, the phonon modes of a wurtzite/zinc-blende one-dimensional (1D) cylindrical nanowire (NW) are derived and studied. The analytical phonon states of phonon modes are given. It is found that there exist two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes existing in 1D wurtzite/zinc-blende NWs. Via the standard procedure of field quantization, the Fröhlich electron-phonon interaction Hamiltonians are obtained. Numerical calculations of dispersive behavior of these phonon modes on a wurtzite/zinc-blende ZnO/MgO NW are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO NWs are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive properties of the IO and QC modes on the free wave-number kz and the azimuthal quantum number m are discussed. The analytical Hamiltonians of electron-phonon interaction obtained here are quite useful for further investigating phonon influence on optoelectronics properties of wurtzite/zinc-blende 1D NW structures.

  11. Signal contrast in coherent Raman scattering: Optical phonons versus biomolecules

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Zheltikov, A. M.

    2012-09-01

    We show that the limiting contrast of the coherent anti-Stokes Raman scattering (CARS) signal with respect to the coherent background due to nonresonant four-wave mixing is controlled by the Q factor of the Raman mode and is independent of the parameters of laser pulses. High-Q phonon modes of semiconductor nanoparticles, such as diamond nanoprobes, can therefore substantially enhance the contrast of CARS images, as well as the sensitivity of CARS spectroscopy and microscopy compared to typical Raman-active vibrations of organic molecules in biotissues.

  12. Optical phonon modes in rhombohedral boron monosulfide under high pressure

    SciTech Connect

    Cherednichenko, Kirill A.; Sokolov, Petr S.; Solozhenko, Vladimir L.; Kalinko, Aleksandr; Le Godec, Yann; Polian, Alain; Itié, Jean-Paul

    2015-05-14

    Raman spectra of rhombohedral boron monosulfide (r-BS) were measured under pressures up to 34 GPa at room temperature. No pressure-induced structural phase transition was observed, while strong pressure shift of Raman bands towards higher wavenumbers has been revealed. IR spectroscopy as a complementary technique has been used in order to completely describe the phonon modes of r-BS. All experimentally observed bands have been compared with theoretically calculated ones and modes assignment has been performed. r-BS enriched by {sup 10}B isotope was synthesized, and the effect of boron isotopic substitution on Raman spectra was observed and analyzed.

  13. Optical Phonons In InAlAs Thin Layers: Raman And IR Study

    SciTech Connect

    Milekhin, A.; Kalagin, A.; Vasilenko, A.; Toropov, A.; Surovtsev, N.; Zahn, D. R. T.

    2010-01-04

    We present a study of the optical phonon spectrum of relaxed In{sub x}Al{sub 1-x}As epitaxial layers grown by molecular-beam epitaxy on GaAs substrates in the whole range of In content (x = 0 divide 1) using macro- and micro-Raman and IR spectroscopies.

  14. Electron hamiltonian renormalized by optical phonons in a two-orbital model of mixed valence

    NASA Astrophysics Data System (ADS)

    Spał, J.; Chao, K. A.

    1985-02-01

    We use a poor man's scaling argument along the line developed by Hewson in order to obtain an effective electronic model of mixed valence, with its interaction parameters renormalized by virtual optical phonon excitations. The atomic (f) electrons acquire a finite bandwidth, in addition to the renormalization of the hybridization.

  15. Mechanism of current modulation by optic phonon emission in heterojunction tunneling experiments

    SciTech Connect

    Hanna, C.B.; Hellman, E.S.; Laughlin, R.B.

    1985-08-27

    We explain recent observations by Hickmott et al. of sequential longitudinal optic phonon emission in tunneling currents of GaAs-Al/sub x/Ga/sub 1-x/As heterojunctions in terms of inhomogeneous tunneling and a magnetopolaronic mass correction. 16 refs., 13 figs.

  16. Phonon-mediated squeezing of the cavity field off-resonantly coupled with a coherently driven quantum dot

    SciTech Connect

    Zhu, Jia-pei; Huang, Hui; Li, Gao-xiang

    2014-01-21

    We theoretically propose a scheme for the quadrature squeezing of the cavity field via dissipative processes. The effects of the electron-phonon interaction (EPI) on the squeezing are investigated, where the cavity is off-resonantly coupled with a coherently driven quantum dot (QD) which is allowed to interact with an acoustic-phonon reservoir. Under certain conditions, the participation of the phonon induced by both the EPI and the off-resonant coupling of the cavity with the QD enables some dissipative processes to occur resonantly in the dressed-state basis of the QD. The cavity-mode photons emitted or absorbed during the phonon-mediated dissipative processes are correlated, thus leading to the squeezing of the cavity field. A squeezed vacuum reservoir for the cavity field is built up due to the EPI plus the off-resonant coupling between the cavity and the QD. The numerical results obtained with an effective polaron master equation derived using second-order perturbation theory indicate that, in low temperature limit, the degree of squeezing is maximal but the increasing temperature of the phonon reservoir could hinder the squeezing and degrade the degree of the squeezing of the cavity field. In addition, the presence of the photonic crystal could enhance the quadrature squeezing of the cavity field.

  17. Optical and Phonon Characterization of Ternary CdSe x S1- x Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Thi, L. A.; Cong, N. D.; Dang, N. T.; Nghia, N. X.; Quang, V. X.

    2016-05-01

    Ternary CdSe x S1- x alloy quantum dots (QDs) were synthesized using a wet chemical method. Their morphology, particle size, structural, optical, and vibrational properties were investigated using transmission electron microscopy, x-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively. The optical and vibrational properties of the QDs can be controlled by adjusting the Se/S molar ratio. The absorption and emission peaks shift to a longer wavelength range when increasing the Se content. The presence of two CdSe-like and CdS-like longitudinal optical phonon modes was observed. The dependencies of the optical and phonon modes on the Se content are discussed in detail.

  18. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  19. Excitons in one-phonon resonant Raman scattering: Fröhlich and interference effects

    NASA Astrophysics Data System (ADS)

    Cantarero, A.; Trallero-Giner, C.; Cardona, M.

    1989-12-01

    A theoretical model of resonant Raman scattering including excitons as intermediate states in the process is compared with recent experimental results in some III-V compound semiconductors where the Raman polarizability was obtained in absolute value for several scattering configurations. In particular, Fröhlich (F) interaction and its interference with the deformation potential (DP) one is analyzed in the E0+Δ0 critical point (CP) of GaAs at three different temperatures. Also the E0 and E0+Δ0 CP of GaP and E0+Δ0 of GaSb are analyzed. We show that the inclusion of impurity-induced forbidden LO-phonon Raman scattering is not necessary when excitonic effects are considered. The experimental data of GaAs corresponding to F interaction can be fitted by assuming a Fröhlich constant cF=0.14 eV Aṥ/2. Lifetime broadenings of 12 meV (10 K), 14 meV (100 K), and 28 meV (300 K) are deduced. The lifetime broadening of GaAs and GaSb at 100 K are taken from two-phonon Raman scattering spectra where the incoming and outgoing resonances are well defined. The general features in the comparison with the experiment is that the measured spectra corresponding to F interaction are well fitted; however, the theoretical interference is stronger than the measured one.

  20. Light-matter interaction: conversion of optical energy and momentum to mechanical vibrations and phonons

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2016-02-01

    Reflection, refraction, and absorption of light by material media are, in general, accompanied by a transfer of optical energy and momentum to the media. Consequently, the eigen-modes of mechanical vibration (phonons) created in the process must distribute the acquired energy and momentum throughout the material medium. However, unlike photons, phonons do not carry momentum. What happens to the material medium in its interactions with light, therefore, requires careful consideration if the conservation laws are to be upheld. The present paper addresses some of the mechanisms by which the electromagnetic momentum of light is carried away by mechanical vibrations.

  1. Crystalline whispering gallery mode resonators for quantum and nonlinear optics

    NASA Astrophysics Data System (ADS)

    Grudinin, Ivan Sergeevich

    This work describes a series of projects and technology developments aimed at the realization of a solid-state photonic-ionic trap for quantum optics experiments. The projects however, are not constrained to this goal and explore the fields of nonlinear optics and fabrication techniques. Fabri-Perot resonators have transformed the optical technology and can be found in many devices that utilize laser radiation. Whispering gallery mode resonators (WGMR) are relatively new elements and have such advantages as compactness, highest optical quality factors, and relative ease of fabrication. Small optical mode volume and long storage times allow record low thresholds of various nonlinear processes. Raman and Brillouin lasing, second and third harmonic generation, parametric oscillations and four wave mixing have all been enhanced in WGM resonators. Compared to glass microspheres, crystalline WGM resonators have higher nonlinear coefficients, may not be sensitive to water vapor, and have generally higher purity leading to record optical quality (Q) factors. Zero phonon lines of ions in crystals enable applications in cavity QED with single ions. A novel application of diamond turning to fabrication of axially symmetric crystalline optical resonators is described. This technique enabled crystalline WGM microresonators, multiple resonators coupled via the evanescent field, and a single mode resonator. Crystalline resonators having a record high optical Q of 1011 were demonstrated. Fundamental limits of the Q factor were investigated and Q=1015 was predicted at cryogenic temperatures. Record low threshold and high efficiency of stimulated Raman and Brillouin scattering led to the first observations of these effects in crystalline cavities. Brillouin and Raman lasers based on WGM resonators are expected to have very narrow linewidth. A cryogenic setup was developed that allowed observation of WG modes at low temperatures. Crystalline cavity was used as a reference for

  2. Coupled bipolarons and optical phonons as a model for high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Kasperczyk, J.

    1990-01-01

    The coherence length of the new high-temperature superconductors reaches very small value which is comparable to the dimensions of unit cell of these compounds. This means that a pair consists of two holes occupying the same site or two adjacent sites. Such a situation seems to be described by a model of the local-pairs (bipolarons). The origin of local-pairs may come not only from strong enough electron or hole-phonon interaction but also from other interactions. Independent of the specific nature of such local-pairs, they can undergo a Bose-like condensation to the superconducting state at a critical temperature which is usually much lower than the temperature of the pair formation. An interplay of ferroelectric and superconducting properties is considered within the model of hole-like local-pairs interacting with optical phonons. Therefore, researchers extend the usual local-pair Hamiltonian by including a direct interaction between the local-pairs and the optical phonons. These optical phonons are known to play an important role in the ferroelectric transition, if any, and they transform into an additional pseudo-acoustic branch at the ferroelectric critical temperature. (This is associated with nonzero electric polarization due to the existence of two separate lattices composed of negative and positive ions, respectively.)

  3. Coupled bipolarons and optical phonons as a model for high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Kasperczyk, J.

    1991-01-01

    The coherence length of the new high-temperature superconductors reaches a small value which is comparable to the dimensions of the unit cell of the compound. This means that a pair consists of two holes occupying the same site or two adjacent sites. Such a situation is described by a model of the local-pairs (bipolarons). The origin of local-pairs may come not only from strong enough electron or hole-phonon interaction but also from other interactions. Independent of the specific nature of such local-pairs, they can undergo a Bose-like condensation to the superconducting state at a critical temperature which is usually much lower than the temperature of the pair formation. An interplay of ferroelectric and superconducting properties is considered within the model of hole-like local-pairs interacting with optical phonons. Therefore, researchers extend the usual local-pair Hamiltonian by including a direct interaction between the local-pairs and the optical phonons. These optical phonons are known to play an important role in the ferroelectric transition and they transform into an additional pseudo-acoustic branch at the ferroelectric critical temperature. (This is associated with nonzero electric polarization due to the existence of two separate lattices composed of negative and positive ions, respectively.)

  4. Raman study of surface optical phonons in hydrothermally obtained ZnO(Mn) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hadžić, B.; Romčević, N.; Romčević, M.; Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Narkiewicz, U.; Sibera, D.

    2016-08-01

    Nanocrystalline samples of ZnO(Mn) were synthesized by hydrothermal method. The morphology of the samples was studied by HRTEM and SEM. X-ray diffraction was used to determine composition of the samples (ZnO and ZnMn2O4) and the mean crystalline size (from 16 to 99 nm). In this paper we report the experimental spectra of Raman scattering (from 100 to 1600 cm-1) with surface optical phonons (SOP) in range of 497-538 cm-1 as well as formation of new phases MnO, Mn3O4 and ZnMnO3. The phonon of registered phase's exhibit effects connected to phase concentration, while the SOP phonon mode exhibit significant confinement effect.

  5. Excitons and exciton-phonon interactions in 2D MoS2 , WS2 and WSe2 studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pimenta, Marcos; Del Corro, Elena; Carvalho, Bruno; Malard, Leandro; Alves, Juliana; Fantini, Cristiano; Terrones, Humberto; Elias, Ana Laura; Terrones, Mauricio

    The 2D materials exhibit a very strong exciton binding energy, and the exciton-phonon coupling plays an important role in their optical properties. Resonance Raman spectroscopy (RRS) is a very useful tool to provide information about excitons and their couplings with phonons. We will present in this work a RRS study of different samples of 2D transition metal dichalcogenides (MoS2, WS2 and WSe2) with one, two and three layers (1L, 2L, 3L) and bulk samples, using more than 30 different laser excitation lines covering the visible range. We have observed that all Raman features are enhanced by resonances with excitonic transitions. From the laser energy dependence of the Raman excitation profile (REP) we obtained the energies of the excitonic states and their dependence with the number of atomic layers.. In the case of MoS2, we observed that the electron-phonon coupling is symmetry dependent, and our results provide experimental evidence of the C exciton recently predicted theoretically. The RRS results WSe2 show that the Raman modes are enhanced by the excited excitonic states and we will present the dependence of the excited states energies on the number of layers.

  6. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe1-xMxSi, M=Ir,Os

    DOE PAGES

    Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; Sales, Brian C.; Niedziela, Jennifer L.; Ma, Jie; Matsuda, Masaaki; Abernathy, Douglas L.; Berlijn, Tom

    2015-03-31

    The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe1-xMxSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling, leads tomore » softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.« less

  7. Strong coupling between mid-infrared localized plasmons and phonons.

    PubMed

    Wan, Weiwei; Yang, Xiaodong; Gao, Jie

    2016-05-30

    We numerically and experimentally demonstrate strong coupling between the mid-infrared localized surface plasmon resonances supported by plasmonic metamaterials and the phonon vibrational resonances of polymethyl methacrylate (PMMA) molecules. The plasmonic resonances are tuned across the phonon resonance of PMMA molecules at 52 THz to observe the strong coupling, which manifests itself as an anti-crossing feature with two newly formed plasmon-phonon modes. It is also shown that the forbidden energy gap due to mode splitting is proportional to the overlapped optical power between the plasmonic resonance mode and the PMMA molecules, providing an effective approach for manipulating the coupling strength of light-matter interaction. PMID:27410151

  8. Resonant optical rectification in bacteriorhodopsin

    PubMed Central

    Groma, Géza I.; Colonna, Anne; Lambry, Jean-Christophe; Petrich, Jacob W.; Váró, György; Joffre, Manuel; Vos, Marten H.; Martin, Jean-Louis

    2004-01-01

    The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans→cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility χ(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics. PMID:15148391

  9. Optical phonon spectra of GaP nanoparticles prepared by nanochemistry

    NASA Astrophysics Data System (ADS)

    Manciu, F. S.; Furis, M.; McCombe, B. D.; Sahoo, Y.; Macrae, D. J.; Prasad, P. N.

    2003-03-01

    We have used IR transmission spectroscopy to study optically active phonon modes of GaP nanoparticles and obtained information about the morphology, crystallinity, and surface interactions. GaP nanoparticles were fabricated by colloidal nanochemistry and synthesized in several batches with different surfactants: Trioctylphosphineoxide and Dodecylamine. Samples for the IR studies were prepared in the form of pellets, by embedding them in a polycrystalline CsI matrix. The IR transmission measurements were carried out with a Fourier Transform Spectrometer covering the range from 20 - 600 cm-1. The transmittance spectra for all samples exhibit common absorption bands. A TO(Γ) band at 360 cm-1 demonstrates the crystallinity of the GaP nanoparticles. Evidence for two predicted surface optical phonon modes was found in all samples, as well as other weak features that we attribute to GaP two phonon and combination phonon bands. The crystallinity and the stoichiometry of the samples were also examined and characterized by Transmission Electron Microscopy, Electron Diffraction, and Energy Dispersive Spectroscopy. Supported by the DURINT program through the AFOSR under grant # F496200110358.

  10. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  11. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide.

    PubMed

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  12. Purely electronic zero-phonon lines in optical data storage and processing.

    PubMed

    Rebane, Karl K

    2005-03-01

    Spectroscopies of matrix isolated species and impurity activated solids are close relatives. Both are among the well developing chapters of solid state spectroscopy and optics. In this paper I am trying to give very brief overview what has been achieved in science and applications of impurity activated solids based on zero-phonon lines (ZPLs) in optical data storage and processing. I would like to show that the latter comprises via persistent spectral hole burning time-and-space domain holography in a certain meaning also the "stopping of light". ZPLs are beginning to play a role in the approaches to optical quantum computing.

  13. Effects of resonant phonon scattering from internal molecular modes on the thermal conductivity of molecular glasses

    NASA Astrophysics Data System (ADS)

    Krivchikov, A. I.; Yushchenko, A. N.; Korolyuk, O. A.; Bermejo, F. J.; Fernandez-Perea, R.; Bustinduy, I.; González, M. A.

    2008-01-01

    The thermal conductivity κ(T) of the crystalline and glassy phases of the two isomers of propyl alcohol has been measured. The two isomers differ by a minor chemical detail involving the position of the hydroxyl group with respect to the carbon backbone. Such a difference in molecular structure leads, however, to disparate behaviors for the temperature dependence of κ(T) , for both glass and crystal states. The κ(T) for the glass shows for 1-propanol an anomalously large plateau region comprising temperatures within 6-90K , while data for isomeric 2-propanol show only a small plateau up to 10K which is comparable to data on lower alcohols. The results emphasize the role played by internal molecular degrees of freedom as sources of strong resonant phonon scattering.

  14. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators

    NASA Astrophysics Data System (ADS)

    Qian, Denghui; Shi, Zhiyu

    2016-10-01

    Bandgap properties of the locally resonant phononic crystal double panel structure made of a two-dimensional periodic array of a spring-mass resonator surrounded by n springs (n equals to zero at the beginning of the study) connected between the upper and lower plates are investigated in this paper. The finite element method is applied to calculate the band structure, of which the accuracy is confirmed in comparison with the one calculated by the extended plane wave expansion (PWE) method and the transmission spectrum. Numerical results and further analysis demonstrate that two bands corresponding to the antisymmetric vibration mode open a wide band gap but is cut narrower by a band corresponding to the symmetric mode. One of the regulation rules shows that the lowest frequency on the symmetric mode band is proportional to the spring stiffness. Then, a new design idea of adding springs around the resonator in a unit cell (n is not equal to zero now) is proposed in the need of widening the bandwidth and lowering the starting frequency. Results show that the bandwidth of the band gap increases from 50 Hz to nearly 200 Hz. By introducing the quality factor, the regulation rules with the comprehensive consideration of the whole structure quality limitation, the wide band gap and the low starting frequency are also discussed.

  15. Acoustic add-drop filters based on phononic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Rostami-Dogolsara, Babak; Moravvej-Farshi, Mohammad Kazem; Nazari, Fakhroddin

    2016-01-01

    We report the design procedure for an acoustic add-drop filter (ADF) composed of two line-defect waveguides coupled through a ring resonator cavity (RRC) all based on a phononic crystal (PnC) platform. Using finite difference time domain and plane wave expansion methods, we study the propagation of acoustic waves through the PnC based ADF structures. Numerical results show that the quality factor for the ADF with a quasisquare ring resonator with a frequency band of 95 Hz centered about 75.21 kHz is Q ˜ 800. We show that the addition of an appropriate scatterer at each RRC corner can reduce the scattering loss, enhancing the quality factor and the transmission efficiency. Moreover, it is also shown that by increasing the coupling gaps between the RRC and waveguides the quality factor can be increased by ˜25 times, at the expense of a significant reduction in the transmission efficiency this is attributed to the enhanced selectivity in expense of weakened coupling. Finally, by varying the effective path length of the acoustic wave in the RRC, via selectively varying the inclusions physical and geometrical properties, we show how one can ultra-fine and fine-tune the resonant frequency of the ADF.

  16. Saturating optical resonances in quantum dots

    NASA Astrophysics Data System (ADS)

    Nair, Selvakumar V.; Rustagi, K. C.

    Optical bistability in quantum dots, recently proposed by Chemla and Miller, is studied in a two-resonance model. We show that for such classical electromagnetic resonances the applicability of a two-resonance model is far more restrictive than for those in atoms.

  17. Mode conversion based on the acousto-optical interaction in photonic-phononic waveguide

    NASA Astrophysics Data System (ADS)

    Chen, Guodong; Zhang, Ruiwen; Xiong, Huang; Xie, Heng; Gao, Ya; Feng, Danqi; Sun, Junqiang

    2015-02-01

    We present a scheme for on-chip optical mode conversion in a hybrid photonic-phononic waveguide. Both propagating optical and acoustic wave can be tightly confined in the hybrid waveguide, and the acoustooptical interaction can be enhanced to realize optical mode conversion within a chip-scale size. The theoretical model of the acousto-optic interaction is established to explain the mode conversion. The numerical simulation results indicate that the high efficient mode conversion can be achieved by adjusting the intensity of the acoustic wave. We also show that the mode conversion bandwidth can be dramatically broadened to 13 THz by adjusting the frequency of the acoustic wave to match phase condition of the acousto-optic interaction. This mode converter on-chip is promising in order to increase the capacity of silicon data busses for on-chip optical interconnections.

  18. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    SciTech Connect

    Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  19. Non-resonant optical cavity design for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Farfan, B. G.; Symonds, G.; Gragossian, A.; Ghasemkhani, M. R.; Albrecht, A. R.; Sheik-Bahae, M.; Epstein, R. I.

    2016-03-01

    We present a study of non-resonant optical cavities for optical refrigerators. Designs have been studied to maximize pump light-trapping to improve absorption and thereby increase the efficiency of optical refrigeration. The approaches of non-resonant optical cavities by Herriott-cell and total-internal-reflection were studied. Ray-tracing simulations and experiments were performed to analyze and optimize the different light-trapping configurations. We present a trade-off analysis between performance, reliability, and manufacturability.

  20. Raman investigation of optical phonons in the ion implanted Hg1-xCdxTe

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Shukla, A. K.; Pal, R.

    2016-07-01

    Raman scattering is studied here for Hg1-xCdxTe (x = 0.3) samples implanted with 180-keV of B11 ions with various doses up to 1 × 1015 cm-2. Considering disorder in the implanted HgCdTe material, the correlation length of Raman active optical phonons is determined as a short range order in the nanocrystals. Phonon softening and asymmetric broadening are investigated for HgTe like LO and TO phonon modes in the Raman spectrum while CdTe like modes almost disappeared for the dose greater than 5 × 1013 cm-2. Disorder is measured quantitatively for wide ranges of doses on the basis of phonon confinement model. Nanostructures of the near-surface implantation-induced damage layer are known to consist of a mixture of amorphous HgCdTe and its nanocrystals. A significant reduction of the nanocrystallites size is reported here with increasing dose i.e. L = 34-46 A0 at dose of 1 × 1015 cm-2.

  1. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    NASA Astrophysics Data System (ADS)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  2. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe1-xMxSi (M =Ir , Os )

    NASA Astrophysics Data System (ADS)

    Delaire, O.; Al-Qasir, I. I.; May, A. F.; Li, C. W.; Sales, B. C.; Niedziela, J. L.; Ma, J.; Matsuda, M.; Abernathy, D. L.; Berlijn, T.

    2015-03-01

    The vibrational behavior of heavy substitutional impurities (M = Ir,Os) in Fe1-xMxSi (x =0 ,0.02 ,0.04 ,0.1 ) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. Our INS measurements on single crystals mapped the four-dimensional dynamical structure factor, S (Q ,E ) , for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers, leads to softened interatomic force constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S (Q ,E ) from INS through a Green's-function model incorporating the phonon self-energy based on first-principles density functional theory simulations, and we study the disorder-induced lifetimes on large supercells. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.

  3. Coupled bloch-phonon oscillations in semiconductor superlattices

    PubMed

    Dekorsy; Bartels; Kurz; Kohler; Hey; Ploog

    2000-07-31

    We investigate coherent Bloch oscillations in GaAs/AlxGa1-xAs superlattices with electronic miniband widths larger than the optical phonon energy. In these superlattices the Bloch frequency can be tuned into resonance with the optical phonon. Close to resonance a direct coupling of Bloch oscillations to LO phonons is observed which gives rise to the coherent excitation of LO phonons. The density necessary for driving coherent LO phonons via Bloch oscillations is about 2 orders of magnitude smaller than the density necessary to drive coherent LO phonons in bulk GaAs. The experimental observations are confirmed by the theoretical description of this phenomenon [A.W. Ghosh et al., Phys. Rev. Lett. 85, 1084 (2000)].

  4. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  5. Optical phonon spectra of GaP nanoparticles prepared by nanochemistry

    NASA Astrophysics Data System (ADS)

    Manciu, F. S.; Sahoo, Y.; MacRae, D. J.; Furis, M.; McCombe, B. D.; Prasad, P. N.

    2003-06-01

    Gallium phosphide (GaP) nanoparticles have been synthesized by colloidal nanochemistry with two different surfactants: trioctylphosphine oxide and dodecylamine. Transverse optical (bulk) and surface optical phonons associated with the GaP nanoparticles were observed and studied experimentally by infrared transmission spectroscopy of a solid dispersion of these nanoparticles in cesium iodide pellets. These vibrational properties of the nanoparticles were used to obtain information about the crystallinity and surface interactions. The crystallinity and the stoichiometry of the samples were also examined and characterized by transmission electron microscopy, electron diffraction, and energy dispersive x-ray spectroscopy.

  6. Unified Description of the Optical Phonon Modes in N-Layer MoTe2

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane

    N -layer transition metal dichalcogenides (denoted MX2) provide a unique platform to investigate the evolution of the physical properties between the bulk (3D) and monolayer (quasi-2D) limits. Here, we present a unified analysis of the optical phonon modes in N-layer 2 H -MX2. The 2 H -phase (or hexagonal phase) is the most common polytype for semiconducting MX2 (such as MoS2). Using Raman spectroscopy, we have measured the manifold of low-frequency (rigid layer), mid-frequency (involving intralayer displacement of the chalcogen atoms only), and high-frequency (involving intralayer displacements of all atoms) Raman-active modes in N = 1 to 12 layer 2 H -molybdenenum ditelluride (MoTe2). For each monolayer mode, the N-dependent phonon frequencies give rise to fan diagrams that are quantitatively fit to a force constant model. This analysis allows us to deduce the frequencies of all the bulk (including silent) optical phonon modes.

  7. Surface optical phonons in GaAs nanowires grown by Ga-assisted chemical beam epitaxy

    SciTech Connect

    García Núñez, C. Braña, A. F.; Pau, J. L.; Ghita, D.; García, B. J.; Shen, G.; Wilbert, D. S.; Kim, S. M.; Kung, P.

    2014-01-21

    Surface optical (SO) phonons were studied by Raman spectroscopy in GaAs nanowires (NWs) grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates. NW diameters and lengths ranging between 40 and 65 nm and between 0.3 and 1.3 μm, respectively, were observed under different growth conditions. The analysis of the Raman peak shape associated to either longitudinal or surface optical modes gave important information about the crystal quality of grown NWs. Phonon confinement model was used to calculate the density of defects as a function of the NW diameter resulting in values between 0.02 and 0.03 defects/nm, indicating the high uniformity obtained on NWs cross section size during growth. SO mode shows frequency downshifting as NW diameter decreases, this shift being sensitive to NW sidewall oxidation. The wavevector necessary to activate SO phonon was used to estimate the NW facet roughness responsible for SO shift.

  8. Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator.

    PubMed

    An, Kyongmo; Olsson, Kevin S; Weathers, Annie; Sullivan, Sean; Chen, Xi; Li, Xiang; Marshall, Luke G; Ma, Xin; Klimovich, Nikita; Zhou, Jianshi; Shi, Li; Li, Xiaoqin

    2016-09-01

    The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y_{3}Fe_{5}O_{12}, has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena. PMID:27636490

  9. Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons

    NASA Astrophysics Data System (ADS)

    Lone, Muzaffar Qadir; Yarlagadda, S.

    2016-04-01

    We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.

  10. Phonon sideband studies of the spin-triplet optical transition in diamond nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Alkauskas, Audrius; Toyli, David M.; Buckley, Bob B.; Awschalom, David D.; van de Walle, Chris G.

    2013-03-01

    In the past decade, the nitrogen-vacancy center in diamond has emerged as a promising solid-state system for quantum-information processing, and also for nanoscale magnetic, electric, and thermal sensing. All of these applications are partly enabled because the spin of the center can be measured through photoluminescence. This calls for a deeper understanding of the photoluminescence spectrum, in particular its phonon side-band. In this work we study the coupling of lattice vibrations to the triplet (3E -->3A2) optical transition from first-principles electronic structure calculations. Our formulation includes both quasi-localized and bulk phonons, and leads to an excellent agreement of the calculated and the measured photoluminescence lineshape. This good agreement enables the application of the developed methodology to other defects in semiconductors that are currently being investigated as viable quantum bits. This work has been supported by the NSF, AFOSR, and the Swiss NSF.

  11. Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Olsson, Kevin S.; Weathers, Annie; Sullivan, Sean; Chen, Xi; Li, Xiang; Marshall, Luke G.; Ma, Xin; Klimovich, Nikita; Zhou, Jianshi; Shi, Li; Li, Xiaoqin

    2016-09-01

    The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y3Fe5O12 , has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.

  12. Spin-flip relaxation via optical phonon scattering in quantum dots

    SciTech Connect

    Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen

    2013-12-14

    Based on the spin-orbit coupling admixture mechanism, we theoretically investigate the spin-flip relaxation via optical phonon scattering in quantum dots by considering the effect of lattice relaxation due to the electron-acoustic phonon deformation potential coupling. The relaxation rate displays a cusp-like structure (or a spin hot spot) that becomes more clearly with increasing temperature. We also calculate the relaxation rate of the spin-conserving process, which follows a Gaussian form and is several orders of magnitude larger than that of spin-flip process. Moreover, we find that the relaxation rate displays the oscillatory behavior due to the interplay effects between the magnetic and spatial confinement for the spin-flip process not for the spin-conserving process. The trends of increasing and decreasing temperature dependence of the relaxation rates for two relaxation processes are obtained in the present model.

  13. Coherent Control of Optically Generated and Detected Picosecond Surface Acoustic Phonons

    SciTech Connect

    David H. Hurley

    2006-11-01

    Coherent control of elementary optical excitations is a key issue in ultrafast materials science. Manipulation of electronic and vibronic excitations in solids as well as chemical and biological systems on ultrafast time scales has attracted a great deal of attention recently. In semiconductors, coherent control of vibronic excitations has been demonstrated for bulk acoustic and optical phonons generated in superlattice structures. The bandwidth of these approaches is typically fully utilized by employing a 1-D geometry where the laser spot size is much larger than the superlattice repeat length. In this presentation we demonstrate coherent control of optically generated picosecond surface acoustic waves using sub-optical wavelength absorption gratings. The generation and detection characteristics of two material systems are investigated (aluminum absorption gratings on Si and GaAs substrates).

  14. Direct measurement of lattice dynamics and optical phonon excitation in semiconductor nanocrystals using femtosecond stimulated Raman spectroscopy.

    PubMed

    Hannah, Daniel C; Brown, Kristen E; Young, Ryan M; Wasielewski, Michael R; Schatz, George C; Co, Dick T; Schaller, Richard D

    2013-09-01

    We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600  fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening. PMID:25166708

  15. Dispersions and FRÖHLICH Electron-Phonon Interaction Hamiltonian of Propagating Optical Phonon Modes in Quasi-One Wurtzite GaN-BASED Quantum Well Wires

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xie, Hong-Jing

    Based on the dielectric continuum model and Loudon's uniaxial crystal model, the propagating (PR) optical phonon modes and the Fröhlich-like electron-PR phonon interaction Hamiltonian in a quasi-one-dimensional (Q1D) wurtzite quantum well wire (QWW) structure are deduced and analyzed. Numerical calculations on AlGaN/GaN/AlGaN wurtzite QWW are performed. Results reveal that the dispersive frequencies of PR modes are the continuous functions of free wavenumber kz in z-direction and discrete functions of azimuthal quantum number m. The reduced behavior of the PR modes in wurtzite quantum systems is obviously observed. From the discussion of the electron-PR phonon coupling functions, it is found that the low-order PR modes in the case of small kz and m play a more important role in the electron-PR phonon interactions. Moreover, a detailed comparison of the PR modes in Q1D QWW structures with those in quasi-two-dimensional quantum wells are also carried out. The physical reasons resulting in the relationship and distinction in the two types of systems are also analyzed deeply.

  16. Fermi resonance in optical microcavities.

    PubMed

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-04-01

    Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.

  17. Axial interface optical phonon modes in a double-nanoshell system.

    PubMed

    Kanyinda-Malu, C; Clares, F J; de la Cruz, R M

    2008-07-16

    Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.

  18. Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal

    NASA Astrophysics Data System (ADS)

    Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.; El-Kady, I.; Leseman, Z. C.

    2016-07-01

    This paper presents the first design and experimental demonstration of an ultrahigh frequency complete phononic crystal (PnC) bandgap aluminum nitride (AlN)/air structure operating in the GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array of air holes in an AlN slab. The fabricated PnC resonator resonates at 1.117 GHz, which corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very good agreement with the eigen-frequency and frequency-domain finite element analyses. As a result, a quality factor/volume of 7.6 × 1017/m3 for the confined resonance mode was obtained that is the largest value reported for this type of PnC resonator to date. These results are an important step forward in achieving possible applications of PnCs for RF communication and signal processing with smaller dimensions.

  19. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks.

    PubMed

    Golub, Mikhail V; Zhang, Chuanzeng

    2015-01-01

    This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.

  20. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials.

  1. Resonance spectra of diabolo optical antenna arrays

    SciTech Connect

    Guo, Hong; Guo, Junpeng; Simpkins, Blake; Caldwell, Joshua D.

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  2. Method of shifting and fixing optical frequency of an optical resonator, and optical resonator made by same

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Strekalov, Dmitry V. (Inventor); Maleki, Lute (Inventor); Matsko, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Martin, Jan M. (Inventor)

    2010-01-01

    A method of shifting and fixing an optical frequency of an optical resonator to a desired optical frequency, and an optical resonator made by such a method are provided. The method includes providing an optical resonator having a surface and a refractive index, and obtaining a coating composition having a predetermined concentration of a substance and having a refractive index that is substantially similar to the refractive index of the optical resonator. The coating composition inherently possesses a thickness when it is applied as a coating. The method further includes determining a coating ratio for the surface of the optical resonator and applying the coating composition onto a portion of the surface of the optical resonator based upon the determined coating ratio.

  3. Electric-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Robinson, Deborah L. (Inventor); Hemmati, Hamid (Inventor)

    1994-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 Mbps. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 ns and to limit the required switching voltage to within 10 V. Experimentally, the resonant cavity can be maintained on resonance with respect to the input laser signal by monitoring the fluctuation of output intensity as the cavity is switched. This cavity locking scheme can be applied by using only the random data sequence, and without the need of additional dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, resonant cavity modulator has the potential of accommodating higher throughput power. Furthermore, mode matching into a bulk device is easier and typically can be achieved with higher efficiency. On the other hand, unlike waveguide modulators which are essentially traveling wave devices, the resonant cavity modulator requires that the cavity be maintained in resonance with respect to the incoming laser signal. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  4. Unified Description of the Optical Phonon Modes in N-Layer MoTe2.

    PubMed

    Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane

    2015-10-14

    N-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three-dimensional) and monolayer (quasi-two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the Γ-point optical phonons in N-layer 2H-molybdenum ditelluride (MoTe2). We observe series of N-dependent low-frequency interlayer shear and breathing modes (below 40 cm(-1), denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range 100-200 cm(-1), denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range 200-300 cm(-1), denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in N-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the E2u/E1g and B1u/A1g modes, respectively, and provide a measurement of the frequencies of the bulk silent E2u and B1u optical phonon modes. Our analysis could readily be generalized to other layered crystals.

  5. Unified Description of the Optical Phonon Modes inN-Layer MoTe2

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane

    2015-10-01

    $N$-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three dimensional) and monolayer (quasi two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the $\\Gamma$-point optical phonons in $N$-layer $2H$-molybdenum ditelluride (MoTe$_2$). We observe a series of $N$-dependent low-frequency interlayer shear and breathing modes (below $40~\\rm cm^{-1}$, denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range $100-200~\\rm cm^{-1}$, denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range $200-300~\\rm cm^{-1}$, denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in $N$-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the $E_{2u}/E_{1g}$ and $B_{1u}/A_{1g}$ modes, respectively, and provide a measurement of the frequencies of the bulk silent $E_{2u}$ and $B_{1u}$ optical phonon modes. Our analysis could readily be generalized to other layered crystals.

  6. Unified Description of the Optical Phonon Modes in N-Layer MoTe2.

    PubMed

    Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane

    2015-10-14

    N-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three-dimensional) and monolayer (quasi-two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the Γ-point optical phonons in N-layer 2H-molybdenum ditelluride (MoTe2). We observe series of N-dependent low-frequency interlayer shear and breathing modes (below 40 cm(-1), denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range 100-200 cm(-1), denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range 200-300 cm(-1), denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in N-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the E2u/E1g and B1u/A1g modes, respectively, and provide a measurement of the frequencies of the bulk silent E2u and B1u optical phonon modes. Our analysis could readily be generalized to other layered crystals. PMID:26371970

  7. Fröhlich electron-interface and -propagating optical phonon interactions in a wurtzite multi-shell cylindrical heterostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Shi, Jun-Jie

    2006-04-01

    Under the dielectric continuum model and Loudon's uniaxial crystal model, the polar optical phonon modes in a wurtzite multi-shell cylindrical heterostructure are analyzed and discussed. The analytical electrostatic potential functions are presented for all the five types of polar optical phonon modes including the interface optical (IO) modes, the propagating (PR) modes, the quasi-confined (QC) modes, the half-space-like (HSL) modes and the exactly confined (EC) modes. By adopting a transfer matrix method, the free IO and PR phonon fields and corresponding Fröhlich electron -IO and -PR interaction Hamiltonians are obtained via the method of electrostatic potential expansion. The analytical formulas are universal and can be applied to single, double and some complex cylindrical wurtzite quantum systems.

  8. p -State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck

    NASA Astrophysics Data System (ADS)

    Achtstein, Alexander W.; Scott, Riccardo; Kickhöfel, Sebastian; Jagsch, Stefan T.; Christodoulou, Sotirios; Bertrand, Guillaume H. V.; Prudnikau, Anatol V.; Antanovich, Artsiom; Artemyev, Mikhail; Moreels, Iwan; Schliwa, Andrei; Woggon, Ulrike

    2016-03-01

    We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k .p calculations—all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

  9. Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Thilagam, A.

    2016-09-01

    We examine a mechanism by which excitons are generated via the longitudinal optical (LO) phonon-assisted scattering process after optical excitation of monolayer transition metal dichalcogenides. The exciton formation time is computed as a function of the exciton center-of-mass wavevector, electron and hole temperatures, and carrier densities for known values of the Fröhlich coupling constant, LO phonon energy, lattice temperature, and the exciton binding energy in layered structures. For the monolayer MoS2, we obtain ultrafast exciton formation times on the sub-picosecond time scale at charge densities of 5 × 1011 cm-2 and carrier temperatures less than 300 K, in good agreement with recent experimental findings ( ≈0.3 ps). While excitons are dominantly created at zero center-of-mass wavevectors at low charge carrier temperatures ( ≈30 K), the exciton formation time is most rapid at non-zero wavevectors at higher temperatures ( ≥120 K) of charge carriers. The results show the inverse square-law dependence of the exciton formation times on the carrier density, consistent with a square-law dependence of photoluminescence on the excitation density. Our results show that excitons are formed more rapidly in exemplary monolayer selenide-based dichalcogenides (MoSe2 and WSe2) than sulphide-based dichalcogenides (MoS2 and WS2).

  10. Transport coefficients of graphene: Interplay of impurity scattering, Coulomb interaction, and optical phonons

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Yi; Foster, Matthew S.

    2016-05-01

    We study the electric and thermal transport of the Dirac carriers in monolayer graphene using the Boltzmann-equation approach. Motivated by recent thermopower measurements [F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster, and P. Kim, Phys. Rev. Lett. 116, 136802 (2016), 10.1103/PhysRevLett.116.136802], we consider the effects of quenched disorder, Coulomb interactions, and electron-optical-phonon scattering. Via an unbiased numerical solution to the Boltzmann equation we calculate the electrical conductivity, thermopower, and electronic component of the thermal conductivity, and discuss the validity of Mott's formula and of the Wiedemann-Franz law. An analytical solution for the disorder-only case shows that screened Coulomb impurity scattering, although elastic, violates the Wiedemann-Franz law even at low temperature. For the combination of carrier-carrier Coulomb and short-ranged impurity scattering, we observe the crossover from the interaction-limited (hydrodynamic) regime to the disorder-limited (Fermi-liquid) regime. In the former, the thermopower and the thermal conductivity follow the results anticipated by the relativistic hydrodynamic theory. On the other hand, we find that optical phonons become non-negligible at relatively low temperatures and that the induced electron thermopower violates Mott's formula. Combining all of these scattering mechanisms, we obtain the thermopower that quantitatively coincides with the experimental data.

  11. Electro-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)

    1992-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  12. From photons to phonons and back: a THz optical memory in diamond.

    PubMed

    England, D G; Bustard, P J; Nunn, J; Lausten, R; Sussman, B J

    2013-12-13

    Optical quantum memories are vital for the scalability of future quantum technologies, enabling long-distance secure communication and local synchronization of quantum components. We demonstrate a THz-bandwidth memory for light using the optical phonon modes of a room temperature diamond. This large bandwidth makes the memory compatible with down-conversion-type photon sources. We demonstrate that four-wave mixing noise in this system is suppressed by material dispersion. The resulting noise floor is just 7×10(-3) photons per pulse, which establishes that the memory is capable of storing single quanta. We investigate the principle sources of noise in this system and demonstrate that high material dispersion can be used to suppress four-wave mixing noise in Λ-type systems. PMID:24483658

  13. From photons to phonons and back: a THz optical memory in diamond.

    PubMed

    England, D G; Bustard, P J; Nunn, J; Lausten, R; Sussman, B J

    2013-12-13

    Optical quantum memories are vital for the scalability of future quantum technologies, enabling long-distance secure communication and local synchronization of quantum components. We demonstrate a THz-bandwidth memory for light using the optical phonon modes of a room temperature diamond. This large bandwidth makes the memory compatible with down-conversion-type photon sources. We demonstrate that four-wave mixing noise in this system is suppressed by material dispersion. The resulting noise floor is just 7×10(-3) photons per pulse, which establishes that the memory is capable of storing single quanta. We investigate the principle sources of noise in this system and demonstrate that high material dispersion can be used to suppress four-wave mixing noise in Λ-type systems.

  14. Optical and phonon properties of ZnO:CuO mixed nanocomposite

    SciTech Connect

    Udayabhaskar, R.; Karthikeyan, B.

    2014-04-21

    Optical and phonon properties of ZnO:CuO nanocrystals which are prepared through sol-gel method are reported here. From X-ray diffraction studies, observed that Cu doping replaces the Zn and also forms secondary phase. Optical absorption spectral studies shows that the exciton and plasmon related bands of ZnO and CuO phase, respectively. Fluorescence studies of the prepared samples shows that green emission from ZnO is completely depleted and the same is attributed to CuO Plasmon. Raman spectral studies reveal that secondary phase (impurity) induced profile changes in 1LO and E{sub 2High} modes. Asymmetry in peak shape is analyzed using Fano profile with the combination of Lorentzian profile. Moreover, the monotonic increase of Fano factor and full width at half maxima is hopefully attributed to the continuum arises by the plasmons of Cu-O phase in ZnO nanosystem.

  15. Bloch oscillations in the presence of plasmons and phonons

    PubMed

    Ghosh; Jonsson; Wilkins

    2000-07-31

    The coupling between Bloch oscillating electrons and longitudinal optical phonons in a superlattice leads to resonant phonon excitation but no gap in the Bloch-phonon spectrum. In addition, we predict a sharp transition from plasma to Bloch oscillations at nu(B) = 2nu(P). From a microscopic description with phenomenological dampings, we numerically map out the behavior of coupled Bloch-plasmon-phonon modes for a wide range of parameters, and mimic experimental conditions. Our results are in good agreement with recent experiments by Dekorsy et al. [Phys. Rev. Lett. 85, 1080 (2000)].

  16. Resilience in optical ring-resonant switches.

    PubMed

    Williams, Kevin A; Rohit, Abhinav; Glick, Madeleine

    2011-08-29

    Phase-modulated ring resonant switches are receiving increasing attention for monolithic Silicon photonic networks. Resilience to fabrication variations and operational tolerances are however required to create networks with sufficient connectivity and bandwidth. In this work we use the combination of vectorial optical-mode propagation and transfer matrix calculation to map fabrication-level feature size variation to the optical switch performance metrics for extinction ratio, bandwidth and power penalty. Fabrication tolerances may be relaxed considerably through the combination of moderate size directional couplers of up to 30 µm, moderate 400 GHz free spectral range resonator design and the use of fifth order resonance. High speed 10 Gb/s, wavelength-multiplex-compliant, optical signal routing is predicted with on-state power penalties of 0.2 dB - 0.7 dB and off-state signal extinctions of - 62 dB.

  17. Resilience in optical ring-resonant switches

    NASA Astrophysics Data System (ADS)

    Williams, Kevin A.; Rohit, Abhinav; Glick, Madeleine

    2011-08-01

    Phase-modulated ring resonant switches are receiving increasing attention for monolithic Silicon photonic networks. Resilience to fabrication variations and operational tolerances are however required to create networks with sufficient connectivity and bandwidth. In this work we use the combination of vectorial optical-mode propagation and transfer matrix calculation to map fabrication-level feature size variation to the optical switch performance metrics for extinction ratio, bandwidth and power penalty. Fabrication tolerances may be relaxed considerably through the combination of moderate size directional couplers of up to 30 μm, moderate 400 GHz free spectral range resonator design and the use of fifth order resonance. High speed 10Gb/s, wavelength-multiplex-compliant, optical signal routing is predicted with on-state power penalties of 0.2 dB -- 0.7 dB and off-state signal extinctions of -- 62dB.

  18. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  19. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  20. Optical isolation via unidirectional resonant photon tunneling

    SciTech Connect

    Moccia, Massimo; Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2014-01-28

    We show that tri-layer structures combining epsilon-negative and magneto-optical material layers can exhibit unidirectional resonant photon tunneling phenomena that can discriminate between circularly polarized (CP) waves of given handedness impinging from opposite directions, or between CP waves with different handedness impinging from the same direction. This physical principle, which can also be interpreted in terms of a Fabry-Perot-type resonance, may be utilized to design compact optical isolators for CP waves. Within this framework, we derive simple analytical conditions and design formulae, and quantitatively assess the isolation performance, also taking into account the unavoidable imperfections and nonidealities.

  1. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance

    SciTech Connect

    Parsons, L. C. Andrews, G. T.

    2014-07-21

    Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.

  2. Surfactant assisted control on optical, fluorescence and phonon lifetime in α-Bi2O3 microrods

    NASA Astrophysics Data System (ADS)

    Hariharan, S.; Udayabhaskar, R.; T. R., Ravindran; Karthikeyan, B.

    2016-06-01

    We report preparation of pure and surfactant added α-Bi2O3 microrods through simple chemical method at moderate temperature. Cetyltrimethyl ammonium bromide (CTAB) is used as a surfactant. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, UV-Vis absorption and photoluminescence (PL) measurements were carried out to understand the effect of surfactant (CTAB) on structural, phonon and optical properties of the prepared material. It is observed that the crystallite size, optical band gap and the structural defects (oxygen vacancies) decreases due to the effect of surfactant. Raman spectral studies exhibit various phonon modes of Bi2O3 and also decrease in the FWHM of the phonon modes is observed after the addition of CTAB.

  3. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  4. Analysis of acousto-optic interaction based on forward stimulated Brillouin scattering in hybrid phononic-photonic waveguides.

    PubMed

    Zhang, Ruiwen; Chen, Guodong; Sun, Junqiang

    2016-06-13

    We present the generation of forward stimulated Brillouin scattering (FSBS) in hybrid phononic-photonic waveguides. To confine the optical and acoustic waves simultaneously, a hybrid waveguide is designed by embedding the silicon line defect in the silicon nitride phononic crystal slab. By taking into account three kinds hybrid waveguide, the appropriate structural parameters are obtained to enhance the acousto-optic interaction. We fabricate the honeycomb hybrid waveguide with a CMOS compatible technology. The forward Brillouin frequency shift is measured up to 2.425 GHz and the acoustic Q-factor of the corresponding acoustic mode is 1100. The influences of pump power, acoustic loss, nonlinear optical loss and lattice constant on the acousto-optic interaction in FSBS are analyzed and discussed. The proposed approach has important potential applications in on-chip all-optical signal processing. PMID:27410324

  5. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  6. Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator

    NASA Astrophysics Data System (ADS)

    Sun, F.; Dong, X.; Zou, J.; Dykman, M. I.; Chan, H. B.

    2016-08-01

    The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion.

  7. Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator

    PubMed Central

    Sun, F.; Dong, X.; Zou, J.; Dykman, M. I.; Chan, H. B.

    2016-01-01

    The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion. PMID:27576597

  8. Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator.

    PubMed

    Sun, F; Dong, X; Zou, J; Dykman, M I; Chan, H B

    2016-01-01

    The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion. PMID:27576597

  9. Passive ring resonator micro-optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Venediktov, V. Yu; Filatov, Yu V.; Shalymov, E. V.

    2016-05-01

    This paper reviews recent advances in passive micro-optical gyroscopes. In the last decade, most research effort in the area of micro-optical gyros has been concentrated on a configuration that takes advantage of a single-mode passive ring resonator, which is usually fabricated using integrated optical technologies. The dimensions of such micro-optical gyros are comparable to those of micromechanical gyroscopes (area of 10 to 100 mm2) and their sensitivity is considerably better than the sensitivity of the latter, approaching that of fibre-optic and laser gyros. Moreover, microoptical gyros can be made as a single integrated circuit, like the micromechanical gyros, but they have no movable parts, in contrast to their micromechanical counterparts. We also describe the development and investigation of micro-optical gyros produced in our studies.

  10. Protein Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Ksendzov, Alexander

    2006-01-01

    Prototype transducers based on integrated optical ring resonators have been demonstrated to be useful for detecting the protein avidin in extremely dilute solutions. In an experiment, one of the transducers proved to be capable of indicating the presence of avidin at a concentration of as little as 300 pM in a buffer solution a detection sensitivity comparable to that achievable by previously reported protein-detection techniques. These transducers are serving as models for the further development of integrated-optics sensors for detecting small quantities of other proteins and protein-like substances. The basic principle of these transducers was described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. The differences between the present transducers and the ones described in the cited prior article lie in details of implementation of the basic principle. As before, the resonator in a transducer of the present type is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, consists of a layer comprising sublayers having indices of refraction lower than that of the waveguide core. The outermost sublayer absorbs the chemical of interest (in this case, avidin). The index of refraction of the outermost sublayer changes with the concentration of absorbed avidin. The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer sublayer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in the index of refraction of the outermost sublayer causes a measurable change in the spectrum of the resonator output.

  11. Optical phonon frequencies in the quaternary CdTe1-x-ySexSy mixed system

    NASA Astrophysics Data System (ADS)

    Gupta, H. C.; Sood, Geeta; Malhotra, Jaishree; Tripathi, B. B.

    1986-08-01

    The optical phonon frequencies of the mixed-crystal system CdTe1-x-ySexSy are calculated theoretically by means of a concentration-dependent model utilizing the effect of nonrandomness. The calculations are in satisfactory agreement with the experimental results.

  12. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  13. Optical microdiscus resonators by flattening microspheres

    NASA Astrophysics Data System (ADS)

    Senthil Murugan, Ganapathy; Wilkinson, James S.; Zervas, Michalis N.

    2012-08-01

    A "soften-and-squash" fabrication technique has been demonstrated to controllably deform optical microspheres and form microdiscus resonators with improved surface quality. The characteristic shape of the microdiscus results in superior mode control, and the annealing involved in the fabrication process leads to quality factors (Q) exceeding 105, which is about two orders of magnitude higher than the initial microspheres.

  14. Surface plasmon resonance fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.

    1997-09-01

    A fiber optic surface plasmon resonance sensor is described. Experimental results are presented which demonstrate a resolution of approximately 8 by 10-5 refractive index units for this system. The detection of heavy metal Cu and Pb ions in solutionis demonstrated using the SPR sensor as the working electrode in an anodic stripping voltammetry experiment.

  15. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  16. Temperature Sensors Based on WGM Optical Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute; Itchenko, Vladimir; Matsko, Andrey; Strekalov, Dmitry

    2008-01-01

    A proposed technique for measuring temperature would exploit differences between the temperature dependences of the frequencies of two different electromagnetic modes of a whispering gallery-mode (WGM) optical resonator. An apparatus based on this technique was originally intended to be part of a control system for stabilizing a laser frequency in the face of temperature fluctuations. When suitably calibrated, apparatuses based on this technique could also serve as precise temperature sensors for purposes other than stabilization of lasers. A sensor according to the proposal would include (1) a transparent WGM dielectric resonator having at least two different sets of modes characterized by different thermo-optical constants and (2) optoelectronic instrumentation for measuring the difference between the temperature-dependent shifts of the resonance frequencies of the two sets of modes.

  17. Bioconjugation Strategies for Microtoroidal Optical Resonators

    PubMed Central

    Hunt, Heather K.; Soteropulos, Carol; Armani, Andrea M.

    2010-01-01

    The development of label-free biosensors with high sensitivity and specificity is of significant interest for medical diagnostics and environmental monitoring, where rapid and real-time detection of antigens, bacteria, viruses, etc., is necessary. Optical resonant devices, which have very high sensitivity resulting from their low optical loss, are uniquely suited to sensing applications. However, previous research efforts in this area have focused on the development of the sensor itself. While device sensitivity is an important feature of a sensor, specificity is an equally, if not more, important performance parameter. Therefore, it is crucial to develop a covalent surface functionalization process, which also maintains the device’s sensing capabilities or optical qualities. Here, we demonstrate a facile method to impart specificity to optical microcavities, without adversely impacting their optical performance. In this approach, we selectively functionalize the surface of the silica microtoroids with biotin, using amine-terminated silane coupling agents as linkers. The surface chemistry of these devices is demonstrated using X-ray photoelectron spectroscopy, and fluorescent and optical microscopy. The quality factors of the surface functionalized devices are also characterized to determine the impact of the chemistry methods on the device sensitivity. The resulting devices show uniform surface coverage, with no microstructural damage. This work represents one of the first examples of non-physisorption-based bioconjugation of microtoroidal optical resonators. PMID:22163409

  18. Infrared probe of spin-phonon coupling in antiferromagnetic honeycomb lattice compound Li2MnO3

    NASA Astrophysics Data System (ADS)

    Song, Seungjae; Lee, Sanghyun; Jeon, Seyoung; Park, Je-Geun; Moon, S. J.

    2015-12-01

    We investigated temperature-dependent infrared-active phonon modes of honeycomb Li2MnO3 which shows an antiferromagnetic transition at T N  =  36 K. In the far-infrared frequency region, we observed fourteen phonon modes. We obtained the temperature dependence of each phonon mode from the analysis of optical conductivity spectra by using the Lorentz and the Fano-type oscillator models. We found that the resonance frequencies of nine phonon modes showed an anomalous behavior near T N that should be attributed to the spin-phonon coupling. We calculated the magnitude of the spin-phonon coupling constant from the shift in the resonance frequencies of the phonon modes below T N. Our results suggest that Li2MnO3 is weakly frustrated and that spin-phonon coupling plays a role in antiferromagnetic ordering.

  19. Optical Resonant Cavity in a Nanotaper

    SciTech Connect

    Lee, Sang Hyun; Goto, Takenari; Miyazaki, Hiroshi; Chang, Jiho; Yao, Takafumi

    2010-01-01

    The present study describes an optical resonant cavity in a nanotaper with scale reduction from micro to several nanometers. Both experimental results and a finite-difference time-domain (FDTD)-based simulation suggested that the nanometer-scale taper with a diameter similar to the wavelength of light acted as a mirror, which facilitated the formation of a laser cavity and caused lasing in ZnO nanotapers. As the light inside the nanotaper propagated toward the apex, the lateral mode was reduced and reflection occurred. This report suggests that use of the resonant optical cavities in nanotapers might result in novel active and passive optical components, which will broaden the horizons of photonic technology.

  20. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  1. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  2. Deriving the electron-phonon spectral density of MgB2 from optical data, using maximum entropy techniques.

    PubMed

    Hwang, J; Carbotte, J P

    2014-04-23

    We use maximum entropy techniques to extract an electron-phonon density from optical data for the normal state at T = 45 K of MgB2. Limiting the analysis to a range of phonon energies below 110 meV, which is sufficient for capturing all phonon structures, we find a spectral function that is in good agreement with that calculated for the quasi-two-dimensional σ-band. Extending the analysis to higher energies, up to 160 meV, we find no evidence for any additional contributions to the fluctuation spectrum, but find that the data can only be understood if the density of states is taken to decrease with increasing energy.

  3. Wave-Chaotic Optical Resonators and Lasers

    NASA Astrophysics Data System (ADS)

    Stone, A. Douglas

    2001-10-01

    Deformed cylindrical and spherical dielectric optical resonators and lasers are analyzed from the perspective of non-linear dynamics and quantum chaos theory. In the short-wavelength limit such resonators behave like billiard systems with non-zero escape probability due to refraction. A ray model is introduced to predict the resonance lifetimes and emission patterns from such a cavity. A universal wavelength-independent broadening is predicted and found for large deformations of the cavity. However there are significant wave-chaotic corrections to the model which arise from chaos-assisted tunneling and dynamical localization effects. Highly directional emission from lasers based on these resonators is predicted from chaotic "whispering gallery" modes for index of refraction less than two. The detailed nature of the emission pattern can be understood from the nature of the phase-space flow in the billiard, and a dramatic variation of this pattern with index of refraction is found due to an effect we term "dynamical eclipsing". Semiconductor lasers of this type also show highly directional emission and high output power but from different modes associated with periodic orbits, both stable and unstable. A semiclassical approach to these modes is briefly reviewed. These asymmetric resonant cavities (ARCs) show promise as components in future integrated optical devices, providing perhaps the first application of quantum chaos theory.

  4. Resonance effects in thickness-dependent ultrafast carrier and phonon dynamics of topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Kim, Sung; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho; Kim, Seung Hyun; Yee, Ki-Ju; Bansal, Namrata; Oh, Seongshik

    2016-01-01

    Resonance effects in the thickness-dependent ultrafast carrier and phonon dynamics of topological insulator Bi2Se3 are found irrespective of the kind of substrate by measuring thickness-dependent abrupt changes of pump-probe differential-reflectivity signals (ΔR/R) from Bi2Se3 thin films on four different substrates of poly- and single-crystalline (sc-) ZnO, sc-GaN and SiO2. The absolute peak intensity of the ΔR/R is maximized at ∼t C (6 ∼ 9 quintuple layers), which is not directly related to but is very close to the critical thickness below which the energy gap opens. The intensities of the two phonon modes deduced from the oscillatory behaviors superimposed on the ΔR/R profiles are also peaked at ∼t C for the four kinds of substrates, consistent with the thickness-dependent Raman-scattering behaviors. These resonant effects and others are discussed based on possible physical mechanisms including the effects of three-dimensional carrier depletion and intersurface coupling.

  5. Extraordinary transmission in optical Helmholtz resonators.

    PubMed

    Chevalier, Paul; Bouchon, Patrick; Sakat, Emilie; Pelouard, Jean-Luc; Pardo, Fabrice; Haïdar, Riad

    2015-06-15

    Optical Helmholtz resonators (OHRs) have been adapted from acoustics designs for light absorbing structures, exhibiting extreme light confinement. Here, extraordinary transmission of light is theoretically demonstrated through symmetric OHRs, comprising a cavity with two λ/500 narrow slits on either side. This device has appealing features to act as a spectral bandpass filter in the context of multispectral imaging, in particular its high angular tolerance because of the localized nature of the resonance. Besides, the cavity can be modeled as an inductor and the two slits can be modeled as capacitors, the whole design acting as a LC circuit thus preventing any harmonic features. PMID:26076249

  6. Cooling trapped atoms in optical resonators.

    PubMed

    Zippilli, Stefano; Morigi, Giovanna

    2005-09-30

    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency. PMID:16241649

  7. Optical phonon modes in Al{sub 1−x}Sc{sub x}N

    SciTech Connect

    Deng, Ruopeng; Gall, Daniel; Jiang, Kai

    2014-01-07

    Optical phonons are measured to probe the origins of the reported anomalously high piezoelectric response in aluminum scandium nitride (Al{sub 1−x}Sc{sub x}N). Epitaxial layers with 0 ≤ x ≤ 0.16 deposited on sapphire(0001) exhibit a refractive index below the band gap, which increases from 2.03 for x = 0 to 2.16 for x = 0.16, corresponding to a dielectric constant ε{sub ∞} = 4.15 + 3.2x. Raman scattering shows that zone-center E{sub 2}(H) and A{sub 1}(TO) phonon modes shift to lower frequencies with increasing x, following linear relationships: ω(E{sub 2}(H)) = 658–233x (cm{sup −1}) and ω(A{sub 1}(TO)) = 612–159x (cm{sup −1}). Similarly, zone-center E{sub 1}(TO) and A{sub 1}(LO) phonon mode frequencies obtained from specular polarized infrared reflectance measurements red-shift to ω(E{sub 1}(TO)) = 681–209x (cm{sup −1}) and ω(A{sub 1}(LO)) = 868–306x (cm{sup −1}). The measured bond angle decreases linearly from 108.2° to 106.0°, while the length of the two metal-nitrogen bonds increase by 3.2% and 2.6%, as x increases from 0 to 0.16. This is associated with a 3%–8% increase in the Born effective charge and a simultaneous 6% decrease in the covalent metal-N bond strength, as determined from the measured vibrational frequencies described with a Valence-Coulomb-Force-Field model. The overall results indicate that bonding in Al-rich Al{sub 1−x}Sc{sub x}N qualitatively follows the trends expected from mixing wurtzite AlN with metastable hexagonal ScN. However, extrapolation suggests non-linear composition dependencies in bond angle, length, and character for x ≥ 0.2, leading to a structural instability that may be responsible for the reported steep increase in the piezoelectric response.

  8. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  9. Magnetorheological polydimethylsiloxane micro-optical resonator.

    PubMed

    Ioppolo, Tindaro; Otügen, M Volkan

    2010-06-15

    We investigate the possibility of using magnetorheological polydimethylsiloxane (MR-PDMS) spheres as micro-optical resonators. In particular, the effect of a magnetic field on the whispering gallery modes (WGM) of these resonators is studied. The applied field induces mechanical deformation, causing shifts in the WGM. The microspheres are made of PDMS with embedded magnetically polarizable particles. An analysis is carried out to estimate the WGM shifts induced by an external magnetic field. An experiment is also carried out to demonstrate the magnetic field-induced WGM shifts in an MR-PDMS microsphere. The results indicate that MR-PDMS microspheres can be used as high-Q-factor tunable optical cavities with potential applications in sensing. PMID:20548378

  10. Optical feshbach resonance using the intercombination transition.

    PubMed

    Enomoto, K; Kasa, K; Kitagawa, M; Takahashi, Y

    2008-11-14

    We report control of the scattering wave function by an optical Feshbach resonance effect using ytterbium atoms. The narrow intercombination line (1S0-3P1) is used for efficient control as proposed by Ciuryło et al. [Phys. Rev. A 71, 030701(R) (2005)10.1103/PhysRevA.71.030701]. The manipulation of the scattering wave function is monitored with the change of a photoassociation rate caused by another laser. The optical Feshbach resonance is especially efficient for isotopes with large negative scattering lengths such as 172Yb, and we have confirmed that the scattering phase shift divided by the wave number, which gives the scattering length in the zero energy limit, is changed by about 30 nm. PMID:19113335

  11. The hydrogen-bond network of water supports propagating optical phonon-like modes

    PubMed Central

    Elton, Daniel C.; Fernández-Serra, Marivi

    2016-01-01

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal–transverse splitting, indicating the presence of coherent long-range dipole–dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought. PMID:26725363

  12. The hydrogen-bond network of water supports propagating optical phonon-like modes

    DOE PAGES

    Elton, Daniel C.; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water’smore » hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal–transverse splitting, indicating the presence of coherent long-range dipole–dipole interactions, as in ice. Lastly, our results indicate the dynamics of liquid water have more similarities to ice than previously thought.« less

  13. Preface: Phonons 2007

    NASA Astrophysics Data System (ADS)

    Perrin, Bernard

    2007-06-01

    Conference logo The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how

  14. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe1-xMxSi, M=Ir,Os

    SciTech Connect

    Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; Sales, Brian C.; Niedziela, Jennifer L.; Ma, Jie; Matsuda, Masaaki; Abernathy, Douglas L.; Berlijn, Tom

    2015-03-31

    The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe1-xMxSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling, leads to softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.

  15. Optical trapping apparatus, methods and applications using photonic crystal resonators

    SciTech Connect

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  16. Fermi resonance in the phonon spectra of quaternary chalcogenides of the type Cu2ZnGeS4.

    PubMed

    Valakh, M Ya; Litvinchuk, A P; Dzhagan, V M; Yukhymchuk, V O; Yaremko, A M; Romanyuk, Yu A; Guc, M; Bodnar, I V; Pérez-Rodríguez, A; Zahn, D R T

    2016-02-17

    The experimental resonant and non-resonant Raman scattering spectra of the kesterite structural modification of Cu2ZnGeS4 single crystals are reported. The results are compared with those calculated theoretically within the density functional perturbation theory. For the majority of lines a good agreement (within 2-5 cm(-1)) is established between experimental and calculated mode frequencies. However, several dominant spectral lines, in particular the two intense fully symmetric modes, are found to deviate from the calculated values by as much as 20 cm(-1). A possible reason for this discrepancy is found to be associated with the Fermi resonant interaction between one and two-phonon vibrational excitations. The modelling of spectra, which takes into account the symmetry of interacting states, allows a qualitative description of the observed experimental findings. Due to the similarity of the vibrational spectra of Cu2A (II) B (IV) S4 (A  =  Zn, Mn, Cd; B  =  Sn, Ge, Si) chalcogenides, Fermi resonance is argued to be a general phenomenon for this class of compounds. PMID:26795711

  17. Miniature fiber optic surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Slavik, Radan; Brynda, Eduard; Homola, Jiri; Ctyroky, Jiri

    1999-01-01

    A novel design of surface plasmon resonance fiber optic sensor is reported which leads to a compact, highly miniaturized sensing element with excellent sensitivity. The sensing device is based on a side-polished single-mode optical fiber with a thin metal overlayer supporting surface plasmon waves. The strength of interaction between a fiber mode and a surface plasmon wave depends strongly on the refractive index near the sensing surface. Therefore, refractive index changes associated with biospecific interaction between antibodies immobilized on the sensor and antigen molecules can be monitored by measuring light intensity variations. Detection of horse radish peroxidase (HRP) of the concentration of 100 ng/ml has been accomplished using the fiber optic sensor with a matrix of monoclonal antibodies against HRP immobilized on the sensor surface.

  18. Interaction of optical phonons with magnons in orthorhombic crystals. Effect of a magnetic field on structural phase transitions

    NASA Astrophysics Data System (ADS)

    Men'shenin, V. V.

    2007-05-01

    Interaction of polar optical phonons with magnons in manganates RMn2O5 (where R is a rare-earth ion) has been studied in the approximation of collinear antiferromagnetic ordering of manganese sublattices. It is shown that such interaction takes place only in multisublattice antiferromagnets in which exchange magnetic structures exist that are both even and odd with respect to space inversion. Effect of a magnetic field on the structural phase transitions in these oxides is analyzed.

  19. A self-stabilized coherent phonon source driven by optical forces

    PubMed Central

    Navarro-Urrios, D.; Capuj, N. E.; Gomis-Bresco, J.; Alzina, F.; Pitanti, A.; Griol, A.; Martínez, A.; Sotomayor Torres, C. M.

    2015-01-01

    We report a novel injection scheme that allows for “phonon lasing” in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10−2. It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications. PMID:26503448

  20. A self-stabilized coherent phonon source driven by optical forces

    NASA Astrophysics Data System (ADS)

    Navarro-Urrios, D.; Capuj, N. E.; Gomis-Bresco, J.; Alzina, F.; Pitanti, A.; Griol, A.; Martínez, A.; Sotomayor Torres, C. M.

    2015-10-01

    We report a novel injection scheme that allows for “phonon lasing” in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10-2. It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications.

  1. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    SciTech Connect

    Ghosh, Krishnendu Singisetti, Uttam

    2015-02-14

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO{sub 2} and ZrO{sub 2} high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al{sub 2}O{sub 3}, the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density.

  2. Giant dipole resonance in 88Mo from phonon damping model strength functions averaged over temperature and angular momentum distributions

    NASA Astrophysics Data System (ADS)

    Dinh Dang, N.; Ciemala, M.; Kmiecik, M.; Maj, A.

    2013-05-01

    The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus 88Mo, which is formed after the fusion-evaporation reaction 48Ti + 40Ca at various excitation energies E* from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum J≥ 50 ℏ at T=4 MeV and at J≥ 70 ℏ at any T.

  3. Silicon single-crystal cryogenic optical resonator.

    PubMed

    Wiens, Eugen; Chen, Qun-Feng; Ernsting, Ingo; Luckmann, Heiko; Rosowski, Ulrich; Nevsky, Alexander; Schiller, Stephan

    2014-06-01

    We report on the demonstration and characterization of a silicon optical resonator for laser frequency stabilization, operating in the deep cryogenic regime at temperatures as low as 1.5 K. Robust operation was achieved, with absolute frequency drift less than 20 Hz over 1 h. This stability allowed sensitive measurements of the resonator thermal expansion coefficient (α). We found that α=4.6×10(-13)  K(-1) at 1.6 K. At 16.8 K α vanishes, with a derivative equal to -6×10(-10)  K(-2). The temperature of the resonator was stabilized to a level below 10 μK for averaging times longer than 20 s. The sensitivity of the resonator frequency to a variation of the laser power was also studied. The corresponding sensitivities and the expected Brownian noise indicate that this system should enable frequency stabilization of lasers at the low-10(-17) level. PMID:24876023

  4. Dynamic analysis of optical microfiber coil resonators.

    PubMed

    Kowsari, A; Ahmadi, V; Darvish, G; Moravvej-Farshi, M K

    2016-08-20

    We present transient time analysis of a two-turn optical microfiber coil resonator (MCR). Our dynamic model is based on two sets of equations, coupled mode and nonlinear Schrödinger equations. The pulse response of this device is obtained by numerically solving the modified sets of equations in a dynamic regime. The results show that if the input pulse of the MCR is set at an off-resonance wavelength, this resonator operates as an all-pass filter with neither loss nor time delay. But in the case of resonance, the output pulse may have loss and a relatively long time delay, according to the continuous rotation of light between the first and the second turns of the MCR. Tunable time delays up to td=320  ps are obtained by choosing different values of the coupling coefficients. Furthermore, the material and structural dispersions of the MCR are studied, and it is shown that strong dispersive effects can occur even in this millimeter dimensions photonic device. Pulse broadening and distortion effects of the MCR are studied in the dynamic regime. The results show that, for high bit rate applications, the dispersion effects of the MCR should be carefully considered. Finally, fundamental soliton solution and its conditions in the MCR are investigated. PMID:27556989

  5. PHONONS IN INTRINSIC JOSEPHSON SYSTEMS

    SciTech Connect

    C. PREIS; K. SCHMALZL; ET AL

    2000-10-01

    Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.

  6. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  7. Dynamic nonlinear thermal optical effects in coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Huang, Chenguang; Fan, Jiahua; Zhu, Lin

    2012-09-01

    We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple "shark fins" and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  8. Plasmonic modification of electron-longitudinal-optical phonon coupling in Ag-nanoparticle embedded InGaN/GaN quantum wells

    SciTech Connect

    Llopis, Antonio; Neogi, Arup; Pereira, Sérgio M. S.; Watson, Ian M.

    2014-09-01

    Surface plasmon enhanced GaN and InGaN quantum wells (QWs) show promise for use as room-temperature light emitters. The effectiveness of the plasmon enhancement, however, is limited by the strong electron/hole and longitudinal optical phonon coupling found in the III-V nitrides. The electron-phonon coupling within semiconductor QWs has been modified using silver nanoparticles embedded within the QWs. Direct evidence is provided for this change via confocal Raman spectroscopy of the samples. This evidence is augmented by Angle-dependent photoluminescence experiments which show the alteration of the electron-phonon coupling strength through measurement of the emitted phonon replicas. Together these demonstrate a direct modification of carrier-phonon interactions within the system, opening up the possibility of controlling the coupling strength to produce high-efficiency room-temperature light emitters.

  9. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  10. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  11. Optofluidic refractometer using resonant optical tunneling effect

    PubMed Central

    Jian, A. Q.; Zhang, X. M.; Zhu, W. M.; Yu, M.

    2010-01-01

    This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU−1. Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry–Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10−9 RIU, two orders higher than the best results of current methods. PMID:21267085

  12. Magneto-optical properties of trions in non-blinking charged nanocrystals reveal an acoustic phonon bottleneck

    NASA Astrophysics Data System (ADS)

    Fernée, Mark J.; Sinito, Chiara; Louyer, Yann; Potzner, Christian; Nguyen, Tich-Lam; Mulvaney, Paul; Tamarat, Philippe; Lounis, Brahim

    2012-12-01

    Charged quantum dots provide an important platform for a range of emerging quantum technologies. Colloidal quantum dots in particular offer unique advantages for such applications (facile synthesis, manipulation and compatibility with a wide range of environments), especially if stable charged states can be harnessed in these materials. Here we engineer the CdSe nanocrystal core and shell structure to efficiently ionize at cryogenic temperatures, resulting in trion emission with a single sharp zero-phonon line and a mono exponential decay. Magneto-optical spectroscopy enables direct determination of electron and hole g-factors. Spin relaxation is observed in high fields, enabling unambiguous identification of the trion charge. Importantly, we show that spin flips are completely inhibited for Zeeman splittings below the low-energy bound for confined acoustic phonons. This reveals a characteristic unique to colloidal quantum dots that will promote the use of these versatile materials in challenging quantum technological applications.

  13. Measurement of optical Feshbach resonances in an ideal gas.

    PubMed

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution. PMID:21902391

  14. Fiber-optic integration and efficient detection schemes for optomechanical resonators

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.

    optomechanical resonators to optical fibers, with an emphasis on fabrication processes and optical characterization. I will then proceed to describe a few experiments enabled by the fiber couplers. The first studies the performance of an optomechanical resonator as a precise sensor for continuous position measurement. The sensitivity of the measurement, limited by the detection efficiency of intracavity photons, is compared to the standard quantum limit imposed by the quantum properties of the laser probe light. The added noise of the measurement is seen to fall within a factor of 3 of the standard quantum limit, representing an order of magnitude improvement over previous experiments utilizing optomechanical crystals, and matching the performance of similar measurements in the microwave domain. The next experiment uses single photon counting to detect individual phonon emission and absorption events within the nanomechanical oscillator. The scattering of laser light from mechanical motion produces correlated photon-phonon pairs, and detection of the emitted photon corresponds to an effective phonon counting scheme. In the process of scattering, the coherence properties of the mechanical oscillation are mapped onto the reflected light. Intensity interferometry of the reflected light then allows measurement of the temporal coherence of the acoustic field. These correlations are measured for a range of experimental conditions, including the optomechanical amplification of the mechanics to a self-oscillation regime, and comparisons are drawn to a laser system for phonons. Finally, prospects for using phonon counting and intensity interferometry to produce non-classical mechanical states are detailed following recent proposals in literature.

  15. Measurement of the absolute Raman cross section of the optical phonon in silicon

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Saikin, S. K.; Aspuru-Guzik, A.; Stopa, M.; Polla, D. L.

    2011-04-01

    The absolute Raman cross section σ of the first-order 519 cm -1 optical phonon in silicon was measured using a small temperature-controlled blackbody for the signal calibration of the Raman system. Measurements were made with a 25-mil thick (001) silicon sample located in the focal plane of a 20-mm effective focal length (EFL) lens using 785-, 1064-, and 1535-nm CW pump lasers for the excitation of Raman scattering. The pump beam was polarized along the [100] axis of the silicon sample. Values of 1.0±0.2×10 -27, 3.6±0.7×10 -28, and 1.1±0.2×10 -29 cm 2 were determined for σ for 785-, 1064-, and 1535-nm excitation, respectively. The corresponding values of the Raman scattering efficiency S are 4.0±0.8×10 -6, 1.4±0.3×10 -6, and 4.4±0.8×10 -8 cm -1 sr -1.The values of the Raman polarizability |d| for 785-, 1064-, and 1535-nm excitation are 4.4±0.4×10 -15, 5.1±0.5×10 -15, and 1.9±0.2×10 -15 cm 2, respectively. The values of 4.4±0.4×10 -15 and 5.1±0.5×10 -15 cm 2 for |d| for 785- and 1064-nm excitation, respectively, are 1.3 and 2.0 times larger than the values of 3.5×10 -15 and 2.5×10 -15 cm 2 calculated by Wendel. The Raman polarizability |d| computed using the density functional theory in the long-wavelength limit is consistent with the general trend of the measured data and Wendel's model.

  16. Coherent acoustic phonon oscillation accompanied with backward acoustic pulse below exciton resonance in a ZnO epifilm on oxide-buffered Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Shen, Yu-Kai; Liu, Wei-Rein; Lu, Chia-Hui; Chen, Yao-Hui; Chang, Chun-peng; Lee, Wei-Chin; Hong, Minghwei; Kwo, Jueinai-Raynien; Hsu, Chia-Hung; Hsieh, Wen-Feng

    2016-08-01

    Unlike coherent acoustic phonons (CAPs) generated from heat induced thermal stress by the coated Au film, we demonstrated the oscillation from c-ZnO epitaxial film on oxide buffered Si through a degenerate pump-probe technique. As the excited photon energy was set below the exciton resonance, the electronic stress that resulted from defect resonance was used to induce acoustic wave. The damped oscillation revealed a superposition of a high frequency and long decay CAP signal with a backward propagating acoustic pulse which was generated by the absorption of the penetrated pump beam at the Si surface and selected by the ZnO layer as the acoustic resonator.

  17. Coherent acoustic phonon oscillation accompanied with backward acoustic pulse below exciton resonance in a ZnO epifilm on oxide-buffered Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Shen, Yu-Kai; Liu, Wei-Rein; Lu, Chia-Hui; Chen, Yao-Hui; Chang, Chun-peng; Lee, Wei-Chin; Hong, Minghwei; Kwo, Jueinai-Raynien; Hsu, Chia-Hung; Hsieh, Wen-Feng

    2016-08-01

    Unlike coherent acoustic phonons (CAPs) generated from heat induced thermal stress by the coated Au film, we demonstrated the oscillation from c-ZnO epitaxial film on oxide buffered Si through a degenerate pump–probe technique. As the excited photon energy was set below the exciton resonance, the electronic stress that resulted from defect resonance was used to induce acoustic wave. The damped oscillation revealed a superposition of a high frequency and long decay CAP signal with a backward propagating acoustic pulse which was generated by the absorption of the penetrated pump beam at the Si surface and selected by the ZnO layer as the acoustic resonator.

  18. Scanning Tunneling Optical Resonance Microscopy Developed

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.; Lau, Janis E.; Jenkins, Phillip P.; Castro, Stephanie L.; Tin, Padetha; Wilt, David M.; Pal, Anna Maria; Fahey, Stephen D.

    2004-01-01

    The ability to determine the in situ optoelectronic properties of semiconductor materials has become especially important as the size of device architectures has decreased and the development of complex microsystems has increased. Scanning Tunneling Optical Resonance Microscopy, or STORM, can interrogate the optical bandgap as a function of its position within a semiconductor micro-structure. This technique uses a tunable solidstate titanium-sapphire laser whose output is "chopped" using a spatial light modulator and is coupled by a fiber-optic connector to a scanning tunneling microscope in order to illuminate the tip-sample junction. The photoenhanced portion of the tunneling current is spectroscopically measured using a lock-in technique. The capabilities of this technique were verified using semiconductor microstructure calibration standards that were grown by organometallic vapor-phase epitaxy. Bandgaps characterized by STORM measurements were found to be in good agreement with the bulk values determined by transmission spectroscopy and photoluminescence and with the theoretical values that were based on x-ray diffraction results.

  19. Band-edge optical transitions in a nonpolar-plane GaN substrate: exciton–phonon coupling and temperature effects

    NASA Astrophysics Data System (ADS)

    Wang, M. Z.; Xu, S. J.

    2016-09-01

    We present a detailed investigation of the band-edge optical transitions involving the interacting exciton–phonon system, especially first-order longitudinal optical (LO) phonon-assisted luminescence of bound and free excitons in m- and c-plane GaN substrates in a low temperature range from 4 K to 40 K. The main luminescence features of all of the three kinds of excitons can be well described by the theoretical models that take exciton-LO-phonon coupling into account. The effective Bohr radii of the excitons play a key role in determining the Huang–Rhys factor characterizing the exciton-LO-phonon coupling strength in GaN. An interesting oscillatory structure is found to appear in the low-temperature luminescence spectra of the nonpolar-plane GaN substrate, which needs to be clarified by further investigations.

  20. Band-edge optical transitions in a nonpolar-plane GaN substrate: exciton-phonon coupling and temperature effects

    NASA Astrophysics Data System (ADS)

    Wang, M. Z.; Xu, S. J.

    2016-09-01

    We present a detailed investigation of the band-edge optical transitions involving the interacting exciton-phonon system, especially first-order longitudinal optical (LO) phonon-assisted luminescence of bound and free excitons in m- and c-plane GaN substrates in a low temperature range from 4 K to 40 K. The main luminescence features of all of the three kinds of excitons can be well described by the theoretical models that take exciton-LO-phonon coupling into account. The effective Bohr radii of the excitons play a key role in determining the Huang-Rhys factor characterizing the exciton-LO-phonon coupling strength in GaN. An interesting oscillatory structure is found to appear in the low-temperature luminescence spectra of the nonpolar-plane GaN substrate, which needs to be clarified by further investigations.

  1. Synthetic gauge fields for light beams in optical resonators.

    PubMed

    Longhi, Stefano

    2015-07-01

    A method to realize artificial magnetic fields for light waves trapped in passive optical cavities with anamorphic optical elements is theoretically proposed. In particular, when a homogeneous magnetic field is realized, a highly degenerate Landau-level structure for the frequency spectrum of the transverse resonator modes is obtained, corresponding to a cyclotron motion of the optical-cavity field. This can be probed by transient excitation of the passive optical resonator. PMID:26125337

  2. Synthetic gauge fields for light beams in optical resonators.

    PubMed

    Longhi, Stefano

    2015-07-01

    A method to realize artificial magnetic fields for light waves trapped in passive optical cavities with anamorphic optical elements is theoretically proposed. In particular, when a homogeneous magnetic field is realized, a highly degenerate Landau-level structure for the frequency spectrum of the transverse resonator modes is obtained, corresponding to a cyclotron motion of the optical-cavity field. This can be probed by transient excitation of the passive optical resonator.

  3. Optical cavity resonator in an expanding universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  4. Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan din Ahmad

    temperature in p- and n-type GaN were 93+/-7 nm and 432+/-30 nm, respectively. Moreover, near field scanning optical microscopy was employed to investigate the spatial variations of extended defects and their effects on the optical quality of semipolar (112¯2) and (11¯01) InGaN heterostructures, which are promoted for higher efficiency light emitters owing to reduced internal polarization fields. The near-field PL from the c+ wings in (11¯01) heterostructures was found to be relatively strong and uniform across the sample but the emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations and basal plane stacking faults. In case of (112¯2) heterostructures, striated regions had weaker PL intensities compared to other regions and the meeting fronts of different facets were characterized by higher Indium content due to the varying internal field. Apart from being the part and parcel of blue LEDs, InGaN heterostructures can be utilized in generation of coherent lattice vibrations at terahertz frequencies. In analogy to LASERs based on photon cavities where light intensity is amplified, acoustic nanocavity devices can be realized for sustaining terahertz phonon oscillations which could potentially be used in acoustic imaging at the nanoscale and ultrafast acousto-optic modulation. Using In0.03Ga 0.97N/InxGa1-xN MQWs with varying x, coherent phonon oscillations at frequencies of 0.69-0.80 THz were generated, where changing the MQW period (11.5 nm -10 nm) provided frequency tuning. The magnitude of phonon oscillations was found to increase with indium content in quantum wells, as demonstrated by time resolved differential transmission spectroscopy. Design of an acoustic nanocavity structure was proposed based on the abovementioned experimental findings and also supported by full cavity simulations. Optical gap engineering and carrier dynamics in colloidal Ge1-x Snx QDs were investigated in order to explore their potential in

  5. Ultrafast saturation of resonant optical processes

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2014-12-01

    A generalized formulation is presented for determining the saturation thresholds for optical processes excited by ultrafast pulses based on the pulse area of the excitation pulse. It is demonstrated that the threshold of driving-pulse intensity for absorption and fluorescence saturation in a two-level system is inversely proportional to the square of the duration of the excitation pulse. These results are obtained from both a simplified analytical solution assuming a Gaussian excitation pulse shape and a detailed numerical calculation based on density-matrix equations. The calculation is generalized further to obtain the saturation condition for a two-photon Raman process by defining a two-photon pulse area both analytically and numerically. These results not only provide predictive capabilities for determining thresholds of signal saturation using ultrashort durations with arbitrary pulse shapes and durations but also open up possibilities for predetermining the threshold intensities of various resonant nonlinear processes.

  6. First-principles study of electronic structure, optical and phonon properties of α-ZrW2O8

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Meng, Songhe; Qin, Liyuan; Lu, Hantao

    2016-12-01

    ZrW2O8 exhibits isotropic negative thermal expansions over its entire temperature range of stability, yet so far its physical properties and mechanism have not been fully addressed. In this article, the electronic structure, elastic, thermal, optical and phonon properties of α-ZrW2O8 are systematically investigated from first principles. The agreements between the generalized gradient approximation (GGA) calculation and experiments are found to be quite satisfactory. The calculation results can be useful in relevant material designs, e.g., when ZrW2O8 is employed to adjust the thermal expansion coefficient of ceramic matrix composites.

  7. Tunable ultracompact electro-optical photonic crystal ring resonator

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang

    2013-09-01

    A tunable ultracompact electro-optical photonic crystal ring resonator with high transmission is reported. The photonic crystal ring resonator is obtained by removing a ring shape of cylinders from a square lattice of dielectric cylinders in air. The transmission spectra of this ring resonator have been investigated by using the finite-difference time-domain technique. The general characteristics of the ring elements to achieve resonant tunneling are determined. By modulating the conductibility of the inner cylinders in the ring resonator, the electrical tunability of the resonant modes is observed in the transmission spectrum. The research results should open opportunities for this ring resonator as ultracompact filters, optical add-drop multiplexers, electro-optical N × N switches, and modulators.

  8. How diffraction limits ultrasonic screening in phononic plate composed of a periodic array of resonant slits

    NASA Astrophysics Data System (ADS)

    Elayouch, Aliyasin; Addouche, Mahmoud; Lasaygues, Philippe; Achaoui, Younes; Ouisse, Morvan; Khelif, Abdelkrim

    2016-05-01

    We explore experimentally the role played by diffraction in the phenomenon of acoustic shielding provided by a plate that is periodically perforated with subwavelength slits and immersed in water. We carried out ultrasonic transmission measurements for all directions of propagation in order to check the omnidirectionality of acoustic shielding. While a single slit acts as a Fabry-Perot resonator in the frequency range of interest, the coupling between adjacent slits provides an attenuation frequency band centered around the resonant frequency that is mostly independent of the angle of incidence. Beyond the incident angle of 45 degrees, however, we observe the appearance of scattered radiation that limits the attenuation of ultrasound. This spurious scattering is shown to arise from diffraction by the grating of slits. xml:lang="fr"

  9. Center mode of a doubly resonant optical periodic structure

    NASA Astrophysics Data System (ADS)

    Alagappan, G.; Png, C. E.

    2016-07-01

    An optical periodic structure with a single spatial resonance exhibits a stopband. When a second spatial resonance very close to the first one is added, the resulting doubly resonant structure exhibits a Gaussian enveloped, high quality factor transmission state right at the center of the original stopband. Using a slowly varying envelope approximation, we describe the optical characteristics of this transmission state analytically. The transmission state exists despite an optical structure of low refractive index contrast, and has potential applications in nano-optics, and photonics.

  10. Direct acoustic phonon excitation by intense and ultrashort terahertz pulses

    NASA Astrophysics Data System (ADS)

    Manceau, J.-M.; Loukakos, P. A.; Tzortzakis, S.

    2010-12-01

    We report on the direct and resonant excitation of acoustic phonons in an AlGaAs intrinsic semiconductor using intense coherent and single cycle terahertz pulses created by two-color femtosecond laser pulse filamentation in air. While the electrons are left unperturbed, we follow the lattice dynamics with time-delayed optical photons tuned to the interband transition.

  11. Unstable optical resonator loss calculations using the prony method.

    PubMed

    Siegman, A E; Miller, H Y

    1970-12-01

    The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.

  12. Superconductivity in the two-dimensional electron gas induced by high-energy optical phonon mode and large polarization of the SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Rosenstein, Baruch; Shapiro, B. Ya.; Shapiro, I.; Li, Dingping

    2016-07-01

    Pairing in one-atomic-layer-thick two-dimensional electron gas (2DEG) by a single flat band of high-energy longitudinal optical phonons is considered. The polar dielectric SrTiO3 (STO) exhibits such an energetic phonon mode and the 2DEG is created both when one unit cell FeSe layer is grown on its (100 ) surface and on the interface with another dielectric like LaAlO3 (LAO). We obtain a quantitative description of both systems solving the gap equation for Tc for arbitrary Fermi energy ɛF, electron-phonon coupling λ , and the phonon frequency Ω , and direct (random-phase approximation) electron-electron repulsion strength α . The focus is on the intermediate region between the adiabatic, ɛF>>Ω , and the nonadiabatic, ɛF<<Ω , regimes. The high-temperature superconductivity in single-unit-cell FeSe/STO is possible due to a combination of three factors: high-longitudinal-optical phonon frequency, large electron-phonon coupling λ ˜0.5 , and huge dielectric constant of the substrate suppression the Coulomb repulsion. It is shown that very low density electron gas in the interfaces is still capable of generating superconductivity of the order of 0.1 K in LAO/STO.

  13. Demonstration of sharp multiple Fano resonances in optical metamaterials.

    PubMed

    Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro

    2016-05-01

    We experimentally demonstrated multiple Fano resonances in optical metamaterials. By combination of two different sized asymmetric-double-bar (ADB) structures, triple Fano resonance was observed in the near-infrared region. In addition to Fano resonance due to anti-phase modes in isolated ADB structures, an anti-phase mode due to coupling among different sized ADBs was observed. Dependence of characteristics of resonances on size difference was also investigated. At specific conditions of size difference, quality factors of three Fano resonances were improved compared with ADB metamaterials consisting of one kind of ADBs. The results will help to realize applications using metamaterial resonators with multiple functionalities and high performance.

  14. The effects of optical phonon on the binding energy of bound polaron in a wurtzite ZnO/Mg{sub x}Zn{sub 1–x}O quantum well

    SciTech Connect

    Zhao, Feng-Qi; Guo, Zi-Zheng; Zhu, Jun

    2014-07-07

    An improved Lee-Low-Pines intermediate coupling method is used to study the energies and binding energies of bound polarons in a wurtzite ZnO/Mg{sub x}Zn{sub 1–x}O quantum well. The contributions from different branches of long-wave optical phonons, i.e., confined optical phonons, interface optical phonons, and half-space optical phonons are considered. In addition to electron-phonon interaction, the impurity-phonon interaction, and the anisotropy of material parameters, such as phonon frequency, electron effective mass, and dielectric constant, are also included in our computation. Ground-state energies, binding energies and detailed phonon contributions from various phonons as functions of well width, impurity position and composition are presented. Our result suggests that total phonon contribution to ground state and binding energies in the studied wurtzite ZnO/Mg₀.₃Zn₀.₇O quantum wells varies between 28–23 meV and 62–45 meV, respectively, which are much larger than the corresponding values (about 3.2–1.8 meV and 1.6–0.3 meV) in GaAs/Al₀.₃Ga₀.₇As quantum wells. For a narrower quantum well, the phonon contribution mainly comes from interface and half-space phonons, for a wider quantum well, most of phonon contribution originates from confined phonons. The contribution from all the phonon modes to binding energies increases slowly either when impurity moves far away from the well center in the z direction or with the increase in magnesium composition (x). It is found that different phonons have different influences on the binding energies of bound polarons. Furthermore, the phonon contributions to binding energies as functions of well width, impurity position, and composition are very different from one another. In general, the electron-optical phonon interaction and the impurity center-optical phonon interaction play an important role in electronic states of ZnO-based quantum wells and cannot be neglected.

  15. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  16. Optic phonon bandwidth and lattice thermal conductivity: The case of Li2X ( X=O , S, Se, Te)

    DOE PAGES

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m-1K-1), BeTe (370 W/m-1K-1) and cubic BAs (3150 W/m-1K-1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carryingmore » acoustic phonons in Li2Se and Li2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  17. Optical Tapers as White-Light WGM Resonators

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Matsko, Andrey B.; Savchenkov, Anatoliy A.

    2010-01-01

    A theoretical analysis has revealed that tapered optical waveguides could be useful as white-light whispering-gallery-mode (WGM) optical resonators. The compactness and the fixed-narrow-frequency-band nature of the resonances of prior microdisk and microsphere WGM resonators are advantageous in low-power, fixed-narrow-frequency-band applications. However for optical-processing applications in which there are requirements for power levels higher and/or spectral responses broader than those of prior microdisk and microsphere WGM resonators, white-light WGM resonators in the form of optical tapers would be preferable. The theoretical analysis was performed for a multimode, axisymmetric, circular-cross-section waveguide having a taper sufficiently smooth and gradual to justify the approximation of adiabaticity. In this approximation, the equation for the dependence of the electromagnetic field upon the axial (longitudinal) waveguide coordinate can be separated from the equation for the dependence upon the radius and the azimuthal angle.

  18. Optical Fano resonance of an individual semiconductor nanostructure

    NASA Astrophysics Data System (ADS)

    Fan, Pengyu; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.

    2014-05-01

    Fano resonances with a characteristic asymmetric line shape can be observed in light scattering, transmission and reflection spectra of resonant optical systems. They result from interference between direct and indirect, resonance-assisted pathways. In the nanophotonics field, Fano effects have been observed in a wide variety of systems, including metallic nanoparticle assemblies, metamaterials and photonic crystals. Their unique properties find extensive use in applications, including optical filtering, polarization selectors, sensing, lasers, modulators and nonlinear optics. We report on the observation of a Fano resonance in a single semiconductor nanostructure, opening up opportunities for their use in active photonic devices. We also show that Fano-resonant semiconductor nanostructures afford the intriguing opportunity to simultaneously measure the far-field scattering response and the near-field energy storage by extracting photogenerated charge. Together they can provide a complete experimental characterization of this type of resonance.

  19. Strain effects on the optical conductivity of gapped graphene in the presence of Holstein phonons beyond the Dirac cone approximation

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-08-01

    In this paper we study the optical conductivity and density of states (DOS) of doped gapped graphene beyond the Dirac cone approximation in the presence of electron-phonon (e-ph) interaction under strain, i.e., within the framework of a full π-band Holstein model, by using the Kubo linear response formalism that is established upon the retarded self-energy. A new peak in the optical conductivity for a large enough e-ph interaction strength is found which is associated to transitions between the midgap states and the Van Hove singularities of the main π-band. Optical conductivity decreases with strain and at large strains, the system has a zero optical conductivity at low energies due to optically inter-band excitations through the limit of zero doping. As a result, the Drude weight changes with e-ph interaction, temperature and strain. Consequently, DOS and optical conductivity remains stable with temperature at low e-ph coupling strengths.

  20. Uniaxial strain-induced Kohn anomaly and electron-phonon coupling in acoustic phonons of graphene

    NASA Astrophysics Data System (ADS)

    Cifuentes-Quintal, M. E.; de la Peña-Seaman, O.; Heid, R.; de Coss, R.; Bohnen, K.-P.

    2016-08-01

    Recent advances in strain engineering at the nanoscale have shown the feasibility to modulate the properties of graphene. Although the electron-phonon (e-ph) coupling and Kohn anomalies in graphene define the phonon branches contributing to the resonance Raman scattering and are relevant to the electronic and thermal transport as a scattering source, the evolution of the e-ph coupling as a function of strain has been less studied. In this work, the Kohn anomalies and the e-ph coupling in uniaxially strained graphene along armchair and zigzag directions were studied by means of density functional perturbation theory calculations. In addition to the phonon anomaly at the transversal optical (TO) phonon branch in the K point for pristine graphene, we found that uniaxial strain induces a discontinuity in the frequency derivative of the longitudinal acoustic phonon branch. This behavior corresponds to the emergence of a Kohn anomaly, as a consequence of a strain-enhanced e-ph coupling. Thus, the present results for uniaxially strained graphene contrast with the commonly assumed view that the e-ph coupling around the K point is only present in the TO phonon branch.

  1. Anomalous Phonon Dispersion of an Ultracold - Mixture in a Square Optical Lattice

    NASA Astrophysics Data System (ADS)

    Koinov, Zlatko; Pahl, Shanna; Mendoza, Rafael

    2015-05-01

    A necessary condition for the damping of the long-wavelength excitations of the superfluid phase (referred to as superfluid phonons) due to the three-particle process is to have an anomalous phonon dispersion. The existence of anomalous phonon dispersion has been confirmed in superfluid . There are no experimental data suggesting that this phenomenon exists in superfluid Fermi gases. To the best of our knowledge, the existence of anomalous dispersion has been theoretically predicted only in atomic spin balanced Fermi gas close to the unitarity limit. The numerical results reported here suggest that the anomalous long-wavelength dispersion can be realized in mass and spin imbalanced atomic Fermi gases away from the unitary limit. In particular, the numerical solution of the Bethe-Salpeter equation in a weak-coupling regime shows that the long-wavelength part of the collective-mode dispersion of the superfluid Fulde-Ferrell phase of a mixture of population-imbalanced Lithium-6 and Potassium-40 atoms in a square lattice at some values of polarization, interacting strength and temperature initially bends upward before bending over.

  2. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  3. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Colton, J. S.; Wienkes, L. R.

    2009-03-01

    We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption as microwave frequencies were swept, by performing ODMR on a zinc-doped InP sample, and by performing optically detected NMR on a GaAs sample. The results confirm the suitability of the cavity for ODMR with simultaneous NMR.

  4. WGM Resonators for Terahertz-to-Optical Frequency Conversion

    NASA Technical Reports Server (NTRS)

    Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan

    2008-01-01

    Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is

  5. All-optical scheme for detecting the possible Majorana signature based on QD and nanomechanical resonator systems

    NASA Astrophysics Data System (ADS)

    Chen, HuaJun; Zhu, KaDi

    2015-05-01

    Majorana fermions (MFs) are exotic particles that are their own anti-particles. Currently, the search for MFs occurring as quasiparticle excitations in condensed matter systems has attracted widespread interest, because of their importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Motivated by recent experimental progress towards the detection and manipulation of MFs in hybrid semiconductor/superconductor heterostructures, in this review, we present a novel proposal to probe MFs in all-optical domain. We introduce a single quantum dot (QD), a hybrid quantum dot-nanomechanical resonators (QD-NR) system, and a carbon nanotube (CNT) resonator implanted in a single electron spin system with optical pump-probe technology to detect MFs, respectively. With this scheme, a possible Majorana signature is investigated via the probe absorption spectrum and nonlinear optical Kerr effect, and the coupling strength between MFs and the QD or the single electron spin is also determined. In the hybrid QD-NR system, vibration of the NR will enhance the nonlinear optical effect, which makes the MFs more sensitive for detection. In the CNT resonator with a single electron, the single electron spin can be considered as a sensitive probe, and the CNT resonator behaved as a phonon cavity is robust for detecting of MFs. This optical scheme will provide another method for the detection MFs and will open the door for new applications ranging from robust manipulation of MFs to quantum information processing based on MFs.

  6. Characterization of optical quantum circuits using resonant phase shifts

    NASA Astrophysics Data System (ADS)

    Poot, M.; Tang, H. X.

    2016-09-01

    We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then, the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases, as well as the coupling ratios of its directional couplers, are determined.

  7. Quantum correlations among optical and vibrational quanta

    NASA Astrophysics Data System (ADS)

    Carlig, Sergiu; Macovei, Mihai A.

    2014-05-01

    We investigate the feasibility of correlating an optical cavity field and a vibrational phonon mode. A laser pumped quantum dot fixed on a nanomechanical resonator beam interacts as a whole with the optical resonator mode. When the quantum dot variables are faster than the optical and phonon ones, we obtain a final master equation describing the involved modes only. Increasing the temperature, which directly affects the vibrational degrees of freedom, one can as well influence the cavity photon intensity, i.e., the optical and phonon modes are correlated. Furthermore, the corresponding Cauchy-Schwarz inequality is violated demonstrating the quantum nature of those correlations.

  8. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liao, Jian-Shang

    2010-05-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Fröhlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes “reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.

  9. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode crystalline resonaors, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics.

  10. Generalized Pseudo-Unit-Cell model for long-wavelength optical phonons of multinary mixed crystals: application to A(x)B(1-x)C(y)D(1-y) type mixed crystals.

    PubMed

    Liao, Zhenfeng; Li, Jingzhen; Zheng, Ruisheng; Lu, Xiaowei; Chen, Hongyi

    2013-05-20

    Long-wavelength optical phonons in multinary mixed crystals are studied based on the Pseudo-Unit-Cell model. A unitary matrix method is developed to calculate the eigenfrequencies of optical phonons in multinary mixed crystals. The analytical expressions of oscillator strengths and dielectric constants of the multinary mixed crystals are obtained as a function of the phonon frequencies. The results indicate that the composition dependence of oscillator strengths shows clearly the phonon-mode behaviors of the mixed crystals. The theory and calculation method can be applied to any type of multinary mixed crystals. It is found that there is a composition independent point for the dielectric constant of quaternary mixed crystals.

  11. Analysis of an integrated optic micro racetrack resonator based biosensor

    NASA Astrophysics Data System (ADS)

    Malathi, S.; Hegde, Gopalkrishna; Srinivas, T.; Roy, Ugra M.

    2014-06-01

    Silicon-On- Insulator (SOI) technology has huge potential in fabricating compact devices for various applications such as integrated optic waveguides, directional couplers, resonators etc. In this work, we present the analysis of a biosensor based on an integrated optic racetrack resonator, interrogated by a bus waveguide. The biomaterial is applied as a cladding layer. Here we analyze the coupling between the resonator and the bus waveguide, and its dependence on the bio layer. In traditional analysis, the effective refractive index and resonator total path length are the factors influencing the resonant wavelength. Our analysis shows that all parametric values decrease with increase in waveguide width and spacing. The inclusion of waveguide mode overlap and perturbation in coupled mode equation results in enhanced resonator sensitivity of an order of magnitude

  12. Chiral Light-Matter Interaction in Optical Resonators.

    PubMed

    Yoo, SeokJae; Park, Q-Han

    2015-05-22

    The Purcell effect explains the modification of the spontaneous decay rate of quantum emitters in a resonant cavity. For quantum emitters such as chiral molecules, however, the cavity modification of the spontaneous decay rate has been little known. Here we extend Purcell's work to the chiral light-matter interaction in optical resonators and find the differential spontaneous decay rate of chiral molecules coupled to left and right circularly polarized resonator modes. We determine the chiral Purcell factor, which characterizes the ability of optical resonators to enhance chiroptical signals, by the quality factor and the chiral mode volume of a resonator, representing, respectively, the temporal confinement of light and the spatial confinement of the helicity of light. We show that the chiral Purcell effect can be applied to chiroptical spectroscopy. Specifically, we propose a realistic scheme to achieve resonator enhanced chiroptical spectroscopy that uses the double fishnet structure as a nanoscale cuvette supporting the chiral Purcell effect.

  13. Tunable optical delay line based on micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Zhang, Yundong; Wu, Yongfeng; Yu, Changqiu; Li, Hui; Zhang, Chunyu; Zhang, Tuo; Yuan, Ping

    2016-03-01

    We theoretically investigate the series-coupled double micro-ring resonator as tunable optical delay line. Tunable optical delay line can be achieved by tunable self-coupling coefficient and attenuation factor of micro-ring waveguide. Through choosing suitable parameters of structure, the series-coupled double micro-ring resonator can obtain flat delay line that mitigates the deleterious effects of group delay dispersion.

  14. Whispering Gallery Optical Resonator Spectroscopic Probe and Method

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2014-01-01

    Disclosed herein is a spectroscopic probe comprising at least one whispering gallery mode optical resonator disposed on a support, the whispering gallery mode optical resonator comprising a continuous outer surface having a cross section comprising a first diameter and a second diameter, wherein the first diameter is greater than the second diameter. A method of measuring a Raman spectrum and an Infra-red spectrum of an analyte using the spectroscopic probe is also disclosed.

  15. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  16. Integrated resonant micro-optical gyroscope and method of fabrication

    DOEpatents

    Vawter, G. Allen; Zubrzycki, Walter J.; Guo, Junpeng; Sullivan, Charles T.

    2006-09-12

    An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

  17. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  18. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  19. Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zincblende InN

    NASA Astrophysics Data System (ADS)

    Usman, Zahid; Cao, Chuanbao; Mahmood, Tariq

    2013-12-01

    Generalized gradient approximation proposed by Perdew-Burke-Ernzerhof (GGA-PBE) is used to determine the effect of pressure on electronic, elastic, acoustic, optical and vibrational properties of zincblende InN along with the Ultra soft pseudopotential method. The structural properties show good consistency and stability at elevated pressures. The zincblende InN displays zero band gap and its metallicity maintains even at high pressures. The density of states appear in a quarterly divided region, where the contribution of different states have been discussed, and it is found that the peak positions are consistent with experimental L1, L3, K absorption and emission edges. The effect of pressure appears in strong hybridization due to which DOS above and below the Fermi level are shifting to the corresponding higher and lower energies due to p-d hybridization. The calculated elastic constants agree well with the literature. Except C44 and Cs, all others show an increasing trend with the pressure. Acoustic wave speeds have been calculated in [100], [110] and [111] directions with the help of elastic constants for the first time. For the optical properties, the main peaks of the imaginary part of dielectric function lie in close vicinity of experiment and shift to higher energies with a reduction in peak intensities when the pressure effects come into play. Similarly the absorption peaks are red shifted with respect to hydro-static pressure. The refractive index is maximum at lower energies and its magnitude reduces with pressure and the maximum value of energy loss function is obtained corresponding to minimum dielectric function. Phonon frequencies in high symmetry directions agree well with the only available first principle study. Except XTA, WTA, and LTA, all the other modes show an increase in phonon frequencies when pressure is exerted, this is further confirmed by Gruneisen parameters calculated for the first time.

  20. GHz spurious mode free AlN lamb wave resonator with high figure of merit using one dimensional phononic crystal tethers

    NASA Astrophysics Data System (ADS)

    Wu, Guoqiang; Zhu, Yao; Merugu, Srinivas; Wang, Nan; Sun, Chengliang; Gu, Yuandong

    2016-07-01

    This letter reports a spurious mode free GHz aluminum nitride (AlN) lamb wave resonator (LWR) towards high figure of merit (FOM). One dimensional gourd-shape phononic crystal (PnC) tether with large phononic bandgaps is employed to reduce the acoustic energy dissipation into the substrate. The periodic PnC tethers are based on a 1 μm-thick AlN layer with 0.26 μm-thick Mo layer on top. A clean spectrum over a wide frequency range is obtained from the measurement, which indicates a wide-band suppression of spurious modes. Experimental results demonstrate that the fabricated AlN LWR has an insertion loss of 5.2 dB and a loaded quality factor (Q) of 1893 at 1.02 GHz measured in air. An impressive ratio of the resistance at parallel resonance (Rp) to the resistance at series resonance (Rs) of 49.8 dB is obtained, which is an indication of high FOM for LWR. The high Rp to Rs ratio is one of the most important parameters to design a radio frequency filter with steep roll-off.

  1. Effect of Longitudinal Optical Phonon--Plasmon Coupling on the Transient Self-Consistent Field in GaAs p--i--n Diodes

    NASA Astrophysics Data System (ADS)

    Thao, Dinh Nhu; The, Nguyen Phuoc

    2013-10-01

    The effect of longitudinal optical (LO) phonon--coherent plasmon coupling on the transient self-consistent field and then on frequency spectra of collective oscillations in GaAs p--i--n diodes without a biased field is investigated by the self-consistent ensemble Monte Carlo method. The frequency spectra of collective oscillations in the diodes show that there are two new strong peaks in the terahertz range when the coupling is taken into account. These peaks replace the coupled phonon--plasmon peaks in the bulk semiconductor.

  2. Far-Field Spectroscopy and Near-Field Optical Imaging of Coupled Plasmon-Phonon Polaritons in 2D van der Waals Heterostructures.

    PubMed

    Yang, Xiaoxia; Zhai, Feng; Hu, Hai; Hu, Debo; Liu, Ruina; Zhang, Shunping; Sun, Mengtao; Sun, Zhipei; Chen, Jianing; Dai, Qing

    2016-04-20

    A new hybridized plasmon-phonon polariton mode in graphene/h-BN van der Waals heterostructures is presented, featuring the ultrahigh field confinement characteristic of the graphene plasmon and the long lifetime property of the h-BN transverse optical phonon. This enables an ultralong hybrid plasmon lifetime of up to 1.6 ps (with ultrahigh mode confinement up to >l0(2)/7000 and ultrasmall group velocity down to 0.001c, where c is the speed of light in vacuum), superior to any localized plasmon ever demonstrated.

  3. Analysis of the optical force in the Micro Ring Resonator.

    PubMed

    Einat, Avigdor; Levy, Uriel

    2011-10-10

    We study the optical force in a micro ring resonator coupled to a bus waveguide, using the coupled mode theory and a numerical Finite Element Method. We show that the resonance enhancement of the force is diminished by the opposing contributions of the attractive and the repulsive forces related to the symmetric and the anti symmetric modes in the coupling region. We show that this limiting factor can be removed by adding asymmetry to the system, e.g. by modifying one of the waveguides. Furthermore, we study for the first time a combined system in which the micro ring resonator is coupled to a one dimensional photonic crystal waveguide. This modified geometry allows further enhancement of the optical force via the combination of optical resonances and slow light effect.

  4. Analysis of the optical force in the Micro Ring Resonator.

    PubMed

    Einat, Avigdor; Levy, Uriel

    2011-10-10

    We study the optical force in a micro ring resonator coupled to a bus waveguide, using the coupled mode theory and a numerical Finite Element Method. We show that the resonance enhancement of the force is diminished by the opposing contributions of the attractive and the repulsive forces related to the symmetric and the anti symmetric modes in the coupling region. We show that this limiting factor can be removed by adding asymmetry to the system, e.g. by modifying one of the waveguides. Furthermore, we study for the first time a combined system in which the micro ring resonator is coupled to a one dimensional photonic crystal waveguide. This modified geometry allows further enhancement of the optical force via the combination of optical resonances and slow light effect. PMID:21997050

  5. On-chip microfluidic tuning of an optical microring resonator

    NASA Astrophysics Data System (ADS)

    Levy, Uriel; Campbell, Kyle; Groisman, Alex; Mookherjea, Shayan; Fainman, Yeshaiahu

    2006-03-01

    We describe the design, fabrication, and operation of a tunable optical filter based on a bus waveguide coupled to a microring waveguide resonator located inside a microchannel in a microfluidic chip. Liquid flowing in the microchannel constitutes the upper cladding of the waveguides. The refractive index of the liquid controls the resonance wavelengths and strength of coupling between the bus waveguide and the resonator. The refractive index is varied by on-chip mixing of two source liquids with different refractive indices. We demonstrate adjustment of the resonance by 2nm and tuning the filter to an extinction ratio of 37dB.

  6. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  7. Optically pumped subwavelength-scale metallodielectric nanopatch resonators.

    PubMed

    Kwon, Kyungmok; You, Jong-Bum; Shim, Jaeho; Jung, Youngho; Yu, Kyoungsik

    2016-01-01

    We discuss subwavelength-scale semiconductor metal-optic resonators placed on the metal substrate with various top metal plate sizes. Albeit with large optical losses, addition of metal layers converts a leaky semiconductor nano-block into a highly-confined optical cavity. Optically pumped lasing action is observed with the extended top metal layer that can significantly suppress the radiation losses. Careful investigation of self-heating effects during the optical carrier injection process shows the importance of temperature-dependent material properties in the laser rate equation model and the overall laser performances. PMID:27549640

  8. Optically pumped subwavelength-scale metallodielectric nanopatch resonators

    NASA Astrophysics Data System (ADS)

    Kwon, Kyungmok; You, Jong-Bum; Shim, Jaeho; Jung, Youngho; Yu, Kyoungsik

    2016-08-01

    We discuss subwavelength-scale semiconductor metal-optic resonators placed on the metal substrate with various top metal plate sizes. Albeit with large optical losses, addition of metal layers converts a leaky semiconductor nano-block into a highly-confined optical cavity. Optically pumped lasing action is observed with the extended top metal layer that can significantly suppress the radiation losses. Careful investigation of self-heating effects during the optical carrier injection process shows the importance of temperature-dependent material properties in the laser rate equation model and the overall laser performances.

  9. Optically pumped subwavelength-scale metallodielectric nanopatch resonators

    PubMed Central

    Kwon, Kyungmok; You, Jong-bum; Shim, Jaeho; Jung, Youngho; Yu, Kyoungsik

    2016-01-01

    We discuss subwavelength-scale semiconductor metal-optic resonators placed on the metal substrate with various top metal plate sizes. Albeit with large optical losses, addition of metal layers converts a leaky semiconductor nano-block into a highly-confined optical cavity. Optically pumped lasing action is observed with the extended top metal layer that can significantly suppress the radiation losses. Careful investigation of self-heating effects during the optical carrier injection process shows the importance of temperature-dependent material properties in the laser rate equation model and the overall laser performances. PMID:27549640

  10. Mueller matrix ellipsometry studies of the optical phonons and crystal field excitations in multiferroic orthoferrites RFeO3 (R=Tb,Dy)

    NASA Astrophysics Data System (ADS)

    Martinez, V. A.; Stanislavchuk, T. N.; Sirenko, A. A.; Litvinchuk, A. P.; Wang, Yazhong; Cheong, S. W.

    Optical properties of multiferroic orthoferrites RFeO3 (R=Tb,Dy) bulk crystals have been studied in the far-infrared range from 50 to 1000 cm-1 and temperatures from 7 K to 300 K. Mueller matrix and rotating analyzer ellipsometry measurements were carried out at the U4IR beamline of the National Synchrotron Light Source at Brookhaven National Lab. Optical phonon spectra and crystal field excitations were measured for all three orthorhombic axes of RFeO3. In the experimental temperature dependencies of the phonon frequencies we found non-Grüneisen behavior caused by the electron-phonon and spin-phonon interactions. We determined the symmetries and selection rules for the crystal field transitions in Tb3+ and Dy3+ ions. Magnetic field dependencies of the optical spectra allowed us to determine anisotropy of the crystal field g-factors for Tb3+ and Dy3+ ions. This Project is supported by collaborative DOE Grant DE-FG02-07ER46382 between Rutgers U. and NJIT. Use of NSLS-BNL was supported by DOE DE-AC02-98CH10886. V.A. Martinez was supported by NEU NSF-1343716.

  11. Three port optical circulators with ring resonators

    NASA Astrophysics Data System (ADS)

    Jalas, Dirk; Petrov, Alexander Y.; Eich, Manfred

    2014-05-01

    We present a concept for a circulator that has the same bandwidth efficiency as a photonic crystal circulator but which relies on a ring resonator and thereby is experimentally much easier to realize. We achieve this by side coupling three waveguides to the ring resonator. The desired standing wave pattern which recreates the photonic crystal type circulator spectrum is realized by exciting both the clockwise and counter-clockwise traveling wave through a Bragg reflector.

  12. Raman scattering by confined optical phonons in Si and Ge nanostructures.

    PubMed

    Alfaro, Pedro; Cisneros, Rodolfo; Bizarro, Monserrat; Cruz-Irisson, Miguel; Wang, Chumin

    2011-03-01

    A microscopic theory of the Raman scattering based on the local bond-polarizability model is presented and applied to the analysis of phonon confinement in porous silicon and porous germanium, as well as nanowire structures. Within the linear response approximation, the Raman shift intensity is calculated by means of the displacement-displacement Green's function and the Born model, including central and non-central interatomic forces. For the porous case, the supercell method is used and ordered pores are produced by removing columns of Si or Ge atoms from their crystalline structures. This microscopic theory predicts a remarkable shift of the highest-frequency of first-order Raman peaks towards lower energies, in comparison with the crystalline case. This shift is discussed within the quantum confinement framework and quantitatively compared with the experimental results obtained from porous silicon samples, which were produced by anodizing p--type (001)-oriented crystalline Si wafers in a hydrofluoric acid bath. PMID:21270988

  13. Optical Probing of Ultrafast Electronic Decay in Bi and Sb with Slow Phonons

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Chen, J.; Reis, D. A.; Fahy, S.; Merlin, R.

    2013-01-01

    Illumination with laser sources leads to the creation of excited electronic states of particular symmetries, which can drive isosymmetric vibrations. Here, we use a combination of ultrafast stimulated and cw spontaneous Raman scattering to determine the lifetime of A1g and Eg electronic coherences in Bi and Sb. Our results both shed new light on the mechanisms of coherent phonon generation and represent a novel way to probe extremely fast electron decoherence rates. The Eg state, resulting from an unequal distribution of carriers in three equivalent band regions, is extremely short lived. Consistent with theory, the lifetime of its associated driving force reaches values as small as 2 (6) fs for Bi (Sb) at 300 K.

  14. Photonic microwave receivers based on high-Q optical resonance

    NASA Astrophysics Data System (ADS)

    Hossein-Zadeh, Mani

    2012-02-01

    The quest for low power and high frequency electro-optical modulator has been one of the important endeavors in microwave photonics. The advent of microdisk electro-optic modulator created a new domain in optical modulator and photonic microwave receiver design by exploiting the unique properties of high quality (high-Q) Whispering-Gallery Mode (WGM) optical cavities. High-Q crystalline WG cavities were the first devices used as compact and low power resonant electro-optical modulators and gradually semiconductor and polymer based microdisk and microring modulators emerged from this core technology. Due to its small size, high sensitivity and limited bandwidth, originally microdisk modulator was developed with the objective of replacing the conventional microwave wireless receiver frontend with a sensitive photonic front-end. Later it was shown that the electro-optic microdisk modulator could also function as a microwave frequency mixer in optical domain. Starting from fundamentals of resonant electro-optic modulation in high-Q WGM cavities, in this paper we review the development of high sensitivity microdisk modulators and the recent progress toward more efficient modulation at higher frequencies. Next related topics such as singlesideband modulation, all-dielectric photonic receiver, and semiconductor microring modulators are briefly discussed. Finally, photonic microwave receiver configurations that employ high-Q optical resonance for modulation, filtering and mixing are presented. We will show that high-Q optical resonance is one of the promising routes toward the general idea of an all-optical microwave receiver free of high frequency electronic transistors, mixers and filters.

  15. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    SciTech Connect

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

  16. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Hamidi, S. M.

    2012-01-01

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

  17. Optical Twist Induced by Plasmonic Resonance.

    PubMed

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  18. Optical Twist Induced by Plasmonic Resonance

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-06-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  19. Optical Twist Induced by Plasmonic Resonance

    PubMed Central

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster. PMID:27291860

  20. Optical Twist Induced by Plasmonic Resonance.

    PubMed

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster. PMID:27291860

  1. Interplay between low-energy optical phonon modes and structural transition in PrT2Zn20 (T=Ru and Ir)

    NASA Astrophysics Data System (ADS)

    Wakiya, K.; Onimaru, T.; Tsutsui, S.; Matsumoto, K. T.; Nagasawa, N.; Baron, A. Q. R.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Takabatake, T.

    2015-03-01

    Atomic dynamics of PrT2Zn20 for T=Ru with a structural transition at Ts=138 K and T=Ir without such a transition have been studied by inelastic X-ray scattering (IXS) measurements. The IXS spectra for T=Ru reveal an optical phonon excitation at 3 meV. We assign it to low-energy vibration of the Zn atom at the 16c site by taking account of the first principles calculation [Hasegawa et al. 2012 J. Phys.: Conf. Proc. 391 012016]. For T=Ir, on the other hand, the optical excitation at 3 meV was not observed. The contrasting results indicate that the low-energy optical phonon mode has a role in the structural transition in PrRu2Zn20 and isostructural La counterparts.

  2. Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves.

    PubMed

    Han, Haoxue; Li, Baowen; Volz, Sebastian; Kosevich, Yuriy A

    2015-04-10

    We introduce a novel ultracompact nanocapacitor of coherent phonons formed by high-finesse interference mirrors based on atomic-scale semiconductor metamaterials. Our molecular dynamics simulations show that the nanocapacitor stores coherent monochromatic terahertz lattice waves, which can be used for phonon lasing-the emission of coherent phonons. Either one- or two-color phonon emission can be realized depending on the geometry of the nanodevice. The two-color regime of the interference phonon nanocapacitor originates from the different incidence-angle dependence of the transmission of longitudinal and transverse phonons at the respective interference antiresonances. Coherent phonon storage can be achieved by an adiabatic cooling the nanocapacitor initially thermalized at room temperature or by the pump-probe optical technique. The linewidth narrowing and the computed relative phonon participation number confirm strong phonon confinement in the ultracompact interference nanocavity by an extremely small amount of resonance defects. The emission of coherent terahertz acoustic beams from the nanocapacitor can be realized by applying a tunable reversible stress, which shifts the frequencies of the interference antiresonances. PMID:25910135

  3. Ultracompact Interference Phonon Nanocapacitor for Storage and Lasing of Coherent Terahertz Lattice Waves

    NASA Astrophysics Data System (ADS)

    Han, Haoxue; Li, Baowen; Volz, Sebastian; Kosevich, Yuriy A.

    2015-04-01

    We introduce a novel ultracompact nanocapacitor of coherent phonons formed by high-finesse interference mirrors based on atomic-scale semiconductor metamaterials. Our molecular dynamics simulations show that the nanocapacitor stores coherent monochromatic terahertz lattice waves, which can be used for phonon lasing—the emission of coherent phonons. Either one- or two-color phonon emission can be realized depending on the geometry of the nanodevice. The two-color regime of the interference phonon nanocapacitor originates from the different incidence-angle dependence of the transmission of longitudinal and transverse phonons at the respective interference antiresonances. Coherent phonon storage can be achieved by an adiabatic cooling the nanocapacitor initially thermalized at room temperature or by the pump-probe optical technique. The linewidth narrowing and the computed relative phonon participation number confirm strong phonon confinement in the ultracompact interference nanocavity by an extremely small amount of resonance defects. The emission of coherent terahertz acoustic beams from the nanocapacitor can be realized by applying a tunable reversible stress, which shifts the frequencies of the interference antiresonances.

  4. Temporal coupled-mode theory for the Fano resonance in optical resonators.

    PubMed

    Fan, Shanhui; Suh, Wonjoo; Joannopoulos, J D

    2003-03-01

    We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure, Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analysis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function synthesis in filter and sensor applications. PMID:12630843

  5. Optically Detected Scanned Probe Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher; Bhallamudi, Vidya; Wang, Hailong; Du, Chunhui; Manuilov, Sergei; Adur, Rohan; Yang, Fengyuan; Hammel, P. Chris

    2014-03-01

    Magnetic resonance is a powerful tool for studying magnetic properties and dynamics of spin systems. Scanned magnetic probes can induce spatially localized resonance due to the strong magnetic field and gradient near the magnetic tip., Nitrogen vacancy centers (NV) in diamond provide a sensitive means of measuring magnetic fields at the nanoscale. We report preliminary results towards using the high sensitivity of NV detection with a scanned magnetic probe to study local magnetic phenomena. This work is supported by the Center for Emergent Materials at The Ohio State University, a NSF Materials Research Science and Engineering Center (DMR-0820414).

  6. A study of non-equilibrium phonons in GaAs/AlAs quantum wells

    SciTech Connect

    Su, Zhenpeng

    1996-11-01

    In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs quantum wells via Raman scattering. We have demonstrated experimentally that by taking into account the time-reversal symmetry relation between the Stokes and anti-Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon occupancy in quantum wells. Using this technique, we have studied the subject of resonant intersubband scattering of optical phonons. We find that interface roughness plays an important role in resonant Raman scattering in quantum wells. The lateral size of the smooth regions in such interface is estimated to be of the order of 100 {Angstrom}. Through a study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser excitation, we have found that band nonparabolicity has very little effect on the electron subband energies even for subbands as high as a few hundred meV above the lowest one. This finding may require additional theoretical study to understand its origin. We have also studied phonon confinement and propagation in quantum wells. We show that Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the coherence length of LO phonons in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells as a function of the Al concentration x.

  7. Improving the Optical Quality Factor of the WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the

  8. Optically enabled magnetic resonance study of 75As and 121Sb in 28Si

    NASA Astrophysics Data System (ADS)

    Salvail, Jeff Z.; Dluhy, Phillip; Morse, Kevin J.; Szech, Michael; Saeedi, Kamyar; Huber, Julian; Riemann, Helge; Abromisov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Michael L. W.

    2015-11-01

    The electron and nuclear spins of donor impurities in enriched 28Si have great potential as long-lived qubits for a silicon-based quantum information technology. The ability to resolve the hyperfine-split neutral donor ground-state levels in the near-infrared donor bound exciton transitions of the ubiquitous phosphorus impurity in highly isotopically enriched 28Si has led to new methods of hyperpolarizing and measuring the donor electron and nuclear spins. This has resulted in optically assisted magnetic resonance methods that have permitted the measurement of remarkably long nuclear coherence times for both the neutral and ionized phosphorus donor in very lightly doped and highly enriched 28Si . Other shallow donors such as arsenic, antimony, and bismuth offer the potential of larger hyperfine couplings and nuclear spins as compared to phosphorus. Here, we investigate whether donor bound exciton transitions can be used to initialize and read out the nuclear spins of arsenic and antimony in 28Si . The projective readout of the electron and nuclear spins is demonstrated for both 75As and 121Sb , and these optical transitions can strongly hyperpolarize the nuclear spin of 75As . Only a small nuclear hyperpolarization is achieved for 121Sb , likely due to the relative weakness of the no-phonon transition of the Sb donor bound exciton. Optically assisted EPR and NMR is demonstrated for 75As , including Hahn echo coherence time measurements of the six NMR transitions.

  9. Optical resonance problem in metamaterial arrays: a lattice dynamics approach.

    PubMed

    Liu, Wanguo

    2016-11-30

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems. PMID:27633098

  10. Optical resonance problem in metamaterial arrays: a lattice dynamics approach

    NASA Astrophysics Data System (ADS)

    Liu, Wanguo

    2016-11-01

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.

  11. Optical biosensors using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Homola, Jiri; Brynda, Eduard; Tobiska, Petr; Tichy, Ivo; Skvor, Jiri

    1999-12-01

    We present a surface plasmon resonance sensor base on prism excitation of surface plasmons and spectral interrogation. For specific detection of biomolecular analytes, multilayers of monoclonal antibodies are immobilized on the surface of the sensor. Detection of biomolecular analytes such as human (beta) -2)-microglobulin, choriogonadotropin, hepatitis B surface antigen, salmonella enteritidis is demonstrated.

  12. Fluorescence resonant energy transfer in the optical near field

    SciTech Connect

    Colas des Francs, Gerard; Girard, Christian; Martin, Olivier J.F.

    2003-05-01

    We develop a versatile theoretical framework for the study of fluorescence resonant energy transfer (FRET, or Foerster transfer) in complex environments, under arbitrary illumination, including optical near fields. By combining the field-susceptibility formalism with the optical Bloch equations method, we derive general equations for the computation of the energy transfer between pairs of donor-acceptor molecules excited by optical near fields and placed in a complex geometry. This approach allows accounting for both the variations of the molecular population rates and the influence of the environment. Several examples illustrate the ability of the technique to analyze recent FRET experiments performed in the optical near field.

  13. Nonreciprocal optical properties in resonant hybrid photonic crystals

    NASA Astrophysics Data System (ADS)

    D'Andrea, A.; Tomassini, N.

    2016-07-01

    The present work is devoted to the theoretical study of the nonreciprocal optical properties in hybrid (isotropic and anisotropic) periodic multilayers for photon energy values chosen close to the electronic energy gaps of semiconductors (excitons). The optical properties of these resonant nonmagnetic photonic crystals, where linear and quadratic spatial dispersion effects are both present, will be studied in the framework of exciton-polariton self-consistent solutions of the Maxwell and Schrödinger equations in the effective-mass approximation. The main interesting optical properties, namely, giant transmission, absorption suppression, and optical unidirectional propagation, will be computed by implementing a two-layer "minimum model."

  14. Optical chiral metamaterial based on the resonant behaviour of nanodiscs

    NASA Astrophysics Data System (ADS)

    Kordi, Mahdi; Mojtaba Mirsalehi, Mir

    2016-08-01

    Circular dichorism and optical activity have been achieved by chiral metamaterials in the optical spectrum, but for the case of negative index of refraction, remarkable achievements have not been obtained in this region so far. We employ nanoparticles to shift the resonant frequency of a chiral metamaterial based on twisted cross wires to optical domain. Our proposed structure provides giant optical activity, strong circular dichorism and also negative refractive index in the optical wavelengths. Optical activity in our structure has a rotary power similar to a gyrotropic crystal of quartz, but in a thickness which is four orders of magnitude smaller. The foundation of our method for realizing such an optical chiral metamaterial is based on creating a different coupling between longitudinal modes of localized surface plasmons for right and left circularly polarized incident waves.

  15. Optical injection enables coherence resonance in quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Ziemann, D.; Aust, R.; Lingnau, B.; Schöll, E.; Lüdge, K.

    2013-07-01

    We demonstrate that optically injected semiconductor quantum-dot lasers operated in the frequency-locked regime exhibit the counterintuitive effect of coherence resonance, i.e., the regularity of noise-induced spiking is a non-monotonic function of the spontaneous emission noise, and it is optimally correlated at a non-zero value of the noise intensity. We uncover the mechanism of coherence resonance from a microscopically based model of the quantum-dot laser structure, and show that it is related to excitability under optical injection and to a saddle-node infinite period (SNIPER) bifurcation occurring for small injection strength at the border of the frequency locking regime. By a model reduction we argue that the phenomenon of coherence resonance is generic for a wide class of optically injected lasers.

  16. Resonant diffraction gratings for spatial differentiation of optical beams

    SciTech Connect

    Golovastikov, N V; Bykov, D A; Doskolovich, L L

    2014-10-31

    Diffraction of a two-dimensional optical beam from a resonant diffraction grating is considered. It is shown that at certain resonance parameters the diffraction grating allows for spatial differentiation and integration of the incident beam. The parameters of the diffraction grating for spatial differentiation of optical beams in the transmission geometry are calculated. It is shown that the differentiating diffraction grating allows the conversion of the two-dimensional beam into the two-dimensional Hermite – Gaussian mode. The presented results of numerical modelling are in good agreement with the proposed theoretical description. The use of the considered resonant diffraction gratings is promising for solving the problems of all-optical data processing. (laser applications and other topics in quantum electronics)

  17. Optical trapping of dielectric nanoparticles in resonant cavities

    SciTech Connect

    Hu Juejun; Lin Shiyun; Crozier, Kenneth; Kimerling, Lionel C.

    2010-11-15

    We theoretically investigate the opto-mechanical interactions between a dielectric nanoparticle and the resonantly enhanced optical field inside a high Q, small-mode-volume optical cavity. We develop an analytical method based on open system analysis to account for the resonant perturbation due to particle introduction and predict trapping potential in good agreement with three-dimensional (3D) finite-difference time-domain (FDTD) numerical simulations. Strong size-dependent trapping dynamics distinctly different from free-space optical tweezers arise as a consequence of the finite cavity perturbation. We illustrate single nanoparticle trapping from an ensemble of monodispersed particles based on size-dependent trapping dynamics. We further discover that the failure of the conventional dipole approximation in the case of resonant cavity trapping originates from a new perturbation interaction mechanism between trapped particles and spatially localized photons.

  18. Optical properties of MgZnO alloys: Excitons and exciton-phonon complexes

    SciTech Connect

    Neumann, M. D.; Cobet, C.; Esser, N.; Laumer, B.; Wassner, T. A.; Eickhoff, M.; Feneberg, M.; Goldhahn, R.

    2011-07-01

    The characteristics of the excitonic absorption and emission around the fundamental bandgap of wurtzite Mg{sub x}Zn{sub 1-x}O grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy with Mg contents between x = 0 and x = 0.23 are studied using spectroscopic ellipsometry and photoluminescence (PL) measurements. The ellipsometric data were analyzed using a multilayer model yielding the dielectric function (DF). The imaginary part of the DF for the alloys exhibits a pronounced feature which is attributed to exciton-phonon coupling (EPC) similar to the previously reported results for ZnO. Thus, in order to determine reliable transition energies, the spectral dependence is analyzed by a model which includes free excitonic lines, the exciton continuum, and the enhanced absorption due to EPC. A line shape analysis of the temperature-dependent PL spectra yielded in particular the emission-related free excitonic transition energies, which are compared to the results from the DF line-shape analysis. The PL linewidth is discussed within the framework of an alloy disorder model.

  19. Label-Free Optical Ring Resonator Bio/Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Hongying; Suter, Jonathan D.; Fan, Xudong

    Optical micro-ring resonator sensors are an emerging category of label-free optical sensors for bio/chemical sensing that have recently been under intensive investigation. Researchers of this technology have been motivated by a tremendous breadth of different applications, including medical diagnosis, environmental monitoring, homeland security, and food quality control, which require sensitive analytical tools. Ring resonator sensors use total internal reflection to support circulating optical resonances called whispering gallery modes (WGMs). The WGMs have an evanescent field of several hundred nanometers into the surrounding medium, and can therefore detect the refractive index change induced when the analyte binds to the resonator surface. Despite the small physical size of a resonator, the circulating nature of the WGM creates extremely long effective lengths, greatly increasing light-matter interaction and improving its sensing performance. Moreover, only small sample volume is needed for detection because the sensors can be fabricated in sizes well below 100 μm. The small footprint allows integration of those ring resonator sensors onto lab-on-a-chip types of devices for multiplexed detection.

  20. Transformation optics with Fabry-Pérot resonances

    PubMed Central

    Sadeghi, M. M.; Li, Sucheng; Xu, Lin; Hou, Bo; Chen, Huanyang

    2015-01-01

    Transformation optics is a powerful tool to design various novel devices, such as invisibility cloak. Fantastic effects from this technique are usually accompanied with singular mappings, resulting in challenging implementations and narrow bands of working frequencies. Here in this article, Fabry-Pérot resonances in materials of extreme anisotropy are used to design various transformation optical devices that are not only easy to realize but also work well for a set of resonant frequencies (multiple frequencies). As an example, a prototype of a cylindrical concentrator is fabricated for microwaves. PMID:25726924

  1. Transformation optics with Fabry-Pérot resonances

    NASA Astrophysics Data System (ADS)

    Sadeghi, M. M.; Li, Sucheng; Xu, Lin; Hou, Bo; Chen, Huanyang

    2015-03-01

    Transformation optics is a powerful tool to design various novel devices, such as invisibility cloak. Fantastic effects from this technique are usually accompanied with singular mappings, resulting in challenging implementations and narrow bands of working frequencies. Here in this article, Fabry-Pérot resonances in materials of extreme anisotropy are used to design various transformation optical devices that are not only easy to realize but also work well for a set of resonant frequencies (multiple frequencies). As an example, a prototype of a cylindrical concentrator is fabricated for microwaves.

  2. Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition

    NASA Astrophysics Data System (ADS)

    Yan-Chao, She; Ting-Ting, Luo; Wei-Xi, Zhang; Mao-Wu, Ran; Deng-Long, Wang

    2016-01-01

    The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/AlGaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications. Project supported by the National Natural Science Foundation of China (Grant No. 61367003), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY[2015]384 and KY[2015]446).

  3. Optical three-port circulators made with ring resonators.

    PubMed

    Jalas, Dirk; Petrov, Alexander Yu; Eich, Manfred

    2014-03-15

    We propose a circulator consisting of a ring resonator coupled to three waveguides with Bragg reflectors at one end of each waveguide. A magneto-optically active material placed inside the ring resonator causes the two counter-propagating modes to split in resonance frequency, which can be exploited for perfect circulation by properly adjusting the coupling between the three waveguides and the ring. Such a device features a transmission spectrum that is similar to three-port photonic crystal circulators but is much simpler to build as it only contains elements that have already been experimentally realized. PMID:24690804

  4. Optically driven resonance of nanoscale flexural oscillators in liquid.

    PubMed

    Verbridge, Scott S; Bellan, Leon M; Parpia, Jeevak M; Craighead, H G

    2006-09-01

    We demonstrate the operation of radio frequency nanoscale flexural resonators in air and liquid. Doubly clamped string, as well as singly clamped cantilever resonators, with nanoscale cross-sectional dimensions and resonant frequencies as high as 145 MHz are driven in air as well as liquid with an amplitude modulated laser. We show that this laser drive technique can impart sufficient energy to a nanoscale resonator to overcome the strong viscous damping present in these media, resulting in a mechanical resonance that can be measured by optical interference techniques. Resonance in air, isopropyl alcohol, acetone, water, and phosphate-buffered saline is demonstrated for devices having cross-sectional dimensions close to 100 nm. For operation in air, quality factors as high as 400 at 145 MHz are demonstrated. In liquid, quality factors ranging from 3 to 10 and frequencies ranging from 20 to 100 MHz are observed. These devices, and an all-optical actuation and detection system, may provide insight into the physics of the interaction of nanoscale mechanical structures with their environments, greatly extending the viscosity range over which such small flexural resonant devices can be operated. PMID:16968035

  5. Applications of Optical Microcavity Resonators in Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Wade, James H.; Bailey, Ryan C.

    2016-06-01

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  6. Applications of Optical Microcavity Resonators in Analytical Chemistry.

    PubMed

    Wade, James H; Bailey, Ryan C

    2016-06-12

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  7. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  8. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  9. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  10. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  11. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  12. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  13. SU-F-BRE-12: Optical Resonator Water Calorimeter

    SciTech Connect

    Abraham, J; DeMarco, J; Low, D

    2014-06-15

    Purpose: Water calorimetry based on resistance thermometry has matured as a primary standard. Developing an optical technique hold the promise to push the boundaries of what is currently achievable with dosimetry. We will present a feasibility study and the current progress of construction of a Fabry-Perot resonator for dose to water measurement. Additionally, estimations of the theoretical limits resonator sensitivity and potential sources of noise for the system are described. Methods: A temperature change from the dose to water would be measured by the change in the index of refraction from the water in the cavity. Calculations are presented of the expected signal from the resonator for dose to water. The Fabry-Perot resonator constructed from optical quality narrowband mirrors is described. A water cell will be inserted into the cavity gap to provide the medium swept cavity length technique is explored as a specific implementation of this technique. Results: Calculations indicate that a dose to water on the order of a Gray is measureable with a reasonably implementable system. A resonator is currently under construction and progress towards a proof of principle measurement will be presented. The primary sources of noise, in order of importance, are expected to be; optical absorption by the medium, mechanical perturbations of the cavity length and thermal expansion of the optical mounts. Estimations of these noise sources and mitigation techniques will be discussed. Conclusion: A Fabry-Perot resonator is a promising technique for measuring the absorbed dose to water from a radiotherapy beam. This technique has the potential to serve as a check on the current primary standard for dose to water measurements. As well, i0074 may be the foundation for a new class of optical property based dosimetry measurement.

  14. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  15. Packaged optofluidic microbubble resonators for optical sensing.

    PubMed

    Tang, Ting; Wu, Xiang; Liu, Liying; Xu, Lei

    2016-01-10

    A microbubble resonator (MBR) coupled with a fiber taper is packaged with low-index polymer. The cladding polymer serves as a protective matrix for the coupling system to avoid environmental disturbance. The packaged structure is portable and provides good performance to maintain high Q factors for a long working period. The hollow structure of the MBR makes the packaged system useful for practical chemical and biomedical sensing applications. To evaluate the performance of the packaged MBRs-based sensor, we carry out bulk refractive index and surface-sensing measurements with achieved sensitivities of 18.8 nm/RIU and 31.29 pm/nm, respectively. PMID:26835777

  16. Improved optical resonator for laser radars

    NASA Astrophysics Data System (ADS)

    Lavigne, Pierre; McCarthy, Nathalie; Parent, Andre; Pascale, Danny

    1986-01-01

    It is theoretically and experimentally demonstrated that Gaussian reflectivity mirrors can improve the performance of lasers for radar applications. The effects of misalignment and hard apertures are investigated. The optimum design parameters are given. Single mode operation of a TE-CO2 laser was obtained in a Cassegrain resonator made of a hard concave mirror and a convex mirror with a Gaussian reflectivity profile. The 70-nsec FWHM pulses had an energy of 175 mJ, a peak power of about 2.0 MW, a near-diffraction-limited far field, and a chirp rate smaller than 0.060 MHz/microsec sq.

  17. Electrical control of optical plasmon resonance with graphene.

    PubMed

    Kim, Jonghwan; Son, Hyungmok; Cho, David J; Geng, Baisong; Regan, Will; Shi, Sufei; Kim, Kwanpyo; Zettl, Alex; Shen, Yuen-Ron; Wang, Feng

    2012-11-14

    Surface plasmon has the unique capability to concentrate light into subwavelength volume. Active plasmon devices using electrostatic gating can enable flexible control of the plasmon excitations, which has been demonstrated recently in terahertz plasmonic structures. Controlling plasmon resonance at optical frequencies, however, remains a significant challenge because gate-induced free electrons have very weak responses at optical frequencies. Here we achieve efficient control of near-infrared plasmon resonance in a hybrid graphene-gold nanorod system. Exploiting the uniquely strong and gate-tunable optical transitions of graphene, we are able to significantly modulate both the resonance frequency and quality factor of gold nanorod plasmon. Our analysis shows that the plasmon-graphene coupling is remarkably strong: even a single electron in graphene at the plasmonic hotspot could have an observable effect on plasmon scattering intensity. Such hybrid graphene-nanometallic structure provides a powerful way for electrical control of plasmon resonances at optical frequencies and could enable novel plasmonic sensing down to single charge transfer events.

  18. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    SciTech Connect

    Golovastikov, N. V.; Bykov, D. A. Doskolovich, L. L. Soifer, V. A.

    2015-11-15

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.

  19. Reconfigurable Optical Spectra from Perturbations on Elliptical Whispering Gallery Resonances

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.

  20. Orbital order of spinless fermions near an optical Feshbach resonance

    SciTech Connect

    Hauke, Philipp; Zhao, Erhai; Goyal, Krittika; Deutsch, Ivan H.; Liu, W. Vincent; Lewenstein, Maciej

    2011-11-15

    We study the quantum phases of a three-color Hubbard model that arises in the dynamics of the p-band orbitals of spinless fermions in an optical lattice. Strong, color-dependent interactions are induced by an optical Feshbach resonance. Starting from the microscopic scattering properties of ultracold atoms, we derive the orbital exchange constants at 1/3 filling on the cubic optical lattice. Using this, we compute the phase diagram in a Gutzwiller ansatz. We find phases with ''axial orbital order'' in which p{sub z} and p{sub x}+ip{sub y} (or p{sub x}-ip{sub y}) orbitals alternate.

  1. Spinning optical resonator sensor for torsional vibrational applications measurements

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.

    2016-03-01

    Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.

  2. Optical control of Magnetic Feshbach Resonances using Closed Channel EIT

    NASA Astrophysics Data System (ADS)

    Jagannathan, Arunkumar; Arunkumar, Nithya; Joseph, James; Thomas, John

    2016-05-01

    Optical techniques can provide rapid temporal control and high-resolution spatial control of interactions in cold gases enabling the study of non-equilibrium strongly interacting Fermi gases. We use electromagnetically induced transparency (EIT) in the closed channel to control magnetic Feshbach resonances in an optically-trapped mixture of the two lowest hyperfine states of a 6 Li Fermi gas. In our experiments, the narrow Feshbach resonance is tuned by up to 3 G. For the broad resonance, the spontaneous lifetime is increased to 0.4 s at the dark state resonance, compared to 0.5 ms for single field tuning. We present a new model of light-induced loss spectra, employing continuum-dressed basis states, that agrees in shape and magnitude with loss measurements for both broad and narrow resonances. Using this model, we predict the trade-off between tunability and loss for the broad resonance in 6 Li, showing that our two-field method substantially reduces the two-body loss rate compared to single field methods for same tuning range. This research is supported by AFOSR, NSF, ARO, and DOE.

  3. MEMS tunable optical filter based on multi-ring resonator

    SciTech Connect

    Dessalegn, Hailu E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T. E-mail: tsrinu@ece.iisc.ernet.in

    2014-10-15

    We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenability as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.

  4. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  5. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    NASA Technical Reports Server (NTRS)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  6. Supercooling of Atoms in an Optical Resonator.

    PubMed

    Xu, Minghui; Jäger, Simon B; Schütz, S; Cooper, J; Morigi, Giovanna; Holland, M J

    2016-04-15

    We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are synchronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.

  7. Supercooling of Atoms in an Optical Resonator

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Jäger, Simon; Schütz, Stefan; Cooper, John; Morigi, Giovanna; Holland, Murray

    2016-05-01

    We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are synchronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.

  8. Supercooling of Atoms in an Optical Resonator

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Jäger, Simon B.; Schütz, S.; Cooper, J.; Morigi, Giovanna; Holland, M. J.

    2016-04-01

    We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are synchronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.

  9. Optical coherence tomography with plasmon resonant nanorods of gold.

    PubMed

    Troutman, Timothy S; Barton, Jennifer K; Romanowski, Marek

    2007-06-01

    We explored plasmon resonant nanorods of gold as a contrast agent for optical coherence tomography (OCT). Nanorod suspensions were generated through wet chemical synthesis and characterized with spectrophotometry, transmission electron microscopy, and OCT. Polyacrylamide-based phantoms were generated with appropriate scattering and anisotropy coefficients (30 cm(-1) and 0.89, respectively) to image distribution of the contrast agent in an environment similar to that of tissue. The observed signal was dependent on whether the plasmon resonance peak overlapped the source bandwidth of the OCT, confirming the resonant character of enhancement. Gold nanorods with plasmon resonance wavelengths overlapping the OCT source yielded a signal-to-background ratio of 4.5 dB, relative to the tissue phantom. Strategies for OCT imaging with nanorods are discussed.

  10. Optical coherence tomography with plasmon resonant nanorods of gold

    NASA Astrophysics Data System (ADS)

    Troutman, Timothy S.; Barton, Jennifer K.; Romanowski, Marek

    2007-06-01

    We explored plasmon resonant nanorods of gold as a contrast agent for optical coherence tomography (OCT). Nanorod suspensions were generated through wet chemical synthesis and characterized with spectrophotometry, transmission electron microscopy, and OCT. Polyacrylamide-based phantoms were generated with appropriate scattering and anisotropy coefficients (30 cm-1 and 0.89, respectively) to image distribution of the contrast agent in an environment similar to that of tissue. The observed signal was dependent on whether the plasmon resonance peak overlapped the source bandwidth of the OCT, confirming the resonant character of enhancement. Gold nanorods with plasmon resonance wavelengths overlapping the OCT source yielded a signal-to-background ratio of 4.5 dB, relative to the tissue phantom. Strategies for OCT imaging with nanorods are discussed.

  11. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure.

  12. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  13. Optical coherence tomography with plasmon resonant nanorods of gold.

    PubMed

    Troutman, Timothy S; Barton, Jennifer K; Romanowski, Marek

    2007-06-01

    We explored plasmon resonant nanorods of gold as a contrast agent for optical coherence tomography (OCT). Nanorod suspensions were generated through wet chemical synthesis and characterized with spectrophotometry, transmission electron microscopy, and OCT. Polyacrylamide-based phantoms were generated with appropriate scattering and anisotropy coefficients (30 cm(-1) and 0.89, respectively) to image distribution of the contrast agent in an environment similar to that of tissue. The observed signal was dependent on whether the plasmon resonance peak overlapped the source bandwidth of the OCT, confirming the resonant character of enhancement. Gold nanorods with plasmon resonance wavelengths overlapping the OCT source yielded a signal-to-background ratio of 4.5 dB, relative to the tissue phantom. Strategies for OCT imaging with nanorods are discussed. PMID:17546147

  14. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    NASA Astrophysics Data System (ADS)

    Ha, Thi Dep; Bao, JingFu

    2016-04-01

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young's modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  15. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    SciTech Connect

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-23

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.

  16. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-01

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe-Fe bonds but stiffens the Au-Au and Au-Fe bonds which results in a net stiffening relative to the elemental components.

  17. Effect of the direct capture of holes with the emission of optical phonons on impurity-photoconductivity relaxation in p-Si:B

    SciTech Connect

    Kozlov, D. V. Morozov, S. V.; Rumyantsev, V. V.; Tuzov, I. V.; Kudryavtsev, K. E.; Gavrilenko, V. I.

    2015-02-15

    A theoretical model developed for interpretation of the results of measurements of the impurity-photoconductivity relaxation in p-Si:B under pulsed optical excitation by a narrow-band tunable source of radiation in “heating” (10–500 V/cm) electric fields is presented. The model takes into account the capture of holes at the ground and lower excited states of boron with optical-phonon emission. It is shown that the dependence of the photoconductivity-relaxation time on the electric-field intensity can be unsteady taking into account these processes.

  18. Thermoelastic damping in optical waveguide resonators with the bolometric effect.

    PubMed

    Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang; Wang, Ming-Yang

    2014-06-01

    Incorporating the bolometric effect, the thermoelastic damping in a nanowaveguide resonator driven by an optical gradient force is investigated in this paper. Based on the Euler-Bernoulli beam theory, the governing equation of the optowaveguide resonator is derived by considering the complex distribution of injected optical power, which has significant influence on the thermoelastic damping. By solving the heat diffusion equation, the theoretical model of the thermoelastic damping is presented. In this model, the effects of injected optical power, representative temperatures, waveguide material, and geometries on the thermoelastic damping are studied and discussed respectively. The results show that the peak value of thermoelastic damping increases as the injected optical power is increasing within a low range. Hardly any changes exist for the intrinsic energy dissipation of different materials at higher injected optical power. When the environmental temperature falls in the range of 293-500 K, the thermoelastic damping increases slowly, and then drops down quickly as a function of the dimensionless frequency. However, the thermoelastic damping monotonically decreases when the representative temperature drops to lower than 293 K. In addition, the thermoelastic damping is found to be scale dependent, particularly with the effect of injected optical power.

  19. Thermoelastic damping in optical waveguide resonators with the bolometric effect.

    PubMed

    Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang; Wang, Ming-Yang

    2014-06-01

    Incorporating the bolometric effect, the thermoelastic damping in a nanowaveguide resonator driven by an optical gradient force is investigated in this paper. Based on the Euler-Bernoulli beam theory, the governing equation of the optowaveguide resonator is derived by considering the complex distribution of injected optical power, which has significant influence on the thermoelastic damping. By solving the heat diffusion equation, the theoretical model of the thermoelastic damping is presented. In this model, the effects of injected optical power, representative temperatures, waveguide material, and geometries on the thermoelastic damping are studied and discussed respectively. The results show that the peak value of thermoelastic damping increases as the injected optical power is increasing within a low range. Hardly any changes exist for the intrinsic energy dissipation of different materials at higher injected optical power. When the environmental temperature falls in the range of 293-500 K, the thermoelastic damping increases slowly, and then drops down quickly as a function of the dimensionless frequency. However, the thermoelastic damping monotonically decreases when the representative temperature drops to lower than 293 K. In addition, the thermoelastic damping is found to be scale dependent, particularly with the effect of injected optical power. PMID:25019905

  20. Neutral gas heating via non-resonant optical lattices

    NASA Astrophysics Data System (ADS)

    Cornella, Barry Michael

    The influence of intense optical lattices on atoms or molecules offers a particularly useful method for energy and momentum deposition into a non-resonant gas. In this investigation, a proof-of-concept experiment was conducted to validate high intensity pulsed optical lattices as a means of creating high temperature gases for a myriad of aerospace, basic physics, and nanotechnology applications. Traditional methods for creating these flows have either involved altering the chemical composition of the initial gas sample through combustion or ionization or relied on laser resonant interactions with internal energy modes through laser pyrolysis. Due to its non-resonant nature, the use of optical lattices might be beneficial compared to existing methods since it provides an arbitrary, localized, high temperature gas that is tunable and does not introduce unwanted chemical species or high ionization concentrations. As an intermediate step toward verifying optical lattice gas heating, a coherent Rayleigh-Brillouin scattering (CRBS) study was also performed to verify the presented methodology. CRBS is a gas diagnostic technique used for non-intrusive probing of gas thermodynamic properties. In addition to the experimental investigation, a complementary numerical study was conducted using a direct simulation Monte Carlo approach. The numerical study used a modified version of SMILE to predict the gas phenomena within the strong optical potential fields. The goal of substantiating optical lattice heating was accomplished by detecting the acoustic wave generated from the heated volume. The magnitude of the resulting acoustic wave was shown to vary with the optical lattice phase velocity, peaking on the order of the gas' most probable speed. The trend with lattice velocity is consistent with both theory and the numerical study and eliminates other possible heating mechanisms such as laser-induced ionization or molecular dissociation. Limitations for the investigated heating

  1. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering.

    PubMed

    Carvalho, Bruno R; Malard, Leandro M; Alves, Juliana M; Fantini, Cristiano; Pimenta, Marcos A

    2015-04-01

    This work describes a resonance Raman study performed on samples with one, two, and three layers (1L, 2L, 3L), and bulk MoS2, using more than 30 different laser excitation lines covering the visible range, and focusing on the intensity of the two most pronounced features of the Raman scattering spectrum of MoS2 (E2g(1) and A1g bands). The Raman excitation profiles of these bands were obtained experimentally, and it is found that the A1g feature is enhanced when the excitation laser is in resonance with A and B excitons of MoS2, while the E2g1 feature is shown to be enhanced when the excitation laser is close to 2.7 eV. We show from the symmetry analysis of the exciton-phonon interaction that the mode responsible for the E2g(1) resonance is identified as the high energy C exciton recently predicted [D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013)].

  2. Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures

    NASA Astrophysics Data System (ADS)

    Tsuruta, Shuichi; Takeuchi, Hideo; Yamada, Hisashi; Hata, Masahiko; Nakayama, Masaaki

    2013-04-01

    We have investigated the characteristics of monochromatic terahertz electromagnetic waves emitted from coherent longitudinal optical (LO) phonons in undoped GaAs/n-type GaAs epitaxial structures with various thicknesses, which range from 200 nm to 1200 nm, of the undoped GaAs layer. The terahertz waves were measured at room temperature using an optical gating method with a photoconductive dipole antenna. It was found that the intensity of the terahertz waves markedly depends on the thickness of the undoped GaAs layer. The analysis of Franz-Keldysh oscillations observed with photoreflectance spectroscopy demonstrates that the built-in electric field strength in the undoped GaAs layer, which results from the Fermi-level pinning at the surface, increases from 6.1 kV/cm to 28.4 kV/cm with a decrease in the thickness. It was revealed that the amplitude of the terahertz wave is proportional to the electric field strength in the undoped GaAs layer. This fact indicates that the efficiency of the terahertz radiation is dominated by the initial polarization of the LO phonons induced by the built-in electric field, which provides us a simple strategy for the enhancement of the terahertz radiation from the coherent LO phonons.

  3. A fiber-optic hydrophone with a cylindrical Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Wang, Zefeng; Hu, Yongming; Ni, Ming; Meng, Zhou; Luo, Hong

    2007-11-01

    A passive homodyne Michelson interferometric fiber-optic hydrophone with a single-hole cylindrical Helmholtz resonator has been manufactured. To validate the theoretical results that the fluid coefficient of viscosity has great influence on the maximum sensitivity at the resonant frequency, the acoustic sensitivity frequency response of the fiber-optic hydrophone has been measured in a standing-wave tank filled with castor oil. The viscosity coefficient of castor oil will change with the variation of the temperature. Experimental Results show that the fiber-optic hydrophone frequency responses of different temperature have identical form except that the maximum sensitivities are different. The acoustic sensitivities of low frequency are about -159dB re 1rad/μPa. While the maximum sensitivities near the measured resonant frequency of 800Hz go down with the fall of the temperature, i.e. with the increase of the viscosity coefficient, which is agree with the theoretical conclusions. This fiber-optic hydrophone is a prototype device for a class of sensors that used to eliminate aliasing in the future sonar systems.

  4. Optical resonant ultrasound spectroscopy for spherical target characterization

    SciTech Connect

    Hale, Tom

    2010-01-01

    A new non-contact resonant ultrasound spectroscopic technique is employed to determine the response characteristics of spherical fusion targets, with particular emphasis on both the displacement sensitivity and frequency response of the technique. The optical experimental method is based on photorefractive optical lock-in detection scheme with narrow bandwidth amplification to measure phase variations in light scattered from optically rough, continuously vibrating surfaces with very high, linear sensitivity and a noise level on the order of 10.6 nanometers RMS. This high sensitivity is needed to determine the vibrational modes of the gas inside an spherical target separately from the elastic modes of the containment shell. These measurements can be used to calculate the pressure and density of the internal gas. This approach is also used to discriminate between nearly-degenerate resonant modes characteristic of the frequency spectrum when the target fabrication is inadequate (non-uniform shell thickness, misalignment of hemispheres) or when the Deuteriumrrritium solid fuel inside the target is not symmetrically distributed at cryogenic temperatures. Asymmetries in the fuel layering and geometric perturbations disturb the target implosion process creating deleterious effects in fusion energy generation. The technique is applied to determine the modal characteristics of a target sphere with known response from 100 KHz to 450 KHz. The results demonstrate the unique capabilities of the optical lock-in detection method to measure very small resonant ultrasonic signals.

  5. Bistable moving optical solitons in resonant photonic crystals

    SciTech Connect

    Vlasov, R. A.; Lemeza, A. M.

    2011-08-15

    We consider some new aspects of the formation of moving optical solitons in a medium of Bragg-type resonant grating doped with two-level atoms. For generality, account is taken of the local-field effect assisted by a sufficiently high density of resonant atoms. It is established analytically that there exists a family of soliton solutions to the two-wave Maxwell-Bloch system of equations, with these solitons exhibiting bistable properties. The existence of bistable solitons and their properties are confirmed by numerical simulations.

  6. Optics and biophotonics of nanoparticles with a plasmon resonance

    SciTech Connect

    Khlebtsov, N G

    2008-06-30

    A brief review of the state of the art in theoretical and experimental studies of the optical properties of metal particles with dipole and multipole plasmon resonances is presented. Metal spheres, nanorods, spherical and elliptic metal nanoshells are considered. The tuning of plasmon resonances of nanoparticles by varying their size, shape, structure, and dielectric environment is described. A large amount of spectrophotometric data on dimensional characteristics of gold colloidal particles is critically analysed and a new calibration of the dependence of their average size on the extinction plasmon resonance wavelength is proposed. A drastic difference between gold and silver colloids in the region of small deviations of their form from spherical is discussed. An example of the excess over not only the Rayleigh limit for the scattering depolarisation factor for dielectric needles (1/3) but also over the plasmon-resonance limit for metal thin rods (3/4) is presented for the first time. The multipole properties of nanorods and universal linear wavelength scaling of multipole resonances are considered depending on the axial ratio of nanoparticles. The outlook for modern trends in biomedical applications of nanoparticles with plasmon resonances is discussed. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  7. Quasi-transverse optical phonon mode in self-generated semipolar AlN grains embedded in c-oriented AlN matrix grown on sapphire using hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hu, Y. Y.; Zhou, T. F.; Zheng, S. N.; Liu, X. H.; Zhao, J. J.; Su, X. J.; Huang, J.; Qiu, Y. X.; Zhang, J. C.; Xu, K.

    2016-05-01

    In this study, we present a microspectroscopic investigation on the quasi-transverse optical phonon modes Q(TO) in some self-generated aluminum nitride (AlN) grains grown on sapphire using hydride vapor phase epitaxy. Using X-ray diffraction and transmission electron microscope, these grains were confirmed to be embedded in (0001)-AlN (c-AlN) epitaxial matrix with an appearance plane of (10 1 ¯ 1 ) (s-plane). Two beam bright field images further showed that the AlN grains were free of dislocation. In-plane phonon anisotropy of the AlN grains was discussed in detail using angular-dependent polarized Raman spectroscopy. The dependence of pure Raman phonons intensity on rotation angle agrees well with the calculation. The Q(TO) phonon intensity exhibited similar behavior to that of A1(TO) phonon, which can be explained by Loudon's formula. However, the observed frequency fluctuation for the Q(TO) phonon differs from that of the pure phonon modes, which cannot be directly understood from the classic Loudon's formula. A modified Loudon's formula appropriate to non-normal incidence was presented to explain the observed Q(TO) phonon frequency fluctuation. Combining with the angular-dependent Raman spectra, we proposed that a small inclination of s-plane along with the various in-plane orientations in c-AlN matrix lead to the frequency fluctuation of Q(TO) in these embedded semipolar AlN grains.

  8. Surface plasmon resonance based fiber optic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Sachin K.; Verma, Roli; Gupta, Banshi D.

    2012-02-01

    A surface plasmon resonance (SPR) based fiber optic biosensor has been fabricated and characterized for the detection of blood glucose. Optical fiber sensor was fabricated by first coating a 50 nm thick gold film on the bare core of optical fiber and then immobilizing glucose oxidase (GOx) over it. Aqueous glucose solutions of different concentrations were prepared. To mimic the blood glucose levels, the concentration of glucose solutions were kept equal to that in human blood. The refractive indices of these sample solutions were equal to that of water up to third decimal place. SPR spectra for the sensor were recorded for these glucose solutions. When the glucose comes in contact to glucose oxidase, chemical reactions take place and as a result, the refractive index of the immobilized GOx film changes, giving rise to a shift in the resonance wavelength. Unlike electrochemical sensors, the present sensor is based on optics and can be miniaturized because of optical fiber. The present study provides a different approach for blood glucose sensing and may be commercialized after optimization of certain parameters.

  9. The ``Music'' of Light: Optical Resonances for Fun and Profit

    NASA Astrophysics Data System (ADS)

    Beausoleil, Raymond

    Moore's Law has set great expectations that the performance/price ratio of commercially available semiconductor devices will continue to improve exponentially at least until the end of this decade. But the physics of the metal wires that connect the transistors on a silicon chip already places stringent limits on the performance of integrated circuits, making their continued dramatic improvement highly unlikely. In this talk, I will introduce the basic concept of an optical resonance in a microscopic dielectric cavity in the context of the same type of spatial boundary conditions that give each musical instrument its unique sound. Then I will illustrate applications of these resonances to information technology in a variety of forms and functions using examples from my own laboratory at HP, such as chip-scale optical networks, quantum bits based on spins in diamond, and ultrafast optical switches that could become the foundation for a new generation of optical computers. Our goal is to conduct advanced research that could precipitate an ``optical Moore's Law'' and allow exponential performance gains to continue through the end of the next decade.

  10. Magneto-optical switching devices based on Si resonators

    NASA Astrophysics Data System (ADS)

    Noda, Kazuki; Okada, Kazuya; Amemiya, Yoshiteru; Yokoyama, Shin

    2016-04-01

    The magneto-optical switching devices based on Si ring and Si photonic crystal resonators have been fabricated using a Bi3Fe5O12 (BIG) film deposited by the metal organic decomposition (MOD) method. The quality of the obtained BIG film was evaluated by X-ray diffraction and the magneto-optical Kerr effect and relatively good results were obtained. The light modulations of both devices were ≦20% at a wavelength of ˜1.5 µm. The operation mechanisms of both devices are explained by the Cotton-Mouton effect where the magnetic field direction is perpendicular to the light propagation direction.

  11. Optical frequency comb generation from aluminum nitride microring resonator.

    PubMed

    Jung, Hojoong; Xiong, Chi; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-08-01

    Aluminum nitride (AlN) is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high-quality-factor AlN microring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single-wavelength continuous-wave pump laser. Further, the Kerr coefficient (n₂) of AlN is extracted from our experimental results.

  12. Research progress of the resonant fiber optic gyroscope technology

    NASA Astrophysics Data System (ADS)

    Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe

    2015-10-01

    The resonant fiber optic gyro (RFOG) is a high accuracy inertial rotation sensor based on the Sagnac effect. The existence of various noises, including the nonreciprocal noises such as the polarization noise and the Kerr noise as well as the reciprocal circuit noise, limits the performance improvement of the RFOG. An improved scheme by inserting two in-line polarizers in the polarization maintaining fiber transmission-type resonator has been proposed to suppress the polarization-fluctuation induced drift. Furthermore, the adoption of the air-core photonic bandgap fibers (PBFs) offers a novel solution to reduce the optical Kerr effect. In addition, A digital signal processor is designed to reduce the reciprocal noises and detect the rotation information. A minimum actual rotation of 0.001°/s is achieved. The dynamic range is improved by a factor of 7 and the scale factor nonlinearity is decreased by a factor of 60.

  13. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.

    PubMed

    Wen, Fangfang; Zhang, Yue; Gottheim, Samuel; King, Nicholas S; Zhang, Yu; Nordlander, Peter; Halas, Naomi J

    2015-06-23

    A charge transfer plasmon (CTP) appears when an optical-frequency conductive pathway between two metallic nanoparticles is established, enabling the transfer of charge between nanoparticles when the plasmon is excited. Here we investigate the properties of the CTP in a nanowire-bridged dimer geometry. Varying the junction geometry controls its conductance, which modifies the resonance energies and scattering intensities of the CTP while also altering the other plasmon modes of the nanostructure. Reducing the junction conductance shifts this resonance to substantially lower energies in the near- and mid-infrared regions of the spectrum. The CTP offers both a high-information probe of optical frequency conductances in nanoscale junctions and a new, unique approach to controllably engineering tunable plasmon modes at infrared wavelengths.

  14. Scanning properties of a resonant fiber-optic piezoelectric scanner.

    PubMed

    Li, Zhi; Yang, Zhe; Fu, Ling

    2011-12-01

    We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ~2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers. PMID:22225224

  15. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  16. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  17. Capture into resonance and phase space dynamics in optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  18. Depth dependent modification of optical constants arising from H+ implantation in n-type 4H-SiC measured using coherent acoustic phonons

    NASA Astrophysics Data System (ADS)

    Baydin, Andrey; Krzyzanowska, Halina; Dhanunjaya, Munthala; Nageswara Rao, S. V. S.; Davidson, Jimmy L.; Feldman, Leonard C.; Tolk, Norman H.

    2016-06-01

    Silicon carbide (SiC) is a promising material for new generation electronics including high power/high temperature devices and advanced optical applications such as room temperature spintronics and quantum computing. Both types of applications require the control of defects particularly those created by ion bombardment. In this work, modification of optical constants of 4H-SiC due to hydrogen implantation at 180 keV and at fluences ranging from 1014 to 1016 cm-2 is reported. The depth dependence of the modified optical constants was extracted from coherent acoustic phonon spectra. Implanted spectra show a strong dependence of the 4H-SiC complex refractive index depth profile on H+ fluence. These studies provide basic insight into the dependence of optical properties of 4H silicon carbide on defect densities created by ion implantation, which is of relevance to the fabrication of SiC-based photonic and optoelectronic devices.

  19. POPART: partial optical implementation of adaptive resonance theory 2.

    PubMed

    Kane, J S; Paquin, M J

    1993-01-01

    Adaptive resonance architectures are neural nets that are capable of classifying arbitrary input patterns into stable category representations. A hybrid optoelectronic implementation utilizing an optical joint transform correlator is proposed and demonstrated. The resultant optoelectronic system is able to reduce the number of calculations compared to a strictly computer-based approach. The result is that, for larger images, the optoelectronic system is faster than the computer-based approach.

  20. Optical fibre resonator rotation sensor using a low coherence source

    NASA Astrophysics Data System (ADS)

    Farhadiroushan, M.; Giles, I. P.; Youngquist, R. C.

    1987-03-01

    A resonator-type rotation sensor using a low coherence is presented. While the system uses phase modulation techniques similar to those of the conventional optical fiber gyroscope, it relies on multiple loop transitions to enhance system sensitivity. The theoretical rotation sensitivity is 2.7 times greater than that of the conventional phase-modulated Sagnac interferometer. Consideration is given to the phase-induced intensity noise in the system.

  1. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite

    NASA Astrophysics Data System (ADS)

    Reddy, S. Lakshmi; Fayazuddin, Md.; Frost, Ray L.; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals.

  2. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite.

    PubMed

    Reddy, S Lakshmi; Fayazuddin, Md; Frost, Ray L; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals. PMID:17324611

  3. Advanced Silicon Microring Resonator Devices for Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Masilamani, Ashok Prabhu

    Chip level optical interconnects has gained momentum with recent demonstrations of silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, wavelength division multiplexing (WDM) filters, etc. A fundamental building block that has enabled many of these silicon photonic modules is the compact, high Q factor microring resonator cavity. However, most of these demonstrations have WDM processing components based on simple add-drop filters that cannot realize the dense WDM systems required for the chip level interconnects. Dense WDM filters have stringent spectral shape requirements such as flat-top filter passband, steep band transition etc. Optical filters that can meet these specifications involve precise placement of the poles and zeros of the filter transfer function. Realization of such filters requires the use of multiple coupled microring resonators arranged in complex coupling topologies. In this thesis we have proposed and demonstrated new multiple coupled resonator topologies based on compact microring resonators in SOI material system. First we explored novel microring architectures which resulted in the proposal of two new coupled microring architectures, namely, the general 2D microring array topology and the general cascaded microring network topology. We also developed the synthesis procedures for these two microring architectures. The second part of this thesis focussed on the demonstration of the proposed architectures in the SOI material system. To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab facility. Using this process, ultra-compact single microring filters with microring radii as small as 1mum were demonstrated. Higher order filter demonstration with multiple microrings necessitated post-fabrication microring resonance tuning. We developed additional fabrication steps to install micro heaters on top of the microrings to thermally tune its resonance. Subsequently, a thermally tuned fourth

  4. Two-dimensional phononic-photonic band gap optomechanical crystal cavity.

    PubMed

    Safavi-Naeini, Amir H; Hill, Jeff T; Meenehan, Seán; Chan, Jasper; Gröblacher, Simon; Painter, Oskar

    2014-04-18

    We present the fabrication and characterization of an artificial crystal structure formed from a thin film of silicon that has a full phononic band gap for microwave X-band phonons and a two-dimensional pseudo-band gap for near-infrared photons. An engineered defect in the crystal structure is used to localize optical and mechanical resonances in the band gap of the planar crystal. Two-tone optical spectroscopy is used to characterize the cavity system, showing a large coupling (g0/2π≈220  kHz) between the fundamental optical cavity resonance at ωo/2π=195  THz and colocalized mechanical resonances at frequency ωm/2π≈9.3  GHz.

  5. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    PubMed Central

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  6. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations.

    PubMed

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  7. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations.

    PubMed

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-08-31

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  8. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  9. Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)

    2005-01-01

    Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.

  10. Second harmonic generation by charge-transfer excitons interacting with phonons

    SciTech Connect

    Reineker, P.; Yudson, V. I.

    2001-06-15

    Effects of exciton-phonon interaction on the nonlinear optical response of charge-transfer excitons (CTE) are studied in the framework of an exactly solvable model. It is found that the second order excitonic optical polarizability {beta} is modified due to the CTE-phonon interaction. For a nonresonant frequency range, where {beta} is relatively small, the change is not significant. On the contrary, in the vicinity of resonances (when the light frequency {omega}{approximately}{omega}{sub 0} or {omega}{approximately}{omega}{sub 0}/2, {omega}{sub 0} is the CTE transition frequency), the CTE-phonon interaction may remarkably diminish the value of {beta}. This should be taken into account when considering CTE systems in nonlinear optics.

  11. Thermo-optical resonance locking of an optically trapped salt-water microdroplet

    NASA Astrophysics Data System (ADS)

    Guillon, Marc; Miles, Rachael E. H.; Reid, Jonathan P.; McGloin, David

    2009-10-01

    We demonstrate that it is possible to lock the radius of an optically trapped salt-water microdroplet to the n=1 whispering gallery resonances (WGRs) at the trapping laser wavelength. The optical properties of the droplet are determined using stimulated Raman scattering. The droplet is in thermodynamic equilibrium with the surrounding vapour and the proposed locking mechanism consists of a balance between bulk heating and WGR heating. Raman measurements allow the size parameter (nka) of the droplet to be determined with a precision of ~10-5 and the resonance linewidth to be estimated.

  12. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons

    PubMed Central

    Lee, Jae-Hwang; Koh, Cheong Yang; Singer, Jonathan P; Jeon, Seog-Jin; Maldovan, Martin; Stein, Ori; Thomas, Edwin L

    2014-01-01

    The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced. PMID:24338738

  13. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs

    NASA Astrophysics Data System (ADS)

    Li, Suobin; Chen, Tianning; Wang, Xiaopeng; Li, Yinggang; Chen, Weihua

    2016-06-01

    We studied the expansion of locally resonant complete band gaps in two-dimensional phononic crystals (PCs) using a double-sided stubbed composite PC plate with composite stubs. Results show that the introduction of the proposed structure gives rise to a significant expansion of the relative bandwidth by a factor of 1.5 and decreases the opening location of the first complete band gap by a factor of 3 compared to the classic double-sided stubbed PC plate with composite stubs. Furthermore, more band gaps appear in the lower-frequency range (0.006). These phenomena can be attributed to the strong coupling between the "analogous rigid mode" of the stub and the anti-symmetric Lamb modes of the plate. The "analogous rigid mode" of the stub is produced by strengthening the localized resonance effect of the composite plates through the double-sided stubs, and is further strengthened through the introduction of composite stubs. The "analogous rigid mode" of the stubs expands the out-of-plane band gap, which overlaps with in-plane band gap in the lower-frequency range. As a result, the complete band gap is expanded and more complete band gaps appear.

  14. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  15. Ferromagnetic Resonance detection using stroboscopic magneto optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Yoon, Seungha; Moriyama, Takahiro; McMichael, Robert

    2015-03-01

    Ferromagnetic resonance (FMR) is a powerful method for measuring the magnetic properties of ferromagnets. A number of related optical techniques have become popular, including time-resolved magneto-optical Kerr effect (TR-MOKE) microscopy and Brillouin light scattering (BLS). In this presentation we describe a new, stroboscopic method of measuring FMR based on the magneto-optical Kerr effect (MOKE). We use a polarized telecommunications fiber laser (wavelength = 1550 nm) and a fiber modulator driven at a frequency of interest (1 GHz to 10 GHz) to create pulsed, linearly polarized light incident on a CoFeB thin film sample. Precession in the sample is driven via a coplanar waveguide in the sample holder while the reflected light is split by a polarizing beam splitter and detected by a balanced detector. As the magnetic field is swept, oscillations in the Kerr angle and in the light intensity mix to produce a DC resonance signal. The spectra are Lorentzian, with a superposition of symmetric and anti-symmetric shapes that depends on the phase of the optical and microwave signals. In the presentation, we will also discuss phase sensitive measurements with this technique as well as the advantages over other FMR techniques.

  16. Cooling enhancement in optical refrigeration by non-resonant optical cavities

    NASA Astrophysics Data System (ADS)

    Farfan, B. G.; Gragossian, A.; Symonds, G.; Ghasemkhani, M. R.; Albrecht, A. R.; Sheik-Bahae, M.; Epstein, R. I.

    2016-05-01

    We present a study of cooling enhancement in optical refrigerators by the implementation of advanced non-resonant optical cavities. Cavity designs have been studied to maximize pump light-trapping to improve absorption and thereby increase the efficiency of optical refrigeration. The approaches of non-resonant optical cavities by Herriott-cell and totalinternal- reflection were studied. Ray-tracing simulations and experiments were performed to analyze and optimize the different light-trapping configurations. Light trapping was studied for laser sources with high quality beams and for beams with large divergences, roughly corresponding to the output from fiber lasers and from diode lasers, respectively. We present a trade-off analysis between performance, reliability, and manufacturability.

  17. Atomic-scale confinement of resonant optical fields.

    PubMed

    Kern, Johannes; Grossmann, Swen; Tarakina, Nadezda V; Häckel, Tim; Emmerling, Monika; Kamp, Martin; Huang, Jer-Shing; Biagioni, Paolo; Prangsma, Jord C; Hecht, Bert

    2012-11-14

    In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices. PMID:22984927

  18. Spectral separation of optical spin based on antisymmetric Fano resonances

    PubMed Central

    Piao, Xianji; Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

    2015-01-01

    We propose a route to the spectral separation of optical spin angular momentum based on spin-dependent Fano resonances with antisymmetric spectral profiles. By developing a spin-form coupled mode theory for chiral materials, the origin of antisymmetric Fano spectra is clarified in terms of the opposite temporal phase shift for each spin, which is the result of counter-rotating spin eigenvectors. An analytical expression of a spin-density Fano parameter is derived to enable quantitative analysis of the Fano-induced spin separation in the spectral domain. As an application, we demonstrate optical spin switching utilizing the extreme spectral sensitivity of the spin-density reversal. Our result paves a path toward the conservative spectral separation of spins without any need of the magneto-optical effect or circular dichroism, achieving excellent purity in spin density superior to conventional approaches based on circular dichroism. PMID:26561372

  19. Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots

    SciTech Connect

    Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen

    2014-04-07

    We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.

  20. Miniature Trace Gas Detector Based on Microfabricated Optical Resonators

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.

    2013-01-01

    While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an

  1. Micro-resonators coupled to atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Kitching, John

    2010-03-01

    Recently there has been a convergence of ideas between the fields of solid-state and atomic physics -- examples range from using atoms for quantum simulation of condensed-matter Hamiltonians to physically coupling atoms with solid-state devices such as micro-resonators. In this talk, we discuss an experimental proposal involving an array of cooled microcantilevers coupled to a sample of ultracold atoms trapped near a microfabricated surface [1]. The cantilevers allow individual lattice site addressing for atomic state control and readout, and potentially may be useful in optical lattice quantum computation schemes. Assuming resonators can be cooled to their vibrational ground state, we describe the implementation of a two-qubit controlled-NOT gate with atomic internal states and the motional states of the resonators, along with a protocol for entangling two or more cantilevers on the atom chip using the trapped atoms as an intermediary. Although similar experiments could be carried out with magnetic microchip traps, the optical confinement scheme we consider may exhibit reduced near-field magnetic noise and decoherence. Prospects for using this system for tests of quantum mechanics at macroscopic scales or quantum information processing will be discussed. [4pt] [1] A. Geraci and J. Kitching, Phys. Rev. A 80, 032317 (2009)

  2. On the fundamental mode of the optical resonator with toroidal mirrors

    SciTech Connect

    Serednyakov, S.S.; Vinokurov, N.A.

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  3. Statistics of chaotic resonances in an optical microcavity

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2016-04-01

    Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems.

  4. Statistics of chaotic resonances in an optical microcavity.

    PubMed

    Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2016-04-01

    Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems. PMID:27176237

  5. Statistics of chaotic resonances in an optical microcavity.

    PubMed

    Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2016-04-01

    Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems.

  6. Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes.

    PubMed

    Nagy, Péter R; Koltai, János; Surján, Péter R; Kürti, Jenő; Szabados, Ágnes

    2016-07-21

    Resonance (vibrational) Raman Optical Activity (ROA) spectra of six chiral single-walled carbon nanotubes (SWCNTs) are studied by theoretical means. Calculations are performed imposing line group symmetry. Polarizability tensors, computed at the π-electron level, are differentiated with respect to DFT normal modes to generate spectral intensities. This computational protocol yields a ROA spectrum in good agreement with the only experiment on SWCNT, available at present. In addition to the conventional periodic electric dipole operator we introduce magnetic dipole and electric quadrupole operators, suitable for conventional k-space calculations. Consequences of the complex nature of the wave function on the scattering cross section are discussed in detail. The resonance phenomenon is accounted for by the short time approximation. Involvement of fundamental vibrations in the region of the intermediate frequency modes is found to be more notable in ROA than in Raman spectra. Calculations indicate exceptionally strong resonance enhancement of SWCNT ROA signals. Resonance ROA profile of the (6,5) tube shows an interesting sign change that may be exploited experimentally for SWCNT identification. PMID:27315548

  7. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    SciTech Connect

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J. )

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.

  8. Phononic Molecules Studied by Raman Scattering

    SciTech Connect

    Lanzillotti-Kimura, N. D.; Fainstein, A.; Jusserand, B.; Lemaitre, A.

    2010-01-04

    An acoustic nanocavity can confine phonons in such a way that they act like electrons in an atom. By combining two of these phononic-atoms, it is possible to form a phononic 'molecule', with acoustic modes that are similar to the electronic states in a hydrogen molecule. We report Raman scattering experiments performed in a monolithic structure formed by a phononic molecule embedded in an optical cavity. The acoustic mode splitting becomes evident through both the amplification and change of selection rules induced by the optical cavity confinement. The results are in perfect agreement with photoelastic model simulations.

  9. Oxide mediated spectral shifting in aluminum resonant optical antennas.

    PubMed

    Schwab, Patrick M; Moosmann, Carola; Dopf, Katja; Eisler, Hans-Jürgen

    2015-10-01

    As a key feature among metals showing good plasmonic behavior, aluminum extends the spectrum of achievable plasmon resonances of optical antennas into the deep ultraviolet. Due to degradation, a native oxide layer gives rise to a metal-core/oxide-shell nanoparticle and influences the spectral resonance peak position. In this work, we examine the role of the underlying processes by applying numerical nanoantenna models that are experimentally not feasible. Finite-difference time-domain simulations are carried out for a large variety of elongated single-arm and two-arm gap nanoantennas. In a detailed analysis, which takes into account the varying surface-to-volume ratio, we show that the overall spectral shift toward longer wavelengths is mainly driven by the higher index surrounding material rather than by the decrease of the initial aluminum volume. In addition, we demonstrate experimentally that this shifting can be minimized by an all-inert fabrication and subsequent proof-of-concept encapsulation.

  10. Phonon number measurements using single photon opto-mechanics

    NASA Astrophysics Data System (ADS)

    Basiri-Esfahani, S.; Akram, U.; Milburn, G. J.

    2012-08-01

    We describe a system composed of two coupled optical cavity modes with a coupling modulated by a bulk mechanical resonator. In addition, one of the cavity modes is irreversibly coupled to a single photon source. Our scheme is an opto-mechanical realization of the Jaynes-Cummings model where the qubit is a dual rail optical qubit while the bosonic degree of freedom is a matter degree of freedom realized as the bulk mechanical excitation. We show the possibility of engineering phonon number states of the mechanical oscillator in such a system by computing the conditional state of the mechanics after successive photon counting measurements.

  11. Optical lightpipe sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Shen, Shuai; Johnston, Kyle S.; Yee, Sinclair S.

    1996-08-01

    In this paper, a novel optical sensor using surface plasmon resonance in a symmetrical planar lightpipe is introduced. The new design utilizes a microscope slide with beveled ends as the sensor substrate. Collimated TM polarized white light is used to interrogate the sensing surface at a single angle. Preliminary experimental results for glycerol solutions from 0.6%wt to 16%wt demonstrate a concentration sensitivity of 3.4 multiplied by 10-4 by weight. The corresponding refractive index sensitivity is estimated as 4 by 10-5.

  12. Self-similarity and optical kinks in resonant nonlinear media

    SciTech Connect

    Ponomarenko, Sergey A.; Haghgoo, Soodeh

    2010-11-15

    We show that self-similar optical waves with a kink structure exist in a wide class of resonant nonlinear media, adequately treated in the two-level approximation. The self-similar structure of the present kinks is reflected in the time evolution of the field profile, atomic dipole moment, and one-atom inversion. We develop an analytical theory of such kinks. We show that the discovered kinks are accelerating nonlinear waves, asymptotically attaining their shape and the speed of light. We also numerically explore the formation and eventual disintegration of our kinks due to energy relaxation processes. Thus, the present kinks can be viewed as intermediate asymptotics of the system.

  13. Measurements of optical Feshbach resonances of 174Yb atoms

    NASA Astrophysics Data System (ADS)

    Kim, Min-Seok; Lee, Jeongwon; Lee, Jae Hoon; Shin, Y.; Mun, Jongchul

    2016-10-01

    We present measurements of the optical Feshbach resonances (OFRs) of 174Yb atoms for the intercombination transition. We measure the photoassociation (PA) spectra of a pure 174Yb Bose-Einstein condensate (BEC) and determine the dependence of OFRs on PA laser intensities and frequencies for four least-bound vibrational levels near the intercombination transition. We confirm that our measurements are consistent with the temporal decay of a BEC subjected to a PA beam in the vicinity of the fourth vibrational level from the dissociation limit.

  14. Characterization of the non-collinear acousto-optical cell based on calomel (Hg2Cl2) crystal and operating within the two-phonon light scattering

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan O.

    2016-03-01

    Performances of any system for data processing based on acousto-optical technique are mainly determined by parameters of the acousto-optical cell (AOC) exploited within the schematic arrangement. Here, basic properties of the AOC, involved into a novel processor for precise optical spectrum analysis dedicated to modern astrophysical applications, are considered. Because potential applications of this processor will be focused on investigations in extra-galactic astronomy as well as studies of extra-solar planets, an advanced regime of the non-collinear two-phonon light scattering has been elaborated for spectrum analysis with significantly improved spectral resolution. Under similar uprated requirements, the AOC, based on that specific regime in the calomel (Hg2Cl2) crystal, had been chosen, and its parameters were analyzed theoretically and verified experimentally. Then, the adequate approach to estimating the frequency/spectral bandwidth and spectral resolution had been developed. The bandwidth was calculated and experimentally realized with the additionally involved tilt angle of light incidence, allowing variations for acoustic frequencies. The resolution was characterized taking into account its doubling peculiar to the nonlinear two-phonon mechanism of light scattering. Proof-of-principle experiments were performed with the calomel AOC of 52 mm optical aperture, providing ~94% efficiency in the transmitted light due to the slow-shear acoustic mode of finite amplitude (the acoustic power density ~150 mW/mm2) with the velocity of 0.347×105 cm/s at the radio-wave acoustic frequency ~71 MHz. As a result, we have obtained the spectral resolution <0.235 Å within the spectral bandwidth <290 Å that looks as the best one can mention at the moment in acousto-optics.

  15. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  16. Coherent nuclear resonant optics for third generation synchrotron radiation sources

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Homma, H.; Kentjana, M.

    1992-06-01

    The insertion-device-based, third-generation, synchrotron radiation sources now under construction in Europe, the USA, and Japan bring new opportunities and challenges in the design and manufacture of x-ray optics. These high brightness sources provide new opportunities to overcome some of the outstanding problems associated with nuclear resonant monochromatization of synchrotron radiation. New methods such as polarizing monochromators, and zone plates provide alternative methods for production of {mu}eV-neV resolution in the hard x-ray regime. The design principles, and characterization, and performance of crystal monochromators and of nuclear coherent scattering optics, including Grazing Incidence Anti Reflection (GIAR) films, multilayers, zone plates, as well as single crystals are discussed.

  17. Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity.

    PubMed

    Yi, Fei; Ren, Mingliang; Reed, Jason C; Zhu, Hai; Hou, Jiechang; Naylor, Carl H; Johnson, A T Charlie; Agarwal, Ritesh; Cubukcu, Ertugrul

    2016-03-01

    Emerging two-dimensional semiconductor materials possess a giant second order nonlinear response due to excitonic effects while the monolayer thickness of such active materials limits their use in practical nonlinear devices. Here, we report 3300 times optomechanical enhancement of second harmonic generation from a MoS2 monolayer in a doubly resonant on-chip optical cavity. We achieve this by engineering the nonlinear light-matter interaction in a microelectro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator. Our versatile optomechanical approach will pave the way for next generation efficient on-chip tunable light sources, sensors, and systems based on molecularly thin materials. PMID:26854706

  18. Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity.

    PubMed

    Yi, Fei; Ren, Mingliang; Reed, Jason C; Zhu, Hai; Hou, Jiechang; Naylor, Carl H; Johnson, A T Charlie; Agarwal, Ritesh; Cubukcu, Ertugrul

    2016-03-01

    Emerging two-dimensional semiconductor materials possess a giant second order nonlinear response due to excitonic effects while the monolayer thickness of such active materials limits their use in practical nonlinear devices. Here, we report 3300 times optomechanical enhancement of second harmonic generation from a MoS2 monolayer in a doubly resonant on-chip optical cavity. We achieve this by engineering the nonlinear light-matter interaction in a microelectro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator. Our versatile optomechanical approach will pave the way for next generation efficient on-chip tunable light sources, sensors, and systems based on molecularly thin materials.

  19. Optomechanics with two-phonon driving

    NASA Astrophysics Data System (ADS)

    Levitan, B. A.; Metelmann, A.; Clerk, A. A.

    2016-09-01

    We consider the physics of an optomechanical cavity subject to coherent two-phonon driving, i.e. degenerate parametric amplification of the mechanical mode. We show that in such a system, the cavity mode can effectively ‘inherit’ parametric driving from the mechanics, yielding phase-sensitive amplification and squeezing of optical signals reflected from the cavity. We also demonstrate how such a system can be used to perform single-quadrature detection of a near-resonant narrow-band force applied to the mechanics with extremely low added noise from the optics. The system also exhibits strong differences from a conventional degenerate parametric amplifier: in particular, the cavity spectral function can become negative, indicating a negative effective photon temperature.

  20. Optical phonons and polariton dispersions of congruent LiNbO3 studied by far-infrared spectroscopic ellipsometry and Raman scattering

    NASA Astrophysics Data System (ADS)

    Kojima, Seiji; Kanehara, Kazuki; Hoshina, Takuya; Tsurumi, Takaaki

    2016-10-01

    IR active optical modes and phonon-polaritons with E(x) and A1(z) symmetries were studied in a ferroelectric congruent lithium niobate crystal. The real and imaginary parts of a dielectric constant along the a- and c-axes were accurately determined by far-infrared spectroscopic ellipsometry (FIRSP) from 40 to 700 cm-1. For the nine transverse optical (TO) modes with E(x) symmetry, it was difficult to observe the 5th E(TO5) mode at 361 cm-1 and the 9th E(TO9) mode at 665 cm-1 by Raman scattering owing to the very low Raman intensity, while these modes were clearly observed by FIRSP. In contrast, the 6th E(TO6) mode at 371 cm-1 was not observed by FIRSP owing to the very weak absorption, while it was clearly observed by Raman scattering. All the four TO modes with A1(z) symmetry were clearly observed independently by FIRSP and Raman scattering. The dispersion relations of phonon-polaritons including the damping of polaritons were determined using the real and imaginary parts of a polariton wavevector calculated from complex dielectric constants. The polariton dispersion of the lowest A1(z) mode at 254 cm-1 is in agreement with the previous forward Raman scattering experiment; however, any anticrossing predicted by the previous impulsive Raman scattering experiment was not observed.

  1. Multiplex fiber-optic biosensor using multiple particle plasmon resonances

    NASA Astrophysics Data System (ADS)

    Lin, Hsing-Ying; Huang, Chen-Han; Liu, Yu-Chia; Huang, Kuo-Wei; Chau, Lai-Kwan

    2012-02-01

    Multiplex fiber-optic biosensor implemented by integrating multiple particle plasmon resonances (PPRs), molecular bioassays, and microfluidics is successfully demonstrated. The multiple PPRs are achieved by chemical immobilization of silver nanoparticles (AgNPs) and gold nanorods (AuNRs) separately on two unclad portions of an optical fiber. The difference in morphology and nature of material of AgNPs and AuNRs are exploited to yield multiple plasmonic absorptions at 405 and 780 nm in the absorption spectrum measured from optical fiber by white light source illumination. Through the coaxial excitation of light-emitting diodes (LEDs) with 405 and 800 nm wavelengths, the distinct PPRs are advantageous for real-time and simultaneous detection of multiple analyte-probe pairs as AgNPs and AuNRs are separately functionalized with specific bio-probes. Here, the multi-window fiber-optic particle plasmon resonance (FO-PPR) biosensor has been shown to be capable of simultaneously detecting anti-dinitrophenyl antibody (anti-DNP, MW = 220 kDa) via N-(2,4-dinitrophenyl)-6-aminohexanoic acid (DNP, MW = 297.27 Da) functionalized AgNPs and streptavidin (MW = 75 kDa) via N-(3-aminopropyl)biotinamide trifluoroacetate (biotin, MW = 414.44 Da) functionalized AuNRs. The multiplex sensing chip possesses several advantages, including rapid and parallel detection of multiple analytes on a single chip, minimized sample to sample variation, reduced amount of sensor chip, and reduced analyte volume, hence it is ideally suitable for high-throughput multiplex biochemical sensing applications.

  2. Creating a zero-order resonator using an optical surface transformation

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Ge, Xiaochen; He, Sailing

    2016-02-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space).

  3. Creating a zero-order resonator using an optical surface transformation.

    PubMed

    Sun, Fei; Ge, Xiaochen; He, Sailing

    2016-01-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359

  4. Creating a zero-order resonator using an optical surface transformation

    PubMed Central

    Sun, Fei; Ge, Xiaochen; He, Sailing

    2016-01-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359

  5. Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave

    NASA Astrophysics Data System (ADS)

    Xiong-Hua, Zheng; Bao-Fu, Zhang; Zhong-Xing, Jiao; Biao, Wang

    2016-01-01

    We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ˜ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61308056, 11204044, 11232015, and 11072271), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120171110005 and 20130171130003), the Fundamental Research Funds for the Central Universities of China (Grant No. 14lgpy07), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201203).

  6. Temperature Dependence of Phonons in Pyrolitic Graphite

    DOE R&D Accomplishments Database

    Brockhouse, B. N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.

  7. Phonon manipulation with phononic crystals.

    SciTech Connect

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power

  8. Magnetic force and optical force sensing with ultrathin silicon resonator

    NASA Astrophysics Data System (ADS)

    Ono, Takahito; Esashi, Masayoshi

    2003-12-01

    In this article, we demonstrated magnetic and optical force measurements using an ultrathin silicon cantilever down to 20 nm or 50 nm in thickness. The cantilever was heated in an ultrahigh vacuum for enhancing the Q factor and a magnetic particle was mounted at the end of the cantilever using a manipulator. The vibration was measured by a laser Doppler vibrometer and its signal was fed to an opposed metal electrode for electrostatic self-oscillation. An application of a magnetic field with a coil exerted a force to the magnetic material, which results in the change of the resonant frequency. However, the change in the mechanical properties of the cantilever, due to mechanical instability and temperature variation, drifts the resonance peak. Force balancing between the magnetic force and an electrostatic force in the opposite phase can minimize the vibration amplitude. From the electrostatic force at the minimum point, the exerted force can be estimated. A magnetic moment of 4×10-20 J/T was measured by this method. The same technique was also applied to measure the optical force of ˜10-17 N, impinging on the cantilever by a laser diode.

  9. One-phonon 2+1,ms mixed-symmetry state of 148Sm observed in nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Pietralla, N.; Fransen, C.; Garrel, H. Von; Kneissl, U.; Kohstall, C.; Linnemann, A.; Pitz, H. H.; Rainovski, G.; Richter, A.; Scheck, M.; Stedile, F.; Brentano, P. Von; Neumann-Cosel, P. Von; Werner, V.

    2005-04-01

    To search for the 2+1,ms state of 148Sm, we studied the 148Sm(γ,γ') photon scattering reaction at the Stuttgart Dynamitron accelerator using bremsstrahlung with an endpoint energy of 3.2 MeV. Nuclear resonance fluorescence from eleven excited states, including three 2+ states, between 1.4 and 3.1 MeV has been observed. The data allow the identification of the 2+5 state at 2146 keV as the 2+1,ms state of 148Sm.

  10. Origin invariance in vibrational resonance Raman optical activity

    SciTech Connect

    Vidal, Luciano N. Cappelli, Chiara; Egidi, Franco; Barone, Vincenzo

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  11. Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor Quantum Dots to Optical Cavities.

    PubMed

    Jarlov, C; Wodey, É; Lyasota, A; Calic, M; Gallo, P; Dwir, B; Rudra, A; Kapon, E

    2016-08-12

    Using site-controlled semiconductor quantum dots (QDs) free of multiexcitonic continuum states, integrated with photonic crystal membrane cavities, we clarify the effects of pure dephasing and phonon scattering on exciton-cavity coupling in the weak-coupling regime. In particular, the observed QD-cavity copolarization and cavity mode feeding versus QD-cavity detuning are explained quantitatively by a model of a two-level system embedded in a solid-state environment. PMID:27563983

  12. Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor Quantum Dots to Optical Cavities

    NASA Astrophysics Data System (ADS)

    Jarlov, C.; Wodey, É.; Lyasota, A.; Calic, M.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E.

    2016-08-01

    Using site-controlled semiconductor quantum dots (QDs) free of multiexcitonic continuum states, integrated with photonic crystal membrane cavities, we clarify the effects of pure dephasing and phonon scattering on exciton-cavity coupling in the weak-coupling regime. In particular, the observed QD-cavity copolarization and cavity mode feeding versus QD-cavity detuning are explained quantitatively by a model of a two-level system embedded in a solid-state environment.

  13. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.

    PubMed

    Wu, Jushuai; Guo, Xin; Zhang, A Ping; Tam, Hwa-Yaw

    2015-11-16

    A novel microfabrication method for rapid printing of polymer optical whispering-gallery mode (WGM) resonators is presented. A 3D micro-printing technology based on high-speed optical spatial modulator (SLM) and high-power UV light source is developed to fabricate suspended-disk WGM resonator array using SU-8 photoresist. The optical spectral responses of the fabricated polymer WGM resonators were measured with a biconically tapered optical fiber. Experimental results reveal that the demonstrated method is very flexible and time-saving for rapid fabrication of complex polymer WGM resonators. PMID:26698452

  14. Theoretical Analysis of the Optical Propagation Characteristics in a Fiber-Optic Surface Plasmon Resonance Sensor

    PubMed Central

    Liu, Linlin; Yang, Jun; Yang, Zhong; Wan, Xiaoping; Hu, Ning; Zheng, Xiaolin

    2013-01-01

    Surface plasmon resonance (SPR) sensor is widely used for its high precision and real-time analysis. Fiber-optic SPR sensor is easy for miniaturization, so it is commonly used in the development of portable detection equipment. It can also be used for remote, real-time, and online detection. In this study, a wavelength modulation fiber-optic SPR sensor is designed, and theoretical analysis of optical propagation in the optical fiber is also done. Compared with existing methods, both the transmission of a skew ray and the influence of the chromatic dispersion are discussed. The resonance wavelength is calculated at two different cases, in which the chromatic dispersion in the fiber core is considered. According to the simulation results, a novel multi-channel fiber-optic SPR sensor is likewise designed to avoid defaults aroused by the complicated computation of the skew ray as well as the chromatic dispersion. Avoiding the impact of skew ray can do much to improve the precision of this kind of sensor. PMID:23748170

  15. Optical resonators; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-18, 1990

    SciTech Connect

    Holmes, D.A.

    1990-01-01

    New developments in laser resonators are reviewed, along with the oscillator performance for electric lasers and an optical history of the high-energy gas dynamic laser. In the area of resonator physics, the properties of unstable resonators with a nonreflecting central zone are discussed, as well as astigmatism effects in a CO(2) unstable ring resonator, the mode properties and characteristics of negative branch unstable ring resonators, and the geometric modes of an unstable ring resonator with 90-deg beam rotation. Laser-device coupling techniques and coupled unstable resonators are reviewed, and device-coupling research is covered. Emphasis is placed on such novel resonators as self-imaging laser resonators using the Talbot effect and Herriott-cell resonators for large gas discharge lasers. Annular resonators and resonators for FELs and other lasers are discussed, and modeling research is considered.

  16. White-Light Whispering Gallery Mode Optical Resonator System and Method

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  17. Contactless ultrasound detection using an optical ring resonator

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Hyun; Luo, Wei; Zhang, Cheng; Guo, L. Jay; Fan, Xudong

    2016-03-01

    We develop an air-couple ultrasound detector based on an optical fluidic ring resonator (OFRR) suspended on a Ushaped holder. The OFRR is a glass capillary with an outer diameter of approximately 130 μm and a wall thickness in the order of 1~10 μm. The circular cross section of the OFRR supports the high-Q whispering gallery mode (WGM) that circulates along the circumference. Incoming ultrasound pressure results in a small refractive index change in the glass wall and geometrical change in the OFRR shape, both of which in turn lead to a spectral shift in the WGM that can be sensitively detected owing to WGM with high optical Q-factors (>107). Due to the suspension nature of the OFRR, the ultrasound detection can be carried out in air, which is advantageous in comparison with other ultrasound detections that require acoustic coupling media such water, gel or solid. The sensitivity can be tuned and optimized by changing the diameter and wall thickness. Besides the optical detection, we also demonstrate optomechanical ultrasound mixing, in which optomechanical vibration is first excited within the OFRR that subsequently modulates the ultrasound wave. Our work will lead to the development of a new type of air-coupled ultrasound detector that can be used for photo-acoustic imaging, non-invasive ultrasound detection of external objects, and ultrasound detection/characterization of internal objects (such as particles and liquids) flowing inside the capillary.

  18. Double-resonance optical pumping of Rb atoms

    SciTech Connect

    Moon, Han Seb; Lee, Lim; Kim, Jung Bog

    2007-09-15

    We have studied double-resonance optical pumping (DROP) as a function of the polarization combination of lasers, laser power, and the alignment of lasers in the 5S{sub 1/2}-5P{sub 3/2}-D{sub 3/2,5/2} ladder-type system of {sup 87}Rb atoms. By considering the two-photon transition probability and optical pumping effects, the changes in the relative magnitude of the DROP hyperfine structures as a function of the polarization combination of the lasers were analyzed theoretically. The theoretical results are in good agreement with the experimental results. Owing to the low optical pumping effect in the cycling transition, we could see the dependence of the spectrum on the laser power in the 5P{sub 3/2}-4D{sub 5/2} transition distinctly. Also, the spectral linewidths as a function of the alignment between the lasers were measured 12.2 MHz for copropagating beams and 6.9 MHz for counterpropagating beams.

  19. Surface plasmon resonance microscopy: Achieving a quantitative optical response

    NASA Astrophysics Data System (ADS)

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-09-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based figuration. We carry out SPR imaging on a microscope by launching light into a sample and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy.

  20. Studying an advanced regime of the non-collinear two-phonon light scattering for applications to the optical spectrum analysis

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan O.

    2016-03-01

    Principally new features of the non-collinear two-phonon light scattering governed by elastic waves of finite amplitude in birefringent bulk crystals are detected and observed. The main goals of our investigations are to reveal novel important details inherent in the nonlinearity of this effect and to study properties of similar parametric nonlinearity both theoretically and experimentally in wide-aperture crystals with moderate linear acoustic attenuation. An additional degree of freedom represented by the dispersive birefringence factor, which can be distinguished within this nonlinear phenomenon, is characterized. This physical degree of freedom gives us a one-of-a-kind opportunity to apply the strongly non-linear two-phonon light scattering in practice for the first time. The local unit-level maxima in the distribution of light scattered into the second order appear periodically as the acoustic power density grows. It makes possible to identify a few transfer function profiles peculiar to these maxima in the isolated planes of angular-frequency mismatches. These maxima give us an opportunity to choose the desirable profile for the transfer function at the fixed angle of incidence for the incoming light beam with a wide spectrum .The needed theoretical analysis is developed and proof-of-principle experiments, performed with a specially designed wide-aperture acousto-optical cell made of the calomel (α-Hg2Cl2) crystal, are presented. The obtained spectral resolution ~0.235 Å at 405 nm (i.e. the resolving power ~17,200) can be compared with the most advanced acousto-optical spectrometers for space/airborne operations. Evidently, our results with the calomel-based acousto-optical cell look like the best we can mention at the moment.

  1. Optical Rotary Resonance in Lanthanum Fluoride: Praseodymium Ion.

    NASA Astrophysics Data System (ADS)

    Clair, Robert Leslie

    The study of a two level system interacting with two coherent radiation fields at widely varying frequencies, begun in NMR and recently extended into the infrared by Prior, Kash, and Hahn, is here extended into the visible region. An optical transition is made to interact simultaneously with a laser field and a radiofrequency standing wave electric field. The laser field interacts with the system through the normal dipole moment of the transition, while the RF field interacts with the system by modulating the energy level spacing. The effects of the second field correspond to transitions in a reference frame which is rotating at the laser frequency. The problem is of interest as a precursor to a double resonance experiment in which an optical transition interacts with a second field that is an internal field from a neighboring nucleus field. The effect is treated theoretically by the addition of an extra term to the optical Bloch equations. Methods of finding a solution to these equations when the second field is too strong to be considered a perturbation are examined. No generally useful solution is found, but a method which predicts the frequencies of the resonances is described. The predictions are verified by numerical integration of the equations. An experimental study of this phenomenon was carried out using a frequency stabilized dye laser to excite the ('3)H(,4) (--->) ('1)D(,2) transition of Pr('+3) in LaF(,3). The Brewer-Shoemaker Stark switching technique is used to select a narrow frequency packet out of an inhomogeneously broadened line. Single and multiple photon transitions in the rotating frame are observed. An additional resonance at the two level system transition frequency, not seen in earlier low RF power studies, is observed. Oscillatory free induction decay (wiggles in the signal after the initial fall-off of a free induction decay) is observed and measured as a function of pulse area. No closed form theory which includes damping is obtainable

  2. Optical and electrical properties and phonon drag effect in low temperature TEP measurements of AgSbSe2 thin films

    NASA Astrophysics Data System (ADS)

    Namitha Asokan, T.; Urmila, K. S.; Jacob, Rajani; Reena Philip, Rachel; Okram, G. S.; Ganesan, V.; Pradeep, B.

    2014-05-01

    Polycrystalline thin films of silver antimony selenide have been deposited using a reactive evaporation technique onto an ultrasonically cleaned glass substrate at a vacuum of 10-5 torr. The preparative parameters, like substrate temperature and incident fluxes, have been properly controlled in order to get stoichiometric, good quality and reproducible thin film samples. The samples are characterized by XRD, SEM, AFM and a UV—vis—NIR spectrophotometer. The prepared sample is found to be polycrystalline in nature. From the XRD pattern, the average particle size and lattice constant are calculated. The dislocation density, strain and number of crystallites per unit area are evaluated using the average particle size. The dependence of the electrical conductivity on the temperature has also been studied and the prepared AgSbSe2 samples are semiconducting in nature. The AgSbSe2 thin films exhibited an indirect allowed optical transition with a band gap of 0.64 eV. The compound exhibits promising thermoelectric properties, a large Seebeck coefficient of 30 mV/K at 48 K due to strong phonon electron interaction. It shows a strong temperature dependence on thermoelectric properties, including the inversion of a dominant carrier type from p to n over a low temperature range 9-300 K, which is explained on the basis of a phonon drag effect.

  3. Optomechanically induced stochastic resonance and chaos transfer between optical fields

    NASA Astrophysics Data System (ADS)

    Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan

    2016-06-01

    Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.

  4. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  5. Resonant Doppler imaging with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Leitgeb, Rainer A.; Szklumowska, Anna; Pircher, Michael; Gotzinger, Erich; Fercher, Adolf F.

    2005-04-01

    Fourier Domain Optical Coherene Tomography (FD OCT) is a high speed imaging modality with increased sensitivity as compared to standard time domain (TD) OCT. The higher sensitivity is especially important, if strongly scattering tissue such as blood is investigated. Recently it could be shown that retinal blood flow can be assessed in-vivo by high speed FD OCT. However the detection bandwidth of color Doppler (CD) FDOCT is strongly limited due to blurring of the detected interference fringes during exposure. This leads to a loss of sensitivity for detection of fast changes in tissue. Using a moving mirror as a reference one can effectively increase the detection bandwidth for CD FDOCT and perform perfusion sectioning. The modality is called resonant CD FDOCT imaging. The principle of the method is presented and experimentally verified.

  6. Plasmonic Resonant Absorption in Mid-Infrared in Graphene Nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Esfahani, Nima N.; Walker, Dennis E., Jr.; Hendrickson, Joshua R.; Cleary, Justin; Mou, Shin; Air Force Research Laboratory, Materials; Manufacturing Directorate, Wright-Patterson AFB, OH, USA Team; Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH, USA Team

    2014-03-01

    We experimentally demonstrated polarization-sensitive, tunable plasmonic resonant absorption in the mid-infrared range of 5-14 um by utilizing an array of graphene nanoribbon resonators. By tuning resonator width and charge density, we probed graphene plasmons with λp <= λ /100 and plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra enabled us to map the wavevector-frequency dispersion for graphene plasmons at mid-IR energies and revealed a modified plasmon dispersion as well as plasmon damping due to intrinsic optical phonons of graphene and graphene plasmon interaction with the surface polar phonons in SiO2 substrates. Additionally, we studied spectra further by introducing intrinsic defect phonons and doping by direct electron beam irradiation of graphene nanoresonators

  7. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  8. Design and simulation of microring resonators for time-domain optical add-drop multiplexing

    NASA Astrophysics Data System (ADS)

    Hong, Jianxun; Li, Chengjun; Zhou, Jianxin; Chen, Shuiping; Zhou, Limin; Chen, Wei

    2008-11-01

    A time-domain optical add-drop multiplexing (OADM) technology using microring resonators is reported. Design and simulation are presented. The microring resonator is predicted to be fabricated by using Pockler electro-optic materials. The microring resonators possess a multistage-cascaded structure to satisfy the requirement to generate switching windows. Cascaded coupled microring resonator can expand the single resonant point into a box-like resonant region and reduce the wings of resonant curve. While multistage resonators are used and a certain shift of the resonant region is arranged between the stages, the total resonant region can be expanded further. We achieve the shift of the resonant region between the two stages by selecting different ring radii. The resulted microring resonators possess a box-like characteristic with shape wings. The OADM includes two microring resonators (MMRs) driven by sine wave voltages, one is used to accomplish the add function the other is used to accomplish the drop function. The only operation differences between the two MMRs are the bias voltage and the phase of the driving signal. The OADM only requires electrical control signal and simple structure instead of high-quality optical control pulse and interferometer structure. FDTD simulation results show that the resonators can stratify the requirements to generate complementary switching windows for OADM operation.

  9. Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering

    NASA Astrophysics Data System (ADS)

    Qiu, Tiequn; Wu, Jianfeng; Strandjord, Lee K.; Sanders, Glen A.

    2014-05-01

    A bench-top resonator fiber optic gyroscope (RFOG) was assembled and tested, showing encouraging progress toward navigation grade performance. The gyro employed a fiber length of 19 meters of polarizing fiber for the sensing coil which was wound on an 11.5 cm diameter PZT cylinder. A bias stability of approximately 0.1 deg/hr was observed over a 2 hour timeframe, which is the best bias stability reported to date in an RFOG to our knowledge. Special care was taken to minimize laser phase noise, including stabilization to an optical cavity which was also used for optical filtering, giving angle random walk (ARW) values in the range of 0.008 deg/rt-hr. The ARW performance and bias stability are within 2x and 10x, respectively, of many civil inertial navigation grade requirements.

  10. All-optical control of microfiber resonator by graphene's photothermal effect

    NASA Astrophysics Data System (ADS)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Xu, Yiping; Zhang, Fanlu; Xi, Teli; Ren, Liyong; Zhao, Jianlin

    2016-04-01

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%-90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  11. Second Harmonic Generation of Nanoscale Phonon Wave Packets

    NASA Astrophysics Data System (ADS)

    Bojahr, A.; Gohlke, M.; Leitenberger, W.; Pudell, J.; Reinhardt, M.; von Reppert, A.; Roessle, M.; Sander, M.; Gaal, P.; Bargheer, M.

    2015-11-01

    Phonons are often regarded as delocalized quasiparticles with certain energy and momentum. The anharmonic interaction of phonons determines macroscopic properties of the solid, such as thermal expansion or thermal conductivity, and a detailed understanding becomes increasingly important for functional nanostructures. Although phonon-phonon scattering processes depicted in simple wave-vector diagrams are the basis of theories describing these macroscopic phenomena, experiments directly accessing these coupling channels are scarce. We synthesize monochromatic acoustic phonon wave packets with only a few cycles to introduce nonlinear phononics as the acoustic counterpart to nonlinear optics. Control of the wave vector, bandwidth, and consequently spatial extent of the phonon wave packets allows us to observe nonlinear phonon interaction, in particular, second harmonic generation, in real time by wave-vector-sensitive Brillouin scattering with x-rays and optical photons.

  12. Nonequilibrium phonon effects in midinfrared quantum cascade lasers

    SciTech Connect

    Shi, Y. B. Knezevic, I.

    2014-09-28

    We investigate the effects of nonequilibrium phonon dynamics on the operation of a GaAs-based midinfrared quantum cascade laser over a range of temperatures (77–300 K) via a coupled ensemble Monte Carlo simulation of electron and optical-phonon systems. Nonequilibrium phonon effects are shown to be important below 200 K. At low temperatures, nonequilibrium phonons enhance injection selectivity and efficiency by drastically increasing the rate of interstage electron scattering from the lowest injector state to the next-stage upper lasing level via optical-phonon absorption. As a result, the current density and modal gain at a given field are higher and the threshold current density lower and considerably closer to experiment than results obtained with thermal phonons. By amplifying phonon absorption, nonequilibrium phonons also hinder electron energy relaxation and lead to elevated electronic temperatures.

  13. Influence of the sensitivity of an optical resonator with a surface layer by its properties

    NASA Astrophysics Data System (ADS)

    Schweiger, Gustav; Weigel, Thomas; Ostendorf, Andreas

    2016-03-01

    In the last years, optical resonators have emerged as a promising tool for highly sensitive measurements. Especially for label-free measurements of biological substances, the resonators have to be functionalized by additional surface layers. Since the properties of the resonator, like the refractive index of the core and the layer as well as the layer thickness or the core radius can deeply in fluence the sensitivity. For this reason, a geometrical optics based theory is used to investigate the dependence of the resonance wavelength on the resonator properties.

  14. [Optical surface plasmon resonance biosensors in molecular fishing].

    PubMed

    Ivanov, A S; Medvedev, A E

    2015-01-01

    An optical biosensor employing surface plasmon resonance is a highly efficient instrument applicable for direct real time registration of molecular interactions without additional use of any labels or coupled processes. As an independent approach it is especially effective in analysis of various ligand receptor interactions. SPR-biosensors are used for validation of studies on intermolecular interactions in complex biological systems (affinity profiling of various groups of proteins, etc.). Recently, potential application of the SPR-biosensor for molecular fishing (direct affinity binding of target molecules from complex biological mixtures on the optical biosensor surface followed by their elution for identification by LC-MS/MS) has been demonstrated. Using SPR-biosensors in such studies it is possible to solve the following tasks: (a) SPR-based selection of immobilization conditions required for the most effective affinity separation of a particular biological sample; (b) SPR-based molecular fishing for subsequent protein identification by mass spectrometry; (c) SPR-based validation of the interaction of identified proteins with immobilized ligand. This review considers practical application of the SPR technology in the context of recent studies performed in the Institute of Biomedical Chemistry on molecular fishing of real biological objects.

  15. [Optical surface plasmon resonance biosensors in molecular fishing].

    PubMed

    Ivanov, A S; Medvedev, A E

    2015-01-01

    An optical biosensor employing surface plasmon resonance is a highly efficient instrument applicable for direct real time registration of molecular interactions without additional use of any labels or coupled processes. As an independent approach it is especially effective in analysis of various ligand receptor interactions. SPR-biosensors are used for validation of studies on intermolecular interactions in complex biological systems (affinity profiling of various groups of proteins, etc.). Recently, potential application of the SPR-biosensor for molecular fishing (direct affinity binding of target molecules from complex biological mixtures on the optical biosensor surface followed by their elution for identification by LC-MS/MS) has been demonstrated. Using SPR-biosensors in such studies it is possible to solve the following tasks: (a) SPR-based selection of immobilization conditions required for the most effective affinity separation of a particular biological sample; (b) SPR-based molecular fishing for subsequent protein identification by mass spectrometry; (c) SPR-based validation of the interaction of identified proteins with immobilized ligand. This review considers practical application of the SPR technology in the context of recent studies performed in the Institute of Biomedical Chemistry on molecular fishing of real biological objects. PMID:25978389

  16. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  17. Investigation of the Phonon Frequency Shifts in ZnO Quantum Dots

    NASA Astrophysics Data System (ADS)

    Alim, Khan A.

    2005-03-01

    Nanostructures made of ZnO have recently attracted attention due to their proposed applications in low-voltage and short-wavelength electro-optical devices. However, the origin of the observed phonon frequency shifts in such nanostructures is not always understood. We carried out both resonant and non-resonant Raman measurements for 20 nm-diameter ZnO quantum dots (QDs) and bulk ZnO reference samples [1]. A comparison with a recently developed theory [2], allowed us to clarify the origin of the phonon frequency shifts in ZnO QDs. It was found that the phonon confinement results in phonon frequency shifts of only few cm-1. At the same time, the UV laser heating of the QD ensemble was found to induce a large red shift of phonon frequencies for up to 14 cm-1. The authors acknowledge the support of MARCO and its Functional Engineered Nano Architectonics (FENA) Focus Center. [1] K.A. Alim, V.A. Fonoberov, and A.A. Balandin, Appl. Phys. Lett., in review (2004). [2] V.A. Fonoberov and A.A. Balandin, Phys. Stat. Solidi C 1, 2650 (2004); cond-mat/0405681; cond-mat/0411742.

  18. Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities

    NASA Astrophysics Data System (ADS)

    Haigh, J. A.; Nunnenkamp, A.; Ramsay, A. J.; Ferguson, A. J.

    2016-09-01

    An enhancement in Brillouin light scattering of optical photons with magnons is demonstrated in magneto-optical whispering gallery mode resonators tuned to a triple-resonance point. This occurs when both the input and output optical modes are resonant with those of the whispering gallery resonator, with a separation given by the ferromagnetic resonance frequency. The identification and excitation of specific optical modes allows us to gain a clear understanding of the mode-matching conditions. A selection rule due to wave vector matching leads to an intrinsic single-sideband excitation. Strong suppression of one sideband is essential for one-to-one frequency mapping in coherent optical-to-microwave conversion.

  19. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force. PMID:23988930

  20. Subwavelength waveguiding of surface phonons in pillars-based phononic crystal

    NASA Astrophysics Data System (ADS)

    Addouche, Mahmoud; Al-Lethawe, Mohammed A.; Elayouch, Aliyasin; Khelif, Abdelkrim

    2014-12-01

    In this study, we theoretically analyze the guiding of surface phonons through locally resonant defects in pillars-based phononic crystal. Using finite element method, we simulate the propagation of surface phonons through a periodic array of cylindrical pillars deposited on a semi-infinite substrate. This structure displays several band gaps, some of which are due to local resonances of the pillar. By introducing pillar defects inside the phononic structure, we show the possibility to perform a waveguiding of surface phonons based on two mechanisms that spatially confine the elastic energy in very small waveguide apertures. A careful choice of the height of the defect pillars, allows to shift the frequency position of the defect modes inside or outside the locally resonant band gaps and create two subwavelenght waveguiding mechanisms. The first is a classical mechanism that corresponds to the presence of the defect modes inside the locally resonant band gap. The seconde is due to the hybridation between the phonon resonances of defect modes and the surface phonons of the semi-infinite homogenous medium. We discuss the nature and the difference between both waveguiding phenomena.

  1. Developments of Optical Resonators and Optical Recirculators for Compton X/γ Ray Machines

    NASA Astrophysics Data System (ADS)

    Martens, A.; , Mightylaser, Thomx Collaboration; Eurogammas Association

    2015-10-01

    Optical resonators and optical recirculators are key elements of Compton X/γ ray machines. With regard to their use in laser physics or in time-frequency metrology, these devices have to obey severe constraints when implemented in the vaccum of an electron accelerator. Our group has developed both types of devices. In this proceedings an original recirculator design, that was developed within the European proposal to the ELI-NP γ ray source call for tender, is described. This is an aberration free device which allows reciculating 32 times a short and high intensity laser pulse. It also allows synchronizing each of the 32 passes with the electron RF cavities within 100 fs. The second topic of these proceedings is a description of our R & D on optical resonators dedicated to laser-electron interactions. We have locked two different picosecond laser oscillators to the highest cavity finesse F=30000 ever reached in pulsed regime. We also designed and build a new kind of non-planar cavity, tetrahedron shape, providing circularly polarized eigen modes. This cavity was installed in the ATF accelerator of KEK and successfully used to produce a high gamma ray flux. Thanks to an original fibre amplifier, we succeed in stacking 100 kW of average power inside the cavity.

  2. Studies of Phonon Anharmonicity in Solids

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject. Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods. We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts

  3. Optically-Switched Resonant Tunneling Diodes for Space-Based Optical Communication Applications

    NASA Technical Reports Server (NTRS)

    Moise, T. S.; Kao, Y. -C.; Jovanovic, D.; Sotirelis, P.

    1995-01-01

    We are developing a new type of digital photo-receiver that has the potential to perform high speed optical-to-electronic conversion with a factor of 10 reduction in component count and power dissipation. In this paper, we describe the room-temperature photo-induced switching of this InP-based device which consists of an InGaAs/AlAs resonant tunneling diode integrated with an InGaAs absorber layer. When illuminated at an irradiance of greater than 5 Wcm(exp -2) using 1.3 micromillimeter radiation, the resonant tunneling diode switches from a high-conductance to a low-conductance electrical state and exhibits a voltage swing of up to 800 mV.

  4. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  5. Intense monochromatic terahertz electromagnetic waves from coherent GaAs-like longitudinal optical phonons in (11n)-oriented GaAs/In0.1Al0.9As strained multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideo; Asai, Souta; Tsuruta, Syuichi; Nakayama, Masaaki

    2012-06-01

    We demonstrate that, in (11n)-oriented GaAs/In0.1Al0.9As strained multiple quantum wells, the terahertz electromagnetic wave from the coherent GaAs-like longitudinal optical (LO) phonon is enhanced by a piezoelectric field originating from a tensile strain in the GaAs layer. The presence of the tensile strain is confirmed using Raman scattering spectroscopy. The Fourier power spectrum of the terahertz waveform shows that the intensity of the terahertz band of the coherent GaAs-like LO phonon increases as the index n approaches 1. The amplitude of the GaAs-like LO phonon is proportional to the piezoelectric field in the strained GaAs layer.

  6. Analysis of resonant optical gyroscopes with two input/output waveguides.

    PubMed

    Hah, Dooyoung; Zhang, Dan

    2010-08-16

    Rotation sensitivity of optical gyroscopes with ring resonators and two input/output waveguides in a coplanar add-drop filter configuration is studied. First, the gyroscope with a single resonator is analyzed, which is shown to have slightly higher sensitivity than the one with one waveguide. Next, the sensor with two identical resonators coupled through waveguides is investigated, which turns out to have half the sensitivity of the one with a single resonator when compared for the same footprints. The last point is valid when the resonators have the same coupling coefficients to the waveguides in the sensor with two resonators.

  7. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    NASA Astrophysics Data System (ADS)

    Girón-Sedas, J. A.; Mejía-Salazar, J. R.; Moncada-Villa, E.; Porras-Montenegro, N.

    2016-07-01

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  8. Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback

    SciTech Connect

    Hansom, Jack; Schulte, Carsten H. H.; Matthiesen, Clemens; Stanley, Megan J.; Atatüre, Mete

    2014-10-27

    We report on the feedback stabilization of the zero-phonon emission frequency of a single InAs quantum dot. The spectral separation of the phonon-assisted component of the resonance fluorescence provides a probe of the detuning between the zero-phonon transition and the resonant driving laser. Using this probe in combination with active feedback, we stabilize the zero-phonon transition frequency against environmental fluctuations. This protocol reduces the zero-phonon fluorescence intensity noise by a factor of 22 by correcting for environmental noise with a bandwidth of 191 Hz, limited by the experimental collection efficiency. The associated sub-Hz fluctuations in the zero-phonon central frequency are reduced by a factor of 7. This technique provides a means of stabilizing the quantum dot emission frequency without requiring access to the zero-phonon emission.

  9. Phononic crystals and elastodynamics: Some relevant points

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.

    2014-12-15

    In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.

  10. Phononic crystals and elastodynamics: Some relevant points

    NASA Astrophysics Data System (ADS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.

    2014-12-01

    In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.

  11. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing

    PubMed Central

    Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.

    2013-01-01

    Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571

  12. Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars.

    PubMed

    Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro

    2014-07-01

    We experimentally demonstrated Fano resonance in metamaterials composed of asymmetric double bars (ADBs) in the optical region. ADB metamaterials were fabricated by a lift-off method, and the optical spectra were measured. Around a wavelength of 1100 nm, measured optical spectra clearly showed sharp Fano resonance due to weak asymmetry of the ADB structures. The highest-quality factor (Q-factor) of the Fano resonance was 7.34. Calculated spectra showed the same tendency as the experimental spectra. Moreover, in a Fano resonant condition, out of phase of induced current flowing along each bar was revealed by electromagnetic field calculations. These antiphase currents decreased radiative loss of the Fano mode, resulting in a high Q-factor of the Fano resonance in ADB metamaterials. As the degree of asymmetry became small, the Q-factor decreased, and the Fano resonance disappeared because the effect of Joule loss became significant. PMID:24978806

  13. Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars.

    PubMed

    Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro

    2014-07-01

    We experimentally demonstrated Fano resonance in metamaterials composed of asymmetric double bars (ADBs) in the optical region. ADB metamaterials were fabricated by a lift-off method, and the optical spectra were measured. Around a wavelength of 1100 nm, measured optical spectra clearly showed sharp Fano resonance due to weak asymmetry of the ADB structures. The highest-quality factor (Q-factor) of the Fano resonance was 7.34. Calculated spectra showed the same tendency as the experimental spectra. Moreover, in a Fano resonant condition, out of phase of induced current flowing along each bar was revealed by electromagnetic field calculations. These antiphase currents decreased radiative loss of the Fano mode, resulting in a high Q-factor of the Fano resonance in ADB metamaterials. As the degree of asymmetry became small, the Q-factor decreased, and the Fano resonance disappeared because the effect of Joule loss became significant.

  14. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid.

    PubMed

    Rury, Aaron S; Sorenson, Shayne; Dawlaty, Jahan M

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm(-1) oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  15. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid.

    PubMed

    Rury, Aaron S; Sorenson, Shayne; Dawlaty, Jahan M

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm(-1) oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology. PMID:26979698

  16. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    SciTech Connect

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  17. Lasing from active optomechanical resonators

    PubMed Central

    Czerniuk, T.; Brüggemann, C.; Tepper, J.; Brodbeck, S.; Schneider, C.; Kamp, M.; Höfling, S.; Glavin, B. A.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.

    2014-01-01

    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784

  18. Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Hua; Ma, Ying-Zhong; Fleming, Graham R.

    2001-04-01

    We report a simplified optical heterodyne detected transient grating setup consisting of a single diffractive optical element based on modifications of the arrangement used by Miller and co-workers [J. Phys. Chem. A, 103 (1999) 10619]. Our arrangement features ease of alignment, suppression of scattering and is free of pump-probe contamination in the detected transient grating signals. The capability of our arrangement is demonstrated by measurements on a non-resonant system, CS 2, and a resonant system, malachite green in ethanol.

  19. All-Optical NAND Gate Based on Nonlinear Photonic Crystal Ring Resonators

    NASA Astrophysics Data System (ADS)

    Serajmohammadi, Somaye

    2016-06-01

    In this paper we proposed a new design for all-optical NAND gate. By combining nonlinear Kerr effect with photonic crystal ring resonators first we designed a structure, whose optical behavior can be controlled via input power intensity. The switching power threshold obtained for this structure equal to 1 kW/μm2. For designing the proposed optical logic gate we employed two resonant rings with the same structures, both rings at the logic gates were designed such that their resonant wavelength be at λ=1,550 nm. Every proposed logic gate has one bias and two logic input ports.

  20. Role of defects, resonances, anharmonicities and electron-phonon scattering processes on thermal conductivity of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Ashokan, Vinod; Indu, B. D.; Dimri, A. Kr.

    2016-09-01

    In this work, thermal conductivity of high temperature superconductors (HTS) has been analyzed on the basis of modified Callaway model. In the new formulation, the relaxation times of various contributing processes have been observed in newer perspectives of electron and phonon line widths. To obtain line widths, the quantum dynamics of electron and phonon is carried out by using double time thermodynamic Green’s functions method via a general Hamiltonian. The outcome of this heuristic approach is utilized to successfully explain the spectacular behavior of thermal conductivity of HTS, and particularly in the vicinity of transition temperature.

  1. Measurements of depth dependent modification of optical constants arising from H+ implantation in n-type 4H-SiC using coherent acoustic phonons

    NASA Astrophysics Data System (ADS)

    Baydin, Andrey; Krzyzanowska, Halina; Dhanunjaya, M.; Rao, S. V. S. Nageswara; Davidson, Jimmy L.; Feldman, Leonard C.; Tolk, Norman H.

    Silicon carbide (SiC) is an ideal material for new electronics, such as high power/high temperature devices, and a candidate for advanced optical applications such as room temperature spintronics and quantum computing. Both types of applications may require the control of defects created by ion bombardment. In this work, we examine depth dependent modification of optical constants of 4H-SiC due to hydrogen implantation at 180keV and low doses ranging from 1014 to 1016 cm-2probed by coherent acoustic phonon (CAP) spectroscopy. For our studies, we used Si-face 10 μm epilayers of n-type 4H-SiC grown by CVD on 4H-SiC substrate. A comprehensive analysis of the reference and implanted spectra shows a strong dependence of 4H-SiC complex refractive index shape versus depth on the H+ fluence. We extract the complex refractive index as a function of depth and ion beam dose. Our results demonstrate that the implantation-modified refractive index is distributed over a greater depth range than Monte Carlo calculation predictions of the implantation induced structural damage. These studies provide insight into the application of hydrogen ion implantation to the fabrication of SiC-based photonic and optoelectronic devices. Work is supported by ARO under Contract No. W911NF-14-1-0290.

  2. Athermalization of resonant optical devices via thermo-mechanical feedback

    DOEpatents

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  3. Photo detection process and power spectrum estimation of optical radiation by the multichannel resonant spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Moskaletz, O. D.; Paraskun, A. S.; Vaganov, M. A.

    2016-08-01

    The problem of receiving of an energy spectrum estimation of optical radiations in the new analyzer of optical signals is considered. It is the parallel resonant optical spectrum analyzer (SPECTRUM ANALYZER). Its resolving system is a set of narrow-band optical resonators in the form of interference filters. Each optical resonator is equivalent to a system with lumped parameters. This allows us to consider only oscillations of an optical field in the form of a scalar functions and adopt as a model of analyzed signal harmonized scalar random process. The photodetector operation and average of photocurrent using an integrator and integrating circuit is considered too. On the basis of the application prolate entire spheroidal wave function theory energy spectrum estimation by the integral of photocurrent is obtained. This energy spectrum estimation is consistent and asymptotically unbiased.

  4. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    SciTech Connect

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-11-30

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D{sub 2} line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  5. Phonon and free-charge carrier properties in group-III nitride heterostructures investigated by spectroscopic ellipsometry and optical Hall effect

    NASA Astrophysics Data System (ADS)

    Schoeche, Stefan

    The material class of group-III nitrides gained tremendous technological importance for optoelectronic and high-power/high-frequency amplification devices. Tunability of the direct band gap from 0.65 eV (InN) to 6.2 eV (AlN) by alloying, high breakthrough voltages and intrinsic mobilities, as well as the formation of highly mobile 2d electron gases (2DEG) at heterointerfaces make these compounds ideal for many applications. GaN and Ga-rich alloys are well studied and current research is mainly device-oriented. For example, choice and quality of the gate dielectric significantly influence device performance in high-electron mobility transistors (HEMT) which utilize highly mobile 2DEGs at heterointerfaces. Experimental access to the 2DEG channel properties without influence from parasitic currents or contact properties are desirable. In- and Al-rich ternary alloys are less explored than Ga-rich compounds. For InN and In-rich alloys, while many material parameters such as stiffness constants or effective mass values are largely unknown, reliable p-type doping is a major challenge, also because p-type conducting channels are buried within highly conductive n-type material formed at the surface and interfaces preventing electrical characterization. For AlN and high-Al content alloys, doping mechanisms are not understood and reliable fabrication of material with high free-charge carrier (FCC) concentrations was achieved just recently. Difficulties to form ohmic contacts impair electrical measurements and optical characterization is impeded by lack of high-energy excitation sources. In this work, spectroscopic ellipsometry over the wide spectral range from the THz to VUV in combination with optical Hall effect (generalized ellipsometry with applied magnetic field) from THz to MIR are applied in order to investigate the phonon modes and FCC properties in group-III nitride heterostructures. Adequate model descriptions and analysis strategies are introduced which allow

  6. Three-photon-absorption resonance for all-optical atomic clocks

    SciTech Connect

    Zibrov, Sergei; Novikova, Irina; Phillips, David F.; Taichenachev, Aleksei V.; Yudin, Valeriy I.; Walsworth, Ronald L.; Zibrov, Alexander S.

    2005-07-15

    We report an experimental study of an all-optical three-photon-absorption resonance (known as an 'N resonance') and discuss its potential application as an alternative to atomic clocks based on coherent population trapping. We present measurements of the N-resonance contrast, width and light shift for the D{sub 1} line of {sup 87}Rb with varying buffer gases, and find good agreement with an analytical model of this resonance. The results suggest that N resonances are promising for atomic clock applications.

  7. Out-of-plane resonances in terahertz photonic crystal slabs modulated by optical pumping.

    PubMed

    Shi, Yulei; Zhou, Qing-Li; Liu, Wei; Zhang, Cunlin

    2011-10-10

    This paper describes detailed optical-pump-terahertz-probe studies of two-dimensional photonic crystal slabs for propagation perpendicular to the slabs. When the slabs are excited by an 800 nm pump pulse and the effect of shielding by photocarriers is removed, we find that the decaying tail in the transmitted terahertz radiation is strikingly enhanced. The photocarriers weaken guided resonances, but they also greatly enhance the excitation efficiency of guided resonances and the ability of the guided resonances to transfer energy back to the radiation field. This increases the resonance-assisted contribution to transmitted field. The photoinduced resonant extremes agree well with the Fano model. PMID:21997090

  8. Manipulation of Phonons with Phononic Crystals

    SciTech Connect

    Leseman, Zayd Chad

    2015-07-09

    There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.

  9. Optical diode using nonlinear polystyrene ring resonators in two-dimensional photonic crystal structure.

    PubMed

    Sahoo, Pankaj K; Joseph, Joby

    2013-12-01

    An optical diode that uses nonlinear ring resonators in 2D photonic crystal is numerically simulated by using the finite-difference time-domain (FDTD) method. Nonlinear polystyrene is used as the Kerr medium forming ring resonators. The operating wavelength of the optical diode is considered to be the coupling wavelength at which light couples efficiently from waveguide to ring resonator, which is also equal to the average of the resonant wavelengths of the two resonators considered in the proposed structure. For both forward and backward propagation, the characteristics of the proposed optical diode are similar to those of an electronic diode. FDTD simulation is done using the MEEP package, which exhibits the desired results. PMID:24513826

  10. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  11. Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface

    NASA Astrophysics Data System (ADS)

    Zanotto, Simone; Lange, Christoph; Maag, Thomas; Pitanti, Alessandro; Miseikis, Vaidotas; Coletti, Camilla; Degl'Innocenti, Riccardo; Baldacci, Lorenzo; Huber, Rupert; Tredicucci, Alessandro

    2015-09-01

    By placing a material in close vicinity of a resonant optical element, its intrinsic optical response can be tuned, possibly to a wide extent. Here, we show that a graphene monolayer, spaced a few tenths of nanometers from a split ring resonator metasurface, exhibits a magneto-optical response which is strongly influenced by the presence of the metasurface itself. This hybrid system holds promises in view of thin optical modulators, polarization rotators, and nonreciprocal devices, in the technologically relevant terahertz spectral range. Moreover, it could be chosen as the playground for investigating the cavity electrodynamics of Dirac fermions in the quantum regime.

  12. Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface

    SciTech Connect

    Zanotto, Simone; Pitanti, Alessandro; Lange, Christoph; Maag, Thomas; Huber, Rupert; Miseikis, Vaidotas; Coletti, Camilla; Degl'Innocenti, Riccardo; Baldacci, Lorenzo; Tredicucci, Alessandro

    2015-09-21

    By placing a material in close vicinity of a resonant optical element, its intrinsic optical response can be tuned, possibly to a wide extent. Here, we show that a graphene monolayer, spaced a few tenths of nanometers from a split ring resonator metasurface, exhibits a magneto-optical response which is strongly influenced by the presence of the metasurface itself. This hybrid system holds promises in view of thin optical modulators, polarization rotators, and nonreciprocal devices, in the technologically relevant terahertz spectral range. Moreover, it could be chosen as the playground for investigating the cavity electrodynamics of Dirac fermions in the quantum regime.

  13. INEX modeling of the Boeing ring optical resonator free-electron laser

    SciTech Connect

    Goldstein, J.C.; Tokar, R.L.; McVey, B.D.; Elliott, C.J. ); Dowell, D.H.; Laucks, M.L.; Lowrey, A.R. )

    1990-01-01

    We present new results from the integrated numerical model of the accelerator/beam transport system and ring optical resonator of the Boeing free-electron laser experiment. Modifications of the electron-beam transport have been included in a previously developed PARMELA model and are shown to reduce dramatically emittance growth in the 180{degree} bend. The new numerically generated electron beam is used in the 3-D FEL simulation code FELEX to calculate expected laser characteristics with the ring optical resonator and the 5-m untapered THUNDER wiggler. Gain, extraction efficiency, and optical power are compared with experimental data. Performance sensitivity to optical cavity misalignments is studied.

  14. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators.

    PubMed

    Jung, Hojoong; Fong, King Y; Xiong, Chi; Tang, Hong X

    2014-01-01

    Aluminum nitride (AlN) has been shown to possess both strong Kerr nonlinearity and electro-optic Pockels effect. By combining these two effects, here we demonstrate on-chip reversible on/off switching of the optical frequency comb generated by an AlN microring resonator. We optimize the design of gating electrodes and the underneath resonator structure to effectively apply an electric field without increasing the optical loss. The switching of the comb is monitored by measuring one of the frequency comb peaks while varying the electric field. The controlled comb electro-optic response is investigated for direct comparison with the transient thermal effect.

  15. Surface plasmon optical antennae in the infrared region with high resonant efficiency and frequency selectivity.

    PubMed

    Ueno, Kosei; Sun, Quan; Mino, Masahiro; Itoh, Takumi; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-08-01

    Infrared light has received attention for sensor applications, including fingerprint spectroscopy, in the bioengineering and security fields. Surface plasmon physics enables the operation of a light harvesting optical antenna. Gold nanochains exhibit localized surface plasmon resonance (LSPR) in the infrared region with high frequency selectivity. However, a feasible design for optical antennae with a higher resonant efficiency and frequency selectivity as a function of structural design and periodicity is still unknown. In the present study, we investigated the relationship between the resonant efficiency and frequency selectivity as a function of the structural design of gold nanochains and explored structural periodicity for obtaining highly frequency-selective optical antennae. An optical antenna design with higher resonant efficiency is proposed on the basis of its efficient interaction with non-polarized light. PMID:27505741

  16. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    NASA Astrophysics Data System (ADS)

    Ghosh, Siddhartha; Piazza, Gianluca

    2016-06-01

    An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN) thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p) coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  17. Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures

    NASA Astrophysics Data System (ADS)

    Ji, Boyu; Qin, Jiang; Tao, Haiyan; Hao, Zuoqiang; Lin, Jingquan

    2016-09-01

    We demonstrate subwavelength imaging and control of localized near-field distribution under resonant and off-resonant excitation of identical gold bowtie nanostructures through photoemission electron microscopy. Control of the near-field distribution was realized by polarization rotation of single femtosecond laser pulse and variation of the phase delay of two orthogonally polarized femtosecond laser pulses. We show that the localized optical near-field distribution can be well controlled either among the corners of the nano-prisms in the bowtie for resonant excitation or the edges for off-resonant excitation. A better visualization of the PEEM image is achieved for resonant excitation than in the case of off-resonant excitation. The experimental results of the optical near-field distribution control are well reproduced by finite-difference time-domain simulations and understood by linear combination of electric charge distribution of the bowtie by s- and p- polarized light illumination. In addition, a shift of the near-field excitation position with inverted or unchanged phase, alternatively an un-shift of the excitation position but only with inverted phase of the near-field, can be realized by rotating the polarization angle of a single pulse and coherent control of two orthogonally polarized fs laser pulses.

  18. In-line polarizer used in all-0°-splice resonator fiber-optic gyro.

    PubMed

    Liu, Huilan; Wang, Wei; Wang, Junjie; Feng, Lishuang; Zhi, Yinzhou

    2013-11-10

    A method to suppress the polarization-fluctuation-induced drift in a resonator fiber-optic gyro is proposed in this paper. By inserting one in-line polarizer whose polarization extinction ratio is 30 dB into a polarization-maintaining fiber resonator with 0° polarization-axis splices, the unwanted resonance is introduced to high loss and therefore the ratio of the resonance height of the desired eigen-states of polarization (ESOP) to the unwanted ESOP is 74 dB theoretically; thus the polarization-fluctuation-induced drift is adequately suppressed. The new scheme has excellent operability and high temperature stability simultaneously. Compared to the resonator with twin 90° polarization-axis rotated splices, this scheme does not need precise length difference control. This work is of great importance in the research on resonator integrated optic gyros.

  19. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    SciTech Connect

    Kusa, F.; Echternkamp, K. E.; Herink, G.; Ropers, C.; Ashihara, S.

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  20. Optical-Fiber-Illuminated Response of a Superconducting Microwave Resonator Below 1 K

    NASA Astrophysics Data System (ADS)

    Voigt, Kristen; Hertzberg, J. B.; Dutta, S. K.; Hoffman, J. E.; Grover, J. A.; Lee, J.; Solano, P.; Budoyo, R. P.; Ballard, C.; Anderson, J. R.; Lobb, C. J.; Rolston, S. L.; Wellstood, F. C.

    As a step towards building a hybrid quantum system that couples superconducting elements to neutral atoms trapped on a tapered optical nanofiber, we have studied how the presence of the fiber dielectric and light scattered from a fiber affect the response of a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK. The resonator has a resonance frequency of about 6 GHz, a quality factor Q 2 x 105, and is mounted inside a 3D Al superconducting cavity. An optical fiber is tapered to a 60 um diameter and passes through two small holes in the 3D cavity such that it sits near the resonator. The 3D cavity is mounted on an x-z piezo-translation stage that allows us to change the relative position of the thin-film resonator and fiber. When the resonator is brought closer to the fiber, the resonance frequency decreases slightly due to the presence of the fiber dielectric. When 200 uW of 780 nm light is sent through the fiber, about 100 pW/mm is Rayleigh-scattered from the fiber. This causes a position-dependent illumination of the resonator, affecting its resonance frequency and Q. We compare our results to a model of the resonator response that includes the generation, diffusion, and recombination of quasiparticles in the resonator and find that the frequency response allows us to track the position of the fiber to within 10 um.