Sample records for resonant optical phonon

  1. Magneto-optical absorption and cyclotron-phonon resonance in graphene monolayer

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Phuong, Le Thi Thu; Phong, Tran Cong

    2018-03-01

    The optical absorption power by Dirac fermions in a graphene monolayer subjected to a perpendicular magnetic field is calculated using a projection operator technique. The electron-optical phonon interaction with optical deformation potential is taken into account. By varying the photon frequency (energy), we observe in the absorption power a series of cyclotron-phonon resonance (CPR) peaks (i.e., the phonon-assisted cyclotron resonance). It is seen that the resonant photon energy is linearly proportional to the square root of the magnetic field. Also, the half width at half maximum (HWHM) of CPR peaks depends on the magnetic field by the law HWHM = 7.42 √{B } but does not depend on the temperature. In particular, the magnetic field and temperature dependences of the position and HWHM of CPR peaks are in good agreement with those obtained recently by the perturbation theory and an experiment in graphene.

  2. Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device

    NASA Astrophysics Data System (ADS)

    Manceau, J.-M.; Tran, N.-L.; Biasiol, G.; Laurent, T.; Sagnes, I.; Beaudoin, G.; De Liberato, S.; Carusotto, I.; Colombelli, R.

    2018-05-01

    We report experimental evidence of longitudinal optical (LO) phonon-intersubband polariton scattering processes under resonant injection of light. The scattering process is resonant with both the initial (upper polariton) and final (lower polariton) states and is induced by the interaction of confined electrons with longitudinal optical phonons. The system is optically pumped with a mid-IR laser tuned between 1094 cm-1 and 1134 cm-1 (λ = 9.14 μm and λ = 8.82 μm). The demonstration is provided for both GaAs/AlGaAs and InGaAs/AlInAs doped quantum well systems whose intersubband plasmon lies at a wavelength of ≈10 μm. In addition to elucidating the microscopic mechanism of the polariton-phonon scattering, it is found to differ substantially from the standard single particle electron-LO phonon scattering mechanism, and this work constitutes an important step towards the hopefully forthcoming demonstration of an intersubband polariton laser.

  3. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoudache, Samira; Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou; Moiseyenko, Rayisa

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standingmore » waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.« less

  4. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.

    PubMed

    Wang, Tao; Li, Peining; Hauer, Benedikt; Chigrin, Dmitry N; Taubner, Thomas

    2013-11-13

    Plasmonic antennas are crucial components for nano-optics and have been extensively used to enhance sensing, spectroscopy, light emission, photodetection, and others. Recently, there is a trend to search for new plasmonic materials with low intrinsic loss at new plasmon frequencies. As an alternative to metals, polar crystals have a negative real part of permittivity in the Reststrahlen band and support surface phonon polaritons (SPhPs) with weak damping. Here, we experimentally demonstrate the resonance of single circular microcavities in a thin gold film deposited on a silicon carbide (SiC) substrate in the mid-infrared range. Specifically, the negative permittivity of SiC leads to a well-defined, size-tunable SPhP resonance with a Q factor of around 60 which is much higher than those in surface plasmon polariton (SPP) resonators with similar structures. These infrared resonant microcavities provide new possibilities for widespread applications such as enhanced spectroscopy, sensing, coherent thermal emission, and infrared photodetectors among others throughout the infrared frequency range.

  5. Line width resonance of the longitudinal optical phonon in GaAs:N

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej; Mascarenhas, Angelo

    2013-03-01

    We extend resonant Raman scattering studies of Mascarenhas et al. [PRB68, 233201 (2003)] of GaAs1-xNx to the ultra-dilute nitrogen doping concentrations, whereby we unambiguously resolve the line width resonances of the LO phonon. A discontinuity is observed in the LO phonon line width resonance energy as a function of concentration. With decreasing nitrogen concentration the EW line width resonance energy reduces by ca. 40 meV at x = 0 . 4 % . This value corresponds to the concentration, at which the localized to delocalized transition manifests itself in the electro-reflectance signature line widths.

  6. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  7. Phonon counting and intensity interferometry of a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-04-01

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  8. Active tuning of surface phonon polariton resonances via carrier photoinjection

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.

    2018-01-01

    Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (<50 ps) recovery of the resonance in 4H-SiC. This work demonstrates the potential for this method and opens a path towards actively tuned nanophotonic devices, such as modulators and beacons, in the infrared, and identifies important implications of coupling between electronic and phononic excitations.

  9. Resonant-phonon-assisted THz quantum cascade lasers with metal-metal waveguides.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callebaut, Hans; Kohen, Stephen; Kumar, Sushil

    2004-06-01

    We report our development of terahertz (THz) quantum-cascade lasers (QCLs) based on two novel features. First, the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO-)phonon scattering. This depopulation mechanism is robust at high temperatures and high injection levels. In contrast to infrared QCLs that also use LO-phonon scattering for depopulation, in our THz lasers the selectivity of the depopulation scattering is achieved through a combination of resonant tunneling and LO-phonon scattering, hence the term resonant phonon. This resonant-phonon scheme allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintainingmore » a relatively long upper level lifetime (>5 ps) that is due to upper-to-ground-state scattering. The second feature of our lasers is that mode confinement is achieved by using a novel double-sided metal-metal waveguide, which yields an essentially unity mode confinement factor and therefore a low total cavity loss at THz frequencies. Based on these two unique features, we have achieved some record performance, including, but not limited to, the highest pulsed operating temperature of 137 K, the highest continuous-wave operating temperature of 97 K, and the longest wavelength of 141 {micro}m (corresponding to 2.1 THz) without the assistance of a magnetic field.« less

  10. Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction

    NASA Astrophysics Data System (ADS)

    Melnick, Corey; Kaviany, Massoud

    2016-03-01

    The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.

  11. Edge waves and resonances in two-dimensional phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jin-Chen, E-mail: hsujc@yuntech.edu.tw; Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. Wemore » design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.« less

  12. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics.

    PubMed

    Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders; Villanueva, Luis Guillermo; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S

    2014-03-24

    Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

  13. Raman spectroscopy of magneto-phonon resonances in graphene and graphite

    NASA Astrophysics Data System (ADS)

    Goler, Sarah; Yan, Jun; Pellegrini, Vittorio; Pinczuk, Aron

    2012-08-01

    The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magneto-excitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.

  14. Resonant Magnon-Phonon Polaritons in a Ferrimagnet

    DTIC Science & Technology

    2000-09-29

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11604 TITLE: Resonant Magnon -Phonon Polaritons in a Ferrimagnet...part numbers comprise the compilation report: ADP011588 thru ADP011680 UNCLASSIFIED 75 Resonant Magnon -Phonon Polaritons in a Ferrimagnet I. E...susceptibilities X"aa and X’m << X’m appear, where 77 xem - DPx igEo0 i_ Xxy - hy- C1 (0)2 _ 00t2) 4= -7• 4 3. Phonon and magnon polaritons We solve the

  15. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)

    2007-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  16. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  17. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  18. Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Vincent, Roger; Cherns, David; Dan, Nguyen Huy; Yu, Seong-Cho

    2008-08-01

    We have studied Raman scattering in Co-doped ZnO nanorods prepared by thermal diffusion. Experimental results show that the features of their non-resonant spectra are similar to Raman spectra from Co-doped ZnO materials investigated previously. Under resonant conditions, however, there is a strong enhancement of multiple-phonon Raman scattering processes. Longitudinal optical (LO)-phonon overtones up to eleventh order are observed. The modes become more obvious when the Co concentration diffused into ZnO nanorods goes to an appropriate value. This phenomenon is explained due to the shift of the band-gap energy and also due to the decrease in the intensity of near-band-edge luminescence. Our observation is in agreement with the prediction [J. F. Scott, Phys. Rev. B 2, 1209 (1970)] that the number of LO-phonon lines in ZnO is higher than that observed for CdS.

  19. Interaction between confined phonons and photons in periodic silicon resonators

    NASA Astrophysics Data System (ADS)

    Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.

    2018-03-01

    In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.

  20. Quantum many-body correlations in collective phonon-excitations

    NASA Astrophysics Data System (ADS)

    Droenner, Leon; Kabuss, Julia; Carmele, Alexander

    2018-02-01

    We present a theoretical study of a many-emitter phonon laser based on optically driven semiconductor quantum dots placed within an acoustic nanocavity. A transformation of the phonon laser Hamiltonian leads to a Tavis-Cummings type interaction with an unexpected additional many-emitter energy shift. This many-emitter interaction with the cavity mode results in a variety of phonon resonances which dependent strongly on the number of participating emitters. These collective resonances show the highest phonon output. Furthermore, we show that the output can be increased even more via lasing at the two phonon resonance.

  1. Research on bandgaps in two-dimensional phononic crystal with two resonators.

    PubMed

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie

    2015-02-01

    In this paper, the bandgap properties of a two-dimensional phononic crystal with the two resonators is studied and embedded in a homogenous matrix. The resonators are not connected with the matrix but linked with connectors directly. The dispersion relationship, transmission spectra, and displacement fields of the eigenmodes of this phononic crystal are studied with finite-element method. In contrast to the phononic crystals with one resonators and hollow structure, the proposed structures with two resonators can open bandgaps at lower frequencies. This is a very interesting and useful phenomenon. Results show that, the opening of the bandgaps is because of the local resonance and the scattering interaction between two resonators and matrix. An equivalent spring-pendulum model can be developed in order to evaluate the frequencies of the bandgap edge. The study in this paper is beneficial to the design of opening and tuning bandgaps in phononic crystals and isolators in low-frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Isaienko, Oleksandr; Robel, István

    2016-03-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.

  3. Phonon-tunnelling dissipation in mechanical resonators

    PubMed Central

    Cole, Garrett D.; Wilson-Rae, Ignacio; Werbach, Katharina; Vanner, Michael R.; Aspelmeyer, Markus

    2011-01-01

    Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor. PMID:21407197

  4. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  5. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    DOE PAGES

    Isaienko, Oleksandr; Robel, Istvan

    2016-03-15

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ (2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P NL of the impulsively excited phonons and those of parametrically amplified waves.« less

  6. Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation.

    PubMed

    Hu, Qing; Williams, Benjamin S; Kumar, Sushil; Callebaut, Hans; Reno, John L

    2004-02-15

    We report our development of terahertz (THz) quantum cascade lasers (QCLs), in which the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO) phonon scattering. This depopulation mechanism, similar to that implemented in all the QCLs operating at mid-infrared frequencies, is robust at high temperatures and high injection levels. The unique feature of resonant LO-phonon scattering in our THz QCL structures allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintaining a relatively long upper level lifetime (more than 5 ps) that is due to upper-to-ground-state scattering. The first QCL based on this mechanism achieved lasing at 3.4 THz (lambda approximately 87 microm) up to 87 K for pulsed operations, with peak power levels exceeding 10 mW at ca. 40 K. Using a novel double-sided metal waveguide for mode confinement, which yields a unity mode confinement factor and therefore a low total cavity loss at THz frequencies, we have also achieved lasing at wavelengths longer than 100 microm.

  7. Fiber optical vibrometer based on a phononic crystal filter

    NASA Astrophysics Data System (ADS)

    Lin, Sijing; Chai, Quan; Zhang, Jianzhong

    2012-02-01

    We propose that phononic crystals could be used as a packaging method in a fiber optical vibrometer system to filter the vibration at unwanted frequency range. A simple FBG based vibrometer and a aluminum-silicone rubber based 1D phononic crystal with the designed phononic band gap are built up, and the corresponding experimental results are demonstrated to show the feasibility of our proposal. Our proposal also points out that optical fiber sensors could be an excellent candidate to research the inner acoustic response of more complex phononic crystals.

  8. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  9. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  10. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  11. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE PAGES

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  12. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites

    PubMed Central

    Yang, Jianfeng; Wen, Xiaoming; Xia, Hongze; Sheng, Rui; Ma, Qingshan; Kim, Jincheol; Tapping, Patrick; Harada, Takaaki; Kee, Tak W.; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin; Ho-Baillie, Anita; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Conibeer, Gavin

    2017-01-01

    The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I−/Br−) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials. PMID:28106061

  13. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    PubMed Central

    Vanacore, Giovanni M.; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H.

    2017-01-01

    Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible. PMID:28852685

  14. Ultra-high-Q phononic resonators on-chip at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kharel, Prashanta; Chu, Yiwen; Power, Michael; Renninger, William H.; Schoelkopf, Robert J.; Rakich, Peter T.

    2018-06-01

    Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path toward chip-scale integration. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryogenic temperatures. So far, these devices have been macroscopic with cm-scale dimensions. However, as we push these oscillators to high frequencies, we have an opportunity to radically reduce the footprint as a basis for classical and emerging quantum technologies. In this paper, we present novel design principles and simple microfabrication techniques to create high performance chip-scale confocal bulk acoustic wave resonators in a wide array of crystalline materials. We tailor the acoustic modes of such resonators to efficiently couple to light, permitting us to perform a non-invasive laser-based phonon spectroscopy. Using this technique, we demonstrate an acoustic Q-factor of 2.8 × 107 (6.5 × 106) for chip-scale resonators operating at 12.7 GHz (37.8 GHz) in crystalline z-cut quartz (x-cut silicon) at cryogenic temperatures.

  15. Phonon-Assisted Optical Absorption in Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Noffsinger, Jesse; Kioupakis, Emmanouil; Van de Walle, Chris G.; Louie, Steven G.; Cohen, Marvin L.

    2012-04-01

    The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general.

  16. Multicoaxial cylindrical inclusions in locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Larabi, H.; Pennec, Y.; Djafari-Rouhani, B.; Vasseur, J. O.

    2007-06-01

    It is known that the transmission spectrum of the so-called locally resonant phononic crystal can exhibit absolute sharp dips in the sonic frequency range due to the resonance scattering of elastic waves. In this paper, we study theoretically, using a finite difference time domain method, the propagation of acoustic waves through a two-dimensional locally resonant crystal in which the matrix is a fluid (such as water) instead of being a solid as in most of the previous papers. The transmission is shown to be dependent upon the fluid or solid nature of the matrix as well as upon the nature of the coating material in contact with the matrix. The other main purpose of this paper is to consider inclusions constituted by coaxial cylindrical multilayers consisting of several alternate shells of a soft material (such as a soft rubber) and a hard material (such as steel). With respect to the usual case of a hard core coated with a soft rubber, the transmission spectrum can exhibit in the same frequency range several peaks instead of one. If two or more phononic crystals are associated together, we find that the structure displays all the zeros of transmission resulting from each individual crystal. Moreover, we show that it is possible to overlap the dips by an appropriate combination of phononic crystals and create a larger acoustic stop band.

  17. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    PubMed

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-06

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

  18. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  19. Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems

    DTIC Science & Technology

    2015-08-20

    optomechanical crystal cavities connected by a dispersion-engineered phonon waveguide. Pulsed and continuous- wave measurements are first used to char- acterize...device layer of a silicon-on-insulator wafer (see App. A), and consists of several parts: an op- tomechanical cavity with co- localized optical and acous... localized cavity mode and the nearly- resonant phonon waveguide modes. The optical coupling waveg- uide is fabricated in the near-field of the nanobeam

  20. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  1. The Influence of Phonons and Phonon Decay on the Optical Properties of GaN

    NASA Astrophysics Data System (ADS)

    Song, D. Y.; Basavaraj, M.; Nikishin, S. A.; Holtz, M.; Soukhoveev, V.; Usikov, A.; Dmitriev, V.

    2006-03-01

    The temperature dependences of vibrational and optical properties of high-quality GaN are studied using Raman and photoluminescence (PL) spectroscopies in the range 20 to 325 K. The Raman-active A1(LO) phonon has temperature dependence described well by combined two- and three-phonon decay. The temperature dependences of E2^2 phonon are almost entirely dominated by the thermal expansion, and the contribution of three-phonon decay process is very small throughout interested temperature range. The shallow neutral donor-bound exciton (D^0,X) and two free excitons (XA and XB) are observed at low temperatrue PL spectra. Also seen are two A1(LO) phonon sidebands (PSBs), originating from the XB free exciton, with the characteristic asymmetry attributed to interactions between discrete and continuum states. Analysis of the band-edge excitons reveals that energy gap shrinkage and exciton linewidths are completely described based on electron-phonon interactions with phonon properties consistent with the Raman analysis. First and second PSBs have temperature dependence associated with the A1(LO) phonon. The shift, broadening, and asymmetry of the PSBs are explained by Segall-Mahan theory adding the decay mechanism of A1(LO) phonon and the exciton broadening from electron-phonon interactions. Work at Texas Tech University supported by National Science Foundation grant ECS-0323640.

  2. Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature

    NASA Astrophysics Data System (ADS)

    John, Roger; Lehnert, Jan; Mensing, Michael; Spemann, Daniel; Pezzagna, Sébastien; Meijer, Jan

    2017-05-01

    Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.

  3. Infrared-active optical phonons in LiFePO4 single crystals

    NASA Astrophysics Data System (ADS)

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; Janssen, Y.; Basistyy, R.; Sirenko, A. A.; Khalifah, P. G.; Grey, C. P.; Kostecki, R.

    2017-07-01

    Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.

  4. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses

    PubMed Central

    Fu, Zhengping; Yamaguchi, Masashi

    2016-01-01

    Coherent excitation and control of lattice motion by electromagnetic radiation in optical frequency range has been reported through variety of indirect interaction mechanisms with phonon modes. However, coherent phonon excitation by direct interaction of electromagnetic radiation and nuclei has not been demonstrated experimentally in terahertz (THz) frequency range mainly due to the lack of THz emitters with broad bandwidth suitable for the purpose. We report the experimental observation of coherent phonon excitation and detection in GaAs using ultrafast THz-pump/optical-probe scheme. From the results of THz pump field dependence, pump/probe polarization dependence, and crystal orientation dependence, we attributed THz wave absorption and linear electro-optic effect to the excitation and detection mechanisms of coherent polar TO phonons. Furthermore, the carrier density dependence of the interaction of coherent phonons and free carriers is reported. PMID:27905563

  5. Infrared-active optical phonons in LiFePO 4 single crystals

    DOE PAGES

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; ...

    2017-07-28

    Infrared-active optical phonons were studied in olivine LiFePO 4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm -1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO 4 crystal were measured from the delithiated ab-surface of the LiFePO 4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theorymore » calculations for the phonon modes in both LiFePO 4 and FePO 4.« less

  6. Ultrafast Spectroscopy of Fano-Like Resonance between Optical Phonon and Excitons in CdSe Quantum Dots: Dependence of Coherent Vibrational Wave-Packet Dynamics on Pump Fluence

    PubMed Central

    Aybush, Arseniy; Gostev, Fedor; Shelaev, Ivan; Titov, Andrey; Umanskiy, Stanislav; Cherepanov, Dmitry

    2017-01-01

    The main goal of the present work is to study the coherent phonon in strongly confined CdSe quantum dots (QDs) under varied pump fluences. The main characteristics of coherent phonons (amplitude, frequency, phase, spectrogram) of CdSe QDs under the red-edge pump of the excitonic band [1S(e)-1S3/2(h)] are reported. We demonstrate for the first time that the amplitude of the coherent optical longitudinal-optical (LO) phonon at 6.16 THz excited in CdSe nanoparticles by a femtosecond unchirped pulse shows a non-monotone dependence on the pump fluence. This dependence exhibits the maximum at pump fluence ~0.8 mJ/cm2. At the same time, the amplitudes of the longitudinal acoustic (LA) phonon mode at 0.55 THz and of the coherent wave packet of toluene at 15.6, 23.6 THz show a monotonic rise with the increase of pump fluence. The time frequency representation of an oscillating signal corresponding to LO phonons revealed by continuous wavelet transform (CWT) shows a profound destructive quantum interference close to the origin of distinct (optical phonon) and continuum-like (exciton) quasiparticles. The CWT spectrogram demonstrates a nonlinear chirp at short time delays, where the chirp sign depends on the pump pulse fluence. The CWT spectrogram reveals an anharmonic coupling between optical and acoustic phonons. PMID:29113056

  7. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  8. Decoherence in models for hard-core bosons coupled to optical phonons

    NASA Astrophysics Data System (ADS)

    Dey, A.; Lone, M. Q.; Yarlagadda, S.

    2015-09-01

    Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous scientific and technological implications for quantum computation. Here, we study decay of excited-state population and decoherence in two models for HCBs, namely, a two-site HCB model with site-dependent strong potentials and subject to non-Markovian dynamics and an infinite-range HCB model governed by Markovian dynamics. Both models are investigated in the regimes of antiadiabaticity and strong HCB-phonon coupling with each site providing a different local optical phonon environment; furthermore, the HCB systems in both models are taken to be initially uncorrelated with the environment in the polaronic frame of reference. In the case of the two-site HCB model, we show clearly that the degree of decoherence and decay of excited state are enhanced by the proximity of the site-energy difference to the eigenenergy of phonons and are most pronounced when the site-energy difference is at resonance with twice the polaronic energy; additionally, the decoherence and the decay effects are reduced when the strength of HCB-phonon coupling is increased. For the infinite-range model, when the site energies are the same, we derive an effective many-body Hamiltonian that commutes with the long-range system Hamiltonian and thus has the same set of eigenstates; consequently, a quantum-master-equation approach shows that the quantum states of the system do not decohere.

  9. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  10. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles.

    PubMed

    Gentle, A R; Smith, G B

    2010-02-10

    Nanoparticles that have narrow absorption bands that lie entirely within the atmosphere's transparent window from 7.9 to 13 mum can be used to radiatively cool to temperatures that are well below ambient. Heating from incoming atmospheric radiation in the remainder of the Planck radiation spectrum, where the atmosphere is nearly "black", is reduced if the particles are dopants in infrared transmitting polymers, or in transmitting coatings on low emittance substrates. Crystalline SiC nanoparticles stand out with a surface phonon resonance from 10.5 to 13 mum clear of the atmospheric ozone band. Resonant SiO(2) nanoparticles are complementary, absorbing from 8 to 10 mum, which includes atmospheric ozone emissions. Their spectral location has made SiC nanoparticles in space dust a feature in ground-based IR astronomy. Optical properties are presented and subambient cooling performance analyzed for doped polyethylene on aluminum. A mixture of SiC and SiO(2) nanoparticles yields high performance cooling at low cost within a practical cooling rig.

  11. Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs

    DOE PAGES

    Xu, Bing; Dai, Yaomin M.; Zhao, Lingxiao X.; ...

    2017-03-30

    Strong coupling between discrete phonon and continuous electron–hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. We reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. Furthermore, this behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation ofmore » electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. These findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals.« less

  12. Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN

    DTIC Science & Technology

    2005-09-01

    Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN DARPA CONTRACT MDA972-02-C-0044...AND SUBTITLE Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN 5a. CONTRACT NUMBER 5b...Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructures Based on C and BN Nanotubes" 1.3.1a. Phonon dynamics

  13. Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.

    PubMed

    Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu

    2012-05-07

    Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

  14. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2017-02-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  15. Phonons, defects and optical damage in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.

    1986-04-01

    Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.

  16. Electron-phonon interactions in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Yu, Segi

    In this dissertation, electron-phonon interactions are studied theoretically in semiconductor nanoscale heterostructures. Interactions of electrons with interface optical phonons dominate over other electron-phonon interactions in narrow width heterostructures. Hence, a transfer matrix method is used to establish a formalism for determining the dispersion relations and electrostatic potentials of the interface phonons for multiple-interface heterostructure within the macroscopic dielectric continuum model. This method facilitates systematic calculations for complex structures where the conventional method is difficult to implement. Several specific cases are treated to illustrate advantages of the formalism. Electrophonon resonance (EPR) is studied in cylindrical quantum wires using the confined/interface optical phonons representation and bulk phonon representation. It has been found that interface phonon contribution to EPR is small compared with confined phonon. Different selection rules for bulk phonons and confined phonons result in different EPR behaviors as the radius of cylindrical wire changes. Experiment is suggested to test which phonon representation is appropriate for EPR. The effects of phonon confinement on elect ron-acoustic-phonon scattering is studied in cylindrical and rectangular quantum wires. In the macroscopic elastic continuum model, the confined-phonon dispersion relations are obtained for several crystallographic directions with free-surface and clamped-surface boundary conditions in cylindrical wires. The scattering rates due to the deformation potential are obtained for these confined phonons and are compared with those of bulk-like phonons. The results show that the inclusion of acoustic phonon confinement may be crucial for calculating accurate low-energy electron scattering rates. Furthermore, it has been found that there is a scaling rule governing the directional dependence of the scattering rates. The Hamiltonian describing the

  17. Phonons in self-assembled Ge/Si structures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Nikiforov, A. I.; Pchelyakov, O. P.; Schulze, S.; Zahn, D. R. T.

    2002-03-01

    We present the results of an investigation dealing with fundamental vibrations in periodical Ge/Si structures with small-size Ge quantum dots (QDs) performed using macro- and micro-Raman spectroscopy under resonant and off-resonant conditions. Samples with different number of repetition of Ge and Si layers contain Ge QDs with an average dot base size of 15 nm and a QD height of 2 nm. Periodic oscillations observed in the low-frequency region of the Raman spectra are assigned to folded LA phonons in the Ge QD superlattices. The measured phonon frequencies are in a good agreement with those calculated using the Rytov model. These oscillations are superimposed with a broad continuous emission originating from the whole acoustic dispersion branch due to a breaking up of translational invariance. The Raman spectra of the structure with single Ge QD layer reveal a series of peaks corresponding to LA phonons localized in the Si layer. Using the measured phonon frequencies and corresponding wave vectors the dispersion of the LA phonons in the Si is obtained. The longitudinal-acoustic wave velocity determined from the dispersion is 8365 ms-1 and in excellent agreement with that derived from the Brillouin study. In the optical phonon range, the LO and TO phonons localized in Ge QDs are observed. The position of the LO Ge phonons shifts downwards with increasing excitation energy (from 2.5 to 2.7 eV) indicating the presence of a QD size distribution in Ge dot superlattices. Raman scattering from Ge QDs is size-selectively enhanced by the resonance of the exciting laser energy and the confined excitonic states.

  18. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  19. Relative merits of phononics vs. plasmonics: the energy balance approach

    NASA Astrophysics Data System (ADS)

    Khurgin, Jacob B.

    2018-01-01

    The common feature of various plasmonic schemes is their ability to confine optical fields of surface plasmon polaritons (SPPs) into subwavelength volumes and thus achieve a large enhancement of linear and nonlinear optical properties. This ability, however, is severely limited by the large ohmic loss inherent to even the best of metals. However, in the mid- and far-infrared ranges of the spectrum, there exists a viable alternative to metals - polar dielectrics and semiconductors, in which dielectric permittivity (the real part) turns negative in the Reststrahlen region. This feature engenders the so-called surface phonon polaritons, capable of confining the field in a way akin to their plasmonic analogs, the SPPs. Since the damping rate of polar phonons is substantially less than that of free electrons, it is not unreasonable to expect that phononic devices may outperform their plasmonic counterparts. Yet a more rigorous analysis of the comparative merits of phononics and plasmonics reveals a more nuanced answer, namely, that while phononic schemes do exhibit narrower resonances and can achieve a very high degree of energy concentration, most of the energy is contained in the form of lattice vibrations so that enhancement of the electric field and, hence, the Purcell factor is rather small compared to what can be achieved with metal nanoantennas. Still, the sheer narrowness of phononic resonances is expected to make phononics viable in applications where frequency selectivity is important.

  20. Lasing from active optomechanical resonators

    PubMed Central

    Czerniuk, T.; Brüggemann, C.; Tepper, J.; Brodbeck, S.; Schneider, C.; Kamp, M.; Höfling, S.; Glavin, B. A.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.

    2014-01-01

    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784

  1. Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN

    NASA Astrophysics Data System (ADS)

    Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.

    2017-01-01

    Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.

  2. Topological phononic states of underwater sound based on coupled ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Cheng; Li, Zheng; Ni, Xu

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracymore » is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.« less

  3. Plasphonics: local hybridization of plasmons and phonons.

    PubMed

    Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Tripathy, Sudhiranjan

    2013-02-25

    We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.

  4. Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Liu, W. H.; Qu, Y.; Ban, S. L.

    2017-09-01

    Based on the force-balance and energy-balance equations, the optical phonon-limited electron mobility in InxGa1-xN/GaN core-shell nanowires (CSNWs) is discussed. It is found that the electrons tend to distribute in the core of the CSNWs due to the strong quantum confinement. Thus, the scattering from first kind of the quasi-confined optical (CO) phonons is more important than that from the interface (IF) and propagating (PR) optical phonons. Ternary mixed crystal and size effects on the electron mobility are also investigated. The results show that the PR phonons exist while the IF phonons disappear when the indium composition x < 0.047, and vice versa. Accordingly, the total electron mobility μ first increases and then decreases with indium composition x, and reaches a peak value of approximately 3700 cm2/(V.s) when x = 0.047. The results also show that the mobility μ increases as increasing the core radius of CSNWs due to the weakened interaction between the electrons and CO phonons. The total electron mobility limited by the optical phonons exhibits an obvious enhancement as decreasing temperature or increasing line electron density. Our theoretical results are expected to be helpful to develop electronic devices based on CSNWs.

  5. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS 2 after Ultrafast Excitation

    DOE PAGES

    Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.; ...

    2017-01-06

    We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.

  6. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS 2 after Ultrafast Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.

    We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.

  7. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  8. Layer-Dependent Ultrafast Carrier and Coherent Phonon Dynamics in Black Phosphorus.

    PubMed

    Miao, Xianchong; Zhang, Guowei; Wang, Fanjie; Yan, Hugen; Ji, Minbiao

    2018-05-09

    Black phosphorus is a layered semiconducting material, demonstrating strong layer-dependent optical and electronic properties. Probing the photophysical properties on ultrafast time scales is of central importance in understanding many-body interactions and nonequilibrium quasiparticle dynamics. Here, we applied temporally, spectrally, and spatially resolved pump-probe microscopy to study the transient optical responses of mechanically exfoliated few-layer black phosphorus, with layer numbers ranging from 2 to 9. We have observed layer-dependent resonant transient absorption spectra with both photobleaching and red-shifted photoinduced absorption features, which could be attributed to band gap renormalization of higher subband transitions. Surprisingly, coherent phonon oscillations with unprecedented intensities were observed when the probe photons were in resonance with the optical transitions, which correspond to the low-frequency layer-breathing mode. Our results reveal strong Coulomb interactions and electron-phonon couplings in photoexcited black phosphorus, providing important insights into the ultrafast optical, nanomechanical, and optoelectronic properties of this novel two-dimensional material.

  9. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    NASA Astrophysics Data System (ADS)

    Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.

    2015-10-01

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  10. Study of Various Types of Resonances within the Phonon Damping Model

    NASA Astrophysics Data System (ADS)

    Dang, Nguyen Dinh

    2001-10-01

    The main successes of the Phonon Damping Model (PDM)(N. Dinh Dang and A. Arima, Phys. Rev. Lett. 80), 4145 (1998); Nucl. Phys. A 636, 427 (1998); N. Dinh Dang, K. Tanabe, and A. Arima, Phys. Rev. C 58, 3374 (1998). are presented in the description of: 1) the giant dipole resonance (GDR) in highly excited nuclei, 2) the double giant dipole resonance (DGDR) and multiple phonon resonances, 3) the Gamow-Teller resonance (GTR), and 4) the damping of pygmy dipole resonance (PDR) in neutron-rich nuclei. The analyses of results of numerical calculations are discussed in comparison with the experimental systematics on i) the width and the shape of the GDR at finite temperature ^1,(N. Dinh Dang et al., Phys. Rev. C 61), 027302 (2000). and angular momentum(N. Dinh Dang, Nucl. Phys. A 687), 261c (2001). for tin isotopes , ii) the electromagnetic cross sections of DGDR for ^136Xe and ^208Pb on a lead target at relativistic energies(N. Dinh Dang, V. Kim Au, and A. Arima, Phys. Rev. Lett. 85), 1827 (2000)., iii) the strength function of GTR(N. Dinh Dang, T. Suzuki, and A. Arima, Preprint RIKEN-AF-NF 377 (2000), submitted.), and iv) the PDR in oxygen and calcium isotopes(N. Dinh Dang et al., Phys. Rev. C 63), 044302 (2001)..

  11. Optical phonon modes and polaron related parameters in GaxIn1-xP

    NASA Astrophysics Data System (ADS)

    Bouarissa, N.; Algarni, H.; Al-Hagan, O. A.; Khan, M. A.; Alhuwaymel, T. F.

    2018-02-01

    Based on a pseudopotential approach under the virtual crystal approximation that includes the effect of compositional disorder, the optical lattice vibration frequencies and polaron related parameters in zinc-blende GaxIn1-xP have been studied. Our findings showed generally reasonably good accord with data in the literature. Other case, our results are predictions. The composition dependence of longitudinal optical (LO) and transverse optical (TO) phonon modes, LO-TO splittings, Frӧhlich coupling parameter, Debye temperature of LO phonon frequency, and polaron effective mass has been analyzed and discussed. While a non-monotonic behavior has been noticed for the LO and TO phonon frequencies versus Ga concentration x, a monotonic behavior has been observed for the rest of the features of interest. The information derived from this investigation may be useful for optoelectronic technological applications.

  12. Coupled bipolarons and optical phonons as a model for high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Kasperczyk, J.

    1991-01-01

    The coherence length of the new high-temperature superconductors reaches a small value which is comparable to the dimensions of the unit cell of the compound. This means that a pair consists of two holes occupying the same site or two adjacent sites. Such a situation is described by a model of the local-pairs (bipolarons). The origin of local-pairs may come not only from strong enough electron or hole-phonon interaction but also from other interactions. Independent of the specific nature of such local-pairs, they can undergo a Bose-like condensation to the superconducting state at a critical temperature which is usually much lower than the temperature of the pair formation. An interplay of ferroelectric and superconducting properties is considered within the model of hole-like local-pairs interacting with optical phonons. Therefore, researchers extend the usual local-pair Hamiltonian by including a direct interaction between the local-pairs and the optical phonons. These optical phonons are known to play an important role in the ferroelectric transition and they transform into an additional pseudo-acoustic branch at the ferroelectric critical temperature. (This is associated with nonzero electric polarization due to the existence of two separate lattices composed of negative and positive ions, respectively.)

  13. Fully ab initio calculation of the resonant one-phonon Raman intensity of graphene

    NASA Astrophysics Data System (ADS)

    Reichardt, Sven; Wirtz, Ludger

    We developed a fully ab initio, many-body perturbation theory approach for the calculation of resonant, one-phonon Raman spectra. Our general approach is applicable to any material and here we present its application to the case of graphene. Our diagrammatic, first-principles approach allows us to go beyond and improve on an earlier theoretical study by Basko, which relied on an analytical calculation in certain limits. We investigate the dependence of the G peak intensity on both the excitation energy and Fermi level. Furthermore, our method allows us to identify the relevant electronic quantum pathways and to demonstrate the importance of the contributions from non-resonant electronic transitions. We also applied our approach to the calculation of the resonant one-phonon Raman spectrum of MoS2, with our results being in good agreement with experimental data. SR acknowledges financial support from the National Research Fund (FNR) Luxembourg.

  14. Resonant optical spectroscopy and coherent control of C r 4 + spin ensembles in SiC and GaN

    DOE PAGES

    Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; ...

    2017-01-15

    Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr 4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Polarization is made possible by the narrow optical linewidths of these ensembles (< 8.5 GHz), which are similar in magnitude to the ground state zero-field spinmore » splitting energies of the ions at liquid helium temperatures. We therefore are able to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that > 73% of the overall optical emission is contained with the defects’ zero-phonon lines. Lastly, these characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.« less

  15. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites.

    PubMed

    Kim, Heejae; Hunger, Johannes; Cánovas, Enrique; Karakus, Melike; Mics, Zoltán; Grechko, Maksim; Turchinovich, Dmitry; Parekh, Sapun H; Bonn, Mischa

    2017-09-25

    Methylammonium lead iodide perovskite is an outstanding semiconductor for photovoltaics. One of its intriguing peculiarities is that the band gap of this perovskite increases with increasing lattice temperature. Despite the presence of various thermally accessible phonon modes in this soft material, the understanding of how precisely these phonons affect macroscopic material properties and lead to the peculiar temperature dependence of the band gap has remained elusive. Here, we report a strong coupling of a single phonon mode at the frequency of ~ 1 THz to the optical band gap by monitoring the transient band edge absorption after ultrafast resonant THz phonon excitation. Excitation of the 1 THz phonon causes a blue shift of the band gap over the temperature range of 185 ~ 300 K. Our results uncover the mode-specific coupling between one phonon and the optical properties, which contributes to the temperature dependence of the gap in the tetragonal phase.Methylammonium lead iodide perovskite, a promising material for efficient photovoltaics, shows a unique temperature dependence of its optical properties. Kim et al. quantify the coupling between the optical gap and a lattice phonon at 1 THz, which favorably contributes to the thermal variation of the gap.

  16. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia

    2017-06-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

  17. Temperature-tunable Fano resonance induced by strong Weyl fermion-phonon coupling in TaAs

    NASA Astrophysics Data System (ADS)

    Dai, Yaomin; Trugman, S. A.; Zhu, J.-X.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Xu, B.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Qiu, X. G.

    Strong coupling between discrete phonon and continuous electron-hole pair excitations can give rise to a pronounced asymmetry in the phonon line shape, known as the Fano resonance. We present infrared spectroscopic studies on the recently discovered Weyl semimetal TaAs at different temperatures. Our experimental results reveal strong coupling between an infrared-active A1 phonon and electronic transitions near the Weyl points (Weyl fermions), as evidenced by the conspicuous asymmetry in the phonon line shape. More interestingly, the phonon line shape can be continuously tuned by temperature, which we demonstrate to arise from the suppression of the electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above the Fermi level. Supported by LANL LDRD and LANL-UCRP programs.

  18. Second-harmonic phonon spectroscopy of α -quartz

    NASA Astrophysics Data System (ADS)

    Winta, Christopher J.; Gewinner, Sandy; Schöllkopf, Wieland; Wolf, Martin; Paarmann, Alexander

    2018-03-01

    We demonstrate midinfrared second-harmonic generation as a highly sensitive phonon spectroscopy technique that we exemplify using α -quartz (SiO2) as a model system. A midinfrared free-electron laser provides direct access to optical phonon resonances ranging from 350 to 1400 cm-1 . While the extremely wide tunability and high peak fields of a free-electron laser promote nonlinear spectroscopic studies—complemented by simultaneous linear reflectivity measurements—azimuthal scans reveal crystallographic symmetry information of the sample. Additionally, temperature-dependent measurements show how damping rates increase, phonon modes shift spectrally and in certain cases disappear completely when approaching Tc=846 K where quartz undergoes a structural phase transition from trigonal α -quartz to hexagonal β -quartz, demonstrating the technique's potential for studies of phase transitions.

  19. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  20. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  1. Optic phonons and anisotropic thermal conductivity in hexagonal Ge 2Sb 2Te 5

    DOE PAGES

    Mukhopadhyay, Saikat; Lindsay, Lucas R.; Singh, David

    2016-11-16

    The lattice thermal conductivity ($κ$) of hexagonal Ge 2Sb 2Tesub>5 (h-GST) is studied via direct first-principles calculations. We find significant intrinsic anisotropy of ( $κ$ a/$κ$ c~2) of $κ$ in bulk h-GST along different transport directions. The dominant contribution to$κ$ is from optic phonons, ~75%. This is extremely unusual as the acoustic phonon modes carry most of the heat in typical semiconductors and insulators with small unit cells. Very recently, Lee et. al. observed anisotropic in GST thin films and attributed this to thermal resistance of amorphous regions near grain boundaries. However, our results suggest an additional strong intrinsic anisotropymore » for the pure hexagonal phase. This derives from bonding anisotropy along different crystal directions, specifically from weak interlayer coupling, which gives anisotropic phonon dispersions. The phonon spectrum of h-GST has very dispersive optic branches with higher group velocities along the a-axis as compared to flat optic bands along the c-axis. The importance of optic mode contributions for the thermal conductivity in low-$κ$ h-GST is unusual, and development of fundamental physical understanding of these contributions may be critical to better understanding of thermal conduction in other complex layered materials.« less

  2. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  3. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe 1-xM xSi, M=Ir,Os

    DOE PAGES

    Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; ...

    2015-03-31

    The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe 1-xM xSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling,more » leads to softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.« less

  4. Phase analysis of coherent radial-breathing-mode phonons in carbon nanotubes: Implications for generation and detection processes

    NASA Astrophysics Data System (ADS)

    Shimura, Akihiko; Yanagi, Kazuhiro; Yoshizawa, Masayuki

    2018-01-01

    In time-resolved pump-probe spectroscopy of carbon nanotubes, the fundamental understanding of the optical generation and detection processes of radial-breathing-mode (RBM) phonons has been inconsistent among the previous reports. In this study, the tunable-pumping/broadband-probing scheme was used to fully reveal the amplitude and phase of the phonon-modulated signals. We observed that signals detected off resonantly to excitonic transitions are delayed by π /2 radians with respect to resonantly detected signals, which demonstrates that RBM phonons are detected through dynamically modulating the linear response, not through adiabatically modulating the light absorption. Furthermore, we found that the initial phases are independent of the pump detuning across the first (E11) and the second (E22) excitonic resonances, evidencing that the RBM phonons are generated by the displacive excitation rather than stimulated Raman process.

  5. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceban, V., E-mail: victor.ceban@phys.asm.md; Macovei, M. A., E-mail: macovei@phys.asm.md

    2015-11-15

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  6. Femtosecond buildup of phonon-plasmon coupling in photoexcited InP observed by ultrabroadband THz probing

    NASA Astrophysics Data System (ADS)

    Huber, Rupert; Kübler, Carl; Tübel, Stefan; Leitenstorfer, Alfred

    2006-02-01

    We study the ultrafast transition of a pure longitudinal optical phonon resonance to a coupled phonon-plasmon system. Following 10-fs photoexcitation of intrinsic indium phosphide, ultrabroadband THz opto-electronics monitors the buildup of coherent beats of the emerging hybrid modes directly in the time domain with sub-cycle resolution. Mutual repulsion and redistribution of the oscillator strength of the interacting phonons and plasmons are seen to emerge on a delayed femtosecond time scale. Both branches of the mixed modes are monitored for various excitation densities N. We observe a pronounced anticrossing of the coupled resonances as a function of N. The characteristic formation time for phonon-plasmon coupling exhibits density dependence. The time is approximately set by one oscillation cycle of the upper branch of the mixed modes.

  7. Size-Dependent Coherent-Phonon Plasmon Modulation and Deformation Characterization in Gold Bipyramids and Nanojavelins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirschner, Matthew S.; Lethiec, Clotilde M.; Lin, Xiao-Min

    2016-04-04

    Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensemblesmore » with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation.« less

  8. Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene.

    PubMed

    Politano, Antonio; de Juan, Fernando; Chiarello, Gennaro; Fertig, Herbert A

    2015-08-14

    In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at q=Γ (LO branch) and q=K (TO branch), reflecting a significant electron-phonon coupling (EPC) to undoped Dirac electrons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the Γ point in quasifreestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum q~2k_{F} from Γ, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.

  9. Experimental evidence of zone-center optical phonon softening by accumulating holes in thin Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabuyanagi, Shoichi; Nishimura, Tomonori; Yajima, Takeaki

    2016-01-15

    We discuss the impact of free carriers on the zone-center optical phonon frequency in germanium (Ge). By taking advantage of the Ge-on-insulator structure, we measured the Raman spectroscopy by applying back-gate bias. Phonon softening by accumulating holes in Ge film was clearly observed. This fact strongly suggests that the phonon softening in heavily-doped Ge is mainly attributed to the free carrier effect rather than the dopant atom counterpart. Furthermore, we propose that the free carrier effect on phonon softening is simply understandable from the viewpoint of covalent bonding modification by free carriers.

  10. Tunable infrared reflectance by phonon modulation

    DOEpatents

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  11. Research on local resonance and Bragg scattering coexistence in phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong

    2017-04-01

    Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.

  12. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less

  13. Coherent Phonon Transport Measurement and Controlled Acoustic Excitations Using Tunable Acoustic Phonon Source in GHz-sub THz Range with Variable Bandwidth.

    PubMed

    Shen, Xiaohan; Lu, Zonghuan; Timalsina, Yukta P; Lu, Toh-Ming; Washington, Morris; Yamaguchi, Masashi

    2018-05-04

    We experimentally demonstrated a narrowband acoustic phonon source with simultaneous tunabilities of the centre frequency and the spectral bandwidth in the GHz-sub THz frequency range based on photoacoustic excitation using intensity-modulated optical pulses. The centre frequency and bandwidth are tunable from 65 to 381 GHz and 17 to 73 GHz, respectively. The dispersion of the sound velocity and the attenuation of acoustic phonons in silicon dioxide (SiO 2 ) and indium tin oxide (ITO) thin films were investigated using the acoustic phonon source. The sound velocities of SiO 2 and ITO films were frequency-independent in the measured frequency range. On the other hand, the phonon attenuations of both of SiO 2 and ITO films showed quadratic frequency dependences, and polycrystalline ITO showed several times larger attenuation than those in amorphous SiO 2 . In addition, the selective excitation of mechanical resonance modes was demonstrated in nanoscale tungsten (W) film using acoustic pulses with various centre frequencies and spectral widths.

  14. Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity.

    PubMed

    Jin, Xin; Cerea, Andrea; Messina, Gabriele C; Rovere, Andrea; Piccoli, Riccardo; De Donato, Francesco; Palazon, Francisco; Perucchi, Andrea; Di Pietro, Paola; Morandotti, Roberto; Lupi, Stefano; De Angelis, Francesco; Prato, Mirko; Toma, Andrea; Razzari, Luca

    2018-02-22

    Phonons (quanta of collective vibrations) are a major source of energy dissipation and drive some of the most relevant properties of materials. In nanotechnology, phonons severely affect light emission and charge transport of nanodevices. While the phonon response is conventionally considered an inherent property of a nanomaterial, here we show that the dipole-active phonon resonance of semiconducting (CdS) nanocrystals can be drastically reshaped inside a terahertz plasmonic nanocavity, via the phonon strong coupling with the cavity vacuum electric field. Such quantum zero-point field can indeed reach extreme values in a plasmonic nanocavity, thanks to a mode volume well below λ 3 /10 7 . Through Raman measurements, we find that the nanocrystals within a nanocavity exhibit two new "hybridized" phonon peaks, whose spectral separation increases with the number of nanocrystals. Our findings open exciting perspectives for engineering the optical phonon response of functional nanomaterials and for implementing a novel platform for nanoscale quantum optomechanics.

  15. Unified Description of the Optical Phonon Modes in N-Layer MoTe2

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane

    N -layer transition metal dichalcogenides (denoted MX2) provide a unique platform to investigate the evolution of the physical properties between the bulk (3D) and monolayer (quasi-2D) limits. Here, we present a unified analysis of the optical phonon modes in N-layer 2 H -MX2. The 2 H -phase (or hexagonal phase) is the most common polytype for semiconducting MX2 (such as MoS2). Using Raman spectroscopy, we have measured the manifold of low-frequency (rigid layer), mid-frequency (involving intralayer displacement of the chalcogen atoms only), and high-frequency (involving intralayer displacements of all atoms) Raman-active modes in N = 1 to 12 layer 2 H -molybdenenum ditelluride (MoTe2). For each monolayer mode, the N-dependent phonon frequencies give rise to fan diagrams that are quantitatively fit to a force constant model. This analysis allows us to deduce the frequencies of all the bulk (including silent) optical phonon modes.

  16. Phonon effects on the radiative recombination of excitons in double quantum dots

    NASA Astrophysics Data System (ADS)

    Karwat, Paweł; Sitek, Anna; Machnikowski, Paweł

    2011-11-01

    We study theoretically the radiative recombination of excitons in double quantum dots in the presence of carrier-phonon coupling. We show that the phonon-induced pure dephasing effects and transitions between the exciton states strongly modify the spontaneous emission process and make it sensitive to temperature, which may lead to nonmonotonic temperature dependence of the time-resolved luminescence. We show also that, under specific resonance conditions, the biexcitonic interband polarization can be coherently transferred to the excitonic one, leading to an extended lifetime of the total coherent polarization, which is reflected in the nonlinear optical spectrum of the system. We study the stability of this effect against phonon-induced decoherence.

  17. Simulation of optically pumped intersubband laser in magnetic field

    NASA Astrophysics Data System (ADS)

    Erić, Marko; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan

    2007-06-01

    Simulations of an optically pumped intersubband laser in magnetic field up to 60 T are performed within the steady-state rate equations model. The electron-polar optical phonon scattering is calculated using the confined and interface phonon model. A strong oscillatory optical gain vs. magnetic field dependence is found, with two dominant gain peaks occurring at 20 and 40 T, the fields which bring appropriate states into resonance with optical phonons and thus open additional relaxation paths. The peak at 20 T exceeds the value of gain achieved at zero field.

  18. Dependence of mobility on the electron concentration upon scattering at polar optical phonons in A{sup III}–N nitrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisenko, S. I., E-mail: sib@tpu.ru

    2016-04-15

    The dependence of the effective relaxation time on the electron concentration in A{sup III}–N nitrides in the case of electron scattering at polar longitudinal optical phonons is calculated by the marching method. The method takes into account the inelasticity of electron scattering at polar optical phonons for nitrides in the zinc-blende approximation. The calculations show a substantial increase in mobility in samples with a degenerate electron gas, if screening of the long-range potential of polar longitudinal optical phonons is taken into account.

  19. Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN

    DTIC Science & Technology

    2002-01-01

    Thermal Conductivity Enhancement by Optical Phono n Sub-Band Engineering of Nanostructures Based on C and BN DARPA CONTRACT MDA972-02-C-0044... Engineering in 3-D Nanostructures Based on C an d BN Nanotubes " 1.3.1a. Phonon dynamics and thermal properties of zigzag carbon nanotubes Content I...Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructure s Based on C and BN Nanotubes " . Here, the dynamics of the heat

  20. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.

    PubMed

    Shang, Jingzhi; Yu, Ting; Lin, Jianyi; Gurzadyan, Gagik G

    2011-04-26

    Ultrafast quasiparticle dynamics in graphene grown by chemical vapor deposition (CVD) has been studied by UV pump/white-light probe spectroscopy. Transient differential transmission spectra of monolayer graphene are observed in the visible probe range (400-650 nm). Kinetics of the quasiparticle (i.e., low-energy single-particle excitation with renormalized energy due to electron-electron Coulomb, electron-optical phonon (e-op), and optical phonon-acoustic phonon (op-ap) interactions) was monitored with 50 fs resolution. Extending the probe range to near-infrared, we find the evolution of quasiparticle relaxation channels from monoexponential e-op scattering to double exponential decay due to e-op and op-ap scattering. Moreover, quasiparticle lifetimes of mono- and randomly stacked graphene films are obtained for the probe photon energies continuously from 1.9 to 2.3 eV. Dependence of quasiparticle decay rate on the probe energy is linear for 10-layer stacked graphene films. This is due to the dominant e-op intervalley scattering and the linear density of states in the probed electronic band. A dimensionless coupling constant W is derived, which characterizes the scattering strength of quasiparticles by lattice points in graphene.

  1. Phonon spectra and the one-phonon and two-phonon densities of states of UO2 and PuO2

    NASA Astrophysics Data System (ADS)

    Poplavnoi, A. S.; Fedorova, T. P.; Fedorov, I. A.

    2017-04-01

    The vibrational spectra of uranium dioxide UO2 and plutonium dioxide PuO2, as well as the one-phonon densities of states and thermal occupation number weighted two-phonon densities of states, have been calculated within the framework of the phenomenological rigid ion model. It has been shown that the acoustic and optical branches of the spectra are predominantly determined by vibrations of the metal and oxygen atoms, respectively, because the atomic masses of the metal and oxygen differ from each other by an order of magnitude. On this basis, the vibrational spectra can be represented in two Brillouin zones, i.e., in the Brillouin zone of the crystal and the Brillouin zone of the oxygen sublattice. In this case, the number of optical branches decreases by a factor of two. The two-phonon densities of states consist of two broad structured peaks. The temperature dependences of the upper peak exhibit a thermal broadening of the phonon lines L01 and L02 in the upper part of the optical branches. The lower peak is responsible for the thermal broadening of the lowest two optical (T02, T01) and acoustic (LA, TA) branches.

  2. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis

    The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less

  3. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis; ...

    2017-05-26

    The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less

  4. Controlling thermal emission of phonon by magnetic metasurfaces

    PubMed Central

    Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.

    2017-01-01

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications. PMID:28157206

  5. Quantum Regime of a Two-Dimensional Phonon Cavity

    NASA Astrophysics Data System (ADS)

    Bolgar, Aleksey N.; Zotova, Julia I.; Kirichenko, Daniil D.; Besedin, Ilia S.; Semenov, Aleksander V.; Shaikhaidarov, Rais S.; Astafiev, Oleg V.

    2018-06-01

    We realize the quantum regime of a surface acoustic wave (SAW) resonator by demonstrating vacuum Rabi mode splitting due to interaction with a superconducting artificial atom. Reaching the quantum regime is physically difficult and technologically challenging since SAW devices consist of large arrays of narrow metal strips. This work paves the way for realizing analogues of quantum optical phenomena with phonons and can be useful in on-chip quantum electronics.

  6. Experimental study of surface plasmon-phonon polaritons in GaAs-based microstructures

    NASA Astrophysics Data System (ADS)

    Galimov, A. I.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Melentyev, G. A.; Artemyev, A. A.; Firsov, D. A.; Vorobjev, L. E.; Klimko, G. V.; Usikova, A. A.; Komissarova, T. A.; Sedova, I. V.; Ivanov, S. V.

    2018-03-01

    Optical properties of a heavily-doped GaAs epitaxial layer with a regular grating at its surface have been experimentally investigated in the terahertz spectral range. Reflectivity spectra for the layer with a profiled surface drastically differ from those for the as-grown epilayer with a planar surface. For s-polarized radiation, this difference is totally caused by the electromagnetic wave diffraction at the grating. For p-polarized radiation, additional resonant dips arise due to excitation of surface plasmon-phonon polaritons. Terahertz radiation emission under significant electron heating in an applied pulsed electric field has also been studied. Polarization measurements revealed pronounced peaks related to surface plasmon-phonon polariton resonances of the first and second order in the emission spectra.

  7. Axial interface optical phonon modes in a double-nanoshell system.

    PubMed

    Kanyinda-Malu, C; Clares, F J; de la Cruz, R M

    2008-07-16

    Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.

  8. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  9. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  10. Bilayer graphene phonovoltaic-FET: In situ phonon recycling

    NASA Astrophysics Data System (ADS)

    Melnick, Corey; Kaviany, Massoud

    2017-11-01

    A new heat harvester, the phonovoltaic (pV) cell, was recently proposed. The device converts optical phonons into power before they become heat. Due to the low entropy of a typical hot optical phonon population, the phonovoltaic can operate at high fractions of the Carnot limit and harvest heat more efficiently than conventional heat harvesting technologies such as the thermoelectric generator. Previously, the optical phonon source was presumed to produce optical phonons with a single polarization and momentum. Here, we examine a realistic optical phonon source in a potential pV application and the effects this has on pV operation. Supplementing this work is our investigation of bilayer graphene as a new pV material. Our ab initio calculations show that bilayer graphene has a figure of merit exceeding 0.9, well above previously investigated materials. This allows a room-temperature pV to recycle 65% of a highly nonequilibrium, minimum entropy population of phonons. However, full-band Monte Carlo simulations of the electron and phonon dynamics in a bilayer graphene field-effect transistor (FET) show that the optical phonons emitted by field-accelerated electrons can only be recycled in situ with an efficiency of 50%, and this efficiency falls as the field strength grows. Still, an appropriately designed FET-pV can recycle the phonons produced therein in situ with a much higher efficiency than a thermoelectric generator can harvest heat produced by a FET ex situ.

  11. Strong confinement of optical fields using localized surface phonon polaritons in cubic boron nitride.

    PubMed

    Chatzakis, Ioannis; Krishna, Athith; Culbertson, James; Sharac, Nicholas; Giles, Alexander J; Spencer, Michael G; Caldwell, Joshua D

    2018-05-01

    Phonon polaritons (PhPs) are long-lived electromagnetic modes that originate from the coupling of infrared (IR) photons with the bound ionic lattice of a polar crystal. Cubic-boron nitride (cBN) is such a polar, semiconductor material which, due to the light atomic masses, can support high-frequency optical phonons. Here we report on random arrays of cBN nanostructures fabricated via an unpatterned reactive ion etching process. Fourier-transform infrared reflection spectra suggest the presence of localized surface PhPs within the reststrahlen band, with quality factors in excess of 38 observed. These can provide the basis of next-generation IR optical components such as antennas for communication, improved chemical spectroscopies, and enhanced emitters, sources, and detectors.

  12. Opening complete band gaps in two dimensional locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Wang, Longqi

    2018-05-01

    Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.

  13. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    PubMed Central

    2011-01-01

    Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO) phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf PMID:21711581

  14. Coherent Manipulation of Phonons at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Shangjie; Ouyang, Min

    Phonons play a key role in almost every physical process, including for example dephasing phenomena of electronic quantum states, electric and heat transports. Therefore, understanding and even manipulating phonons represent a pre-requisite for tailoring phonons-mediated physical processes. In this talk, we will first present how to employ ultrafast optical spectroscopy to probe acoustic phonon modes in colloidal metallic nanoparticles. Furthermore, we have developed various phonon manipulation schemes that can be achieved by a train of optical pulses in time domain to allow selective control of phonon modes. Our theoretical modeling and simulation demonstrates an excellent agreement with experimental results, thus providing a future guideline on more complex phononic control at the nanoscale.

  15. Optical phonon behavior of columbite MgNb2O6 single crystals

    NASA Astrophysics Data System (ADS)

    Xu, Dapeng; Liu, Wenqiang; Zhou, Qiang; Cui, Tian; Yuan, Hongming; Wang, Wenquan; Liu, Ying; Shi, Zhan; Li, Liang

    2014-08-01

    To explore potential applications, MgNb2O6 single crystal grown previously by optical floating zone method was used as a prototype for optical phonon behavior investigation. Polarized Raman spectra obtained in adequate parallel and crossed polarization were presented. All the obtained Raman modes were identified for the MgNb2O6, in good agreement with previous theory analysis. The selection rules of Raman for the columbite group were validated. Additionally, in-site temperature-dependent Raman spectra of MgNb2O6 were also investigated in the range from 83 to 803 K. The strong four Ag phonon modes all exhibits red shift with the temperature increasing. But thermal expansion of spectra is sectional linear with inflection points at about 373 K. And the absolute value of dω/dT at high temperature is higher than the one at lower temperature.

  16. Optomechanical trampoline resonators.

    PubMed

    Kleckner, Dustin; Pepper, Brian; Jeffrey, Evan; Sonin, Petro; Thon, Susanna M; Bouwmeester, Dirk

    2011-09-26

    We report on the development of optomechanical "trampoline" resonators composed of a tiny SiO(2)/Ta(2)O(5) dielectric mirror on a silicon nitride micro-resonator. We observe optical finesses of up to 4 × 10(4) and mechanical quality factors as high as 9 × 10(5) in relatively massive (~100 ng) and low frequency (10-200 kHz) devices. This results in a photon-phonon coupling efficiency considerably higher than previous Fabry-Perot-type optomechanical systems. These devices are well suited to ultra-sensitive force detection, ground-state optical cooling experiments, and demonstrations of quantum dynamics for such systems. © 2011 Optical Society of America

  17. Optically detected cyclotron resonance investigations on 4H and 6H SiC: Band-structure and transport properties

    NASA Astrophysics Data System (ADS)

    Meyer, B. K.; Hofmann, D. M.; Volm, D.; Chen, W. M.; Son, N. T.; Janzén, E.

    2000-02-01

    We present experimental data on the band-structure and high-mobility transport properties of 6H and 4H-SiC epitaxial films based on optically detected cyclotron resonance investigations. From the orientational dependence of the electron effective mass in 6H-SiC we obtain direct evidence for the camels back nature of the conduction band between the M and L points. The broadening of the resonance signal in 4H-SiC as a function of temperature is used to extract information on electron mobilities and to conclude on the role of the different scattering mechanisms. Under high microwave powers an enhancement of the electron effective mass is found which is explained by a coupling of the electrons with longitudinal optical phonons.

  18. Engineering dissipation with phononic spectral hole burning

    NASA Astrophysics Data System (ADS)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  19. Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Dan, Nguyen Trung; Bechstedt, F.

    1996-02-01

    We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.

  20. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks.

    PubMed

    Golub, Mikhail V; Zhang, Chuanzeng

    2015-01-01

    This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.

  1. Substrate influence on the interlayer electron-phonon couplings in fullerene films probed with doubly-resonant SFG spectroscopy.

    PubMed

    Elsenbeck, Dennis; Das, Sushanta K; Velarde, Luis

    2017-07-19

    We present doubly-resonant sum frequency generation (DR-SFG) spectra of fullerene thin films on metallic and dielectric substrates as a way to investigate the interplay between nuclear and electronic coupling at buried interfaces. Modal and substrate selectivity in the electronic enhancement of the C 60 vibrational signatures is demonstrated for excitation wavelengths spanning the visible range. While the SFG response of the totally symmetric A g (2) mode of fullerene is distinctly coupled to the optically allowed electronic transition corresponding to the HOMO-LUMO+1 of C 60 (ca. 2.6 eV), the T 1u (4) vibrational mode appears to be coupled to a symmetry-forbidden HOMO-LUMO transition at lower energies (ca. 2.0 eV). For dielectric substrates, the DR-SFG intensity of the T 1u (4) mode shows lack of enhancement for upconversion wavelengths off-resonance with the optically-dark LUMO. However, the T 1u (4) mode shows a unique coupling to an intermediate state (∼2.4 eV) only for the fullerene films on the gold substrate. We attribute this coupling to unique interactions at the buried C 60 /gold interface. These results demonstrate the occurrence of clear electron-phonon couplings at the C 60 /substrate interfaces and shed light on the impact of these couplings on the optical response of electronically excited fullerene. This coupling may influence charge and energy transport in organic electronic devices mediated by vibrational motions. We also demonstrate a potential use of this added selectivity in chemical imaging.

  2. Doppler broadening of neutron-induced resonances using ab initio phonon spectrum

    NASA Astrophysics Data System (ADS)

    Noguere, G.; Maldonado, P.; De Saint Jean, C.

    2018-05-01

    Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO2 samples at T=23.7 K and T=293.7 K, to investigate the limitations of these models when an ab initio phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths Γ_{γ_{λ}} of the 238U resonances λ. The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature ( TN=30.8 K).

  3. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    NASA Astrophysics Data System (ADS)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  4. The Lamb wave bandgap variation of a locally resonant phononic crystal subjected to thermal deformation

    NASA Astrophysics Data System (ADS)

    Zhu, Yun; Li, Zhen; Li, Yue-ming

    2018-05-01

    A study on dynamical characteristics of a ternary locally resonant phononic crystal (PC) plate (i.e., hard scatterer with soft coating periodically disperse in stiff host matrix) is carried out in this paper. The effect of thermal deformation on the structure stiffness, which plays an important role in the PC's dynamical characteristics, is considered. Results show that both the start and the stop frequency of bandgap shift to higher range with the thermal deformation. In particular, the characteristics of band structure change suddenly at critical buckling temperature. The effect of thermal deformation could be utilized for tuning of phononic band structures, which can promote their design and further applications.

  5. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  6. Lattice anharmonicity, phonon dispersion, and thermal conductivity of PbTe studied by the phonon quasiparticle approach

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Sun, Tao; Zhang, Dong-Bo

    2018-05-01

    We investigated the vibrational property of lead telluride (PbTe) with a focus on lattice anharmonicity at moderate temperatures (300 phonon quasiparticle approach which combines first-principles molecular dynamics and lattice dynamics. The calculated anharmonic phonon dispersions are strongly temperature dependent and some phonon modes adopt giant frequency shifts, e.g., transverse optical modes in the long-wavlength regime. As a result, we witness the avoided crossing between transverse optical modes and longitudinal acoustic modes at elevated temperature, in good agreement with experimentation and available theoretical studies. These results, together with the large root-mean-square displacements of atoms, reveal a strong anharmonic effect in PbTe. The obtained phonon lifetimes allow studies of transport properties. For considered temperatures, the phonon mean free paths can be shorter than lattice constants at relatively high temperature, especially for optical modes. This finding goes against the widely employed minimal phonon mean free path concept. As such, the calculated lattice thermal conductivity of PbTe, which is indeed relatively small, does not have the prescribed minima at high temperature, showcasing the breakdown of the minimal mean free path theory. Our study provides a basis for delineating vibrational and transport properties of PbTe and other thermoelectric materials within the framework of the phonon gas model.

  7. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca

    2014-07-21

    Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the foldedmore » longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.« less

  8. Impact of optical phonon scattering on inversion channel mobility in 4H-SiC trenched MOSFETs

    NASA Astrophysics Data System (ADS)

    Kutsuki, Katsuhiro; Kawaji, Sachiko; Watanabe, Yukihiko; Onishi, Toru; Fujiwara, Hirokazu; Yamamoto, Kensaku; Yamamoto, Toshimasa

    2017-04-01

    Temperature characteristics of the channel mobility were investigated for 4H-SiC trenched MOSFETs in the range from 30 to 200 °C. The conventional model of channel mobility limited by carrier scattering is based on Si-MOSFETs and shows a greatly different channel mobility from the experimental value, especially at high temperatures. On the other hand, our improved mobility model taking into account optical phonon scattering yielded results in excellent agreement with experimental results. Moreover, the major factors limiting the channel mobility were found to be Coulomb scattering in a low effective field (<0.7 MV/cm) and optical phonon scattering in a high effective field.

  9. Hot-phonon generation in THz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2007-12-01

    Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.

  10. Anharmonic phonon decay in cubic GaN

    NASA Astrophysics Data System (ADS)

    Cuscó, R.; Domènech-Amador, N.; Novikov, S.; Foxon, C. T.; Artús, L.

    2015-08-01

    We present a Raman-scattering study of optical phonons in zinc-blende (cubic) GaN for temperatures ranging from 80 to 750 K. The experiments were performed on high-quality, cubic GaN films grown by molecular-beam epitaxy on GaAs (001) substrates. The observed temperature dependence of the optical phonon frequencies and linewidths is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional-theory calculations. The longitudinal-optical (LO) mode relaxation is found to occur via asymmetric decay into acoustic phonons, with an appreciable contribution of higher-order processes. The transverse-optical mode linewidth shows a weak temperature dependence and its frequency downshift is primarily determined by the lattice thermal expansion. The LO phonon lifetime is derived from the observed Raman linewidth and an excellent agreement with previous theoretical predictions is found.

  11. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  12. Towards a Quantum Interface between Diamond Spin Qubits and Phonons in an Optical Trap

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Momeen, M. Ummal; Hsu, Jen-Feng; D'Urso, Brian; Dutt, Gurudev

    2014-05-01

    We introduce a method to optically levitate a pre-selected nanodiamond crystal in air or vacuum. The nanodiamond containing nitrogen-vacancy (NV) centers is suspended on a monolayer of graphene transferred onto a patterned substrate. Laser light is focused onto the sample, using a home-built confocal microscope with a high numerical aperture (NA = 0.9) objective, simultaneously burning the graphene and creating a 3D optical trap that captures the falling nano-diamond at the beam waist. The trapped diamond is an ultra-high-Q mechanical oscillator, allowing us to engineer strong linear and quadratic coupling between the spin of the NV center and the phonon mode. The system could result in an ideal quantum interface between a spin qubit and vibrational phonon mode, potentially enabling applications in quantum information processing and sensing the development of quantum information storage and processing.

  13. Optimizing phonon space in the phonon-coupling model

    NASA Astrophysics Data System (ADS)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2017-08-01

    We present a new scheme to select the most relevant phonons in the phonon-coupling model, named here the time-blocking approximation (TBA). The new criterion, based on the phonon-nucleon coupling strengths rather than on B (E L ) values, is more selective and thus produces much smaller phonon spaces in the TBA. This is beneficial in two respects: first, it curbs the computational cost, and second, it reduces the danger of double counting in the expansion basis of the TBA. We use here the TBA in a form where the coupling strength is regularized to keep the given Hartree-Fock ground state stable. The scheme is implemented in a random-phase approximation and TBA code based on the Skyrme energy functional. We first explore carefully the cutoff dependence with the new criterion and can work out a natural (optimal) cutoff parameter. Then we use the freshly developed and tested scheme for a survey of giant resonances and low-lying collective states in six doubly magic nuclei looking also at the dependence of the results when varying the Skyrme parametrization.

  14. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons

    PubMed Central

    Lee, Jae-Hwang; Koh, Cheong Yang; Singer, Jonathan P; Jeon, Seog-Jin; Maldovan, Martin; Stein, Ori; Thomas, Edwin L

    2014-01-01

    The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced. PMID:24338738

  15. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-01-13

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  16. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  17. Dynamics of a Cr spin in a semiconductor quantum dot: Hole-Cr flip-flops and spin-phonon coupling

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Sunaga, M.; Makita, K.; Boukari, H.; Kuroda, S.; Besombes, L.

    2018-04-01

    A detailed analysis of the photoluminescence (PL) intensity distribution in singly Cr-doped CdTe/ZnTe quantum dots (QDs) is performed. First of all, we demonstrate that hole-Cr flip-flops induced by an interplay of the hole-Cr exchange interaction and the coupling with acoustic phonons are the main source of spin relaxation within the exciton-Cr complex. This spin flip mechanism appears in the excitation power dependence of the PL of the exciton as well as in the intensity distribution of the resonant PL. The resonant optical pumping of the Cr spin which was recently demonstrated can also be explained by these hole-Cr flip-flops. Despite the fast exciton-Cr spin dynamics, an analysis of the PL intensity under magnetic field shows that the hole-Cr exchange interaction in CdTe/ZnTe QDs is antiferromagnetic. In addition to the Cr spin dynamics induced by the interaction with carriers' spin, we finally demonstrate using time resolved optical pumping measurements that a Cr spin interacts with nonequilibrium acoustic phonons generated during the optical excitation inside or near the QD.

  18. Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-07-01

    A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.

  19. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  20. Optical studies of quantum confined nanostructures

    NASA Astrophysics Data System (ADS)

    Vamivakas, Anthony Nickolas

    Recent advances in material growth techniques have led to the laboratory realization of quantum confined nanostructures. By engineering the geometry of these systems it is possible to tailor their optical, electrical and vibrational properties. We now envision integrated electronic and optical devices potentially harnessing quantum mechanical properties of photons, electrons or even phonons. The realization of these next generation devices requires parallel advances in both electrical and optical characterization techniques. In this dissertation we study the optical properties of both zero-dimensional (0D) InAs/GaAs semiconductor quantum dots (QDs) and one-dimensional (1D) single wall carbon nanotubes (SWNTs). We utilize high resolution optical microscopy and spectroscopy techniques to experimentally study both individual QDs and SWNTs. The effect of quantum confinement on light-matter interaction in SWNTs is theoretically investigated. InAs QDs grown by Stranski-Krastanow self-assembly are buried in a GaAs matrix. The planar barriers presented by the dielectric boundary between the GaAs and the host medium limits the optical access to the InAs QDs. Incorporating a numerical aperture increasing microlens (NAIL) into a fiber-based confocal microscope we demonstrate improved ability to couple photons to and from a single InAs QD. With such immersion lens techniques we measure a record 12% extinction of a far-field laser by a single InAs QD. Even typical QD extinction of 6% is visible using a dc power-meter without the need for phase sensitive lock-in detection. This experimental advance will make possible the study of single QDs interacting with engineered vector laser beams. In the optical characterization of SWNTs, one-phonon resonant Raman scattering is employed to measure a tube's electronic resonances and determine the physical diameter and chirality of the tube under study. Recent work has determined excitons dominate the optical response of semiconducting

  1. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    NASA Astrophysics Data System (ADS)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  2. Angular dependence of Raman scattering selection rules for long-wavelength optical phonons in short-period GaAs/AlAs superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volodin, V. A., E-mail: volodin@isp.nsc.ru; Sachkov, V. A.; Sinyukov, M. P.

    2016-07-15

    The angular dependence of Raman scattering selection rules for optical phonons in short-period (001) GaAs/AlAs superlattices is calculated and experimentally studied. Experiments are performed using a micro-Raman setup, in the scattering geometry with the wavevectors of the incident and scattered light lying in the plane of superlattices (so-called in-plane geometry). Phonon frequencies are calculated using the Born model taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra are calculated in the framework of the deformation potential and electro-optical mechanisms. Calculations show an angular dependence of the selection rules for optical phonons with different directions of themore » wavevectors. Drastic differences in the selection rules are found for experimental and calculated spectra. Presumably, these differences are due to the Fröhlich mechanism in Raman scattering for short-period superlattices.« less

  3. Electrons and Phonons in Semiconductor Multilayers

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    1996-11-01

    This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.

  4. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3)O 3]–0.05PbTiO 3) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increasemore » in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.« less

  5. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    DOE PAGES

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; ...

    2017-03-27

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3)O 3]–0.05PbTiO 3) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increasemore » in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.« less

  6. Magnetic field detection using magnetorheological optical resonators

    NASA Astrophysics Data System (ADS)

    Rubino, Edoardo; Ioppolo, Tindaro

    2018-02-01

    In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of 106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.

  7. Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator.

    PubMed

    An, Kyongmo; Olsson, Kevin S; Weathers, Annie; Sullivan, Sean; Chen, Xi; Li, Xiang; Marshall, Luke G; Ma, Xin; Klimovich, Nikita; Zhou, Jianshi; Shi, Li; Li, Xiaoqin

    2016-09-02

    The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y_{3}Fe_{5}O_{12}, has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.

  8. Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons

    NASA Astrophysics Data System (ADS)

    Lone, Muzaffar Qadir; Yarlagadda, S.

    2016-04-01

    We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.

  9. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  10. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  11. Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.

    2012-07-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.

  12. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rury, Aaron S., E-mail: arury@usc.edu; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone,more » we find sub-cm{sup −1} oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.« less

  13. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-01

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  14. Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects

    NASA Astrophysics Data System (ADS)

    Pejova, Biljana

    2014-05-01

    Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample.

  15. Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions

    NASA Astrophysics Data System (ADS)

    Aeberhard, U.

    2011-07-01

    A quantum kinetic theory of direct and phonon-mediated indirect optical transitions is developed within the framework of the nonequilibrium Green’s function formalism. After validation against the standard Fermi golden rule approach in the bulk case, it is used in the simulation of photocurrent generation in ultrathin crystalline silicon p-i-n junction devices.

  16. Symmetry-adapted tight-binding calculations of the totally symmetric A1 phonons of single-walled carbon nanotubes and their resonant Raman intensity

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Lambin, Philippe

    2007-03-01

    The atomistic calculations of the physical properties of perfect single-walled carbon nanotubes based on the use of the translational symmetry of the nanotubes face increasing computational difficulties for most of the presently synthesized nanotubes with up to a few thousand atoms in the unit cell. This difficulty can be circumvented by use of the helical symmetry of the nanotubes and a two-atom unit cell. We present the results of such symmetry-adapted tight-binding calculations of the totally symmetric A1 phonons (the RBM and the G-band modes) and their resonant Raman intensity for several hundred nanotubes. In particular, we show that (1) the frequencies and the resonant Raman intensity of the RBM and the G-band modes show diameter and chirality dependence and family patterns, (2) the strong electron- A1LO phonon interactions in metallic nanotubes lead to Kohn anomalies at the zone center, (3) the G-band consists of a subband due to A1LO phonons of semiconducting tubes centered at ∼1593 cm -1, a subband of A1TO phonons at ∼1570 cm -1, and a subband of A1LO phonons of metallic tubes at ∼1540 cm -1. The latter prediction confirms previous theoretical results but disagrees with the commonly adopted assignment of the G-band features.

  17. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  18. Superradiance-Driven Phonon Laser

    NASA Astrophysics Data System (ADS)

    Jiang, Ya-Jing; Lü, Hao; Jing, Hui

    2018-04-01

    We propose to enhance the generation of a phonon laser by exploiting optical superradiance. In our scheme, the optomechanical cavity contains a movable membrane, which supports a mechanical mode, and the superradiance cavity can generate the coherent collective light emissions by applying a transverse pump to an ultracold intracavity atomic gas. The superradiant emission turns out to be capable of enhancing the phonon laser performance. This indicates a new way to operate a phonon laser with the assistance of coherent atomic gases trapped in a cavity or lattice potentials.

  19. Resonator memories and optical novelty filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  20. Resonator Memories And Optical Novelty Filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erie, Marie C.

    1987-05-01

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content-addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive ma-terials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydream-ing" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  1. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    DOE PAGES

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; ...

    2016-12-28

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less

  2. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less

  3. Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene

    NASA Astrophysics Data System (ADS)

    Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.

  4. Tunable phonon-cavity coupling in graphene membranes.

    PubMed

    De Alba, R; Massel, F; Storch, I R; Abhilash, T S; Hui, A; McEuen, P L; Craighead, H G; Parpia, J M

    2016-09-01

    A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling-energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 10(5)) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large elastic modulus of this material and capability for spatial symmetry breaking via electrostatic forces is expected to generate a wealth of nonlinear phenomena, including tunable intermodal coupling. We have fabricated circular graphene membranes and report strong phonon-cavity effects at room temperature, despite the modest Q factor (∼100) of this system. We observe both amplification into parametric instability (mechanical lasing) and the cooling of Brownian motion in the fundamental mode through excitation of cavity sidebands. Furthermore, we characterize the quenching of these parametric effects at large vibrational amplitudes, offering a window on the all-mechanical analogue of cavity optomechanics, where the observation of such effects has proven elusive.

  5. Exciton-phonon bound complex in single-walled carbon nanotubes revealed by high-field magneto-optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Weihang; Nakamura, Daisuke; Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp

    2013-12-02

    High-field magneto-optical spectroscopy was performed on highly enriched (6,5) single-walled carbon nanotubes. Spectra of phonon sidebands in both 1st and 2nd sub-bands were unchanged by an external magnetic field up to 52 T. The dark K-momentum singlet (D-K-S) exciton, which plays an important role for the external quantum efficiency of the system for both sub-bands in the near-infrared and the visible light region, respectively, was clarified to be the origin of the phonon sidebands.

  6. Phonon anomalies in FeS

    DOE PAGES

    Baum, A.; Milosavljevic, A.; Lazarevic, N.; ...

    2018-02-12

    Here, we present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics. We identify the Raman active A 1g and B 1g phonon modes, a second order scattering process involving two acoustic phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300 and 20 K of all observed phonon energies is governed by the lattice contraction. Below 20 K the phonon energies increase by 0.5–1 cm -1 , thus indicating putative short range magnetic order. Additionally, along with the experiments we performed lattice-dynamical simulations and a symmetry analysis for the phonons andmore » potential overtones and find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a gap between the optical branches becomes observable due to significant electron-phonon interaction.« less

  7. Phonon anomalies in FeS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, A.; Milosavljevic, A.; Lazarevic, N.

    Here, we present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics. We identify the Raman active A 1g and B 1g phonon modes, a second order scattering process involving two acoustic phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300 and 20 K of all observed phonon energies is governed by the lattice contraction. Below 20 K the phonon energies increase by 0.5–1 cm -1 , thus indicating putative short range magnetic order. Additionally, along with the experiments we performed lattice-dynamical simulations and a symmetry analysis for the phonons andmore » potential overtones and find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a gap between the optical branches becomes observable due to significant electron-phonon interaction.« less

  8. Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble.

    PubMed

    Wang, Rui-Xia; Cai, Kang; Yin, Zhang-Qi; Long, Gui-Lu

    2017-11-27

    In a diamond, the mechanical vibration-induced strain can lead to interaction between the mechanical mode and the nitrogen-vacancy (NV) centers. In this work, we propose to utilize the strain-induced coupling for the quantum non-demolition (QND) single phonon measurement and memory in a diamond. The single phonon in a diamond mechanical resonator can be perfectly absorbed and emitted by the NV centers ensemble (NVE) with adiabatically tuning the microwave driving. An optical laser drives the NVE to the excited states, which have much larger coupling strength to the mechanical mode. By adiabatically eliminating the excited states under large detuning limit, the effective coupling between the mechanical mode and the NVE can be used for QND measurement of the single phonon state. Under realistic experimental conditions, we numerically simulate the scheme. It is found that the fidelity of the absorbing and emitting process can reach a much high value. The overlap between the input and the output phonon shapes can reach 98.57%.

  9. Characteristics of tuneable optical filters using optical ring resonator with PCF resonance loop

    NASA Astrophysics Data System (ADS)

    Shalmashi, K.; Seraji, F. E.; Mersagh, M. R.

    2012-05-01

    A theoretical analysis of a tuneable optical filter is presented by proposing an optical ring resonator (ORR) using photonic crystal fiber (PCF) as the resonance loop. The influences of the characteristic parameters of the PCF on the filter response have been analyzed under steady-state condition of the ORR. It is shown that the tuneability of the filter is mainly achieved by changing the modulation frequency of the light signal applied to the resonator. The analyses have shown that the sharpness and the depth of the filter response are controlled by parameters such as amplitude modulation index of applied field, the coupling coefficient of the ORR, and hole-spacing and air-filling ratio of the PCF, respectively. When transmission coefficient of the loop approaches the coupling coefficient, the filter response enhances sharply with PCF parameters. The depth and the full-width at half-maximum (FWHM) of the response strongly depend on the number of field circulations in the resonator loop. With the proposed tuneability scheme for optical filter, we achieved an FWHM of ~1.55 nm. The obtained results may be utilized in designing optical add/drop filters used in WDM communication systems.

  10. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  11. Phonon self-energy corrections to non-zero wavevector phonon modes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred

    2012-02-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.

  12. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    DOE PAGES

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less

  13. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  14. Unified Description of the Optical Phonon Modes inN-Layer MoTe2

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane

    2015-10-01

    $N$-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three dimensional) and monolayer (quasi two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the $\\Gamma$-point optical phonons in $N$-layer $2H$-molybdenum ditelluride (MoTe$_2$). We observe a series of $N$-dependent low-frequency interlayer shear and breathing modes (below $40~\\rm cm^{-1}$, denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range $100-200~\\rm cm^{-1}$, denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range $200-300~\\rm cm^{-1}$, denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in $N$-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the $E_{2u}/E_{1g}$ and $B_{1u}/A_{1g}$ modes, respectively, and provide a measurement of the frequencies of the bulk silent $E_{2u}$ and $B_{1u}$ optical phonon modes. Our analysis could readily be generalized to other layered crystals.

  15. Phonon dynamics of graphene on metals

    NASA Astrophysics Data System (ADS)

    Taleb, Amjad Al; Farías, Daniel

    2016-03-01

    The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.

  16. Strain-assisted optomechanical coupling of polariton condensate spin to a micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Be'er, O.; Ohadi, H.; del Valle-Inclan Redondo, Y.; Ramsay, A. J.; Tsintzos, S. I.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.

    2017-12-01

    We report spin and intensity coupling of an exciton-polariton condensate to the mechanical vibrations of a circular membrane microcavity. We optically drive the microcavity resonator at the lowest mechanical resonance frequency while creating an optically trapped spin-polarized polariton condensate in different locations on the microcavity and observe spin and intensity oscillations of the condensate at the vibration frequency of the resonator. Spin oscillations are induced by vibrational strain driving, whilst the modulation of the optical trap due to the displacement of the membrane causes intensity oscillations in the condensate emission. Our results demonstrate spin-phonon coupling in a macroscopically coherent condensate.

  17. Electric-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Robinson, Deborah L. (Inventor); Hemmati, Hamid (Inventor)

    1994-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 Mbps. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 ns and to limit the required switching voltage to within 10 V. Experimentally, the resonant cavity can be maintained on resonance with respect to the input laser signal by monitoring the fluctuation of output intensity as the cavity is switched. This cavity locking scheme can be applied by using only the random data sequence, and without the need of additional dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, resonant cavity modulator has the potential of accommodating higher throughput power. Furthermore, mode matching into a bulk device is easier and typically can be achieved with higher efficiency. On the other hand, unlike waveguide modulators which are essentially traveling wave devices, the resonant cavity modulator requires that the cavity be maintained in resonance with respect to the incoming laser signal. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  18. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko

    2017-10-01

    We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.

  19. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  20. Dispersion of doppleron-phonon modes in strong coupling regime.

    PubMed

    Gudkov, V V; Zhevstovskikh, I V

    2004-04-01

    The dispersion equation for doppleron-phonon modes was constructed and solved analytically in the strong coupling regime. The Fermi surface model proposed previously for calculating the doppleron spectrum in an indium crystal was used. It was shown that in the vicinity of doppleron-phonon resonance, the dispersion curves of coupled modes form a gap qualitatively different from the one observed under helicon-phonon resonance: there is a frequency interval forbidden for existence of waves of definite circular polarization depending upon direction of the external DC magnetic field. The physical reason for it is interaction of the waves which have oppositely directed group velocities.

  1. The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures

    NASA Astrophysics Data System (ADS)

    Pokatilov, E. P.; Nika, D. L.; Askerov, A. S.; Zincenco, N. D.; Balandin, A. A.

    2007-12-01

    nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of the size-quantized excited electron subbands and the Fermi energy becomes comparable to the optical phonon energy. The latter leads to the oscillatory dependence of the electron mobility on the thickness of the heterostructure conduction channel layer. This effect is observable at room temperature and over a wide range of the carrier densities. The developed formalism and calculation procedure are readily applicable to other material systems. The described effect can be used for fine-tuning the confined electron and phonon states in the nanoscale heterostructures in order to achieve performance enhancement of the nanoscale electronic and optoelectronic devices.

  2. On-chip photonic-phononic emitter-receiver apparatus

    DOEpatents

    Cox, Jonathan Albert; Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Wang, Zheng; Shin, Heedeuk; Siddiqui, Aleem; Starbuck, Andrew Lea

    2017-07-04

    A radio-frequency photonic devices employs photon-phonon coupling for information transfer. The device includes a membrane in which a two-dimensionally periodic phononic crystal (PnC) structure is patterned. The device also includes at least a first optical waveguide embedded in the membrane. At least a first line-defect region interrupts the PnC structure. The first optical waveguide is embedded within the line-defect region.

  3. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    NASA Astrophysics Data System (ADS)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  4. Electro-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)

    1992-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  5. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  6. Electron-phonon coupling from finite differences

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  7. Optical resonators and neural networks

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  8. WGM Resonators for Terahertz-to-Optical Frequency Conversion

    NASA Technical Reports Server (NTRS)

    Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan

    2008-01-01

    Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is

  9. Temperature Dependence of Phonons in Pyrolitic Graphite

    DOE R&D Accomplishments Database

    Brockhouse, B. N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4?K and 1500?C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.

  10. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  11. Hybridization and electron-phonon coupling in ferroelectric BaTiO3 probed by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Fatale, S.; Moser, S.; Miyawaki, J.; Harada, Y.; Grioni, M.

    2016-11-01

    We investigated the ferroelectric perovskite material BaTiO3 by resonant inelastic x-ray scattering (RIXS) at the Ti L3 edge. We observe with decreasing temperature a transfer of spectral weight from the elastic to the charge-transfer spectral features, indicative of increasing Ti 3 d -O 2 p hybridization. When the incident photon energy selects transitions to the Ti 3 d eg manifold, the quasielastic RIXS response exhibits a tail indicative of phonon excitations. A fit of the spectral line shape by a theoretical model allows us to estimate the electron-phonon coupling strength M ˜0.25 eV, which places BaTiO3 in the intermediate coupling regime.

  12. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    PubMed

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.

  13. Spin Qubits in Germanium Structures with Phononic Gap

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.

    2014-01-01

    We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.

  14. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  15. Enhanced photoelastic modulation in silica phononic crystal cavities

    NASA Astrophysics Data System (ADS)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  16. Spacetime representation of topological phononics

    NASA Astrophysics Data System (ADS)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  17. First-principles modeling of resonant Raman scattering for the understanding of phonons and electrons in nanomaterials

    NASA Astrophysics Data System (ADS)

    Liang, Liangbo; Meunier, Vincent; Yan, Jia-An; Sumpter, Bobby

    Raman spectroscopy is a popular tool that can probe both phonons and electrons of the materials. First-principles modeling is important in aiding the understanding of experimental data. Raman modeling is typically based on the classical Placzek approximation and limited to the non-resonant condition, and thus the laser energy dependence of Raman intensities could not be captured. Here we showed that resonant Raman scattering could be captured by upgrading the classical approach, i.e., by calculating the dynamic dielectric tensor at the laser energy instead of the commonly used static value at zero energy. Our method was successfully applied to recently synthesized atomically precise graphene nanoribbons, and revealed the photon-energy-dependent Raman intensity of the radial breathing like mode (RBLM), which explained experimental observations that RBLM can be only observed in certain laser energies. Additionally, we also explored anisotropic 2D material, ReS2, and found that the angle-resolved Raman polarization dependence of its Raman modes is sensitive to the laser energy, as confirmed by recent experiments. The intricate electron-phonon coupling could lead to no simple rule for using Raman polarization dependence to determine the crystalline orientation. LL is supported by Eugene P. Wigner Fellowship at Oak Ridge National Laboratory and CNMS (a DOE Office of Science User Facility).

  18. Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Run; Dai, Yaomin; Xu, Bing

    Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less

  19. Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study

    DOE PAGES

    Yang, Run; Dai, Yaomin; Xu, Bing; ...

    2017-02-08

    Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less

  20. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-01-01

    The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.

  1. Longitudinal optical phonon-plasmon coupled modes of degenerate Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Ding, K.; Hu, Q. C.; Lin, W. W.; Huang, J. K.; Huang, F.

    2012-07-01

    We have investigated the interaction between carriers and polar phonons by using Raman scattering spectroscopy in highly conductive Al-doped ZnO films grown by metalorganic chemical vapor deposition. Different from the longitudinal optical phonon-plasmon coupled modes (LOPPCM) observed in nondegenerate ZnO, an A1(LO)-like mode appears at the low frequency side of the uncoupled A1(LO) mode, and it monotonically shifts to higher frequencies and approaches to the uncoupled A1(LO) mode as Al composition increases. Based on line shape calculations, the A1(LO)-like mode is assigned to the large wave-vector LOPPCM arising from nonconserving scattering dominated by the Al impurity-induced Fröhlich mechanism. Benefiting from the nonmonotonic Al composition dependence of the electron density, it is revealed that the LOPPCM depends mainly on the doping level but not the carrier concentration.

  2. From photons to phonons and back: a THz optical memory in diamond.

    PubMed

    England, D G; Bustard, P J; Nunn, J; Lausten, R; Sussman, B J

    2013-12-13

    Optical quantum memories are vital for the scalability of future quantum technologies, enabling long-distance secure communication and local synchronization of quantum components. We demonstrate a THz-bandwidth memory for light using the optical phonon modes of a room temperature diamond. This large bandwidth makes the memory compatible with down-conversion-type photon sources. We demonstrate that four-wave mixing noise in this system is suppressed by material dispersion. The resulting noise floor is just 7×10(-3) photons per pulse, which establishes that the memory is capable of storing single quanta. We investigate the principle sources of noise in this system and demonstrate that high material dispersion can be used to suppress four-wave mixing noise in Λ-type systems.

  3. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.

    PubMed

    Chang, I-Ya; Kim, DaeGwi; Hyeon-Deuk, Kim

    2016-07-20

    Quantum dot (QD) superlattices, periodically ordered array structures of QDs, are expected to provide novel photo-optical functions due to their resonant couplings between adjacent QDs. Here, we computationally demonstrated that electronic structures and phonon dynamics of a QD superlattice can be effectively and selectively controlled by manipulating its interior nanospace, where quantum resonance between neighboring QDs appears, rather than by changing component QD size, shape, compositions, etc. A simple H-passivated Si QD was examined to constitute one-, two-, and three-dimensional QD superlattices, and thermally fluctuating band energies and phonon modes were simulated by finite-temperature ab initio molecular dynamics (MD) simulations. The QD superlattice exhibited a decrease in the band gap energy enhanced by thermal modulations and also exhibited selective extraction of charge carriers out of the component QD, indicating its advantage as a promising platform for implementation in solar cells. Our dynamical phonon analyses based on the ab initio MD simulations revealed that THz-frequency phonon modes were created by an inter-QD crystalline lattice formed in the QD superlattice, which can contribute to low energy thermoelectric conversion and will be useful for direct observation of the dimension-dependent superlattice. Further, we found that crystalline and ligand-originated phonon modes inside each component QD can be independently controlled by asymmetry of the superlattice and by restriction of the interior nanospace, respectively. Taking into account the thermal effects at the finite temperature, we proposed guiding principles for designing efficient and space-saving QD superlattices to develop functional photovoltaic and thermoelectric devices.

  4. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-02-01

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.

  5. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo

    2015-02-02

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in ordermore » to evaluate their potential use as temperature sensors for acoustic phonons.« less

  6. Resonant optical device with a microheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  7. Phonon induced magnetism in ionic materials

    NASA Astrophysics Data System (ADS)

    Restrepo, Oscar D.; Antolin, Nikolas; Jin, Hyungyu; Heremans, Joseph P.; Windl, Wolfgang

    2014-03-01

    Thermoelectric phenomena in magnetic materials create exciting possibilities in future spin caloritronic devices by manipulating spin information using heat. An accurate understanding of the spin-lattice interactions, i.e. the coupling between magnetic excitations (magnons) and lattice vibrations (phonons), holds the key to unraveling their underlying physics. We report ab initio frozen-phonon calculations of CsI that result in non-zero magnetization when the degeneracy between spin-up and spin-down electronic density of states is lifted for certain phonon displacement patterns. For those, the magnetization as a function of atomic displacement shows a sharp resonance due to the electronic states on the displaced Cs atoms, while the electrons on indium form a continuous background magnetization. We relate this resonance to the generation of a two-level system in the spin-polarized Cs partial density of states as a function of displacement, which we propose to be described by a simple resonant-susceptibility model. Current work extends these investigations to semiconductors such as InSb. ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at OSU (Grant DMR-0820414).HJ and JPH are supported by AFOSR MURI Cryogenic Peltier Cooling, Contract #FA9550-10-1-0533.

  8. Understanding photon sideband statistics and correlation for determining phonon coherence

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-01-01

    Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.

  9. Electron–phonon coupling in hybrid lead halide perovskites

    PubMed Central

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  10. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  11. Spiral-Based Phononic Plates: From Wave Beaming to Topological Insulators

    NASA Astrophysics Data System (ADS)

    Foehr, André; Bilal, Osama R.; Huber, Sebastian D.; Daraio, Chiara

    2018-05-01

    Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification, derived from ad hoc, often problem-specific geometries of the materials' building blocks. Here, we present a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg scattering, local resonances, and inertial amplification. We present two examples of phononic materials that can control waves with wavelengths much larger than the lattice's periodicity. (1) A wave beaming plate, which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming trajectory can be continuously tuned, by varying the driving frequency or the spirals' orientation. (2) A topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg limit of the structured lattice of spirals.

  12. Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN

    NASA Astrophysics Data System (ADS)

    Koehl, William

    Spins bound to point defects have emerged as an important resource in quantum information and spintronic technologies, especially as new materials systems have been developed that enable robust and precise quantum state control via optical, electronic, or mechanical degrees of freedom. In an effort to broaden the range of materials platforms available to such defect-based quantum technologies, we have recently begun exploring optically active transition metal ion spins doped into common wide-bandgap semiconductors. The spins of such ions are derived in part from unpaired d orbital electron states, suggesting in some cases that they may be portable across multiple materials systems. This in contrast to many vacancy-related defect spins such as the diamond nitrogen vacancy center or silicon carbide divacancy, which are formed primarily from the dangling bond states of the host. Here we demonstrate ensemble optical spin polarization and time-resolved optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). We find that these impurities possess narrow optical linewidths (<8.5 GHz at cryogenic temperatures) that allow us to optically resolve the magnetic sublevels of the spins even when probing a large ensemble of many ions simultaneously. This enables us to directly polarize and probe the Cr4+ spins using straightforward optical techniques, which we then combine with coherent microwave excitation in order to characterize the dynamical properties of the ensemble. Significantly, these near-infrared emitters also possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained within the defects' zero-phonon lines. These characteristics make the Cr4+ ion system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials. In collaboration with

  13. Designer Disordered Complex Media: Hyperuniform Photonic and Phononic Band Gap Materials

    NASA Astrophysics Data System (ADS)

    Amoah, Timothy

    In this thesis we investigate designer disordered complex media for photonics and phononics applications. Initially we focus on the photonic properties and we analyse hyperuniform disordered structures (HUDS) using numerical simulations. Photonic HUDS are a new class of photonic solids, which display large, isotropic photonic band gaps (PBG) comparable in size to the ones found in photonic crystals (PC). We review their complex interference properties, including the origin of PBGs and potential applications. HUDS combine advantages of both isotropy due to disorder (absence of long-range order) and controlled scattering properties from uniform local topology due to hyperuniformity (constrained disorder). The existence of large band gaps in HUDS contradicts the longstanding intuition that Bragg scattering and long-range translational order is required in PBG formation, and demonstrates that interactions between Mie-like local resonances and multiple scattering can induce on their own PBGs. The discussion is extended to finite height effects of planar architectures such as pseudo-band-gaps in photonic slabs as well as the vertical confinement in the presence of disorder. The particular case of a silicon-on-insulator compatible hyperuniform disordered network structure is considered for TE polarised light. We address technologically realisable designs of HUDS including localisation of light in point-defect-like optical cavities and the guiding of light in freeform PC waveguide analogues. Using finite-difference time domain and band structure computer simulations, we show that it is possible to construct optical cavities in planar hyperuniform disordered solids with isotropic band gaps that effciently confine TE polarised radiation. We thus demonstrate that HUDS are a promising general-purpose design platform for integrated optical micro-circuitry. After analysing HUDS for photonic applications we investigate them in the context of elastic waves towards phononics

  14. III-V Semiconductor Optical Micro-Ring Resonators

    NASA Astrophysics Data System (ADS)

    Grover, Rohit; Absil, Philippe P.; Ibrahim, Tarek A.; Ho, Ping-Tong

    2004-05-01

    We describe the theory of optical ring resonators, and our work on GaAs-AlGaAs and GaInAsP-InP optical micro-ring resonators. These devices are promising building blocks for future all-optical signal processing and photonic logic circuits. Their versatility allows the fabrication of ultra-compact multiplexers/demultiplexers, optical channel dropping filters, lasers, amplifiers, and logic gates (to name a few), which will enable large-scale monolithic integration for optics.

  15. Seeing the invisible plasma with transient phonons in cuprous oxide

    DOE PAGES

    Frazer, Laszlo; Schaller, Richard D.; Chang, Kelvin B.; ...

    2016-12-12

    Here, the emission of phonons from electron–hole plasma is the primary limit on the efficiency of photovoltaic devices operating above the bandgap. In cuprous oxide (Cu 2O) there is no luminescence from electron–hole plasma. Therefore, we searched for optical phonons emitted by energetic charge carriers using phonon-to-exciton upconversion transitions. We found 14 meV phonons with a lifetime of 0.916 ± 0.008 ps and 79 meV phonons that are longer lived and overrepresented. It is surprising that the higher energy phonon has a longer lifetime.

  16. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Lin, Fan-Shun

    2018-07-01

    In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.

  17. Preface: Phonons 2007

    NASA Astrophysics Data System (ADS)

    Perrin, Bernard

    2007-06-01

    Conference logo The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how

  18. Fabrication of phonon-based metamaterial structures using focused ion beam patterning

    NASA Astrophysics Data System (ADS)

    Bassim, Nabil D.; Giles, Alexander J.; Ocola, Leonidas E.; Caldwell, Joshua D.

    2018-02-01

    The focused ion beam (FIB) is a powerful tool for rapid prototyping and machining of functional nanodevices. It is employed regularly to fabricate test metamaterial structures but, to date, has been unsuccessful in fabricating metamaterial structures with features at the nanoscale that rely on surface phonons as opposed to surface plasmons because of the crystalline damage that occurs with the collision cascade associated with ion sputtering. In this study, we employ a simple technique of protecting the crystalline substrate in single-crystal 4H-SiC to design surface phonon polariton-based optical resonance structures. By coating the material surface with a thin film of chromium, we have placed a material of high sputter resistance on the surface, which essentially absorbs the energy in the beam tails. When the beam ultimately punches through the Cr film, the hard walls in the film have the effect of channeling the beam to create smooth sidewalls. This demonstration opens the possibility of further rapid-prototyping of metamaterials using FIB.

  19. Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.

    NASA Astrophysics Data System (ADS)

    Mehta, Sushrut Madhukar

    Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.

  20. Electrical modulation and switching of transverse acoustic phonons

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  1. Resonant inelastic light scattering and photoluminescence in isolated nc-Si/SiO{sub 2} quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bairamov, F. B., E-mail: Bairamov@mail.ioffe.ru; Toporov, V. V.; Poloskin, E. D.

    2013-05-15

    Observation at the room temperature the spectra of the resonant inelastic light scattering by the spatially confined optical phonons as well as the excitonic luminescence caused by confinement effects in the ensemble of isolated quantum dots (QDs) nc-Si/SiO{sub 2} is reported. It is shown that the samples investigated are high purity and high crystalline perfection quality nc-Si/SiO{sub 2} QDs without amorphous phase {alpha}-Si and contaminants. Comparison between the experimental data obtained and phenomenological model of the strong space confinement of optical phonons revealed the need of the more accurate form of the weighted function for the confinement of optical phonons.more » It is shown that simultaneous detection of the inelastic light scattering by the confinement of phonons and the excitonic luminescence spectra by the confined electron-hole pairs in the nc-Si/SiO{sub 2} QDs allows selfconsistently to determine more accurate values of the diameter of the nc-Si/SiO{sub 2} QDs.« less

  2. Phonon-based scalable platform for chip-scale quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinke, Charles M.; El-Kady, Ihab

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less

  3. Phonon-based scalable platform for chip-scale quantum computing

    DOE PAGES

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-19

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less

  4. Low-frequency band gap of locally resonant phononic crystals with a dual-base plate.

    PubMed

    Zuo, Shuguang; Huang, Haidong; Wu, Xudong; Zhang, Minghai; Ni, Tianxin

    2018-03-01

    To achieve a wider band gap and a lower cut-on frequency, a locally resonant phononic crystal (LRPC) with a dual-base plate is investigated in this paper. Compared with the LRPC with a single plate, the band structure of the LRPC with a dual-base plate is calculated using the method of plane wave expansion and verified by the finite element method. According to the analysis of the band curves of the LRPC with a dual-base plate, the mechanisms are explained. Next, the influences of the thickness of the plates, the stiffness of the springs, the mass of resonators, and the lattice constant are also investigated. The results show that the structural asymmetry between the upper and the lower plate is conducive to reducing the cut-on frequency and broadening the band gap effectively. The results indicate a different approach for the application of LRPC in vibration and noise control.

  5. Ballistic phonon transmission in quasiperiodic acoustic nanocavities

    NASA Astrophysics Data System (ADS)

    Mo, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Chen, Yuan; Hu, Wangyu; Wang, Ling-Ling; Pan, Anlian

    2011-04-01

    Ballistic phonon transport is investigated in acoustic nanocavities modulated in a quasiperiodic manner at low temperatures. Two different types of quasiperiodic acoustic nanocavities are considered: the lengths of nanocavities (QPL) and the lengths of the bridges (QPD) connecting two successive nanocavities are modulated according to the Fibonacci rule. We demonstrate that the transmission spectra and thermal conductance in both systems are similar, which is more prominent in QPD than in QPL. The transmission and thermal conductance of QPD are larger than those of QPL due to the fact that constant nanocavity length in QPD would strengthen ballistic phonon resonant transport, while varying nanocavity length in QPL lead to strong phonon scattering.

  6. Phonons and elasticity of cementite through the Curie temperature

    NASA Astrophysics Data System (ADS)

    Mauger, L.; Herriman, J. E.; Hellman, O.; Tracy, S. J.; Lucas, M. S.; Muñoz, J. A.; Xiao, Yuming; Li, J.; Fultz, B.

    2017-01-01

    Phonon partial densities of states (pDOS) of Fe573C were measured from cryogenic temperatures through the Curie transition at 460 K using nuclear resonant inelastic x-ray scattering. The cementite pDOS reveal that low-energy acoustic phonons shift to higher energies (stiffen) with temperature before the magnetic transition. This unexpected stiffening suggests strongly nonharmonic vibrational behavior that impacts the thermodynamics and elastic properties of cementite. Density functional theory calculations reproduced the anomalous stiffening observed experimentally in cementite by accounting for phonon-phonon interactions at finite temperatures. The calculations show that the low-energy acoustic phonon branches with polarizations along the [010] direction are largely responsible for the anomalous thermal stiffening. The effect was further localized to the motions of the FeII site within the orthorhombic structure, which participates disproportionately in the anomalous phonon stiffening.

  7. Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon

    NASA Astrophysics Data System (ADS)

    Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-03-01

    Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.

  8. Optical trapping apparatus, methods and applications using photonic crystal resonators

    DOEpatents

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  9. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  10. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong,more » impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.« less

  11. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    DOE PAGES

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.; ...

    2016-10-25

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong,more » impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.« less

  12. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.

    PubMed

    Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry

    2014-07-09

    Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.

  13. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  14. Designing Phononic Crystals with Wide and Robust Band Gaps

    NASA Astrophysics Data System (ADS)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  15. Measurement of optical Feshbach resonances in an ideal gas.

    PubMed

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  16. Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions

    NASA Astrophysics Data System (ADS)

    Itin, A. P.; Katsnelson, M. I.

    2018-05-01

    Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.

  17. Development of optical WGM resonators for biosensors

    NASA Astrophysics Data System (ADS)

    Brice, I.; Pirktina, A.; Ubele, A.; Grundsteins, K.; Atvars, A.; Viter, R.; Alnis, J.

    2017-12-01

    Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.

  18. Band gap structures for 2D phononic crystals with composite scatterer

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-qiao; Li, Tuan-jie; Zhang, Jia-long; Zhang, Zhen; Tang, Ya-qiong

    2018-05-01

    We investigated the band gap structures in two-dimensional phononic crystals with composite scatterer. The composite scatterers are composed of two materials (Bragg scattering type) or three materials (locally resonance type). The finite element method is used to calculate the band gap structure, eigenmodes and transmission spectrum. The variation of the location and width of band gap are also investigated as a function of material ratio in the scatterer. We have found that the change trends the widest band gap of the two phononic crystals are different as the material ratio changing. In addition to this, there are three complete band gaps at most for the Bragg-scattering-type phononic crystals in the first six bands; however, the locally resonance-type phononic crystals exist only two complete band gap at most in the first six bands. The gap-tuning effect can be controlled by the material ratio in the scatterer.

  19. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    Electron-phonon interactions are of fundamental importance in the study of the optical properties of solids at finite temperatures. Here we present a new first-principles computational technique based on the Williams-Lax theory for performing predictive calculations of the optical spectra, including quantum zero-point renormalization and indirect absorption. The calculation of the Williams-Lax optical spectra is computationally challenging, as it involves the sampling over all possible nuclear quantum states. We develop an efficient computational strategy for performing ''one-shot'' finite-temperature calculations. These require only a single optimal configuration of the atomic positions. We demonstrate our methodology for the case of Si, C, and GaAs, yielding absorption coefficients in good agreement with experiment. This work opens the way for systematic calculations of optical spectra at finite temperature. This work was supported by the UK EPSRC (EP/J009857/1 and EP/M020517/) and the Leverhulme Trust (RL-2012-001), and the Graphene Flagship (EU-FP7-604391).

  20. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  1. Creating a zero-order resonator using an optical surface transformation

    PubMed Central

    Sun, Fei; Ge, Xiaochen; He, Sailing

    2016-01-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359

  2. White-Light Whispering Gallery Mode Optical Resonator System and Method

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  3. Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Fathololoumi, S.; Dupont, E.; Wasilewski, Z. R.; Chan, C. W. I.; Razavipour, S. G.; Laframboise, S. R.; Huang, Shengxi; Hu, Q.; Ban, D.; Liu, H. C.

    2013-03-01

    We experimentally investigated the effect of oscillator strength (radiative transition diagonality) on the performance of resonant phonon-based terahertz quantum cascade lasers that have been optimized using a simplified density matrix formalism. Our results show that the maximum lasing temperature (Tmax) is roughly independent of laser transition diagonality within the lasing frequency range of the devices under test (3.2-3.7 THz) when cavity loss is kept low. Furthermore, the threshold current can be lowered by employing more diagonal transition designs, which can effectively suppress parasitic leakage caused by intermediate resonance between the injection and the downstream extraction levels. Nevertheless, the current carrying capacity through the designed lasing channel in more diagonal designs may sacrifice even more, leading to electrical instability and, potentially, complete inhibition of the device's lasing operation. We propose a hypothesis based on electric-field domain formation and competition/switching of different current-carrying channels to explain observed electrical instability in devices with lower oscillator strengths. The study indicates that not only should designers maximize Tmax during device optimization but also they should always consider the risk of electrical instability in device operation.

  4. Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.

    PubMed

    Gilburd, Leonid; Xu, Xiaoji G; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2016-01-21

    Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed.

  5. Terahertz Sum-Frequency Excitation of a Raman-Active Phonon.

    PubMed

    Maehrlein, Sebastian; Paarmann, Alexander; Wolf, Martin; Kampfrath, Tobias

    2017-09-22

    In stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sum-frequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels. Coherent control of an optical lattice vibration of diamond is achieved by an intense terahertz pulse whose spectrum is centered at half the phonon frequency of 40 THz. Remarkably, the carrier-envelope phase of the THz pulse is directly transferred into the phase of the lattice vibration. New prospects in general infrared spectroscopy, action spectroscopy, and lattice trajectory control in the electronic ground state emerge.

  6. ``New'' energy states lead to phonon-less optoelectronic properties in nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Yu, Yixuan; Korgel, Brian; Nagpal, Prashant

    2014-03-01

    Silicon is arguably one of the most important technological material for electronic applications. However, indirect bandgap of silicon semiconductor has prevented optoelectronic applications due to phonon assistance required for photon light absorption/emission. Here we show, that previously unexplored surface states in nanostructured silicon can couple with quantum-confined energy levels, leading to phonon-less exciton-recombination and photoluminescence. We demonstrate size dependence (2.4 - 8.3 nm) of this coupling observed in small uniform silicon nanocrystallites, or quantum-dots, by direct measurements of their electronic density of states and low temperature measurements. To enhance the optical absorption of the these silicon quantum-dots, we utilize generation of resonant surface plasmon polariton waves, which leads to several fold increase in observed spectrally-resolved photocurrent near the quantum-confined bandedge states. Therefore, these enhanced light emission and absorption enhancement can have important implications for applications of nanostructured silicon for optoelectronic applications in photovoltaics and LEDs.

  7. Fabry-Perot confocal resonator optical associative memory

    NASA Astrophysics Data System (ADS)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  8. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  9. Micro-optomechanical trampoline resonators

    NASA Astrophysics Data System (ADS)

    Pepper, Brian; Kleckner, Dustin; Sonin, Petro; Jeffrey, Evan; Bouwmeester, Dirk

    2011-03-01

    Recently, micro-optomechanical devices have been proposed for implementation of experiments ranging from non-demolition measurements of phonon number to creation of macroscopic quantum superpositions. All have strenuous requirements on optical finesse, mechanical quality factor, and temperature. We present a set of devices composed of dielectric mirrors on Si 3 N4 trampoline resonators. We describe the fabrication process and present data on finesse and quality factor. The authors gratefully acknowledge support from NSF PHY-0804177 and Marie Curie EXT-CT-2006-042580.

  10. Nanostructures Exploit Hybrid-Polariton Resonances

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of

  11. The role of electron-phonon interactions on the coherence lifetime of monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.

    2017-10-01

    We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with 'ab initio' calculations of the phonon energies and the phonon density of state reveal strong interaction with the E‧ and E″ phonon modes.

  12. The role of electron-phonon interactions on the coherence lifetime of monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.

    2017-06-01

    We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with ‘ab initio’ calculations of the phonon energies and the phonon density of state reveal strong interaction with the E’ and E” phonon modes.

  13. Optical phonon characteristics of an orthorhombic-transformed polymorph of CaTa2O6 single crystal fibre

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Andreeta, M. R. B.; Hernandes, A. C.; Dias, A.; Moreira, R. L.

    2014-03-01

    Infrared-reflectivity spectroscopy and micro-Raman scattering were used to determine the optical phonon features of orthorhombic calcium tantalite (CaTa2O6) single crystal fibres. The fibres, obtained by the Laser-Heated Pedestal Growth method, grew into an ordered cubic structure \\left( Pm\\bar{3} \\right). Long-time annealing was used to induce a polymorphic transformation to an aeschynite orthorhombic structure (Pnma space group). The phase transformation led to the appearance of structural domains and micro-cracks, responsible for diffuse scattering and depolarization of the scattered light in the visible range, but not in the infrared region. Thus, polarized infrared spectroscopy could be performed within oriented single domains, with an appropriate microscope, allowing us to determine all relevant polar phonons of the orthorhombic CaTa2O6. The obtained phononic dielectric response, {{\\epsilon }_{r}} = 22.4 and = 86 × 103 GHz, shows the appropriateness of the material for microwave applications. Totally symmetric Raman modes could be resolved by polarization, after re-polishing the cracked sample surface.

  14. Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments

    PubMed Central

    Galliou, Serge; Goryachev, Maxim; Bourquin, Roger; Abbé, Philippe; Aubry, Jean Pierre; Tobar, Michael E.

    2013-01-01

    Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated. PMID:23823569

  15. Acoustic interference suppression of quartz crystal microbalance sensor arrays utilizing phononic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Yu; Huang, Li-Chung; Wang, Wei-Shan; Lin, Yu-Ching; Wu, Tsung-Tsong; Sun, Jia-Hong; Esashi, Masayoshi

    2013-04-01

    Acoustic interference suppression of quartz crystal microbalance (QCM) sensor arrays utilizing phononic crystals is investigated in this paper. A square-lattice phononic crystal structure is designed to have a complete band gap covering the QCM's resonance frequency. The monolithic sensor array consisting of two QCMs separated by phononic crystals is fabricated by micromachining processes. As a result, 12 rows of phononic crystals with band gap boost insertion loss between the two QCMs by 20 dB and also reduce spurious modes. Accordingly, the phononic crystal is verified to be capable of suppressing the acoustic interference between adjacent QCMs in a sensor array.

  16. Specularity of longitudinal acoustic phonons at rough surfaces

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Ghossoub, Marc G.; Valavala, Krishna; Ma, Jun; Rajagopal, Manjunath C.; Sinha, Sanjiv

    2018-01-01

    The specularity of phonons at crystal surfaces is of direct importance to thermal transport in nanostructures and to dissipation in nanomechanical resonators. Wave scattering theory provides a framework for estimating wavelength-dependent specularity, but experimental validation remains elusive. Widely available thermal conductivity data presents poor validation since the involvement of the infinitude of phonon wavelengths in thermal transport presents an underconstrained test for specularity theory. Here, we report phonon specularity by measuring the lifetimes of individual coherent longitudinal acoustic phonon modes excited in ultrathin (36-205 nm) suspended silicon membranes at room temperature over the frequency range ˜20 -118 GHz. Phonon surface scattering dominates intrinsic Akhiezer damping at frequencies ≳60 GHz, enabling measurements of phonon boundary scattering time over wavelengths ˜72 -140 nm . We obtain detailed statistics of the surface roughness at the top and bottom surfaces of membranes using HRTEM imaging. We find that the specularity of the excited modes are in good agreement with solutions of wave scattering only when the TEM statistics are corrected for projection errors. The often-cited Ziman formula for phonon specularity also appears in good agreement with the data, contradicting previous results. This work helps to advance the fundamental understanding of phonon scattering at the surfaces of nanostructures.

  17. Phonons and their dispersion in model ferroelastics Hg2Hal2

    NASA Astrophysics Data System (ADS)

    Roginskii, E. M.; Kvasov, A. A.; Markov, Yu. F.; Smirnov, M. B.

    2012-05-01

    Dispersion relations of the acoustic and optical phonon frequencies have been calculated and plotted, and the density of states of the phonon spectrum of Hg2Cl2 and Hg2Br2 crystals has been derived. The effect of hydrostatic pressure on the frequencies of acoustic and optical phonons and their dispersion has been theoretically analyzed. It has been found that an increase in the pressure leads to a strong softening of the slowest acoustic TA branch (the soft mode) at the X point of the Brillouin zone boundary, which is consistent with the phenomenological Landau theory and correlates with experiment.

  18. Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Dolan, P. R.; Grange, T.; Trichet, A. A. P.; Hornecker, G.; Chen, Y. C.; Weng, L.; Hughes, G. M.; Watt, A. A. R.; Auffèves, A.; Smith, J. M.

    2015-12-01

    We demonstrate the tunable enhancement of the zero phonon line of a single nitrogen-vacancy colour centre in diamond at cryogenic temperature. An open cavity fabricated using focused ion beam milling provides mode volumes as small as 1.24 μm3 (4.7 {λ }3) and quality factor Q≃ 3000. In situ tuning of the cavity resonance is achieved with piezoelectric actuators. At optimal coupling to a TEM00 cavity mode, the signal from individual zero phonon line transitions is enhanced by a factor of 6.25 and the overall emission rate of the NV- centre is increased by 40% compared with that measured from the same centre in the absence of cavity field confinement. This result represents a step forward in the realisation of efficient spin-photon interfaces and scalable quantum computing using optically addressable solid state spin qubits.

  19. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  20. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  1. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE PAGES

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...

    2018-04-16

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  2. Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Abouelsayed, A.; Ebrahim, M. R.; El hotaby, W.; Hassan, S. A.; Al-Ashkar, Emad

    2017-10-01

    We present terahertz spectroscopy study on spherical nanoparticles powder mixture of aluminum, alumina, and MWCNTs induced by surface mechanical attrition treatment (SMAT) of aluminum substrates. Surface alloying of AL, Al2O3 0.95% and MWCNTs 0.05% powder mixture was produced during SMAT process, where a compact surface layer of about 200 μm due to ball bombardment was produced from the mixture. Al2O3 alumina powder played a significant role in MWCNTs distribution on surface, those were held in deformation surface cites of micro-cavities due to SMAT process of Al. The benefits are the effects on resulted optical properties of the surface studied at the terahertz frequency range due to electrical isolation confinement effects and electronic resonance disturbances exerted on Al electronic resonance at the same range of frequencies. THz acoustic phonon around 0.53-0.6 THz (17-20 cm-1) were observed at ambient conditions for the spherical nanoparticles powder mixture of Al, Al2O3 and MWCNTs. These results suggested that the presence of Al2O3 and MWCNTs during SMAT process leads to the optically detection of such acoustic phonon in the THz frequency range.

  3. Protein Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Ksendzov, Alexander

    2006-01-01

    Prototype transducers based on integrated optical ring resonators have been demonstrated to be useful for detecting the protein avidin in extremely dilute solutions. In an experiment, one of the transducers proved to be capable of indicating the presence of avidin at a concentration of as little as 300 pM in a buffer solution a detection sensitivity comparable to that achievable by previously reported protein-detection techniques. These transducers are serving as models for the further development of integrated-optics sensors for detecting small quantities of other proteins and protein-like substances. The basic principle of these transducers was described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. The differences between the present transducers and the ones described in the cited prior article lie in details of implementation of the basic principle. As before, the resonator in a transducer of the present type is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, consists of a layer comprising sublayers having indices of refraction lower than that of the waveguide core. The outermost sublayer absorbs the chemical of interest (in this case, avidin). The index of refraction of the outermost sublayer changes with the concentration of absorbed avidin. The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer sublayer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in the index of refraction of the outermost sublayer causes a measurable change in the spectrum of the resonator output.

  4. Irregular oscillatory patterns in the early-time region of coherent phonon generation in silicon

    NASA Astrophysics Data System (ADS)

    Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya

    2017-09-01

    Coherent phonon (CP) generation in an undoped Si crystal is theoretically investigated to shed light on unexplored quantum-mechanical effects in the early-time region immediately after the irradiation of ultrashort laser pulses. We examine time signals attributed to an induced charge density of an ionic core, placing the focus on the effects of the Rabi frequency Ω0 c v on the signals; this frequency corresponds to the peak electric-field of the pulse. It is found that at specific Ω0 c v's, where the energy of plasmon caused by photoexcited carriers coincides with the longitudinal-optical phonon energy, the energetically resonant interaction between these two modes leads to striking anticrossings, revealing irregular oscillations with anomalously enhanced amplitudes in the observed time signals. Also, the oscillatory pattern is subject to the Rabi flopping of the excited carrier density that is controlled by Ω0 c v. These findings show that the early-time region is enriched with quantum-mechanical effects inherent in the CP generation, though experimental signals are more or less masked by the so-called coherent artifact due to nonlinear optical effects.

  5. Phononic Origins of Friction in Carbon Nanotube Oscillators.

    PubMed

    Prasad, Matukumilli V D; Bhattacharya, Baidurya

    2017-04-12

    Phononic coupling can have a significant role in friction between nanoscale surfaces. We find frictional dissipation per atom in carbon nanotube (CNT) oscillators to depend significantly on interface features such as contact area, commensurability, and by end-capping of the inner core. We perform large-scale phonon wavepacket MD simulations to study phonon coupling between a 250 nm long (10,10) outer tube and inner cores of four different geometries. Five different phonon polarizations known to have dominant roles in thermal transport are selected, and transmission coefficient plots for a range of phonon energies along with phonon scattering dynamics at specific energies are obtained. We find that the length of interface affects friction only through LA phonon scattering and has a significant nonlinear effect on total frictional force. Incommensurate contact does not always give rise to superlubricity: the net effect of two competing interaction mechanisms shown by longitudinal and transverse phonons decides the role of commensurability. Capping of the core has no effect on acoustic phonons but destroys the coherence of transverse optical phonons and creates diffusive scattering. In contrast, the twisting and radial breathing phonon modes have perfect transmission at all energies and can be deemed as the enablers of ultralow friction in CNT oscillators. Our work suggests that tuning of interface geometries can give rise to desirable friction properties in nanoscale devices.

  6. Temperature-dependent excitonic effects in the optical properties of single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Molina-Sánchez, Alejandro; Palummo, Maurizia; Marini, Andrea; Wirtz, Ludger

    2016-04-01

    Temperature influences the performance of two-dimensional (2D) materials in optoelectronic devices. Indeed, the optical characterization of these materials is usually realized at room temperature. Nevertheless, most ab initio studies are still performed without including any temperature effect. As a consequence, important features are thus overlooked, such as the relative height of the excitonic peaks and their broadening, directly related to the temperature and to the nonradiative exciton relaxation time. We present ab initio calculations of the optical response of single-layer MoS2, a prototype 2D material, as a function of temperature using density functional theory and many-body perturbation theory. We compute the electron-phonon interaction using the full spinorial wave functions, i.e., fully taking into account the effects of spin-orbit interaction. We find that bound excitons (A and B peaks) and resonant excitons (C peak) exhibit different behavior with temperature, displaying different nonradiative linewidths. We conclude that the inhomogeneous broadening of the absorption spectra is mainly due to electron-phonon scattering mechanisms. Our calculations explain the shortcomings of previous (zero-temperature) theoretical spectra and match well with the experimental spectra acquired at room temperature. Moreover, we disentangle the contributions of acoustic and optical phonon modes to the quasiparticles and exciton linewidths. Our model also allows us to identify which phonon modes couple to each exciton state, which is useful for the interpretation of resonant Raman-scattering experiments.

  7. Polaronic effects due to quasi-confined optical phonons in wurtzite nitride nanowire in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Vardanyan, Karen A.; Asatryan, Anna L.; Vartanian, Arshak L.

    2015-07-01

    Considering the effect of an external electric field in wurtzite nitride cylindrical nanowire (NW), the polaron self-energy and effective mass due to the electron interaction with the quasi-confined optical phonons are studied theoretically by means of Lee-Low-Pines variational approach. The analytical expressions for the quasi-one-dimensional Fröhlich polaron self-energy and effective mass are obtained as functions of the wire radius and the strength of the electric field applied perpendicular to the wire axis. It is found that the main contribution to polaron basic parameters is from higher frequency optical phonon modes. The numerical results on the GaN material show that the polaron self-energy increases with the increase of the electric field and is more sensitive to the field when the wire radius is larger. It is also found that the polaron self-energy in GaN NWs is higher than that in zinc-blende GaAs-based cylindrical NWs.

  8. Nonequilibrium dynamics of the phonon gas in ultrafast-excited antimony

    NASA Astrophysics Data System (ADS)

    Krylow, Sergej; Zijlstra, Eeuwe S.; Kabeer, Fairoja Cheenicode; Zier, Tobias; Bauerhenne, Bernd; Garcia, Martin E.

    2017-12-01

    The ultrafast relaxation dynamics of a nonequilibrium phonon gas towards thermal equilibrium involves many-body collisions that cannot be properly described by perturbative approaches. Here, we develop a nonperturbative method to elucidate the microscopic mechanisms underlying the decay of laser-excited coherent phonons in the presence of electron-hole pairs, which so far are not fully understood. Our theory relies on ab initio molecular dynamics simulations on laser-excited potential-energy surfaces. Those simulations are compared with runs in which the laser-excited coherent phonon is artificially deoccupied. We apply this method to antimony and show that the decay of the A1 g phonon mode at low laser fluences can be accounted mainly to three-body down-conversion processes of an A1 g phonon into acoustic phonons. For higher excitation strengths, however, we see a crossover to a four-phonon process, in which two A1 g phonons decay into two optical phonons.

  9. The hydrogen-bond network of water supports propagating optical phonon-like modes

    DOE PAGES

    Elton, Daniel C.; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water’smore » hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal–transverse splitting, indicating the presence of coherent long-range dipole–dipole interactions, as in ice. Lastly, our results indicate the dynamics of liquid water have more similarities to ice than previously thought.« less

  10. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    PubMed

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  11. Reststrahlen Band Optics for the Advancement of Far-Infrared Optical Architecture

    NASA Astrophysics Data System (ADS)

    Streyer, William Henderson

    . Computational models of the emission indicated the samples had significantly higher power efficiency than a blackbody at the same temperature in the same wavelength band. Chapter 5 presents selective thermal emission in the far-infrared from samples of patterned gallium phosphide. The selective absorption of the samples occurs in the material's Reststrahlen band and can be attributed to surface phonon polariton modes. The surfaces of the samples were grated via wet etching to provide the additional momentum necessary for free space photons to couple into and out of the surface phonon polariton modes. Upon heating the samples, selective thermal emission of the surface phonon polariton modes was observed. Chapter 6 investigates a potential means of linking lattice vibrations to free space photons. Lightly doped films of gallium arsenide were grown by molecular beam epitaxy and wet etched with 1D gratings. The light doping served to modify the material's intrinsic permittivity and extend the region of its Reststrahlen band. Though the extension of the region with negative real permittivity was small, it extended beyond the longitudinal optical phonon energy of the material, which stands as the high energy boundary of the unmodified material's Reststrahlen band. Hybrid surface polariton modes were observed at energies near the longitudinal optical phonon energy where they are not supported on the surface of the intrinsic material -- offering a potential bridge between bulk optical phonon populations and free space photons. Chapter 7 presents preliminary results exploring the prospect of exploiting an absorption resonance known as the Berreman mode as a mechanism to link optical phonons to free space photons. The Berreman mode is a strong absorption resonance that occurs near the longitudinal optical phonon energy at moderate angles of incidence in polar semiconductors. Preliminary results demonstrate selective thermal emission consistent with the expected spectral position of the

  12. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    PubMed

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  13. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

    PubMed Central

    Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.

    2015-01-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to ‘manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the ‘anisotropic elasticity' across the particle–polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851

  14. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.

    PubMed

    Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G

    2015-09-22

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

  15. Charge tuning of nonresonant magnetoexciton phonon interactions in graphene.

    PubMed

    Rémi, Sebastian; Goldberg, Bennett B; Swan, Anna K

    2014-02-07

    Far from resonance, the coupling of the G-band phonon to magnetoexcitons in single layer graphene displays kinks and splittings versus filling factor that are well described by Pauli blocking and unblocking of inter- and intra-Landau level transitions. We explore the nonresonant electron-phonon coupling by high-magnetic field Raman scattering while electrostatic tuning of the carrier density controls the filling factor. We show qualitative and quantitative agreement between spectra and a linearized model of electron-phonon interactions in magnetic fields. The splitting is caused by dichroism of left- and right-handed circular polarized light due to lifting of the G-band phonon degeneracy, and the piecewise linear slopes are caused by the linear occupancy of sequential Landau levels versus ν.

  16. Dispersion, mode-mixing and the electron-phonon interaction in nanostructures

    NASA Astrophysics Data System (ADS)

    Dyson, A.; Ridley, B. K.

    2018-03-01

    The electron-phonon interaction with polar optical modes in nanostructures is re-examined in the light of phonon dispersion relations and the role of the Fuchs-Kliewer (FK) mode. At an interface between adjacent polar materials the frequencies of the FK mode are drawn from the dielectric constants of the adjacent materials and are significantly smaller than the corresponding frequencies of the longitudinal optic (LO) modes at the zone centre. The requirement that all polar modes satisfy mechanical and electrical boundary conditions forces the modes to become hybrids. For a hybrid to have both FK and LO components the LO mode must have the FK frequency, which can only come about through the reduction associated with phonon dispersion relations. We illustrate the effect of phonon dispersion relations on the Fröhlich interaction by considering a simple linear-chain model of the zincblende lattice. Optical and acoustic modes become mixed towards short wavelengths in both optical and acoustic branches. A study of GaAs, InP and cubic GaN and AlN shows that the polarity of the optical branch and the acousticity of the acoustic branch are reduced by dispersion in equal measures, but the effect is relatively weak. Coupling coefficients quantifying the strengths of the interaction with electrons for optical and acoustic components of mixed modes in the optical branch show that, in most cases, the polar interaction dominates the acoustic interaction, and it is reduced from the long-wavelength result towards the zone boundary by only a few percent. The effect on the lower-frequency FK mode can be large.

  17. Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin liquid κ -(BEDT-TTF)2Cu2(CN) 3

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Carniato, S.; Foury-Leylekian, P.; Tomić, S.; Pouget, J.-P.; Lazić, P.; Joly, Y.; Miyagawa, K.; Kanoda, K.; Nicolaou, A.

    2017-11-01

    Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved harmonics of the anion plane vibrations in the κ -(BEDT-TTF) 2Cu2 (CN) 3 spin-liquid insulator. Tuning the incoming light energy at the K edge of two distinct N sites permits us to excite different sets of phonon modes. The cyanide (CN) stretching mode is selected at the edge of the ordered N sites which are more strongly connected to the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) molecules, while positionally disordered N sites show multimode excitation. Combining measurements with calculations on an anion plane cluster permits us to estimate the site-dependent electron-phonon coupling of the modes related to nitrogen excitation.

  18. Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.

    PubMed

    Werschler, Florian; Hinz, Christopher; Froning, Florian; Gumbsheimer, Pascal; Haase, Johannes; Negele, Carla; de Roo, Tjaard; Mecking, Stefan; Leitenstorfer, Alfred; Seletskiy, Denis V

    2016-09-14

    The photoluminescence emission by mesoscopic condensed matter is ultimately dictated by the fine-structure splitting of the fundamental exciton into optically allowed and dipole-forbidden states. In epitaxially grown semiconductor quantum dots, nonradiative equilibration between the fine-structure levels is mediated by bulk acoustic phonons, resulting in asymmetric spectral broadening of the excitonic luminescence. In isolated colloidal quantum dots, spatial confinement of the vibrational motion is expected to give rise to an interplay between the quantized electronic and phononic degrees of freedom. In most cases, however, zero-dimensional colloidal nanocrystals are strongly coupled to the substrate such that the charge relaxation processes are still effectively governed by the bulk properties. Here we show that encapsulation of single colloidal CdSe/CdS nanocrystals into individual organic polymer shells allows for systematic vibrational decoupling of the semiconductor nanospheres from the surroundings. In contrast to epitaxially grown quantum dots, simultaneous quantization of both electronic and vibrational degrees of freedom results in a series of strong and narrow acoustic phonon sidebands observed in the photoluminescence. Furthermore, an individual analysis of more than 200 compound particles reveals that enhancement or suppression of the radiative properties of the fundamental exciton is controlled by the interaction between fine-structure states via the discrete vibrational modes. For the first time, pronounced resonances in the scattering rate between the fine-structure states are directly observed, in good agreement with a quantum mechanical model. The unambiguous assignment of mediating acoustic modes to the observed scattering resonances complements the experimental findings. Thus, our results form an attractive basis for future studies on subterahertz quantum opto-mechanics and efficient laser cooling at the nanoscale.

  19. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii

    2006-07-01

    Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.

  20. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  1. Investigation on dispersion in the active optical waveguide resonator

    NASA Astrophysics Data System (ADS)

    Qiu, Zihan; Gao, Yining; Xie, Wei

    2018-03-01

    Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.

  2. Magnetic, electronic, dielectric and optical properties of Pr(Ca:Sr)MnO 3

    NASA Astrophysics Data System (ADS)

    Sichelschmidt, J.; Paraskevopoulos, M.; Brando, M.; Wehn, R.; Ivannikov, D.; Mayr, F.; Pucher, K.; Hemberger, J.; Pimenov, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Ivanov, V. Yu.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A.

    2001-03-01

    The charge-ordered perovskite Pr0.65Ca0.28Sr0.07MnO3 was investigated by means of magnetic susceptibility, specific heat, dielectric and optical spectroscopy and electron-spin resonance techniques. Under moderate magnetic fields, the charge order melts yielding colossal magnetoresistance effects with changes of the resistivity over eleven orders of magnitude. The optical conductivity is studied from audio frequencies far into the visible spectral regime. Below the phonon modes hopping conductivity is detected. Beyond the phonon modes the optical conductivity is explained by polaronic excitations out of a bound state. ESR techniques yield detailed informations on the (H,T ) phase diagram and reveal a broadening of the linewidth which can be modeled in terms of activated polaron hopping.

  3. Dynamics of monochromatically generated nonequilibrium phonons in LaF3:Pr3+

    NASA Astrophysics Data System (ADS)

    Tolbert, W. A.; Dennis, W. M.; Yen, W. M.

    1990-07-01

    The temporal evolution of nonequilibrium phonon populations in LaF3:Pr3+ is investigated at low temperatures (1.8 K) utilizing pulsed, tunable, monochromatic generation and time-resolved, tunable, narrow-band detection. High occupation number, narrow-band phonon populations are generated via far-infrared pumping of defect-induced one-phonon absorption. Time-resolved, frequency-selective detection is provided by optical sideband absorption. Nonequilibrium phonon decay times are measured and attributed to anharmonic decay.

  4. Resonant inelastic scattering by use of geometrical optics.

    PubMed

    Schulte, Jörg; Schweiger, Gustav

    2003-02-01

    We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.

  5. Optical pulse response of a fibre ring resonator

    NASA Astrophysics Data System (ADS)

    Pandian, G. S.; Seraji, Faramarz E.

    1991-06-01

    This article presents the optical pulse response analysis of a fiber ring resonator. It is shown that several interesting functions, namely optical pulse generation, and equalization of fiber dispersion can be realized by using the resonator. The theory is presented in an easy to understand manner, by first considering the steady-state response. The results of the transient pulse response are explained in relation to the steady state results. The results related to optical pulse shaping will be of interest to the future when coherent optical pulse and switching circuits will become available.

  6. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  7. Optical modulator based on silicon nanowires racetrack resonator

    NASA Astrophysics Data System (ADS)

    Sherif, S. M.; Shahada, L.; Swillam, M.

    2018-02-01

    An optical modulator based on the racetrack resonator configuration is introduced. The structure of the resonator modulator is built from silicon nanowires on silica. The cladding and voids between the silicon nanowires are filled with an electro-optic polymer. The proposed modulator is fully CMOS compatible. When the resonance is tuned to the 1.55μm wavelength, it experiences a wavelength shift upon voltage application, which is measured at the output as a change in the power level.

  8. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.

    PubMed

    Dubrovkin, Alexander M; Qiang, Bo; Krishnamoorthy, Harish N S; Zheludev, Nikolay I; Wang, Qi Jie

    2018-05-02

    Improvements in device density in photonic circuits can only be achieved with interconnects exploiting highly confined states of light. Recently this has brought interest to highly confined plasmon and phonon polaritons. While plasmonic structures have been extensively studied, the ultimate limits of phonon polariton squeezing, in particular enabling the confinement (the ratio between the excitation and polariton wavelengths) exceeding 10 2 , is yet to be explored. Here, exploiting unique structure of 2D materials, we report for the first time that atomically thin van der Waals dielectrics (e.g., transition-metal dichalcogenides) on silicon carbide substrate demonstrate experimentally record-breaking propagating phonon polaritons confinement resulting in 190-times squeezed surface waves. The strongly dispersive confinement can be potentially tuned to greater than 10 3 near the phonon resonance of the substrate, and it scales with number of van der Waals layers. We argue that our findings are a substantial step towards infrared ultra-compact phonon polaritonic circuits and resonators, and would stimulate further investigations on nanophotonics in non-plasmonic atomically thin interface platforms.

  9. Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Stevanovic, Vladan; Toberer, Eric

    In this work, we discover anomalously low lattice thermal conductivity (<0.25 W/mK at 300 degrees C) in the Hg-containing quaternary diamond-like semiconductors within the Cu2IIBIVTe4 (IIB: Zn, Cd, Hg) (IV: Si, Ge, Sn) set of compositions. Using high-temperature X-ray diffraction, resonant ultrasound spectroscopy, and transport properties, we uncover the critical role of the antisite defects HgCu and CuHg on phonon transport within the Hg-containing systems. Despite the differences in chemistry between Hg and Cu, the high concentration of these antisite defects emerges from the energetic proximity of the kesterite and stannite cation motifs. Our phonon calculations reveal that heavier groupmore » IIB elements not only introduce low-lying optical modes, but the subsequent antisite defects also possess unusually strong point defect phonon scattering power. The scattering strength stems from the fundamentally different vibrational modes supported by the constituent elements (e.g., Hg and Cu). Despite the significant impact on the thermal properties, antisite defects do not negatively impact the mobility (>50 cm2/(Vs) at 300 degrees C) in Hg-containing systems, leading to predicted zT > 1.5 in Cu2HgGeTe4 and Cu2HgSnTe4 under optimized doping. In addition to introducing a potentially new p-type thermoelectric material, this work provides (1) a strategy to use the proximity of phase transitions to increase point defect phonon scattering, and (2) a means to quantify the power of a given point defect through inexpensive phonon calculations.« less

  10. Phonon assisted carrier motion on the Wannier-Stark ladder

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred; Berciu, Mona

    2014-03-01

    It is well known that at zero temperature and in the absence of electron-phonon coupling, the presence of an electric field leads to localization of carriers residing in a single band of finite bandwidth. In this talk, we will present an implementation of the self-consistent Born approximation (SCBA) to study the effect of weak electron-phonon coupling on the motion of a carrier in a biased system. At moderate and strong electron-phonon coupling, we supplement the SCBA, describing the string of phonons left behind by the carrier, with the momentum average approximation to describe the phonon cloud that accompanies the resulting polaron. We find that coupling to the lattice delocalizes the carrier, as expected, although long-lived resonances resulting from the Wannier-Stark states of the polaron may appear in certain regions of the parameter space. We end with a discussion of how our method can be improved to model disorder, other types of electron-phonon coupling, and electron-hole pair dissociation in a biased system.

  11. Phonon anharmonicity and negative thermal expansion in SnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.

    In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less

  12. Phonon anharmonicity and negative thermal expansion in SnSe

    DOE PAGES

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; ...

    2016-08-09

    In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less

  13. Resonator Optical Designs For Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Saxman, A.; Woodfin, G.

    1985-11-01

    The output beam from free-electron lasers tends to be a thin, pencil-like beam because of the nature of the gain volume. For moderate power devices, mirror damage considerations imply that the beam has to travel many meters before it can expand enough to allow retro-reflection from state-of-the-art mirrors. However, use of grazing incidence optics can resolve the problem of damage to the optical elements and result in a cavity of reasonable dimensions. The optical design considerations for such resonators are addressed in this paper. A few of the practical resonator designs approaching diffraction limited performance are presented.

  14. Resonator optical designs for free electron lasers

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Saxman, A.; Woodfin, G.

    1985-03-01

    The output beam from free-electron lasers tends to be a thin, pencil-like beam because of the nature of the gain volume. For moderate power devices, mirror damage considerations imply that the beam has to travel many meters before it can expand enough to allow retro-reflection from state-of-the-art mirrors. However, use of grazing incidence optics can resolve the problem of damage to the optical elements and result in a cavity of reasonable dimensions. The optical design considerations for such resonators are discussed. A few of the practical resonator designs approaching diffraction limited performance are presented.

  15. Magnon and phonon thermometry with inelastic light scattering

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  16. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    NASA Technical Reports Server (NTRS)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  17. Geometrical optics model of Mie resonances

    PubMed

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  18. Folded Optical Phonons in Twisted Bilayer Graphene: Raman Signature of Graphene Superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Yanan; Su, Zhihua; Wu, Wei; Xing, Sirui; Lu, Xiaoxiang; Lu, Xinghua; Pei, Shin-Shem; Robles-Hernandez, Francisco; Hadjiev, Viktor; Bao, Jiming

    2013-03-01

    In contrast to Bernal-stacked graphene exfoliated from HOPG, twisted bilayer graphene are widely observed in the samples prepared by silicon sublimation of SiC or chemical vapor deposition (CVD). However, many of its basic properties still remain unrevealed. In this work, hexagon-shaped bilayer graphene islands synthesized by CVD method were systematically studied using Raman spectroscopy. A series of folded phonons were observed in the range from 1375 cm-1 to 1525 cm-1. The frequency of folded phonon modes doesn't shift with laser excitation energy, but it is highly dependent on the rotational angle between two layers. In general, the frequency of folded phonon decreases with the increase of rotation angle. This rotation dependence can be qualitatively explained by the folding of phonon dispersion curve of single layer graphene into the reduced Brillouin zone of bilayer superlattice. The obseravtion of folded phonon is an important indication of superlattice band structure.

  19. Pseudospins and Topological Effects of Phonons in a Kekulé Lattice

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Lian, Chao-Sheng; Li, Yang; Xu, Yong; Duan, Wenhui

    2017-12-01

    The search for exotic topological effects of phonons has attracted enormous interest for both fundamental science and practical applications. By studying phonons in a Kekulé lattice, we find a new type of pseudospin characterized by quantized Berry phases and pseudoangular momenta, which introduces various novel topological effects, including topologically protected pseudospin-polarized interface states and a phonon pseudospin Hall effect. We further demonstrate a pseudospin-contrasting optical selection rule and a pseudospin Zeeman effect, giving a complete generation-manipulation-detection paradigm of the phonon pseudospin. The pseudospin and topology-related physics revealed for phonons is general and applicable for electrons, photons, and other particles.

  20. Investigating phonon-mediated interactions with polar molecules

    NASA Astrophysics Data System (ADS)

    Sous, John; Madison, Kirk; Berciu, Mona; Krems, Roman

    2017-04-01

    We show that an ensemble of polar molecules in an optical lattice realizes the Peierls polaron model for hard-core particles/ pseudospins. We analyze the quasiparticle spectrum in the one-particle subspace, the two-particle subspace and at finite concentrations. We derive an effective model that describes the low-energy behavior of the system. We show that the Hamiltonian includes phonon-mediated repulsions and phonon-mediated ``pair-hopping'' terms which move the particle pair as a whole. We show that microwave excitations of the system exhibit signatures of these interactions. These results pave the way for the experimental observation of phonon-mediated repulsion. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  1. Quantum transport properties of carbon nanotube field-effect transistors with electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2007-11-01

    We investigated the electron-phonon coupling effects on the electronic transport properties of metallic (5,5)- and semiconducting (10,0)-carbon nanotube devices. We calculated the conductance and mobility of the carbon nanotubes with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo-Greenwood formula within a tight-binding approximation. We investigated the scattering effects of both longitudinal acoustic and optical phonon modes on the transport properties. The electron-optical phonon coupling decreases the conductance around the Fermi energy for the metallic carbon nanotubes, while the conductance of semiconductor nanotubes is decreased around the band edges by the acoustic phonons. Furthermore, we studied the Schottky-barrier effects on the mobility of the semiconducting carbon nanotube field-effect transistors for various gate voltages. We clarified how the electron mobilities of the devices are changed by the acoustic phonon.

  2. A Study of Electron and Phonon Dynamics by Broadband Two-Dimensional THz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Zhengping

    second order signal due to the plasma-phonon interaction are observed in 2D THz transmission spectra. In this thesis, the coherent phonons excited by THz pulses are experimentally demonstrated for the first time in both GaAs and InSb. The resonant excitation using THz pulses enables the coherent control of the lattice motion via direct interaction of atoms and electromagnetic wave, without inducing electronic transition as reported in the optical excitation of coherent phonons. The classic model is used to explain both excitation and detection mechanisms. An increase of the damping rate of the coherent lattice motion due to higher carrier density is observed in our experiment. Transient reflectivity change of GaAs induced by THz pulses is studied in 2D THz-pump/optical-probe configuration. Using the perturbative analysis of nonlinear electrooptic effect, we conclude that the nonlinear response of GaAs to two phase-locked THz pulses is mainly caused by the nonlinearity of the electronic response.

  3. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    PubMed

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  4. Phonon-Mediated Exciton Stark Effect Enhanced by a Static Electric Field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. L.

    1997-03-01

    The optical properties of semiconductor QW's change in the presence of coherent pump light. The exciton (phonon-mediated, biexciton-mediated, etc.) optical Stark effect is an effective shift of the exciton level that follow dynamically the intensity I0 ~= 0.1 div 1 GW/cm^2 of the pump light. In the present work we develop a theory of a low-intensity electric-field enhanced phonon-mediated optical Stark effect in polar semiconductors and semiconductor microstructures. The main point is that the exciton - LO-phonon Fröhlich interaction can be strongly enhanced by a (quasi-) static electric field F which polarizes the exciton in the geometry F | k | p, where k and p are the wavevectors of the pump and probe light, respectively. The electric field enhancement of spontaneous Raman scattering has been already analyzed (E. Burstein et al., 1971). Even a moderate electric field F ~= 10^3 V/cm reduces the intensity of the pump light to I0 ~= 1 div 10 MW/cm^2. Moreover, the phonon-mediated Stark effect enhanced by a static electric field F allow us to realize the both red and blue dynamical shifts of the exciton level.

  5. Probing the interatomic potential of solids with strong-field nonlinear phononics

    NASA Astrophysics Data System (ADS)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  6. Thermal conductivity in large - J two-dimensional antiferromagnets: Role of phonon scattering

    DOE PAGES

    Chernyshev, A. L.; Brenig, Wolfram

    2015-08-05

    Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates. It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.

  7. Scattering of phonons by dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A. C.

    1979-01-01

    By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, andmore » the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10/sup 9/ Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations.« less

  8. Photocurrent mapping of near-field optical antenna resonances

    NASA Astrophysics Data System (ADS)

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-09-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (~50 nm) and wavelength-scale (~1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models.

  9. Electro-optic guided-mode resonance tuning suppressible by optically induced screening in a vertically coupled hybrid GaN/Si microring resonator

    NASA Astrophysics Data System (ADS)

    Thubthimthong, B.; Sasaki, T.; Hane, K.

    2018-02-01

    GaN as a nanophotonic material has gained much attention in recent years. Using the hybrid GaN/Si platform, we report the electro-optic tuning of guided-mode resonance in a vertically coupled hybrid GaN/Si microring resonator operating in the 1.5 μm window with up to a 6 dB extinction ratio and a 1.5 MHz modulation frequency (test equipment limit). The electro-optic tuning could be optically suppressed by electron-hole-originated screening induced by an ultraviolet excitation at 325 nm. Our work may benefit in externally intervenable optical interconnects for uninterrupted secure photonic networks.

  10. Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Chen, Yue

    2017-03-01

    Thermal transport and phonon-phonon coupling in monolayer hexagonal boron nitride (h-BN) under equibiaxial strains are investigated from first principles. Phonon spectra at elevated temperatures have been calculated from perturbation theory using the third-order anharmonic force constants. The stiffening of the out-of-plane transverse acoustic mode (ZA) near the Brillouin zone center and the increase of acoustic phonon lifetimes are found to contribute to the dramatic increase of thermal transport in strained h-BN. The transverse optical mode (TO) at the K point, which was predicted to lead to mechanical failure of h-BN, is found to shift to lower frequencies at elevated temperatures under equibiaxial strains. The longitudinal and transverse acoustic modes exhibit broad phonon spectra under large strains in sharp contrast to the ZA mode, indicating strong in-plane phonon-phonon coupling.

  11. Invited Paper Optical Resonators For Associative Memory

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-06-01

    One can construct a memory having associative characteristics using optical resonators with an internal gain medium. The device operates on the principle that an optical resonator employing a holographic grating can have user prescribed eigenmodes. Information that is to be recalled is contained in the hologram. Each information entity (e.g. an image of a cat) defines an eigenmode of the resonator. The stored information is accessed by injecting partial information (e.g. an image of the cat's ear) into the resonator. The appropriate eigenmode is selected through a competitive process in a gain medium placed inside the resonator. With a net gain greater than one, the gain amplifies the field belonging to the eigenmode that most resembles the injected field; the other eigenmodes are suppressed via the competition for the gain. One can expect this device to display several intriguing features such as recall transitions and creativity. I will discuss some of the general properties of this class of devices and present the results from a series of experiments with a simple holographic resonator employing photorefractive gain.

  12. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-opticalmore » rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.« less

  13. Measurements of the electric field of zero-point optical phonons in GaAs quantum wells support the Urbach rule for zero-temperature lifetime broadening.

    PubMed

    Bhattacharya, Rupak; Mondal, Richarj; Khatua, Pradip; Rudra, Alok; Kapon, Eli; Malzer, Stefan; Döhler, Gottfried; Pal, Bipul; Bansal, Bhavtosh

    2015-01-30

    We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3  kV cm-1, in excellent agreement with the theoretical estimate.

  14. Resonance spectra of diabolo optical antenna arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu; Simpkins, Blake

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlatedmore » to the shift of the resonance wavelength.« less

  15. Studies of Phonon Anharmonicity in Solids

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject. Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods. We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts

  16. Optical micro-bubble resonators as promising biosensors

    NASA Astrophysics Data System (ADS)

    Giannetti, A.; Barucci, A.; Berneschi, S.; Cosci, A.; Cosi, F.; Farnesi, D.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Tombelli, S.; Trono, C.; Righini, G. C.; Baldini, F.

    2015-05-01

    Recently, optical micro-bubble resonators (OMBRs) have gained an increasing interest in many fields of photonics thanks to their particular properties. These hollow microstructures can be suitable for the realization of label - free optical biosensors by combining the whispering gallery mode (WGM) resonator properties with the intrinsic capability of integrated microfluidics. In fact, the WGMs are morphology-dependent modes: any change on the OMBR inner surface (due to chemical and/or biochemical binding) causes a shift of the resonance position and reduces the Q factor value of the cavity. By measuring this shift, it is possible to obtain information on the concentration of the analyte to be detected. A crucial step for the development of an OMBR-based biosensor is constituted by the functionalization of its inner surface. In this work we report on the development of a physical and chemical process able to guarantee a good homogeneity of the deposed bio-layer and, contemporary, to preserve a high quality factor Q of the cavity. The OMBR capability of working as bioassay was proved by different optical techniques, such as the real time measurement of the resonance broadening after each functionalization step and fluorescence microscopy.

  17. The Influence of the Optical Phonons on the Non-equilibrium Spin Current in the Presence of Spin-Orbit Couplings

    NASA Astrophysics Data System (ADS)

    Hasanirokh, K.; Phirouznia, A.; Majidi, R.

    2016-02-01

    The influence of the electron coupling with non-polarized optical phonons on magnetoelectric effects of a two-dimensional electron gas system has been investigated in the presence of the Rashba and Dresselhaus spin-orbit couplings. Numerical calculations have been performed in the non-equilibrium regime. In the previous studies in this field, it has been shown that the Rashba and Dresselhaus couplings cannot generate non-equilibrium spin current and the spin current vanishes identically in the absence of other relaxation mechanisms such as lattice vibrations. However, in the current study, based on a semiclassical approach, it was demonstrated that in the presence of electron-phonon coupling, the spin current and other magnetoelectric quantities have been modulated by the strength of the spin-orbit interactions.

  18. Exciton-phonon system on a star graph: A perturbative approach.

    PubMed

    Yalouz, Saad; Pouthier, Vincent

    2016-05-01

    Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.

  19. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  20. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    DOEpatents

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  1. Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy.

    PubMed

    Uchiyama, H; Oshima, Y; Patterson, R; Iwamoto, S; Shiomi, J; Shimamura, K

    2018-06-08

    Phonon-phonon scattering dominates the thermal properties in nonmetallic materials, and it directly influences device performance in applications. The understanding of the scattering has been progressing using computational approaches, and the direct and systematic observation of phonon modes that include momentum dependences is desirable. We report experimental data on the phonon dispersion curves and lifetimes in an epitaxially grown ScN film using inelastic x-ray scattering measurements. The momentum dependence of the optical phonon lifetimes is estimated from the spectral width, and the highest-energy phonon mode around the zone center is found to possess a short lifetime of 0.21 ps. A comparison with first-principles calculations shows that our observed phonon lifetimes are quantitatively explained by three-body phonon-phonon interactions.

  2. Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchiyama, H.; Oshima, Y.; Patterson, R.; Iwamoto, S.; Shiomi, J.; Shimamura, K.

    2018-06-01

    Phonon-phonon scattering dominates the thermal properties in nonmetallic materials, and it directly influences device performance in applications. The understanding of the scattering has been progressing using computational approaches, and the direct and systematic observation of phonon modes that include momentum dependences is desirable. We report experimental data on the phonon dispersion curves and lifetimes in an epitaxially grown ScN film using inelastic x-ray scattering measurements. The momentum dependence of the optical phonon lifetimes is estimated from the spectral width, and the highest-energy phonon mode around the zone center is found to possess a short lifetime of 0.21 ps. A comparison with first-principles calculations shows that our observed phonon lifetimes are quantitatively explained by three-body phonon-phonon interactions.

  3. Phonovoltaic. III. Electron-phonon coupling and figure of merit of graphene:BN

    NASA Astrophysics Data System (ADS)

    Melnick, Corey; Kaviany, Massoud

    2016-12-01

    The phonovoltaic cell harvests optical phonons like a photovoltaic harvests photons, that is, a nonequilibrium (hot) population of optical phonons (at temperature Tp ,O) more energetic than the band gap produces electron-hole pairs in a p -n junction, which separates these pairs to produce power. A phonovoltaic material requires an optical phonon mode more energetic than its band gap and much more energetic than the thermal energy (Ep ,O>Δ Ee ,g≫kBT ), which relaxes by generating electrons and power (at rate γ˙e -p) rather than acoustic phonons and heat (at rate γ˙p -p). Graphene (h-C) is the most promising material candidate: when its band gap is tuned to its optical phonon energy without greatly reducing the electron-phonon (e -p ) coupling, it reaches a substantial figure of merit [ZpV=Δ Ee ,gγ˙e -p/Ep ,O(γ˙e -p+γ˙p -p) ≈0.8 ] . A simple tight-binding (TB) model presented here predicts that lifting the sublattice symmetry of graphene in order to open a band gap proscribes the e -p interaction at the band edge, such that γ˙e -p→0 as Δ Ee ,g→Ep ,O . However, ab initio (DFT-LDA) simulations of layered h-C/BN and substitutional h-C:BN show that the e -p coupling remains substantial in these asymmetric crystals. Indeed, h-C:BN achieves a high figure of merit (ZpV≈0.6 ). At 300 K and for a Carnot limit of 0.5 (Tp ,O=600 K) , a h-C:BN phonovoltaic can reach an efficiency of ηpV≈0.2 , double the thermoelectric efficiency (Z T ≈1 ) under similar conditions.

  4. Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.

    PubMed

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2017-12-21

    Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.

  5. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  6. Second harmonic generation in resonant optical structures

    DOEpatents

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  7. Multi-stage phononic crystal structure for anchor-loss reduction of thin-film piezoelectric-on-silicon microelectromechanical-system resonator

    NASA Astrophysics Data System (ADS)

    Bao, Fei-Hong; Bao, Lei-Lei; Li, Xin-Yi; Ammar Khan, Muhammad; Wu, Hua-Ye; Qin, Feng; Zhang, Ting; Zhang, Yi; Bao, Jing-Fu; Zhang, Xiao-Sheng

    2018-06-01

    Thin-film piezoelectric-on-silicon acoustic wave resonators are promising for the development of system-on-chip integrated circuits with micro/nano-engineered timing reference. However, in order to realize their large potentials, a further enhancement of the quality factor (Q) is required. In this study, a novel approach, based on a multi-stage phononic crystal (PnC) structure, was proposed to achieve an ultra-high Q. A systematical study revealed that the multi-stage PnC structure formed a frequency-selective band-gap to effectively prohibit the dissipation of acoustic waves through tethers, which significantly reduced the anchor loss, leading to an insertion-loss reduction and enhancement of Q. The maximum unloaded Q u of the fabricated resonators reached the value of ∼10,000 at 109.85 MHz, indicating an enhancement by 19.4 times.

  8. Analytical study of optical bistability in silicon-waveguide resonators.

    PubMed

    Rukhlenko, Ivan D; Premaratne, Malin; Agrawal, Govind P

    2009-11-23

    We present a theoretical model that describes accurately the nonlinear phenomenon of optical bistability in silicon-waveguide resonators but remains amenable to analytical results. Using this model, we derive a transcendental equation governing the intensity of a continuous wave transmitted through a Fabry-Perot resonator formed using a silicon-on-insulator waveguide. This equation reveals a dual role of free carriers in the formation of optical bistability in silicon. First, it shows that free-carrier absorption results in a saturation of the transmitted intensity. Second, the free-carrier dispersion and the thermo-optic effect may introduce phase shifts far exceeding those resulting from the Kerr effect alone, thus enabling one to achieve optical bistability in ultrashort resonators that are only a few micrometers long. Bistability can occur even when waveguide facets are not coated because natural reflectivity of the silicon- r interface can provide sufficient feedback. We find that it is possible to control the input-output characteristics of silicon-based resonators by changing the free-carrier lifetime using a reverse-biased p-n junction. We show theoretically that such a technique is suitable for realization of electronically assisted optical switching at a fixed input power and it may lead to silicon-based, nanometer-size, optical memories.

  9. Dielectric perturbations and Rayleigh scattering from an optical fiber near a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick

    As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.

  10. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    DOE PAGES

    Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu; ...

    2017-12-01

    In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less

  11. Ab initio study of the electron-phonon coupling at the Cr(001) surface

    NASA Astrophysics Data System (ADS)

    Peters, L.; Rudenko, A. N.; Katsnelson, M. I.

    2018-04-01

    It is experimentally well established that the Cr(001) surface exhibits a sharp resonance around the Fermi level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle dz2 surface state renormalized by electron-phonon coupling or the orbital Kondo effect involving the degenerate dx z/ dy z states. In this paper we examine the electron-phonon coupling of the Cr(001) surface by means of ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2 surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement factors are not in agreement with the experimental data even if we use realistic values for the temperature range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally an electron-phonon mass-enhancement factor of 0.70 ±0.10 is obtained, which is not in agreement with our calculated values of 0.19 and 0.16. Our findings suggest that the experimentally observed resonance at the Cr(001) surface is not due to electron-phonon effects but due to electron-electron correlation effects.

  12. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan

    2016-12-01

    It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.

  13. Flexural phonon limited phonon drag thermopower in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  14. Multilayered metal-insulator nanocavities: toward tunable multi-resonance nano-devices for integrated optics

    NASA Astrophysics Data System (ADS)

    Song, Junyeob; Zhou, Wei

    2017-02-01

    Plasmonic nanocavities can control light flows and enhance light-mater interactions at subwavelength scale, and thus can potentially be used as nanoscale components in integrated optics systems either for passive optical coupling, or for active optical modulation and emission. In this work, we investigated a new type of multilayered metal-insulator optical nanocavities that can support multiple localized plasmon resonances with ultra-small mode volumes. The total number of resonance peaks and their resonance wavelengths can be freely and accurately controlled by simple geometric design rules. Multi-resonance plasmonic nanocavities can serve as a nanoscale wavelength-multiplexed optical components in integrated optics systems, such as optical couplers, light emitters, nanolasers, optical sensors, and optical modulators.

  15. FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.

    1992-02-01

    A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.

  16. Improving the Optical Quality Factor of the WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the

  17. Interfacing planar superconducting qubits with high overtone bulk acoustic phonons

    NASA Astrophysics Data System (ADS)

    Kervinen, Mikael; Rissanen, Ilkka; Sillanpää, Mika

    2018-05-01

    Mechanical resonators are a promising way for interfacing qubits in order to realize hybrid quantum systems that offer great possibilities for applications. Mechanical systems can have very long energy lifetimes, and they can be further interfaced to other systems. Moreover, integration of a mechanical oscillator with qubits creates a potential platform for the exploration of quantum physics in macroscopic mechanical degrees of freedom. The utilization of high overtone bulk acoustic resonators coupled to superconducting qubits is an intriguing platform towards these goals. These resonators exhibit a combination of high-frequency and high-quality factors. They can reach their quantum ground state at dilution refrigeration temperatures and they can be strongly coupled to superconducting qubits via their piezoelectric effect. In this paper, we demonstrate our system where bulk acoustic phonons of a high overtone resonator are coupled to a transmon qubit in a planar circuit architecture. We show that the bulk acoustic phonons are interacting with the qubit in a simple design architecture at the quantum level, representing further progress towards the quantum control of mechanical motion.

  18. Whispering Gallery Optical Resonator Spectroscopic Probe and Method

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2014-01-01

    Disclosed herein is a spectroscopic probe comprising at least one whispering gallery mode optical resonator disposed on a support, the whispering gallery mode optical resonator comprising a continuous outer surface having a cross section comprising a first diameter and a second diameter, wherein the first diameter is greater than the second diameter. A method of measuring a Raman spectrum and an Infra-red spectrum of an analyte using the spectroscopic probe is also disclosed.

  19. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  20. Optic phonon bandwidth and lattice thermal conductivity: The case of L i 2 X ( X = O , S, Se, Te)

    DOE PAGES

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li 2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m -1K -1), BeTe (370 W/m -1K -1) and cubic BAs (3150 W/m -1K -1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si,more » GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in Li 2Se and Li 2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li 2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  1. An acousto-optic sensor based on resonance grating waveguide structure

    PubMed Central

    Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo

    2014-01-01

    This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203

  2. Frequency spectrum of an optical resonator in a curved spacetime

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Schneiter, Fabienne; Braun, Daniel; Bravo, Tupac; Howl, Richard; Lock, Maximilian P. E.; Fuentes, Ivette

    2018-05-01

    The effect of gravity and proper acceleration on the frequency spectrum of an optical resonator—both rigid or deformable—is considered in the framework of general relativity. The optical resonator is modeled either as a rod of matter connecting two mirrors or as a dielectric rod whose ends function as mirrors. Explicit expressions for the frequency spectrum are derived for the case that it is only perturbed slightly and variations are slow enough to avoid any elastic resonances of the rod. For a deformable resonator, the perturbation of the frequency spectrum depends on the speed of sound in the rod supporting the mirrors. A connection is found to a relativistic concept of rigidity when the speed of sound approaches the speed of light. In contrast, the corresponding result for the assumption of Born rigidity is recovered when the speed of sound becomes infinite. The results presented in this article can be used as the basis for the description of optical and opto-mechanical systems in a curved spacetime. We apply our results to the examples of a uniformly accelerating resonator and an optical resonator in the gravitational field of a small moving sphere. To exemplify the applicability of our approach beyond the framework of linearized gravity, we consider the fictitious situation of an optical resonator falling into a black hole.

  3. Time-domain measurement of optical transport in silicon micro-ring resonators.

    PubMed

    Pernice, Wolfram H P; Li, Mo; Tang, Hong X

    2010-08-16

    We perform time-domain measurements of optical transport dynamics in silicon nano-photonic devices. Using pulsed optical excitation the thermal and carrier induced optical nonlinearities of micro-ring resonators are investigated, allowing for identification of their individual contributions. Under pulsed excitation build-up of free carriers and heat in the waveguides leads to a beating oscillation of the cavity resonance frequency. When employing a burst of pulse trains shorter than the carrier life-time, the slower heating effect can be separated from the faster carrier effect. Our scheme provides a convenient way to thermally stabilize optical resonators for high-power time-domain applications and nonlinear optical conversion.

  4. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    NASA Astrophysics Data System (ADS)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  5. Electron-phonon interaction in efficient perovskite blue emitters

    NASA Astrophysics Data System (ADS)

    Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.

    2018-06-01

    Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.

  6. Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films.

    PubMed

    Zhao, Jie; Xu, Zhongjie; Zang, Yunyi; Gong, Yan; Zheng, Xin; He, Ke; Cheng, Xiang'ai; Jiang, Tian

    2017-06-26

    As a new quantum state of matter, topological insulators offer a new platform for exploring new physics, giving rise to fascinating new phenomena and new devices. Lots of novel physical properties of topological insulators have been studied extensively and are attributed to the unique electron-phonon interactions at the surface. Although electron behavior in topological insulators has been studied in detail, electron-phonon interactions at the surface of topological insulators are less understood. In this work, using optical pump-optical probe technology, we performed transient absorbance measurement on Bi 2 Te 3 thin films to study the dynamics of its hot carrier relaxation process and coherent phonon behavior. The excitation and dynamics of phonon modes are observed with a response dependent on the thickness of the samples. The thickness-dependent characteristic time, amplitude and frequency of the damped oscillating signals are acquired by fitting the signal profiles. The results clearly indicate that the electron-hole recombination process gradually become dominant with the increasing thickness which is consistent with our theoretical calculation. In addition, a frequency modulation phenomenon on the high-frequency oscillation signals induced by coherent optical phonons is observed.

  7. An all-optical switch based on a surface plasmon polariton resonator

    NASA Astrophysics Data System (ADS)

    Pan, Zijuan; Lang, Peilin; Duan, Gaoyan

    2018-04-01

    All-optical switch is one of the key parts of optical circuit. We employ a temperature-sensitive resonator to form an optical switch. The resonator deforms under the applied light and adjusts the transmittance of the structure. To our knowledge, this is the first design of an all-optical surface plasmon polariton (SPP) switch based on the heat deformation effect.

  8. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    NASA Astrophysics Data System (ADS)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  9. Ultrafast optical modulation of magneto-optical terahertz effects occurring in a graphene-loaded resonant metasurface

    NASA Astrophysics Data System (ADS)

    Zanotto, S.; Lange, C.; Maag, T.; Pitanti, A.; Miseikis, V.; Coletti, C.; Degl'Innocenti, R.; Baldacci, L.; Huber, R.; Tredicucci, A.

    2016-09-01

    In this paper we investigate the effect of a static magnetic field and of optical pumping on the transmittance of a hybrid graphene-split ring resonator metasurface. A significant modulation of the transmitted spectra is obtained, both by optical pumping, and by a combination of optical pumping and magnetostatic biasing. The transmittance modulation features spectral fingerprints that are characteristic of a non-trivial interplay between the bare graphene response and the split ring resonance.

  10. Universal exchange-driven phonon splitting

    NASA Astrophysics Data System (ADS)

    Deisenhofer, Joachim; Kant, Christian; Schmidt, Michael; Wang, Zhe; Mayr, Franz; Tsurkan, Vladimir; Loidl, Alois

    2012-02-01

    We report on a linear dependence of the phonon splitting on the non-dominant exchange coupling Jnd in the antiferromagnetic monoxides MnO, Fe0.92O, CoO and NiO, and in the highly frustrated antiferromagnetic spinels CdCr2O4, MgCr2O4 and ZnCr2O4. For the monoxides our results directly confirm the theoretical prediction of a predominantly exchange induced splitting of the zone-centre optical phonon [1,2]. We find the linear relation δφ= βJndS^2 with slope β = 3.7. This relation also holds for a very different class of systems, namely the highly frustrated chromium spinels. Our finding suggests a universal dependence of the exchange-induced phonon splitting at the antiferromagnetic transition on the non-dominant exchange coupling [3].[4pt] [1] S. Massidda et al., Phys. Rev. Lett. 82, 430 (1999).[0pt] [2] W. Luo et al., Solid State Commun. 142, 504 (2007).[0pt] [3] Ch. Kant et al., arxiv:1109.4809.

  11. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids

    NASA Astrophysics Data System (ADS)

    Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin

    2017-10-01

    For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.

  12. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    PubMed

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  13. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    PubMed Central

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  14. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    NASA Astrophysics Data System (ADS)

    Ganem, Joseph; Bowman, Steven R.

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  15. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liao, Jian-Shang

    2010-05-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Fröhlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes “reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.

  16. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  17. Quantum decoherence of phonons in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  18. Resonant Optical Gradient Force Interaction for Nano-Imaging and-Spectroscopy

    DTIC Science & Technology

    2016-07-19

    frequency dependence of the optically induced force is often explored in optical trapping ofmicro-/ nanoparticles [5, 26–32], and in the optically...reduced to an image sphere of radius r, as shown infigure 1(a). This coupled nanoparticle geometry has been used extensively andwith great success...methylemethacrylate) (PMMA)with characteristic carbonyl resonance (C=O) at 1729 cm−1. Finally, to study the case of plasmonic resonance, two silver spheres

  19. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has beenmore » obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.« less

  20. Multiphonon resonant Raman scattering in MoS{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gołasa, K., E-mail: Katarzyna.Golasa@fuw.edu.pl; Grzeszczyk, M.; Wysmołek, A.

    2014-03-03

    Optical emission spectrum of a resonantly (λ = 632.8 nm) excited molybdenum disulfide (MoS{sub 2}) is studied at liquid helium temperature. More than 20 peaks in the energy range spanning up to 1400 cm{sup −1} from the laser line, which are related to multiphonon resonant Raman scattering processes, are observed. The attribution of the observed lines involving basic lattice vibrational modes of MoS{sub 2} and both the longitudinal (LA(M)) and the transverse (TA(M) and/or ZA(M)) acoustic phonons from the vicinity of the high-symmetry M point of the MoS{sub 2} Brillouin zone is proposed.

  1. Landau-Zener-Stückelberg Interferometry in Quantum Dots with Fast Rise Times: Evidence for Coherent Phonon Driving.

    PubMed

    Korkusinski, M; Studenikin, S A; Aers, G; Granger, G; Kam, A; Sachrajda, A S

    2017-02-10

    Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interferometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.

  2. Novel Electron-Phonon Relaxation Pathway in Graphite Revealed by Time-Resolved Raman Scattering and Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry

    2017-01-19

    Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.

  3. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  4. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than the averagedmore » phonon mean-free path in BaTiO3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. This time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  5. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  6. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE PAGES

    Zhu, Yi; Chen, Frank; Park, Joonkyu; ...

    2017-11-16

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  7. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    PubMed

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  8. Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; MacQuarrie, E. R.; Fuchs, G. D.

    2018-04-01

    We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain coupled to a NV center's orbital states, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multiphonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV-center orbital states.

  9. Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.

    PubMed

    Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling

    2017-10-16

    In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

  10. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  11. Strain gauge using Si-based optical microring resonator.

    PubMed

    Lei, Longhai; Tang, Jun; Zhang, Tianen; Guo, Hao; Li, Yanna; Xie, Chengfeng; Shang, Chenglong; Bi, Yu; Zhang, Wendong; Xue, Chenyang; Liu, Jun

    2014-12-20

    This paper presents a strain gauge using the mechanical-optical coupling method. The Si-based optical microring resonator was employed as the sensing element, which was embedded on the microcantilevers. The experimental results show that applying external strain triggers a clear redshift of the output resonant spectrum of the structure. The sensitivity of 93.72  pm/MPa was achieved, which also was verified using theoretical simulations. This paper provides what we believe is a new method to develop micro-opto-electromechanical system (MOEMS) sensors.

  12. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    PubMed

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  13. Giant plasmonic mode splitting in THz metamaterials mediated by coupling with Lorentz phonon mode

    NASA Astrophysics Data System (ADS)

    Yu, Leilei; Huang, Yuanyuan; Liu, Changji; Hu, Fangrong; Jin, Yanping; Yan, Yi; Xu, Xinlong

    2018-04-01

    Giant plasmonic mode splitting has been observed in THz metamaterials due to the mediation by the Lorentz phonon dielectric material. This splitting mode is confirmed by the surface current distribution, indicating that plasmonic modes behave like dipole resonances, while the phonon mode behaves like multipole resonance due to coupling. The splitting of the plasmonic modes demonstrates an anti-crossing behavior with the change in Lorentz central frequency, which suggests that there is energy redistribution between plasmon and phonon modes. Similar to the Stark effect, the splitting frequency difference increases with the increasing direct current dielectric function. We also propose an interaction Hamiltonian to understand the physical mechanism of the plasmonic splitting. Furthermore, the splitting is convincible for small Lorentz dielectrics such as sugar and amino acid in the THz region, which could be used for biomolecular sensing applications.

  14. Applications of Optical Microcavity Resonators in Analytical Chemistry

    PubMed Central

    Wade, James H.; Bailey, Ryan C.

    2018-01-01

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. The review begins with a brief description of optical resonator sensor operation followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key recent developments are highlighted, including advancements in biosensing and other applications of optical sensors. Alternative sensing mechanisms and hybrid sensing devices are then discussed in terms of their potential for more sensitive and rapid analyses. Brief concluding statements offer our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry. PMID:27049629

  15. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  16. Nonlinear electron-phonon coupling in doped manganites

    DOE PAGES

    Esposito, Vincent; Fechner, M.; Mankowsky, R.; ...

    2017-06-15

    Here, we employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr 0.5Ca 0.5MnO 3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.

  17. Nonlinear Electron-Phonon Coupling in Doped Manganites.

    PubMed

    Esposito, V; Fechner, M; Mankowsky, R; Lemke, H; Chollet, M; Glownia, J M; Nakamura, M; Kawasaki, M; Tokura, Y; Staub, U; Beaud, P; Först, M

    2017-06-16

    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr_{0.5}Ca_{0.5}MnO_{3} after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.

  18. Linear build-up of Fano resonance spectral profiles

    NASA Astrophysics Data System (ADS)

    Golovinski, P. A.; Yakovets, A. V.; Astapenko, V. A.

    2018-06-01

    The build-up dynamics of a continuous spectrum under the action of a weak laser field on a Fano resonance with the use of the pulses with the Lorentz spectrum and ultrashort pulses in the wavelet form is investigated. A dispersion-time excitation dependence of the Fano resonances in a He atom, in an InP impurity semiconductor, in longitudinal optical LO-phonons of a shallow donor exciton in pure ZnO crystals, and in metamaterials are calculated. The numerical simulation of the dynamics has shown time-dependent formation of a Fano spectral profile in the systems of different physical natures under the action of ultrashort pulses with attosecond and femtosecond durations.

  19. Optical phonon modes of III-V nanoparticles and indium phosphide/II-VI core-shell nanoparticles: A Raman and infrared study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia Speranta

    The prospects for realizing efficient nanoparticle light emitters in the visible/near IR for communications and bio-medical applications have benefited from progress in chemical fabrication of nanoparticles. III-V semiconductor nanopaticles such as GaP and InP are promising materials for the development of "blue" and "green" emitters, respectively, due to their large effective bandgaps. Enhanced emission efficiency has been achieved for core-shell nanoparticles, since inorganic shell materials increase electronic tunability and may decrease surface defects that often occur for nanoparticles capped with organic molecules. Also, the emission wavelength of InP nanoparticle cores can be tuned from green to red by changing the shell material in InP/II-VI core-shell nanoparticles. Investigations of phonon modes in nanocrystals are of both fundamental and applied interest. In the former case the optical phonon modes, such as surface/interface modes, are dependent on the nanoparticle dimensions, and also can provide information about dynamical properties of the nanoparticles and test the validity of various theoretical approaches. In the latter case the vibronic properties of nanoparticle emitters are controlled by confined phonons and modifications of the electron-phonon interaction by the confinement. Thus, the objective of the present thesis is the detailed study of the phonon modes of III-V nanoparticles (GaP and InP) and InP/II-VI core-shell nanoparticles by IR absorption and Raman scattering spectroscopies, and an elucidation of their complex vibrational properties. With the exception of three samples (two GaP and one InP), all samples were synthesized by a novel colloidal chemistry method, which does not requires added surfactant, but rather treatment of the corresponding precursors in octadecene noncoordinative solvent. Sample quality was characterized by ED, TEM and X-ray diffraction. Based on a comparison with a dielectric continuum model, the observed features

  20. Impurity and phonon scattering in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Persson, M. P.; Mera, H.; Delerue, C.; Niquet, Y. M.; Allan, G.; Wang, E.

    2011-03-01

    We model the scattering of electrons by phonons and dopant impurities in ultimate [110]-oriented gate-all-around silicon nanowires with an atomistic valence force field and tight-binding approach. All electron-phonons interactions are included. We show that impurity scattering can reduce with decreasing nanowire diameter due to the enhanced screening by the gate. Donors and acceptors however perform very differently : acceptors behave as tunnel barriers for the electrons, while donors behave as quantum wells which introduce Fano resonances in the conductance. As a consequence the acceptors are much more limiting the mobility than the donors. The resistances of single acceptors are also very dependent on their radial position in the nanowire, which might be a significant source of variability in ultimate silicon nanowire devices. Concerning phonons, we show that, as a result of strong confinement, i) electrons couple to a wide and complex distribution of phonons modes, and ii) the mobility has a non-monotonic variation with wire diameter and is strongly reduced with respect to bulk. French National Research Agency ANR project QUANTAMONDE Contract No. ANR-07-NANO-023-02 and by the Délégation Générale pour l'Armement, French Ministry of Defense under Grant No. 2008.34.0031.

  1. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    PubMed

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  2. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-01

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  3. Phonon structures of GaN-based random semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  4. Integrated resonant micro-optical gyroscope and method of fabrication

    DOEpatents

    Vawter, G Allen [Albuquerque, NM; Zubrzycki, Walter J [Sandia Park, NM; Guo, Junpeng [Albuquerque, NM; Sullivan, Charles T [Albuquerque, NM

    2006-09-12

    An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

  5. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    PubMed

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  6. Au3+ ion implantation on FTO coated glasses: Effect on structural, electrical, optical and phonon properties

    NASA Astrophysics Data System (ADS)

    Sahu, Bindu; Dey, Ranajit; Bajpai, P. K.

    2017-06-01

    Effects of 11.00 MeV Au3+ ions implanted in FTO coated (thickness ≈300 nm) silicate glasses on structural, electrical optical and phonon behavior have been explored. It has been observed that metal clustering near the surface and sub-surface region below glass-FTO interface changes electrical and optical properties significantly. Ion implantation does not affect the crystalline structure of the coated films; however, the unit cell volume decreases with increase in fluence and the tetragonal distortion (c/a ratio) also decreases systematically in the implanted samples. The sheet resistivity of the films increases from 11 × 10-5 ohm-cm (in pristine) to 7.5 × 10-4 ohm-cm for highest ion beam fluence ≈1015 ions/cm2. The optical absorption decreases with increasing fluence whereas, the optical transmittance as well as reflectance increases with increasing fluence. The Raman spectra are observed at ∼530 cm-1 and ∼1103 cm-1 in pristine sample. The broad band at 530 cm-1 shifts towards higher wave number in the irradiated samples. This may be correlated with increased disorder and strain relaxation in the samples as a result of ion beam irradiation.

  7. Strain effects on the optical conductivity of gapped graphene in the presence of Holstein phonons beyond the Dirac cone approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gmail.com

    2016-08-15

    In this paper we study the optical conductivity and density of states (DOS) of doped gapped graphene beyond the Dirac cone approximation in the presence of electron-phonon (e-ph) interaction under strain, i.e., within the framework of a full π-band Holstein model, by using the Kubo linear response formalism that is established upon the retarded self-energy. A new peak in the optical conductivity for a large enough e-ph interaction strength is found which is associated to transitions between the midgap states and the Van Hove singularities of the main π-band. Optical conductivity decreases with strain and at large strains, the systemmore » has a zero optical conductivity at low energies due to optically inter-band excitations through the limit of zero doping. As a result, the Drude weight changes with e-ph interaction, temperature and strain. Consequently, DOS and optical conductivity remains stable with temperature at low e-ph coupling strengths.« less

  8. Effects of 780 nm Optical Illumination on Loss in Superconducting Microwave Resonator

    NASA Astrophysics Data System (ADS)

    Budoyo, R. P.; Hertzberg, J. B.; Ballard, C. J.; Voigt, K. D.; Hoffman, J. E.; Grover, J. A.; Solano, P.; Lee, J.; Rolston, S. L.; Orozco, L. A.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2015-03-01

    Understanding the effects of light incident on a superconducting circuit is an important step toward building a hybrid quantum system where a superconducting qubit or resonator is coupled to atoms trapped on a tapered optical fiber. We fabricated a microscale thin-film Al superconducting LC resonator (frequency 6.72 GHz) on sapphire substrate and mounted it inside an Al 3d cavity (TE101 mode frequency 7.50 GHz). Using an optical fiber, we illuminated the resonator with 780 nm light, and measured the change in internal quality factor and resonant frequency of the resonator as a function of applied optical power. The results suggest that the illumination causes an increase in rf drive-dependent dissipation. While optical illumination is expected to enhance dissipation due to quasiparticles, rf drive dependence is more typically seen in two-level-system dissipation. We compare the results with the change in loss from increased resonator temperature, and discuss various mechanisms of loss from optical illumination. Work supported by NSF through the Physics Frontier Center at the Joint Quantum Institute (JQI), and by the Center of Nanophysics and Advanced Materials (CNAM).

  9. Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: A first-principles study

    NASA Astrophysics Data System (ADS)

    Vallabhaneni, Ajit K.; Singh, Dhruv; Bao, Hua; Murthy, Jayathi; Ruan, Xiulin

    2016-03-01

    Raman spectroscopy has been widely used to measure thermal conductivity (κ ) of two-dimensional (2D) materials such as graphene. This method is based on a well-accepted assumption that different phonon polarizations are in near thermal equilibrium. However, in this paper, we show that, in laser-irradiated single-layer graphene, different phonon polarizations are in strong nonequilibrium, using predictive simulations based on first principles density functional perturbation theory and a multitemperature model. We first calculate the electron cooling rate due to phonon scattering as a function of the electron and phonon temperatures, and the results clearly illustrate that optical phonons dominate the hot electron relaxation process. We then use these results in conjunction with the phonon scattering rates computed using perturbation theory to develop a multitemperature model and resolve the spatial temperature distributions of the energy carriers in graphene under steady-state laser irradiation. Our results show that electrons, optical phonons, and acoustic phonons are in strong nonequilibrium, with the flexural acoustic (ZA) phonons showing the largest nonequilibrium to other phonon modes, mainly due to their weak coupling to other carriers in suspended graphene. Since ZA phonons are the main heat carriers in graphene, we estimate that neglecting this nonequilibrium leads to underestimation of thermal conductivity in experiments at room temperature by a factor of 1.35 to 2.6, depending on experimental conditions and assumptions used. Underestimation is also expected in Raman measurements of other 2D materials when the optical-acoustic phonon coupling is weak.

  10. Phonon thermal transport through tilt grain boundaries in strontium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance.more » To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.« less

  11. Phonon-mediated quasiparticle poisoning of superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Patel, U.; Pechenezhskiy, Ivan V.; Plourde, B. L. T.; Vavilov, M. G.; McDermott, R.

    2017-12-01

    Nonequilibrium quasiparticles represent a significant source of decoherence in superconducting quantum circuits. Here we investigate the mechanism of quasiparticle poisoning in devices subjected to local quasiparticle injection. We find that quasiparticle poisoning is dominated by the propagation of pair-breaking phonons across the chip. We characterize the energy dependence of the time scale for quasiparticle poisoning. Finally, we observe that incorporation of extensive normal metal quasiparticle traps leads to a more than order-of-magnitude reduction in quasiparticle loss for a given injected quasiparticle power.

  12. Theory of parametrically amplified electron-phonon superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's functionmore » technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.« less

  13. Temperature induced phonon behaviour in germanium selenide thin films probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Taube, A.; Łapińska, A.; Judek, J.; Wochtman, N.; Zdrojek, M.

    2016-08-01

    Here we report a detailed study of temperature-dependent phonon properties of exfoliated germanium selenide thin films (several tens of nanometers thick) probed by Raman spectroscopy in the 70-350 K temperature range. The temperature-dependent behavior of the positions and widths of the Raman modes was nonlinear. We concluded that the observed effects arise from anharmonic phonon-phonon interactions and are explained by the phenomenon of optical phonon decay into acoustic phonons. At temperatures above 200 K, the position of the Raman modes tended to be linearly dependent, and the first order temperature coefficients χ were  -0.0277, -0.0197 and  -0.031 cm-1 K-1 for B 3g , A g(1) and A g(2) modes, respectively.

  14. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retainedmore » the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.« less

  15. Manipulation of resonant Auger processes with strong optical fields

    NASA Astrophysics Data System (ADS)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  16. Transport properties of coupled quantum dots in the presence of phonons

    NASA Astrophysics Data System (ADS)

    Martins, G.; Al-Hassanieh, K.

    2005-03-01

    Here is presented the numerical study of the effect of Holstein phonons in the transport properties of two coupled quantum dots (QDs) in the Kondo regime. For the QDs we use the Anderson impurity model and each QD is coupled to a different Holstein mode. At T=0, in the absence of phonons, and with 1 electron per dot, the usual splitting of the Kondo resonance is observed.^1 When the QDs are coupled to the phonons, there is a reduction of the effective Coulomb repulsion, which is explained through a canonical transformation. In addition, the conductance at the electron-hole symmetric gate potential is not affected by the phonons. This is caused by the modulation of the coupling factors.^2 The difference between the effects of phonons in lithographic QDs and in molecular conductors is also discussed. 1- C.A. Büsser et al, Phys. Rev. B 62, 9907 (2000). 2- K.A. Al-Hassanieh, C.A. Büsser, G.B. Martins, Adriana Moreo and Elbio Dagotto (preprint)

  17. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  18. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    PubMed Central

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-01-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177

  19. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  20. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites.

    PubMed

    Straus, Daniel B; Hurtado Parra, Sebastian; Iotov, Natasha; Gebhardt, Julian; Rappe, Andrew M; Subotnik, Joseph E; Kikkawa, James M; Kagan, Cherie R

    2016-10-05

    Quantum and dielectric confinement effects in 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures below 75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly-spaced resonances every 40-46 meV, consistent with electron-phonon coupling to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character, and these assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond timescale competitive with that for PL. At temperatures above 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous below 75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton.

  1. Detecting the phonon spin in magnon-phonon conversion experiments

    NASA Astrophysics Data System (ADS)

    Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.

    2018-05-01

    Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

  2. Resonant tunneling diode oscillators for optical communications

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Zhang, Weikang; Wang, Jue; Al-Khalidi, Abdullah; Cantu, Horacio; Figueiredo, Jose; Wasige, Edward; Kelly, Anthony E.

    2017-08-01

    The ability to use resonant tunneling diodes (RTDs) as both transmitters and receivers is an emerging topic, especially with regards to wireless communications. Successful data transmission has been achieved using electronic RTDs with carrier frequencies exceeding 0.3 THz. Specific optical-based RTDs, which act as photodetectors, have been developed by adjusting the device structure to include a light absorption layer and small optical windows on top of the device to allow direct optical access. This also allows the optical signal to directly modulate the RTD oscillation. Both types of RTD oscillators will allow for seamless integration of high frequency radio and optical fiber networks.

  3. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  4. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE PAGES

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; ...

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  5. Breathers in a locally resonant granular chain with precompression

    DOE PAGES

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; ...

    2016-09-01

    Here we study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. In turn, this leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. Moreover, the stability and bifurcation structure of numerically computedmore » exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.« less

  6. Infrared dielectric functions and optical phonons of wurtzite Y x Al1-x N (0  ⩽  x  ⩽  0.22)

    NASA Astrophysics Data System (ADS)

    Ben Sedrine, N.; Zukauskaite, A.; Birch, J.; Jensen, J.; Hultman, L.; Schöche, S.; Schubert, M.; Darakchieva, V.

    2015-10-01

    YAlN is a new member of the group-III nitride family with potential for applications in next generation piezoelectric and light emitting devices. We report the infrared dielectric functions and optical phonons of wurtzite (0001) Y x Al1-x N epitaxial films with 0  ⩽  x  ⩽  0.22. The films are grown by magnetron sputtering epitaxy on c-plane Al2O3 and their phonon properties are investigated using infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The infrared-active E 1(TO) and LO, and the Raman active E 2 phonons are found to exhibit one-mode behavior, which is discussed in the framework of the MREI model. The compositional dependencies of the E 1(TO), E 2 and LO phonon frequencies, the high-frequency limit of the dielectric constant, {{\\varepsilon}∞} , the static dielectric constant, {{\\varepsilon}0} , and the Born effective charge Z B are established and discussed.

  7. Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect

    NASA Astrophysics Data System (ADS)

    He, Dahai; Thingna, Juzar; Cao, Jianshu

    2018-05-01

    We study the effect of system-bath coupling strength on quantum thermal transport through the interface of two weakly coupled anharmonic molecular chains by using a quantum self-consistent phonon approach. The approach inherently assumes that the two segments (anharmonic molecular chains) are approximately in local thermal equilibrium with respect to the baths that they are connected to and transforms the strongly anharmonic system into an effective harmonic one with a temperature-dependent transmission. Despite the approximations, the approach is ideal for our setup, wherein the weak interfacial coupling guarantees an approximate local thermal equilibrium of each segment and short chain length (less than the phonon mean-free path) ensues from the effective harmonic approximation. Remarkably, the heat current shows a resonant to bi-resonant transition due to the variations in the interfacial coupling and temperature, which is attributed to the delocalization of phonon modes. Delocalization occurs only in the strong system-bath coupling regime and we utilize it to model a thermal rectifier whose ratio can be nonmonotonically tuned not only with the intrinsic system parameters but also with the external temperature.

  8. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  9. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids

    NASA Astrophysics Data System (ADS)

    Feng, Tianli; Ruan, Xiulin

    2016-01-01

    Recently, first principle-based predictions of lattice thermal conductivity κ from perturbation theory have achieved significant success. However, it only includes three-phonon scattering due to the assumption that four-phonon and higher-order processes are generally unimportant. Also, directly evaluating the scattering rates of four-phonon and higher-order processes has been a long-standing challenge. In this work, however, we have developed a formalism to explicitly determine quantum mechanical scattering probability matrices for four-phonon scattering in the full Brillouin zone, and by mitigating the computational challenge we have directly calculated four-phonon scattering rates. We find that four-phonon scattering rates are comparable to three-phonon scattering rates at medium and high temperatures, and they increase quadratically with temperature. As a consequence, κ of Lennard-Jones argon is reduced by more than 60% at 80 K when four-phonon scattering is included. Also, in less anharmonic materials—diamond, silicon, and germanium—κ is still reduced considerably at high temperature by four-phonon scattering by using the classical Tersoff potentials. Also, the thermal conductivity of optical phonons is dominated by the fourth- and higher-orders phonon scattering even at low temperature.

  10. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    NASA Astrophysics Data System (ADS)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  11. Using high pressure to study thermal transport and phonon scattering mechanisms

    NASA Astrophysics Data System (ADS)

    Hohensee, Gregory Thomas

    The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine

  12. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  13. Phonon-assisted damping of plasmons in three- and two-dimensional metals

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Novko, Dino; Draxl, Claudia

    2018-05-01

    We investigate the effects of crystal lattice vibrations on the dispersion of plasmons. The loss function of the homogeneous electron gas (HEG) in two and three dimensions is evaluated numerically in the presence of electronic coupling to an optical phonon mode. Our calculations are based on many-body perturbation theory for the dielectric function as formulated by the Hedin-Baym equations in the Fan-Migdal approximation. The coupling to phonons broadens the spectral signatures of plasmons in the electron-energy loss spectrum (EELS) and it induces the decay of plasmons on timescales shorter than 1 ps. Our results further reveal the formation of a kink in the plasmon dispersion of the two-dimensional HEG, which marks the onset of plasmon-phonon scattering. Overall, these features constitute a fingerprint of plasmon-phonon coupling in EELS of simple metals. It is shown that these effects may be accounted for by resorting to a simplified treatment of the electron-phonon interaction which is amenable to first-principles calculations.

  14. Quantum theory of phonon-mediated decoherence and relaxation of two-level systems in a structured electromagnetic reservoir

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb

    In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of

  15. Enhancement of phonon backscattering due to confinement of ballistic phonon pathways in silicon as studied with a microfabricated phonon spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otelaja, O. O.; Robinson, R. D., E-mail: rdr82@cornell.edu

    2015-10-26

    In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) aroundmore » the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.« less

  16. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures

    NASA Astrophysics Data System (ADS)

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-01

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  17. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures.

    PubMed

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-18

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  18. Ab initio calculation of resonant Raman intensities of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Miranda, Henrique; Reichardt, Sven; Molina-Sanchez, Alejandro; Wirtz, Ludger

    Raman spectroscopy is used to characterize optical and vibrational properties of materials. Its computational simulation is important for the interpretation of experimental results. Two approaches are the bond polarizability model and density functional perturbation theory. However, both are known to not capture resonance effects. These resonances and quantum interference effects are important to correctly reproduce the intensities as a function of laser energy as, e.g., reported for the case of multi-layer MoTe21.We present two fully ab initio approaches that overcome this limitation. In the first, we calculate finite difference derivatives of the dielectric susceptibility with the phonon displacements2. In the second we calculate electron-light and electron-phonon matrix elements from density functional theory and use them to evaluate expressions for the Raman intensity derived from time-dependent perturbation theory. These expressions are implemented in a computer code that performs the calculations as a post-processing step. We compare both methods and study the case of triple-layer MoTe2. Luxembourg National Research Fund (FNR).

  19. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE PAGES

    Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...

    2016-09-26

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  20. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, P.; Trugman, S. A.; Bowlan, J.

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  1. Unstable optical resonator loss calculations using the prony method.

    PubMed

    Siegman, A E; Miller, H Y

    1970-12-01

    The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.

  2. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures

    PubMed Central

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-01-01

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale. PMID:28516909

  3. Raman analysis of phonon modes in a short period AlN/GaN superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Ketaki; Datta, Debopam; Gosztola, David J.

    AlN/GaN-based optoelectronic devices have been the subject of intense research underlying the commercialization of efficient devices. Areas of considerable interest are the study of their lattice dynamics, phonon transport, and electron-phonon interactions specific to the interface of these heterostructures which results in additional optical phonon modes known as interface phonon modes. In this study, the framework of the dielectric continuum model (DCM) has been used to compare and analyze the optical phonon modes obtained from experimental Raman scattering measurements on AlN/GaN short-period superlattices. We have observed the localized E2(high), A1(LO) and the E1(TO) modes in superlattice measurements at frequencies shiftedmore » from their bulk values. To the best of our knowledge, the nanostructures used in these studies are among the smallest yielding useful Raman signatures for the interface modes. In addition, we have also identified an additional spread of interface phonon modes in the TO range resulting from the superlattice periodicity. The Raman signature contribution from the underlying AlxGa1-xN ternary has also been observed and analyzed. A temperature calibrationwas done based on Stokes/anti-Stokes ratio of A1(LO) using Raman spectroscopy in a broad operating temperature range. Good agreement between the experimental results and theoretically calculated calibration plot predicted using Bose-Einstein statistics was obtained.« less

  4. Raman analysis of phonon modes in a short period AlN/GaN superlattice

    NASA Astrophysics Data System (ADS)

    Sarkar, Ketaki; Datta, Debopam; Gosztola, David J.; Shi, Fengyuan; Nicholls, Alan; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    AlN/GaN-based optoelectronic devices have been the subject of intense research underlying the commercialization of efficient devices. Areas of considerable interest are the study of their lattice dynamics, phonon transport, and electron-phonon interactions specific to the interface of these heterostructures which results in additional optical phonon modes known as interface phonon modes. In this study, the framework of the dielectric continuum model (DCM) has been used to compare and analyze the optical phonon modes obtained from experimental Raman scattering measurements on AlN/GaN short-period superlattices. We have observed the localized E2(high), A1(LO) and the E1(TO) modes in superlattice measurements at frequencies shifted from their bulk values. To the best of our knowledge, the nanostructures used in these studies are among the smallest yielding useful Raman signatures for the interface modes. In addition, we have also identified an additional spread of interface phonon modes in the TO range resulting from the superlattice periodicity. The Raman signature contribution from the underlying AlxGa1-xN ternary has also been observed and analyzed. A temperature calibration was done based on Stokes/anti-Stokes ratio of A1(LO) using Raman spectroscopy in a broad operating temperature range. Good agreement between the experimental results and theoretically calculated calibration plot predicted using Bose-Einstein statistics was obtained.

  5. Generation of Optical Combs in a WGM Resonator from a Bichromatic Pump

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan; Matsko, Andrey B.

    2010-01-01

    Optical combs generated by a monolithic resonator with Kerrmedium can be used in a number of applications, including orbital clocks and frequency standards of extremely high accuracy, such as astronomy, molecular spectroscopy, and the like. The main difficulty of this approach is the relatively high pump power that has to be used in such devices, causing undesired thermorefractive effects, as well as stimulated Raman scattering, and limiting the optical comb quality and utility. In order to overcome this problem, this innovation uses a different approach to excitation of the nonlinear oscillations in a Kerr-nonlinear whispering gallery mode (WGM) resonator and generation of the optical comb. By coupling to the resonator two optical pump frequencies instead of just one, the efficiency of the comb source can be increased considerably. It therefore can operate in a lowerpower regime where the undesirable effects are not present. This process does not have a power threshold; therefore, the new optical component can easily be made strong enough to generate further components, making the optical comb spread in a cascade fashion. Additionally, the comb spacing can be made in an arbitrary number of the resonator free spectral ranges (FSR). The experimental setup for this innovation used a fluorite resonator with OMEGA= 13.56 GHz. This material has very low dispersion at the wavelength of 1.5 microns, so the resonator spectrum around this wavelength is highly equidistant. Light was coupled in and out of the resonator using two optical fibers polished at the optimal coupling angle. The gap between the resonator and the fibers, affecting the light coupling and the resonator loading, was controlled by piezo positioners. The light from the input fiber that did not go into the resonator reflected off of its rim, and was collected by a photodetector. This enabled observation and measurement of the (absorption) spectrum of the resonator. The input fiber combined light from two

  6. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  7. Electronic and phononic modulation of MoS2 under biaxial strain

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Roknabadi, M. R.; Ghorbani, S. R.; Modarresi, M.

    2017-12-01

    Dichalcogenides of transition metals are attractive material due to its unique properties. In this work, it has been investigated the electronic band structure, phonon spectrum and heat capacity of MoS2 under the applied tensile and compressive biaxial strain using the density functional theory. The Molybdenum disulfide under compressive (tensile) strain up to 6% (10%) has stable atomic structure without any negative frequency in the phonon dispersion curves. The tensile biaxial strain reduces the energy gap in the electronic band structure and the optical-acoustic gap in phonon dispersion curves. The tensile biaxial strain also increases the specific heat capacity. On the other hand, the compressive biaxial strain in this material increases phonon gap and reduces the heat capacity and the electronic band gap. The phonon softening/hardening is reported for tensile/compressive biaxial strain in MoS2. We report phonon hardening for out of plane ZA mode in the presence of both tensile and compressive strains. Results show that the linear variation of specific heat with strain (CV ∝ε) and square dependency of specific heat with the temperature (CV ∝T2) for low temperature regime. The results demonstrate that the applied biaxial strain tunes the electronic energy gap and modifies the phonon spectrum of MoS2.

  8. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    PubMed

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  9. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.

    PubMed

    Jin, Jae Sik; Lee, Joon Sik

    2007-11-01

    An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).

  10. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.

    PubMed

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-02-17

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 10⁷ and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10-1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors.

  11. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect

    PubMed Central

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-01-01

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 107 and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10–1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors. PMID:28218642

  12. Prediction of the limit of detection of an optical resonant reflection biosensor.

    PubMed

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  13. Geometric and potential dynamics interpretation of the optic ring resonator bistability

    NASA Astrophysics Data System (ADS)

    Chiangga, S.; Chittha, T.; Frank, T. D.

    2015-07-01

    The optical bistability is a fundamental nonlinear feature of the ring resonator. A geometric and potential dynamics interpretation of the bistability is given. Accordingly, the bistability of the nonlinear system is shown to be a consequence of geometric laws of vector calculus describing the resonator ring. In contrast, the so-called transcendental relations that have been obtained in the literature in order to describe the optical wave are interpreted in terms of potential dynamical systems. The proposed novel interpretation provides new insights into the nature of the ring resonator optical bistability. The fundamental work by Rukhlenko, Premaratne and Agrawal (2010) as well as a more recent study by Chiangga, Pitakwongsaporn, Frank and Yupapin (2013) are considered.

  14. MEMS tunable optical filter based on multi-ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessalegn, Hailu, E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T., E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in

    We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenabilitymore » as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.« less

  15. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the

  16. Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.

    PubMed

    Dong, Hao-Wen; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-04-01

    Topology optimization of a waveguide-cavity structure in phononic crystals for designing narrow band filters under the given operating frequencies is presented in this paper. We show that it is possible to obtain an ultra-high-Q filter by only optimizing the cavity topology without introducing any other coupling medium. The optimized cavity with highly symmetric resonance can be utilized as the multi-channel filter, raising filter and T-splitter. In addition, most optimized high-Q filters have the Fano resonances near the resonant frequencies. Furthermore, our filter optimization based on the waveguide and cavity, and our simple illustration of a computational approach to wave control in phononic crystals can be extended and applied to design other acoustic devices or even opto-mechanical devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification

    NASA Astrophysics Data System (ADS)

    Khurgin, J. B.; Pruessner, M. W.; Stievater, T. H.; Rabinovich, W. S.

    2012-10-01

    We develop a theory describing the operation of an opto-mechanical oscillator as a phonon laser using a set of coupled equations that is analogous to the standard set of laser rate equations. We show that laser-like parameters that characterize gain, stored energy, threshold, efficiency, oscillation frequency linewidth, and saturation power can be introduced for an opto-mechanical oscillator driven by photo-thermal or radiation pressure forces. We then apply the theoretical model to the experimental results for photo-thermally driven oscillations in a Si waveguide opto-mechanical resonator and show good agreement between the theory and experiments. We also consider the microscopic mechanism that transforms the energy of incoherent thermal phonons into coherent oscillations of a single phonon mode and show remarkable parallels with the three-wave parametric interactions in optics and also with opto-electronic oscillators used in microwave photonics.

  18. Intrinsic phonon-limited charge carrier mobilities in thermoelectric SnSe

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Chen, Yani; Li, Wu

    2018-05-01

    Within the past few years, tin selenide (SnSe) has attracted intense interest due to its remarkable thermoelectric potential for both n - and p -type crystals. In this work, the intrinsic phonon-limited electron/hole mobilities of SnSe are investigated using a Boltzmann transport equation based on first-principles calculated electron-phonon interactions. We find that the electrons have much larger mobilities than the holes. At room temperature, the mobilities of electrons along the a , b , and c axes are 325, 801, and 623 cm2/V s, respectively, whereas those of holes are 100, 299, and 291 cm2/V s, respectively. The anisotropy of mobilities is consistent with the reciprocal effective mass at band edges. The mode-specific analysis shows that the highest longitudinal optical phonons, rather than previously assumed acoustic phonons, dominate the scattering processes and consequently the mobilities in SnSe. The room-temperature largest mean free paths of electrons and holes in SnSe are about 21 and 13 nm, respectively.

  19. Weyl points and Fermi arcs in a chiral phononic crystal

    NASA Astrophysics Data System (ADS)

    Li, Feng; Huang, Xueqin; Lu, Jiuyang; Ma, Jiahong; Liu, Zhengyou

    2018-01-01

    Topological semimetals are materials whose band structure contains touching points that are topologically nontrivial and can host quasiparticle excitations that behave as Dirac or Weyl fermions. These so-called Weyl points not only exist in electronic systems, but can also be found in artificial periodic structures with classical waves, such as electromagnetic waves in photonic crystals and acoustic waves in phononic crystals. Due to the lack of spin and a difficulty in breaking time-reversal symmetry for sound, however, topological acoustic materials cannot be achieved in the same way as electronic or optical systems. And despite many theoretical predictions, experimentally realizing Weyl points in phononic crystals remains challenging. Here, we experimentally realize Weyl points in a chiral phononic crystal system, and demonstrate surface states associated with the Weyl points that are topological in nature, and can host modes that propagate only in one direction. As with their photonic counterparts, chiral phononic crystals bring topological physics to the macroscopic scale.

  20. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    NASA Astrophysics Data System (ADS)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2012-10-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing.

  1. Raman scattering from TO phonons in (GaAs)n/(AlAs)n superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Han, H. X.; Li, G. H.; Jiang, D. S.; Ploog, K.

    1988-10-01

    (GaAS)n/(AlAs)n superlattices with n=4, 6, and 8 grown by molecular-beam epitaxy on (001)-oriented GaAs substrates were investigated by Raman scattering. In a strict backscattering geometry, confined TO-phonon modes with E symmetry are Raman forbidden. However, the effects due to near-Brewster-angle incidence and a large aperture of the scattering-light collecting lens create a small wave-vector component along the (110) orientation, and thus induce a Raman activity of TO phonons. When we take X∥[11¯0], Y∥[110], and Z∥[001], in the near-Z(YX)Z¯ backscattering configuration confined LO-phonon modes are Raman inactive. Using this configuration, we have for the first time observed both GaAs-like and AlAs-like confined TO-phonon modes at room temperature and under off-resonance conditions.

  2. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.

    PubMed

    Ash, B J; Worsfold, S R; Vukusic, P; Nash, G R

    2017-08-02

    Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals.The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.

  3. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.

    PubMed

    Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-02-08

    Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.

  4. Launching Phonon Polaritons by Natural Boron Nitride Wrinkles with Modifiable Dispersion by Dielectric Environments.

    PubMed

    Duan, Jiahua; Chen, Runkun; Li, Jingcheng; Jin, Kuijuan; Sun, Zhigang; Chen, Jianing

    2017-10-01

    Interference-free hyperbolic phonon polaritons (HPPs) excited by natural wrinkles in a hexagonal boron nitride (hBN) microcrystal are reported both experimentally and theoretically. Although their geometries are off-resonant with the excitation wavelength, the wrinkles compensate for the large momentum mismatch between photon and phonon polariton, and launch the HPPs without interference. The spatial feature of wrinkles is about 200 nm, which is an order of magnitude smaller than resonant metal antennas at the same excitation wavelength. Compared with phonon polaritons launched by an atomic force microscopy tip, the phonon polaritons launched by wrinkles are interference-free, independent of the launcher geometry, and exhibit a smaller damping rate (γ ≈ 0.028). On the same hBN microcrystal, in situ nanoinfrared imaging of HPPs launched by different mechanisms is performed. In addition, the dispersion of HPPs is modified by changing the dielectric environments of hBN crystals. The wavelength of HPPs is compressed twofold when the substrate is changed from SiO 2 to gold. The findings provide insights into the intrinsic properties of hBN-HPPs and demonstrate a new way to launch and control polaritons in van der Waals materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optimization of coupled device based on optical fiber with crystalline and integrated resonators

    NASA Astrophysics Data System (ADS)

    Bassir, David; Salzenstein, Patrice; Zhang, Mingjun

    2017-05-01

    Because of the advantages in terms of reproducibility for optical resonators on chip which are designed of various topologies and integration with optical devices. To increase the Q-factor from the lower rang [104 - 106 ] to higher one [108 -1010] [1-4] one use crystalline resonators. It is much complicated to couple an optical signal from a tapered fiber to crystalline resonator than from a defined ridge to a resonator designed on a chip. In this work, we will focus on the optimization of the crystalline resonators under straight wave guide (based on COMSOL multi-physic software) [5- 7] and subject also to technological constraints of manufacturing. The coupling problem at the Nano scale makes our optimizations problem more dynamics in term of design space.

  6. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  7. Crystal growth and near infrared optical properties of Pr 3+ doped lead halide materials for resonantly pumped eye safe laser applications

    NASA Astrophysics Data System (ADS)

    Jones, Ivy Krystal

    In this dissertation the material development and optical spectroscopy of Pr3+ activated low phonon energy halide crystals is presented for possible applications in resonantly pumped eye-safe solid-state laser gain media. In the last twenty years, the developments in fiber and diode lasers have enabled highly efficient resonant pumping of Pr3+ doped crystals for possible lasing in the 1.6--1.7 microm region. In this work, the results of the purification, crystal growth, and near-infrared (NIR) spectroscopic characterization of Pr3+ doped lead (II) chloride, PbCl2 and lead (II) bromide, PbBr2 are presented. The investigated PbCl2 and PbBr2 crystals are non-hygroscopic with maximum phonon energies between ~180--200 cm-1, which enable efficient emission in the NIR spectral region (~ 1.6 microm) from the 3F3/3F4 → 3H4 transition of Pr3+ ions. The commercial available starting materials were purchased as ultra dry, high purity (~ 99.999 %) beads and purified through a combination of zone-refinement and halogenation. The crystal growth of Pr3+ doped PbCl 2 and PbBr2 was performed via vertical Bridgman technique using a two-zone furnace. The resulting Pr3+ doped PbCl 2 and PbBr2 crystals exhibited characteristic IR absorption bands in the 1.5--1.7 microm region (3H4 → 3F3/3F4), which allow for resonant pumping using commercial diode lasers. A broad IR emission band centered at ~1.6 microm was observed under ~1445 nm diode laser excitation from both Pr3+ doped halides. This dissertation presents comparative spectroscopic results for Pr 3+:PbCl2 and Pr3+:PbBr2 including NIR absorption and emission studies, lifetime measurements, modelling of radiative and non-radiative decay rates, determination of transition cross-section, and the net effective gain cross sections.

  8. Optical gain coefficients of silicon: a theoretical study

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model is presented and an explicit formula is derived for calculating the optical gain coefficients of indirect band-gap semiconductors. This model is based on the second-order time-dependent perturbation theory of quantum mechanics by incorporating all the eight processes of photon/phonon emission and absorption between the band edges of the conduction and valence bands. Numerical calculation results are given for Si. The calculated absorption coefficients agree well with the existing fitting formula of experiment data with two modes of phonons: optical phonons with energy of 57.73 meV and acoustic phonons with energy of 18.27 meV near (but not exactly at) the zone edge of the X-point in the dispersion relation of phonons. These closely match with existing data of 57.5 meV transverse optical (TO) phonons at the X4-point and 18.6 meV transverse acoustic (TA) phonons at the X3-point of the zone edge. The calculated results show that the material optical gain of Si will overcome free-carrier absorption if the energy separation of quasi-Fermi levels between electrons and holes exceeds 1.15 eV.

  9. Phonon Counting and Intensity Interferometry of a Nanomechanical Resonator

    DTIC Science & Technology

    2014-10-04

    photon detectors, Γdark, and the residual pump laser light which is transmitted through the filters. In this work we use a cascaded pair of tunable...T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nature Photon . 7, 210 6 a b 0 1 10−1 FIG. 5. FEM simulations . a, Electric... photon detection we have performed effective phonon counting measurements of the acoustic emission and absorption processes in a nanomechanical res

  10. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkach, N. V., E-mail: ktf@chnu.edu.ua; Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperaturemore » shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.« less

  11. N× N optical switch based on cascaded microring resonators

    NASA Astrophysics Data System (ADS)

    Li, Jing-sen; Lu, Huan-yu; Zhao, Yu-lin

    2018-05-01

    An N×N optical switch based on cascaded microring resonators on chip is proposed. As an example, the 4×4 optical switch is further investigated. It is successfully demonstrated that its insertion loss is relatively low as 2.2 dB, the crosstalk is negligible, and the extinction ratio ( ER) is as large as 130 dB. Thermal tuning is employed to make the microrings be in resonance or not, which leads to a response time of several hundred microseconds. Alternatively, doping the desired waveguide regions with p-type or n-type dopants is able to achieve a better response time of several nanoseconds. The proposed design is easily integrated to a large scale with less microring resonators, which ensures the compact size and the low power consumption.

  12. Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO 3

    DOE PAGES

    Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; ...

    2015-02-10

    In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO 3. The dispersions of the three acoustic phonon modes (LA along [100], TA 1 along [010], and TA 2 along [110]) and two low-energy optic phonon modes (LO and TO 1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature T N=640 K. In conclusion, this suggests that the magnetic order andmore » low-energy lattice dynamics in this multiferroic material are coupled.« less

  13. Universal feature in optical control of a p -wave Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Zhang, Ren; Huang, Lianghui; Li, Donghao; Meng, Zengming; Wang, Pengjun; Zhai, Hui; Zhang, Peng; Zhang, Jing

    2018-01-01

    We report the experimental results on the optical control of a p -wave Feshbach resonance by utilizing a laser-driven bound-to-bound transition to shift the energy of a closed-channel molecule state. The magnetic field location for the p -wave resonance as a function of laser detuning can be captured by a simple formula with essentially one parameter, which describes how sensitively the resonance depends on the laser detuning. The key result of this work is to demonstrate, both experimentally and theoretically, that the ratio between this parameter for the m =0 component of the resonance and that for the m =±1 component, to a large extent, is universal. We also show that this optical control can create intriguing situations where interesting few- and many-body physics can occur, such as a p -wave resonance overlapping with an s -wave resonance or the three components of a p -wave resonance being degenerate.

  14. Miniature Trace Gas Detector Based on Microfabricated Optical Resonators

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.

    2013-01-01

    While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an

  15. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trela, W.J.; Kwei, G.H.; Lynn, J.E.

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phononsmore » carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.« less

  16. Correlated phonons and the Tc-dependent dynamical phonon anomalies

    NASA Astrophysics Data System (ADS)

    Hakioğlu, T.; Türeci, H.

    1997-11-01

    Anomalously large low-temperature phonon anharmonicities can lead to static as well as dynamical changes in the low-temperature properties of the electron-phonon system. In this work, we focus our attention on the dynamically generated low-temperature correlations in an interacting electron-phonon system using a self-consistent dynamical approach in the intermediate coupling range. In the context of the model, the polaron correlations are produced by the charge-density fluctuations which are generated dynamically by the electron-phonon coupling. Conversely, the latter is influenced in the presence of the former. The purpose of this work is to examine the dynamics of this dual mechanism between the two using the illustrative Fröhlich model. In particular, the influence of the low-temperature phonon dynamics on the superconducting properties in the intermediate coupling range is investigated. The influence on the Holstein reduction factor as well as the enhancement in the zero-point fluctuations and in the electron-phonon coupling are calculated numerically. We also examine these effects in the presence of superconductivity. Within this model, the contribution of the electron-phonon interaction as one of the important elements in the mechanisms of superconductivity can reach values as high as 15-20% of the characteristic scale of the lattice vibrational energy. The second motivation of this work is to understand the nature of the Tc-dependent temperature anomalies observed in the Debye-Waller factor, dynamical pair correlations, and average atomic vibrational energies for a number of high-temperature superconductors. In our approach we do not claim nor believe that the electron-phonon interaction is the primary mechanism leading to high-temperature superconductivity. Nevertheless, our calculations suggest that the dynamically induced low-temperature phonon correlation model can account for these anomalies and illustrates their possible common origin. Finally, the

  17. Effect of conduction band non-parabolicity on the optical gain of quantum cascade lasers based on the effective two-band finite difference method

    NASA Astrophysics Data System (ADS)

    Cho, Gookbin; Kim, Jungho

    2017-09-01

    We theoretically investigate the effect of conduction band non-parabolicity (NPB) on the optical gain spectrum of quantum cascade lasers (QCLs) using the effective two-band finite difference method. Based on the effective two-band model to consider the NPB effect in the multiple quantum wells (QWs), the wave functions and confined energies of electron states are calculated in two different active-region structures, which correspond to three-QW single-phonon and four-QW double-phonon resonance designs. In addition, intersubband optical dipole moments and polar-optical-phonon scattering times are calculated and compared without and with the conduction band NPB effect. Finally, the calculation results of optical gain spectra are compared in the two QCL structures having the same peak gain wavelength of 8.55 μm. The gain peaks are greatly shifted to longer wavelengths and the overall gain magnitudes are slightly reduced when the NPB effect is considered. Compared with the three-QW active-region design, the redshift of the peak gain is more prominent in the four-QW active-region design, which makes use of higher electronic states for the lasing transition.

  18. Fourier-transform-based model for carrier transport in semiconductor heterostructures: Longitudinal optical phonon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, X.; Schrottke, L.; Grahn, H. T.

    We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of themore » initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.« less

  19. Spectral features of LO phonon sidebands in luminescence of free excitons in GaN

    NASA Astrophysics Data System (ADS)

    Xu, S. J.; Li, G. Q.; Xiong, S.-J.; Tong, S. Y.; Che, C. M.; Liu, W.; Li, M. F.

    2005-06-01

    In the paper a combined experimental and theoretical investigation of the longitudinal optical phonon sidebands (PSBs) in the luminescence of free excitons in GaN at moderately high temperatures was reported. The spectral features, including line broadening, shift, and asymmetry of the one- and two-phonon PSBs, were revealed both experimentally and theoretically. It is found that the linewidth of the one-phonon PSB is surprisingly always larger than that of the two-phonon PSB in the interested temperature range. Moreover, the thermal broadening rates of the one- and two-phonon PSBs are considerably different. We adopted the Segall-Mahan theory [B. Segall and G. D. Mahan, Phys. Rev. 171, 935 (1968)] to compute the PSB spectra of the free excitons in GaN. Only one adjustable parameter, the effective mass of the holes, was used in the calculations. For the one-phonon PSB, an excellent agreement between theory and experiment is achieved when an adequate effective mass of the holes was used.

  20. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  1. Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Qijing; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V.; Saidi, Wissam A.; Zhao, Jin

    2018-05-01

    Van der Waals (vdW) heterostructures of transition-metal dichalcogenide (TMD) semiconductors are central not only for fundamental science, but also for electro- and optical-device technologies where the interfacial charge transfer is a key factor. Ultrafast interfacial charge dynamics has been intensively studied, however, the atomic scale insights into the effects of the electron-phonon (e-p) coupling are still lacking. In this paper, using time dependent ab initio nonadiabatic molecular dynamics, we study the ultrafast interfacial charge transfer dynamics of two different TMD heterostructures MoS2/WS2 and MoSe2/WSe2 , which have similar band structures but different phonon frequencies. We found that MoSe2/WSe2 has softer phonon modes compared to MoS2/WS2 , and thus phonon-coupled charge oscillation can be excited with sufficient phonon excitations at room temperature. In contrast, for MoS2/WS2 , phonon-coupled interlayer charge oscillations are not easily excitable. Our study provides an atomic level understanding on how the phonon excitation and e-p coupling affect the interlayer charge transfer dynamics, which is valuable for both the fundamental understanding of ultrafast dynamics at vdW hetero-interfaces and the design of novel quasi-two-dimensional devices for optoelectronic and photovoltaic applications.

  2. Non-resonant excitation of rare-earth ions via virtual Auger process

    NASA Astrophysics Data System (ADS)

    Yassievich, I. N.

    2011-05-01

    The luminescence of rare-earth ions (REI) is often intensified by defects associated with REIs or excitons bound to these defects. In this paper we show that the presence of such a state opens the possibility of non-resonance optical pumping via the process involving virtual Auger transition. It is the second order perturbation process when an electron arrives in an virtual intermediate state due to the optical transition (the first step) and the Auger transition is the second one. We have calculated the cross-section of such an excitation process when the optical transition is accompanied by creation of the exciton bound to the defect associated with REI and obtained a simple analytical expression for the cross-section. The excess energy of the excitation quanta is taken away by multiphonon emission. The electron-phonon interaction with local phonon vibrations of the bound exciton is assumed to determine the multiphonon process. It is shown that the probability of the process under study exceeds considerably the probability of direct optical 4f-4f absorption even in the case when the energy distance between the excitation quantum energy and the exciton energy is about 0.1 of the exciton energy. The excitation mechanism considered leads to the appearance of a broad unsymmetrical band in the excitation spectrum with the red side much wider and flatter than the blue one.

  3. Observation of chiral phonons

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Yi, Jun; Li, Ming-Yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  4. High-Q optical resonators: characterization and application to stabilization of lasers and high spectral purity microwave oscillators

    NASA Astrophysics Data System (ADS)

    Llopis, O.; Merrer, P. H.; Bouchier, A.; Saleh, K.; Cibiel, G.

    2010-02-01

    Microwave optical systems for frequency generation are described in this paper. The goal is to reach high spectral purity in the microwave frequency range using ultra high Q optical resonators. The resonators investigated are of two types : resonant (passive) fiber rings and WGM tridimensional resonators. They all feature ultra high optical Q factors, in excess of 108 or 109 near 1550 nm. These resonators also sustain a large number of optical resonances, and the microwave signal is stabilized on two (or more) resonances of this optical comb. Different problems have to be overcome in order to reach a functional system, such as : resonator design and coupling, laser stabilization on a resonance, overall system design, noise optimization... This paper gives an overlook on these problems, and on some solutions we found to work towards a compact and efficient microwave opto-electronic oscillator (OEO). A first result is presented on a 10 GHz OEO based on a resonant fiber ring.

  5. Superlubrication by phonon confinement

    NASA Astrophysics Data System (ADS)

    Wada, Noriyuki; Ishikawa, Makoto; Shiga, Takuma; Shiomi, Junichiro; Suzuki, Masaru; Miura, Kouji

    2018-04-01

    The superlubrication described here, involving confined phonons, is easily achievable and very simple because it uses only submicron islands, smaller than the mean free path of the phonons, to confine phonons. We can achieve superlubrication with a friction force of piconewton order at the submicron island. We can call this phononic lubrication or self-lubrication because phonons induced by tip shearing are confined within the submicron islands and decrease the friction during the subsequent sliding. Phonon confinement should make it possible to directly develop applications for lubricants and ultimately to open a novel avenue of tribology.

  6. Observation of cyclotron resonance and electron-phonon coupling in surface states of the bulk-insulating topological insulator Cu 0.02Bi 2Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Tse, Wang-Kong; Morris, C. M.

    2015-02-05

    We have utilized magneto-optical time-domain spectroscopy to investigate the low frequency optical response of topological insulator Cu 0.02Bi 2Se 3 and Bi 2Se 3 films. With both field and frequency depedence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both samples. The small amount of Cu substitution into the Cu 0.02Bi 2Se 3 induces a true bulk insulator with only a single conduction channel with total sheet carrier density 4.9 x 10 12/cm 2 and mobility as large as 4000 cm 2/V s. Thismore » is consistent with pure topological surface state (TSSs) conduction with a chemical potential 150 meV above the Dirac point. Hence, a true topological insulator with an insulating bulk is realized. The CR broadens at high fields, an e ect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis on the zero field data. In contrast to Cu 0.02Bi 2Se 3, two charge channels were observed in normal Bi 2Se 3 films. We demonstrate a method to distinguish between the dominant TSSs and trivial bulk/2DEG states. The dominant channel exhibits a CR with a carrier density of ~2.0 x 10 13/cm 2 and mobility ~3200 cm 2/V s, consistent with TSSs with a chemical potential ~350meV above the Dirac point.« less

  7. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  8. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  9. Graphene-based multilayer resonance structure to enhance the optical pressure on a Mie particle

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Mohammadnezhad, Mohammadbagher

    2016-04-01

    We theoretically investigate the optical force exerted on a Mie dielectric particle in the evanescent field of a graphene-based resonance multilayer structure using the arbitrary beam theory and the theory of multilayer films. The resonance structure consists of several thin films including a dielectric film (MgF2), a metal film (silver or gold), and several graphene layers which are located on a prism base. The effects of the metal film thickness and the number of graphene layers on the optical force are numerically investigated. The thickness of the metal layer and the number of graphene layers are optimized to reach the highest optical force. The numerical results show that an optimized composition of graphene and gold leads to a higher optical force compared to that of the graphene and silver. The optical force was enhanced resonantly by four orders of magnitude for the resonance structure containing graphene and a gold film and by three orders of magnitude for the structure containing graphene and a silver film compared to other similar resonance structures. We hope that the results presented in this paper can provide an excellent means of improving the optical manipulation of particles and enable the provision of effective optical tweezers, micromotors, and microaccelelators.

  10. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles

    NASA Astrophysics Data System (ADS)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo

    2018-01-01

    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric

  11. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode crystalline resonaors, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics.

  12. Transfer matrix method solving interface optical phonons in wurtzite core-multishell nanowires of III-nitrides

    NASA Astrophysics Data System (ADS)

    Xue, Z. X.; Qu, Y.; Xie, H.; Ban, S. L.

    2016-12-01

    Within the framework of dielectric continuum and Loudon's uniaxial crystal models, the transfer matrix method (TMM) is developed to investigate interface optical phonons (IOPs) in cylindrical wurtzite core-multishell nanowires (CMSNWs) consisting of ternary mixed crystals (TMCs). The IOPs in GaN/InxGa1-xN/InyGa1-yN and GaN/InxGa1-xN/InyGa1-yN/InzGa1-zN CMSNWs are calculated as examples. The results show that there may be several types of IOPs existing in certain frequency regions in CMSNWs for a given component due to the phonon dispersion anisotropy in wurtzite nitrides. The IOPs are classified by possible combinations of the interfaces in CMSNWs. Furthermore, the dispersion relations and electro-static potentials of each kind of IOPs are discussed in detail. The dispersion relations of IOPs in CMSNWs is found to be the combination of that in each nearest two layer CSNW. It can explain the fact that the total branch number of IOPs obey the 2n rule. It is also found that the peak positions of electro-static potentials are decided by the layer component order from the inner layer to outside in CMSNWs. The results indicate that TMM for IOPs is available and can be commodiously extended to other cylindrical wurtzite III-nitride CMSNWs. Based on this method, one can further discuss the IOPs related photoelectric properties in nitride CMSNWs consisting of TMCs.

  13. Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2016-02-01

    High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.

  14. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  15. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  16. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  17. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.

    PubMed

    Kennehan, Eric R; Doucette, Grayson S; Marshall, Ashley R; Grieco, Christopher; Munson, Kyle T; Beard, Matthew C; Asbury, John B

    2018-05-31

    Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.

  18. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition.

    PubMed

    Fukui, Hiroshi; Baron, Alfred Q R; Ishikawa, Daisuke; Uchiyama, Hiroshi; Ohishi, Yasuo; Tsuchiya, Taku; Kobayashi, Hisao; Matsuzaki, Takuya; Yoshino, Takashi; Katsura, Tomoo

    2017-06-21

    We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.

  19. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  20. Spin angular momentum induced by optical quasi-phonons activated in birefringent uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Mohamadou, B.; Maïmounatou, B.; Erasmus, R. M.

    2017-09-01

    The present report formally establishes the expression of the angular momentum of the quasi-phonons induced by linearly polarized light. The transferred mechanical torque due to phonons is then determined from the spin angular momentum and is shown to be measurable from Raman scattering experiments. To investigate this, the electric field due the excited dipoles and the associated macroscopic dielectric polarization vectors were first calculated using a lattice dynamical model in order to derive in a second step the analytical expression of the angular momentum density arising from the inelastic light scattering by quasi-phonons. The numerical results of the calculated angle dependent mode electric fields and the induced spin angular moments as well as the transferred torques were analyzed with regard to some typical behaviors of the interacting modes and it is shown that the fluctuations of the effective charges is their main origin.

  1. Activity-induced instability of phonons in 1D microfluidic crystals.

    PubMed

    Tsang, Alan Cheng Hou; Shelley, Michael J; Kanso, Eva

    2018-02-14

    One-dimensional crystals of passively-driven particles in microfluidic channels exhibit collective vibrational modes reminiscent of acoustic 'phonons'. These phonons are induced by the long-range hydrodynamic interactions among the particles and are neutrally stable at the linear level. Here, we analyze the effect of particle activity - self-propulsion - on the emergence and stability of these phonons. We show that the direction of wave propagation in active crystals is sensitive to the intensity of the background flow. We also show that activity couples, at the linear level, transverse waves to the particles' rotational motion, inducing a new mode of instability that persists in the limit of large background flow, or, equivalently, vanishingly small activity. We then report a new phenomenon of phonons switching back and forth between two adjacent crystals in both passively-driven and active systems, similar in nature to the wave switching observed in quantum mechanics, optical communication, and density stratified fluids. These findings could have implications for the design of commercial microfluidic systems and the self-assembly of passive and active micro-particles into one-dimensional structures.

  2. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohan

    With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness

  3. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    DOE PAGES

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; ...

    2016-01-20

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less

  4. Excitation of resonances of microspheres on an optical fiber

    NASA Astrophysics Data System (ADS)

    Serpengüzel, A.; Arnold, S.; Griffel, G.

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  5. Excitation of resonances of microspheres on an optical fiber.

    PubMed

    Serpengüzel, A; Arnold, S; Griffel, G

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth (<0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 10(4), contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  6. Optical control of inter-layer distance of hBN: a TDDFT study

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Zhang, Hong; Miyazaki, Takehide; Rubio, Angel

    In this presentation, we introduce an idea to modify inter-layer distance of hBN by shining IR laser in resonance with the frequency of the optical phonon (A2u mode). By performing the TDDFT-MD simulation under the IR laser, significant grow in an amplitude of the A2u phonon mode was observed and inter-layer contraction over 11 % of the original distance was achieved. The source of the stronger attraction of hBN sheets was attributed with increase of dipole moment of each layer coming from the motions of boron (B) and nitrogen (N) atoms in opposite directions. Since the dipole moments of these layers remain as parallel throughout the A2u phonon vibration, the increase of attractive force occurs between the two hBN sheets in analogy of the London force. In this talk, we will further discuss proper intensity of IR laser and potential applications of this phenomenon. This work was published in.

  7. Graphene based resonance structure to enhance the optical pressure between two planar surfaces.

    PubMed

    Hassanzadeh, Abdollah; Azami, Darya

    2015-12-28

    To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.

  8. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less

  9. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  10. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    NASA Astrophysics Data System (ADS)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  11. Resonant-Raman Intensities of N-layer Transition Metal Dichalcogenides from First Principles

    NASA Astrophysics Data System (ADS)

    Miranda, Henrique; Froehlicher, Guillaume; Lorchat, Ettienne; Fernique, François; Molina-Sánchez, Alejandro; Berciaud, Stéphane; Wirtz, Ludger

    Transition metal dichalcogenides (TMDs) have interesting optical and electronic properties that make them good candidates for nano-engineering applications. Raman spectroscopy provides information about the vibrational modes and optical spectrum at the same time: when the laser energy is close to an electronic transition, the intensity is increased due to resonance. We investigate these effects combining different ab initio methods: we obtain ground-state and vibrational properties from density functional theory and the optical absorption spectrum using GW corrections and the Bethe-Salpeter equation to account for the excitonic effects which are known to play an important role in TMDs. Using a quasi-static finite differences approach, we calculate the dielectric susceptibility for different light polarizations and different phonon modes in order to determine the Raman tensor of TMDs, in particular of multi-layer and bulk MoTe2. We explain recent experimental results for the splitting of high-frequency modes and deviations from the non-resonant Raman model. We also give a brief outlook on possible improvements of the methodology.

  12. Optofluidic refractometer using resonant optical tunneling effect.

    PubMed

    Jian, A Q; Zhang, X M; Zhu, W M; Yu, M

    2010-12-30

    This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU(-1). Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry-Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10(-9) RIU, two orders higher than the best results of current methods.

  13. Label-free optical resonant sensors for biochemical applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Campanella, Clarissa Martina; Dell'Olio, Francesco; Campanella, Carlo Edoardo; Armenise, Mario Nicola

    2013-03-01

    For a number of years, the scientific community has been paying growing attention to the monitoring and enhancement of public health and the quality of life through the detection of all dangerous agents for the human body, including gases, proteins, virus, and bacterial agents. When these agents are detected through label-free biochemical sensors, the molecules are not modified structurally or functionally by adding fluorescent or radioactive dyes. This work focuses on label-free optical ring resonator-based configurations suited for bio-chemical sensing, highlighting their physical aspects and specific applications. Resonant wavelength shift and the modal splitting occurring when the analyte interacts with microresonant structures are the two major physical aspects analyzed in this paper. Competitive optical platforms proposed in the literature are also illustrated together with their properties and performance.

  14. Radiation of a resonant medium excited by few-cycle optical pulses at superluminal velocity

    NASA Astrophysics Data System (ADS)

    Arkhipov, R. M.; Pakhomov, A. V.; Arkhipov, M. V.; Babushkin, I.; Tolmachev, Yu A.; Rosanov, N. N.

    2017-05-01

    Recent progress in generation of optical pulses of durations comparable to one optical cycle has presented great opportunities for studies of the fundamental processes in matter as well as time-resolved spectroscopy of ultrafast processes in nonlinear media. It opened up a new area of research in modern ultrafast nonlinear optics and led to appearance of the attosecond science. In parallel, a new research area related to emission from resonant media excited by superluminally propagating ultrashort bursts of electromagnetic radiation has been actively developed over the last few years. In this paper, we review our recent results on theoretical analysis of the Cherenkov-type radiation of a resonant medium excited by few-cycle optical pulses propagating at superluminal velocity. This situation can be realized when an electromagnetic pulse with a plane wavefront incidents on a straight string of resonant atoms or a spot of light rotates at very large angular frequency and excites a distant circular string of resonant dipoles. Theoretical analysis revealed some unusual and remarkable features of the Cherenkov radiation generated in this case. This radiation arises in a transient regime which leads to the occurrence of new frequencies in the radiation spectrum. Analysis of the characteristics of this radiation can be used for the study of the resonant structure properties. In addition, a nonlinear resonant medium excited at superluminal velocity can emit unipolar optical pulses, which can be important in ultrafast control of wave-packet dynamics of matter. Specifics of the few-cycle pulse-driven optical response of a resonant medium composed of linear and nonlinear oscillators is discussed.

  15. The temperature dependence of vibronic lineshapes: Linear electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Roos, Claudia; Köhn, Andreas; Gauss, Jürgen; Diezemann, Gregor

    2014-10-01

    We calculate the effect of a linear electron-phonon coupling on vibronic transitions of dye molecules of arbitrary complexity. With the assumption of known vibronic frequencies (for instance from quantum-chemical calculations), we give expressions for the absorption or emission lineshapes in a second-order cumulant expansion. We show that the results coincide with those obtained from generalized Redfield theory if one uses the time-local version of the theory and applies the secular approximation. Furthermore, the theory allows to go beyond the Huang-Rhys approximation and can be used to incorporate Dushinsky effects in the treatment of the temperature dependence of optical spectra. We consider both, a pure electron-phonon coupling independent of the molecular vibrations and a coupling bilinear in the molecular vibrational modes and the phonon coordinates. We discuss the behavior of the vibronic density of states for various models for the spectral density representing the coupling of the vibronic system to the harmonic bath. We recover some of the results that have been derived earlier for the spin-boson model and we show that the behavior of the spectral density at low frequencies determines the dominant features of the spectra. In case of the bilinear coupling between the molecular vibrations and the phonons we give analytical expressions for different spectral densities. The spectra are reminiscent of those obtained from the well known Brownian oscillator model and one finds a zero-phonon line and phonon-side bands located at vibrational frequencies of the dye. The intensity of the phonon-side bands diminishes with increasing vibrational frequencies and with decreasing coupling strength (Huang-Rhys factor). It vanishes completely in the Markovian limit where only a Lorentzian zero-phonon line is observed.

  16. Observation of optically induced feshbach resonances in collisions of cold atoms

    PubMed

    Fatemi; Jones; Lett

    2000-11-20

    We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.

  17. Optical distributed sensors for feedback control: Characterization of photorefractive resonator

    NASA Technical Reports Server (NTRS)

    Indebetouw, Guy; Lindner, D. K.

    1992-01-01

    The aim of the project was to explore, define, and assess the possibilities of optical distributed sensing for feedback control. This type of sensor, which may have some impacts in the dynamic control of deformable structures and the monitoring of small displacements, can be divided into data acquisition, data processing, and control design. Analogue optical techniques, because they are noninvasive and afford massive parallelism may play a significant role in the acquisition and the preprocessing of the data for such a sensor. Assessing these possibilities was the aim of the first stage of this project. The scope of the proposed research was limited to: (1) the characterization of photorefractive resonators and the assessment of their possible use as a distributed optical processing element; and (2) the design of a control system utilizing signals from distributed sensors. The results include a numerical and experimental study of the resonator below threshold, an experimental study of the effect of the resonator's transverse confinement on its dynamics above threshold, a numerical study of the resonator above threshold using a modal expansion approach, and the experimental test of this model. A detailed account of each investigation, including methodology and analysis of the results are also included along with reprints of published and submitted papers.

  18. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces

    NASA Astrophysics Data System (ADS)

    Long, Yun; Wang, Jian

    2014-06-01

    Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.

  19. Observation of chiral phonons.

    PubMed

    Zhu, Hanyu; Yi, Jun; Li, Ming-Yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-02-02

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Phonon dispersion and local density of states in NiPd alloy using modified embedded atom method potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Subodh, E-mail: subodhssgk@gmail.com; Chand, Manesh, E-mail: maneshchand@gmail.com; Dabral, Krishna, E-mail: kmkrishna.dabral@gmail.com

    2016-05-06

    A modified embedded atom method (MEAM) potential model up to second neighbours has been used to calculate the phonon dispersions for Ni{sub 0.55}Pd{sub 0.45} alloy in which Pd is introduced as substitutional impurity. Using the force-constants obtained from MEAM potential, the local vibrational density of states in host Ni and substitutional Pd atoms using Green’s function method has been calculated. The calculation of phonon dispersions of NiPd alloy shows a good agreement with the experimental results. Condition of resonance mode has also been investigated and resonance mode in the frequency spectrum of impurity atom at low frequency is observed.