Science.gov

Sample records for resonant x-ray magnetic

  1. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  2. Resonant magnetic scattering of polarized soft x rays

    SciTech Connect

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.; Underwood, J.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  3. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    SciTech Connect

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  4. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  5. Soft x-ray resonant magnetic scattering from an imprinted magnetic domain pattern

    SciTech Connect

    Kinane,C.; Suszka, A.; Marrows, C.; Hickey, B.; Arena, D.; Dvorak, J.; Charlton, T.; Langridge, S.

    2006-01-01

    The authors report on the use of a Co/Pt multilayer, which exhibits strong perpendicular magnetic anisotropy, to magnetostatically imprint a domain pattern onto a 50 Angstroms thick Permalloy layer. Element specific soft x-ray magnetic scattering experiments were then performed so as to be sensitive to the magnetic structure of the Permalloy only. Off-specular magnetic satellite peaks, corresponding to a periodic domain stripe width of 270 nm, were observed, confirmed by magnetic force microscopy and micromagnetic modeling. Thus the authors have exploited the element specificity of soft x-ray scattering to discern the purely magnetic correlations in a structurally flat Permalloy film.

  6. X-ray and magnetic resonance imaging fusion for cardiac resynchronization therapy.

    PubMed

    Choi, Jinwoo; Radau, Perry; Xu, Robert; Wright, Graham A

    2016-07-01

    Cardiac Resynchronization Therapy (CRT) can effectively treat left ventricle (LV) driven Heart Failure (HF). However, 30% of the CRT recipients do not experience symptomatic benefit. Recent studies show that the CRT response rate can reach 95% when the LV pacing lead is placed at an optimal site at a region of maximal LV dyssynchrony and away from myocardial scars. Cardiac Magnetic Resonance (CMR) can identify the optimal site in three dimensions (3D). 3D CMR data can be registered to clinical standard x-ray fluoroscopy to achieve an optimal pacing of the LV. We have developed a 3D CMR to 2D x-ray image registration method for CRT procedures. We have employed the LV pacing lead on x-ray images and coronary sinus on MR data as landmarks. The registration method makes use of a guidewire simulation algorithm, edge based image registration technique and x-ray C-arm tracking to register the coronary sinus and pacing lead landmarks. PMID:27025953

  7. Technology Preview: X-Ray Fused With Magnetic Resonance During Invasive Cardiovascular Procedures

    PubMed Central

    Gutiérrez, Luis F.; de Silva, Ranil; Ozturk, Cengizhan; Sonmez, Merdim; Stine, Annette M.; Raval, Amish N.; Raman, Venkatesh K.; Sachdev, Vandana; Aviles, Ronnier J.; Waclawiw, Myron A.; McVeigh, Elliot R.; Lederman, Robert J.

    2009-01-01

    Background We have developed and validated a system for real-time X-ray fused with magnetic resonance imaging, MRI (XFM), to guide catheter procedures with high spatial precision. Our implementation overlays roadmaps—MRI-derived soft-tissue features of interest—onto conventional X-ray fluoroscopy. We report our initial clinical experience applying XFM, using external fiducial markers, electrocardiogram (ECG)-gating, and automated real-time correction for gantry and table movement. Methods This prospective case series for technical development was approved by the NHLBI Institutional Review Board and included 19 subjects. Multimodality external fiducial markers were affixed to patients’ skin before MRI, which included contrast-enhanced, 3D T1-weighted, or breath-held and ECG-gated 2D steady state free precession imaging at 1.5T. MRI-derived roadmaps were manually segmented while patients were transferred to a calibrated X-ray fluoroscopy system. Image spaces were registered using the fiducial markers and thereafter permitted unrestricted gantry rotation, table panning, and magnification changes. Static and ECG-gated MRI data were transformed from 3D to 2D to correspond with gantry and table position and combined with live X-ray images. Results Clinical procedures included graft coronary arteriography, right ventricular free-wall biopsy, and iliac and femoral artery recanalization and stenting. MRI roadmaps improved operator confidence, and in the biopsy cases, outperformed the best available alternative imaging modality. Registration errors were increased when external fiducial markers were affixed to more mobile skin positions, such as over the abdomen. Conclusion XFM using external fiducial markers is feasible during X-ray guided catheter treatments. Multimodality image fusion may prove a useful adjunct to invasive cardiovascular procedures. PMID:18022851

  8. Resonant magnetic x-ray scattering study of phase transitions in UPd2Al3

    NASA Astrophysics Data System (ADS)

    Gaulin, B. D.; Gibbs, D.; Isaacs, E. D.; Lussier, J. G.; Reimers, J. N.; Schröder, A.; Taillefer, L.; Zschack, P.

    1994-08-01

    Resonant magnetic x-ray scattering measurements were performed on a single microcrystallite at the surface of a polycrystalline boule of the antiferromagnetic, heavy fermion superconductor UPd2Al3. These measurements show a strong anomaly in the order parameter at 11.8 K, below TN~14.5 K, indicating at least two antiferromagnetically ordered phases which share a common periodicity. Measurements performed at temperatures near and below Tc=2.0 K show the antiferromagnetic order parameter to be unaffected on passing into the superconducting phase, to +/-2%.

  9. Resonant magnetic X-ray scattering studies of heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Gaulin, B. D.; Isaacs, E. D.; Lussier, J. G.; Reimers, J. N.; Gibbs, D.; Zschack, P.; Schröder, A.; Taillefer, L.; Garrett, J. D.

    1994-04-01

    The uranium-based heavy fermion superconductors which are known to display weak antiferromagnetism at low temperatures are well suited to study by the newly developed resonant magnetic X-ray scattering technique. We review recent synchrotron X-ray scattering studies of the magnetic behavior of UPd 2Al 3 and URu 2Si 2 and the interaction between magnetism and superconductivity in these materials. These measurements show resolution-limited magnetic Bragg peaks in UPd 2Al 3 in contrast to those in URu 2Si 2. The order parameter as measured at the (0 0 {1}/{2}) magnetic reciprocal lattice position in UPd 2Al 3 is different from that at (0, 0, {3}/{2}), the latter of which indicates a strong anomaly at TNI ∼ 11.8 K below the sharp onset of the antiferromagnetic phase at TN ∼ 14.5 K. Finally, the behavior of the (0 0 {1}/{2}) order parameter is smooth for T ≤ Tc = 2.00 ± 0.04 K.

  10. Resonant X-Ray Scattering and Absorption

    NASA Astrophysics Data System (ADS)

    Collins, S. P.; Bombardi, A.

    This chapter outlines some of the basic ideas behind nonresonant and resonant X-ray scattering, using classical or semiclassical pictures wherever possible; specifically, we highlight symmetry arguments governing the observation of X-ray optical effects, such as X-ray magnetic circular dichroism and resonant "forbidden" diffraction. Without dwelling on the microscopic physics that underlies resonant scattering, we outline some key steps required for calculating its rotation and polarization dependence, based on Cartesian and spherical tensor frameworks. Several examples of resonant scattering, involving electronic anisotropy and magnetism, are given as illustrations. Our goal is not to develop or defend theoretical concepts in X-ray scattering, but to bring together existing ideas in a pragmatic and utilitarian manner.

  11. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    SciTech Connect

    Solves-Llorens, J. A.; Rupérez, M. J. Monserrat, C.; Lloret, M.

    2014-08-15

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  12. Magnetic resonance imaging and X-ray microtomography studies of a gel-forming tablet formulation.

    PubMed

    Laity, P R; Mantle, M D; Gladden, L F; Cameron, R E

    2010-01-01

    The capabilities of two methods for investigating tablet swelling are investigated, based on a study of a model gel-forming system. Results from magnetic resonance imaging (MRI) were compared with results from a novel application of X-ray microtomography (XmicroT) to track the movements of embedded glass microsphere tracers as the model tablets swelled. MRI provided information concerning the movement of hydration fronts into the tablets and the composition of the swollen gel layer, which formed at the tablet surface and progressively thickened with time. Conversely, XmicroT revealed significant axial expansion within the tablet core, at short times and ahead of the hydration fronts, where there was insufficient water to be observed by MRI (estimated to be around 15% by weight for the system used here). Thus, MRI and XmicroT may be regarded as complementary methods for studying the hydration and swelling behaviour of tablets.

  13. X-Ray Detected Magnetic Resonance: A Unique Probe of the Precession Dynamics of Orbital Magnetization Components

    PubMed Central

    Goulon, Jośe; Rogalev, Andrei; Goujon, Gérard; Wilhelm, Fabrice; Ben Youssef, Jamal; Gros, Claude; Barbe, Jean-Michel; Guilard, Roger

    2011-01-01

    X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence. PMID:22272105

  14. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    PubMed

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  15. Quantitative imaging of cell-permeable magnetic resonance contrast agents using x-ray fluorescence.

    PubMed

    Endres, Paul J; Macrenaris, Keith W; Vogt, Stefan; Allen, Matthew J; Meade, Thomas J

    2006-01-01

    The inability to transduce cellular membranes is a limitation of current magnetic resonance imaging probes used in biologic and clinical settings. This constraint confines contrast agents to extracellular and vascular regions of the body, drastically reducing their viability for investigating processes and cycles in developmental biology. Conversely, a contrast agent with the ability to permeate cell membranes could be used in visualizing cell patterning, cell fate mapping, gene therapy, and, eventually, noninvasive cancer diagnosis. Therefore, we describe the synthesis and quantitative imaging of four contrast agents with the capability to cross cell membranes in sufficient quantity for detection. Each agent is based on the conjugation of a Gd(III) chelator with a cellular transduction moiety. Specifically, we coupled Gd(III)-diethylenetriaminepentaacetic acid DTPA and Gd(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid with an 8-amino acid polyarginine oligomer and an amphipathic stilbene molecule, 4-amino-4'-(N,N-dimethylamino)stilbene. The imaging modality that provided the best sensitivity and spatial resolution for direct detection of the contrast agents is synchrotron radiation x-ray fluorescence (SR-XRF). Unlike optical microscopy, SR-XRF provides two-dimensional images with resolution 10(3) better than (153)Gd gamma counting, without altering the agent by organic fluorophore conjugation. The transduction efficiency of the intracellular agents was evaluated by T(1) analysis and inductively coupled plasma mass spectrometry to determine the efficacy of each chelate-transporter combination. PMID:17150161

  16. Static magnetic proximity effect in Pt /Ni1 -xFex bilayers investigated by x-ray resonant magnetic reflectivity

    NASA Astrophysics Data System (ADS)

    Klewe, C.; Kuschel, T.; Schmalhorst, J.-M.; Bertram, F.; Kuschel, O.; Wollschläger, J.; Strempfer, J.; Meinert, M.; Reiss, G.

    2016-06-01

    We present x-ray resonant magnetic reflectivity (XRMR) as a very sensitive tool to detect proximity induced interface spin polarization in Pt/FM heterostructures. Different XRMR experiments are carried out and the results are evaluated for their dependence on the magneto-optical depth profile, the photon energy, the optical parameters, and the ferromagnetic material. We demonstrate that a detailed analysis of the reflected x-ray intensity gives insight into the spatial distribution of the spin polarization of a nonmagnetic metal across the interface to a ferromagnetic layer. The evaluation of the experimental results with simulations based on optical data from ab initio calculations provides the induced magnetic moment per Pt atom in the spin-polarized volume adjacent to the ferromagnet. For a series with different ferromagnetic materials consisting of Pt/Fe, Pt/Ni33Fe67 , Pt/Ni81Fe19 (permalloy), and Pt/Ni bilayers we find the largest spin polarization in Pt/Fe and a much smaller magnetic proximity effect in Pt/Ni. Additional XRMR experiments with varying photon energy are in good agreement with the theoretical predictions for the energy dependence of the magneto-optical parameters and allow identifying the optical dispersion δ and absorption β across the Pt L3-absorption edge.

  17. X-Ray Magnetic Resonance Fusion to Internal Markers and Utility in Congenital Heart Disease Catheterization

    PubMed Central

    Dori, Yoav; Sarmiento, Marily; Glatz, Andrew C.; Gillespie, Matthew J.; Jones, Virginia M.; Harris, Matthew A.; Whitehead, Kevin K.; Fogel, Mark A.; Rome, Jonathan J.

    2012-01-01

    Background X-ray magnetic resonance fusion (XMRF) allows for use of 3D data during cardiac catheterization. However, to date, technical requirements have limited the use of this modality in clinical practice. We report on a new internal-marker XMRF method that we have developed and describe how we used XMRF during cardiac catheterization in congenital heart disease. Methods and Results XMRF was performed in a phantom and in 23 patients presenting for cardiac catheterization who also needed cardiac MRI for clinical reasons. The registration process was performed in <5 minutes per patient, with minimal radiation (0.004 to 0.024 mSv) and without contrast. Registration error was calculated in a phantom and in 8 patients using the maximum distance between angiographic and 3D model boundaries. In the phantom, the measured error in the anteroposterior projection had a mean of 1.15 mm (standard deviation, 0.73). The measured error in patients had a median of 2.15 mm (interquartile range, 1.65 to 2.56 mm). Internal markers included bones, airway, image artifact, calcifications, and the heart and vessel borders. The MRI data were used for road mapping in 17 of 23 (74%) cases and camera angle selection in 11 of 23 (48%) cases. Conclusions Internal marker–based registration can be performed quickly, with minimal radiation, without the need for contrast, and with clinically acceptable accuracy using commercially available software. We have also demonstrated several potential uses for XMRF in routine clinical practice. This modality has the potential to reduce radiation exposure and improve catheterization outcomes. PMID:21536785

  18. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    PubMed

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars. PMID:25881450

  19. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ∼18 K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ∼3 K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  20. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE PAGESBeta

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  1. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  2. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K. |; Jia, J.J.; Underwood, J.H.

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.

  3. Application of polarized neutron reflectometry and x-ray resonant magnetic reflectometry for determining the inhomogeneous magnetic structure in Fe/Gd multilayers.

    SciTech Connect

    Kravtsov, E. A.; Haskel, D.; te Velthuis, S. G. E.; Jiang, J. S.; Kirby, B. J.

    2010-01-01

    The evolution of the magnetic structure of multilayer [Fe (35 {angstrom})/Gd (50 {angstrom}){sub 5}] with variation in temperature and an applied magnetic field was determined using a complementary approach combining polarized neutron and X-ray resonant magnetic reflectometry. Self-consistent simultaneous analysis of X-ray and neutron spectra allowed us to determine the elemental and depth profiles in the multilayer structure with unprecedented accuracy, including the identification of an inhomogeneous intralayer magnetic structure with near-atomic resolution.

  4. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  5. Nanocrystalline tin oxide: Possible origin of its weak ferromagnetism deduced from nuclear magnetic resonance and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Lian, Yadong; Gu, Min; Yu, Ji; Tang, Tong B.; Sun, Jian; Zhang, Weiyi

    2016-09-01

    Nanocrystalline tin oxide was fabricated, with molar ratio O/Sn determined as 1.40, 1.55, 1.79, 1.92 and 1.96 from X-ray photoelectron spectroscopy. They displayed weak ferromagnetism, the sample with O/Sn = 1.55 showing the maximum saturation magnetization reaching almost 8 ×10-3 emu /g at room temperature. 119Sn nuclear magnetic resonance allowed the deduction, based on four resolved resonance peaks, that their Sn ions had four possible coordination numbers, namely 3, 4, 5 and 6. The relative fraction of 4-coordinated cations was the one found to bear positive linear correlation with saturation magnetization of the sample. It is surmised that magnetism in tin oxide results mainly from 4-coordination Sn ions, of valance about +3, as estimated from the binding energies of their 3d photoelectron emission levels.

  6. Structure and Bonding in Chlorine-Functionalized Nanodiamond--Nuclear Magnetic Resonance and X-Ray Photoelectron Spectroscopy Study.

    PubMed

    Panich, Alexander M; Sergeev, Nikolay A; Olszewski, Marcin; Froumin, Natalya; Dideykin, Arthur T; Sokolov, Vasiliy V; Vul', Alexander Ya

    2015-02-01

    We report on investigation of detonation nanodiamond annealed at 800C°in chlorine atmosphere by means of 1H, 13C and 35Cl nuclear magnetic resonance and X-ray photoelectron spectroscopy. The results of these methods are found to be consistent with each other and evidence formation of chlorine-carbon groups and sp2 carbon shell on the nanodiamond surface. The data obtained provide detailed information about the structure and bonding in this diamond nanoparticle. Interaction of nuclear spins with unpaired electron spins of dangling bonds results in fast 13C nuclear spin-lattice relaxation.

  7. X-ray resonant magnetic scattering investigations of hexagonal multiferroics R-manganese oxide (R = dysprosium, holmium, erbium)

    NASA Astrophysics Data System (ADS)

    Nandi, Shibabrata

    This dissertation is concerned with the magnetic structure of hexagonal multiferroic compounds RMnO3 (R = Ho, Dy, Er) in both zero and applied electric field. Microscopic magnetic structures in zero field were studied using x-ray resonant magnetic scattering (XRMS). Magnetic structure in applied electric field was studied using bulk magnetization, x-ray resonant magnetic scattering (XRMS), and x-ray magnetic circular dichroism (XMCD). The magnetic structures of Ho, Dy, and Er members have been determined using high-quality single-crystal samples grown by optical floating zone technique. We have determined that the magnetic structure of Ho3+ in HoMnO 3 to be Gamma3 in the intermediate temperature magnetic phase ITP (between 40 K and 4.5 K). The magnetic Ho3+ moments are aligned along the c axis and, at 12 K, the ratio between the magnetic moments of the Ho(2a) and Ho(4b) Wyckoff site is ˜ -2. The moments at the Ho(2a) site are antiferromagnetically aligned to the moments at the Ho(4b) site in the a-b plane. We also conclude that there is a change of the magnetic structure of Ho3+ at 4.5 K. Below 4.5 K, the magnetic phase can be well described by the co-existence of the ITP (Gamma3) with a decreasing 'ordered moment' and a new magnetic phase LTP with magnetic representation Gamma1 with a rapidly increasing Ho (4b) moment for decreasing temperatures. We failed to observe resonant magnetic scattering from Mn K-edge due to the presence of non-magnetic anisotropic tensor scattering at the magnetic Bragg peaks. Therefore, existence of a c component of the Mn3+ moments, predicted by symmetry analysis, can not be tested. We have also determined the magnetic structures of Dy3+ and Er3+ moments in DyMnO3 and ErMnO3, respectively. Dy3+ moments order according to the magnetic representation Gamma3 in the intermediate temperature magnetic phase, ITP (between 68 K and 8 K). In the low temperature phase, LTP (below 8 K), XRMS together with magnetization measurements indicate that

  8. Fe K-edge X-ray resonant magnetic scattering from Ba(Fe1−xCox)2As2 superconductors

    SciTech Connect

    Kim, Min Gyu; Kreyssig, Andreas; Lee, Yongbin; McQueeney, Robert J.; Harmon, Bruce N.; Goldman, Alan I.

    2012-06-15

    We present an X-ray resonant magnetic scattering study at the Fe-K absorption edge of the BaFe2As2 compound. The energy spectrum of the resonant scattering, together with our calculation using the full-potential linear-augmented plane wave method with a local density functional suggests that the observed resonant scattering arises from electric dipole (E1) transitions. We discuss the role of Fe K-edge X-ray resonant magnetic scattering in understanding the relationship between the structure and the antiferromagnetic transition in the doped Ba(Fe1−xCox)2As2 superconductors.

  9. A Comparison of Rapid-Scanning X-Ray Fluorescence Mapping And Magnetic Resonance Imaging to Localize Brain Iron Distribution

    SciTech Connect

    McCrea, R.P.E.; Harder, S.L.; Martin, M.; Buist, R.; Nichol, H.

    2009-05-26

    The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1, T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences.

  10. X-ray resonant magnetic scattering study of multiferroic RMnO3 (R = Dy, Ho, Er) compounds

    NASA Astrophysics Data System (ADS)

    Goldman, A. I.; Nandi, S.; Kreyssig, A.; Tan, L.; Kim, J. W.; Yan, J. Q.; Vannette, M. D.; Lang, J. C.; Haskel, D.; Lograsso, T. A.; McQueeney, R. J.

    2009-03-01

    Element specific x-ray resonant magnetic scattering (XRMS) investigations were undertaken to determine the magnetic structure of multiferroic hexagonal RMnO3 compounds. In the intermediate temperature phase (ITP) (8-68 K for the Dy^3+ and 4.5-40 K for Ho^3+) the moments are aligned and antiferromagnetically correlated in the c direction according to the same magnetic representation γ3. Below the ITP, the Dy^3+/Ho^3+ moments order differently and according to the magnetic representations γ2 /γ1. The temperature dependence of the observed intensity in the ITP can be modeled assuming the splitting of ground-state doublet/quasi-doublet crystal-field levels of Dy^3+/Ho^3+ by the exchange field of Mn^3+. No resonant signals could be found for Er^3+ from 2-80 K. Specific magnetic representations can be excluded for the magnetic order of Er^3+ moments but can not be uniquely determined within the sensitivity of XRMS. -- The support by U.S. DOE (DE-AC02-07CH11358 and DE-AC02-06 CH11357) is acknowledged.

  11. X-ray induced demagnetization of single-molecule magnets

    SciTech Connect

    Dreiser, Jan; Westerström, Rasmus; Piamonteze, Cinthia; Nolting, Frithjof; Rusponi, Stefano; Brune, Harald; Yang, Shangfeng; Popov, Alexey; Dunsch, Lothar; Greber, Thomas

    2014-07-21

    Low-temperature x-ray magnetic circular dichroism measurements on the endohedral single-molecule magnet DySc{sub 2}N@C{sub 80} at the Dy M{sub 4,5} edges reveal a shrinking of the opening of the observed hysteresis with increasing x-ray flux. Time-dependent measurements show that the exposure of the molecules to x-rays resonant with the Dy M{sub 5} edge accelerates the relaxation of magnetization more than off-resonant x-rays. The results cannot be explained by a homogeneous temperature rise due to x-ray absorption. Moreover, the observed large demagnetization cross sections indicate that the resonant absorption of one x-ray photon induces the demagnetization of many molecules.

  12. Nuclear Magnetic Resonance and X-Ray Absorption Spectroscopic Studies of Lithium Insertion in Silver Vanadium Oxide Cathodes

    SciTech Connect

    Leifer,N.; Colon, A.; Martocci, k.; Greenbaum, S.; Alamgir, F.; Reddy, T.; Gleason, N.; Leising, R.; Takeuchi, E.

    2007-01-01

    Structural studies have been carried out on Ag{sub 2}V{sub 4}O{sub 11} (silver vanadium oxide, SVO) and Li{sub x}Ag{sub 2}V{sub 4}O{sub 11}, lithiated SVO with x=0.72, 2.13, and 5.59 using nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy (XAS). Lithium-7 NMR indicates the formation of a solid electrolyte interphase layer on the x=0.72 sample and lithium intercalation into both octahedral and tetrahedral sites in the SVO lattice, and that most but not all of the Ag (I) is reduced prior to initiation of V(V) reduction. Vanadium-51 NMR studies of SVO and lithiated SVO show decreased crystallinity with increased lithiation, as previously reported. Silver XAS studies indicate the formation of metallic silver crystallites in all the lithiated samples. A comparison of X-ray absorption near edge spectroscopy spectra for vanadium in these samples with those of reference compounds shows that some reduction of vanadium (V) occurs in the lithiated SVO with x=0.72 and increases with further lithiation leading to the formation of V(IV) and V(III) species. The results of this study indicate that vanadium(V) reduction occurs in parallel with silver (I) reduction during the initial stages of SVO lithiation, leading ultimately to the formation of vanadium (IV) and (III) species with further lithiation.

  13. Employing soft x-ray resonant magnetic scattering to study domain sizes and anisotropy in Co/Pd multilayers

    NASA Astrophysics Data System (ADS)

    Bagschik, Kai; Frömter, Robert; Bach, Judith; Beyersdorff, Björn; Müller, Leonard; Schleitzer, Stefan; Berntsen, Magnus Hârdensson; Weier, Christian; Adam, Roman; Viefhaus, Jens; Schneider, Claus Michael; Grübel, Gerhard; Oepen, Hans Peter

    2016-10-01

    It is demonstrated that the magnetic diffraction pattern of the isotropic disordered maze pattern is well described utilizing a gamma distribution of domain sizes in a one-dimensional model. From the analysis, the mean domain size and the shape parameter of the distribution are obtained. The model reveals an average domain size that is significantly different from the value that is determined from the peak position of the structure factor in reciprocal space. As a proof of principle, a wedge-shaped (Cot Å/Pd10 Å)8 multilayer film, that covers the thickness range of the spin-reorientation transition, has been used. By means of soft x-ray resonant magnetic scattering (XRMS) and imaging techniques the thickness-driven evolution of the magnetic properties of the cobalt layers is explored. It is shown that minute changes of the domain pattern concerning domain size and geometry can be investigated and analyzed due to the high sensitivity and lateral resolution of the XRMS technique. The latter allows for the determination of the magnetic anisotropies of the cobalt layers within a thickness range of a few angstroms.

  14. [Magnetic resonance imaging in the diagnosis of gastric cancer: X-ray versus MRI anatomic findings].

    PubMed

    Portnoĭ, L M; Denisova, L B; Stashuk, G A; Nefedova, V O

    2000-01-01

    The paper assesses the present-day role of MRI in the diagnosis of gastric cancer. The authors consider the major prerequisites for the main aim of their study to be: 1) a dramatic incidence of diffuse (endophytic) gastric carcinoma, which requires significant correction of today's approaches to its diagnosis and 2) a rather biased and, in the authors' opinion, present-day mainly negative attitude towards MRI of the stomach as a diagnostic method for its tumor lesions. By applying the X-ray-MRI anatomic principle to the comparative study of MRI findings in 50 patients with predominantly gastric intramural carcinoma and in 25 patients without gastric tumors (controls), the authors present their methods for gastric MRI, the MRI semiotics of gastric cancer by concurrently touching upon a variety of problems that characterize the potentialities of MRI of the stomach in the diagnosis of its tumor lesions, including their differential diagnosis. As a result, the authors highly appreciate gastric MRI and consider this method to be included into the diagnostic algorithm of radiation techniques used in the diagnosis of gastric cancer, which should occupy its definite diagnostic place.

  15. Spin-flop transition on Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy

    SciTech Connect

    Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Lang, J. C.; Islam, Z.; Lograsso, T.; Schlagel, D.; Pecharsky, V.; Gschneidner, K.; Canfield, P.; Harmon, B.; McQueeney, R.; Goldman, A.

    2008-02-21

    X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd{sub 5}Ge{sub 4} and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90{sup o} from the c axis to the a axis when a magnetic field, H{sub sf} = 9 kOe, is applied along the c axis at T = 9 K. The magnetic space group changes from Pnm'a to Pn'm'a' for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition.

  16. Substituent effect in 2-benzoylmethylenequinoline difluoroborates exhibiting through-space couplings. Multinuclear magnetic resonance, X-ray diffraction, and computational study.

    PubMed

    Zakrzewska, Anna; Kolehmainen, Erkki; Valkonen, Arto; Haapaniemi, Esa; Rissanen, Kari; Chęcińska, Lilianna; Ośmiałowski, Borys

    2013-01-10

    The series of nine 2-benzoylmethylenequinoline difluoroborates have been synthesized and characterized by multinuclear magnetic resonance, X-ray diffraction (XRD), and computational methods. The through-space spin-spin couplings between (19)F and (1)H/(13)C nuclei have been observed in solution. The NMR chemical shifts have been correlated to the Hammett substituent constants. The crystal structures of six compounds have been solved by XRD. For two derivatives the X-ray wave function refinement was performed to evaluate the character of bonds in the NBF(2)O moiety by topological and integrated bond descriptors.

  17. Characterization of the phosphoserine of pepsinogen using /sup 31/P nuclear magnetic resonance: corroboration of X-ray crystallographic results

    SciTech Connect

    Williams, S.P.; Bridger, W.A.; James, M.N.G.

    1986-10-21

    The endogenous phosphoserine residue in porcine pepsinogen has been titrated with use of phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR). It has an observed pK/sub a/sub 2// of 6.7 and a narrow line width (approx. =10 Hz). The phosphate can be readily removed by an acid phosphatase from potato; however, it is resistant to hydrolysis by several alkaline phosphatases. The X-ray crystal structure of porcine pepsinogen at 1.8-A resolution shows a rather weak and diffuse region of electron density in the vicinity of the phosphorylated serine residue. This suggests considerable dynamic mobility or conformational disorder of the phosphate. In order to define more fully this behavior the NMR data have been used to corroborate these crystallographic results. All these physical data are consistent with a highly mobile phosphoserine residue on the surface of the zymogen and freely exposed to solvent. In addition, certain properties of this phosphoserine moiety on pepsinogen are similar to those of one of the phosphorylated residues of ovalbumin. The possible significance of this is discussed.

  18. Magnetic resonance imaging and dual energy X-ray absorptiometry of the lumbar spine in professional wrestlers and untrained men.

    PubMed

    Hu, M; Sheng, J; Kang, Z; Zou, L; Guo, J; Sun, P

    2014-08-01

    The aim of this study was to examine the relation between bone marrow adipose tissue (BMAT) and bone mineral density (BMD) of lumbar spine in male professional wrestlers and healthy untrained men. A total of 14 wrestlers (22.9±3.4 years) and 11 controls (24.4±1.6 years) were studied cross-sectionally. Body composition and BMD were measured by dual-energy X-ray absorptiometry. Magnetic resonance imaging of the lumbar spine was examined in a sagittal T1-weighted (T1-w) spin-echo (SE) sequence. The averaged bone marrow signal intensity (SI) of L2-L4 was related to the signal of an adjacent nondegenerative disk. Mean SI of T1-w SE in wrestlers was lower than controls (P=0.001), indicating L2-L4 BMAT in wrestlers was lower compared to controls. L2-L4 BMD in wrestlers was higher than controls (P<0.001). In the total subject population, L2-L4 BMD was inversely correlated with mean SI of T1-w SE (r=-0.62, P=0.001). This association remained strong after adjusting for body mass and whole lean mass, but became weaker after adjusting for whole body or trunk fat percentage. The inverse relationship between BMAT and BMD was confirmed in this relatively small subject sample with narrow age range, which implies that exercise training is an important determinant of this association.

  19. Resonant x-ray magnetic scattering from U1-xNpxRu2Si2 alloys

    NASA Astrophysics Data System (ADS)

    Lidström, E.; Mannix, D.; Hiess, A.; Rebizant, J.; Wastin, F.; Lander, G. H.; Marri, I.; Carra, P.; Vettier, C.; Longfield, M. J.

    2000-01-01

    We have studied U1-xNpxRu2Si2 alloys with x=0.1, 0.5, and 1.0 using resonant x-ray magnetic scattering. For the x=1 neptunium compound we have confirmed previous neutron scattering results, but with much higher count rates and improved q resolution. Using the element specificity of the method, we have found that the temperature dependence of the uranium and the neptunium moments differ in the mixed U1-xNpxRu2Si2 solid solutions and we present some tentative explanations for this behavior. In principle, by measuring the responses at the individual M edges we are able to determine the ratio of the magnetic moments on the two magnetic species in the random alloys. The observed variation of intensity versus energy is compared to a calculation of a x=0.50 alloy using a localized model and a coherent superposition of U4+ and Np3+ ions. The agreement between theory and experiment is reasonable, suggesting a ratio μU/μNp~0.25 in this alloy. Since μNp is known to be 1.5μB for 0.10<=x<=1, the uranium moment is ~0.4μB. This is much larger than 0.02μB known to exist in URu2Si2 (x=0). The increase is a consequence of the molecular field of the ordered Np3+ moments and is consistent with the crystal-field model proposed for the U4+ ground state.

  20. X-ray diffraction microscopy of magnetic structures.

    PubMed

    Turner, Joshua J; Huang, Xiaojing; Krupin, Oleg; Seu, Keoki A; Parks, Daniel; Kevan, Stephen; Lima, Enju; Kisslinger, Kim; McNulty, Ian; Gambino, Richard; Mangin, Stephane; Roy, Sujoy; Fischer, Peter

    2011-07-15

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L3 edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  1. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  2. Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance

    PubMed Central

    Grangeon, Sylvain; Claret, Francis; Roosz, Cédric; Sato, Tsutomu; Gaboreau, Stéphane; Linard, Yannick

    2016-01-01

    The structure of nanocrystalline calcium silicate hydrates (C–S–H) having Ca/Si ratios ranging between 0.57 ± 0.05 and 1.47 ± 0.04 was studied using an electron probe micro-analyser, powder X-ray diffraction, 29Si magic angle spinning NMR, and Fourier-transform infrared and synchrotron X-ray absorption spectroscopies. All samples can be described as nanocrystalline and defective tobermorite. At low Ca/Si ratio, the Si chains are defect free and the Si Q 3 and Q 2 environments account, respectively, for up to 40.2 ± 1.5% and 55.6 ± 3.0% of the total Si, with part of the Q 3 Si being attributable to remnants of the synthesis reactant. As the Ca/Si ratio increases up to 0.87 ± 0.02, the Si Q 3 environment decreases down to 0 and is preferentially replaced by the Q 2 environment, which reaches 87.9 ± 2.0%. At higher ratios, Q 2 decreases down to 32.0 ± 7.6% for Ca/Si = 1.38 ± 0.03 and is replaced by the Q 1 environment, which peaks at 68.1 ± 3.8%. The combination of X-ray diffraction and NMR allowed capturing the depolymerization of Si chains as well as a two-step variation in the layer-to-layer distance. This latter first increases from ∼11.3 Å (for samples having a Ca/Si ratio <∼0.6) up to 12.25 Å at Ca/Si = 0.87 ± 0.02, probably as a result of a weaker layer-to-layer connectivity, and then decreases down to 11 Å when the Ca/Si ratio reaches 1.38 ± 0.03. The decrease in layer-to-layer distance results from the incorporation of interlayer Ca that may form a Ca(OH)2-like structure, nanocrystalline and intermixed with C–S–H layers, at high Ca/Si ratios. PMID:27275135

  3. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  4. Dynamical Effects in Resonant X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Macke, S.; Hamann-Borrero, J. E.; Green, R. J.; Keimer, B.; Sawatzky, G. A.; Haverkort, M. W.

    2016-09-01

    Using resonant magnetic diffraction at the Ni L2 ,3 edge in a LaNiO3 superlattice, we show that dynamical effects beyond the standard kinematic approximation can drastically modify the resonant scattering cross section. In particular, the combination of extinction and refraction convert maxima to minima in the azimuthal-angle dependence of the diffracted intensity, which is commonly used to determine orbital and magnetic structures by resonant x-ray diffraction. We provide a comprehensive theoretical description of these effects by numerically solving Maxwell's equations in three dimensions. The understanding and description of dynamical diffraction enhances the capabilities of resonant x-ray scattering as a probe of electronic ordering phenomena in solids.

  5. Dynamical Effects in Resonant X-Ray Diffraction.

    PubMed

    Macke, S; Hamann-Borrero, J E; Green, R J; Keimer, B; Sawatzky, G A; Haverkort, M W

    2016-09-01

    Using resonant magnetic diffraction at the Ni L_{2,3} edge in a LaNiO_{3} superlattice, we show that dynamical effects beyond the standard kinematic approximation can drastically modify the resonant scattering cross section. In particular, the combination of extinction and refraction convert maxima to minima in the azimuthal-angle dependence of the diffracted intensity, which is commonly used to determine orbital and magnetic structures by resonant x-ray diffraction. We provide a comprehensive theoretical description of these effects by numerically solving Maxwell's equations in three dimensions. The understanding and description of dynamical diffraction enhances the capabilities of resonant x-ray scattering as a probe of electronic ordering phenomena in solids. PMID:27661698

  6. Early experience with X-ray magnetic resonance fusion for low-flow vascular malformations in the pediatric interventional radiology suite.

    PubMed

    Hwang, Tiffany J; Girard, Erin; Shellikeri, Sphoorti; Setser, Randolph; Vossough, Arastoo; Ho-Fung, Victor; Cahill, Anne Marie

    2016-03-01

    This technical innovation describes our experience using an X-ray magnetic resonance fusion (XMRF) software program to overlay 3-D MR images on real-time fluoroscopic images during sclerotherapy procedures for vascular malformations at a large pediatric institution. Five cases have been selected to illustrate the application and various clinical utilities of XMRF during sclerotherapy procedures as well as the technical limitations of this technique. The cases demonstrate how to use XMRF in the interventional suite to derive additional information to improve therapeutic confidence with regards to the extent of lesion filling and to guide clinical management in terms of intraprocedural interventional measures. PMID:26681438

  7. What is the fate of erosions in early rheumatoid arthritis? Tracking individual lesions using x rays and magnetic resonance imaging over the first two years of disease

    PubMed Central

    McQueen, F; Benton, N; Crabbe, J; Robinson, E; Yeoman, S; McLean, L; Stewart, N

    2001-01-01

    OBJECTIVES—To investigate the progression of erosions at sites within the carpus, in patients with early rheumatoid arthritis (RA), using magnetic resonance imaging (MRI) and plain radiology over a two year period.
METHODS—Gadolinium enhanced MRI scans of the dominant wrist were performed in 42 patients with RA at baseline (within six months of symptom onset) and one year. Plain wrist radiographs (x rays) and clinical data were obtained at baseline, one year, and two years. Erosions were scored by two musculoskeletal radiologists on MRI and x ray at 15 sites in the wrist. A patient centred analysis was used to evaluate the prognostic value of a baseline MRI scan. A lesion centred analysis was used to track the progression of individual erosions over two years.
RESULTS—The baseline MRI erosion score was predictive of x ray erosion score at two years (p=0.004). Patients with a "total MRI score" (erosion, bone oedema, synovitis, and tendonitis) ⩾13 at baseline were significantly more likely to develop erosions on x ray at two years (odds ratio 13.4, 95% CI 2.65 to 60.5, p=0.002). Baseline wrist MRI has a sensitivity of 80%, a specificity of 76%, a positive predictive value of 67%, and a high negative predictive value of 86% for the prediction of wrist x ray erosions at two years. A lesion centred analysis, which included erosions scored by one or both radiologists, showed that 84% of baseline MRI erosions were still present at one year. When a more stringent analysis was used which required complete concordance between radiologists, all baseline lesions persisted at one year. The number of MRI erosion sites in each patient increased from 2.1 (SD 2.7) to 5.0 (4.6) (p<0.0001) over the first year of disease. When MRI erosion sites were tracked, 21% and 26% were observed on x ray, one and two years later. A high baseline MRI synovitis score, Ritchie score, and erythrocyte sedimentation rate were predictive of progression of MRI erosions to x ray

  8. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    SciTech Connect

    Lillaney, Prasheel; Pelc, Norbert; Shin Mihye; Hinshaw, Waldo; Fahrig, Rebecca; Bennett, N. Robert

    2013-02-15

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also

  9. Resonant X-ray emission with a standing wave excitation

    PubMed Central

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  10. Resonant X-ray emission with a standing wave excitation.

    PubMed

    Ruotsalainen, Kari O; Honkanen, Ari-Pekka; Collins, Stephen P; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems.

  11. Conformational isomerism in solid state of AMG 853--structure studies using solid-state nuclear magnetic resonance and X-ray diffraction.

    PubMed

    Kiang, Y-H; Nagapudi, Karthik; Wu, Tian; Peterson, Matthew L; Jona, Janan; Staples, Richard J; Stephens, Peter W

    2015-07-01

    Investigation of an additional resonance peak in the (19) F solid-state nuclear magnetic resonance (NMR) spectrum of AMG 853, a dual antagonist of DP and CRTH2 previously in clinical development for asthma, has led to the identification of two conformational isomers coexisting in the crystal lattice in a continuous composition range between 89.7%:10.3% and 96.5%:3.5%. These two isomers differ in the chloro-flurorophenyl moiety orientation-the aromatic ring is flipped by 180° in these two isomers. The level of the minor isomer is directly measured through integration of the two peaks in the (19) F solid-state NMR spectrum. The values obtained from the NMR data are in excellent agreement with the degree of disorder of the fluorine atom in the crystal structure, refined using both single-crystal and high-resolution powder X-ray diffraction data.

  12. X-ray resonator with pear-shaped reflectors

    SciTech Connect

    Churikov, V A

    2003-11-30

    An X-ray resonator design is proposed in which peculiar pear-shaped reflectors, which are grazing-incidence X-ray mirrors, serve as optical elements. Special features of this resonator are relatively high reflector efficiencies and the axial symmetry of the output radiation. (resonators)

  13. Magnetization dynamics in an exchange-coupled NiFe/CoFe bilayer studied by x-ray detected ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Stenning, G. B. G.; Shelford, L. R.; Cavill, S. A.; Hoffmann, F.; Haertinger, M.; Hesjedal, T.; Woltersdorf, G.; Bowden, G. J.; Gregory, S. A.; Back, C. H.; de Groot, P. A. J.; van der Laan, G.

    2015-01-01

    Exchange-coupled hard and soft magnetic layers find extensive use in data storage applications, for which their dynamical response has great importance. With bulk techniques, such as ferromagnetic resonance (FMR), it is difficult to access the behaviour and precise influence of each individual layer. By contrast, the synchrotron radiation-based technique of x-ray detected ferromagnetic resonance (XFMR) allows element-specific and phase-resolved FMR measurements in the frequency range 0.5-11 GHz. Here, we report the study of the magnetization dynamics of an exchange-coupled Ni0.81Fe0.19 (43.5 nm)/Co0.5Fe0.5 (30 nm) bilayer system using magnetometry and vector network analyser FMR, combined with XFMR at the Ni and Co L2 x-ray absorption edges. The epitaxially grown bilayer exhibits two principal resonances denoted as the acoustic and optical modes. FMR experiments show that the Kittel curves of the two layers cannot be taken in isolation, but that their modelling needs to account for an interlayer exchange coupling. The angular dependence of FMR indicates a collective effect for the modes of the magnetically hard CoFe and soft NiFe layer. The XFMR precessional scans show that the acoustic mode is dominated by the Ni signal with the Co and Ni magnetization precessing in phase, whereas the optical mode is dominated by the Co signal with the Co and Ni magnetization precessing in anti-phase. The response of the Co signal at the Ni resonance, and vice versa, show induced changes in both amplitude and phase, which can be ascribed to the interface exchange coupling. An interesting aspect of phase-resolved XFMR is the ability to distinguish between static and dynamic exchange coupling. The element-specific precessional scans of the NiFe/CoFe bilayer clearly have the signature of static exchange coupling, in which the effective field in one layer is aligned along the magnetization direction of the other layer.

  14. Circular magnetic x-ray dichroism in rare earth compounds

    SciTech Connect

    Jonathan, L.

    1993-09-30

    This report discusses the following topics: Circular magnetic x-ray dichroism at the ER L{sub 3} Edge; angular dependence of circular magnetic x-ray dichroism in rare earth compounds: and circular magnetic x-ray dichroism in crystalline and amorphous GDFE{sub 2}.

  15. X-ray Magnetic Scattering From Surfaces^*

    NASA Astrophysics Data System (ADS)

    Gibbs, Doon

    1997-03-01

    In the last several years, there have been continuing efforts to probe long-ranged magnetic order at surfaces by x-ray and neutron diffraction, following many earlier studies by low energy electron diffraction. The main motivation has been to discover how bulk magnetic structures are modified near a surface, where the crystal symmetry is broken. In this talk, we describe x-ray scattering studies of the magnetic structure observed near the (001) surface of the antiferromagnet uranium dioxide.(G. M. Watson, Doon Gibbs, G. H. Lander, B. D. Gaulin, L.E. Berman, Hj. Matzke and W. Ellis, Phys. Rev. Lett. 77), 751 (1996). Within about 50 Åof the surface, the intensity of the magnetic scattering decreases continuously as the bulk Neel temperature is approached from below. This contrasts with the bulk magnetic ordering transition which is discontinuous. Recent measurements of the specular magnetic reflectivity suggest that the width of the magnetic interface diverges as a power-law in reduced temperature reminiscent of surface induced disorder. Related experiments concerned with magnetic crystallography of Co_3-Pt(111) surfaces(S. Ferrer, P. Fajardo, F. de Bergevin, J. Alvarez, X. Torrelles, H. A. van der Vegt and V. H. Etgens, Phys. Rev. Lett. 77), 747 (1996). and interfacial magnetic roughness of Co/Cu multilayers(J. F. MacKay, C. Teichert, D.E. Savage and M.G. Lagally, Phys. Rev. Lett. 77), 3925 (1996). will also be discussed. ^* Work at Brookhaven National Laboratory is supported by the U.S. DOE under Contract No. DE-AC02-CH7600016.

  16. Mn L{sub 2,3} edge resonant x-ray scattering in manganites: Influence of the magnetic state

    SciTech Connect

    Stojic, N.; Binggeli, N.; Altarelli, M.

    2005-09-01

    We present an analysis of the dependence of the resonant orbital-order and magnetic scattering spectra on the spin configuration. We consider an arbitrary spin direction with respect to the local crystal field axis, thus lowering significantly the local symmetry. To evaluate the atomic scattering in this case, we generalized the Hannon-Trammel formula and implemented it inside the framework of atomic multiplet calculations in a crystal field. For an illustration, we calculate the magnetic and orbital scattering in the CE phase of La{sub 0.5}Sr{sub 1.5}MnO{sub 4} in the cases when the spins are aligned with the crystal lattice vector a (or equivalently b) and when they are rotated in the ab-plane by 45 deg. with respect to this axis. Magnetic spectra differ for the two cases. For the orbital scattering, we show that for the former configuration there is a non-negligible {sigma}{yields}{sigma}{sup '} ({pi}{yields}{pi}{sup '}) scattering component, which vanishes in the 45 deg. case, while the {sigma}{yields}{pi}{sup '} ({pi}{yields}{sigma}{sup '}) components are similar in the two cases. From the consideration of two 90 deg. spin canted structures, we conclude there is a significant dependence of the orbital scattering spectra on the spin arrangement. Recent experiments detected a sudden decrease of the orbital scattering intensity upon increasing the temperature above the Neel temperature in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. We discuss this behavior considering the effect of different types of misorientations of the spins on the orbital scattering spectrum.

  17. X-ray suppression in gamma-ray bursts through resonant Compton scattering

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1992-01-01

    An X-ray that scatters with an electron in the first Landau level of a strong magnetic field is converted into a gamma ray. This process has a resonant cross section at X-ray energies and is therefore highly likely to occur even when the first Landau level is sparsely populated. Converted X-rays are cyclotron absorbed, maintaining the equilibrium between the cyclotron photon density and the population of the first Landau level. By suppressing a neutron star's black body emission, this mechanism can produce a gamma-ray burst with a low X-ray flux.

  18. Synthesis, Characterization, In Vitro Phantom Imaging, and Cytotoxicity of A Novel Graphene-Based Multimodal Magnetic Resonance Imaging - X-Ray Computed Tomography Contrast Agent

    PubMed Central

    Lalwani, Gaurav; Sundararaj, Joe Livingston; Schaefer, Kenneth; Button, Terry; Sitharaman, Balaji

    2014-01-01

    Graphene nanoplatelets (GNPs), synthesized using potassium permanganate-based oxidation and exfoliation followed by reduction with hydroiodic acid (rGNP-HI), have intercalated manganese ions within the graphene sheets, and upon functionalization with iodine, show excellent potential as biomodal contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT). Structural characterization of rGNP-HI nanoparticles with low- and high-resolution transmission electron microscope (TEM) showed disc-shaped nanoparticles (average diameter, 200 nm, average thickness, 3 nm). Energy dispersive X-ray spectroscopy (EDX) analysis confirmed the presence of intercalated manganese. Raman spectroscopy and X-ray diffraction (XRD) analysis of rGNP-HI confirmed the reduction of oxidized GNPs (O-GNPs), absence of molecular and physically adsorbed iodine, and the functionalization of graphene with iodine as polyiodide complexes (I3− and I5−). Manganese and iodine content were quantified as 5.1 ± 0.5 and 10.54 ± 0.87 wt% by inductively-coupled plasma optical emission spectroscopy and ion-selective electrode measurements, respectively. In vitro cytotoxicity analysis, using absorbance (LDH assay) and fluorescence (calcein AM) based assays, performed on NIH3T3 mouse fibroblasts and A498 human kidney epithelial cells, showed CD50 values of rGNP-HI between 179-301 µg/ml, depending on the cell line and the cytotoxicity assay. CT and MRI phantom imaging of rGNP-HI showed high CT (approximately 3200% greater than HI at equimolar iodine concentration) and MRI (approximately 59% greater than equimolar Mn2+ solution) contrast. These results open avenues for further in vivo safety and efficacy studies towards the development of carbon nanostructure-based multimodal MRI-CT contrast agents. PMID:24999431

  19. X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)

    SciTech Connect

    Nandi, Shibabrata

    2009-01-01

    Electricity and magnetism were unified into a common subject by James Clerk Maxwell in the nineteenth century yielding the electromagnetic theory. Four equations govern the dynamics of electric charges and magnetic fields, commonly known as Maxwell's equations. Maxwell's equations demonstrate that an accelerated charged particle can produce magnetic fields and a time varying magnetic field can induce a voltage - thereby linking the two phenomena. However, in solids, electric and magnetic ordering are most often considered separately and usually with good reason: the electric charges of electrons and ions are responsible for the charge effects, whereas the electron spin governs magnetic properties.

  20. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation

    PubMed Central

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L.; Freund, Stefan M.; Menzel, Andreas; Fersht, Alan R.; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution. PMID:25946337

  1. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L; Freund, Stefan M; Menzel, Andreas; Fersht, Alan R; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.

  2. Trifunctional Polymeric Nanocomposites Incorporated with Fe₃O₄/Iodine-Containing Rare Earth Complex for Computed X-ray Tomography, Magnetic Resonance, and Optical Imaging.

    PubMed

    Wang, Xin; Tu, Mengqi; Yan, Kai; Li, Penghui; Pang, Long; Gong, Ying; Li, Qing; Liu, Ruiqing; Xu, Zushun; Xu, Haibo; Chu, Paul K

    2015-11-11

    In this study, a novel polymerizable CT contrast agent integrating iodine with europium(III) has been developed by a facile and universal coordination chemistry method. The Fe3O4 nanoparticles are then incorporated into this iodine-containing europium complex by seed-emulsifier-free polymerization. The nanocomposites combining the difunctional complex and superparamagnetic Fe3O4 nanoparticles, which have uniform size dispersion and high encapsulation rate, are suitable for computed X-ray tomography (CT), magnetic resonance imaging (MRI), and optical imaging. They possess good paramagnetic properties with a maximum saturation magnetization of 2.16 emu/g and a transverse relaxivity rate of 260 mM(-1) s(-1), and they exhibit obvious contrast effects with an iodine payload less than 4.8 mg I/mL. In the in vivo optical imaging assessment, vivid fluorescent dots can be observed in the liver and spleen by two-photon confocal scanning laser microscopy (CLSM). All the results showed that nanocomposites as polymeric trifunctional contrast agents have great clinical potential in CT, MR, and optical imaging.

  3. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGESBeta

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  4. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.

    PubMed

    Bonar, L C; Shimizu, M; Roberts, J E; Griffin, R G; Glimcher, M J

    1991-11-01

    The present report describes a study of the development and maturation of the mineral component of dental enamel. We prepared porcine enamel of different stages of maturation, from the very immature enamel of unerupted teeth, with a mineral content of 45%, to fully mature enamel, with a mineral content of approximately 99%. We fractionated the less mature enamel by density centrifugation and examined the enamel density fractions and unfractionated enamel by a variety of chemical and physical techniques, including conventional and radial distribution function x-ray diffraction analysis, conventional and Fourier transform infrared spectroscopy, 31P and 1H nuclear magnetic resonance spectroscopy, and chemical analysis. The three most immature preparations, from unerupted teeth, had mineral contents of 45, 67, and 91 and Ca/P molar ratios of 1.41, 1.44, and 1.47. Density distribution histograms of the three fractions show that the early maturation of dental enamel mineral is accompanied by an increase in tissue density, reflecting the increase in mineral content. The density distribution in each sample is relatively narrow, indicating that the maturation process occurs at a fairly homogeneous rate, with all enamel in an anatomically defined zone mineralizing to about the same extent. X-ray diffraction studies indicate that even the least mature, least mineralized of these immature samples is considerably more crystalline than the most mature bone mineral studied and that crystalline perfection of the enamel crystals crystals increases further with maturation. Both the a and c axes of the mineral unit cell expand significantly during early stages of maturation. Solid-state 31P nuclear magnetic resonance spectroscopy studies indicate that dental enamel contains a DCPD-like HPO4 component in an apatitic lattice, similar to the component previously observed in bone and some synthetic calcium phosphates. The proportion of this DCPD-like component decreases with maturation

  5. Resonant Auger Effect at High X-Ray Intensity

    SciTech Connect

    Rohringer, N; Santra, R

    2008-03-27

    The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.

  6. Resonant Soft X-ray Scattering for Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Young, Athony; Hexemer, Alexander; Padmore, Howard

    2015-03-01

    Over the past a few years, we have developed Resonant Soft X-ray Scattering (RSoXS) and constructed the first dedicated resonant soft x-ray scattering beamline at the Advanced Light Source, LBNL. RSoXS combines soft x-ray spectroscopy with x-ray scattering thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized x-rays and high coherence have shown great potential for chemical/morphological structure characterization for many classes of materials. Some recent development of in-situ soft x-ray scattering with in-vacuum sample environment will be discussed. In order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, customized designed liquid/gas environmental cells will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Recent RSoXS results on organic electronics, block copolymer thin films, and membrane structure will be presented.

  7. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  8. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  9. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    SciTech Connect

    Lee, Yongbin

    2004-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB14.

  10. X-ray fluorescence microscopy demonstrates preferential accumulation of a vanadium-based magnetic resonance imaging contrast agent in murine colonic tumors.

    PubMed

    Mustafi, Devkumar; Ward, Jesse; Dougherty, Urszula; Bissonnette, Marc; Hart, John; Vogt, Stefan; Karczmar, Gregory S

    2015-01-01

    Contrast agents that specifically enhance cancers on magnetic resonance imaging (MRI) will allow earlier detection. Vanadium-based chelates (VCs) selectively enhance rodent cancers on MRI, suggesting selective uptake of VCs by cancers. Here we report x-ray fluorescence microscopy (XFM) of VC uptake by murine colon cancer. Colonic tumors in mice treated with azoxymethane/dextran sulfate sodium were identified by MRI. Then a gadolinium-based contrast agent and a VC were injected intravenously; mice were sacrificed and colons sectioned. VC distribution was sampled at 120 minutes after injection to evaluate the long-term accumulation. Gadolinium distribution was sampled at 10 minutes after injection due to its rapid washout. XFM was performed on 72 regions of normal and cancerous colon from five normal mice and four cancer-bearing mice. XFM showed that all gadolinium was extracellular, with similar concentrations in colon cancers and normal colon. In contrast, the average VC concentration was twofold higher in cancers versus normal tissue (p < .002). Cancers also contained numerous "hot spots" with intracellular VC concentrations sixfold higher than the concentration in normal colon (p < .0001). No hot spots were detected in normal colon. This is the first direct demonstration that VCs selectively accumulate in cancer cells and thus may improve cancer detection.

  11. Resonant x-ray scattering from a skyrmion lattice

    NASA Astrophysics Data System (ADS)

    Roy, S.; Langner, M. C.; Mishra, S. K.; Lee, J. C. T.; Shi, X. W.; Hossain, M. A.; Chuang, Y.-D.; Kevan, S. D.; Schoenlein, R. W.; Seki, S.; Tokura, Y.

    2014-03-01

    Topologically protected novel phases in condensed matter systems are a current research topic of tremendous interest due to both the unique physics and their potential in device applications. Skyrmions are a topological phase that in magnetic systems manifest as a hexagonal lattice of spin-swirls. We report the first observation of the skyrmion lattice using resonant soft x-ray diffraction in Cu2OSeO3, a cubic insulator that exhibits degenerate helical magnetic structures along <100> axes in zero magnetic field. Within a narrow window of temperature and applied magnetic field we observed the six fold symmetric satellite peaks due to the skyrmion lattice around the (001) lattice Bragg peak. As a function of incident photon energy a rotational splitting of the skyrmion satellite peaks was observed that we ascribe to the two Cu sublattices of Cu2OSeO3, with different magnetically active orbitals. The splitting implies a long wavelength modulation of the skyrmion lattice. Work supported by U.S. DOE.

  12. Multiple-wavelength resonant fluctuation x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kurta, R. P.

    2016-08-01

    A multiple-wavelength resonant fluctuation x-ray scattering approach is proposed for element-specific imaging of nanoscale objects in random ensembles with short positional and rotational relaxation times. It is shown, that by applying x-ray cross-correlation analysis in combination with iterative phase retrieval to the scattering data measured at multiple x-ray energies near an absorption edge of a substance, it is possible to image the nanoscale structure of an individual object with chemical sensitivity. The elemental distribution in distinct two-component model nanostructures was reconstructed using the simulated scattering data from two-dimensional random ensembles of particles. The approach might be especially advantageous for structural studies at x-ray free electron lasers.

  13. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser.

    PubMed

    Higley, Daniel J; Hirsch, Konstantin; Dakovski, Georgi L; Jal, Emmanuelle; Yuan, Edwin; Liu, Tianmin; Lutman, Alberto A; MacArthur, James P; Arenholz, Elke; Chen, Zhao; Coslovich, Giacomo; Denes, Peter; Granitzka, Patrick W; Hart, Philip; Hoffmann, Matthias C; Joseph, John; Le Guyader, Loïc; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Shafer, Padraic; Stöhr, Joachim; Tsukamoto, Arata; Nuhn, Heinz-Dieter; Reid, Alex H; Dürr, Hermann A; Schlotter, William F

    2016-03-01

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L(3,2)-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. PMID:27036761

  14. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: the Dallas Heart Study

    PubMed Central

    Neeland, I J; Grundy, S M; Li, X; Adams-Huet, B; Vega, G L

    2016-01-01

    Background/Objectives: Visceral adipose tissue (VAT) mass, a risk factor for cardiometabolic complications of obesity, is usually measured by magnetic resonance imaging (MRI) but this method is not practical in a clinical setting. In contrast, measurement of VAT by dual-x-ray absorptiometry (DXA) appears to circumvent the limitations of MRI. In this study, we compared measurements of VAT mass by MRI and DXA in the large, multiethnic cohort of the Dallas Heart Study (DHS). Subjects/Methods: About 2689 DHS participants underwent paired measurement of VAT by MRI and DXA. Sex-stratified analyses were performed to evaluate the correlation and agreement between DXA and MRI. Model validation was performed using bootstrapping and inter-reader variability was assessed. Results: Mean age of the cohort was 44 years, with 55% female, 48% Black and 75% overweight/obese participants. Regression analysis showed a linear relationship between DXA and MRI with R2=0.82 (95% confidence interval (CI) 0.81–0.84) for females and R2=0.86 (95% CI 0.85–0.88) for males. Mean difference between methods was 0.01 kg for females and 0.09 kg for males. Bland–Altman analysis showed that DXA tended to modestly underestimate VAT compared with MRI at lower VAT levels and overestimate it compared with MRI at higher VAT levels. Results were consistent in analyses stratified by race, body mass index status, waist girth and body fat. Inter-individual reader correlation among 50 randomly selected scans was excellent (inter-class correlation coefficient=0.997). Conclusions: VAT mass quantification by DXA was both accurate and valid among a large, multiethnic cohort within a wide range of body fatness. Further studies including repeat assessments over time will help determine its long-term applicability. PMID:27428873

  15. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  16. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  17. Enhanced x-rays from resonant betatron oscillations in laser wakefield with external wigglers

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Yu, M. Y.; Deng, Z. G.; Teng, J.; He, S. K.; Gu, Y. Q.

    2016-11-01

    Generation of ultra-short betatron x-rays by laser-accelerated electron beams is of great research interest as it has many applications. In this paper, we propose a scheme for obtaining bright betatron x-rays by applying external wiggler magnetic field in the laser wakefield to resonantly drive the betatron oscillations of the accelerated electrons therein. This results in a significant enhancement of the betatron oscillation amplitude and generation of bright x-rays with high photon energy. The scheme is demonstrated using two-dimensional particle-in-cell simulation and discussed using a simple analytical model.

  18. Theory of magnetic cataclysmic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.

    1988-01-01

    The theory of magnetic cataclysmic binary X-ray sources is reviewed. The physics of the accretion torque for disk and for stream accretion is described, and the magnetic field strengths of DQ Her stars inferred from their spin behavior and of AM Her stars from direct measurement are discussed. The implications of disk and stream accretion for the geometry of the emission region and for the X-ray pulse profiles are considered. The physicl properties of the X-ray emission region and the expected infrared, optical, soft X-ray, and hard X-ray spectra are described. The orientations of the magnetic moment in AM Her stars inferred from the circular and linear polarization of the optical light and the optical light curve are commented on.

  19. Ultrafast magnetization dynamics studies using an x-ray streakcamera

    SciTech Connect

    Bartelt, A.F.; Comin, A.; Feng, J.; Nasiatka, J.; Padmore, H.A.; Scholl, A.; Young, A.

    2005-07-13

    The spin dynamics of ferromagnetic thin films following an excitation by ultrashort 100-fs near-infrared laser pulses has recently received much attention. Here, a new approach is described using x-ray magnetic circular dichroism to investigated emagnetization and magnetization switching processes. In contrast to magneto-optical measurements, x-ray dichroism has the advantage of determining separately the spin and orbital components of the magnetic moment. The relatively low time resolution of the synchrotron x-ray probe pulses (80 ps FWHM) is overcome by employing an ultrafast x-ray streak camera with a time resolution of <1 ps. A description of the experimental setup including the x-ray/IR laser pulse synchronization and the streak camera is given.

  20. Positioning X-Ray Film With String And Magnets

    NASA Technical Reports Server (NTRS)

    Larosa, William D.; Anders, Jeffrey E.

    1990-01-01

    Technique devised to position x-ray film in normally inaccessible places for inspection of welded joints. Lead/magnet markers and string attached to ends of strips of x-ray film to facilitate positioning. Fewer shots required than in random trial-and-error sequence, and resulting images more accurate.

  1. Magnetic circular dichroism in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Rogalev, A.; Wilhelm, F.

    2015-12-01

    An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

  2. X-ray Polarisation in highly-magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Turolla, Roberto

    2016-07-01

    Radiation emitted in the vicinity of an isolated neutron star is expected to be intrinsically polarized because the high magnetic field (B˜10^{12}-10^{15} G) strongly affects the plasma opacity. The polarization fraction and polarization angle measured by an instrument, however, do not necessary coincide with the intrinsic ones, due to the effects of both quantum electrodynamics in the highly magnetized vacuum around the star (the vacuum polarization) and rotation of the Stokes parameters in the plane perpendicular to the line of sight induced by the non-uniform magnetic field. I'll review theoretical estimates for the polarization observables in the case of thermal surface emission from neutron stars and of the (soft) X-ray emission from magnetars, where magnetospheric reprocessing of radiation by resonant cyclotron scattering is important. The potentials of X-ray polarimetry to probe the physical conditions in neutron star sources and to test, for the first time, vacuum polarization are discussed in connection with the recently proposed polarimetric missions, like XIPE.

  3. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  4. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  5. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  6. Validation of Dual Energy X-Ray Absorptiometry Measures of Abdominal Fat by Comparison with Magnetic Resonance Imaging in an Indian Population

    PubMed Central

    Taylor, Amy E.; Kuper, Hannah; Varma, Ravi D.; Wells, Jonathan C.; Bell, Jimmy D.; V.Radhakrishna, K.; Kulkarni, Bharati; Kinra, Sanjay; Timpson, Nicholas J.; Ebrahim, Shah; Smith, George Davey; Ben-Shlomo, Yoav

    2012-01-01

    Objective Abdominal adiposity is an important risk factor for diabetes and cardiovascular disease in Indians. Dual energy X-ray absorptiometry (DXA) can be used to determine abdominal fat depots, being more accessible and less costly than gold standard measures such as magnetic resonance imaging (MRI). DXA has not been fully validated for use in South Asians. Here, we determined the accuracy of DXA for measurement of abdominal fat in an Indian population by comparison with MRI. Design 146 males and females (age range 18–74, BMI range 15–46 kg/m2) from Hyderabad, India underwent whole body DXA scans on a Hologic Discovery A scanner, from which fat mass in two abdominal regions was calculated, from the L1 to L4 vertebrae (L1L4) and from the L2 to L4 vertebrae (L2L4). Abdominal MRI scans (axial T1-weighted spin echo images) were taken, from which adipose tissue volumes were calculated for the same regions. Results Intra-class correlation coefficients between DXA and MRI measures of abdominal fat were high (0.98 for both regions). Although at the level of the individual, differences between DXA and MRI could be large (95% of DXA measures were between 0.8 and 1.4 times MRI measures), at the sample level, DXA only slightly overestimated MRI measures of abdominal fat mass (mean difference in L1L4 region: 2% (95% CI:0%, 5%), mean difference in L2L4 region:4% (95% CI: 1%, 7%)). There was evidence of a proportional bias in the association between DXA and MRI (correlation between difference and mean −0.3), with overestimation by DXA greater in individuals with less abdominal fat (mean bias in leaner half of sample was 6% for L1L4 (95%CI: 2, 11%) and 7% for L2L4 (95% CI:3,12%). Conclusions DXA measures of abdominal fat are suitable for use in Indian populations and provide a good indication of abdominal adiposity at the population level. PMID:23272086

  7. X-ray radiation from accreting, magnetized neutron stars

    SciTech Connect

    Pavlov, G.G.

    1984-01-01

    A review is given of recent developments in the theory of emission from a magnetized plasma for accreting neutron star conditions. Some observational data on X-ray pulsars are discussed, and present problems are indicated. 26 references.

  8. Magnetically confined wind shocks in X-rays - A review

    NASA Astrophysics Data System (ADS)

    ud-Doula, Asif; Nazé, Yaël

    2016-09-01

    A subset (∼ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow speeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM and Chandra, as well as fully self-consistent MHD modeling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.

  9. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  10. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  11. Frontiers in imaging magnetism with polarized x-rays

    SciTech Connect

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. The opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  12. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements

    SciTech Connect

    Boero, G.; Rusponi, S.; Kavich, J.; Rizzini, A. Lodi; Piamonteze, C.; Nolting, F.; Tieg, C.; Thiele, J.-U.; Gambardella, P.

    2009-12-15

    We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni{sub 73}Fe{sub 18}Gd{sub 7}Co{sub 2}) at the L{sub 3}/L{sub 2}-edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/{radical}(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

  13. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, A. C.; Falconer, D.; Robe, D. M.

    2013-07-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode’s X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory’s Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T ~ 10^5 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets (1) strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field, and hence (2) strengthens the case made by Moore et al (2011

  14. New applications of x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Schütz, G.; Fischer, P.; Attenkofer, K.; Ahlers, D.

    1997-01-01

    X-ray magnetic circular dichroism (X-MCD) in core-level absorption is intimately related to the local spin and orbital polarization distribution in the final states, as it is based on angular-momentum conservation and the interplay of exchange and spin-orbit interaction. It provides symmetry and element-selective information about magnetic aspects of electronic structure. In favourable cases spin and orbital contributions to the local magnetic moments can be deduced directly by applying the so-called "sum-rules". Recently studies of the dichroic contributions in the EXAFS energy range have attracted considerable attention. From systematic studies in various systems a direct proportionality between the strengths of the magnetic signal and the spin moment has been found. This can be easily explained by an exchange contribution to the Coulomb backscattering amplitude and gives important new insights into the exchange interactions of low-energy electrons in solids. With the advent of new intense x-ray sources a variety of other x-ray methods, which involve core-level absorption, can be used to study magnetism. Recent examples are magnetic anomalous small-angle x-ray scattering and imaging magnetic domains with a zone-plate x-ray microscope, which both provide a high-resolution quantitative details of the spatial magnetization contributions.

  15. Imaging magnetic structures with a transmission X-ray microscope

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Eimüller, T.; Schütz, G.; Guttmann, P.; Schmahl, G.; Bayreuther, G.

    2000-05-01

    The X-ray magnetic circular dichroism (X-MCD), i.e., the dependence of the absorption of circularly polarized X-rays on the magnetization of the absorber exhibits at L-edges of transition metals values up to 25%. This can serve as a huge magnetic contrast mechanism in combination with a transmission X-ray microscope (TXM) to image magnetic domains providing a lateral resolution down to about 30 nm. The inherent element-specificity, the possibility to record images in varying external fields within a complete hysteresis loop, the relation of the contrast to local magnetic spin and orbital moments, etc. demonstrate the unique applicability to study the magnetic domain structure in current technical relevant systems like magneto-optics for high density storage media, multilayers for GMR applications or nanostructures for MRAM technology.

  16. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  17. Resonant Inelastic X-ray Scattering in Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Kim, Young-June

    2006-03-01

    Extremely bright photons generated at the new generation of synchrotron light sources have made a huge impact on various scientific disciplines ranging from biology to materials science. One of the exciting new developments is the use of x-rays in the field of solid-state spectroscopy. Inelastic x-ray scattering, analogous to the well-known inelastic neutron scattering, is a powerful tool for studying momentum-dependent electronic excitations and phonons. In particular, resonant inelastic x-ray scattering in the hard x-ray regime has been widely utilized to study the momentum dependence of various electronic excitations in strongly correlated electron systems. For example, by tuning the incident photon energy to the Cu K-edge, one can gain a large intensity enhancement as well as element specific knowledge of the electronic excitations in various copper oxide compounds. Most of the work to date has been focused on the charge-transfer excitation between the bonding and antibonding molecular orbitals, the excitation across the Mott gap, and crystal field excitations between the d-orbitals. Recent improvements in instrumentation have allowed us to observe a new mode in the mid-infrared frequency region. We will discuss the momentum dependence of these excitations in prototypical cuprate superconductors, La2-xSrxCuO4, and also examine the evolution of such excitations as charge carriers are doped into the system.

  18. A compact X-ray lithography lattice using superferric magnets

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Huson, F. R.; Mackay, W. W.; Chen, L. K.; Ohnuma, S.

    A conceptual lattice design for a very compact superconducting synchrotron dedicated to X-ray lithography is presented. The synchrotron radiation produced in the high field superconducting magnets has a critical wavelength of 10 angstrom at a beam energy of about 787 MeV. The size and angular divergence of the beam in this lattice can satisfy future requirements for X-ray lithography. An optimization of the lithography parameters is presented.

  19. Magnetic x-ray dichroism in ultrathin epitaxial films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of high resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.

  20. X-ray tube in parallel magnetic fields

    NASA Astrophysics Data System (ADS)

    Wen, Zhifei; Fahrig, Rebecca; Pelc, Norbert J.

    2003-06-01

    Our hybrid x-ray/MR system (a fixed-anode x-ray fluoroscopic system in an interventional MR system) provides the high spatial and temporal resolution of x-ray fluoroscopy with the soft-tissue contrast, 3D visualization and physiological information of MRI. X-rays are produced in an x-ray tube by bombarding a target with high-energy electrons, ionized from the cathode, then accelerated by the electric field between the cathode and anode. In the hybrid system, the x-ray tube is placed in a high magnetic field, aligned to be parallel to the cathode-anode axis of the tube. A finite-element program was used to simulate the electron trajectories in a geometry similar to our fixed anode tube. External magnetic fields parallel to the cathode-anode axis, ranging from 0 to 0.5T, were simulated. Experimentally, focal spot images were acquired using a 30μm pinhole at a magnification of 8.9 in magnetic fields ranging from 0 to 0.5T. No lateral deflection of the focal spot was observed in either the simulation or the experiment, if the magnetic field and the cathode-anode axis were aligned, regardless of the field strength. However, the field strength affected the size and the current density distribution of the focal spot. We conclude that fixed anode x-ray tubes can be used in a magnetic field although its desired electron optics must be fairly "straight" and the cathode-anode axis must be well aligned with the field. Further issues arising from the focal spot size change, such as overheating of the target, and to a lesser extent the system spatial resolution, should be carefully considered.

  1. Resonant soft x-ray fluorescence studies of novel materials

    SciTech Connect

    Carlisle, J.A.; Terminello, L.J.; Hudson, E.A.; Shirley, E.L.; Jia, J.J.; Callcott, T.A.; Himpsel, F.J.; Ederer, D.L.; Perera, R.C.C.

    1995-02-08

    The authors are using resonant soft x-ray fluorescence at the Advanced Light Source to probe the electronic and geometric structure of novel materials. In the resonant process, a core electron is excited by a photon whose energy is near the core binding energy. In this energy regime the absorption and emission processes are coupled, and this coupling manifests itself in several ways. In boron nitride (BN), the resonant emission spectra reflect the influence of a ``spectator`` electron in an unoccupied excitonic state. The resonant emission can be used to distinguish between the various bulk phases of BN, and can also be used to probe the electronic structure of a monolayer of BN buried in a bulk environment, where it is inaccessible to electron spectroscopies. For highly-oriented pyrolytic graphite (HOPG) a coherent absorption-emission process takes place in the resonant regime, whereby crystalline momentum is conserved between the core excited electron and the valence hole which remains after emission.

  2. Stellar X-ray Emission From Magnetically Funneled Shocks

    NASA Astrophysics Data System (ADS)

    Guenther, Hans

    Stars and planets form in giant molecular clouds, so they are deeply embedded in their early stages. When they become optically visible, the young stars are still surrounded by a proto-planetary disk, where planets evolve. These stars are called classical T Tauri stars (CTTS). A key, yet poorly constrained, parameter for the disk evolution is the stellar high-energy emission. It can ionize the outer layers of the disk, change its chemistry and even drive photoevaporation of the disk. Thus the spectral shape and the temporal variability of the stellar X-ray and UV emission shapes the gas and dust properties in some regions of the disk. It sets the photoevaporation timescale which provides an upper limit for planet formation. CTTS still actively accrete mass from their disk. The infalling matter is funneled by the stellar magnetic field and impacts on the star close to free fall velocity. A hot accretion shock develops, which emits X-rays which are distinct from any coronal X-rays. Eventually the disk disperses and bulk planet formation comes to an end. X-ray emitting shocks can still occur at a later stage in stellar evolution, if e.g. the magnetic field is strong enough to funnel the stellar wind to collide in the disk midplane. This so-called magnetically confined wind shock model was originally developed for the A0p star IQ Aur. The magnetically funneled accretion model has been successfully tested for CTTS in a small mass range only; the magnetically confined wind shock model lacks a comparison for high-resolution X-ray grating spectra for all but the most massive stars. In this proposal we request funding to analyze three XMM-Newton observations, which will probe X-ray emitting shocks in stars with magnetic fields: DN Tau (observed as category C target in cycle 8), a CTTS with much lower mass than previous CTTS with X- ray grating spectroscopy; MN Lup (to be observed in cycle 9), a prime candidate for simultaneous X-ray/Doppler-imaging studies; and IQ Aur (to

  3. X-ray magnetic dichroism studies of magnetic multilayer systems

    NASA Astrophysics Data System (ADS)

    Antel, William Joseph, Jr.

    X-ray magnetic circular/linear dichoism (XMCD/XMLD) are powerful techniques used for element specific determination of magnetic moments. They are used with magneto-optic Kerr magnetometry (MOKE) and x-ray diffraction in the study of three different systems. The magnetic moments of Fe and Pt are determined as a function of Pt thickness in an Fe/Pt (001) multilayer. Additionally, MOKE is used to study the in plane anisotropy of the system. The ≈0.5 mB Pt induced moment is found to strongly effect the anisotropy of the system. A ferromagnetic rare-earth monopnictide, GdN, is studied as part of a Fe/GdN multilayer. XMCD is used to determine the moments of Gd and Fe in the system. It is demonstrated that it is possible to significantly enhance the Curie temperature of the GdN. Finally, the spin structure of antiferromagnetic FeMn is determined in an exchange biased FeMn/Co bilayer. It is found that four FeMn monolayers at the interface are aligned parallel to the Co in an alternating collinear spin arrangement. Beyond this the FeMn reverts to its bulk tetrahedral spin structure. Uncompensated Fe spins at the interface are the probable source of the exchange bias in this system. Lastly, a surface analysis chamber is built for the collection of angle-resolved Auger electron diffraction data.

  4. Interference between magnetism and surface roughness in coherent soft X-ray scattering

    SciTech Connect

    Rahmim, A.; Tixier, S.; Tiedje, T.; Eisebitt, S.; Lorgen, M.; Scherer, R.; Eberhardt, W.; Luning, J.; Scholl, A.

    2002-06-15

    In coherent soft x-ray scattering from magnetically ordered surfaces there are contributions to the scattering from the magnetic domains, from the surface roughness, and from the diffraction associated with the pinhole aperture used as a coherence filter. In the present work, we explore the interplay between these contributions by analyzing speckle patterns in diffusely scattered x rays from the surface of magnetic thin films. Magnetic contrast from the surface of anti ferro magnetically ordered LaFeO3 films is caused by magnetic linear dichroism in resonant x-ray scattering. The samples studied possess two types of domains with their magnetic orientations perpendicular to each other. By tuning the x-ray energy from one of the two Fe-L3 resonant absorption peaks to the other, the relative amplitudes of the x-ray scattering from the two domains is inverted which results in speckle pattern changes. A theoretical expression is derived for the intensity correlation between the speckle patterns with the magnetic contrast inverted and not inverted. The model is found to be in good agreement with the x-ray-scattering observations and independent measurements of the surface roughness. An analytical expression for the correlation function gives an explicit relation between the change in the speckle pattern and the roughness, and magnetic and aperture scattering. Changes in the speckle pattern are shown to arise from beating of magnetic scattering with the roughness scattering and diffraction from the aperture. The largest effect is found when the surface roughness scatter is comparable in intensity to the magnetic scatter.

  5. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  6. Imaging of magnetic domains by transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Eimüller, T.; Schütz, G.; Guttmann, P.; Schmahl, G.; Pruegl, K.; Bayreuther, G.

    1998-03-01

    The combination of the high-resolution transmission x-ray microscope (TXM) based on the zone plate technique with the x-ray magnetic circular dichroism (X-MCD) providing a huge magnetic contrast is a new technique to image magnetic domain structures. It is inherently element specific and contains information on the local spin and orbital moments of the absorbing species that can be obtained by applying magneto-optical sum rules. A lateral spatial resolution depending on the quality of the zone plates down to 30 nm can be achieved. We report on first results at the Fe 0022-3727/31/6/012/img9 edges of Fe both in amorphous and in multilayered Gd-Fe systems. With a TXM set-up at BESSY I adapted to record magnetic images in varying magnetic fields the evolution of magnetic domains within a complete hysteresis loop and magnetic aftereffects have been studied.

  7. Synthesis, X-ray structure, magnetic resonance, and DFT analysis of a soluble copper(II) phthalocyanine lacking C-H bonds.

    PubMed

    Moons, Hans; Łapok, Łukasz; Loas, Andrei; Van Doorslaer, Sabine; Gorun, Sergiu M

    2010-10-01

    The synthesis, crystal structure, and electronic properties of perfluoro-isopropyl-substituted perfluorophthalocyanine bearing a copper atom in the central cavity (F(64)PcCu) are reported. While most halogenated phthalocyanines do not exhibit long-term order sufficient to form large single crystals, this is not the case for F(64)PcCu. Its crystal structure was determined by X-ray analysis and linked to the electronic properties determined by electron paramagnetic resonance (EPR). The findings are corroborated by density functional theory (DFT) computations, which agree well with the experiment. X-band continuous-wave EPR spectra of undiluted F(64)PcCu powder, indicate the existence of isolated metal centers. The electron-withdrawing effect of the perfluoroalkyl (R(f)) groups significantly enhances the complexes solubility in organic solvents like alcohols, including via their axial coordination. This coordination is confirmed by X-band (1)H HYSCORE experiments and is also seen in the solid state via the X-ray structure. Detailed X-band CW-EPR, X-band Davies and Mims ENDOR, and W-band electron spin-echo-detected EPR studies of F(64)PcCu in ethanol allow the determination of the principal g values and the hyperfine couplings of the metal, nitrogen, and fluorine nuclei. Comparison of the g and metal hyperfine values of F(64)PcCu and other PcCu complexes in different matrices reveals a dominant effect of the matrix on these EPR parameters, while variations in the ring substituents have only a secondary effect. The relatively strong axial coordination occurs despite the diminished covalency of the C-N bonds and potentially weakening Jahn-Teller effects. Surprisingly, natural abundance (13)C HYSCORE signals could be observed for a frozen ethanol solution of F(64)PcCu. The (13)C nuclei contributing to the HYSCORE spectra could be identified as the pyrrole carbons by means of DFT. Finally, (19)F ENDOR and easily observable paramagnetic NMR were found to relate well to the

  8. Robust x-ray tubes for use within magnetic fields of MR scanners.

    PubMed

    Wen, Zhifei; Fahrig, Rebecca; Pelc, Norbert J

    2005-07-01

    A hybrid system that combines an x-ray fluoroscopic system and a magnetic resonance (MR) system can provide physicians with the synergy of exquisite soft tissue contrast (from MR) and high temporal and spatial resolutions (from x ray), which may significantly benefit a number of image-guided interventional procedures. However, the system configuration may require the x-ray tube to be placed in a magnetic field, which can hinder the proper functioning of the x-ray tube by deflecting its electron beam. From knowledge of how the magnetic field affects the electron trajectories, we propose creating another magnetic field along the cathode-anode axis using either solenoids or permanent magnets to reduce the deflection of the electron beam for two cases: a strong and slightly misaligned field or a weak field that is arbitrary in direction. Theoretical analysis is presented and the electron beam is simulated in various external magnetic fields with a finite element modeling program. Results show that both correction schemes enhance the robustness of the x-ray tube operation in an externally applied magnetic field. PMID:16121589

  9. Robust x-ray tubes for use within magnetic fields of MR scanners

    SciTech Connect

    Wen Zhifei; Fahrig, Rebecca; Pelc, Norbert J.

    2005-07-15

    A hybrid system that combines an x-ray fluoroscopic system and a magnetic resonance (MR) system can provide physicians with the synergy of exquisite soft tissue contrast (from MR) and high temporal and spatial resolutions (from x ray), which may significantly benefit a number of image-guided interventional procedures. However, the system configuration may require the x-ray tube to be placed in a magnetic field, which can hinder the proper functioning of the x-ray tube by deflecting its electron beam. From knowledge of how the magnetic field affects the electron trajectories, we propose creating another magnetic field along the cathode-anode axis using either solenoids or permanent magnets to reduce the deflection of the electron beam for two cases: a strong and slightly misaligned field or a weak field that is arbitrary in direction. Theoretical analysis is presented and the electron beam is simulated in various external magnetic fields with a finite element modeling program. Results show that both correction schemes enhance the robustness of the x-ray tube operation in an externally applied magnetic field.

  10. X-rays and magnetism: a review of program in magnetic studies with polarized soft x-rays

    NASA Astrophysics Data System (ADS)

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  11. Resonant soft x-ray scattering investigation of orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    SciTech Connect

    Wilkins, S.B.; Stojic, N.; Binggeli, N.; Beale, T.A.W.; Hatton, P.D.; Castleton, C.W.M.; Prabhakaran, D.; Boothroyd, A.T.; Altarelli, M.

    2005-06-15

    We report resonant x-ray scattering data of the orbital and magnetic ordering at low temperatures at the Mn L{sub 2,3} edges in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. The orderings display complex energy features close to the Mn absorption edges. Systematic modeling with atomic multiplet crystal field calculations was used to extract meaningful information regarding the interplay of spin, orbital, and Jahn-Teller order. These calculations provide a good general agreement with the observed energy dependence of the scattered intensity for a dominant orbital ordering of the d{sub x{sup 2}}{sub -z{sup 2}}/d{sub y{sup 2}}{sub -z{sup 2}} type. In addition, the origins of various spectral features are identified. The temperature dependence of the orbital and magnetic ordering was measured and suggests a strong interplay between the magnetic and orbital order parameters.

  12. Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy.

    PubMed

    La Pierre, Henry S; Minasian, Stefan G; Abubekerov, Mark; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Arnold, John; Bergman, Robert G; Toste, F Dean

    2013-10-01

    Syntheses of neutral halide and aryl vanadium bisimides are described. Treatment of VCl2(NtBu)[NTMS(N(t)Bu)], 2, with PMe3, PEt3, PMe2Ph, or pyridine gave vanadium bisimides via TMSCl elimination in good yield: VCl(PMe3)2(N(t)Bu)2 3, VCl(PEt3)2(N(t)Bu)2 4, VCl(PMe2Ph)2(N(t)Bu)2 5, and VCl(Py)2(N(t)Bu)2 6. The halide series (Cl-I) was synthesized by use of TMSBr and TMSI to give VBr(PMe3)2(N(t)Bu)2 7 and VI(PMe3)2(N(t)Bu)2 8. The phenyl derivative was obtained by reaction of 3 with MgPh2 to give VPh(PMe3)2(N(t)Bu)2 9. These neutral complexes are compared to the previously reported cationic bisimides [V(PMe3)3(N(t)Bu)2][Al(PFTB)4] 10, [V(PEt3)2(N(t)Bu)2][Al(PFTB)4] 11, and [V(DMAP)(PEt3)2(N(t)Bu)2][Al(PFTB)4] 12 (DMAP = dimethylaminopyridine, PFTB = perfluoro-tert-butoxide). Characterization of the complexes by X-ray diffraction, (13)C NMR, (51)V NMR, and V L(3,2)-edge X-ray absorption near-edge structure (XANES) spectroscopy provides a description of the electronic structure in comparison to group 6 bisimides and the bent metallocene analogues. The electronic structure is dominated by π bonding to the imides, and localization of electron density at the nitrogen atoms of the imides is dictated by the cone angle and donating ability of the axial neutral supporting ligands. This phenomenon is clearly seen in the sensitivity of (51)V NMR shift, (13)C NMR Δδ(αβ), and L3-edge energy to the nature of the supporting phosphine ligand, which defines the parameters for designing cationic group 5 bisimides that would be capable of breaking stronger σ bonds. Conversely, all three methods show little dependence on the variable equatorial halide ligand. Furthermore, this analysis allows for quantification of the electronic differences between vanadium bisimides and the structurally analogous mixed Cp/imide system CpV(N(t)Bu)X2 (Cp = C5H5(1-)). PMID:24024833

  13. Superconducting pairing in resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Shi, Yifei; Benjamin, David; Demler, Eugene; Klich, Israel

    2016-09-01

    We develop a method to study the effect of the superconducting transition on the resonant inelastic x-ray scattering (RIXS) signal in superconductors with an order parameter with an arbitrary symmetry within a quasiparticle approach. As an example, we compare the direct RIXS signal below and above the superconducting transition for p -wave-type order parameters. For a p -wave order parameter with a nodal line, we show that, counterintuitively, the effect of the gap is most noticeable for momentum transfers in the nodal direction. This phenomenon may be naturally explained as a type of nesting effect.

  14. Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source

    SciTech Connect

    Andreev, V. V.; Nikitin, G.V.; Savanovich, V.Yu.; Umnov, A.M.; Elizarov, L.I.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission.

  15. Note: Studies on target placement in TE(111) cylindrical cavity of electron cyclotron resonance x-ray source for the enhancement of x-ray dose.

    PubMed

    Selvakumaran, T S; Baskaran, R; Singh, A K; Sista, V L S Rao

    2010-03-01

    X-ray source based on electron cyclotron resonance principle has been constructed using TE(111) cylindrical cavity. At present the device is used to provide low energy x-ray field for thermoluminescent dosimeter badge calibration. Theoretical and experimental studies on the effect of target placement inside the TE(111) cylindrical cavity for enhancing the x-ray output are carried out and the results are presented in this note. Optimum target location is identified by theoretical analysis on the electric field distribution inside the cavity using MICROWAVE STUDIO program. By modifying the magnetic field configuration, the resonance region is shifted to the optimum target location. The microwave transmission line is upgraded with a three stub tuner which improves the microwave coupling from the source to the target loaded cavity. Molybdenum target is located at a radial distance of 2.5 cm from the cavity center and the x-ray dose rate is measured at 20 cm from the exit port for different microwave power. With the introduction of the target, the x-ray output has improved nearly from 70% to 160% in the microwave power of 150-500 W.

  16. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator.

    PubMed

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J

    2016-10-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc. PMID:27434783

  17. Orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4} studied by soft x-ray resonant scattering

    SciTech Connect

    Staub, U.; Scagnoli, V.; Mulders, A.M.; Katsumata, K.; Honda, Z.; Grimmer, H.; Horisberger, M.; Tonnerre, J.M.

    2005-06-01

    Orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4} have been studied with resonant soft x-ray scattering at the Mn L{sub 2,3} edges and for the first time azimuthal angle scans and polarization analysis are presented. The azimuthal angle dependencies are well described by the occurrence of a quadrupole (orbital) ordering below T{sub OO} and an additional dipole (magnetic) contribution below T{sub N}. There are no indications that there is an enhanced Jahn-Teller distortion at T{sub N} as reported in a previous study. Subsequently, it is shown that there is simultaneous ferro- and antiferromagnetic ordering along the c-direction.

  18. X-ray crystallographic and solution state nuclear magnetic resonance spectroscopic investigations of NADP+ binding to ferredoxin NADP reductase from Pseudomonas aeruginosa.

    PubMed

    Wang, An; Rodríguez, Juan Carlos; Han, Huijong; Schönbrunn, Ernst; Rivera, Mario

    2008-08-01

    The ferredoxin nicotinamide adenine dinucleotide phosphate reductase from Pseudomonas aeruginosa ( pa-FPR) in complex with NADP (+) has been characterized by X-ray crystallography and in solution by NMR spectroscopy. The structure of the complex revealed that pa-FPR harbors a preformed NADP (+) binding pocket where the cofactor binds with minimal structural perturbation of the enzyme. These findings were complemented by obtaining sequential backbone resonance assignments of this 29518 kDa enzyme, which enabled the study of the pa-FPR-NADP complex by monitoring chemical shift perturbations induced by addition of NADP (+) or the inhibitor adenine dinucleotide phosphate (ADP) to pa-FPR. The results are consistent with a preformed NADP (+) binding site and also demonstrate that the pa-FPR-NADP complex is largely stabilized by interactions between the protein and the 2'-P AMP portion of the cofactor. Analysis of the crystal structure also shows a vast network of interactions between the two cofactors, FAD and NADP (+), and the characteristic AFVEK (258) C'-terminal extension that is typical of bacterial FPRs but is absent in their plastidic ferredoxin NADP (+) reductase (FNR) counterparts. The conformations of NADP (+) and FAD in pa-FPR place their respective nicotinamide and isoalloxazine rings 15 A apart and separated by residues in the C'-terminal extension. The network of interactions among NADP (+), FAD, and residues in the C'-terminal extension indicate that the gross conformational rearrangement that would be necessary to place the nicotinamide and isoalloxazine rings parallel and adjacent to one another for direct hydride transfer between NADPH and FAD in pa-FPR is highly unlikely. This conclusion is supported by observations made in the NMR spectra of pa-FPR and the pa-FPR-NADP complex, which strongly suggest that residues in the C'-terminal sequence do not undergo conformational exchange in the presence or absence of NADP (+). These findings are discussed in

  19. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances.

    PubMed

    Gunst, Jonas; Keitel, Christoph H; Pálffy, Adriana

    2016-04-27

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented.

  20. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances

    NASA Astrophysics Data System (ADS)

    Gunst, Jonas; Keitel, Christoph H.; Pálffy, Adriana

    2016-04-01

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented.

  1. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances.

    PubMed

    Gunst, Jonas; Keitel, Christoph H; Pálffy, Adriana

    2016-01-01

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented. PMID:27118340

  2. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances

    PubMed Central

    Gunst, Jonas; Keitel, Christoph H.; Pálffy, Adriana

    2016-01-01

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented. PMID:27118340

  3. Investigation of electron trajectories of an x-ray tube in magnetic fields of MR scanners

    SciTech Connect

    Wen Zhifei; Fahrig, Rebecca; Conolly, Steven; Pelc, Norbert J.

    2007-06-15

    A hybrid x-ray/MR system combining an x-ray fluoroscopic system and an open-bore magnetic resonance (MR) system offers advantages from both powerful imaging modalities and thus can benefit numerous image-guided interventional procedures. In our hybrid system configurations, the x-ray tube and detector are placed in the MR magnet and therefore experience a strong magnetic field. The electron beam inside the x-ray tube can be deflected by a misaligned magnetic field, which may damage the tube. Understanding the deflection process is crucial to predicting the electron beam deflection and avoiding potential damage to the x-ray tube. For this purpose, the motion of an electron in combined electric (E) and magnetic (B) fields was analyzed theoretically to provide general solutions that can be applied to different geometries. For two specific cases, a slightly misaligned strong field and a perpendicular weak field, computer simulations were performed with a finite-element method program. In addition, experiments were conducted using an open MRI magnet and an inserted electromagnet to quantitatively verify the relationship between the deflections and the field misalignment. In a strong (B>>E/c; c: speed of light) and slightly misaligned magnetic field, the deflection in the plane of E and B caused by electrons following the magnetic field lines is the dominant component compared to the deflection in the ExB direction due to the drift of electrons. In a weak magnetic field (B{<=}E/c), the main deflection is in the ExB direction and is caused by the perpendicular component of the magnetic field.

  4. Soft X-Ray Microscopy: Imaging Magnetism at Small Sizes

    NASA Astrophysics Data System (ADS)

    Fischer, Peter

    2010-03-01

    The manipulation of spins on the nanoscale is of both fundamental and technological interest. In spin based electronics the observation that spin currents can exert a torque onto local spin configurations which can e.g. push a domain wall has stimulated significant research activities in order to provide a fundamental understanding of the physical processes involved. Magnetic soft X-ray microscopy is a unique analytical technique combining X-ray magnetic circular dichroism (X-MCD) as element specific magnetic contrast mechanism with high spatial and temporal resolution. Fresnel zone plates used as X-ray optical elements provide a spatial resolution down to currently <12nm [1] thus approaching fundamental magnetic length scales such as the grain size [2] and magnetic exchange lengths. Images can be recorded in external magnetic fields giving access to study magnetization reversal phenomena on the nanoscale and its stochastic character [3] with elemental sensitivity [4]. Utilizing the inherent time structure of current synchrotron sources fast magnetization dynamics with 70ps time resolution, limited by the lengths of the electron bunches, can be performed with a stroboscopic pump-probe scheme. In this talk I will review recent achievements with magnetic soft X-ray microscopy with focus on current induced wall [5] and vortex dynamics in ferromagnetic elements [6]. Future magnetic microscopies are faced with the challenge to provide both spatial resolution in the nanometer regime, a time resolution on a ps to fs scale and elemental specificity to be able to study novel multicomponent and multifunctional magnetic nanostructures and their ultrafast spin dynamics.[4pt] References[0pt] [1] W. Chao, et al., Optics Express 17(20) 17669 (2009) [0pt] [2] M.-Y. Im, et al, Advanced Materials 20 1750 (2008) [0pt] [3] M.-Y. Im, et al., Phys Rev Lett 102 147204 (2009) [0pt] [4] M.-Y. Im, et al., Appl Phys Lett 95 182504 (2009) [0pt] [5] L. Bocklage, et al., Phys Rev B 78 180405(R

  5. Soft x-ray resonant magneto-optical kerr effect as a depth-sensitive probe of magnetic heterogeneity: its application to resolve helical spin structures using linear p polarization

    SciTech Connect

    Lee, Ki-Suk; Kim, Sang-Koog; Kortright, J.B.

    2004-06-01

    We have calculated the soft x-ray resonant Kerr intensities as a function of the incident grazing angle of linearly p-polarized waves from the model spin structures, where the chirality (handedness) of the spin spirals (twist in depth) in a magnetic layer and the periodicity of a unit spiral are designed to vary. Variations in the chirality and the periodicity lead to noticeable changes in the Kerr intensity versus the grazing angle, which is due not only to a large sensitivity of the Kerr intensity of the linear p polarization to both the magnitude and direction of the transverse components of magnetizations, but also to a large dependence of the depth sensitivity on the grazing angle at the resonance regions. The measurement and analysis of the specular Kerr intensity are relatively straightforward in determining the inhomogeneous spin structures in depth, compared to those of the Kerr rotation and ellipticity. This is proven to be a convenient and useful probe to determine the handedness of spin spiral structures, as well as to resolve the detailed magnetic heterostructures in depth in ultrathin-layered films.

  6. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ

    DOE PAGESBeta

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; Amorese, A.; Brookes, N. B.; Dellea, G.; Lee, W. -S.; Minola, M.; Schmitt, T.; Yoshida, Y.; et al

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less

  7. X-ray and neutron transparent pulse magnets

    NASA Astrophysics Data System (ADS)

    Ohmichi, E.; Ikeda, N.; Nogami, Y.; Osada, T.

    2006-11-01

    A new type of pulse magnet, x-ray and neutron transparent pulse magnet, is suggested for use in high-field diffraction experiments. The magnet is made of aluminumbased material, so we expect that the scattered beam penetrates the magnet body and hence the total number of reflection points available substantially increases. This feature possibly allows full determination of the lattice and magnetic structure in strong magnetic fields. To realize this idea, we constructed a prototype transparent magnet consisting of aluminum wire and duralumin reinforcement. With a portable capacitor bank, the maximum field of 25 T was successfully generated in a 1.6 mm bore, even though the aluminum wire is less strong and less conducting than copper wire. Since the total energy is small (Ebank ~ 100 J), high repetition rate, which is necessary for sufficient signal-to-noise ratio, is realized. Technical details, coil performance, and future prospects will be described.

  8. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    SciTech Connect

    Ollefs, K.; Meckenstock, R.; Spoddig, D.; Römer, F. M.; Hassel, Ch.; Schöppner, Ch.; Farle, M.; Ney, V.; Ney, A.

    2015-06-14

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and therefore does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.

  9. Resonant inelastic x-ray scattering in a Mott insulator

    NASA Astrophysics Data System (ADS)

    Pakhira, Nandan; Freericks, J. K.; Shvaika, A. M.

    2012-09-01

    We calculate the resonant inelastic x-ray scattering (RIXS) response in a Mott insulator, which is described by the Falicov-Kimball model. The model can be solved exactly within the single site dynamical mean-field theory (DMFT) approximation and the RIXS response can also be calculated accurately up to a local background correction. We find that on resonance the RIXS response is greatly enhanced. The response systematically evolves from a single-peak structure, arising due to relaxation processes within the lower Hubbard band, to a two-peak structure, arising due to relaxation processes within the upper Hubbard band and across the Mott gap into the lower Hubbard band. This occurs as we vary the incident photon frequency to allow excitations from the lower Hubbard band to the upper Hubbard band. The charge transfer excitations are found to disperse monotonically as we go from the center of the Brillouin zone towards the zone corner. These correlation-induced features have been observed by Hasan [Science0036-807510.1126/science.288.5472.1811 288, 1811 (2000)] and many other experimentalists in RIXS measurements over various transition-metal oxide compounds. They are found to be robust and survive even for large Auger lifetime broadening effects that can mask the many-body effects by smearing out spectral features. As a comparison, we also calculate the dynamic structure factor for this model, which is proportional to the nonresonant part of the response, and does not show these specific signatures.

  10. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  11. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  12. Determination of structural chirality of berlinite and quartz using resonant x-ray diffraction with circularly polarized x-rays

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshikazu; Kojima, Taro; Takata, Yasutaka; Chainani, Ashish; Lovesey, Stephen W.; Knight, Kevin S.; Takeuchi, Tomoyuki; Oura, Masaki; Senba, Yasunori; Ohashi, Haruhiko; Shin, Shik

    2010-04-01

    Many proteins, sugars, and pharmaceuticals crystallize into two forms that are mirror images of each other (enantiomers) such as our right and left hands (chiral). Berlinite (AlPO4) and low quartz (SiO2) have enantiomers belonging to a space-group pair, P3121 (right-handed screw) and P3221 (left-handed screw). We use circularly polarized resonant x-ray diffraction to study structural chirality. Our results demonstrate that positive and negative circularly polarized x-rays at the resonant energy of berlinite ( Al1s edge) and low quartz ( Si1s edge) can distinguish the absolute structure (right or left-handed screw) of an enantiomer. The advantage of our method is that the measurement of only one space-group forbidden reflection is enough to determine the chirality. This method is applicable to chiral motifs that occur in biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.

  13. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    PubMed Central

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181

  14. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    NASA Astrophysics Data System (ADS)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-01

    Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  15. Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield

    SciTech Connect

    Marcham, M. K.; Keatley, P. S.; Neudert, A.; Hicken, R. J.; Cavill, S. A.; Shelford, L. R.; van der Laan, G.; Telling, N. D.; Childress, J. R.; Katine, J. A.; Shafer, P.; Arenholz, E.

    2010-10-14

    Phase-resolved x-ray ferromagnetic resonance (XFMR) has been measured in fluorescence yield, extending the application of XFMR to opaque samples on opaque substrates. Magnetization dynamics were excited in a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5) bilayer by means of a continuous wave microwave excitation, while x-ray magnetic circular dichroism (XMCD) spectra were measured stroboscopically at different points in the precession cycle. By tuning the x-ray energy to the L{sub 3} edges of Ni and Fe, the dependence of the real and imaginary components of the element specific magnetic susceptibility on the strength of an externally applied static bias field was determined. First results from measurements on a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5)/Dy(1) sample confirm that enhanced damping results from the addition of the Dy cap.

  16. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  17. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Bandler, Simon

    The "X-ray Surveyor" has been listed by NASA as one of the four major large mission concepts to be studied in the next Astrophysics Decadal Review in its preliminary list of large concepts. One of the key instruments on such a mission would be a very large format X-ray microcalorimeter array, with an array size of greater than 100 thousand pixels. Magnetically-coupled microcalorimeters (MCC) are one of the technologies with the greatest potential to meet the requirements of this mission, and this proposal is one to carry out research specifically to reach the goals of this vision. The "X-ray Surveyor" is a concept for a future mission that will make X-ray observations that are instrumental to understanding the quickly emerging population of galaxies and supermassive black holes at z ~10. The observations will trace the formation of galaxies and their assembly into large-scale structures starting from the earliest possible epochs. This mission would be observing baryons and large-scale physical processes outside of the very densest regions in the local Universe. This can be achieved with an X-ray observatory with similar angular resolution as Chandra but with significantly improved optic area and detector sensitivity. Chandra-scale angular resolution (1" or better) is essential in building more powerful, higher throughput observatories to avoid source confusion and remain photon-limited rather than background-limited. A prime consideration for the microcalorimeter camera on this type of mission is maintaining ~ 1 arcsec spatial resolution over the largest possible field of view, even if this means a slight trade-off against the spectral resolution. A uniform array of 1" pixels covering at least 5'x5' field of view is desired. To reduce the number of sensors read out, in geometries where extremely fine pitch (~50 microns) is desired, the most promising technologies are those in which a thermal sensor such an MCC can read out a sub-array of 20-25 individual 1'

  18. Magnetic smart material application to adaptive x-ray optics

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, Michael E.; Vaynman, Semyon; Cao, J.; Takacs, Peter Z.

    2010-09-01

    We discuss a technique of shape modification that can be applied to thin walled ({100-400 micron thickness) electroformed replicated optics or slumped glass optics to improve the near net shape of the mirror as well as the midfrequency ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a permanently magnetic material. The MSM material exhibits strains about 400 times stronger than ordinary ferromagnetic materials. The deformation process involves a magnetic write head which traverses the surface, and under the guidance of active metrology feedback, locally magnetizes the surface to impart strain where needed. Designs and basic concepts as applied to space borne X-ray optics will be described.

  19. X-ray edge singularity in resonant inelastic x-ray scattering (RIXS)

    NASA Astrophysics Data System (ADS)

    Markiewicz, Robert; Rehr, John; Bansil, Arun

    2013-03-01

    We develop a lattice model based on the theory of Mahan, Noziéres, and de Dominicis for x-ray absorption to explore the effect of the core hole on the RIXS cross section. The dominant part of the spectrum can be described in terms of the dynamic structure function S (q , ω) dressed by matrix element effects, but there is also a weak background associated with multi-electron-hole pair excitations. The model reproduces the decomposition of the RIXS spectrum into well- and poorly-screened components. An edge singularity arises at the threshold of both components. Fairly large lattice sizes are required to describe the continuum limit. Supported by DOE Grant DE-FG02-07ER46352 and facilitated by the DOE CMCSN, under grant number DE-SC0007091.

  20. X-ray resonant exchange scattering of rare-earth nickel borocarbides

    SciTech Connect

    Detlefs, C.

    1997-10-08

    The purpose of this thesis is to investigate the systematics of the microscopic magnetic order within a series of isostructural compounds and, at the same, to develop the relatively young experimental method of x-ray resonant exchange scattering (XRES). In this thesis, the author presents XRES studies of several rare-earth nickel borocarbides, RNi{sub 2}B{sub 2}C. He shows that XRES, similar to the neutron techniques, allows the determination of the orientation of the magnetic moment by measuring the Q-dependence of the scattered intensity of magnetic Bragg reflections. As samples in this study, he chose the recently discovered family of rare-earth nickel borocarbides, RNi{sub 2}B{sub 2}C, which display a wide variety of magnetic structures. Furthermore, in several of these materials, long range magnetic order coexists with superconductivity over some temperature range.

  1. Scanning the Magnetized Accretion Column of X-ray Pulsars with Cyclotron Lines

    NASA Astrophysics Data System (ADS)

    Schönherr, Gabriele; Wilms, J.; Kretschmar, P.; Pottschmidt, K.; Rothschild, R.; Kreykenbohm, I.; MAGNET Collaboration

    2010-03-01

    The strongly magnetized accretion column of X-ray pulsars is still not understood in many aspects like, e.g., its basic geometry and physical parameters. Cyclotron Resonance Scattering Features (short: cyclotron lines) are now becoming a possible tool to tap this mystery. As they form due to scattering processes of X-ray photons with magnetically quantized electrons in the accreted plasma, a better physical understanding of their formation and shape along with direct comparisons to observational data allows to backtrack the physical parameters and magnetic field structure in the line-forming region. High-resolution spectra with todays’ and future instruments now allow for an in-depth analysis of their shapes, promising exciting progress. We discuss results based on our new modelling attempts, which link theoretical Monte Carlo simulations directly to observational findings.

  2. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach. PMID:25743562

  3. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  4. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    SciTech Connect

    Kirchheim,, A. P.; Dal Molin, D.C.; Emwas, Abdul-Hamid; Provis, J.L.; Fischer, P.; Monteiro, P.J.M.

    2010-12-01

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping.

  5. Resonant Soft X-ray Scattering Studies of Multiferroic YMn2O5

    SciTech Connect

    Partzsch, S.; Wilkins, S.B.; Schierle, E.; Soltwisch, V.; Hill, J.P.; Weschke, E.; Souptel, D.; Buchner, B.; Geck, J.

    2011-06-17

    We performed soft x-ray resonant scattering at the MnL{sub 2,3}- and OK edges of YMn{sub 2}O{sub 5}. While the resonant intensity at the MnL{sub 2,3} edges represent the magnetic order parameter, the resonant scattering at the OK edge is found to be directly related to the macroscopic ferroelectric polarization. The latter observation reveals the important role of the spin-dependent Mn-O hybridization for the multiferroicity of YMn{sub 2}O{sub 5}. We present details about how to obtain correct energy dependent lineshapes and discuss the origin of the resonant intensity at the OK edge.

  6. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.

    PubMed

    Patel, Manu U M; Arčon, Iztok; Aquilanti, Giuliana; Stievano, Lorenzo; Mali, Gregor; Dominko, Robert

    2014-04-01

    Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long-cycle-life lithium-sulfur (Li-S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K-edge X-ray absorption near-edge structure (XANES) and (6,7) Li magic-angle spinning (MAS) NMR studies on a Li-S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all-sulfur-based components in the Li-S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using (7) Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li-S batteries.

  7. Monolayer to interdigitated partial bilayer smectic C transition in thiophene-based spacer mesogens: X-ray diffraction and (13)C nuclear magnetic resonance studies.

    PubMed

    Kesava Reddy, M; Varathan, E; Lobo, Nitin P; Roy, Arun; Narasimhaswamy, T; Ramanathan, K V

    2015-10-01

    Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state (13)C NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.

  8. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    SciTech Connect

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.

  9. Electronic Structure of In2O3 from Resonant X-ray Emission Spectroscopy

    SciTech Connect

    Piper, L.; DeMasi, A; Cho, S; Smith, K; Fuchs, F; Bechstedt, F; Korber, C; Klein, A; Payne, D; Egdell, R

    2009-01-01

    The valence and conduction band structures of In2O3 have been measured using a combination of valence band x-ray photoemission spectroscopy, O K-edge resonant x-ray emission spectroscopy, and O K-edge x-ray absorption spectroscopy. Excellent agreement is noted between the experimental spectra and O 2p partial density of states calculated within hybrid density functional theory. Our data are consistent with a direct band gap for In2O3.

  10. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  11. Performance of Magnetic Penetration Thermometers for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Nagler, P. C.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W. T.; Kelly, D. P.; Porst, J. P.; Sadleir, J. E.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    The ideal X-ray camera for astrophysics would have more than a million pixels and provide an energy resolution of better than leV FWHM for energies up to 10 keY. We have microfabricated and characterized thin-film magnetic penetration thermometers (MPTs) that show great promise towards meeting these capabilities. MPTs operate in similar fashion to metallic magnetic calorimeters (MMCs), except that a superconducting sensor takes the place of a paramagnetic sensor and it is the temperature dependence of the superconductor's diamagnetic response that provides the temperature sensitivity. We present a description of the design and performance of our prototype thin-film MPTs with MoAu bilayer sensors, which have demonstrated an energy resolution of approx 2 eV FWHM at 1.5 keY and 4.3 eV FWHM at 5.9 keY.

  12. X-ray Spectroscopy and Magnetism in Mineralogy

    NASA Astrophysics Data System (ADS)

    Sainctavit, Philippe; Brice-Profeta, Sandrine; Gaudry, Emilie; Letard, Isabelle; Arrio, Marie-Anne

    The objective of this paper is to present the kind of information that can be gained in the field of mineralogy from the use of x-ray magnetic spectroscopies. We review some of the questions that are unsettled and that could benefit from an interdisciplinary approach where magnetism, spectroscopy and mineralogy could be mixed. Most of the attention is focused on iron and some other 3d transition elements. The mineralogy of planetary cores and its relation with known meteorites are exemplified. The various oxide phases in the mantle and the nature of iron in these phases is also underlined. The presence of transition elements in insulating minerals and its relation with macroscopic properties such as the color of gemstones are reviewed. Finally an introduction to paleomagnetism is given with a special attention to nanomaghemites.

  13. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    DOE PAGESBeta

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technicalmore » development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.« less

  14. X-ray laser resonator for the kilo-electron-volt range

    SciTech Connect

    Chen, Jie; Tomov, Ivan V.; Er, Ali O.; Rentzepis, Peter M.

    2013-04-29

    We have designed, constructed, and tested an x-ray laser resonator operating in the hard x-ray, keV energy region. This ring x-ray laser cavity is formed by four highly oriented pyrolytic graphite crystals. The crystals are set at the Bragg angles that allow for the complete 360 Degree-Sign round trip of the 2.37 A, 5.23 keV L{sub {alpha}} line of neodymium. In addition, we also present experimental data of a similar ring laser resonator that utilizes the Cr K{sub {alpha}}, 5.41 keV, x-ray line to propagate through the four mirrors of the cavity. The specific properties of these x-ray laser resonator mirrors, including reflection losses and cavity arrangement, are presented.

  15. Magnetic Nature of the 500 meV peak in La2−xSrxCuO4 Observed with Resonant Inelastic X-ray Scattering at the Cu K-edge

    SciTech Connect

    Hill, J.P.; Ellis, D.S.; Kim, J.; Wakimoto, S.; Birgeneau, R.J.; Shvyd’ko, Y.; Casa, D.; Gog, T.; Ishii, K.; Ikeuchi, K.; Paramekanti, A.; Kim, Y.-J.

    2010-02-15

    We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at q = ({pi},0) in resonant inelastic x-ray scattering (RIXS) experiments on La{sub 2}CuO{sub 4}. The intensity of this peak persists above the Neel temperature (T{sub N} = 320 K), but decreases gradually with increasing temperature, reaching zero at around T = 500 K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon B{sub 1g} Raman peak in La{sub 2}CuO{sub 4} and, with suitable rescaling, agrees with the Raman peak shifts in EuBa{sub 2}Cu{sub 3}O{sub 6} and K{sub 2}NiF{sub 4}. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin-correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a two-magnon excitation.

  16. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1 -antitrypsin upon ligand binding.

    PubMed

    Nyon, Mun Peak; Prentice, Tanya; Day, Jemma; Kirkpatrick, John; Sivalingam, Ganesh N; Levy, Geraldine; Haq, Imran; Irving, James A; Lomas, David A; Christodoulou, John; Gooptu, Bibek; Thalassinos, Konstantinos

    2015-08-01

    Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1 -antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1 -antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1 -antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1 -antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest.

  17. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1-antitrypsin upon ligand binding

    PubMed Central

    Nyon, Mun Peak; Prentice, Tanya; Day, Jemma; Kirkpatrick, John; Sivalingam, Ganesh N; Levy, Geraldine; Haq, Imran; Irving, James A; Lomas, David A; Christodoulou, John; Gooptu, Bibek; Thalassinos, Konstantinos

    2015-01-01

    Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1-antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1-antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1-antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1-antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest. PDB Code(s): 4PYW PMID:26011795

  18. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-01-01

    Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric

  19. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields

    SciTech Connect

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-11-01

    Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric

  20. Sapphire hard X-ray Fabry-Perot resonators for synchrotron experiments.

    PubMed

    Tsai, Yi Wei; Wu, Yu Hsin; Chang, Ying Yi; Liu, Wen Chung; Liu, Hong Lin; Chu, Chia Hong; Chen, Pei Chi; Lin, Pao Te; Fu, Chien Chung; Chang, Shih Lin

    2016-05-01

    Hard X-ray Fabry-Perot resonators (FPRs) made from sapphire crystals were constructed and characterized. The FPRs consisted of two crystal plates, part of a monolithic crystal structure of Al2O3, acting as a pair of mirrors, for the backward reflection (0 0 0 30) of hard X-rays at 14.3147 keV. The dimensional accuracy during manufacturing and the defect density in the crystal in relation to the resonance efficiency of sapphire FPRs were analyzed from a theoretical standpoint based on X-ray cavity resonance and measurements using scanning electron microscopic and X-ray topographic techniques for crystal defects. Well defined resonance spectra of sapphire FPRs were successfully obtained, and were comparable with the theoretical predictions.

  1. A study of magnetic fields of accreting X-ray pulsars with the Rossi X-ray Timing Explorer

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    2001-12-01

    Pulsars are known to be rotating neutron stars that appear to emit regular flashes or radiation. For accretion powered pulsars, the emission is powered by the accretion of material from a normal stellar companion onto the magnetic poles of the neutron star. The conditions in these polar regions, which exhibit extremes in gravitation, temperature, and magnetic field strength, are impossible to recreate in terrestrial laboratories and are possibly unique in nature. Despite two decades of work, no compelling models exist explaining how the infalling material distributes itself across the polar caps, or how the observed X-ray continuum is formed. More fundamentally, these are unanswered questions of how matter acts and reacts in this extreme environment. By studying the X-ray spectra of these sources, we can hope to elucidate some of these questions. Some accreting pulsars exhibit absorption-like X-ray features, or cyclotron lines. The energies of these lines are the only direct measure of the magnetic field of a neutron star, and their detailed line profiles are sensitive to the physical parameters in the formation region. In this work I have used data from NASA's Rossi X-ray Timing Explorer to study the geometry, physical conditions, and dynamical behavior of phenomena in the polar regions of these rotating neutron stars. I present two new cyclotron lines I discovered during the course of the research in the spectra of 4U 0352+309 and XTE J1946+274. I outline a new method for using cyclotron line shapes as a function of neutron star rotation, along with the temporal structure of the X-ray pulses, to self consistently describe the geometry of the emission regions. This type of analysis is a powerful tool for studying the accretion structures that form at the pulsar magnetic poles. I apply the method qualitatively to three sources, and discuss prospects for future work. I find that the characteristic spectral break energy in X-ray continua is correlated with the

  2. Soft X-Ray Magnetic Imaging of Focused Ion Beam Lithographically Patterned Fe Thin Films

    SciTech Connect

    Cook, Paul J.; Shen, Tichan H.; Grundy, PhilJ.; Im, Mi Young; Fischer, Peter; Morton, Simon A.; Kilcoyne, Arthur D.L.

    2008-11-09

    We illustrate the potential of modifying the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no change to the chemical environment of Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions.

  3. Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films

    NASA Astrophysics Data System (ADS)

    Shi, X.; Fischer, P.; Neu, V.; Elefant, D.; Lee, J. C. T.; Shapiro, D. A.; Farmand, M.; Tyliszczak, T.; Shiu, H.-W.; Marchesini, S.; Roy, S.; Kevan, S. D.

    2016-02-01

    High spatial resolution magnetic x-ray spectromicroscopy at x-ray photon energies near the cobalt L3 resonance was applied to probe an amorphous 50 nm thin SmCo5 film prepared by off-axis pulsed laser deposition onto an x-ray transparent 200 nm thin Si3N4 membrane. Alternating gradient magnetometry shows a strong in-plane anisotropy and an only weak perpendicular magnetic anisotropy, which is confirmed by magnetic transmission soft x-ray microscopy images showing over a field of view of 10 μm a primarily stripe-like domain pattern but with local labyrinth-like domains. Soft x-ray ptychography in amplitude and phase contrast was used to identify and characterize local magnetic and structural features over a field of view of 1 μm with a spatial resolution of about 10 nm. There, the magnetic labyrinth domain patterns are accompanied by nanoscale structural inclusions that are primarily located in close proximity to the magnetic domain walls. Our analysis suggests that these inclusions are nanocrystalline Sm2Co17 phases with nominally in-plane magnetic anisotropy.

  4. X-ray studies of neutron stars and their magnetic fields

    PubMed Central

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  5. Octupole Magnet For Soft X Ray Magnetic Dichroism Experiments: Design and Performance

    SciTech Connect

    Arenholz, Elke; Prestemon, Soren O.

    2004-05-12

    An octupole magnet endstation for soft x ray magnetic dichroism measurements has been developed at the Advanced Light Source. The system consists of an eight pole electromagnet that surrounds a small vacuum chamber. The magnet provides fields up to 0.9 T that can be applied in any direction relative to the incoming x ray beam. High precision magnetic circular and linear dichroism spectra can be obtained reversing the magnetic field for each photon energy in an energy scan. Moreover, the field dependence of all components of the magnetization vector can be studied in detail by choosing various angles of x ray incidence while keeping the relative orientation of magnetic field and sample fixed.

  6. X-ray scattering study of the interplay between magnetism and structure in CeSb

    NASA Astrophysics Data System (ADS)

    McMorrow, D. F.; Lussier, J.-G.; Lebech, B.; Sørensen, S. Aa; Christensen, M. J.; Vogt, O.

    1997-02-01

    The chemical and magnetic structures of CeSb have been investigated using high-resolution x-ray scattering techniques. Experiments performed in the non-resonant regime (x-ray energy of E = 9.4 keV) showed that when the sample was cooled below its Néel temperature of 0953-8984/9/5/017/img9, peaks appeared with commensurate wave vectors q. From their polarization and wave-vector dependence, the peaks are deduced to arise mainly from a periodic lattice distortion. In the resonant regime, when the x-ray energy was tuned to the L absorption edges of Ce, weak, resonantly enhanced magnetic scattering was observed at the 0953-8984/9/5/017/img10 edge (E = 6.164 keV), with no scattering found at either 0953-8984/9/5/017/img11 or 0953-8984/9/5/017/img12. Of the six possible zero-field commensurate magnetic structures reported in earlier neutron experiments, we found the phases with 0953-8984/9/5/017/img13 and 0953-8984/9/5/017/img14 only, with the domain that has moments perpendicular to the surface absent. Neutron scattering experiments on the same single crystal confirm that the absence of the other phases is a bulk property of that particular crystal, but the absence of the domain is a feature of the near-surface region. These results are discussed in terms of the currently accepted model of the magnetic structure of CeSb.

  7. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  8. Microbeam resonant x-ray scattering from bromine-substituted bent-core liquid crystals.

    PubMed

    Takanishi, Yoichi; Ohtsuka, Youko; Takahashi, Yumiko; Iida, Atsuo

    2010-01-01

    We studied the local layer structure in the B2 phase of bromine-substituted bent-core liquid crystals in the cell geometry using microbeam resonant x-ray scattering. In the homochiral state of B2 phase, the 3/2 order satellite peak was observed only when the incident x-ray energy is at the K absorption edge of bromine. This result clearly indicates that the B2 homochiral domain forms two-layer superlattice in adjacent layers, the same as in the rodlike Sm-C(A) phase. The work reports on microbeam resonant x-ray scattering experiment from the local layer of the bent-core liquid crystal in the device geometry. Moreover, we can say that bromine is also useful for the analysis of the superstructure of soft materials using resonant x-ray scattering.

  9. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7.

    PubMed

    Smith, A L; Raison, P E; Martel, L; Charpentier, T; Farnan, I; Prieur, D; Hennig, C; Scheinost, A C; Konings, R J M; Cheetham, A K

    2014-01-01

    The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αβ = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to β phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry. PMID:24350659

  10. On the maximum accretion luminosity of magnetized neutron stars: connecting X-ray pulsars and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Poutanen, Juri

    2015-12-01

    We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can reach values of the order of 1040 erg s-1 for the magnetar-like magnetic field (B ≳ 1014 G) and long spin periods (P ≳ 1.5 s). The relative narrowness of an area of feasible NS parameters which are able to provide higher luminosities leads to the conclusion that L ≃ 1040 erg s-1 is a good estimate for the limiting accretion luminosity of an NS. Because this luminosity coincides with the cut-off observed in the high-mass X-ray binaries luminosity function which otherwise does not show any features at lower luminosities, we can conclude that a substantial part of ultraluminous X-ray sources are accreting neutron stars in binary systems.

  11. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  12. Alkyl chlorido hydridotris(3,5-dimethylpyrazolyl)borate imido niobium and tantalum(V) complexes: synthesis, conformational states of alkyl groups in solid and solution, X-ray diffraction and multinuclear magnetic resonance spectroscopy studies.

    PubMed

    Galájov, Miguel; García, Carlos; Gómez, Manuel; Gómez-Sal, Pilar

    2014-04-21

    The alkylation of the starting pseudooctahedral dichlorido imido hydridotris(3,5-dimethylpyrazolyl)borate niobium and tantalum(v) compounds [MTp*Cl2(NtBu)] (M = Nb,Ta; Tp* = BH(3,5-Me2C3HN2)3) with MgClR in different conditions led to new alkyl chlorido imido derivatives [MTp*ClR(NtBu)] (M = Nb/Ta, R = CH2CH31a/1b, CH2Ph 2a/2b, CH2tBu 3a/3b, CH2SiMe34a/4b, CH2CMe2Ph 5a/5b), whereas the dimethyl derivatives [MTp*Me2(NtBu)] (M = Nb 6a, Ta 6b) could be isolated as unitary species when the reaction was carried out using 2 equivalents of the magnesium reagent MgClMe. However, the chlorido methyl [MTp*ClMe(NtBu)] (M = Nb 7a, Ta 7b) complexes were obtained by heating at 50 °C the dichlorido and dimethyl imido complexes mixtures in a 1 : 1 ratio. All of the complexes were studied by multinuclear magnetic resonance spectroscopy and the molecular structures of 1b, 2a/b, 3a/b, 4a and 5a/b were determined by X-ray diffraction methods. In the solid state the complexes 1b, 4a and 5a exhibit only a gauche-anti conformation and the complexes 2a/b, 3a/b and 5b exhibit only a gauche-syn conformation of the alkyl substituents, whereas both conformational states, which do not show mutual exchange in the NMR time scale, were observed for 3a/b in a benzene-d6 solution. The (15)N chemical shifts of the complexes 1-7 are discussed.

  13. Comparison of nuclear magnetic resonance spectroscopy with dual-photon absorptiometry and dual-energy X-ray absorptiometry in the measurement of thoracic vertebral bone mineral density: compressive force versus bone mineral.

    PubMed

    Myers, T J; Battocletti, J H; Mahesh, M; Gulati, M; Wilson, C R; Pintar, F; Reinartz, J

    1994-05-01

    31P nuclear magnetic resonance spectroscopy (NMRS) measurements were made on human T2 and T3 vertebral bodies. The bone mineral content (BMC) of isolated vertebral bodies minus the posterior elements and disks was measured using (1) NMRS on a 3.5 T, 85 mm bore GE Medical Systems NT-150 superconducting spectrometer, (2) a Lunar Corporation DPX-L dual-energy X-ray absorptiometry (DXA) scanner in an anterior-posterior (AP) orientation, (3) a Norland Corporation XR26 DXA scanner, also in an AP direction, and (4) a Norland Corporation model 2600 dual-photon absorptiometry (DPA) densitometer in both the AP and superior-inferior (SI) directions. Vertebral body volumes were measured using a water displacement technique to determine volume bone mineral densities (VBMD). They were then compressed to failure using an electrohydraulic testing device, followed by ashing in a muffle furnace at 700 degrees C for 18 h. Correlations of BMC between NMRS and DPA, DXA and ashing were excellent (0.96 < or = r < or = 0.99); in a one-way analysis of variance (ANOVA) test, means were not statistically different at a p level of 0.757. The correlations of VBMD between NMRS and the other methods were not as good (0.83 < or = r < or = 0.95); in a one-way ANOVA test, means were not statistically different at a p level of 0.089. BMC was a better predictor of ultimate compressive failure than VBMD for all six methods. For NMRS, the regression coefficient for BMC was r2 = 0.806, compared with r2 = 0.505 for VBMD. NMRS may prove an alternative to present methods of determining bone mineral. PMID:8069051

  14. X-ray magnetic circular dichroism and x-ray absorption spectroscopy of novel magnetic thin films

    SciTech Connect

    Brewer, M.A.; Ju, H.L.; Krishnan, K.M.

    1997-04-01

    The optimization of the magnetic properties of materials for a wide range of applications requires a dynamic iteration between synthesis, property measurements and characterization at appropriate length scales. The authors interest arises both from the increased appreciation of the degree to which magnetic properties can be influenced by tailored microstructures and the ability to characterize them by x-ray scattering/dichroism techniques. Preliminary results of this work at the ALS on `giant` moment in {alpha}{double_prime}-Fe{sub 16}N{sub 2} and `colossal` magnetoresistance in manganite perovskites is presented here. It has recently been claimed that {alpha}{double_prime}-Fe{sub 16}N{sub 2} possesses a giant magnetization of 2.9 T ({approximately}2300 emu/cc) when grown on lattice-matched In{sub 0.2}Ga{sub 0.8}As(001) and Fe/GaAs(001). However, attempts at growth on simpler substrates have resulted in only a modest enhancement in moment and often in multiphase mixtures. Theoretical calculations based on the band structure of Fe{sub 16}N{sub 2} predict values for the magnetization around 2.3 T ({approximately}1780 emu/cc), well below Sugita`s claims, but consistent with the magnetization reported by several other workers. Using appropriate sum rules applied to the integrated MCD spectrum, they hope to determine the magnetic moment of the iron species in the {alpha}{double_prime}-Fe{sub 16}N{sub 2} films and other phases and resolve the orbital and spin contributions to the moment. There is also rapidly growing interest in the `colossal magnetoresistance` effect observed in manganese oxides for both fundamental and commercial applications. To address some of these issues the authors have measured the electron energy loss spectra (EELS) of manganese perovskites at room temperature.

  15. Highly charged ion X-rays from Electron Cyclotron Resonance Ion Sources

    NASA Astrophysics Data System (ADS)

    Indelicato, P.; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A.; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Trassinelli, M.; Veloso, J.; Wasser, A.; Zmeskal, J.

    2007-09-01

    Radiation from the highly charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources (ECRISs) constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (≈1 eV) transitions can be very narrow, containing only a small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16-18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms.

  16. Unveiling the magnetic nature of new hard X-ray emitting CVs

    NASA Astrophysics Data System (ADS)

    de Martino, Domitilla

    2007-10-01

    An unexpected large fraction of Cataclysmic Variables (CVs) has been identified as optical counterparts of hard X-ray sources in the INTEGRAL and Swift surveys. Most of them belong to the magnetic class of the Intermediate Polars (IPs), suggesting a potentially important role in the study of galactic populations of X-ray sources. To date many new CVs still need to be properly classified. Here we propose to observe 6 new hard X-ray CV systems to detect X-ray pulsations at the white dwarf rotational period which, together with their spectral properties, will provide firm constraints on their suspected magnetic nature.

  17. Small angle x-ray scattering studies of magnetically oriented lipid bilayers.

    PubMed Central

    Hare, B J; Prestegard, J H; Engelman, D M

    1995-01-01

    Magnetically oriented lipid/detergent bilayers are potentially useful for studies of membrane-associated molecules and complexes using x-ray scattering and nuclear magnetic resonance (NMR). To establish whether the system is a reasonable model of a phospholipid bilayer, we have studied the system using x-ray solution scattering to determine the bilayer thickness, interparticle spacing, and orientational parameters for magnetically oriented lipid bilayers. The magnetically orientable samples contain the phospholipid L-alpha-dilauroylphosphatidylcholine (DLPC) and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) in a 3:1 molar ratio in 70% water (w/v) and are similar to magnetically orientable samples used as NMR media for structural studies of membrane-associated molecules. A bilayer thickness of 30 A was determined for the DLPC/CHAPSO particles, which is the same as the bilayer thickness of pure DLPC vesicles, suggesting that the CHAPSO is not greatly perturbing the lipid bilayer. These data, as well as NMR data on molecules incorporated in the oriented lipid particles, are consistent with the sample consisting of reasonably homogeneous and well dispersed lipid particles. Finally, the orientational energy of the sample suggests that the size of the cooperatively orienting unit in the samples is 2 x 10(7) phospholipid molecules. Images FIGURE 1 PMID:8580332

  18. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source.

    PubMed

    Leitner, D; Benitez, J Y; Lyneis, C M; Todd, D S; Ropponen, T; Ropponen, J; Koivisto, H; Gammino, S

    2008-03-01

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency. PMID:18377002

  19. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  20. Implications of resonant inelastic x-ray scattering data for theoretical models of cuprates

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Sushkov, Oleg P.

    2013-11-01

    There are two commonly discussed points of view in theoretical description of cuprate superconductors: (i) Cuprates can be described by the modified t-J model; (ii) overdoped cuprates are close to the regime of normal Fermi liquid (NFL). We argue that recent resonant inelastic x-ray scattering data challenge both points. While the modified t-J model describes well the strongly underdoped regime, it fails to describe high energy magnetic excitations when approaching optimal doping. This probably indicates failure of the Zhang-Rice singlet picture. In the overdoped regime the momentum-integrated spin structure factor S(ω) has the same intensity and energy distribution as that in an undoped parent compound. This implies that the entire spin spectral sum rule is saturated at ω≈2J, while in an NFL the spectral weight should saturate only at the total bandwidth which is much larger than 2J.

  1. Extracting paramagnon excitations from resonant inelastic x-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Lamsal, Jagat; Montfrooij, Wouter

    2016-06-01

    Resonant x-ray scattering experiments on high-temperature superconductors and related cuprates have revealed the presence of intense paramagnon scattering at high excitation energies, of the order of several hundred meV. The excitation energies appear to show very similar behavior across all compounds, ranging from magnetically ordered, via superconductors, to heavy fermion systems. However, we argue that this apparent behavior has been inferred from the data through model fitting which implicitly imposes such similarities. Using model fitting that is free from such restrictions, we show that the paramagnons are not nearly as well defined as has been asserted previously, and that some paramagnons might not represent propagating excitations at all. Our work indicates that the data published previously in the literature will need to be reanalyzed with proper models.

  2. Innovative uses of X-ray FEL and the pulsed magnets: High magnetic field X-ray scattering studies on quantum materials

    NASA Astrophysics Data System (ADS)

    Jang, H.; Nojiri, H.; Gerber, S.; Lee, W.-S.; Zhu, D.; Lee, J.-S.; Kao, C.-C.

    X-ray scattering under high magnetic fields provides unique opportunities for solving many scientific puzzles in quantum materials, such as strongly correlated electron systems. Incorporating high magnetic field capability presents serious challenges at an x-ray facility, including the limitation on the maximum magnetic field even with a DC magnet (up to ~20 Tesla), expensive cost in development, radiation damage, and limited flexibility in the experimental configuration. These challenges are especially important when studying the symmetry broken state induced by the high magnetic field are necessary, for example, exploring intertwined orders between charge density wave (CDW) and high Tc superconductivity. Moreover, a gap in magnetic field strengths has led to many discrepancies and puzzling issues for understanding strongly correlated systems - is a CDW competing or more intimately intertwined with high-temperature superconductivity. To bridge this gap and resolve these experimental discrepancies, one needs an innovative experimental approach. Here, we will present a new approach to x-ray scattering under high magnetic field up to 28 Teals by taking advantage of brilliant x-ray free electron laser (FEL). The FEL generates sufficiently high photon flux for single shot x-ray scattering experiment. In this talk, we will also present the first demonstration about the field induced CDW order in YBCO Ortho-VIII with 28 Tesla, which show the totally unexpected three-dimensional behavior.

  3. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  4. Neutron and X-Ray Diffraction Studies of Magnetic Order in Uranium-Based Heavy Fermion Superconductors

    NASA Astrophysics Data System (ADS)

    Lussier, Jean-Guy

    UPt_3, URu_2 Si_2, UNi_2 Al_3 and UPd_2 Al_3 form a special group among the uranium alloys because they exhibit heavy fermion character, magnetic order and superconductivity. This main interest in the study of this group of compounds resides in the simultaneous occurrence of magnetism and superconductivity at low temperature. Such a state could potentially involve an unconventional superconducting pairing mechanism, different from that contained in standard BCS theory. In this thesis, the magnetic states of three of these materials (URu_2Si _2, UNi_2Al _3 and UPd_2Al _3) is investigated with neutron and the relatively new resonant magnetic X-ray scattering techniques. The work presented here on URu_2Si _2 follows an earlier effort that demonstrated the applicabililty of the resonant X-ray technique to this weak magnetic system. Access to reciprocal space was extended in order to confirm the multipolar form of the resonant X-ray cross-section and to explore the limits of the technique compared to neutron scattering. The situation with the newly discovered UNi_2Al _3 and UPd_2Al _3 was different since their magnetic structure and phases needed first to be established. This task was achieved using two magnetic probes (neutron and X-ray scattering). Several magnetic order parameters in the normal and in the superconducting phase were also measured. The incommensurate magnetic order found in UNi_2Al_3 by neutron scattering constitutes the first observation of long range order in this compound. Other measurements on this compound provided some clues about the evolution of the magnetic structure in high magnetic fields.

  5. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    SciTech Connect

    Glans, P.; Gunnelin, K.; Guo, J.

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  6. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    SciTech Connect

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  7. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  8. Resonant X-Ray Scattering Studies of Charge Order in Cuprates

    NASA Astrophysics Data System (ADS)

    Comin, Riccardo; Damascelli, Andrea

    2016-03-01

    X-ray techniques have been used for more than a century to study the atomic and electronic structure in practically any type of material. The advent of correlated electron systems, in particular complex oxides, brought about new scientific challenges and opportunities for the advancement of conventional X-ray methods. In this context, the need for new approaches capable of selectively sensing new forms of orders involving all degrees of freedom -- charge, orbital, spin, and lattice -- paved the way for the emergence and success of resonant X-ray scattering, which has become an increasingly popular and powerful tool for the study of electronic ordering phenomena in solids. We review the recent resonant X-ray scattering breakthroughs in the copper oxide high-temperature superconductors, in particular regarding the phenomenon of charge order, a broken-symmetry state occurring when valence electrons self-organize into periodic structures. After a brief historical perspective on charge order, we outline the milestones in the development of resonant X-ray scattering as well as the basic theoretical formalism underlying its unique capabilities. The rest of the review focuses on the recent contributions of resonant scattering to the advancements in our description and understanding of charge order. To conclude, we propose a series of present and upcoming challenges and discuss the future outlook for this technique.

  9. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    SciTech Connect

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  10. Single-band model of resonant inelastic x-ray scattering by quasiparticles in high-T(c) cuprate superconductors.

    PubMed

    Benjamin, David; Klich, Israel; Demler, Eugene

    2014-06-20

    We show that a simple model of noninteracting quasiparticles accurately describes resonant inelastic x-ray scattering (RIXS) experiments in the hole-doped cuprate superconductors. Band structure alone yields signatures previously attributed to collective magnetic modes, such as the dispersing peaks and nontrivial polarization dependence found in several experiments. We conclude that RIXS data can be explained without positing the existence of magnetic excitations that persist with increasing doping. In so doing we develop a formalism for RIXS in itinerant electron systems that accounts for the positively charged core hole exactly and discover a mechanism by which the core hole produces polarization dependence mimicking that of a magnetic system. PMID:24996103

  11. X-ray effects in charge-ordered manganites: A magnetic mechanism of persistent photoconductivity

    SciTech Connect

    Keimer, B.; Casa, D.; Kiryukhin, V.; Saleh, O.A.; Hill, J.P.; Tomioka, Y.; Tokura, Y. |

    1998-12-31

    Charge-ordered manganites of composite Pr{sub 1{minus}x}(Ca{sub 1{minus}y}Sr{sub y}){sub x}MnO{sub 3} exhibit persistent photoconductivity when illuminated by x-rays. The authors review transport and x-ray diffraction data as functions of x-ray exposure, magnetic field, and temperature which shed light on the origin of this unusual behavior. The experimental evidence suggests that the mechanism primarily involves a ferromagnetic polarization of local spins by hot electrons generated by the x-rays.

  12. A novel approach for x-ray scattering experiments in magnetic fields utilizing trapped flux in type-II superconductors

    SciTech Connect

    Das, R.K.; Islan, Z.; Ruff, J.P.C.; Sawh, R.P.; Weinstein, R.; Canfield, Paul C.; Kim, J.-W.; Lang, J.C.

    2012-06-08

    We introduce a novel approach to x-ray scattering studies in applied magnetic fields by exploiting vortices in superconductors. This method is based on trapping magnetic flux in a small disk-shaped superconductor (known as a trapped field magnet, TFM) with a single-crystal sample mounted on or at close proximity to its surface. This opens an unrestricted optical access to the sample and allows magnetic fields to be applied precisely along the x-ray momentum transfer, facilitating polarization-sensitive experiments that have been impractical or impossible to perform to date. The TFMs used in our study remain stable and provide practically uniform magnetic fields for days, which are sufficient for comprehensive x-ray diffraction experiments, specifically x-ray resonance exchange scattering (XRES) to study field-induced phenomena at a modern synchrotron source. The TFM instrument has been used in a “proof-of-principle” XRES study of a meta-magnetic phase in a rare-earth compound, TbNi2Ge2, in order to demonstrate its potential.

  13. Time-Resolved X-Ray Magnetic Circular Dichroism - A Selective Probe of Magnetization Dynamics on Nanosecond Timescales

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain

    Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil

  14. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2)

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Detlefs, C.; Rodríguez-Fernández, A.

    2012-06-01

    The low-temperature ordered state of neptunium dioxide (NpO2) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group \\bar {3}m (D3d), because corresponding magnetic groups \\bar {3}{m}^{\\prime}, {\\bar {3}}^{\\prime}{m}^{\\prime} and {\\bar {3}}^{\\prime}m are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M2,3 and L2,3 resonant scattering via E2-E2 events. The Lorentzian-squared lineshape observed at the M4 resonance is shown to be the result of the anisotropy of the 3p3/2 core levels. Quantitative comparison of our calculations to the measured data yields a core-hole width Γ = 2.60(7) eV and a core-state exchange energy \\vert \\varepsilon (\\frac{1}{2})\\vert =0.7 6(2) eV.

  15. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2).

    PubMed

    Lovesey, S W; Detlefs, C; Rodríguez-Fernández, A

    2012-06-27

    The low-temperature ordered state of neptunium dioxide (NpO(2)) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group ̅3m (D(3d)), because corresponding magnetic groups ̅3m', ̅3'm', and ̅3'm are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M(2,3) and L(2,3) resonant scattering via E2–E2 events. The Lorentzian-squared lineshape observed at the M(4) resonance is shown to be the result of the anisotropy of the 3p(3/2) core levels. Quantitative comparison of our calculations to the measured data yields a core–hole width Γ = 2.60(7) eV and a core-state exchange energy [absolute value]ε(1/2)[absolute value] = 0.76(2) eV.

  16. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    SciTech Connect

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.

  17. Chiral properties of hematite α-Fe2O3 inferred from resonant Bragg diffraction using circularly polarized x rays

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, A.; Blanco, J. A.; Lovesey, S. W.; Scagnoli, V.; Staub, U.; Walker, H. C.; Shukla, D. K.; Strempfer, J.

    2013-09-01

    Chiral properties of the two phases—collinear motif (below Morin transition temperature, TM≈250 K) and canted motif (above TM)—of magnetically ordered hematite (α-Fe2O3) have been identified in single-crystal resonant x-ray Bragg diffraction using circular polarized incident x rays tuned near the iron K edge. Magnetoelectric multipoles, including an anapole, fully characterize the high-temperature canted phase, whereas the low-temperature collinear phase supports both parity-odd and parity-even multipoles that are time odd. Orbital angular momentum accompanies the collinear motif, whereas it is conspicuously absent with the canted motif. Intensities have been successfully confronted with analytic expressions derived from an atomic model fully compliant with chemical and magnetic structures. Values of Fe atomic multipoles previously derived from independent experimental data are shown to be completely trustworthy.

  18. A long-lived coronal X-ray arcade. [force-free magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Mcguire, J. P.; Tandberg-Hanssen, E.; Krall, K. R.; Wu, S. T.; Smith, J. B., Jr.; Speich, D. M.

    1977-01-01

    A large, long-lived, soft X-ray emitting arch system observed during a Skylab mission is analyzed. The supposition is that these arches owe their stability to the stable coronal magnetic-field configuration. A global constant alpha force-free magnetic field analysis, is used to describe the arches which stayed in the same approximate position for several solar rotations. A marked resemblance is noted between the theoretical magnetic field configuration and the observed X-ray emmitting feature.

  19. X-Ray Comb Generation from Nuclear-Resonance-Stabilized X-Ray Free-Electron Laser Oscillator for Fundamental Physics and Precision Metrology

    SciTech Connect

    Adams, B. W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as Fe-57 as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as Ta-181 or Sc-45.

  20. X-rays from magnetic intermediate mass Ap/Bp stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    2016-09-01

    The X-ray emission of magnetic intermediate mass Ap/Bp stars is reviewed and put into context of intrinsic as well as extrinsic hypotheses for its origin. New X-ray observations of Ap/Bp stars are presented and combined with an updated analysis of the available datasets, providing the largest sample of its type that is currently available. In the studied stars the X-ray detections are found predominantly among the more massive, hotter and more luminous targets. Their X-ray properties are quite diverse and beside strong soft X-ray emission significant magnetic activity is frequently present. While a connection between more powerful winds and brighter X-ray emission is expected in intrinsic models, the scatter in X-ray luminosity at given bolometric luminosity is so far unexplained and several observational features like X-ray light curves and flaring, luminosity distributions and spectral properties are often similar to those of low-mass stars. It remains to be seen if these features can be fully reproduced by magnetospheres of intermediate mass stars. The article discusses implications for magnetically confined wind-shock models (MCWS) and stellar magnetospheres under the assumption that the intrinsic model is applicable, but also examines the role of possible companions. Further, related magnetospheric phenomena are presented and an outlook on future perspectives is given.

  1. K{beta} resonant x-ray emission spectra in MnF{sub 2}

    SciTech Connect

    Taguchi, M.; Parlebas, J. C.; Uozumi, T.; Kotani, A.; Kao, C.-C.

    2000-01-15

    We report experimental and theoretical results on Mn K{beta} resonant x-ray emission spectra (K{beta} RXES) at the pre-edge region of K-edge x-ray absorption spectroscopy in a powdered MnF{sub 2} sample. The experimental results are studied theoretically in terms of coherent second-order optical process, using a MnF{sub 6}{sup -4} cluster model with the effects of intra-atomic multiplet coupling and interatomic hybridization in the space of three configurations and taking into account both the Mn 1s-3d quadrupole excitation and the Mn 1s-4p dipole excitation. The agreement between theory and experiment is good. Moreover, we show that if the sample is a single crystal the resonant x-ray emission spectroscopy caused by the quadrupole excitation has a strong sensitivity to the angle of the incident photon. (c) 2000 The American Physical Society.

  2. Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Ohtori, Hiroyuki; Iwano, Kaoru; Mitsumata, Chiharu; Takeichi, Yasuo; Yano, Masao; Kato, Akira; Miyamoto, Noritaka; Shoji, Tetsuya; Manabe, Akira; Ono, Kanta

    2014-04-01

    Using scanning transmission X-ray microscopy (STXM), in this report we visualized the magnetic dipolar interactions in nanocrystalline Nd-Fe-B magnets and imaged their magnetization distributions at various applied fields. We calculated the magnetic dipolar interaction by analyzing the interaction between the magnetization at each point and those at the other points on the STXM image.

  3. Electronic Structure in Thin Film Organic Semiconductors Studied using Soft X-ray Emission and Resonant Inelastic X-ray Scattering

    SciTech Connect

    Zhang,Y.; Downes, J.; Wang, S.; Learmonth, T.; Plucinski, L.; Matsuura, A.; McGuinness, C.; Glans, P.; Bernardis, S.; et al.

    2006-01-01

    The electronic structure of thin films of the organic semiconductors copper and vanadyl (VO) phthalocyanine (Pc) has been measured using resonant soft X-ray emission spectroscopy and resonant inelastic X-ray scattering. For Cu-Pc we report the observation of two discrete states near E{sub F}. This differs from published photoemission results, but is in excellent agreement with density functional calculations. For VO-Pc, the vanadyl species is shown to be highly localized. Both dipole forbidden V 3d to V 3d*, and O 2p to V 3d* charge transfer transitions are observed, and explained in a local molecular orbital model.

  4. Resonance-enhanced x-rays in thin films: a structure probe for membranes and surface layers.

    PubMed

    Wang, J; Bedzyk, M J; Caffrey, M

    1992-10-30

    An x-ray resonance effect in an organic thin film on an x-ray reflecting mirror is reported. The resonance effect is the result of interference between reflected and refracted x-rays at the air-organic thin film interface and occurs at incident angles slightly above the critical angle of the film. In excellent agreement with theory, the primary resonant x-ray electric field that is confined in the organic thin film is approximately 20 times as intense as the electric field of the incident beam when measured at a position close to the center of the film. Resonance-enhanced x-rays can be used to characterize the internal structure of Langmuir-Blodgett thin film membranes. This effect may also find use in x-ray-based thin film devices and in the structural analysis of adlayers and surfaces that have thus far proved difficult, if not impossible, to study because of sensitivity limitations.

  5. Resolving the Effects of Resonant X-ray Line Scattering in Cen X-3

    NASA Astrophysics Data System (ADS)

    Wojdowski, Patrick; Liedahl, Duane; Mauche, Chris; Sako, Masao; Kahn, Steven; Paerels, Frits

    2002-04-01

    The massive X-ray binary Cen X-3 was observed over approximately one quarter of the system's 2.08 day orbit, beginning before eclipse and ending slightly after eclipse center with the Chandra X-ray Observatory using its High-Energy Transmission Grating Spectometer. The n=2→1 emission triplet of helium-like silicon is resolved. Outside of eclipse, the component fluxes are consistent with emission from recombination and subsequent cascades in a photoionized plasma with temperature ~100 eV. In eclipse, the component flux ratios are consistent with emission from a collisionally ionized plasma with temperature ~1 keV. However, the triplet component flux ratios at both phases can be explained as arising from a photoionezed plasmas if the effects of resonant line scattering, a process which has generally been neglected in X-ray spectroscopy are included in addition to recombination radiation. We show that resonant line scattering in photoionized plasmas may increase the emissivity of n=2→1 line emission in hydrogen and helium-like ions by a factor as large as four relative to that of pure recombination and so previous studies, in which resonant scattering has been neglected, may contain significant errors in the derived plasma parameters. The emissivity due to resonance scattering depends sensitively on the line optical depth and, in the case of winds in X-ray binaries, this allows lower limits on the wind velocity even when Dopper shifts cannot be resolved.

  6. X-ray and magnetic-field-enhanced change in physical characteristics of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Krit, A. N.; Kalinichenko, D. V.; Kurylyuk, A. N.; Naumenko, S. N.

    2012-07-01

    The effect of low-energy ( W = 8 keV) low-dose ((0.3-7.3) × 102 Gy) radiation and a dc magnetic field ( B = 0.17 T) on structural, micromechanical, and microplastic characteristics of silicon crystals has been studied. The features in the dynamic behavior of dislocations in silicon crystals, which manifest themselves upon only X-ray exposure and combined (X-ray and magnetic) exposure, have been revealed.

  7. Resonant inelastic x-ray scattering as a band structure probe of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kanasz-Nagy, Marton; Shi, Yifei; Klich, Israel; Demler, Eugene

    I will analyze recent resonant inelastic x-ray scattering (RIXS) experimental data on YBa2Cu3O6 + x [Minola et al., Phys. Rev. Lett. 114, 217003 (2015)] within quasi-particle theory. This measurement has been performed with the incoming photon energy detuned at several values from the resonance maximum, and, surprisingly, the data shows much weaker dependence on detuning than expected from recent measurements on a different cuprate superconductor, Bi2Sr2CuO6 + x [Guarise et al., Nat. Commun. 5, 5760 (2014)]. I will demonstrate, that this discrepancy, originally attributed to collective magnetic excitations, can be understood in terms of the differences between the band structures of these materials. We found good agreement between theory and experiment over a large range of dopings [M. Kanasz-Nagy et al., arXiv:1508.06639]. Moreover, I will demonstrate that the RIXS signal depends sensitively on excitations at energies well above the Fermi surface, that are inaccessible to traditionally used band structure probes, such as angle-resolved photoemission spectroscopy. This makes RIXS a powerful probe of band structure, not suffering from surface preparation problems and small sample sizes, making it potentially applicable to a wide range of materials. The work of M. K.-N. was supported by the Harvard-MIT CUA, NSF Grant No. DMR-1308435, AFOSR Quantum Simulation MURI, the ARO-MURI on Atomtronics, and ARO MURI Quism program.

  8. High-resolution hard x-ray magnetic imaging with dichroic ptychography

    NASA Astrophysics Data System (ADS)

    Donnelly, Claire; Scagnoli, Valerio; Guizar-Sicairos, Manuel; Holler, Mirko; Wilhelm, Fabrice; Guillou, Francois; Rogalev, Andrei; Detlefs, Carsten; Menzel, Andreas; Raabe, Jörg; Heyderman, Laura J.

    2016-08-01

    Imaging the magnetic structure of a material is essential to understanding the influence of the physical and chemical microstructure on its magnetic properties. Magnetic imaging techniques, however, have been unable to probe three-dimensional micrometer-size systems with nanoscale resolution. Here we present the imaging of the magnetic domain configuration of a micrometer-thick FeGd multilayer with hard x-ray dichroic ptychography at energies spanning both the Gd L3 edge and the Fe K edge, providing a high spatial resolution spectroscopic analysis of the complex x-ray magnetic circular dichroism. With a spatial resolution reaching 45 nm , this advance in hard x-ray magnetic imaging is a first step towards the investigation of buried magnetic structures and extended three-dimensional magnetic systems at the nanoscale.

  9. Magnetic properties of GdT2Zn20 (T = Fe, Co) investigated by x-ray diffraction and spectroscopy

    DOE PAGESBeta

    J. R. L. Mardegan; Fabbris, G.; Francoual, S.; Veiga, L. S. I.; Strempfer, J.; Haskel, D.; Ribeiro, R. A.; Avila, M. A.; Giles, C.

    2016-01-26

    In this study, we investigate the magnetic and electronic properties of the GdT2Zn20 (T=Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo2Zn20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector →/τ = (12,12,12) below the Néel temperature (TN ~ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6. For the ferromagnetic GdFe2Zn20 compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD. Amore » strong XMCD signal of about 12.5% and 9.7% is observed below the Curie temperature (TC ~ 85K) at the Gd L2 and L3 edges, respectively. In addition, a small magnetic signal of about 0.06% of the jump is recorded at the Zn K edge, suggesting that the Zn 4p states are spin polarized by the Gd 5d extended orbitals.« less

  10. High-Resolution Study of X-Ray Resonant Raman Scattering at the K Edge of Silicon

    SciTech Connect

    Szlachetko, J.; Dousse, J.-Cl.; Berset, M.; Fennane, K.; Szlachetko, M.; Hoszowska, J.; Barrett, R.; Pajek, M.; Kubala-Kukus, A.

    2006-08-18

    We report on the first high-resolution measurements of the K x-ray resonant Raman scattering (RRS) in Si. The measured x-ray RRS spectra, interpreted using the Kramers-Heisenberg approach, revealed spectral features corresponding to electronic excitations to the conduction and valence bands in silicon. The total cross sections for the x-ray RRS at the 1s absorption edge and the 1s-3p excitation were derived. The Kramers-Heisenberg formalism was found to reproduce quite well the x-ray RRS spectra, which is of prime importance for applications of the total-reflection x-ray fluorescence technique.

  11. Multidimensional Attosecond Resonant X-Ray Spectroscopy of Molecules: Lessons from the Optical Regime

    PubMed Central

    Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.

    2013-01-01

    New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522

  12. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Casa, Diego; Kim, Jungho; Gog, Thomas; Li, Chengyang; Burns, Clement

    2016-08-01

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  13. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering.

    PubMed

    Gao, Xuan; Casa, Diego; Kim, Jungho; Gog, Thomas; Li, Chengyang; Burns, Clement

    2016-08-01

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals. PMID:27587100

  14. Strong higher-order resonant contributions to x-ray line polarization in hot plasmas

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Amaro, Pedro; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R.; Tashenov, Stanislav

    2016-06-01

    We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work.

  15. Resonant inelastic x-ray scattering at the limit of subfemtosecond natural lifetime

    SciTech Connect

    Marchenko, T.; Journel, L.; Marin, T.; Guillemin, R.; Carniato, S.; Simon, M.; Zitnik, M.; Kavcic, M.; Bucar, K.; Mihelic, A.; Hoszowska, J.; Cao, W.

    2011-04-14

    We present measurements of the resonant inelastic x-ray scattering (RIXS) spectra of the CH{sub 3}I molecule in the hard-x-ray region near the iodine L{sub 2} and L{sub 3} absorption edges. We show that dispersive RIXS spectral features that were recognized as a fingerprint of dissociative molecular states can be interpreted in terms of ultrashort natural lifetime of {approx}200 attoseconds in the case of the iodine L-shell core-hole. Our results demonstrate the capacity of the RIXS technique to reveal subtle dynamical effects in molecules with sensitivity to nuclear rearrangement on a subfemtosecond time scale.

  16. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering.

    PubMed

    Gao, Xuan; Casa, Diego; Kim, Jungho; Gog, Thomas; Li, Chengyang; Burns, Clement

    2016-08-01

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  17. Strong higher-order resonant contributions to x-ray line polarization in hot plasmas.

    PubMed

    Shah, Chintan; Amaro, Pedro; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R; Tashenov, Stanislav

    2016-06-01

    We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work. PMID:27415199

  18. Soft X-ray Luminosity and Photospheric Magnetic Field in Quiet Sun.

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.; Acton, L. W.

    2000-05-01

    We are using full disk soft X-ray data from Yohkoh and Kitt Peak daily magnetograms to study the coronal luminosity and photospheric magnetic field in the quiet Sun between 1991 November and 1998 December. For every image of our data set we extract three areas 4 by 4 solar degrees in size centered at 00N00W, 50N00W and 50S00W and compute X-ray luminosity and unsigned magnetic flux for each of these areas. Between 1991 (active Sun) and 1996 (quiet Sun) the X-ray luminosity at the heliographic center decreases by more than a factor of 7...while the magnetic flux decreases by only a factor of 2. A similar tendency is observed for our high latitude samples. Apart from the cycle-related variations, all three areas of quiet Sun exhibit significant non-periodic changes in X-ray luminosity. These variations occur on 9-12 month intervals and clearly correlate with increase/decrease in sunspot activity. Similar variations are present in the total X-ray irradiance averaged over the solar disk. On the contrary, the magnetic fluxes from the same areas of quiet Sun show no corresponding variations on this time scale. In our opinion, coronal heating models based on the reconnection of quiet sun magnetic elements (variously called chromospheric network, "magnetic carpet" or "salt and pepper" field) can not explain the million degree corona observed by the Yohkoh soft X-ray telescope. We conclude that the X-ray luminosity in the quiet Sun (at least in the Yohkoh temperature range, >2 MK) is primarily associated with the strong magnetic fields of active regions, not with weak photospheric fields. To further support this conclusion, we show one example of a dramatic change in X-ray luminosity over the entire visible corona that was associated with the emergence of a single small active region.

  19. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  20. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    DOE PAGESBeta

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; et al

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less

  1. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    SciTech Connect

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; Hill, J. P.

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  2. Resonantly photo-pumped nickel-like erbium X-ray laser

    DOEpatents

    Nilsen, Joseph

    1990-01-01

    A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).

  3. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    SciTech Connect

    Xie, M.

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  4. Role of screening and angular distributions in resonant soft-x-ray emission of CO

    SciTech Connect

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    In the present work the authors focus on two particular properties of resonant X-ray emission, namely core hole screening of the excited electron, and anisotropy caused by the polarization of the exciting synchrotron radiation. The screening of the core hole by the excited electron causes energy shifts and intensity variations in resonant spectra compared to the non-resonant case. The linear polarization of the synchrotron radiation and the dipole nature of the absorption process create a preferential alignment selection of the randomly oriented molecules in the case of resonant excitation, producing an anisotropy in the angular distribution of the emitted X-rays. The authors have chosen CO for this study because this molecule has previously served as a showcase for non-resonant X-ray emission, mapping the valence electronic structure differently according to the local selection rules. With the present work they take interest in how this characteristic feature of the spectroscopy is represented in the resonant case.

  5. Investigation of self-filtering unstable resonator for soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Ghani-Moghadam, G.; Farahbod, A. H.

    2016-07-01

    In this paper, it is proposed that the self-filtering unstable resonator (SFUR) is suitable for soft x-ray lasers which have active medium with a short-gain-lifetime. In order to evaluate the idea, we have analyzed the self-filtering unstable resonator in two dimensions with Ne-like Fe soft x-ray active medium for transitions 2p5 3 p → 2p5 3 s and 3d9 4 d → 3d9 4 p at 25.5 nm. The role of field-limiting aperture in mode propagation has been shown. Moreover, beam quality factor M2 has been calculated and output mode behavior studied and compared with a plane-parallel (PP) resonator of equal length. The calculations indicate that the M2 factor in SFUR resonator is smaller than PP resonator and therefore output beam divergence is lower and the mode quality is much better. It is expected that a high quality beam of soft x-ray laser with brightness of the order 1013 W / cm2 sr and energy more than 10 nJ may be achievable with a properly designed diffraction-filtered unstable resonator.

  6. Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Shi, X.; Neu, V.; Elefant, D.; Lee, J. C. T.; Shapiro, D. A.; Farmand, M.; Tyliszczak, T.; Shiu, W.; Marchesini, S.; Roy, S.; Kevan, S. D.

    Soft x-ray ptychographic imaging was applied to probe an amorphous 50 nm thin SmCo5 film prepared by off-axis pulsed laser deposition and exhibiting a strong perpendicular magnetic anisotropy. Amplitude and phase contrast images, retrieved at photon energies near the cobalt L3 resonance, were used to identify and characterize magnetic and structural features with a spatial resolution of about10 nm. Aside from the common magnetic labyrinth domain pattern, nanoscale structural inclusions were identified that are primarily located in close proximity to the magnetic domain walls. X-ray absorption spectroscopy suggests that these inclusions are nanocrystalline Sm2Co17 phases with nominally in-plane magnetic anisotropy. Our results indicate that x-ray ptychographic imaging enables fruitful studies of magnetic and structural correlations at length scales relevant to emerging magnetic and spintronic devices. Supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231.

  7. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  8. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  9. X-ray studies of neutron stars and their magnetic fields.

    PubMed

    Makishima, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1-7) × 10(8) T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  10. Irreversible transformation of ferromagnetic ordered stripe domains in single-shot infrared-pump/resonant-x-ray-scattering-probe experiments

    NASA Astrophysics Data System (ADS)

    Bergeard, Nicolas; Schaffert, Stefan; López-Flores, Víctor; Jaouen, Nicolas; Geilhufe, Jan; Günther, Christian M.; Schneider, Michael; Graves, Catherine; Wang, Tianhan; Wu, Benny; Scherz, Andreas; Baumier, Cédric; Delaunay, Renaud; Fortuna, Franck; Tortarolo, Marina; Tudu, Bharati; Krupin, Oleg; Minitti, Michael P.; Robinson, Joe; Schlotter, William F.; Turner, Joshua J.; Lüning, Jan; Eisebitt, Stefan; Boeglin, Christine

    2015-02-01

    The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.

  11. A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy.

    PubMed

    Warwick, Tony; Chuang, Yi De; Voronov, Dmitriy L; Padmore, Howard A

    2014-07-01

    The optical design of a two-dimensional imaging soft X-ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (∼2 µm wide by ∼2 mm tall) on a sample. The spectrometer will use inelastically scattered X-rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat-field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X-ray scattering measurement at high spectral resolution (∼30,000) over the energy bandwidth (∼5 eV) of a soft X-ray absorption resonance.

  12. The X-ray properties of the magnetic cataclysmic variable UU Columbae

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Matt, G.; Mukai, K.; Bonnet-Bidaud, J.-M.; Burwitz, V.; Gänsicke, B. T.; Haberl, F.; Mouchet, M.

    2006-07-01

    Aims.XMM-Newton observations to determine for the first time the broad-band X-ray properties of the faint, high galactic latitude intermediate polar UU Col are presented. Methods: .We performed X-ray timing analysis in different energy ranges of the EPIC cameras, which reveals the dominance of the 863 s white dwarf rotational period. The spin pulse is strongly energy dependent. Weak variabilities at the beat 935 s and at the 3.5 h orbital periods are also observed, but the orbital modulation is detected only below 0.5 keV. Simultaneous UV and optical photometry shows that the spin pulse is anti-phased with respect to the hard X-rays. Analysis of the EPIC and RGS spectra reveals the complexity of the X-ray emission, which is composed of a soft 50 eV black-body component and two optically thin emission components at 0.2 keV and 11 keV strongly absorbed by dense material with an equivalent hydrogen column density of 1023 cm-2 that partially (50%) covers the X-ray source. Results: .The complex X-ray and UV/optical temporal behaviour indicates that accretion occurs predominantly (~80%) via a disc with a partial contribution (~20%) directly from the stream. The main accreting pole dominates at high energies whilst the secondary pole mainly contributes in the soft X-rays and at lower energies. The bolometric flux ratio of the soft-to-hard X-ray emissions is found to be consistent with the prediction of the standard accretion shock model. We find the white dwarf in UU Col accretes at a low rate and possesses a low magnetic moment. It is therefore unlikely that UU Col will evolve into a moderate field strength polar, so that the soft X-ray intermediate polars still remain an enigmatic small group of magnetic cataclysmic variables.

  13. Soft X-Ray Luminosity and Photospheric Magnetic Field in Quiet Sun

    NASA Astrophysics Data System (ADS)

    Pevtsov, Alexei A.; Acton, Loren W.

    2001-06-01

    We use full-disk soft X-ray data from Yohkoh and Kitt Peak daily magnetograms to study the coronal irradiance and photospheric magnetic field remote from active regions between 1991 November and 1998 December. For every image of our data set we extract three areas 4°×4° in size centered at N00° W00°, N50° W00°, and S50° W00° and compute X-ray irradiance and unsigned magnetic flux for each of these areas. Between 1991 (active Sun) and 1996 (quiet Sun) the X-ray irradiance at the heliographic center decreased by more than a factor of 7, while the magnetic flux decreased by only a factor of 2. A similar tendency is observed for our high-latitude samples. Apart from the cycle-related variations, all three areas of quiet Sun exhibit significant nonperiodic changes in X-ray irradiance. These variations occur on 9-12 month intervals and clearly correlate with changes in sunspot activity. Similar variations are present in the total X-ray irradiance averaged over the solar disk. By contrast, the magnetic fluxes from the photosphere beneath these same areas show no corresponding variations on this time scale. In our opinion, coronal heating models based on the reconnection of quiet-Sun magnetic elements (variously called chromospheric network, ``magnetic carpet,'' or ``salt and pepper'' field) can at best account for a minimal contribution to heating the million-degree corona observed by the Yohkoh soft X-ray telescope. We conclude that the X-ray irradiance in the quiet Sun (at least in the Yohkoh temperature range, >2 MK) is primarily associated with the strong magnetic fields of active regions, not with weak photospheric fields. The association, however, is not direct. We interpret the enhanced X-ray irradiance above the quiet Sun not as a result of the coronal ``canopy'' formed by the active-region magnetic field above the quiet-Sun areas, but as the large-scale relaxation process in the corona triggered by the evolution of active regions. To further support this

  14. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gabbasov, Raul; Polikarpov, Michael; Cherepanov, Valery; Chuev, Michael; Mischenko, Iliya; Lomov, Andrey; Wang, Andrew; Panchenko, Vladislav

    2015-04-01

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5-25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results.

  15. Effects of dispersion and absorption in resonant Bragg diffraction of x-rays.

    PubMed

    Lovesey, S W; Scagnoli, V; Dobrynin, A N; Joly, Y; Collins, S P

    2014-03-26

    Resonant diffraction of x-rays by crystals with anisotropic optical properties is investigated theoretically, to assess how the intensity of a Bragg spot is influenced by effects related to dispersion (birefringence) and absorption (dichroism). Starting from an exact but opaque expression, simple analytic results are found to expose how intensity depends on dispersion and absorption in the primary and secondary beams and, also, the azimuthal angle (rotation of the crystal about the Bragg wavevector). If not the full story for a given application, our results are more than adequate to explore consequences of dispersion and absorption in the intensity of a Bragg spot. Results are evaluated for antiferromagnetic copper oxide, and low quartz. For CuO, one of our results reproduces all salient features of a previously published simulation of the azimuthal-angle dependence of a magnetic Bragg peak. It is transparent in our analytic result that dispersion and absorption effects alone cannot reproduce published experimental data. Available data for the azimuthal-angle dependence of space-group forbidden reflections (0,0, l), with l ≠ 3n, of low quartz depart from symmetry imposed by the triad axis of rotation symmetry. The observed asymmetry can be induced by dispersion and absorption even though absorption coefficients are constant, independent of the azimuthal angle, in this class of reflections.

  16. Effects of dispersion and absorption in resonant Bragg diffraction of x-rays.

    PubMed

    Lovesey, S W; Scagnoli, V; Dobrynin, A N; Joly, Y; Collins, S P

    2014-03-26

    Resonant diffraction of x-rays by crystals with anisotropic optical properties is investigated theoretically, to assess how the intensity of a Bragg spot is influenced by effects related to dispersion (birefringence) and absorption (dichroism). Starting from an exact but opaque expression, simple analytic results are found to expose how intensity depends on dispersion and absorption in the primary and secondary beams and, also, the azimuthal angle (rotation of the crystal about the Bragg wavevector). If not the full story for a given application, our results are more than adequate to explore consequences of dispersion and absorption in the intensity of a Bragg spot. Results are evaluated for antiferromagnetic copper oxide, and low quartz. For CuO, one of our results reproduces all salient features of a previously published simulation of the azimuthal-angle dependence of a magnetic Bragg peak. It is transparent in our analytic result that dispersion and absorption effects alone cannot reproduce published experimental data. Available data for the azimuthal-angle dependence of space-group forbidden reflections (0,0, l), with l ≠ 3n, of low quartz depart from symmetry imposed by the triad axis of rotation symmetry. The observed asymmetry can be induced by dispersion and absorption even though absorption coefficients are constant, independent of the azimuthal angle, in this class of reflections. PMID:24599265

  17. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    SciTech Connect

    Mini, S.M. |; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of {approx}2.5{mu}{sub B} per interface Pd atom.

  18. Resolving the Effects of Resonant X-Ray Line Scattering in Centaurus X-3 with Chandra

    NASA Astrophysics Data System (ADS)

    Wojdowski, Patrick S.; Liedahl, Duane A.; Sako, Masao; Kahn, Steven M.; Paerels, Frederik

    2003-01-01

    The massive X-ray binary Cen X-3 was observed over approximately one-quarter of the system's 2.08 day orbit, beginning before eclipse and ending slightly after eclipse center with the Chandra X-Ray Observatory using its High Energy Transmission Grating Spectrometer. The spectra show K-shell emission lines from hydrogen- and helium-like ions of magnesium, silicon, sulfur, and iron as well as a Kα fluorescence emission feature from near-neutral iron. The helium-like n=2-->1 triplet of silicon is fully resolved, and the analogous triplet of iron is partially resolved. We measure fluxes, shifts, and widths of the observed emission lines. The helium-like triplet component flux ratios outside of eclipse are consistent with emission from recombination and subsequent cascades (recombination radiation) from a photoionized plasma with a temperature of ~100 eV. In eclipse, however, the w (resonance) lines of silicon and iron are stronger than that expected for recombination radiation and are consistent with emission from a collisionally ionized plasma with a temperature of ~1 keV. The triplet line flux ratios at both phases can be explained more naturally, however, as emission from a photoionized plasma if the effects of resonant line scattering, a process that has generally been neglected in X-ray spectroscopy, are included in addition to recombination radiation. We show that resonant line scattering in photoionized plasmas may increase the emissivity of n=2-->1 line emission in hydrogen- and helium-like ions by a factor as large as 4 relative to that of pure recombination, and so previous studies, in which resonant scattering has been neglected, may contain significant errors in the derived plasma parameters. The emissivity due to resonance scattering depends sensitively on the line optical depth, and in the case of winds in X-ray binaries, this allows constraints on the wind velocity even when Doppler shifts cannot be resolved.

  19. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  20. Calibration standard of body tissue with magnetic nanocomposites for MRI and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Woodward, Robert; House, Michael; Engineer, Diana; Feindel, Kirk; Dutz, Silvio; Odenbach, Stefan; StPierre, Tim

    2016-05-01

    We present a first study of a long-term phantom for Magnetic Resonance Imaging (MRI) and X-ray imaging of biological tissues with magnetic nanocomposites (MNC) suitable for 3-dimensional and quantitative imaging of tissues after, e.g. magnetically assisted cancer treatments. We performed a cross-calibration of X-ray microcomputed tomography (XμCT) and MRI with a joint calibration standard for both imaging techniques. For this, we have designed a phantom for MRI and X-ray computed tomography which represents biological tissue enriched with MNC. The developed phantoms consist of an elastomer with different concentrations of multi-core MNC. The matrix material is a synthetic thermoplastic gel, PermaGel (PG). The developed phantoms have been analyzed with Nuclear Magnetic Resonance (NMR) Relaxometry (Bruker minispec mq 60) at 1.4 T to obtain R2 transverse relaxation rates, with SQUID (Superconducting QUantum Interference Device) magnetometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to verify the magnetite concentration, and with XμCT and 9.4 T MRI to visualize the phantoms 3-dimensionally and also to obtain T2 relaxation times. A specification of a sensitivity range is determined for standard imaging techniques X-ray computed tomography (XCT) and MRI as well as with NMR. These novel phantoms show a long-term stability over several months up to years. It was possible to suspend a particular MNC within the PG reaching a concentration range from 0 mg/ml to 6.914 mg/ml. The R2 relaxation rates from 1.4 T NMR-relaxometry show a clear connection (R2=0.994) with MNC concentrations between 0 mg/ml and 4.5 mg/ml. The MRI experiments have shown a linear correlation of R2 relaxation and MNC concentrations as well but in a range between MNC concentrations of 0 mg/ml and 1.435 mg/ml. It could be shown that XμCT displays best moderate and high MNC concentrations. The sensitivity range for this particular XμCT apparatus yields from 0.569 mg/ml to 6.914 mg/ml. The

  1. Electronic State Interferences in Resonant X-Ray Emission after K-Shell Excitation in HCl

    SciTech Connect

    Kavcic, M.; Zitnik, M.; Bucar, K.; Mihelic, A.; Carniato, S.; Journel, L.; Guillemin, R.; Simon, M.

    2010-09-10

    We have measured a series of high-resolution x-ray spectra emitted upon resonant photoexcitation of HCl. The photon energy was tuned across the dissociative 1s{yields}6{sigma}* resonance and the Rydberg states converging to the Cl 1s{sup -1} threshold, and inelastic photon scattering was observed in the region of KL emission lines. Excellent agreement is found between fully ab initio calculated and measured spectra if interferences between different excitation-emission paths are taken into account. The effect of electronic state interferences is enhanced due to dynamical broadening of the 6{sigma}* resonance in HCl.

  2. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    SciTech Connect

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko

    2015-11-16

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10{sup 4} times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO{sub 4} tetrahedra, which efficiently transduce electric energy into elastic energy.

  3. Improving the spatial resolution of a soft X-ray Charge Coupled Device used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2011-11-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Advanced Resonant Scattering (ADRESS) beamline of the Swiss Light Source is a high-resolution X-ray spectrometer used as an end station for Resonant Inelastic X-ray Scattering from 400 eV to 1600 eV. Through the dispersion of photons across a CCD, the energy of scattered photons may be determined by their detected spatial position. The limiting factor of the energy resolution is currently the spatial resolution achieved with the CCD, reported at 24 μm FWHM. For this energy range the electron clouds are formed by interactions in the `field free' region of the back-illuminated CCD. These clouds diffuse in all directions whilst being attracted to the electrodes, leading to events that are made up of signals in multiple pixels. The spreading of the charge allows centroiding techniques to be used to improve the CCD spatial resolution and therefore improve the energy resolution of SAXES. The PolLux microscopy beamline at the SLS produces an X-ray beam with a diameter of 20 nm. The images produced from scanning the narrow beam across CCD pixels (13.5 × 13.5 μm2) can aid in the production of event recognition algorithms, allowing the matching of event profiles to photon interactions in a specific region of a pixel. Through the use of this information software analysis can be refined with the aim of improving the energy resolution.

  4. Single-mode selection for hard x-ray cavity resonance.

    PubMed

    Tsai, Yi-Wei; Chang, Ying-Yi; Wu, Yu-Hsin; Liu, Wen-Chung; Peng, Chou-Chi; Hsieh, Wen-Feng; Chang, Shih-Lin

    2015-07-01

    Single-mode selection is realized for hard x-ray cavity resonance using a three-mirror crystal device. The developed device consists of two coupled Si Fabry-Perot resonators (FPRs) and uses (12 4 0) backward diffraction to reflect back and forth the incident 14.4388 keV x-ray beam. The coupling between the two cavities gives an effective single-mode spectrum with a bandwidth of 0.81 meV. This method can be used to enhance the longitudinal coherent length without affecting transverse coherence, and is potentially useful in generating nearly total coherent beams in synchrotron or free-electron laser facilities.

  5. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    SciTech Connect

    Szlachetko, J.; Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A.; Bokhoven, J. A. van; Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y.; Jagodzinski, P.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  6. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies.

    PubMed

    Szlachetko, J; Nachtegaal, M; de Boni, E; Willimann, M; Safonova, O; Sa, J; Smolentsev, G; Szlachetko, M; van Bokhoven, J A; Dousse, J-Cl; Hoszowska, J; Kayser, Y; Jagodzinski, P; Bergamaschi, A; Schmitt, B; David, C; Lücke, A

    2012-10-01

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  7. Synchrotron x-ray powder diffraction studies in pulsed magnetic fields

    SciTech Connect

    Frings, P.; Vanacken, J.; Detlefs, C.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G. L. J. A.

    2006-06-15

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beamline (BM26B) at the ESRF. A mobile generator delivered 110 kJ to the magnet coil, which was sufficient to generate peak fields of 30 T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8 and 300 K. Powder diffraction patterns of several samples were recorded using 21 keV monochromatic x-rays and an on-line image plate detector. Here we present the first results on the suppression of the Jahn-Teller structural distortion in TbVO{sub 4} by magnetic field. These data clearly demonstrate the feasibility of x-ray powder diffraction experiments under pulsed magnetic fields with relatively inexpensive instrumentation.

  8. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  9. High Spectral Resolution X-ray Observation of Magnetic CVs: EX Hya

    SciTech Connect

    Luna, G; Brickhouse, N S; Mauche, C W

    2008-04-07

    In magnetic cataclysmic variables (CVs) the primary is a highly magnetized white dwarf (WD) whose field controls the accretion flow close to the WD, leading to a shock and accretion column that radiate chiefly in X-rays. We present preliminary results from a 500 ks Chandra HETG observation of the brightest magnetic CV EX Hya. From the observational dataset we are able to measure the temperature and density at different points of the cooling accretion column using sensitive line ratios. We also construct line-based light curves to search for rotational modulation of the X-ray emission.

  10. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-06-08

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

  11. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  12. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons. PMID:27273170

  13. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  14. X-ray phase contrast tomography with a bending magnet source

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; De Carlo, F.; McMahon, P. J.; Dhal, B. B.; Nugent, K. A.

    2005-08-01

    X-ray radiography and x-ray tomography are important tools for noninvasive characterization of materials. Historically, the contrast mechanism used with these techniques has been absorption. However, for any given sample there are x-ray energies for which absorption contrast is poor. Alternatively, when good contrast can be obtained, radiation damage from an excessive dose may become an issue. Consequently, phase-contrast methods have in recent years been implemented at both synchrotron and laboratory facilities. A range of radiographic and tomographic demonstrations have now been made, typically utilizing the coherent flux from an insertion device at a synchrotron or a microfocus laboratory source. In this paper we demonstrate that useful results may be obtained using a bending magnet source at a synchrotron. In particular we show that the same beamline can be used to make and characterize a sample made by x-ray lithographic methods.

  15. Identification of inversion domains in KTiOPO{sub 4}via resonant X-ray diffraction

    SciTech Connect

    Fabrizi, Federica; Thomas, Pamela A.; Nisbet, Gareth; Collins, Stephen P.

    2015-05-14

    The identification and high-resolution mapping of the absolute crystallographic structure in multi-domain ferroelectric KTiOPO{sub 4} is achieved through a novel synchrotron X-ray diffraction method. On a single Bragg reflection, the intensity ratio in resonant diffraction below and above the Ti absorption K edge demonstrates a domain contrast up to a factor of ∼270, thus implementing a non-contact, non-destructive imaging technique with micrometre spatial resolution, applicable to samples of arbitrarily large dimensions. A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO{sub 4}. Resonant (or ‘anomalous’) X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics)

  16. Probing the spin polarization of current by soft x-ray imaging of current-induced magnetic vortex dynamics

    SciTech Connect

    Kasai, Shinya; Fischer, Peter; Im, Mi-Young; Yamada, Keisuke; Nakatani, Yoshinobu; Kobayashi, Kensuke; Kohno, Hiroshi; Ono, Teruo

    2008-12-09

    Time-resolved soft X-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micron-sized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the resonant motion of the vortex core. The result also provides the spin polarization of the current to be 0.67 {+-} 0.16 for Permalloy by fitting the experimental results with an analytical model in the framework of the spin-transfer torque.

  17. Synchrotron X-ray Powder Diffraction Studies in Pulsed Magnetic Fields

    SciTech Connect

    Detlefs, C.; Frings, P.; Duc, F.; Nardone, M.; Billette, J.; Zitouni, A.; Rikken, G. L. J. A.; Vanacken, J.; Lorenzo, J. E.; Bras, W.

    2007-01-19

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beamline (BM26B) at the ESRF. A mobile generator delivered 110kJ to the magnet coil, which was sufficient to generate peak fields of 30T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8K and 300K.

  18. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    NASA Astrophysics Data System (ADS)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  19. Monochromatic X-ray propagation in multi-Z media for imaging and diagnostics including Kα Resonance Fluorescence

    NASA Astrophysics Data System (ADS)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Pradhan, Anil

    2016-05-01

    Aimed at monochromatic X-ray imaging and therapy, broadband, monochromatic, and quasi-monochromatic X-ray sources and propagation through low and high-Z (HZ) media were studied with numerically and experimentally. Monte Carlo simulations were performed using the software package Geant4, and a new code Photx, to simulate X-ray image contrast, depth of penetration, and total attenuation. The data show that monochromatic and quasi-monochromatic X-rays achieve improved contrast at lower absorbed radiation doses compared to conventional broadband 120 kV or CT scans. Experimental quasi-monochromatic high-intensity laser-produced plasma sources and monochromatic synchrotron beam data are compared. Physical processes responsible for X-ray photoexcitation and absorption are numerically modelled, including a novel mechanism for accelerating Kα resonance fluorescence via twin monochromatic X-ray beam. Potential applications are medical diagnostics and high-Z material detection. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  20. Dissociation of chloromethanes upon resonant σ{sup *} excitation studied by x-ray scattering

    SciTech Connect

    Bohinc, R.; Bučar, K.; Kavčič, M.; Žitnik, M.; Journel, L.; Guillemin, R.; Marchenko, T.; Simon, M.; Cao, W.

    2013-10-07

    The dissociation process following the Cl K-shell excitation to σ{sup *} resonances is studied by high resolution spectroscopy of resonant elastic and inelastic x-ray scattering on CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and CCl{sub 4} molecules. Calculations employing the transition potential and Delta-Kohn-Sham DFT approach are in good agreement with the measured total fluorescence yield and show the presence of a second quasidegenerate group of states with σ{sup *} character above the lowest σ{sup *} unoccupied molecular orbital for molecules with more than one Cl atom. A bandwidth narrowing and a nonlinear dispersion behavior is extracted from the Kα spectral maps for both σ{sup *} resonances. The fitted data indicate that the widths of the Franck-Condon distributions for the first and second σ{sup *} resonances are comparable for all the molecules under study. In addition, an asymmetric broadening of the emission peaks is observed for resonant elastic x-ray scattering with zero detuning on both σ{sup *} resonances. This is attributed to the fast dissociation, transferring about 0.15 of the scattering probability into higher vibrational modes.

  1. Resonant inelastic x-ray scattering studies of the organic semiconductor copper phthalocyanine

    SciTech Connect

    Kodituwakku, C. N.; Burns, C. A.; Said, A. H.; Sinn, H.; Wang, X.; Gog, T.; Casa, D. M.; Tuel, M.; Western Michigan Univ.; DESY, Hasylab

    2008-01-01

    We report resonant inelastic x-ray scattering (RIXS) measurements on polycrystalline and single crystal samples of the organic semiconductor {beta}-copper phthalocyanine (CuPc) as well as time dependent density functional theory calculations of the electronic properties of the CuPc molecule. Resonant and nonresonant excitations were measured along the three crystal axes with 120 meV resolution. We observe molecular excitations as well as charge-transfer excitons along certain crystal directions and compare our data with the calculations. Our results demonstrate that RIXS is a powerful tool for studying excitons and other electronic excitations in organic semiconductors.

  2. Low energy excitations in iridates studied with Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Liu, Xuerong

    2013-03-01

    In the iridium oxides, the strong spin-orbit coupling (SOC) of the 5d iridium electrons entangles the orbital and spin degrees of freedom, providing opportunities for exotic magnetic states with highly anisotropic exchange interactions. At the same time, the spatially extended 5d electrons are expected to have much stronger hybridization with the oxygen 2p orbitals, comparing with that in 3d transition element compounds. Both factors make crystal symmetry and local environment crucial in determining the electronic and magnetic properties of the iridates. We present here our resonant inelastic X-ray scattering (RIXS) studies of a number of octahedrally coordinated iridates with special structures, exploring these effects. In particular, for the 1-D spin 1/2 chain compound, Sr3CuIrO6, the wavefunction of the hole in the t2g manifold was reconstructed based on the RIXS spectra. Our results show that it is significantly modified from the isotropic shape expected for Jeff = 1 / 2 states in the strong SOC limit, due to the distortion of the oxygen octahedral cage. This distortion is comparable to, or smaller than, that present in most iridates and thus this work emphasizes the importance of local symmetry for the iridate families. Further, the magnetic excitations of this material were also measured. A large gap of ~30 meV, was found, comparable to the magnetic dispersion bandwidth. This is in contrast to the gapless dispersion expected for linear chain with isotropic Heisenberg exchange interaction. We also studied Na4Ir3O8 which has a hyperkagome lattice, and is a candidate quantum spin liquid. Here, a low energy continuum is observed below the d-d excitations. Optical conductivity measurements performed on the same sample and polarization dependence of the RIXS signal suggest that these excitations are magnetic in origin, agreeing with the spin-liquid state prediction. The work at Brookhaven was supported by the U.S. Department of Energy, Division of Materials Science

  3. Resonant x-ray emission from gas-phase TiCl{sub 4}

    SciTech Connect

    Hague, C.F.; Tronc, M.; De Groot, F.

    1997-04-01

    Resonant x-ray emission spectroscopy (RXES) has proved to be a powerful tool for studying the electronic structure of condensed matter. Over the past few years it has been used mainly for studying the valence bands of solids and condensed molecules. Very recently the advent of high brightness photon beams provided by third generation synchrotron radiation source undulators, associated with efficient x-ray emission spectrometers has made it possible to perform experiments on free diatomic molecular systems. RXE spectra of free molecules are of prime importance to gain insight into their electronic structure and bonding as they reflect the symmetry of orbitals engaged in the two-electron, two-step process with the l = 0, {+-}2 parity-conserving selection rule, and are free from solid state effects which can introduce difficulties in the interpretation. They provide information (more so than XAS) on the core excited states, and, when performed at fixed incident photon energy as a function of the emitted photon energy, on the electronic excitation (charge transfer, multiplet states). Moreover the anisotropy of the angular distribution of resonant x-ray emission affects the relative intensity of the emission peaks and provides information concerning the symmetries of final states. This is a preliminary report on what are the first RXE spectra of a 3d transition metal complex in the gas phase. The experiment concerns the Ti 3d {yields}2p emission spectrum of TiCl{sub 4} over the 450 to 470 eV region.

  4. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars.

    PubMed

    Colpi; Geppert; Page

    2000-01-20

    We confront theoretical models for the rotational, magnetic, and thermal evolution of an ultramagnetized neutron star, or magnetar, with available data on the anomalous X-ray pulsars (AXPs). We argue that, if the AXPs are interpreted as magnetars, their clustering of spin periods between 6 and 12 s (observed at present in this class of objects), their period derivatives, their thermal X-ray luminosities, and the association of two of them with young supernova remnants can only be understood globally if the magnetic field in magnetars decays significantly on a timescale of the order of 104 yr.

  5. Magnetic X-Ray Scattering Study of GdCo2Ge2 and NdCo2Ge2

    SciTech Connect

    William Good

    2002-08-27

    The results of magnetic x-ray resonant exchange scattering (XRES) experiments are important to the development of an understanding of magnetic interactions in materials. The advantages of high Q resolution, polarization analysis, and the ability to study many different types of materials make it a vital tool in the field of condensed matter physics. Though the concept of XRES was put forth by Platzman and Tzoar in 1970, the technique did not gain much attention until the work of Gibbs and McWhan et al. in 1988. Since then, the technique of XRES has grown immensely in use and applicability. Researchers continue to improve upon the procedure and detection capabilities in order to study magnetic materials of all kinds. The XRES technique is particularly well suited to studying the rare earth metals because of the energy range involved. The resonant L edges of these elements fall between 5-10 KeV. Resonant and nonresonant x-ray scattering experiments were performed in order to develop an understanding of the magnetic ordering in GdCo{sub 2}Ge{sub 2} and NdCo{sub 2}Ge{sub 2}.

  6. Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized x-rays

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Collins, S. P.; Lovesey, S. W.; Matsumami, M.; Moriwaki, T.; Shin, S.

    2010-03-01

    Many proteins, sugars and pharmaceuticals crystallize into two forms that are mirror images of each other (enantiomers) like our right and left hands. Tellurium is one enantiomer having a space group pair, P3121 (right-handed screw) and P3221 (left-handed screw). X-ray diffraction with dispersion correction terms has been playing an important role in determining the handedness of enantiomers for a long time. However, this approach is not applicable for an elemental crystal such as tellurium or selenium. We have demonstrated that positive and negative circularly polarized x-rays at the resonant energy of tellurium can be used to absolutely distinguish right from left tellurium. This method is applicable to chiral motifs that occur in biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.

  7. Molecular Orbital Simulations of Metal 1s2p Resonant Inelastic X-ray Scattering.

    PubMed

    Guo, Meiyuan; Källman, Erik; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-07-28

    For first-row transition metals, high-resolution 3d electronic structure information can be obtained using resonant inelastic X-ray scattering (RIXS). In the hard X-ray region, a K pre-edge (1s→3d) excitation can be followed by monitoring the dipole-allowed Kα (2p→1s) or Kβ (3p→1s) emission, processes labeled 1s2p or 1s3p RIXS. Here the restricted active space (RAS) approach, which is a molecular orbital method, is used for the first time to study hard X-ray RIXS processes. This is achieved by including the two sets of core orbitals in different partitions of the active space. Transition intensities are calculated using both first- and second-order expansions of the wave vector, including, but not limited to, electric dipoles and quadrupoles. The accuracy of the approach is tested for 1s2p RIXS of iron hexacyanides [Fe(CN)6](n-) in ferrous and ferric oxidation states. RAS simulations accurately describe the multiplet structures and the role of 2p and 3d spin-orbit coupling on energies and selection rules. Compared to experiment, relative energies of the two [Fe(CN)6](3-) resonances deviate by 0.2 eV in both incident energy and energy transfer directions, and multiplet splittings in [Fe(CN)6](4-) are reproduced within 0.1 eV. These values are similar to what can be expected for valence excitations. The development opens the modeling of hard X-ray scattering processes for both solution catalysts and enzymatic systems. PMID:27398775

  8. Directionality effects in the transfer of X-rays from a magnetized atmosphere: Beam pulse shape

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Bonazzola, S.

    1981-01-01

    A formalism is presented for radiation transfer in two normal polarization modes in finite and semiinfinite plane parallel uniform atmospheres with a magnetic field perpendicular to the surface and arbitrary propagation angles. This method is based on the coupled integral equations of transfer, including emission, absorption, and scattering. Calculations are performed for atmosphere parameters typical of X-ray pulsars. The directionality of the escaping radiation is investigated for several cases, varying the input distributions. Theoretical pencil beam profiles and X-ray pulse shapes are obtained assuming the radiation is emitted from the polar caps of spinning neutron stars. Implications for realistic models of accreting magnetized X-ray sources are briefly discussed.

  9. The resonant X-ray diffraction in Co-Akermanite: Theory and experiment

    SciTech Connect

    Bindi, L.; Dmitrienko, V. E.; Ovchinnikova, E. N.; Soedzhima, Yu.

    2006-12-15

    The structural factors for X-ray resonant diffraction near the K-absorption edge of cobalt in Co-akermanite have been calculated with allowance for the known data about its incommensurate 2D modulation. It is shown that the local symmetry of Co atoms in the basic structure does not allow any pure resonant reflections in the dipole-dipole approximation. However, pure resonant reflections of the h00 (h = 2n + 1) type are possible owing to the dipole-quadrupole contribution. The 5D formalism is used for the incommensurately modulated structure. It is shown that the displacement terms in the anisotropic tensor atomic factors could mainly contribute to the first-order satellites, providing pure resonant satellite reflections of the hhlm0 (m = 2n + 1) or h00mm-bar (h = 2n + 1) types.

  10. Modification of X-Ray Tissue Doses with Strong Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Borke, Michael Faison

    1990-01-01

    The modification of dose distributions from secondary electrons produced by accelerator-generated photon or electron beams in the presence of strong magnetic fields was studied. A need exists to predict the action of magnetic fields on X-ray tissue doses and to identify those combinations of X-ray energies, magnetic field strengths, and tissue factors where the dose might be changed significantly from an exposure without the presence of a magnetic field. Modification of X-ray produced tissue dose arises from the ability of a strong magnetic field to induce deflections on the path of secondary electrons. In order to demonstrate the existence of this deflection, measurements were made of the relative dose distributions present within a tissue -equivalent phantom produced by exposures to X-rays and in the presence of strong magnetic fields. The dose measurements were made using radiographic film detectors, sandwiched within a polystyrene target phantom irradiated in the presence of different magnetic field intensities. The fields were oriented transversely to the direction of the incident X-ray beam. Optical densities of the film exposures were converted to equivalent tissue doses for comparison to the predictions of a semi-analytical relative dose model for the process. This model was a combination of the electron Continuous Slowing Down Approximation, modified to account for multiple scattering, and a exponential photon dose model. As a result of this work, it was found that: (1) strong magnetic fields in the range of 1.2 to 5 T can induce changes in the tissue distribution of X-ray produced dose to small volumes in excess of 10%, (2) the region of maximum dose may be displaced significantly from the undeflected target volume, and (3) a reasonable estimate of the magnitude of these changes can be predicted, if the X-ray energy distribution and magnetic flux density are known. Such changes in deposited doses may be clinically significant and should be taken into

  11. Resonance-mediated atomic ionization dynamics induced by ultraintense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Ho, Phay J.; Kanter, E. P.; Young, L.

    2015-12-01

    We describe the methodology of our recently developed Monte Carlo rate equation (MCRE) approach, which systematically incorporates bound-bound resonances to model multiphoton ionization dynamics induced by high-fluence, high-intensity x-ray free-electron laser (XFEL) pulses. These resonances are responsible for ionization far beyond that predicted by the sequential single photon absorption model and are central to a quantitative understanding of atomic ionization dynamics in XFEL pulses. We also present calculated multiphoton ionization dynamics for Kr and Xe atoms in XFEL pulses for a variety of conditions, to compare the effects of bandwidth, pulse duration, pulse fluence, and photon energy. This comprehensive computational investigation reveals areas in the photon energy-pulse fluence landscape where resonances are critically important. We also uncover a mechanism, preservation of inner-shell vacancies (PIVS), whereby radiation damage is enhanced at higher XFEL intensities and identify the sequence of core-outer-Rydberg, core-valence, and core-core resonances encountered during multiphoton x-ray ionization.

  12. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    SciTech Connect

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  13. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  14. Trends in ultracool dwarf magnetism. I. X-ray suppression and radio enhancement

    SciTech Connect

    Williams, P. K. G.; Berger, E.; Cook, B. A.

    2014-04-10

    Although ultracool dwarfs (UCDs) are now known to generate and dissipate strong magnetic fields, a clear understanding of the underlying dynamo is still lacking. We have performed X-ray and radio observations of seven UCDs in a narrow range of spectral type (M6.5-M9.5) but spanning a wide range of projected rotational velocities (vsin i ≈ 3-40 km s{sup –1}). We have also analyzed unpublished archival Chandra observations of four additional objects. All of the newly observed targets are detected in the X-ray, while only one is detected in the radio, with the remainder having sensitive upper limits. We present a database of UCDs with both radio and X-ray measurements and consider the data in light of the so-called Güdel-Benz relation (GBR) between magnetic activity in these bands. Some UCDs have very bright radio emission and faint X-ray emission compared to what would be expected for rapid rotators, while others show the opposite behavior. We show that UCDs would still be radio-overluminous relative to the GBR even if their X-ray emission were at standard rapid-rotator 'saturation' levels. Recent results from Zeeman-Doppler imaging and geodynamo simulations suggest that rapidly rotating UCDs may harbor a bistable dynamo that supports either a stronger, axisymmetric magnetic field or a weaker, non-axisymmetric field. We suggest that the data can be explained in a scenario in which strong-field objects obey the GBR while weak-field objects are radio-overluminous and X-ray-underluminous, possibly because of a population of gyrosynchrotron-emitting coronal electrons that is continuously replenished by low-energy reconnection events.

  15. X-Ray Emission from Magnetically Torqued Disks of Oe/Be Stars

    SciTech Connect

    Li, Q.; Cassinelli, J. P.; Brown, J. C.; Waldron, W. L; Miller, N. A.

    2008-01-10

    The near-main-sequence B stars show a sharp dropoff in their X-ray-to-bolometric luminosity ratio in going from B1 to later spectral types. Here we focus attention on the subset of these stars that are also Oe/Be stars, to test the concept that the disks of these stars form by magnetic channeling of wind material toward the equator. Calculations are made of the X-rays expected from the magnetically torqued disk (MTD) model for Be stars discussed by Cassinelli et al., Maheswaran, and Brown et al. In this model, the wind outflow from Be stars is channeled and torqued by a magnetic field such that the flows from the upper and lower hemispheres of the star collide as they approach the equatorial zone. X-rays are produced by the material that enters the shocks above and below the disk region and radiatively cools and compresses while moving toward the MTD central plane. The model predictions are compared with ROSAT observations obtained for an O9.5 star, ζ Oph, by Berghöfer et al. and for seven Be stars from Cohen et al. Two types of fitting models are used to compare predictions with observations of X-ray luminosity versus spectral type. Extra consideration is also given here to the well-studied Oe star ζ Oph, for which we haveChandra observations of the X-ray line profiles of the triad of He-like lines from the ion Mg XI. Thus, the X-ray properties add to the list of observables that can be explained within the context of the MTD concept. This list already includes the Hα equivalent widths and white-light polarization of Be stars.

  16. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  17. Time-resolved hard X-ray magnetic microprobe at SPring-8

    NASA Astrophysics Data System (ADS)

    Suzuki, Motohiro; Kawamura, Naomi; Osawa, Hitoshi; Takagaki, Masafumi; Ono, Kanta; Taniuchi, Toshiaki; Isogami, Shinji; Tsunoda, Masakiyo

    2010-06-01

    An instrument for hard X-ray magnetometry with spatial and time resolutions of 400-ps and sub-2-μm was developed at BL39XU, SPring-8.The technique is based on X-ray magnetic circular dichroism measurements combined with KB focusing mirrors and a fast current source, which generates a pulsed magnetic field of 400-ps duration that is synchronized with the X-ray pulses provided from the storage ring in the 203-bunch operation (42 MHz) with a jitter of 50 ps. By fully using the bulk-sensitivity and element-specificity of hard X-ray dichroism, we have demonstrated that the magnetization reversing process in the nanosecond time scale of the free NiFe and pinned CoFeB/CoFe layers were separated in a 10-μm dot sample with a NiFe/MgO/CoFeB/CoFe/MgO structure mimicking a magnetic tunnel junction device.

  18. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGESBeta

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  19. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    SciTech Connect

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  20. X-ray study of aligned magnetic stripe domains in perpendicular multilayers

    SciTech Connect

    Hellwig, O.; Denbeaux, G.P.; Kortright, J.B.; Fullerton, Eric E.

    2003-03-03

    We have investigated the stripe domain structure and the magnetic reversal of perpendicular Co/Pt based multilayers at room temperature using magnetometry, magnetic imaging and magnetic x-ray scattering. In-plane field cycling aligns the stripe domains along the field direction. In magnetic x-ray scattering the parallel stripe domains act as a magnetic grating resulting in observed Bragg reflections up to 5th order. We model the scattering profile to extract and quantify the domain as well as domain wall widths. Applying fields up to {approx}1.2 kOe perpendicular to the film reversibly changes the relative width of up versus down domains while maintaining the overall stripe periodicity. Fields above 1.2 kOe introduce irreversible changes into the domain structure by contracting and finally annihilating individual stripe domains. We compare the current results with modeling and previous measurements of films with perpendicular anisotropy.

  1. Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays.

    PubMed

    Liu, Yaohua; Ke, Xianglin

    2015-09-23

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  2. Bending magnet source: A radiation source for X-ray phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Dhal, B. B.; Peele, A. G.; McMahon, P. J.; De Carlo, F.; Nugent, K. A.

    2006-11-01

    The rapid development of electronic data processing and phase retrieval technique for image reconstruction leads to new opportunities in X-ray phase tomography. A range of radiographic and tomographic demonstrations have now been made, typically utilizing the coherent flux from an insertion device at a synchrotron or a micro-focus laboratory source. In this paper we demonstrate that useful results may be obtained using a bending magnet source at a synchrotron. In particular we show that the same beamline can be used to make and characterize a sample made by X-ray lithographic methods.

  3. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    SciTech Connect

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  4. Instrument for x-ray magnetic circular dichroism measurements at high pressures

    SciTech Connect

    Haskel, D.; Tseng, Y. C.; Lang, J. C.; Sinogeikin, S.

    2007-08-15

    An instrument has been developed for x-ray magnetic circular dichroism (XMCD) measurements at high pressures and low temperatures. This instrument couples a nonmagnetic copper-beryllium diamond anvil cell featuring perforated diamonds with a helium flow cryostat and an electromagnet. The applied pressure can be controlled in situ using a gas membrane and calibrated using Cu K-edge x-ray absorption fine structure measurements. The performance of this instrument was tested by measuring the XMCD spectra of the Gd{sub 5}Si{sub 2}Ge{sub 2} giant magnetocaloric material.

  5. Resonance X-ray scattering from Pt(111) surfaces under water

    SciTech Connect

    You, H.; Chu, Y. S.; Lister, T. E.; Nagy, Z.; Ankudiniv, A. L.; Rehr, J. H.

    1999-12-20

    The resonance X-ray scattering from the unmodified, clean Pt(111) surface is compared to theoretically predicted scattering. Self-consistent real-space multiple-scattering approach is used to calculate the real and imaginary parts of the atomic platinum scattering factor. The experimentally observed near-edge fine structures of the surface-scattering and fluorescence intensities are well reproduced by the calculations. In addition, more details are presented on their previous study [Phys.Rev.Lett. 83, 552 (1999)] of electrochemically formed oxide monolayer on the Pt(111) surface.

  6. Novel rhenium gasket design for nuclear resonant inelastic x-ray scattering at high pressure

    SciTech Connect

    Tanis, Elizabeth A.; Giefers, Hubertus; Nicol, Malcolm F.

    2008-02-15

    For the first time, a highly absorbing element, rhenium, has been proven to be a strong, reliable, and safe gasket material for achieving high pressure in nuclear resonant inelastic x-ray scattering (NRIXS) experiments. Rhenium foil was cut into rectangular slices and in order to reduce absorption, the elevated imprint due to preindenting of the gasket is removed using electrical discharge machining. By utilizing this novel gasket design, transmission losses were mitigated while performing NRIXS experiments conducted on the {sup 119}Sn and {sup 57}Fe Moessbauer isotopes.

  7. Resonant Soft X-Ray Contrast Variation Methods as Composition-Specific Probes of Thin Polymer Film Structure

    SciTech Connect

    Welch, Cynthia; Welch, Cynthia F.; Hjelm, Rex P.; Mang, Joseph T.; Hawley, Marilyn E.; Wrobleski, Debra A.; Orler, E. Bruce; Kortright, Jeffrey B

    2008-04-04

    We have developed complementary soft x-ray scattering and reflectometry techniques that allow for the morphological analysis of thin polymer films without resorting to chemical modification or isotopic 2 labeling. With these techniques, we achieve significant, x-ray energy-dependent contrast between carbon atoms in different chemical environments using soft x-ray resonance at the carbon edge. Because carbon-containing samples absorb strongly in this region, the scattering length density depends on both the real and imaginary parts of the atomic scattering factors. Using a model polymer film of poly(styrene-b-methyl methacrylate), we show that the soft x-ray reflectivity data is much more sensitive to these atomic scattering factors than the soft x-ray scattering data. Nevertheless, fits to both types of data yield useful morphological details on the polymer?slamellar structure that are consistent with each other and with literature values.

  8. X-ray and ultraviolet investigation into the magnetic connectivity of a solar flare

    NASA Astrophysics Data System (ADS)

    Reid, H. A. S.; Vilmer, N.; Aulanier, G.; Pariat, E.

    2012-11-01

    We investigate the X-ray and UV emission detected by RHESSI and TRACE in the context of a solar flare on the 16th November 2002 with the goal of better understanding the evolution of the flare. We analysed the characteristics of the X-ray emission in the 12-25 and 25-50 keV energy range while we looked at the UV emission at 1600 Å . The flare appears to have two distinct phases of emission separated by a 25-s time delay, with the first phase being energetically more important. We found good temporal and spatial agreement between the 25-50 keV X-rays and the most intense areas of the 1600 Å UV emission. We also observed an extended 100-arcsec < 25 keV source that appears coronal in nature and connects two separated UV ribbons later in the flare. Using the observational properties in X-ray and UV wavelengths, we propose two explanations for the flare evolution in relation to the spine/fan magnetic field topology and the accelerated electrons. We find that a combination of quasi separatrix layer reconnection and null-point reconnection is required to account for the observed properties of the X-ray and UV emission.

  9. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  10. Magnetic x-ray circular dichroism in Fe Co Pt multilayers

    SciTech Connect

    Tobin, J.G.; Jankowski, A.F.; Waddill, G.D.; Sterne, P.A.

    1994-04-01

    Magnetic x-ray circular dichroism in x-ray absorption has been used to investigate the ternary multilayer system, Fe Co Pt. Samples were prepared by planar magnetron sputter deposition and carefully characterized, using a variety of techniques such as grazing-incidence and high-angle x-ray scattering, Auger depth profiling and cross-section transmission electron microscopy. As previously reported, the Fe9.5{Angstrom} Pt9.5{Angstrom} exhibits a large dichroism in the Fe 2p absorption. Interestingly while the Co9.5{Angstrom} Pt9.5{Angstrom} has no measurable dichroism, the Fe4.7{Angstrom} Co4.7{Angstrom} Pt9.5{Angstrom} sample has a dichroism at both the Fe 2p and Co 2p absorption edges. These and other results are compared to slab calculation predictions. Possible explanations are discussed.

  11. Hot bubbles in a magnetic interstellar medium - Another look at the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Cox, Donald P.

    1993-01-01

    An attempt is made to understand the origin and properties of an isolated local bubble of hot gas using models of explosive events in a magnetic interstellar medium which mimic the local bubble in terms of the C band X-ray surface brightness and radius. The residual bubble of hot gas reaches a maximum size with an internal pressure below ambient, and then shrinks to smaller volume and a pressure nearly equal to ambient. The X-ray brightness reaches its minimum at the time of maximum radius and rises thereafter. It is found that the bubble growth must have been confined by a probably unacceptably large external pressure in order for the hot gas in the maximally extended cavity to radiate at a rate like that observed in the soft X-ray background.

  12. Tracing the X-Ray Trail

    MedlinePlus

    What you need to know about… Tracing the X-ray Trail If you’ve just completed an x-ray, computed tomography (CT), magnetic resonance (MR) Start here! or other diagnostic imaging procedure, you probably want to know when you will ... los rayos X Si acaba de hacerse una radiografía, tomografía ¡Empezar ...

  13. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  14. Resonant x-ray reflectivity from a bromine-labeled fatty acid Langmuir monolayer

    SciTech Connect

    Strzalka, Joseph; Blasie, J. Kent; DiMasi, Elaine; Kuzmenko, Ivan; Gog, Thomas

    2004-11-01

    Resonant x-ray reflectivity exploits the energy dependence of atomic scattering factors to locate resonant atoms within the electron density distribution of thin films. We apply the technique to a monolayer of bromo-stearic acid at the air/water interface. The data collection protocol employed cycles through several energies in the vicinity of the bromine K absorption edge and verifies that the energy dependencies observed are indeed resonant effects. The analysis specifies the location of the Br atom with sub-angstrom precision and must consider both the real and imaginary parts of the changes in the scattering factor to be consistent with the known structure and stoichiometry of this test case.

  15. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures.

    SciTech Connect

    Scholl, Andreas; Ohldag, Hendrik; Nolting, Frithjof; Stohr, Joachim; Padmore, Howard A.

    2001-08-30

    X-ray Photoemission Electron Microscopy unites the chemical specificity and magnetic sensitivity of soft x-ray absorption techniques with the high spatial resolution of electron microscopy. The discussed instrument possesses a spatial resolution of better than 50 nm and is located at a bending magnet beamline at the Advanced Light Source, providing linearly and circularly polarized radiation between 250 and 1300 eV. We will present examples which demonstrate the power of this technique applied to problems in the field of thin film magnetism. The chemical and elemental specificity is of particular importance for the study of magnetic exchange coupling because it allows separating the signal of the different layers and interfaces in complex multi-layered structures.

  16. A portable high-field pulsed magnet system for x-ray scattering studies.

    SciTech Connect

    Islam, Z.; Ruff, J.P.C.; Nojiri, H.; Matsuda, Y. H.; Ross, K. A.; Gaulin, B. D.; Qu, Z.; Lang, J. C.

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (- 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  17. Magnetic properties of transition-metal multilayers studied with x-ray magnetic circular dichroism spectroscopy

    SciTech Connect

    Stoehr, J.; Nakajima, R.

    1998-01-01

    The detailed understanding of the magnetic properties of transition-metal multilayers requires the use of state-of-the-art experimental techniques. Over the last few years, the X-ray magnetic circular dichroism (XMCD) technique has evolved into an important magnetometry tool. This paper is an overview of the principles and unique strengths of the technique. Aspects covered include the quantitative determination of element-specific spin and orbital magnetic moments and their anisotropies through sumrule analyses of experimental spectra. A discussion is presented on how the spin and orbital magnetic moments in transition-metal thin films and sandwiches are modified relative to the bulk. The authors show that a thin film of a nonmagnetic metal such as Cu may become magnetically active when adjacent to a magnetic layer, and a thin film of a ferromagnetic metal such as Fe may become magnetically inactive. The orbital moment is found to become anisotropic in thin films; it can be regarded as the microscopic origin of the magnetocrystalline anisotropy.

  18. Lithographically patterned magnetic calorimeter X-ray detectors with integrated SQUID readout

    NASA Astrophysics Data System (ADS)

    Zink, B. L.; Irwin, K. D.; Hilton, G. C.; Pappas, D. P.; Ullom, J. N.; Huber, M. E.

    2004-03-01

    We describe the design, fabrication and performance of a fully lithographically patterned magnetic microcalorimeter X-ray detector. The detector is fabricated on the same chip as a low-noise SQUID that measures the change in the magnetic sensor film's magnetization as the film is heated by absorbed X-rays. Our proof-of-principle detectors use a 100 μm×100 μm-2 μm paramagnetic Au:Er film coupled to a low-noise on-chip SQUID via a meandering superconducting pickup loop that also provides the magnetic field bias to the film. Absorption of 6 keV X-rays in the film causes heating on the order of 1 mK with a decay time of 1 ms or less, the fastest reported using a magnetic calorimeter. However, the resolution is currently poor due to poor Au:Er film properties and non-optimized coupling to the SQUID. We describe the design and fabrication of this device and present measurements of the heat capacity, decay time constant and effective thermal conductance of the microcalorimeter as a function of temperature. Because the SQUID and calorimeter are lithographically patterned on the same substrate, this technology can be readily applied to the fabrication of arrays of multiplexed magnetic microcalorimeter detectors.

  19. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  20. Identification of inversion domains in KTiOPO4 via resonant X-ray diffraction.

    PubMed

    Fabrizi, Federica; Thomas, Pamela A; Nisbet, Gareth; Collins, Stephen P

    2015-07-01

    A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO4. Resonant (or 'anomalous') X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics). PMID:25970297

  1. Which orbital and charge ordering in transition metal oxides can resonant X-ray diffraction detect?

    NASA Astrophysics Data System (ADS)

    Di Matteo, Sergio

    2009-11-01

    The present article is a brief critical review about the possibility of detecting charge and/or orbital order in transition-metal oxides by means of resonant x-ray diffraction. Many recent models of transition-metal oxides are based on charge and/or orbitally ordered ground-states and it has been claimed in the past that resonant x-ray diffraction is able to confirm or reject them. However, in spite of the many merits of this technique, such claims are ambiguous, because the interpretative frameworks used to analyze such results in transition-metal oxides, where structural distortions are always associated to the claimed charged/orbitally ordered transition, strongly influence (not to say suggest) the answer. In order to clarify this point, I discuss the two different definitions of orbital and charge orderings which are often used in the literature without a clear distinction. My conclusion is that the answer to the question of the title depends on which definition is adopted.

  2. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  3. Identification of inversion domains in KTiOPO4 via resonant X-ray diffraction.

    PubMed

    Fabrizi, Federica; Thomas, Pamela A; Nisbet, Gareth; Collins, Stephen P

    2015-07-01

    A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO4. Resonant (or 'anomalous') X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics).

  4. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  5. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  6. Resonant inelastic soft x-ray scattering of CdS: a two-dimensional electronic structure map approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Fleszar, A.; Bar, M.; Blum, M.; Weigand, M.; Denlinger, J.D.; Yang, W.; Hanke, W.; Umbach, E.; Heske, C.

    2008-09-24

    Resonant inelastic x-ray scattering (RIXS) with soft x-rays is uniquely suited to study the elec-tronic structure of a variety of materials, but is currently limited by low (fluorescence yield) count rates. This limitation is overcome with a new high-transmission spectrometer that allows to measure soft x-ray RIXS"maps." The S L2,3 RIXS map of CdS is discussed and compared with density functional calculations. The map allows the extraction of decay channel-specific"absorp-tion spectra," giving detailed insight into the wave functions of occupied and unoccupied elec-tronic states.

  7. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory

    PubMed Central

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-01-01

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and \\documentclass[12pt]{minimal}\\begin{document}$\\textrm {L}_{2,3}$\\end{document}L2,3 edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule. PMID:23181305

  8. Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory

    SciTech Connect

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-11-21

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

  9. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    SciTech Connect

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  10. A new model for the X-ray continuum of the magnetized accreting pulsars

    NASA Astrophysics Data System (ADS)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  11. Diagnostics of the accretion plasma in magnetic CVs from high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Burwitz, V.; Reinsch, K.; Haberl, F.; Gänsicke, B. T.; Predehl, P.

    2002-01-01

    High-resolution X-ray spectroscopy with the Chandra low energy transmission grating spectrometer (LETGS) provides an unprecedented diagnostic tool for the hot accretion plasma and the settling flow in the accretion column of magnetic cataclysmic variables (mCVs). We show first results from our analysis of spin-phase resolved X-ray spectroscopy of the two prototype magnetic CVs, AM Her and PQ Gem. The LETGS spectra cover the wavelength range 2--170Å with a spectral resolution λ/Δ λ = 200--3000. For the first time, absorption structures in the soft X-ray component of the heated white-dwarf atmosphere are revealed and individual emission lines of H- and He-like O and N ions including the density sensitive components of the He-like triplets are resolved in the hard X-ray component originating from the settling flow. In addition, phase dependent Doppler-shifts of the emission lines are detected providing detailed information on the geometry of the accretion funnel.

  12. X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu.

    PubMed

    Kukreja, R; Bonetti, S; Chen, Z; Backes, D; Acremann, Y; Katine, J A; Kent, A D; Dürr, H A; Ohldag, H; Stöhr, J

    2015-08-28

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10^{-5}μ_{B} on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott's two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10^{-3}μ_{B} per atom. This reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow. PMID:26371670

  13. X-ray detection of transient magnetic moments induced by a spin current in Cu

    SciTech Connect

    Kukreja, R.; Bonetti, S.; Chen, Z.; Backes, D.; Acremann, Y.; Katine, J.; Kent, A. D.; Durr, H. A.; Ohldag, H.; Stohr, J.

    2015-08-24

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10–5μB on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott’s two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10–3μB per atom. As a result, this reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  14. Elemental and magnetic sensitive imaging using x-ray excited luminescence microscopy

    SciTech Connect

    Rosenberg, R. A.; Zohar, S.; Keavney, D.; Divan, R.; Rosenmann, D.; Mascarenhas, A.; Steiner, M. A.

    2012-07-15

    We demonstrate the potential of x-ray excited luminescence microscopy for full-field elemental and magnetic sensitive imaging using a commercially available optical microscope, mounted on preexisting synchrotron radiation (SR) beamline end stations. The principal components of the instrument will be described. Bench top measurements indicate that a resolution of 1 {mu}m or better is possible; this value was degraded in practice due to vibrations and/or drift in the end station and associated manipulator. X-ray energy dependent measurements performed on model solar cell materials and lithographically patterned magnetic thin film structures reveal clear elemental and magnetic signatures. The merits of the apparatus will be discussed in terms of conventional SR imaging techniques.

  15. Why are millisecond pulsar magnetic fields low and how do their X-rays arise?

    NASA Astrophysics Data System (ADS)

    Webb, Natalie

    2006-10-01

    Binary millisecond pulsars (MSPs) found in the field are thought to be recycled from accreting pulsars. These MSPs have short periods, low spindown rates (Pdot) and consequently low surface magnetic fields (Bs) as Bs is proportional to (Pdot P)^0.5. It is unclear, however, how the MSP surface magnetic field can evolve from the high fields observed in pulsars to the low MSP values. Two models have been proposed to explain this. Also, the origin of the high energy emission is unclear as too few MSP X-ray observations have been made to differentiate between competing models. With these XMM-Newton observations of four MSPs previously unobserved in X-rays, we will discriminate between differing models describing the magnetic field evolution and the high energy emission origin.

  16. Multi- k magnetic structures in USb0.9Te0.1 and UAs0.8Se0.2 observed via resonant x-ray scattering at the U M4 edge

    NASA Astrophysics Data System (ADS)

    Detlefs, B.; Wilkins, S. B.; Javorský, P.; Blackburn, E.; Lander, G. H.

    2007-05-01

    Experiments with resonant photons at the U M4 edge have been performed on a sample of USb0.9Te0.1 , which has an incommensurate magnetic structure with k=k=0.596(2) reciprocal lattice units. The reflections of the form ⟨kkk⟩ , as observed previously in a commensurate k=1/2 system [N. Bernhoeft , Phys. Rev. B 69, 174415 (2004)], are observed, removing any doubt that these occur because of multiple scattering or high-order contamination of the incident photon beam. They are clearly connected with the presence of a 3k configuration. Measurements of the ⟨kkk⟩ reflections from the sample UAs0.8Se0.2 in a magnetic field show that the transition at T*˜50K is between a low-temperature 2k and high-temperature 3k state and that this transition is sensitive to an applied magnetic field. These experiments stress the need for quantitative theory to explain the intensities of these ⟨kkk⟩ reflections.

  17. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source (abstract only)

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-02-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency.

  18. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities

    NASA Astrophysics Data System (ADS)

    Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.

    2015-01-01

    To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.

  19. Resonant Auger Decay of Molecules in Intense X-Ray Laser Fields: Light-Induced Strong Nonadiabatic Effects

    SciTech Connect

    Cederbaum, Lorenz S.; Chiang, Ying-Chih; Demekhin, Philipp V.; Moiseyev, Nimrod

    2011-03-25

    The resonant Auger process is studied in intense x-ray laser fields. It is shown that the dressing of the initial and decaying states by the field leads to coupled complex potential surfaces which, even for diatomic molecules, possess intersections at which the nonadiabatic couplings are singular. HCl is studied as an explicit showcase example. The exact results differ qualitatively from those without rotations. A wealth of nonadiabatic phenomena is expected in decay processes in intense x-ray fields.

  20. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  1. A magnetizing system for dichroism measurements in soft x-ray emission excited by synchrotron radiation

    SciTech Connect

    Dallera, C.; Ghiringhelli, G.; Braicovich, L.

    1996-02-01

    We present the design and performance of a magnetic circuit suitable for magnetizing solid samples in the measurements of soft x-ray emission dichroism excited by synchrotron radiation. The system allows a variety of samples to be magnetized and satisfies the rather stringent geometrical constraints due to the need for minimizing the effect of photon self-absorption by the sample. The magnetic circuit is ultrahigh vacuum compatible, can reach about 2800 G, and allows fine adjustment of sample position. {copyright} {ital 1996 American Institute of Physics.}

  2. X-ray scattering study of the interactions between magnetic nanoparticles and living cell membranes

    SciTech Connect

    Koh, Isaac; Cipriano, Bani H.; Ehrman, Sheryl H.; Williams, Darryl N.; Pulliam Holoman, Tracey R.; Martinez-Miranda, L. J.

    2005-04-15

    Magnetic nanoparticles (MNPs) have found increased applicability in drug delivery, cancer treatment, and immunoassays. There is a need for an improved understanding of how MNPs interact with living cell membranes in applied magnetic fields to use them effectively. The interactions between Escherichia coli (E. coli) and SiO{sub 2}/{gamma}-Fe{sub 2}O{sub 3} composite particles in magnetic fields were studied using x-ray scattering. Magnetic field strengths up to 423 mT were applied to the samples to see the effects of the magnetic fields on the E. coli membranes in the presence of the magnetic particles in the cell cultures. X-ray scattering results from continuous cultures of E. coli showed two peaks, a sharp peak at q=0.528 A{sup -1} (1.189 nm) up to 362 mT of magnetic field strength and a diffuse one at q=0.612 A{sup -1} (1.027 nm). The sharp peak was shifted to the smaller side of q when magnetic particles were added and the magnitude of the applied magnetic field strength was increased from 227 to 298 mT, to 362 mT, whereas the diffuse peak did not changed. A critical magnetic field strength where the sharp peak disappears was found at 362 mT.

  3. Development of Resonant Soft X-ray Scattering for Polymer Systems at Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Hexemer, Alexander; Nasiatka, James; Chan, Elaine; Padmore, Howard

    2010-03-01

    It is envisioned that many polymer applications will rely on the heterogeneous morphologies of polymer blends or block copolymers to yield specific functional properties, such as organic light-emitting diodes and photovoltaics. Over the past few years, it has been strongly demonstrated that scattering at soft x-ray energies near the carbon K-edge yields chemically specific and enhanced contrast, thereby enabling structural studies of heterogeneous polymer films with thicknesses of only tens of nanometers. Resonant soft x-ray scattering (RSoXS) will provide the capability for a high-resolution chemical probe with interfacial sensitivity. We will discuss here the development of a dedicated RSoXS setup at the ALS Beamline 11.0.1, which is an elliptically polarized undulator beamline that covers the energy range of 200-1300 eV. It can accommodate a large variety of thin film samples and scattering geometries, including transmission, specular and off-specular reflection, as well as grazing incidence geometries, that will enable users to study both laterally- and depth-resolved structures. The generality, strength, and ease of RSoXS will have significant and immediate impacts in many areas of polymer science and technology. This will be achieved through systematic, collaborative studies of materials with potentially high impact applications.

  4. Incident-energy-dependent spectral weight of resonant inelastic x-ray scattering in doped cuprates

    NASA Astrophysics Data System (ADS)

    Tsutsui, Kenji; Tohyama, Takami

    2016-08-01

    We theoretically investigate the incident-photon energy ωi dependence of resonant inelastic x-ray scattering (RIXS) tuned for the Cu L edge in cuprate superconductors by using the exact diagonalization technique for a single-band Hubbard model. Depending on the value of core-hole Coulomb interaction in the intermediate state, RIXS for non-spin-flip channel shows either a ωi-dependent fluorescencelike or ωi-independent Raman-like behavior for hole doping. An analysis of x-ray absorption suggests that the core-hole Coulomb interaction is larger than on-site Coulomb interaction in the Hubbard model, resulting in a fluorescencelike behavior in RIXS consistent with recent RIXS experiments. A shift on the high-energy side of the center of spectral distribution is also predicted for electron-doped systems though spectral weight is small. Main structures in the spin-flip channel exhibit a Raman-like behavior as expected, accompanied with a fluorescencelike behavior with small intensity.

  5. Magnetic control in the RAP-200K-20 x-ray equipment

    SciTech Connect

    Gusev, E.A.; Drankov, V.P.; Naboishchikov, V.D.

    1989-03-01

    A description is given of the RAP-200K-20 cable-connected x-ray equipment, where a three-phase EHT transformer with magnetic control is used in the main circuit. The apparatus is compared with the best foreign competition. The circuit has an advantage over a pulse regulator in that the overvoltage level is low; there is also no interference and the efficiency is higher. All these advantages improve the performance and reliability in TV and fluorescent monitoring.

  6. X-ray imaging of extended magnetic domain walls in Ni80Fe20 wires

    SciTech Connect

    Basu, S.; Fry, P. W.; Allwood, D. A.; Bryan, M. T.; Gibbs, M. R. J.; Schrefl, T.; Im, M.-Y.; Fischer, P.

    2009-06-20

    We have used magnetic transmission X-ray microscopy to image magnetization configurations in 700 nm wide Ni{sub 80}Fe{sub 20} planar wires attached to 'nucleation' pads Domain walls were observed to inject only across half of the wire width but extend to several micrometers in length. Magnetostatic interactions with adjacent wires caused further unusual domain wall behavior. Micromagnetic modeling suggests the extended walls have Neel-like structure along their length and indicates weaker exchange coupling than is often assumed. These observations explain previous measurements of domain wall injection and demonstrate that magnetic domain walls in larger nanowires cannot always be considered as localized entities.

  7. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range.

    PubMed

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A; Ohldag, Hendrik

    2015-09-01

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ∼6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ∼0.1° amplitude at ∼9 GHz in a micrometer-sized cobalt strip. PMID:26429444

  8. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    DOE PAGESBeta

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; et al

    2015-09-10

    In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range,more » with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.« less

  9. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-01

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ˜6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ˜0.1° amplitude at ˜9 GHz in a micrometer-sized cobalt strip.

  10. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    SciTech Connect

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-10

    In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.

  11. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    SciTech Connect

    Bonetti, Stefano Chen, Zhao; Kukreja, Roopali; Spoddig, Detlef; Schöppner, Christian; Meckenstock, Ralf; Ollefs, Katharina; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-15

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ∼6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ∼0.1° amplitude at ∼9 GHz in a micrometer-sized cobalt strip.

  12. Constraining compactness and magnetic field geometry of X-ray pulsars using pulse profile statistics

    SciTech Connect

    Annala, Marja; Poutanen, Juri

    2010-07-15

    We use the statistics of 131 X-ray pulsar light curves in order to constrain the neutron star compactness and the inclination of the magnetic dipole. The X-ray pulse profiles are classified according to the number of pulses seen during one period, dividing them into two classes, single- and double-peaked. The relative fraction of pulsars in these classes is compared with the probabilities predicted by a theoretical model for different types of pencil-beam patterns. Our results show that a statistic of pulse profiles does not constrain compactness of the neutron stars. In contrast to the previous claim, the data do not require the magnetic inclination to be confined in a narrow interval but instead the magnetic dipole can have arbitrary inclinations to the rotational axis. The observed fractions of different types of light curves can be explained by taking into account the X-ray detector sensitivity (i.e. detection threshold for weak pulses), which decreases the fraction of the observed double-peaked light curves.

  13. Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy.

    PubMed

    Blanco-Roldán, C; Quirós, C; Sorrentino, A; Hierro-Rodríguez, A; Álvarez-Prado, L M; Valcárcel, R; Duch, M; Torras, N; Esteve, J; Martín, J I; Vélez, M; Alameda, J M; Pereiro, E; Ferrer, S

    2015-09-04

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55-120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices.

  14. Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy

    PubMed Central

    Blanco-Roldán, C.; Quirós, C.; Sorrentino, A.; Hierro-Rodríguez, A.; Álvarez-Prado, L. M.; Valcárcel, R.; Duch, M.; Torras, N.; Esteve, J.; Martín, J. I.; Vélez, M.; Alameda, J. M.; Pereiro, E.; Ferrer, S.

    2015-01-01

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55–120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices. PMID:26337838

  15. Remediation of Cr(VI) by biogenic magnetic nanoparticles: An x-ray magnetic circular dichroism study

    SciTech Connect

    Telling, N. D.; Coker, V. S.; Cutting, R. S.; van der Laan, G.; Pearce, C. I.; Pattrick, R. A. D.; Arenholz, E.; Lloyd, J. R.

    2009-09-04

    Biologically synthesized magnetite (Fe{sub 3}O{sub 4}) nanoparticles are studied using x-ray absorption and x-ray magnetic circular dichroism following exposure to hexavalent Cr solution. By examining their magnetic state, Cr cations are shown to exist in trivalent form on octahedral sites within the magnetite spinel surface. The possibility of reducing toxic Cr(VI) into a stable, non-toxic form, such as a Cr{sup 3+}-spinel layer, makes biogenic magnetite nanoparticles an attractive candidate for Cr remediation.

  16. Nematicity in stripe ordered cuprates probed via resonant x-ray scattering

    DOE PAGESBeta

    Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; He, F.; Sutarto, R.; Dijianto, Isaiah; Hao, Zhihao; Gingras, Michael J.P.; Hucker, M.; Gu, G. D.; et al

    2016-02-05

    We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. Ourmore » results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less

  17. Resonant Inelastic X-Ray Scattering Response of the Kitaev Honeycomb Model

    NASA Astrophysics Data System (ADS)

    Halász, Gábor B.; Perkins, Natalia B.; van den Brink, Jeroen

    2016-09-01

    We calculate the resonant inelastic X-ray scattering (RIXS) response of the Kitaev honeycomb model, an exactly solvable quantum-spin-liquid model with fractionalized Majorana and flux excitations. We find that the fundamental RIXS channels, the spin-conserving (SC) and the non-spin-conserving (NSC) ones, do not interfere and give completely different responses. SC-RIXS picks up exclusively the Majorana sector with a pronounced momentum dispersion, whereas NSC-RIXS also creates immobile fluxes, thereby rendering the response only weakly momentum dependent, as in the spin structure factor measured by inelastic neutron scattering. RIXS can therefore pick up the fractionalized excitations of the Kitaev spin liquid separately, making it a sensitive probe to detect spin-liquid character in potential material incarnations of the Kitaev honeycomb model.

  18. Resonant inelastic hard x-ray scattering with diced analyzer crystals and position-sensitive detectors

    SciTech Connect

    Huotari, S.; Albergamo, F.; Vanko, Gy.; Verbeni, R.; Monaco, G.

    2006-05-15

    A novel design of a high-resolution spectrometer is proposed for emission spectroscopy and resonant inelastic hard x-ray scattering applications. The spectrometer is based on a Rowland circle geometry with a diced analyzer crystal and a position-sensitive detector. The individual flat crystallites of the diced analyzer introduce a well-defined linear position-energy relationship within the analyzer focus. This effect can be exploited to measure emission spectra with an unprecedented resolution. For demonstration, a spectrometer was constructed using a diced Si(553) analyzer working at the Cu K edge with an intrinsic resolution of 60 meV. With the proposed design, spectrometers operating at the K edges of 3d transition metals can have intrinsic resolutions below 100 meV even with analyzer crystals not working in Bragg-backscattering conditions.

  19. X-ray magnetic circular dichroic magnetometry on Ni/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Poulopoulos, P.; Wilhelm, F.; Wende, H.; Ceballos, G.; Baberschke, K.; Benea, D.; Ebert, H.; Angelakeris, M.; Flevaris, N. K.; Rogalev, A.; Brookes, N. B.

    2001-04-01

    X-ray magnetic circular dichroism measurements have been performed on Ni/Pt multilayers at a temperature of 10 K. The element specificity and shell selectivity of the technique allows us to probe Ni and Pt magnetic moments and to separate them into their constituent spin (μS) and orbital (μL) magnetic moments. The Ni magnetic moment at the interface is found to be reduced. However, magnetically "dead" Ni layers are unambiguously ruled out. Induced Pt magnetic moments up to about 0.3 μB/atom are reported. The results are compared to ab initio calculations and to previous experiments performed on NiPt alloys. The role of intermixing in the reduction of the Ni magnetic moments is also discussed.

  20. Mechanical design and analysis of an eight-pole superconducting vector magnet for soft x-ray magnetic dichroism measurements

    SciTech Connect

    Arbelaez, D.; Black, A.; Prestemon, S.O.; Wang, S.; Chen, J.; Arenholz, E.

    2010-01-13

    An eight-pole superconducting magnet is being developed for soft x-ray magnetic dichroism (XMD) experiments at the Advanced Light Source, Lawrence Berkley National Laboratory (LBNL). Eight conical Nb{sub 3}Sn coils with Holmium poles are arranged in octahedral symmetry to form four dipole pairs that provide magnetic fields of up to 5 T in any direction relative to the incoming x-ray beam. The dimensions of the magnet yoke as well as pole taper, diameter, and length were optimized for maximum peak field in the magnet center using the software package TOSCA. The structural analysis of the magnet is performed using ANSYS with the coil properties derived using a numerical homogenization scheme. It is found that the use of orthotropic material properties for the coil has an important influence in the design of the magnet.

  1. Optical and resonant X-ray diffraction studies of molecular arrangements in several liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Suntao

    Using optical and x-ray techniques, we have studied several selected liquid crystal compounds formed by three types of molecules: rod-like; hockey-stick-shaped and bent-core-shaped molecules. This thesis describes four research projects. The first one is a study of the molecular arrangements in freestanding films of three chiral compounds showing no-layer-shrinkage behavior above their bulk SmA-SmC* transition temperatures. Upon cooling under a proper electric field, novel nonplanar-anticlinic-synclinic and nonplanar-synclinic transitions have been observed in two compounds. Increasing electric field can induce a rare transition from a synclinic to an anticlinic structure. Results from both x-ray diffraction and optical studies indicate that different molecular packing arrangements exist within the Sm A phase window. The second project is to investigate three achiral meta-substituted three-ring compounds. These compounds exhibit two different tilted smectic phases, Sm C1 and SmC2. A recent paper has reported that mirror symmetry is broken in one of these compounds. However, no mirror symmetry breaking has been observed in our studies of the same compound. Our studies of another two compounds confirmed previous results that the Sm C1 and SmC2 phases are Sm C and SmCA, respectively. Thirdly, we confirmed the SM C*FI2 -SmC* phase sequence reversal in one liquid crystal compound and specially prepared binary mixtures. This phase sequence reversal was predicted by a recent phenomenological model. Moreover, the temperature range for the SM C*FI2 phase increases significantly in the mixture suggesting that such a phase sequence may exist in other compounds. The last project is to study the B2 phase formed by bent-core molecules using polarization-analyzed resonant x-ray diffraction. The B2 phase has three possible arrangements which show a two-layer unit cell. We analyzed the polarization of the resonant peaks at different Bragg orders. By comparing a theoretical

  2. Ultrasensitive Scanning Transmission X-ray Microscopy: Pushing the Limits of Time Resolution and Magnetic Sensitivity

    NASA Astrophysics Data System (ADS)

    Ohldag, Hendrik

    Understanding magnetic properties at ultrafast timescales is crucial for the development of new magnetic devices. Samples of interest are often thin film magnetic multilayers with thicknesses in the range of a few atomic layers. This fact alone presents a sensitivity challenge in STXM microscopy, which is more suited toward studying thicker samples. In addition the relevant time scale is of the order of 10 ps, which is well below the typical x-ray pulse length of 50 - 100 ps. The SSRL STXM is equipped with a single photon counting electronics that effectively allows using a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency) to provide the required sensitivity. In the first year of operation the excellent spatial resolution, temporal stability and sensitivity of the detection electronics of this microscope has enabled researchers to acquire time resolved images of standing as well as traveling spin waves in a spin torque oscillator in real space as well as detect the real time spin accumulation in non magnetic Copper once a spin polarized current is injected into this material. The total magnetic moment is comparable to that of a single nanocube of magnetic Fe buried under a micron of non-magnetic material.

  3. Charge-Transfer Satellite in Ce@C82 Probed by Resonant X-ray Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Kotani, Akio; Kubozono, Yoshihiro; Vlaicu, Aurel Mihai; Oohashi, Hirofumi; Tochio, Tatsuki; Ito, Yoshiaki; Yoshikawa, Hideki

    2011-01-01

    The electronic structure of metallofullerene Ce@C82 is probed by resonant x-ray emission spectroscopy at the Ce L3 absorption edge. We observed a satellite structure in x-ray absorption and resonant emission spectra for Ce@C82, which, we show, corresponds to the charge transfer induced by the core--hole potential in the final state, similarly to Pr@C82. This charge-transfer satellite may be a common feature in metallofullerenes. The temperature dependence of the electronic structure is also investigated.

  4. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-01

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe–Fe bonds, was found by EXAFS.

  5. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-01

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  6. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction.

    PubMed

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-01

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  7. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    PubMed Central

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  8. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGESBeta

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw -Wai; Rose, Volker

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  9. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  10. X-ray absorption and magnetic circular dichroism studies of Co2FeAl in magnetic tunnel junctions

    SciTech Connect

    Ebke, D.; Kugler, Z.; Thomas, P.; Schebaum, O.; Schafers, M.; Nissen, D.; Schmalhorst, J.; Hutten, A.; Arenholz, E.; Thomas, A.

    2010-01-11

    The bulk magnetic moment and the element specific magnetic moment of Co{sub 2}FeAl thin films were examined as a function of annealing temperature by alternating gradient magnetometer (AGM) and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD), respectively. A high magnetic moment can be achieved for all annealing temperatures and the predicted bulk and interface magnetic moment of about 5 {tilde A}{sub B} are reached via heating. We will also present tunnel magnetoresistance (TMR) values of up to 153% at room temperature and 260% at 13 K for MgO based magnetic tunnel junctions (MTJs) with Co{sub 2}FeAl and Co-Fe electrodes.

  11. Studies of SmCo5/Fe nanocomposite magnetic bilayers with magnetic soft x-ray transmission microscopy

    SciTech Connect

    Shahzad, F.; Siddiqi, S. A.; Im, M.-Y.; Avallone, A.; Fischer, P.; Hussain, Z.; Siddiqi, I.; Hellman, F.; Zhao, J.

    2009-12-04

    A hard/soft SmCo{sub 5}/Fe nanocomposite magnetic bilayer system has been fabricated on X-ray transparent 100-200 nm thin Si{sub 3}N{sub 4} membranes by magnetron sputtering. The microscopic magnetic domain pattern and its behavior during magnetization reversal in the hard and soft magnetic phases have been individually studied by element specific magnetic soft x-ray microscopy at a spatial resolution of better than 25nm. We observe that the domain patterns for soft and hard phases switch coherently throughout the full hysteresis cycle upon applying external magnetic fields. We derived local M(H) curves from the images for Fe and SmCo5 separately and found switching for both hard and soft phases same.

  12. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Heindl, William

    We propose to renew our Cycle 4-7 ToO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  13. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    We propose to renew our cycle 4-9 TOO program to search for and study cyclotron lines in transient accreting x-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering the 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  14. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Pottschmidt, Katja

    We propose to renew our Cycle 4-11 TOO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering cyclotron lines and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While most of the transient pulsars have been awarded in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  15. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We propose to renew our Cycle 4-11 TOO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering cyclotron lines and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While most of the transient pulsars have been awarded in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  16. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Heindl, William

    We propose to renew our Cycle 4-8 ToO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  17. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    We propose to renew our cycle 4-10 TOO program to search for and study cyclotron lines in transient accreting x-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines, or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering the 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  18. First-principles analysis of X-ray magnetic circular dichroism for transition metal complex oxides

    NASA Astrophysics Data System (ADS)

    Ikeno, Hidekazu

    2016-10-01

    X-ray magnetic circular dichroism (XMCD) is widely used for the characterization of magnetism of materials. However, information from XMCD related to the atomic, electronic, and magnetic structures is not fully utilized due to the lack of reliable theoretical tools for spectral analysis. In this work, the first-principles configuration interaction (CI) calculations for X-ray absorption spectra developed by the author were extended for the calculation of XMCD, where the Zeeman energy was taken into the Hamiltonian of the CI to mimic magnetic polarization in the solid state. This technique was applied to interpret the L2,3 XMCD from 3d transition metal complex oxides, such as NiFe2O4 and FeTiO3. The experimental XMCD spectra were quantitatively reproduced using this method. The oxidation states as well as the magnetic ordering between transition metal ions on crystallographically different sites in NiFe2O4 can be unambiguously determined. A first-principles analysis of XMCD in FeTiO3 revealed the presence of Fe3+ and Ti3+ ions, which indicates that the charge transfer from Fe to Ti ions occurs. The origin of magnetic polarization of Ti ions in FeTiO3 was also discussed.

  19. Upgrade of X-ray Magnetic Diffraction Experimental System and Its Application to Ferromagnetic Material

    SciTech Connect

    Suzuki, Kosuke; Tsuji, Naruki; Akiyama, Hiromitu; Ito, Masahisa; Kitani, Kensuke; Adachi, Hiromichi; Kawata, Hiroshi

    2007-01-19

    We have performed X-ray magnetic diffraction (XMD) experiment of ferromagnets at the Photon Factory (PF) of the High Energy Accelerator Research Organization (KEK) in Tsukuba. In this study, we have upgraded the XMD experimental system in order to apply this method to as many samples as possible. Upgrade was made for (1) the X-ray counting system and related measurement program, (2) the electromagnet, and (3) the refrigerator. The performance of the system was enhanced so that (1) the counting rate capability was improved from 104cps to 105cps, (2) the maximum magnetic field was increased from 0.85T to 2.15T, and (3) the lowest sample temperature was reduced from 15K to 5K. The new system was applied to an orbital ordering compound of YTiO3, and we obtained spin magnetic form factor for the reflection plane (010) perpendicular to the b axis. The magnetic field of 2T was needed to saturate the magnetization of YTiO3 along the b axis. These are the first data with the magnetization of YTiO3 saturated along the b axis by the XMD.

  20. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  1. Site-Specific Studies on X-Ray Magnetic Circular Dichroism at Fe K Edge for Transition-Metal Ferrites

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kenji; Saito, Fumikazu; Toyoda, Takeshi; Ohkubo, Koichi; Yamawaki, Koji; Mori, Takeharu; Hirano, Keiichi; Tanaka, Masahiko; Sasaki, Satoshi

    2000-10-01

    Experiments on X-ray magnetic circular dichroism (XMCD) were performed with synchrotron radiation for Zn and Mn-Zn ferrites (normal-spinel structure) and Ni, Co and Cu ferrites and magnetite (inverse-spinel structure). The inverse-spinel ferrites have positive-to-negative dispersion-type XMCD signals in the pre-edge region of the Fe K edge, which originate from Fe3+ ions in the A sites. There are no such signals for normal-spinel ferrites. Two kinds of negative-to-positive dispersion-type XMCD signals were observed in 7.119-7.125 keV and 7.122-7.129 keV regions of the main edge, which are caused by a mixture of Fe3+ and Fe2+ ions of the B sites in magnetite and Fe3+ ions of the B sites in the other inverse-spinel ferrites, respectively. The B-site origin of the XMCD main-edge spectra was also confirmed by observation of X-ray resonant magnetic scattering for the 222 reflection of Ni ferrite.

  2. Evolution of Intermediate-mass X-Ray Binaries Driven by the Magnetic Braking of AP/BP Stars. I. Ultracompact X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cong; Podsiadlowski, Philipp

    2016-10-01

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10‑5, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10‑3, and 10‑5, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  3. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE PAGESBeta

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  4. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    PubMed Central

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-01-01

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. The present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape. PMID:26139445

  5. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies.

    PubMed

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G; Makarov, Denys

    2015-01-01

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue--magnetic X-ray tomography--is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. The present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape. PMID:26139445

  6. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    SciTech Connect

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.

  7. Accelerating K-Alpha Resonance Fluorescence Via Monochromatic X-Ray Beams And Comparison With LCLS-XFEL

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil; Nahar, Sultana; Lim, Sara

    2015-05-01

    The presence of K-alpha resonances below the K-edge has been studied theoretically for high-Z (Fe, Pt, Au) and low-Z (Al, Ti, Cu) atoms, and recently observed experimentally at the LCLS x-ray free-electron laser facility in ``warm dense matter''. We present a mechanism for possible enhancement of the ``Auger cycle'' by employing a twin-beam monochromatic x-ray beams setup. We extend the theoretical formulation to construct a detailed radiative-cascade model using atomic rates computed using atomic structure and R-matrix codes. We also report preliminary results on K-alpha resonance fluorescence from experiments at the European Synchrotron Research Facility using a tungsten target. In addition, we describe a simple Broadband-to-Monchromatic (B2M) x-ray conversion device for potential use in monochromatic K-alpha imaging and other applications.

  8. Resonant X-ray emission study of the lower-mantle ferropericlase at high pressures

    SciTech Connect

    Lin, Jung-Fu; Mao, Zhu; Jarrige, Ignace; Xiao, Yuming; Chow, Paul; Okuchi, Takuo; Hiraoka, Nozomu; Jacobsen, Steven D.

    2010-11-12

    Electronic states of iron in Earth's mantle minerals including ferropericlase, silicate perovskite, and post-perovskite have been previously investigated at high pressures and/or temperatures using various experimental techniques, including X-ray emission and Moessbauer spectroscopies. Although such methods have been used to infer changes in the electronic spin and valence states of iron in lower mantle minerals, they do not directly probe the 3d electronic states quantitatively. Here we use 1s2p resonant X-ray emission spectroscopy (RXES) at the Fe K pre-edge to directly probe and assess the 3d electronic states and the crystal-field splittings of Fe{sup 2+} in the lower-mantle ferropericlase [(Mg{sub 0.75},Fe{sub 0.25})O] at pressures up to 90 GPa. The pre-edge features from X-ray absorption spectroscopy in the partial fluorescence yield (PFY-XAS) and RXES results explicitly show three excited states for high-spin Fe{sup 2+} (a lower-energy {sup 4}T{sub 1g} state, a {sup 4}T{sub 2g} state, and a higher-energy {sup 4}T{sub 1g} state) and a single {sup 2}E{sub g} state for low-spin Fe{sup 2+}, attributed to the (t{sub 2g}){sup 0}(e{sub g}){sup 3} excited configuration. This latter feature begins to appear at 48 GPa and grows with pressure, while the peaks related to high-spin Fe{sup 2+} vanish above 80 GPa. The observed pre-edge features are consistent with purely quadrupolar transitions resulting from the centrosymmetric character of the Fe{sup 2+} site. The K pre-edge RXES spectra at the incident energy of 7112 eV, which are similar to the Fe L-edge spectra, are also used successfully to quantitatively obtain consistent results on the spin transition of Fe{sup 2+} in ferropericlase under high pressures. Owing to the superior sensitivity of the RXES technique, the observed electronic states and their energy separations provide direct information on the local electronic structures and crystal-field splitting energies of the 3d electronic shells of Fe{sup 2+} in

  9. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    SciTech Connect

    Garanin, S. G.; Ivanovskiy, A. V.

    2015-12-15

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  10. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG

  11. Resonant x-ray scattering from UAs0.8Se0.2: Multi-k configurations

    NASA Astrophysics Data System (ADS)

    Bernhoeft, N.; Paixão, J. A.; Detlefs, C.; Wilkins, S. B.; Javorský, P.; Blackburn, E.; Lander, G. H.

    2004-05-01

    Using resonant x-ray scattering to perform diffraction experiments at the U M4 edge novel reflections of the generic form have been observed in UAs0.8Se0.2 where k=, with k=1/2 reciprocal lattice unit, is the wave vector of the primary (magnetic) order parameter. The reflections, with 10-4 of the magnetic intensities, cannot be explained on the basis of the primary order parameter within standard scattering theory. A full experimental characterization of these reflections is presented including their polarization, energy, azimuth and temperature dependencies. On this basis, we establish that the reflections most likely arise from the electric dipole operator involving transitions between the core 3d and partially filled 5f states. The temperature dependence couples the peak to the triple-k region of the phase diagram; below ˜50 K, where previous studies have suggested a transition to a double-k state, the intensity of the is dramatically reduced. Whilst we are unable to give a definitive explanation of how these novel reflections appear, the paper concludes with a discussion of the phase diagram and raises the possibility that these reflections may be understood in terms of the coherent superposition of the three primary (magnetic) order parameters.

  12. X-ray imaging of vortex cores in confined magnetic structures

    SciTech Connect

    Fischer, P; Im, M -Y; Kasai, S; Yamada, K; Ono, T; Thiaville, A

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analyzed by high-resolution magnetic soft x-ray microscopy. A decrease of the vortex-core radius was observed from approximately 38 to 18 nm with decreasing disk thickness. By comparing with full three-dimensional micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement, taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  13. Self organized criticality in an one dimensional magnetized grid. Application to GRB X-ray afterglows

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Mocanu, Gabriela; Stroia, Nicoleta

    2015-05-01

    A simplified one dimensional grid is used to model the evolution of magnetized plasma flow. We implement diffusion laws similar to those so-far used to model magnetic reconnection with Cellular Automata. As a novelty, we also explicitly superimpose a background flow. The aim is to numerically investigate the possibility that Self-Organized Criticality appears in a one dimensional magnetized flow. The cellular automaton's cells store information about the parameter relevant to the evolution of the system being modelled. Under the assumption that this parameter stands for the magnetic field, the magnetic energy released by one grid cell during one individual relaxation event is also computed. Our results show that indeed in this system Self-Organized Criticality is established. The possible applications of this model to the study of the X-ray afterglows of GRBs is also briefly considered.

  14. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-C x H(2 x+1)OSO3Li ( x = 12, 14, 16, 18, and 20)

    NASA Astrophysics Data System (ADS)

    Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi

    2015-04-01

    Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.

  15. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    SciTech Connect

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  16. X-Ray Resonant Irradiation and High-Z Radiosensitization in Cancer Therapy Using Platinum Nano-Reagents

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Lim, S.; Montenegro, M.; Pradhan, A. K.; Barth, R.; Bell, E.; Turro, C.; Pitzer, R.

    2012-06-01

    %TEXT OF YOUR ABSTRACT We describe the atomic-molecular-bio physics of X-ray irradiation of High-Z heavy-element nanomaterials as radiosensitizing agents in cancer therapy. Our reports in past few ISMSs showed that compounds of High-Z elements, Pt and Au, embedded in tumors could provide the most efficient therapy and diagnostics (theranostics) when X-rays are targeted at their resonant energies. Harmful damages due to unnecessary broadband radiation from conventional X-ray sources can be reduced considerably by using a monochromatic X-ray source at resonant energy. We will present our recent findings from Monte Carlo simulations, using Geant4 code, for X-ray energy absorption and dose deposition in tissues where the broadband X-ray sources have three different peak voltages, 100 keV, 170 keV and 6 MeV. We use platinum as an agent for killing cancerous cells via increased linear-energy-transfer (LET) and dose enhancement. We find that X-ray energies in the range below 100 keV are most efficient in achieving both the required tissue penetrative depths and deposition of energy. This confirms the previous results for Au that it is only the low-energy component around 100 keV from the 6 MV linear accelerator (LINAC) that is most effective in dose-enhanced cell killing. Preliminary experimental results cancer cells with Pt and results on Kα radiation of Al will also be presented. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  17. Performance and Characterization of Magnetic Penetration Thermometer Devices for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Porst, J. -P.; Adams, J. S.; Bandler, S. R.; Balvin, M.; Busch, S. E.; Denis, K. L.; Kelly, D.; Nagler, P.; Sadleir, J. E.; Seidel, G. M.; Smith, S.; Stevenson, T. R.

    2012-01-01

    We are developing magnetic penetration thermometers (MPTs) for applications in X-ray astronomy. These non-dissipative devices consist of an X-ray absorber in good thermal contact to a superconducting thin film with a transition temperature around T=100mK. A microfabricated superconducting planar inductor underneath is used to store a persistent current and couple the superconductor's diamagnetic response to a readout SQUID. The strong temperature dependence of the diamagnetic response make these devices suitable for highly sensitive macroscopic thermometers that are capable of achieving very high energy resolution. We present results achieved with MPTs consisting of MoAu bilayer sensors attached to overhanging square 250 micron by 250 micron gold absorbers that have demonstrated an energy resolution of delta E_FWHM=2.3eV at an X-ray energy of 5.9keV. A similar device has shown delta E_FWHM=2.0eV at 1.5 keV. Under certain conditions and for specific device geometries, the temperature responsivity of the MPTs can vary on long timescales degrading the spectral performance. We present the characterization of different inductor geometries to optimize the design for the highest possible temperature sensitivity and compare different device designs with respect to responsivity stability.

  18. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  19. Performance Verification of the Gravity and Extreme Magnetism Small Explorer GEMS X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Kenward, David

    2014-01-01

    olarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor greater than or equal to 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, approximately 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  20. An X-ray standing wave study of the diluted magnetic semiconductor Ga(Mn)As

    NASA Astrophysics Data System (ADS)

    Nemsak, Slavomir; Kuo, Cheng-Tai; Schlueter, Christoph; Gehlmann, Mathias; Lin, Shih-Chieh; Doering, Sven; Eschbach, Markus; Mlynczak, Ewa; Plucinski, Lukasz; Borek, Stephan; Minar, Jan; Ohno, Hideo; Lee, Tien-Lin; Schneider, Claus M.; Fadley, Charles S.

    We have combined the recently developed techniques of soft x-ray standing-wave angle-resolved photoemission (SW-ARPES) [Gray et al., EPL 104, 17004 (2013)] and hard x-ray ARPES (HARPES) [Gray et al., Nature Mat. 11, 957 (2012)] so as to be able to use single-crystal Bragg reflection to create the SW [Thiess et al., Sol. St. Comm. 150, 553 (2010)], thus permitting the first measurements of momentum- and element- resolved bulk electronic structure. The strengths of the SW-HARPES method are demonstrated using the dilute magnetic semiconductor Ga(1 - x)MnxAs. A strong SW is generated by Bragg reflection of ca. 3 keV x-rays from the (111) planes of both undoped GaAs and Mn-doped thin films with x=0.05. Due to the uneven occupancy of (111) planes by either Ga(Mn) or As atoms, the element-specific band structure can be obtained with a help of the SW modulation in core levels. Apart from the site specific decomposition of the electronic structure, the SW measurements also confirmed a substitutional presence of Mn atoms at the Ga sites. This technique should be applicable to a broad range of complex materials.

  1. Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Bohinc, R.; Žitnik, M.; Bučar, K.; Kavčič, M.; Carniato, S.; Journel, L.; Guillemin, R.; Marchenko, T.; Kawerk, E.; Simon, M.; Cao, W.

    2016-04-01

    We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(Kα) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ∗ and π∗ resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.

  2. Effect of external resonant fields and limiter biasing on hard X-ray intensity and mirnov oscillations in IR-T1 Tokamak

    NASA Astrophysics Data System (ADS)

    Ghanbari, K.; Ghoranneviss, M.; Elahi, A. Salar

    2015-01-01

    Runaway electrons in tokamaks can cause serious damage to the first wall of the reactor and decrease its life time. Also, hard x-ray emission generated from high energy runaway electrons lead to the plasma energy loss. Therefore, suggesting methods to minimize runaway electron in tokamaks are very important. Applying external resonant field is one of the methods for controlling the Magneto Hydrodynamic (MHD) activity. Relation between the MHD activity and runaway electrons has already been studied (Jaspers et al. 1994; Ghanbari et al. 2012) Jaspers, R., et al. 1994 Phys. Rev. Lett. 72, 4093; Ghanbari, M. R., et al. 2012a Phys. Scr. 83, 055501. Present study attempts to investigate the effects of limiter biasing and Resonant Helical magnetic Field (RHF) on the generation of runaway electrons. For this purpose, plasma parameters such as plasma current, MHD oscillation, loop voltage, emitted hard x-ray intensity, Halpha impurity, safety factor in the presence and absence of external fields, were measured. Frequency activity was investigated with FFT analysis. The results show that applying resonant fields can control the MHD activity, and then hard x-ray emitted from the runaway electrons.

  3. Perturbation to the resonance modes by gold nanoparticles in a thin-film-based x-ray waveguide

    SciTech Connect

    Lee, D. R.; Hagman, A.; Li, Xuefa; Narayanan, S.; Wang, Jin; Shull, K. R.

    2006-01-01

    It is demonstrated that the resonance modes in a thin-film-based x-ray waveguide are extremely sensitive to the electron density distribution in the thin film and can be effectively altered by diffusion of a gold nanoparticle submonolayer embedded in the waveguide.

  4. Time-resolved x-ray imaging of magnetization dynamics in spin-transfer torque devices

    SciTech Connect

    Chembrolu, V.

    2010-02-24

    Time-resolved x-ray imaging techniques have recently demonstrated the capability to probe the magnetic switching of nanoscale devices. This technique has enabled, for example, the direct observation of the nonuniform intermediate states assumed by the magnetic free layer during reversal by a spin-polarized current. These experiments have shown an interesting size-dependent behavior associated with the motion of vortices to mediate the magnetization reversal which cannot be explained by the macrospin picture of spin-torque switching. In this paper we present both experimental and analytical results which show the origin of the complex switching behavior. We use time-resolved x-ray microscopy to further study the switching behavior of samples with 45{sup o} angle between the free and polarizing magnetic layers. A model is developed in terms of a linearized Landau-Lifshitz-Gilbert equation showing that the initial dynamics is dominated by the balance between the Oersted field and thermal fluctuations. The spin torque amplifies this dynamics, leading to a strong sensitivity to sample size, angle, and temperature. The model is in good agreement with current and previous experimental observations.

  5. X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications

    NASA Astrophysics Data System (ADS)

    Schmitz-Antoniak, Carolin

    2015-06-01

    X-ray absorption spectroscopy facilitated by state-of-the-art synchrotron radiation technology is presented as a powerful tool to study nanoscale systems, in particular revealing their static element-specific magnetic and electronic properties on a microscopic level. A survey is given on the properties of nanoparticles, nanocomposites and thin films covering a broad range of possible applications. It ranges from the ageing effects of iron oxide nanoparticles in dispersion for biomedical applications to the characterisation on a microscopic level of nanoscale systems for data storage devices. In this respect, new concepts for electrically addressable magnetic data storage devices are highlighted by characterising the coupling in a BaTiO3/CoFe2O4 nanocomposite as prototypical model system. But classical magnetically addressable devices are also discussed on the basis of tailoring the magnetic properties of self-assembled ensembles of FePt nanoparticles for data storage and the high-moment material Fe/Cr/Gd for write heads. For the latter cases, the importance is emphasised of combining experimental approaches in x-ray absorption spectroscopy with density functional theory to gain a more fundamental understanding.

  6. Development of low temperature and high magnetic field X-ray diffraction facility

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P.; Chaddah, P.

    2015-06-01

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to -8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr0.5Sr0.5MnO3 sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  7. Soft X-ray Spectroscopy of Magnetic Nanostructures: New Phenomena and Applications

    NASA Astrophysics Data System (ADS)

    Arenholz, Elke

    2011-03-01

    The delicate balance between charge, spin, orbital, and lattice degrees of freedom in transition metal oxides leads to unique phenomena such as colossal magnetoresistance, high temperature superconductivity, as well as a remarkable diversity of charge, spin, and orbital ordered phases. The rich phase diagrams are determined by the strong local interaction of electrons in transition metal d orbitals. Subtle changes in d occupancy and overlap---and thereby phase transitions---can be induced by variations in temperature, by external fields, through doping and lattice distortions. In particular, interfaces can hold surprising electronic and magnetic properties that differ remarkably from the adjacent layers. Soft x-ray based techniques are ideal tools to study these systems as they are inherently element-specific, allow characterizing the valence state and the symmetry of lattice sites and provide detailed information about the electronic and magnetic structure with nanometer spatial resolution and on ultrafast time scales. Here we show that the to-date little explored angular dependence of the x-ray magnetic dichroism provides unique insights in the correlation between atomic, magnetic and electronic structure in these systems [1-4]. Taking advantage of this approach will prove invaluable for the engineering of novel nanoarchitectures to be used in low cost and energy efficient devices with improved performance and multiple functionalities. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  8. Development of low temperature and high magnetic field X-ray diffraction facility

    SciTech Connect

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P. Chaddah, P.

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  9. Magnetic soft X-ray microscopy at 10nm spatial resolution

    NASA Astrophysics Data System (ADS)

    Fischer, Peter; Chao, Weilun; Im, Mi-Young; Anderson, Erik

    2011-03-01

    Magnetic soft X-ray microscopy, which combines high spatial and temporal resolution with elemental specificity by utilizing the specific features of X-ray magnetic circular dichroism effects is a unique and powerful analytical technique to image fast spin dynamics of nanoscale magnetism. The spatial resolution is determined by Fresnel zone plate lenses used as diffractive optics. FZPs are fabricated by state-of-the-art lithography techniques and the challenge is to produce a dense, circular line pattern with a high aspect ratio to achieve high efficiency. Using an overlay technique [2-3], which requires high position accuracy of the e-beam writer, FZPs with 12nm outermost zone width could be fabricated. Implementing this optic at BL 6.1.2 at the ALS in Berkeley CA, we have demonstrated that a 10nm line and space test pattern can be clearly resolved. First magnetic images of a PtCo film with a pronounced perpendicular anisotropy will be presented. Further progress to below 10nm can be anticipated in the near future. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231.

  10. Superconducting Effects in Optimization of Magnetic Penetration Thermometers for X-ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Balvin, M. A.; Denis, K. L.; Hsieh, W.-T.; Sadleir, J. E.; Bandler, Simon E.; Busch, Sarah E.; Merrell, W.; Kelly, Daniel P.; Nagler, Peter C.; Porst, J.-P.; Seidel, George E.; Smith, Stephen J.

    2012-01-01

    We have made high resolution x-ray microcalorimeters using superconducting MoAu bilayers and Nb meander coils. The temperature sensor is a Magnetic Penetration Thermometer (MPT). Operation is similar to metallic magnetic calorimeters, but instead of the magnetic susceptibility of a paramagnetic alloy, we use the diamagnetic response of the superconducting MoAu to sense temperature changes in an x-ray absorber. Flux-temperature responsivtty can be large for small sensor heat capacity, with enough dynamic range for applications. We find models of observed flux-temperature curves require several effects to explain flux penetration or expulsion in the microscopic devices. The superconductor is non-local, with large coherence length and weak pinning of flux. At lowest temperatures, behavior is dominated by screening currents that vary as a result of the temperature dependence of the magnetic penetration depth, modified by the effect of the nonuniformity of the applied field occurring on a scale comparable to the coherence length. In the temperature regime where responslvity is greatest, spadal variations in the order parameter become important: both local variations as flux enters/leaves the film and an intermediate state is formed, and globally as changing stability of the electrical circuit creates a Meissner transition and flux is expelled/penetrates to minimize free energy.

  11. Possible detection of a cyclotron resonance scattering feature in the X-ray pulsar 4U 1909+07

    SciTech Connect

    Jaisawal, Gaurava K.; Naik, Sachindra; Paul, Biswajit

    2013-12-10

    We present timing and broad band spectral studies of the high-mass X-ray binary pulsar 4U 1909+07 using data from Suzaku observations during 2010 November 2-3. The pulse period of the pulsar is estimated to be 604.11 ± 0.14 s. Pulsations are seen in the X-ray light curve up to ∼70 keV. The pulse profile is found to be strongly energy-dependent: a complex, multi-peaked structure at low energy becomes a simple single peak at higher energy. We found that the 1-70 keV pulse-averaged continuum can be fit by the sum of a blackbody and a partial covering Negative and Positive power law with Exponential cutoff model. A weak iron fluorescence emission line at 6.4 keV was detected in the spectrum. An absorption-like feature at ∼44 keV was clearly seen in the residuals of the spectral fitting, independent of the continuum model adopted. To check the possible presence of a cyclotron resonance scattering feature (CRSF) in the spectrum, we normalized the pulsar spectrum with the spectrum of the Crab Nebula. The resulting Crab ratio also showed a clear dip centered at ∼44 keV. We performed statistical tests on the residuals of the spectral fitting and also on the Crab spectral ratio to determine the significance of the absorption-like feature and identified it as a CRSF of the pulsar. We estimated the corresponding surface magnetic field of the pulsar to be 3.8 × 10{sup 12} G.

  12. Observation of thermomagnetically recorded domains with high-resolution magnetic soft x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Tsunashima, S.; Takagi, Nayuki; Yamaguchi, Atushi; Kume, Minoru; Fischer, P.; Kumazawa, M.

    2003-04-01

    Magnetic domains were thermomagnetically recorded on TbFeCo films using laser pulsed magnetic field modulation (LP-MFM) and light intensity modulation (LIM). The domains were observed with high resolution magnetic transmission X-ray microscopy (M-TXM) before and after the heat treatment in order to clarify the recording characteristics and the thermal stability of recorded domains. From the results of M-TXM images, it was found that isolated single marks whose lengths are much smaller than 100 nm can be recorded by LP-MFM but their mark lengths become often longer than designed. It was further confirmed that the heat treatment at 120 degree C for 50 hours does not influence significantly the crescent-shaped magnetic domains of 100 nm in width recorded using LP-MFM method and circular domains of 150 nm in diameter recorded using LIM method.

  13. Quantitative X-Ray Magnetic Microscopy: from parallel stripe domains to buried topological defects

    NASA Astrophysics Data System (ADS)

    Velez, Maria; Blanco-Roldan, C.; Quiros, C.; Valdes-Bango, F.; Alvarez-Prado, L. M.; Martin, J. I.; Alameda, J. M.; Hierro-Rodriguez, A.; Duch, M.; Torras, N.; Esteve, J.; Sorrentino, A.; Valcarcel, R.; Pereiro, E.; Ferrer, S.

    Magnetic transmission X-ray microscopy (TXM) is a powerful imaging technique that can produce element specific images of magnetic domains with nanometric lateral resolution. Here we present a novel imaging method in which the angular dependence of the magnetic contrast in a series of high resolution TXM images is used to obtain quantitative descriptions of the magnetization (canting angles and sense). This has been applied first to analyze parallel stripe domains in weak perpendicular anisotropy ferromagnetic NdCo5 layers of different thickness, and in NdCo5/Permalloy bilayers. Then, our method has been used to identify complex topological defects (merons or 1/2 skyrmions) in a NdCo5 film that are only partially replicated by the Permalloy overlayer. Meron propagation in trilayers (across the thickness) and in hexagonal networks (across bifurcations) will be discussed in terms of their topological characteristics (chirality and polarity). Work supported by Spanish Grant FIS2013-45469.

  14. A comparison between soft x-ray and magnetic phase data on the Madison symmetric torus

    NASA Astrophysics Data System (ADS)

    VanMeter, P. D.; Franz, P.; Reusch, L. M.; Sarff, J. S.; Den Hartog, D. J.

    2016-11-01

    The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras to determine the emissivity structure of the plasma. This structure should directly correspond to the structure of the magnetic field; however, there is an apparent phase difference between the emissivity reconstructions and magnetic field reconstructions when using a cylindrical approximation. The difference between the phase of the dominant rotating helical mode of the magnetic field and the motion of the brightest line of sight for each SXR camera is dependent on both the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phase difference is shown to be consistent over multiple measurements when only toroidal or poloidal magnetic field components are considered. These differences emerge from physical effects of the toroidal geometry which are not captured in the cylindrical approximation.

  15. Magnetic dichroism effect of binary alloys using circularly-polarized x-ray

    SciTech Connect

    Wu, S. Z.; Schumann, F.O.; Willis, R.F.; Goodman, K.W.; Tobin, J.G.; Carr, R.

    1997-05-01

    We have studies the magnetic propertied of CoNi binary alloy films with various atomic compositions using soft x-ray magnetic circular dichroism (XMCD) technique. The alloy films were deposited on single Cu(100) crystals in situ using our well-established epitaxial growth technique to achieve a layer-by-layer growth and a metastable fcc structure, with all films exhibiting an in-plane magnetic anistrophy. Utilizing the element-specific ability and nanostructure magnetization sensitivity of this technique, we have been able to perform the absorption measurements at L2 and L3 edge of Co and Ni atoms and observed large dichroism signals. The extraction of spin moment and orbital moment for varying elemental stoichiometry using magneto- optical sum rules is discussed.

  16. A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

    SciTech Connect

    Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe; Kalus, Christian; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; and others

    2012-12-15

    We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

  17. Insights into the intramolecular coupling between the N- and C-domains of troponin C derived from high-pressure, fluorescence, nuclear magnetic resonance, and small-angle X-ray scattering studies.

    PubMed

    de Oliveira, Guilherme A P; Rocha, Cristiane B; Marques, Mayra de A; Cordeiro, Yraima; Sorenson, Martha M; Foguel, Débora; Silva, Jerson L; Suarez, Marisa C

    2013-01-01

    Troponin C (TnC), the Ca(2+)-binding component of the troponin complex of vertebrate skeletal muscle, consists of two structurally homologous domains, the N- and C-domains; these domains are connected by an exposed α-helix. Mutants of full-length TnC and of its isolated domains have been constructed using site-directed mutagenesis to replace different Phe residues with Trp. Previous studies utilizing these mutants and high hydrostatic pressure have shown that the apo form of the C-domain is less stable than the N-domain and that the N-domain has no effect on the stability of the C-domain [Rocha, C. B., Suarez, M. C., Yu, A., Ballard, L., Sorenson, M. M., Foguel, D., and Silva, J. L. (2008) Biochemistry 47, 5047-5058]. Here, we analyzed the stability of full-length F29W TnC using structural approaches under conditions of added urea and hydrostatic pressure denaturation; F29W TnC is a fluorescent mutant, in which Phe 29, located in the N-domain, was replaced with Trp. From these experiments, we calculated the thermodynamic parameters (ΔV and ΔG°(atm)) that govern the folding of the intact F29W TnC in the absence or presence of Ca(2+). We found that the C-domain has only a small effect on the structure of the N-domain in the absence of Ca(2+). However, using fluorescence spectroscopy, we demonstrated a significant decrease in the stability of the N-domain in the Ca(2+)-bound state (i.e., when Ca(2+) was also bound to sites III and IV of the C-domain). An accompanying decrease in the thermodynamic stability of the N-domain generated a reduction in ΔΔG°(atm) in absolute terms, and Ca(2+) binding affects the Ca(2+) affinity of the N-domain in full-length TnC. Cross-talk between the C- and N-domains may be mediated by the central helix, which has a smaller volume and likely greater rigidity and stability following binding of Ca(2+) to the EF-hand sites, as determined by our construction of low-resolution three-dimensional models from the small-angle X-ray

  18. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  19. Soft-x-ray resonant-photoemission study of mixed-valence TmSe

    NASA Astrophysics Data System (ADS)

    Oh, S.-J.; Allen, J. W.; Lindau, I.

    1984-08-01

    A single crystal of mixed-valence TmSe was studied by a resonant-photoemission technique with use of synchrotron radiation in the soft-x-ray region (hν=70-200 eV). The two Tm 4f emissions, one corresponding to the divalent Tm ion (4f13-->4f12) and the other to the trivalent Tm ion (4f12-->4f11), are both resonantly enhanced at photon energies close to the Tm 4d binding energy (170 to 180 eV), but their resonance behaviors differ from each other in that the former structure follows the multiplet structure of the 4d94f14 intermediate-state configuration whereas the latter shows multiplets of the 4d94f13 configuration. This can serve as a direct spectroscopic identification of the 4f occupation number of each component of the 4f emissions. Because the correlation energies between Tm 4d and 4f electrons and those between two 4f electrons are similar, these resonance thresholds come at about the same energy for both configurations. The bulk-sensitive constant-final-state (CFS) spectra show a superposition of both resonance features, confirming bulk mixed valency of TmSe. The bulk valence deduced from this CFS measurement is 2.62+/-0.15. The Tm 5p core-level emissions show two sets of spin-orbit peaks corresponding to two different Tm valences, and they also resonate in the same way as 4f emissions. The apparent spin-orbit splittings between 5p12 and 5p32 peaks differ by 1.4 eV for two Tm valences, most probably because of the exchange interaction between the 5p hole and 4f electrons. The variation of the relative intensity of the divalent peak to the trivalent peak as a function of photon energy clearly supports the existence of divalent surface layer(s), as recently reported. The electron escape depth has been calculated from this intensity ratio, and the results are compared with various theoretical models.

  20. X-ray magnetic-circular-dichroism study of Ni/Fe (001) multilayers

    SciTech Connect

    Lin, T.; Schwickert, M.M.; Tomaz, M.A.; Chen, H.; Harp, G.R.

    1999-06-01

    The structure and magnetic properties of Fe/Ni(001) multilayers are studied using x-ray diffraction, magneto-optical Kerr effect magnetometry, and x-ray magnetic circular dichroism. Multilayers are deposited with constant Fe layers (12 {Angstrom}) and wedged Ni layers (0{endash}30 {Angstrom}), repeated 20 times, to explore the magnetic moment and the structure dependence upon thickness of Ni (t{sub Ni}). Up to t{sub Ni}{approx}16 {Angstrom} (11 ML), both the Fe and the Ni have a bct structure, similar to the bulk structure of bcc Fe. The magnetic moments of Ni in the bct region are nearly constant at 0.85{mu}{sub B} for a Ni thickness t{sub Ni} in the range 3 {Angstrom}{lt}t{sub Ni}{lt}16 {Angstrom}. This represents a significant enhancement over the moment in bulk fcc Ni (0.59{mu}B). The Fe/Ni multilayer undergoes a crystalline phase transition between 16 {Angstrom}{lt}t{sub Ni}{lt}23 {Angstrom}, beyond which both the Fe and Ni have an fct structure. In the fct region, the Ni magnetic moment is close to its bulk value and the Fe magnetic moment drops to 1.5{mu}{sub B}, which is {approximately}70{percent} of its bulk value. The crystalline phase transition is also accompanied by a rotation of the magnetic easy axis by 45{degree} in the plane of the film. {copyright} {ital 1999} {ital The American Physical Society}

  1. Magnetic studies of magnetotactic bacteria by soft x-ray STXM and ptychography

    NASA Astrophysics Data System (ADS)

    Zhu, X. H.; Tyliszczak, T.; Shiu, H.-W.; Shapiro, D.; Bazylinski, D. A.; Lins, U.; Hitchcock, A. P.

    2016-01-01

    Magnetotactic bacteria (MTB) biomineralize chains of nanoscale magnetite single crystals which align the cell with the earth's magnetic field and assist the cell to migrate to, and maintain its position at, the oxic-anoxic transition zone, their preferred habitat. Here we describe use of multi-edge scanning transmission X-ray microscopy (STXM) to investigate the chemistry and magnetism of MTB on an individual cell basis. We report measurements of the orientation of the magnetic vector of magnetosome chains relative to the location of the single flagellum in marine vibrio, Magnetovibrio blakemorei strain MV-1 cells from both the southern and northern hemisphere. We also report a major improvement in both spatial resolution and spectral quality through the use of spectro-ptychography at the Fe L3 edge.

  2. Solar Magnetic Reconnection at Low Altitudes and Associated Type III Solar Radio Bursts and X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Lobzin, V. V.; Donea, A.; Tingay, S. J.; Oberoi, D.; Reiner, M. J.; Melrose, D. B.

    2014-12-01

    Magnetic reconnection events are identified definitively in Solar Dynamics Observatory (SDO) data on 25 September 2011, with double-sided jets, current sheets and cusp-like geometries on top of loops, and strong outflows at 200 km/s along pairs of open magnetic field lines. Strong type III bursts observed by the Learmonth radio spectrograph and imaged by the MurchisonWidefield Array (MWA) are demonstrated to be in very good temporal and spatial coincidence with specic SDO magnetic reconnection events and with bursts of nonthermal 3-35 keV X-rays observed by the RHESSI spacecraft. The reconnection sites are low, near heights of 5-10 Mm or 0.01 solar radii, alleviating the number problem for producing the energetic electrons and X-rays. These data, especially the images and event timings, provide direct evidence for the long-unproven but standard model for type III bursts: semi-relativistic electrons energized in magnetic reconnection regions produce radio emission as they move away from the Sun and X-rays as they move into the chromosphere. Since not all SDO events produce X-ray or type III events, different special conditions must exist for the production of strong radio, X-ray, or UV bursts by reconnection events. These conditions are both on the production of suitable energetic electrons and on the production of observable radio, X-ray, and UV emissions from these electrons.

  3. Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics

    NASA Astrophysics Data System (ADS)

    Gorfman, S.; Simons, H.; Iamsasri, T.; Prasertpalichat, S.; Cann, D. P.; Choe, H.; Pietsch, U.; Watier, Y.; Jones, J. L.

    2016-02-01

    Structure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviour.

  4. Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics.

    PubMed

    Gorfman, S; Simons, H; Iamsasri, T; Prasertpalichat, S; Cann, D P; Choe, H; Pietsch, U; Watier, Y; Jones, J L

    2016-01-01

    Structure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviour.

  5. Quasi-particle interference of heavy fermions in resonant x-ray scattering

    PubMed Central

    Gyenis, András; da Silva Neto, Eduardo H.; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-01-01

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique. PMID:27757422

  6. Nuclear resonant inelastic x-ray scattering: Methodology and extraction of vibrational properties of minerals

    NASA Astrophysics Data System (ADS)

    Hu, M. Y.; Alp, E. E.; Bi, W.; Sturhahn, W.; Toellner, T. S.; Zhao, J.

    2013-12-01

    Nuclear resonant inelastic x-ray scattering (NRIXS) is a synchrotron radiation based experimental method [1]. Since its introduction almost 20 years ago [2], NRIXS has found an expanding range of applications of studying lattice dynamics in condensed matter physics, materials science, high-pressure research, geosciences, and biophysics. After the first high pressure application in geophysics of measuring sound velocity of iron up to 153 GPa [3], it has become a widely used method to investigate deep earth compositions through sound velocity measurements [4,5]. Thermodynamic properties are also explored, in particular Grueneisen parameters [6]. Later, it was realized that isotope fractionaton factors can be derived from NRIXS measurements [7,8]. Sum rules and moments of NRIXS is a critical part of this methodology [9,10]. We will discuss this and in general the data analysis of NRIXS which enables the above mentioned applications. [1] Alp et al. Hyperfine Interactions 144/145, 3 (2002) [2] Sturhahn et al., PRL 74, 3832 (1995) [3] Mao et al., Science 292, 914 (2001) [4] Hu et al., PRB 67, 094304 (2003) [5] Sturhahn & Jackson, GSA special paper 421 (2007) [6] Murphy et al., Geophys. Res. Lett. 38, L24306 (2011) [7] Polyakov, Science 323, 912 (2009) [8] Dauphas et al., Geochimica et Cosmochimica Acta 94, 254 (2012) [9] Lipkin, PRB 52, 10073 (1995) [10] Hu et al., PRB 87, 064301 (2013)

  7. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering.

    PubMed

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-14

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10(-9) to 10(-5) s) and a scattering vector Q range (9.6-40 nm(-1)), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow β-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature T(c) in the mode coupling theory. The results suggest the important roles of hopping motions below T(c), which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism. PMID:24735317

  8. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-01

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10-9 to 10-5 s) and a scattering vector Q range (9.6-40 nm-1), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow β-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature Tc in the mode coupling theory. The results suggest the important roles of hopping motions below Tc, which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

  9. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering

    SciTech Connect

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-14

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10{sup −9} to 10{sup −5} s) and a scattering vector Q range (9.6–40 nm{sup −1}), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow β-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature T{sub c} in the mode coupling theory. The results suggest the important roles of hopping motions below T{sub c}, which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

  10. A new method to derive electronegativity from resonant inelastic x-ray scattering

    SciTech Connect

    Carniato, S.; Journel, L.; Guillemin, R.; Piancastelli, M. N.; Simon, M.; Stolte, W. C.; Lindle, D. W.

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p{sup -1}LUMO{sup 1} electronic states reached after Cl 1s{yields} LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p{sub z} atomic orbital contributing to the Cl 2p{sub 3/2} molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

  11. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    DOE PAGESBeta

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; et al

    2016-01-22

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less

  12. Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics

    PubMed Central

    Gorfman, S.; Simons, H.; Iamsasri, T.; Prasertpalichat, S.; Cann, D. P.; Choe, H.; Pietsch, U.; Watier, Y.; Jones, J. L.

    2016-01-01

    Structure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviour. PMID:26864859

  13. Signatures of strong correlation effects in resonant inelastic x-ray scattering studies on cuprates

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Lin, Cheng-Ju; Lee, Ting-Kuo

    2016-08-01

    Recently, spin excitations in doped cuprates have been measured using resonant inelastic x-ray scattering. The paramagnon dispersions show the large hardening effect in the electron-doped systems and seemingly doping independence in the hole-doped systems, with the energy scales comparable to that of the antiferromagnetic (AFM) magnons. This anomalous hardening effect and the lack of softening were partially explained by using the strong-coupling t -J model but with a three-site term [Nat. Commun. 5, 3314 (2014), 10.1038/ncomms4314], although the hardening effect is already present even without the latter. By considering the t -t'-t''-J model and using the slave-boson mean-field theory, we obtain, via the spin-spin susceptibility, the spin excitations in qualitative agreement with the experiments. The doping-dependent bandwidth due to the strong correlation physics is the origin of the hardening effect. We also show that dispersions in the AFM regime, different from those in the paramagnetic (PM) regime, hardly vary with dopant density. These excitations are mainly collective in nature instead of particle-hole-like. We further discuss the interplay and different contributions of these two kinds of excitations in the PM phase and show that the dominance of the collective excitation increases with decreasing dopant concentrations.

  14. Investigations of the R5(SixGe1-x)4 Intermetallic Compounds by X-Ray Resonant Magnetic Scattering

    SciTech Connect

    Tan, Lizhi

    2008-08-18

    The XRMS experiment on the Gd5Ge4 system has shown that, below the Neel temperature, TN = 127 K, the magnetic unit cells is the same as the chemical unit cell. From azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same magnetic space group Pnma. The magnetic moments are aligned along the c-axis and the c-components of the magnetic moments at the three different sites are equal. The ferromagnetic slabs are stacked antiferromagnetically along the b-direction. They found an unusual order parameter curve in Gd5Ge4. A spin-reorientation transition is a possibility in Gd5Ge4, which is similar to the Tb5Ge4 case. Tb5Ge4 possesses the same Sm5Ge4-type crystallographic structure and the same magnetic space group as Gd5Ge4 does. The difference in magnetic structure is that Tb5Ge4 has a canted one but Gd5Ge4 has nearly a collinear one in the low temperature antiferromagnetic phase. The competition between the magneto-crystalline anisotropy and the nearest-neighbor magnetic exchange interactions may allow a 3-dimensional canted antiferromagnetic structure in Tb5Ge4. The spin-reorientation transition in both Gd5Ge4 and Tb5Ge4 may arise from the competition between the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and the dipolar interactions anisotropy.

  15. Elimination of X-Ray Diffraction through Stimulated X-Ray Transmission.

    PubMed

    Wu, B; Wang, T; Graves, C E; Zhu, D; Schlotter, W F; Turner, J J; Hellwig, O; Chen, Z; Dürr, H A; Scherz, A; Stöhr, J

    2016-07-01

    X-ray diffractive imaging with laterally coherent x-ray free-electron laser (XFEL) pulses is increasingly utilized to obtain ultrafast snapshots of matter. Here we report the amazing disappearance of single-shot charge and magnetic diffraction patterns recorded with resonantly tuned, narrow bandwidth XFEL pulses. Our experimental results reveal the exquisite sensitivity of single-shot charge and magnetic diffraction patterns of a magnetic film to the onset of field-induced stimulated elastic x-ray forward scattering. The loss in diffraction contrast, measured over 3 orders of magnitude in intensity, is in remarkable quantitative agreement with a recent theory that is extended to include diffraction. PMID:27447522

  16. Elimination of X-Ray Diffraction through Stimulated X-Ray Transmission

    NASA Astrophysics Data System (ADS)

    Wu, B.; Wang, T.; Graves, C. E.; Zhu, D.; Schlotter, W. F.; Turner, J. J.; Hellwig, O.; Chen, Z.; Dürr, H. A.; Scherz, A.; Stöhr, J.

    2016-07-01

    X-ray diffractive imaging with laterally coherent x-ray free-electron laser (XFEL) pulses is increasingly utilized to obtain ultrafast snapshots of matter. Here we report the amazing disappearance of single-shot charge and magnetic diffraction patterns recorded with resonantly tuned, narrow bandwidth XFEL pulses. Our experimental results reveal the exquisite sensitivity of single-shot charge and magnetic diffraction patterns of a magnetic film to the onset of field-induced stimulated elastic x-ray forward scattering. The loss in diffraction contrast, measured over 3 orders of magnitude in intensity, is in remarkable quantitative agreement with a recent theory that is extended to include diffraction.

  17. Renormalization Group Approach to the X-Ray Absorption Problem and Application to the Vigman-Finkelshtein Model for Magnetic Impurities in Metals.

    NASA Astrophysics Data System (ADS)

    Nunes de Oliveira, Luiz

    The renormalization group techniques developed by Wilson for the Kondo problem are applied to three related problems: the absorption of x-rays by metals, the absorption of x-rays by impurities in metals, and the specific heat of dilute magnetic alloys. In the first problem considered, the x-ray absorption problem, the metal is represented by a half-filled conduction band and a deep level representing a core state. The absorption of an x-ray photon excites an electron from this core level to the conduction band creating a core hole whose positive charge interacts with the conduction electrons. The absorption spectrum is, for the first time, calculated in the energy range 10('-10)D < (omega)-(omega)(,T) < D, where (omega) and (omega)(,T) are the x-ray and threshold frequencies, respectively, and D is the conduction bandwidth. For (omega)-(omega)(,T) < 10('-9)D, the absorption spectrum (mu)((omega)) is described by a power law (mu)(,o) {((omega) -(omega)(,T))/D}('-(alpha)) whose exponent (alpha) agrees with that of the Nozieres-De Dominicis asymptotic (i.e., valid in the limit (omega) (--->) (omega)(,T)) expression to seven decimal places; the prefactor (mu)(,o) is calculated for the first time. For (omega)-(omega)(,T) (TURNEQ) D, remarkably small deviations (e.g., deviations of 15% for (omega)-(omega)(,T) = .3D) from the Nozieres-De Dominicis power law are found. As a second application of the renormalization group techniques, the x-ray absorption spectrum for the resonant level model for impurities in metals is calculated. In this model, the metal is represented by a half-filled conduction band and the impurity by two levels: a core level from which an electron is excited to the conduction band by the absorption of an x-ray photon, and a resonant level, coupled to the conduction electrons, whose energy is lowered by the interaction with the core hole created by the absorption of the x-ray. In the x-ray absorption process, the resonant level is thus shifted to lower

  18. Observation of Laser Induced Magnetization Dynamics in Co/Pd Multilayers with Coherent X-ray Scattering

    SciTech Connect

    Wu, Benny

    2012-04-05

    We report on time-resolved coherent x-ray scattering experiments of laser induced magnetization dynamics in Co/Pd multilayers with a high repetition rate optical pump x-ray probe setup. Starting from a multi-domain ground state, the magnetization is uniformly reduced after excitation by an intense 50 fs laser pulse. Using the normalized time correlation, we study the magnetization recovery on a picosecond timescale. The dynamic scattering intensity is separated into an elastic portion at length scales above 65 nm which retains memory of the initial domain magnetization, and a fluctuating portion at smaller length scales corresponding to domain boundary motion during recovery.

  19. X-ray emission from the giant magnetosphere of the magnetic O-type star NGC 1624-2

    NASA Astrophysics Data System (ADS)

    Petit, V.; Cohen, D. H.; Wade, G. A.; Nazé, Y.; Owocki, S. P.; Sundqvist, J. O.; ud-Doula, A.; Fullerton, A.; Leutenegger, M.; Gagné, M.

    2015-11-01

    We observed NGC 1624-2, the O-type star with the largest known magnetic field (Bp ˜ 20 kG), in X-rays with the Advanced CCD Imaging Spectrometer (ACIS-S) camera on-board the Chandra X-ray Observatory. Our two observations were obtained at the minimum and maximum of the periodic Hα emission cycle, corresponding to the rotational phases where the magnetic field is the closest to equator-on and pole-on, respectively. With these observations, we aim to characterize the star's magnetosphere via the X-ray emission produced by magnetically confined wind shocks. Our main findings are as follows. (i) The observed spectrum of NGC 1624-2 is hard, similar to the magnetic O-type star θ1 Ori C, with only a few photons detected below 0.8 keV. The emergent X-ray flux is 30 per cent lower at the Hα minimum phase. (ii) Our modelling indicated that this seemingly hard spectrum is in fact a consequence of relatively soft intrinsic emission, similar to other magnetic Of?p stars, combined with a large amount of local absorption (˜1-3× 1022 cm-2). This combination is necessary to reproduce both the prominent Mg and Si spectral features, and the lack of flux at low energies. NGC 1624-2 is intrinsically luminous in X-rays (log L^{em}_X˜ 33.4) but 70-95 per cent of the X-ray emission produced by magnetically confined wind shocks is absorbed before it escapes the magnetosphere (log L^{ISMcor}_X˜ 32.5). (iii) The high X-ray luminosity, its variation with stellar rotation, and its large attenuation are all consistent with a large dynamical magnetosphere with magnetically confined wind shocks.

  20. Probing the graphite band structure with resonant soft-x-ray fluorescence

    SciTech Connect

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A.

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  1. Evidence for the Importance of Resonance Scattering in X-Ray Emission Line Profiles of the O Star Zeta Puppis

    SciTech Connect

    Leutenegger, M.A.; Owocki, S.P.; Kahn, S.M.; Paerels, F.B.S.; /Columbia U.

    2006-10-10

    We fit the Doppler profiles of the He-like triplet complexes of O VII and N VI in the X-ray spectrum of the O star {zeta} Pup, using XMM-Newton RGS data collected over {approx} 400 ks of exposure. We find that they cannot be well fit if the resonance and intercombination lines are constrained to have the same profile shape. However, a significantly better fit is achieved with a model incorporating the effects of resonance scattering, which causes the resonance line to become more symmetric than the intercombination line for a given characteristic continuum optical depth {tau}{sub *}. We discuss the plausibility of this hypothesis, as well as its significance for our understanding of Doppler profiles of X-ray emission lines in O stars.

  2. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    SciTech Connect

    Sutter, John P. Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  3. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  4. Lateral spin transfer torque induced magnetic switching at room temperature demonstrated by x-ray microscopy.

    PubMed

    Buhl, M; Erbe, A; Grebing, J; Wintz, S; Raabe, J; Fassbender, J

    2013-01-01

    Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM).

  5. Lateral spin transfer torque induced magnetic switching at room temperature demonstrated by x-ray microscopy

    PubMed Central

    Buhl, M.; Erbe, A.; Grebing, J.; Wintz, S.; Raabe, J.; Fassbender, J.

    2013-01-01

    Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM). PMID:24126435

  6. Design and testing of planar magnetic micromotors fabricated by deep x-ray lithography and electroplating

    SciTech Connect

    Guckel, H.; Christenson, T.R.; Skrobis, K.J.; Klein, J.; Karnowsky, M.

    1993-05-01

    The successful design and testing of a three-phase planar integrated magnetic micromotor is presented. Fabrication is based on a modified deep X-ray lithography and electroplating or LIGA process. Maximum rotational speeds of 33,000 rpm are obtained in air with a rotor diameter of 285 {mu}m and do not change when operated in vacuum. Real time rotor response is obtained with an integrated shaft encoder. Long lifetime is evidenced by testing to over 5(10){sup 7} ration cycles without changes in performance. Projected speeds of the present motor configuration are in the vicinity of 100 krpm and are limited by torque ripple. Higher speeds, which are attractive for sensor applications. require constant torque characteristic excitation as is evidenced by ultracentrifuge and gyroscope design. Further understanding of electroplated magnetic material properties will drive these performance improvements.

  7. Unique Properties of Thermally Tailored Copper: Magnetically Active Regions and Anomalous X-ray Fluorescence Emissions

    PubMed Central

    2009-01-01

    When high-purity copper (≥99.98%wt) is melted, held in its liquid state for a few hours with iterative thermal cycling, then allowed to resolidify, the ingot surface is found to have many small regions that are magnetically active. X-ray fluorescence analysis of these regions exhibit remarkably intense lines from “sensitized elements” (SE), including in part or fully the contiguous series V, Cr, Mn, Fe, and Co. The XRF emissions from SE are far more intense than expected from known impurity levels. Comparison with blanks and standards show that the thermal “tailoring” also introduces strongly enhanced SE emissions in samples taken from the interior of the copper ingots. For some magnetic regions, the location as well as the SE emissions, although persistent, vary irregularly with time. Also, for some regions extraordinarily intense “sensitized iron” (SFe) emissions occur, accompanied by drastic attenuation of Cu emissions. PMID:20037657

  8. Fast and slow magnetic deflagration fronts in type I X-ray bursts

    NASA Astrophysics Data System (ADS)

    Cavecchi, Yuri; Levin, Yuri; Watts, Anna L.; Braithwaite, Jonathan

    2016-06-01

    Type I X-ray bursts are produced by thermonuclear runaways that develop on accreting neutron stars. Once one location ignites, the flame propagates across the surface of the star. Flame propagation is fundamental in order to understand burst properties like rise time and burst oscillations. Previous work quantified the effects of rotation on the front, showing that the flame propagates as a deflagration and that the front strongly resembles a hurricane. However, the effect of magnetic fields was not investigated, despite the fact that magnetic fields strong enough to have an effect on the propagating flame are expected to be present on many bursters. In this paper, we show how the coupling between fluid layers introduced by an initially vertical magnetic field plays a decisive role in determining the character of the fronts that are responsible for the type I bursts. In particular, on a star spinning at 450 Hz (typical among the bursters), we test seed magnetic fields of 107-1010 G and find that for the medium fields the magnetic stresses that develop during the burst can speed up the velocity of the burning front, bringing the simulated burst rise time close to the observed values. By contrast, in a magnetic slow rotator like IGR J17480-2446, spinning at 11 Hz, a seed field ≳109 G is required to allow localized ignition and the magnetic field plays an integral role in generating the burst oscillations observed during the bursts.

  9. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  10. Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers

    NASA Astrophysics Data System (ADS)

    Kozina, Xeniya; Fecher, Gerhard H.; Stryganyuk, Gregory; Ouardi, Siham; Balke, Benjamin; Felser, Claudia; Schönhense, Gerd; Ikenaga, Eiji; Sugiyama, Takeharu; Kawamura, Naomi; Suzuki, Motohiro; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Sukegawa, Hiroaki; Wang, Wenhong; Inomata, Koichiro; Kobayashi, Keisuke

    2011-08-01

    This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co2FeAl layer buried beneath the IrMn layer. A pronounced magnetic dichroism is found in the Co and Fe 2p states of both materials. The localization of the magnetic moments at the Fe site conditioning the peculiar characteristics of the Co2FeAl Heusler compound, predicted to be a half-metallic ferromagnet, is revealed from the magnetic dichroism detected in the Fe 2p states.

  11. Advantages of a Synchrotron Bending Magnet as the Sample Illuminator for a Wide-field X-ray Microscope

    SciTech Connect

    Feser, M.; Howells, M. R.; Kirz, J.; Rudati, J.; Yun, W.

    2012-09-01

    In our paper the choice between bending magnets and insertion devices as sample illuminators for a hard X-ray full-field microscope is investigated. An optimized bending-magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion-device beamlines. The fact that imaging X-ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid-for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending-magnet beamlines that are dedicated to transmission X-ray microscope facilities. We expect that demand for such facilities will increase as three-dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three-dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.

  12. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Bryan, M. T.; Fry, P. W.; Fischer, P. J.; Allwood, D. A.

    2008-04-01

    Magnetic transmission x-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300nm wide, 24nm thick Ni81Fe19 nanowire. Both transverse- and vortex-type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  13. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission X-ray microscopy

    SciTech Connect

    Bryan, M. T.; Fry, P. W.; Fischer, P.; Allwood, D. A.

    2007-12-01

    Magnetic transmission X-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300 nm wide, 24 nm thick Ni{sub 81}Fe{sub 19} nanowire. Both transverse and vortex type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences, or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  14. Local electronic states of Fe{sub 4}N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect

    Ito, Keita; Toko, Kaoru; Suemasu, Takashi; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Kimura, Akio

    2015-05-21

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L{sub 2,3} and N K-edges for Fe{sub 4}N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe{sub 4}N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L{sub 2,3}-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by σ* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by π* and σ* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe{sub 4}N.

  15. Resonance Scattering of Fe XVII X-ray and EUV Lines

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Saba, J. L. R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Over the years a number of calculations have been carried out to derive intensities of various X-ray and EUV lines in Fe XVII to compare with observed spectra. The predicted intensities have not agreed with solar observations, particularly for the line at 1.5.02 Angstroms; resonance scattering has been suggested as the source for much of the disagreement. The atomic data calculated earlier used seven configurations having n=3 orbitals and the scattering calculations were carried out only for incident energies above the threshold of the highest fine-structure level. These calculations have now been extended to thirteen configurations having n=4 orbitals and the scattering calculations are carried out below as well as above the threshold of the highest fine structure level. These improved calculations of Fe XVII change the intensity ratios compared to those obtained earlier, bringing the optically thin F(15.02)/F(16.78) ratio and several other ratios closer to the observed values. However, some disagreement with the solar observations still persists, even thought the agreement of the presently calculated optically thin F(15.02)/F(15.26) ratio with the experimental results of Brown et al. (1998) and Laming et al. (2000) has improved. Some of the remaining discrepancy is still thought to be the effect of opacity, which is consistent with expected physical conditions for solar sources. EUV intensity ratios are also calculated and compared with observations. Level populations and intensity ratios are calculated, as a function of column density of Fe XVII, in the slab and cylindrical geometries. As found previously, the predicted intensities for the resonance lines at 15.02 and 15.26 Angstroms exhibit initial increases in flux relative to the forbidden line at 17.10 Angstroms and the resonance line at 16.78 Angstroms as optical thickness increases. The same behavior is predicted for the lines at 12.262 and 12.122 Angstroms. Predicted intensities for some of the allowed

  16. Magnetically-Driven Bremsstralung Targets for Multiple-Pulse X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Kwan, T. J. T.; Cochran, F. L.; Snell, C. M.; Benage, J. F.; Wolkerstorfer, D. C.

    2001-10-01

    In high-dose multiple-pulse x-ray radiography, the energy density deposited by an electron beam pulse in the target is high enough to cause vaporization of the target material and thus the creation of a plasma channel. The outward expansion of the target plasma causes the line density of the target material to drop rapidly. As a result, the efficiency of bremsstrahlung production by subsequent electron pulses can decrease significantly due to the lack of converter material along the electron beam path. We propose a novel converter target concept which makes use of a magnetically-driven, radially imploding liner to either dynamically replenish the converter material in the plasma channel or to move new target material into the line of sight of the electron beam. Pulsed-power technology is natural for this application because its dynamic time scale (microseconds) is well matched with radiographic parameters. Hydrodynamic simulations of the liner-target implosion and the associated x-ray dose calculations will be presented.

  17. Resonant anomalous x-ray reflectivity as a probe of ion adsorption at solid-liquid interfaces.

    SciTech Connect

    Fenter, P.; Park, C.; Nagy, K. L.; Sturchio, N. C.; Chemistry; Univ. of Illinois at Chicago

    2007-05-23

    We discuss new opportunities to understand processes at the solid-liquid interface using resonant anomalous X-ray reflectivity (RAXR). This approach is illustrated by determination of element-specific density profiles at mica surfaces in aqueous electrolyte solutions containing Rb{sup +} and Sr{sup 2+}. The total interfacial electron density profile is determined by specular reflectivity (i.e., reflected intensity vs. momentum transfer, q, at an energy, E, far from any characteristic absorption edge). RAXR spectra (i.e., intensity vs. E at fixed q) reveal element-specific ion distributions. Key differences in the interaction of Rb{sup +} and Sr{sup 2+} with mica are observed using resonant anomalous X-ray reflectivity: Rb{sup +} adsorbs in a partially hydrated state, but Sr{sup 2+} adsorbs in both fully and partially hydrated states.

  18. Nanoscale thermal, acoustic, and magnetic dynamics probed with soft x-ray light

    NASA Astrophysics Data System (ADS)

    Siemens, Mark E.

    This thesis discusses the application of coherent, ultrafast beams of soft x-ray light from high-order harmonic generation (HHG) to study thermal, acoustic, and magnetic processes in nanostructures. This short-wavelength light is a uniquely powerful probe of surface dynamics since it has both a very short wavelength and duration. First, this thesis reports the first observation and quantitative measurements of the transition from diffusive to ballistic thermal transport for the case of heat flow away from a heated nanostructure into a bulk substrate. This measurement provides insight into the fundamentals of thermal energy transport away from nanoscale hot spots, and demonstrates a fundamental limit to the energy dissipation capability of nanostructures. Further, we propose a straightforward correction to the Fourier law for heat diffusion, necessary for thermal management in nanoelectronics, nano-enabled energy systems, nanomanufacturing, and nanomedicine. Second, this work discusses dynamic measurements of ultra-high frequency surface acoustic waves (SAW) and the first SAW dispersion measurement in a nanostructured system. These results are directly applicable to adhesion and thickness diagnostics of very thin films. Finally, this thesis reports the first use of light from HHG to study magnetic orientation. Using the transverse magneto-optic Kerr effect and soft x-ray light near the M-absorption edges of Fe, Co, and Ni, magnetic asymmetries up to 8% are observed from thin Permalloy (Ni80Fe20) films. This signal is 1-2 orders of magnitude higher than that observed using optical methods, showing great promise for dynamic imaging of domain flipping at the 100 nm level.

  19. Closed bore XMR (CBXMR) systems for aortic valve replacement: active magnetic shielding of x-ray tubes.

    PubMed

    Bracken, John A; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-05-01

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789

  20. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain.

    PubMed

    Logan, Jonathan; Harder, Ross; Li, Luxi; Haskel, Daniel; Chen, Pice; Winarski, Robert; Fuesz, Peter; Schlagel, Deborah; Vine, David; Benson, Christa; McNulty, Ian

    2016-09-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2 crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2 nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered. PMID:27577777

  1. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain

    PubMed Central

    Logan, Jonathan; Harder, Ross; Li, Luxi; Haskel, Daniel; Chen, Pice; Winarski, Robert; Fuesz, Peter; Schlagel, Deborah; Vine, David; Benson, Christa; McNulty, Ian

    2016-01-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2 crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2 nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered. PMID:27577777

  2. Dynamics of electron-phonon scattering: crystal- and angular-momentum transfer probed by resonant inelastic x-ray scattering.

    PubMed

    Beye, M; Hennies, F; Deppe, M; Suljoti, E; Nagasono, M; Wurth, W; Föhlisch, A

    2009-12-01

    Experimentally, we observe angular-momentum transfer in electron-phonon scattering, although it is commonly agreed that phonons transfer mostly linear momentum. Therefore, the incorporation of angular momentum to describe phonons is necessary already for simple semiconductors and bears significant implications for the formation of new quasiparticles in correlated functional materials. Separation of linear and angular-momentum transfer in electron-phonon scattering is achieved by highly selective excitations on the femtosecond time scale of resonant inelastic x-ray scattering.

  3. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-01-01

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm2. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm2, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately

  4. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    SciTech Connect

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-09-15

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm{sup 2}. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm{sup 2}, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of

  5. X-ray irradiation of soda-lime glasses studied in situ with surface plasmon resonance spectroscopy

    SciTech Connect

    Serrano, A.; Galvez, F.; Rodriguez de la Fuente, O.; Garcia, M. A.

    2013-03-21

    We present here a study of hard X-ray irradiation of soda-lime glasses performed in situ and in real time. For this purpose, we have used a Au thin film grown on glass and studied the excitation of its surface plasmon resonance (SPR) while irradiating the sample with X-rays, using a recently developed experimental setup at a synchrotron beamline [Serrano et al., Rev. Sci. Instrum. 83, 083101 (2012)]. The extreme sensitivity of the SPR to the features of the glass substrate allows probing the modifications caused by the X-rays. Irradiation induces color centers in the soda-lime glass, modifying its refractive index. Comparison of the experimental results with simulated data shows that both, the real and the imaginary parts of the refractive index of soda-lime glasses, change upon irradiation in time intervals of a few minutes. After X-ray irradiation, the effects are partially reversible. The defects responsible for these modifications are identified as non-bridging oxygen hole centers, which fade by recombination with electrons after irradiation. The kinetics of the defect formation and fading process are also studied in real time.

  6. Magnetic field amplification in the thin X-ray rims of SN 1006

    SciTech Connect

    Ressler, Sean M.; Katsuda, Satoru; Reynolds, Stephen P.; Long, Knox S.; Petre, Robert; Williams, Brian J.; Winkler, P. Frank

    2014-08-01

    Several young supernova remnants, including SN 1006, emit synchrotron X-rays in narrow filaments, hereafter thin rims, along their periphery. The widths of these rims imply 50-100 μG fields in the region immediately behind the shock, far larger than expected for the interstellar medium compressed by unmodified shocks, assuming electron radiative losses limit rim widths. However, magnetic field damping could also produce thin rims. Here we review the literature on rim width calculations, summarizing the case for magnetic field amplification. We extend these calculations to include an arbitrary power-law dependence of the diffusion coefficient on energy, D∝E {sup μ}. Loss-limited rim widths should shrink with increasing photon energy, while magnetic-damping models predict widths almost independent of photon energy. We use these results to analyze Chandra observations of SN 1006, in particular the southwest limb. We parameterize the FWHM in terms of energy as FWHM ∝E{sub γ}{sup m{sub E}}. Filament widths in SN 1006 decrease with energy; m{sub E} ∼ –0.3 to –0.8, implying magnetic field amplification by factors of 10-50, above the factor of four expected in strong unmodified shocks. For SN 1006, the rapid shrinkage rules out magnetic damping models. It also favors short mean free paths (small diffusion coefficients) and strong dependence of D on energy (μ ≥ 1).

  7. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  8. Scaling of the L{sub 2,3} circular magnetic x-ray dichroism of Fe nitrides

    SciTech Connect

    Alouani, M. |; Wills, J.M.; Wilkins, J.W.

    1998-04-01

    We have implemented the calculation of the x-ray-absorption cross section for left- and right-circularly polarized x-ray beams within the local-density approximation by means of our all-electron full-relativistic and spin-polarized full-potential linear muffin-tin orbital method. We show that the L{sub 2,3} circular magnetic x-ray dichroism of Fe, Fe{sub 3}N, and Fe{sub 4}N compounds scales to a single curve when divided by the local magnetic moment. Sum rules determine the spin and orbital magnetic moment of iron atoms in these ordered iron nitrides. {copyright} {ital 1998} {ital The American Physical Society}

  9. Analytical modelling and x-ray imaging of oscillations of a single magnetic domain wall

    SciTech Connect

    Bocklage, Lars; Kruger, Benjamin; Fischer, Peter; Meier, Guido

    2009-07-10

    Domain-wall oscillation in a pinnig potential is described analytically in a one dimensional model for the feld-driven case. For a proper description the pinning potential has to be extended by nonharmonic contributions. Oscillations of a domain wall are observed on its genuine time scale by magnetic X-ray microscopy. It is shown that the nonharmonic terms are present in real samples with a strong restoring potential. In the framework of our model we gain deep insight into the domain-wall motion by looking at different phase spaces. The corrections of the harmonic potential can change the motion of the domain wall significantly. The damping parameter of permalloy is determined via the direct imaging technique.

  10. Plasma Diagnostics in High Resolution X-Ray Spectra of Magnetic Cataclysmic Variables

    SciTech Connect

    Mauche, C W

    2001-10-02

    Using the Chandra HETG spectrum of EX Hya as an example, we discuss some of the plasma diagnostics available in high-resolution X-ray spectra of magnetic cataclysmic variables. Specifically, for conditions appropriate to collisional ionization equilibrium plasmas, we discuss the temperature dependence of the H- to He-like line intensity ratios and the density and photoexcitation dependence of the He-like R line ratios and the Fe XVII I(17.10 {angstrom})/I(17.05 {angstrom}) line ratio. We show that the plasma temperature in EX Hya spans the range from {approx}0.5 to {approx}10 keV and that the plasma density n {ge} 2 x 10{sup 14} cm{sup -3}, orders of magnitude greater than that observed in the Sun or other late-type stars.

  11. Study of increased radiation when an x-ray tube is placed in a strong magnetic field

    SciTech Connect

    Wen Zhifei; Pelc, Norbert J.; Nelson, Walter R.; Fahrig, Rebecca

    2007-02-15

    When a fixed anode x-ray tube is placed in a magnetic field (B) that is parallel to the anode-cathode axis, the x-ray exposure increases with increasing B. It was hypothesized that the increase was caused by backscattered electrons which were constrained by B and reaccelerated by the electric field onto the x-ray tube target. We performed computer simulations and physical experiments to study the behavior of the backscattered electrons in a magnetic field, and their effects on the radiation output, x-ray spectrum, and off-focal radiation. A Monte Carlo program (EGS4) was used to generate the combined energy and angular distribution of the backscattered electrons. The electron trajectories were traced and their landing locations back on the anode were calculated. Radiation emission from each point was modeled with published data (IPEM Report 78), and thus the exposure rate and x-ray spectrum with the contribution of backscattered electrons could be predicted. The point spread function for a pencil beam of electrons was generated and then convolved with the density map of primary electrons incident on the anode as simulated with a finite element program (Opera-3d, Vector Fields, UK). The total spatial distribution of x-ray emission could then be calculated. Simulations showed that for an x-ray tube working at 65 kV, about 54% of the electrons incident on the target were backscattered. In a magnetic field of 0.5 T, although the exposure would be increased by 33%, only a small fraction of the backscattered electrons landed within the focal spot area. The x-ray spectrum was slightly shifted to lower energies and the half value layer (HVL) was reduced by about 6%. Measurements of the exposure rate, half value layer and focal spot distribution were acquired as functions of B. Good agreement was observed between experimental data and simulation results. The wide spatial distribution of secondary x-ray emission can degrade the MTF of the x-ray system at low spatial

  12. Study of Increased Radiation When an X-ray Tube is Placed in a Strong Magnetic Field

    SciTech Connect

    Wen, Z.F.; Pelc, N.J.; Nelson, W.R.; Fahrig, R.; /Stanford U., Dept. Radiol.

    2007-01-12

    When a fixed anode x-ray tube is placed in a magnetic field (B) that is parallel to the anode-cathode axis, the x-ray exposure increases with increasing B. It was hypothesized that the increase was caused by backscattered electrons which were constrained by B and reaccelerated by the electric field onto the x-ray tube target. We performed computer simulations and physical experiments to study the behavior of the backscattered electrons in a magnetic field, and their effects on the radiation output, x-ray spectrum, and off-focal radiation. A Monte Carlo program (EGS4) was used to generate the combined energy and angular distribution of the backscattered electrons. The electron trajectories were traced and their landing locations back on the anode were calculated. Radiation emission from each point was modeled with published data (IPEM Report 78), and thus the exposure rate and x-ray spectrum with the contribution of backscattered electrons could be predicted. The point spread function for a pencil beam of electrons was generated and then convolved with the density map of primary electrons incident on the anode as simulated with a finite element program (Opera-3d, Vector Fields, UK). The total spatial distribution of x-ray emission could then be calculated. Simulations showed that for an x-ray tube working at 65 kV, about 54% of the electrons incident on the target were backscattered. In a magnetic field of 0.5 T, although the exposure would be increased by 33%, only a small fraction of the backscattered electrons landed within the focal spot area. The x-ray spectrum was slightly shifted to lower energies and the half value layer (HVL) was reduced by about 6%. Measurements of the exposure rate, half value layer and focal spot distribution were acquired as functions of B. Good agreement was observed between experimental data and simulation results. The wide spatial distribution of secondary x-ray emission can degrade the MTF of the x-ray system at low spatial

  13. Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses

    PubMed Central

    Biggs, Jason D.; Zhang, Yu; Healion, Daniel; Mukamel, Shaul

    2012-01-01

    Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole. PMID:22583220

  14. A unique 30 Tesla single-solenoid pulsed magnet instrument for x-ray studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob; Das, Ritesh; Nojiri, Hiroyuki; Narumi, Yasuo

    2011-03-01

    We present a dual-cryostat pulsed-magnet instrument at the Advanced Photon Source (APS) with unique capabilities. The dual-cryostat independently cools the solenoid (Tohoku design) using liquid nitrogen and the sample using a closed-cycle refrigerator, respectively. Liquid nitrogen (LN) cooling allows a repetition rate of seven minutes for peak fields of 30 Tesla. The system is unique in that the LN cryostat incorporates a double-funnel vacuum tube passing through the solenoid's bore preserving the entire angular range allowed by the magnet. This scheme is advantageous in that it allows the applied magnetic field to be parallel to the scattering plane complementing typical split-pair magnets with fields normal to the scattering plane. Performance of the coils along with preliminary x-ray diffraction and spectroscopic studies will be presented. Use of the APS is supported by the U. S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357. The work was supported in part by ICC-IMR, Tohoku University.

  15. Optical identification of X-ray source 1RXS J180431.1-273932 as a magnetic cataclysmic variable

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Nucita, A. A.; Parisi, P.

    2012-08-01

    The X-ray source 1RXS J180431.1-273932 has been proposed as a new member of the symbiotic X-ray binary (SyXB) class of systems, which are composed of a late-type giant that loses matter to an extremely compact object, most likely a neutron star. In this paper, we present an optical campaign of imaging plus spectroscopy on selected candidate counterparts of this object. We also reanalyzed the available archival X-ray data collected with XMM-Newton. We find that the brightest optical source inside the 90% X-ray positional error circle is spectroscopically identified as a magnetic cataclysmic variable (CV), most likely of intermediate polar type, through the detection of prominent Balmer, He i, He ii, and Bowen blend emissions. On either spectroscopic or statistical grounds, we discard as counterparts of the X-ray source the other optical objects in the XMM-Newton error circle. A red giant star of spectral type M5 III is found lying just outside the X-ray position: we consider this latter object as a fore-/background one and likewise rule it out as a counterpart of 1RXS J180431.1-273932. The description of the X-ray spectrum of the source using a bremsstrahlung plus black-body model gives temperatures of kTbr ~ 40 keV and kTbb ~ 0.1 keV for these two components. We estimate a distance of d ~ 450 pc and a 0.2-10 keV X-ray luminosity of LX ~ 1.7 × 1032 erg s-1 for this system and, using the information obtained from the X-ray spectral analysis, a mass MWD ~ 0.8 M⊙ for the accreting white dwarf (WD). We also confirm an X-ray periodicity of 494 s for this source, which we interpret as the spin period of the WD. In summary, 1RXS J180431.1-273932 is identified as a magnetic CV and its SyXB nature is excluded. Partly based on observations collected at the Italian Telescopio Nazionale Galileo, located at the Observatorio del Roque de los Muchachos (Canary Islands, Spain).Reduced data used for imaging and spectra is only available at the CDS via anonymous ftp to cdsarc

  16. Analysis of Order Formation in Block Copolymer Thin Films UsingResonant Soft X-Ray Scattering

    SciTech Connect

    Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara,Nitash P.; Segalman, Rachel A.

    2006-11-27

    The lateral order of poly(styrene-block-isoprene) copolymer(PS-b-PI) thin films is characterized by the emerging technique ofresonant soft X-ray scattering (RSOXS) at the carbon K edge and comparedto ordering in bulk samples of the same materials measured usingconventional small-angle X-ray scattering. We show resonance using theoryand experiment that the loss of scattering intensity expected with adecrease in sample volume in the case of thin films can be overcome bytuning X-rays to the pi* resonance of PS or PI. Using RSOXS, we study themicrophase ordering of cylinder- and phere-forming PS-b-PI thin films andcompare these results to position space data obtained by atomic forcemicroscopy. Our ability to examine large sample areas (~;9000 mu m2) byRSOXS enables unambiguous identification of the lateral lattice structurein the thin films. In the case of the sphere-forming copolymer thin film,where the spheres are hexagonally arranged, the average sphere-to-spherespacing is between the bulk (body-centered cubic) nearest neighbor andbulk unit cell spacings. In the case of the cylinder-forming copolymerthin film, the cylinder-to-cylinder spacing is within experimental errorof that obtained in the bulk.

  17. Burn out or fade away? On the X-ray and magnetic death of intermediate mass stars

    SciTech Connect

    Drake, Jeremy J.; Kashyap, Vinay; Günther, H. Moritz; Wright, Nicholas J.; Braithwaite, Jonathan

    2014-05-10

    The nature of the mechanisms apparently driving X-rays from intermediate mass stars lacking strong convection zones or massive winds remains poorly understood, and the possible role of hidden, lower mass close companions is still unclear. A 20 ks Chandra HRC-I observation of HR 4796A, an 8 Myr old main sequence A0 star devoid of close stellar companions, has been used to search for a signature or remnant of magnetic activity from the Herbig Ae phase. X-rays were not detected and the X-ray luminosity upper limit was L{sub X} ≤ 1.3 × 10{sup 27} erg s{sup –1}. The result is discussed in the context of various scenarios for generating magnetic activity, including rotational shear and subsurface convection. A dynamo driven by natal differential rotation is unlikely to produce observable X rays, chiefly because of the difficulty in getting the dissipated energy up to the surface of the star. A subsurface convection layer produced by the ionization of helium could host a dynamo that should be effective throughout the main sequence but can only produce X-ray luminosities of the order 10{sup 25} erg s{sup –1}. This luminosity lies only moderately below the current detection limit for Vega. Our study supports the idea that X-ray production in Herbig Ae/Be stars is linked largely to the accretion process rather than the properties of the underlying star, and that early A stars generally decline in X-ray luminosity at least 100,000 fold in only a few million years.

  18. Burn Out or Fade Away? On the X-Ray and Magnetic Death of Intermediate Mass Stars

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Braithwaite, Jonathan; Kashyap, Vinay; Günther, H. Moritz; Wright, Nicholas J.

    2014-05-01

    The nature of the mechanisms apparently driving X-rays from intermediate mass stars lacking strong convection zones or massive winds remains poorly understood, and the possible role of hidden, lower mass close companions is still unclear. A 20 ks Chandra HRC-I observation of HR 4796A, an 8 Myr old main sequence A0 star devoid of close stellar companions, has been used to search for a signature or remnant of magnetic activity from the Herbig Ae phase. X-rays were not detected and the X-ray luminosity upper limit was LX <= 1.3 × 1027 erg s-1. The result is discussed in the context of various scenarios for generating magnetic activity, including rotational shear and subsurface convection. A dynamo driven by natal differential rotation is unlikely to produce observable X rays, chiefly because of the difficulty in getting the dissipated energy up to the surface of the star. A subsurface convection layer produced by the ionization of helium could host a dynamo that should be effective throughout the main sequence but can only produce X-ray luminosities of the order 1025 erg s-1. This luminosity lies only moderately below the current detection limit for Vega. Our study supports the idea that X-ray production in Herbig Ae/Be stars is linked largely to the accretion process rather than the properties of the underlying star, and that early A stars generally decline in X-ray luminosity at least 100,000 fold in only a few million years.

  19. Resonance Scattering of Fe XVII X-Ray and EUV Lines

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Saba, J. L. R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Over the years a number of calculations have been carried out to derive intensities of various X-ray and EUV lines in Fe XVII to compare with observed spectra. The predicted intensities have not agreed with solar observations, particularly for the line at 15.02 Angstroms; resonance scattering has been suggested as the source for much of the disagreement. The atomic data calculated earlier used seven configurations, 2s(sup 2) 2p(sup 6),2s(sup 2) 2p(sup 5)3s, 2s(sup 2) 2p(sup 5)3p, 2s(sup 2)2p(sup 5)3d, 2s2 p(sup 6)3s, 2s2p(sup 6)3p, and 2s2p(sup 6)3d, having n=3 orbitals and the scattering calculations in the distorted wave approximation were carried out only for incident energies above the threshold of the highest fine-structure level. These calculations have now been extended to thirteen configurations by adding six more configurations having n=4 orbitals, namely 2s(sup 2) 2p(sup 5)4s, 2s(sup 2) 2p(sup 5)4p, 2s(sup 2) 2p(sup 5)4d, 2s2p(sup 6)4s, 2s2p(sup 6)4p, and 2s2p(sup 6)4d, giving rise to 73 fine structure levels. The scattering calculations are carried out below as well as above the threshold of the highest fine-structure level. The incident energies below the threshold are 55.8, 65, 70, and 76 Ry and those above are 85, 127.5, 170, 212.5, 255, 340, and 425 Ry. The collision strengths are calculated up to total angular momentum L(sup T) = 33. Level populations and intensity ratios are calculated at various electron temperatures and densities. It is not possible to predict how the ratios would change when configurations with n=5 and 6 orbitals are added but some estimates have been made for a few transitions by Liedhal, who indicates an asymptotic convergence when n=5 and 6 orbitals are added. These improved calculations of Fe XVII change the intensity ratios compared to those obtained earlier, bringing the optically thin F(15.02)/F(16.78) ratio and several other ratios closer to the observed values: However, some disagreement with the solar observations

  20. Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Navigation at 1.5 T versus X-ray Fluoroscopy

    PubMed Central

    Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Cooke, Daniel L.; Wilson, Mark W.; Thorne, Bradford R. H.; Sincic, Ryan S.; Arenson, Ronald L.; Saeed, Maythem

    2014-01-01

    Purpose To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. Materials and Methods The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. Results The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. Conclusion In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization

  1. Magnetism at spinel thin film interfaces probed through soft x-ray spectroscopy techniques

    SciTech Connect

    Chopdekar, R.V.; Liberati, M.; Takamura, Y.; Kourkoutis, L. Fitting; Bettinger, J. S.; Nelson-Cheeseman, B. B.; Arenholz, E.; Doran, A.; Scholl, A.; Muller, D. A.; Suzuki, Y.

    2009-12-16

    Magnetic order and coupling at the interfaces of highly spin polarized Fe{sub 3}O{sub 4} heterostructures have been determined by surface sensitive and element specific soft x-ray spectroscopy and spectromicroscopy techniques. At ambient temperature, the interface between paramagnetic CoCr{sub 2}O{sub 4} or MnCr{sub 2}O{sub 4} and ferrimagnetic Fe{sub 3}O{sub 4} isostructural bilayers exhibits long range magnetic order of Co, Mn and Cr cations which cannot be explained in terms of the formation of interfacial MnFe{sub 2}O{sub 4} or CoFe{sub 2}O{sub 4}. Instead, the ferrimagnetism is induced by the adjacent Fe{sub 3}O{sub 4} layer and is the result of the stabilization of a spinel phase not achievable in bulk form. Magnetism at the interface region is observable up to 500 K, far beyond the chromite bulk Curie temperature of 50-95 K.

  2. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  3. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    PubMed Central

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-01-01

    Hybrid closed bore x-ray∕MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (≈1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789

  4. Plasma response measurements of non-axisymmetric magnetic perturbations on DIII-D via soft x-ray imaging

    SciTech Connect

    Shafer, M. W. Unterberg, E. A.; Wingen, A.; Harris, J. H.; Hillis, D. L.; Battaglia, D. J.; Nazikian, R.; Evans, T. E.; Ferraro, N. M.

    2014-12-15

    Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. These measurements are used to test and to validate plasma response models, which are crucial for providing predictive capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic (MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measured perturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. These results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core.

  5. X-ray magnetic circular dichroism and reflection anisotropy spectroscopy Kerr effect studies of capped magnetic nanowires

    SciTech Connect

    Cunniffe, J. P.; McNally, D.E.; Liberati, M.; Arenholz, E.; McGuinness, C.; McGilp, J. F.

    2010-03-02

    Aligned Co wires grown on Pt(997) under ultra-high vacuum conditions have been capped successfully by the epitaxial growth of Au monolayers (ML) at room temperature. The samples were kept under vacuum except when transferring between apparatus or when making some of the measurements. No degradation of the Co wires was detected during the measurements. The magneto-optic response of the system was measured using X-ray magnetic circular dichroism (XMCD) at the Co L{sub 2,3} edge and reflection anisotropy spectroscopy (RAS) at near normal incidence, which is sensitive to the normal component of the out-of-plane magnetization via the Kerr effect (MOKE). Capping the wires significantly impacts their magnetic properties. Comparison of the magneto-optic response of the system at X-ray and optical energies reveals small differences that are attributed to the induced moment in the Pt substrate and Au capping layer not picked up by the element specific XMCD measurements. The sensitivity of RAS-MOKE is sufficient to allow the determination of the easy axis direction of the capped wires to within a few degrees. The results for a 6-atom-wide Co wire sample, capped with 6 ML of Au, are consistent with the capped wires possessing perpendicular magnetization.

  6. Note: Theoretical study on the gas pressure dependence of x-ray yield in TE{sub 111} cavity based electron cyclotron resonance x-ray source

    SciTech Connect

    Selvakumaran, T. S. Sen, Soubhadra; Baskaran, R.

    2014-11-15

    Adopting Langevin methodology, a pressure dependent frictional force term which represents the collisional effect is added to the Lorentz equation. The electrons are assumed to be starting from the uniformly distributed co-ordinates on the central plane. The trajectory of each electron is numerically simulated by solving the modified Lorentz equation for a given pressure. The Bremsstrahlung x-ray energy spectrum for each electron crossing the cavity wall boundary is obtained using the Duane-Hunt law. The total x-ray yield is estimated by adding the spectral contribution of each electron. The calculated yields are compared with the experimental results and a good agreement is found.

  7. Electronic Structure of the ID Conductor K0.3MoO3 studied using resonant inelastic x-ray scattering and soft x-ray emission spectroscopy

    SciTech Connect

    Learmonth, T.; Glans, P.-A.; McGuinness, C.; Plucinski, L.; Zhang, Y.; Guo, J.-H.; Greenblatt, M.; Smith, K.E.

    2008-09-24

    The electronic structure of the quasi-one dimensional conductor K{sub 0.3}MoO{sub 3} has been measured using high resolution resonant inelastic x-ray scattering and x-ray absorption spectroscopy. The data is compared to that from the related two dimensional insulator {alpha}-MoO{sub 3}. Scattering features are observed from both oxides that are explained in terms of the band momentum selectivity of the scattering process, allowing a comparison of the scattering data to recent band structure calculations.

  8. Electronic structure of La{sub 5/3}Sr{sub 1/3}NiO{sub 4} by x-ray emission spectroscopy and resonant inelastic x-ray scattering

    SciTech Connect

    Simonelli, L.; Huotari, S.; Monaco, G.; Saini, N. L.; Giordano, V. M.

    2012-06-01

    Here, we report a study of the electronic structure of La{sub 5/3}Sr{sub 1/3}NiO{sub 4} by x-ray emission spectroscopy (XES) and resonant inelastic x-ray scattering (RIXS). The combination of these techniques has permitted us to reveal a complete picture of the occupied and unoccupied states, and to identify various charge transfer transitions appearing as inelastic features in the RIXS spectra. The results add further information on the electronic excitations in this system, and show how the combination of XES and RIXS can be an important experimental tool to address basic physics of complex systems.

  9. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  10. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  11. IRMA-2 at SOLEIL: a set-up for magnetic and coherent scattering of polarized soft x-rays

    NASA Astrophysics Data System (ADS)

    Sacchi, M.; Popescu, H.; Gaudemer, R.; Jaouen, N.; Avila, A.; Delaunay, R.; Fortuna, F.; Maier, U.; Spezzani, C.

    2013-03-01

    We have designed, built and tested a new instrument for soft x-ray scattering experiments. IRMA-2 is a UHV set-up for elastic and coherent scattering experiments developed at the SEXTANTS beamline of the SOLEIL synchrotron. Applications will be in the field of solid state physics, with emphasis on the investigation of the magnetic properties of artificially structured materials.

  12. X-ray absorption and resonant inelastic x-ray scattering (RIXS) show the presence of Cr{sup +} at the surface and in the bulk of CrF{sub 2}

    SciTech Connect

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2015-07-23

    X-Ray absorption and resonant inelastic x-ray scattering (RIXS) spectra of CrF{sub 2} recorded at the chromium L{sub 2,3} are presented. An atomic multiplet crystal field calculation is compared with the experimental data. Experiment and theory are in agreement once the calculation includes three chromium oxidation states, namely Cr{sup +}, Cr{sup 2+}, and Cr{sup 3+}. X-Ray absorption allows a direct determination of the surface oxidation, while the RIXS spectra shows the presence of these three oxidation states in the sample bulk. To give a quantitative interpretation of the RIXS data the effect of the incomming and outgoing photon penetration depth and self-absorption must be considered. For the much simpler case of MnF{sub 2}, with only one metal oxidation state, the measured RIXS spectra relative intensities are found to be proportional to the square of the sample attenuation length.

  13. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  14. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.

    PubMed

    Riveros, Raul E; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  15. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics

    SciTech Connect

    Riveros, Raul E.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3{+-}2.5nmrms to 5.7{+-}0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  16. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering.

    PubMed

    Kim, Jungho; Shi, Xianbo; Casa, Diego; Qian, Jun; Huang, XianRong; Gog, Thomas

    2016-07-01

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system. PMID:27359136

  17. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering.

    PubMed

    Kim, Jungho; Shi, Xianbo; Casa, Diego; Qian, Jun; Huang, XianRong; Gog, Thomas

    2016-07-01

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.

  18. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    SciTech Connect

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-11-15

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields ({approx}1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  19. Voltage-controlled magnetic anisotropy in Fe|MgO tunnel junctions studied by x-ray absorption spectroscopy

    SciTech Connect

    Miwa, Shinji Matsuda, Kensho; Tanaka, Kazuhito; Goto, Minori; Suzuki, Yoshishige; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-10-19

    In this study, voltage-controlled magnetic anisotropy (VCMA) in Fe|MgO tunnel junctions was investigated via the magneto-optical Kerr effect, soft x-ray absorption spectroscopy, and magnetic circular dichroism spectroscopy. The Fe|MgO tunnel junctions showed enhanced perpendicular magnetic anisotropy under external negative voltage, which induced charge depletion at the Fe|MgO interface. Despite the application of voltages of opposite polarity, no trace of chemical reaction such as a redox reaction attributed to O{sup 2−} migration was detected in the x-ray absorption spectra of the Fe. The VCMA reported in the Fe|MgO-based magnetic tunnel junctions must therefore originate from phenomena associated with the purely electric effect, that is, surface electron doping and/or redistribution induced by an external electric field.

  20. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies.

    PubMed

    Islam, Zahirul; Ruff, Jacob P C; Nojiri, Hiroyuki; Matsuda, Yasuhiro H; Ross, Kathryn A; Gaulin, Bruce D; Qu, Zhe; Lang, Jonathan C

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state. PMID:19947737

  1. 2D soft x-ray system on DIII-D for imaging the magnetic topology in the pedestal region

    SciTech Connect

    Shafer, M.W.; Battaglia, D. J.; Unterberg, Ezekial A; Evans, T. E.; Hillis, Donald Lee; Maingi, R.

    2010-01-01

    A new tangential two-dimensional soft x-ray imaging system (SXRIS) is being designed to examine the edge island structure in the lower X-point region of DIII-D. Plasma shielding and/or amplification of the calculated vacuum islands may play a role in the suppression of edge-localized modes via resonant magnetic perturbations (RMPs). The SXRIS is intended to improve the understanding of three-dimensional (3D) phenomena associated with RMPs. This system utilizes a tangential view with a pinhole imaging system and spectral filtering with beryllium foils. SXR emission is chosen to avoid line radiation and allows suitable signal at the top of a H-mode pedestal where T(e) similar to 1-2 keV. A synthetic diagnostic calculation based on 3D SXR emissivity estimates is used to help assess signal levels and resolution of the design. A signal-to-noise ratio of 10 at 1 cm resolution is expected for the perturbed signals, which are sufficient to resolve most of the predicted vacuum island sizes.

  2. Accretion Column Structure of Magnetic Cataclysmic Variables from X-ray Spectroscopy

    SciTech Connect

    Hoogerwerf, R; Brickhouse, N S; Mauche, C W

    2006-02-27

    Using Chandra HETG data we present light curves for individual spectral lines of Mg XI and Mg XII for EX Hydrae, an intermediate-polar type cataclysmic variable. The Mg XI light curve, folded on the white dwarf spin period, shows two spikes that are not seen in the Mg XII or broad-band light curves. Occultation of the accretion column by the body of the white dwarf would produce such spikes for an angle between the rotation axis and the accretion columns of {alpha} = 18{sup o} and a height of the Mg XI emission above the white dwarf surface of {approx}< 0.0004 white dwarf radii or {approx}< 4 km. The absence of spikes in the Mg XII and broad-band light curves could then be explained if the bulk of its emission forms at much larger height, > 0.004 white dwarf radii or > 40 km, above the white dwarf surface. The technique described in this letter demonstrates that high signal-to-noise ratio and high spectral resolution X-ray spectra can be used to map the temperature and density structure of accretion flows in magnetic cataclysmic variables. The Mg XI and Mg XII light curves are not consistent with the temperature and density structure predicted by the standard Aizu model.

  3. Current Profile and Magnetic Structure Measurements through Tangential Soft X-Ray Imaging in Compact Tori

    SciTech Connect

    Fonck, Raymond J.

    2004-07-12

    This report describes the fabrication and tests of a tangentially imaging soft X-ray (SXR) camera diagnostic for fusion energy plasma research. It can be used for the determination of the current distribution in strongly shaped toroidal magnetically confined plasmas, such as those found in spherical tori or advanced tokamaks. It included the development of both an appropriate imaging SXR camera and image analysis techniques necessary to deduce the plasma shape and current distribution. The basic camera concept consists of a tangentially viewing pinhole imaging system with thin-film SXR filters, a scintillator screen to provide SXR to visible conversion, a fast shuttering system, and an sensitive visible camera imaging device. The analysis approach consists of integrating the 2-D SXR image data into a Grad-Shafranov toroidal equilibrium solver code to provide strong constraints on the deduced plasma current and pressure profiles. Acceptable sensitivity in the deduced current profile can be obtained if the relative noise in the measured image can be kept in the range of 1% or less. Tests on the Pegasus Toroidal Experiment indicate very flat safety factor profiles in the plasma interior.

  4. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  5. A new soft X-ray magnetic circular dichroism facility at the BSRF beamline 4B7B

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Ying; Hong, Cai-Hao; Xing, Hai-Ying; Tang, Kun; Zheng, Lei; Xui, Wei; Chen, Dong-Liang; Cui, Ming-Qi; Zhao, Yi-Dong

    2015-04-01

    X-ray magnetic circular dichroism (XMCD) has become an important and powerful tool because it allows the study of material properties in combination with elemental specificity, chemical state specificity, and magnetic specificity. A new soft X-ray magnetic circular dichroism apparatus has been developed at the Beijing Synchrotron Radiation Facility (BSRF). The apparatus combines three experimental conditions: an ultra-high-vacuum environment, moderate magnetic fields and in-situ sample preparation to measure the absorption signal. We designed a C-type dipole electromagnet that provides magnetic fields up to 0.5 T in parallel (or anti-parallel) direction relative to the incoming X-ray beam. The performances of the electromagnet are measured and the results show good agreement with the simulation ones. Following film grown in situ by evaporation methods, XMCD measurements are performed. Combined polarization corrections, the magnetic moments of the Fe and Co films determined by sum rules are consistent with other theoretical predictions and experimental measurements. Supported by National Natural Science Foundation of China (61204008)

  6. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  7. Oscillator strength of the peptide bond {pi}* resonances at all relevant x-ray absorption edges

    SciTech Connect

    Kummer, K.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Nekipelov, S. V.; Maslyuk, V. V.; Mertig, I.; Blueher, A.; Mertig, M.; Bredow, T.

    2009-10-15

    Absolute x-ray absorption cross sections of a regular bacterial surface-layer protein deposited on a naturally oxidized silicon substrate were determined experimentally. Upon separation of the partial cross sections of the three relevant 1s absorption edges, the oscillator strengths of the 1s{yields}{pi}* excitations within the peptide-backbone unit were extracted. Comparison with results of first-principles calculations revealed their close correlation to the topology of {pi}{sub peptide}* orbitals of the peptide backbone.

  8. MODERN RESONANT X-RAY STUDIES OF ALLOYS: Local Order and Displacements1

    NASA Astrophysics Data System (ADS)

    Ice, G. E.; Sparks, C. J.

    1999-08-01

    The recent availability of intense synchrotron sources with selectable X-ray energies permits high-precision measurements of chemically specific atomic-pair correlations in solid-solution alloys. Short-range chemical order can be accurately measured to identify one atom in a 100 for 10 or more shells, even in alloys with elements nearby in the periodic table, and chemically specific static displacements can be measured with 0.0001 nm resolution. This new information tests theoretical models of alloy phase stability and structure and gives new insights into the physical properties of alloys.

  9. Magnetic structure of Fe-doped CoFe2O4 probed by x-ray magnetic spectroscopies

    NASA Astrophysics Data System (ADS)

    Moyer, J. A.; Vaz, C. A. F.; Arena, D. A.; Kumah, D.; Negusse, E.; Henrich, V. E.

    2011-08-01

    The magnetic properties of iron-doped cobalt ferrite (Co1-xFe2+xO4) (001) thin films grown epitaxially on MgO (001) substrates are investigated by superconducting quantum interference device magnetometry and soft x-ray magnetic linear and circular dichroisms. All Co1-xFe2+xO4 (0.01 ⩽ x ⩽ 0.63) samples have out-of-plane magnetic easy axes and large coercive fields, unlike Fe3O4, due to a large Co2+ orbital moment. The magnetic moments for those samples are significantly reduced from their bulk values; however, as x increases, the magnetic moments tend nearer to their bulk values and increase more rapidly as x approaches 1. This reduction in magnetic moment is attributed to spin canting among the Co2+ cations, owing to a small in-plane tensile strain in the film and to an increased antiferromagnetic alignment among all the cations caused by a partially inverse spinel cubic structure and the likely presence of antiphase boundaries. Our results show that small changes in stoichiometry can lead to significant changes in the magnetic moment of Co1-xFe2+xO4, especially at large values of x.

  10. Synchrotron x-ray spectroscopy studies of valence and magnetic state in europium metal to extreme pressures

    SciTech Connect

    Bi, W.; Souza-Neto, N.M.; Haskel, D.; Fabbris, G.; Alp, E.E.; Zhao, J.; Hennig, R.G.; Abd-Elmeguid, M.M.; Meng, Y.; McCallum, Ralph W.; Dennis, Kevin; Schilling, J.S.

    2012-05-22

    In order to probe the changes in the valence state and magnetic properties of Eu metal under extreme pressure, x-ray absorption near-edge spectroscopy, x-ray magnetic circular dichroism, and synchrotron Mössbauer spectroscopy experiments were carried out. The Mössbauer isomer shift exhibits anomalous pressure dependence, passing through a maximum near 20 GPa. Density functional theory has been applied to give insight into the pressure-induced changes in both Eu's electronic structure and Mössbauer isomer shift. Contrary to previous reports, Eu is found to remain nearly divalent to the highest pressures reached (87 GPa) with magnetic order persisting to at least 50 GPa. These results should lead to a better understanding of the nature of the superconducting state found above 75 GPa and of the sequence of structural phase transitions observed to 92 GPa.

  11. Observation of x-ray absorption magnetic circular dichroism in well-characterized iron-cobalt-platinum multilayers

    SciTech Connect

    Jankowski, A.F.; Waddill, G.D.; Tobin, J.G.

    1993-04-01

    Magnetic circular dichroism in the Fe 2p x-ray absorption is observed in multilayers of(Fe9.5{Angstrom}/Pt9.5{Angstrom}){sub 92}. The magnetization and helicity are both in the plane of this multilayer which is prepared by magnetron sputter deposition. This sample is part of a study to examine magnetization in the ternary multilayer system of FeCo/Pt. Lattice and layer pair spacings are measured using x-ray scattering. The atomic concentration profiles of the multilayer films are characterized using Auger electron spectroscopy coupled with depth profiling. Conventional and high resolution transmission electron microscopy are used to examine the thin film, growth morphology and atomic structure.

  12. Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds

    SciTech Connect

    Schmitt, Thorsten

    2004-01-01

    substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS. revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  13. Quasiparticle lifetime broadening in resonant x-ray scattering of NH4NO3

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Müller, Matthias; Unterumsberger, Rainer; Beckhoff, Burkhard

    2016-07-01

    It has been previously shown that two effects cause dramatic changes in the x-ray absorption and emission spectra from the N K edge of the insulating crystal ammonium nitrate. First, vibrational disorder causes major changes in the absorption spectrum, originating not only from the thermal population of phonons, but, significantly, from zero-point motion as well. Second, the anomalously large broadening (˜4 eV) of the emission originating from nitrate σ states is due to the unusually short lifetimes of quasiparticles in an otherwise extremely narrow band. In this work, we investigate the coupling of these effects to core and valence excitons that are created as the initial x-ray excitation energy is progressively reduced toward the N edge. Using a G W /Bethe-Salpeter approach, we show the extent to which this anomalous broadening is captured by the G W approximation. The data and calculations demonstrate the importance that the complex self-energies (finite lifetimes) of the valence bands have on the interpretation of emission spectra. We produce a scheme to explain why extreme lifetimes should appear in σ states of other similar compounds.

  14. Coronary magnetic resonance angiography.

    PubMed

    Stuber, Matthias; Weiss, Robert G

    2007-08-01

    Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed. PMID:17610288

  15. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ewald, J.; Wessels, P.; Wieland, M.; Nisius, T.; Vogel, A.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Viefhaus, J.; Meier, G.; Wilhein, T.; Drescher, M.

    2016-01-01

    Sub-nanosecond magnetization dynamics of small permalloy (Ni80Fe20) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  16. Magnetic structure determination of Ca3LiOsO6 using neutron and x-ray scattering

    SciTech Connect

    Calder, Stuart A; Lumsden, Mark D; Garlea, Vasile O; Kim, Jong-Woo; Shi, Y. G.; Yamaura, K.; Christianson, Andrew D

    2012-01-01

    We present a neutron and x-ray scattering investigation of Ca3LiOsO6, a material that has been predicted to host magnetic ordering through an extended superexchange pathway involving two anions. Despite the apparent 1D nature and triangular units of magnetic osmium ions the onset of magnetic correlations has been observed at a high temperature of 117 K in bulk measurements. We experimentally determine the magnetically ordered structure and show it to be long range and three dimensional. Our results support the model of extended superexchange interaction.

  17. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGESBeta

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  18. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    NASA Astrophysics Data System (ADS)

    Capelli, R.; Mahne, N.; Koshmak, K.; Giglia, A.; Doyle, B. P.; Mukherjee, S.; Nannarone, S.; Pasquali, L.

    2016-07-01

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  19. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au.

    PubMed

    Capelli, R; Mahne, N; Koshmak, K; Giglia, A; Doyle, B P; Mukherjee, S; Nannarone, S; Pasquali, L

    2016-07-14

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states. PMID:27421398

  20. Laboratory x ray lasers

    NASA Astrophysics Data System (ADS)

    Matthews, D. L.

    1989-08-01

    One of the most innovative spinoffs of ICF technology and physics was the development of the x ray wavelength laser. The first incontrovertible demonstration of this type of laser came from LLNL in 1984 using the Novette laser to pump a selenium foil target. The power and energy of Novette were then needed to produce a column of plasma of sufficient length to achieve a sufficient gainlength product (approximately 5.5, this corresponds to an amplification of approximately 250X) that could unquestionably illustrate the lasing effect. LLNL ICF expertise was also required to develop time-resolved spectrometers used to view the lasing transitions at approximately 20 nm, a region of the XUV spectrum normally dominated by high backgrounds. The design of the x ray laser amplifier, which required maintaining nonequilibrium level populations in a tailored plasma having the proper conditions for gain and x ray laser beam propagation, was accomplished with modified versions of ICF kinetics and hydrodynamics codes. Since the first demonstration, progress in the development of the x ray laser was rapid. New achievements include production of megawatt power levels at 20 nm, amplified spontaneous emission levels approaching saturation intensity GL of approximately 17 at 20 nm, efficiency (x ray laser energy/pump energy) approximately 10(exp 6), the demonstration of double and triple pass amplification (hinting at the possibility of producing x ray wavelength resonators), the focusing of x ray lasers to pump other types of lasers and the first demonstration of an x ray hologram produced by an x ray laser. The generation of amplification at ever shorter wavelength is possible using various types of inversion schemes. We depict below this progress benchmarked against production of gain in the water window (2.2 to 4.4 nm,), where applications to biological imaging may be facilitated.