Science.gov

Sample records for resonant x-ray magnetic

  1. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  2. Resonant magnetic scattering of polarized soft x rays

    SciTech Connect

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.; Underwood, J.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  3. X-ray magnetic circular dichroism of CeFe2 by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Jaouen, N.; Chiuzbăian, S. G.; Hague, C. F.; Delaunay, R.; Baumier, C.; Lüning, J.; Rogalev, A.; Schmerber, G.; Kappler, J.-P.

    2010-05-01

    We have measured the CeL x-ray magnetic circular dichroism (XMCD) in ferromagnetic CeFe2 using the partial fluorescence yield given by the Ce2p3d resonant inelastic x-ray scattering (RIXS) spectrum. The lifetime broadening of the 3d core hole is four times smaller than that of the Ce2p core hole providing improved resolution over earlier experiments. Clear evidence for a 4f2 , 4f1 , 4f0 strongly mixed-valent ground state is observed confirming, by and large, impurity Anderson model predictions which take into account the RIXS XMCD geometrical dependence.

  4. Perpendicular Magnetic Anisotropy in Ultrathin Co/Ni Multilayer Films Studies with Ferromagnetic Resonance and Magnetic X-Ray Microspectroscopy

    DTIC Science & Technology

    2012-06-28

    fields (approx 1 T) the Py magnetization will rotate out of the film plane and may effect the FMR measurement of the Co9Ni multilayer . However, no or...REPORT Perpendicular magnetic anisotropy in ultrathin Co|Ni multilayer films studied with ferromagnetic resonance and magnetic x-ray microspectroscopy...14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Ferromagnetic resonance ( FMR ) spectroscopy, x-ray magnetic circular dichroism (XMCD) spectroscopy and

  5. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    SciTech Connect

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  6. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  7. Soft x-ray resonant magnetic scattering from an imprinted magnetic domain pattern

    SciTech Connect

    Kinane,C.; Suszka, A.; Marrows, C.; Hickey, B.; Arena, D.; Dvorak, J.; Charlton, T.; Langridge, S.

    2006-01-01

    The authors report on the use of a Co/Pt multilayer, which exhibits strong perpendicular magnetic anisotropy, to magnetostatically imprint a domain pattern onto a 50 Angstroms thick Permalloy layer. Element specific soft x-ray magnetic scattering experiments were then performed so as to be sensitive to the magnetic structure of the Permalloy only. Off-specular magnetic satellite peaks, corresponding to a periodic domain stripe width of 270 nm, were observed, confirmed by magnetic force microscopy and micromagnetic modeling. Thus the authors have exploited the element specificity of soft x-ray scattering to discern the purely magnetic correlations in a structurally flat Permalloy film.

  8. Magnetic symmetries in neutron and resonant x-ray Bragg diffraction patterns of four iridium oxides.

    PubMed

    Lovesey, S W; Khalyavin, D D; Manuel, P; Chapon, L C; Cao, G; Qi, T F

    2012-12-12

    The magnetic properties of Sr(2)IrO(4), Na(2)IrO(3), Sr(3)Ir(2)O(7) and CaIrO(3) are discussed, principally in the light of experimental data in recent literature for Bragg intensities measured in x-ray diffraction with enhancement at iridium L-absorption edges. The electronic structure factors we report, which incorporate parity-even and acentric entities, serve the immediate purpose of making full use of crystal and magnetic symmetry to refine our knowledge of the magnetic properties of the four iridates from resonant x-ray diffraction data. They also offer a platform on which to interpret future investigations, using dichroic signals, resonant x-ray diffraction and neutron diffraction, for example, as well as ab initio calculations of electronic structure. Unit-cell structure factors, suitable for x-ray Bragg diffraction enhanced by an electric dipole-electric dipole (E1-E1) event, reveal exactly which iridium multipoles are visible, e.g., a magnetic dipole parallel to the crystal c-axis (z-axis) and an electric quadrupole with yz-like symmetry in the specific case of CaIrO(3). Magnetic space-groups are assigned to Sr(2)IrO(4), Sr(3)Ir(2)O(7) and CaIrO(3), namely, P(I)cca, P(A)ban and Cm'cm', respectively, in the Belov-Neronova-Smirnova notation. The assignment for Sr(2)IrO(4) is possible because of our new high-resolution neutron diffraction data, gathered on a powder sample. In addition, the new data are used to show that the ordered magnetic moment of an Ir(4+) ion in Sr(2)IrO(4) does not exceed 0.29(4) μ(B). Na(2)IrO(3) has two candidate magnetic space-groups that are not resolved with currently available resonant x-ray data.

  9. X-ray and magnetic resonance imaging fusion for cardiac resynchronization therapy.

    PubMed

    Choi, Jinwoo; Radau, Perry; Xu, Robert; Wright, Graham A

    2016-07-01

    Cardiac Resynchronization Therapy (CRT) can effectively treat left ventricle (LV) driven Heart Failure (HF). However, 30% of the CRT recipients do not experience symptomatic benefit. Recent studies show that the CRT response rate can reach 95% when the LV pacing lead is placed at an optimal site at a region of maximal LV dyssynchrony and away from myocardial scars. Cardiac Magnetic Resonance (CMR) can identify the optimal site in three dimensions (3D). 3D CMR data can be registered to clinical standard x-ray fluoroscopy to achieve an optimal pacing of the LV. We have developed a 3D CMR to 2D x-ray image registration method for CRT procedures. We have employed the LV pacing lead on x-ray images and coronary sinus on MR data as landmarks. The registration method makes use of a guidewire simulation algorithm, edge based image registration technique and x-ray C-arm tracking to register the coronary sinus and pacing lead landmarks.

  10. Perpendicular magnetic anisotropy in ultrathin Co|Ni multilayer films studied with ferromagnetic resonance and magnetic x-ray microspectroscopy

    NASA Astrophysics Data System (ADS)

    Macià, F.; Warnicke, P.; Bedau, D.; Im, M.-Y.; Fischer, P.; Arena, D. A.; Kent, A. D.

    2012-11-01

    Ferromagnetic resonance (FMR) spectroscopy, x-ray magnetic circular dichroism (XMCD) spectroscopy and magnetic transmission soft x-ray microscopy (MTXM) experiments have been performed to gain insight into the magnetic anisotropy and domain structure of ultrathin Co|Ni multilayer films with a thin permalloy layer underneath. MTXM images with a spatial resolution better than 25 nm were obtained at the Co L3 edge down to an equivalent thickness of Co of only 1 nm, which establishes a new lower boundary on the sensitivity limit of MTXM. Domain sizes are shown to be strong functions of the anisotropy and thickness of the film.

  11. Magnetic design evolution in perpendicular magnetic recording media as revealed by resonant small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Wang, Tianhan; Mehta, Virat; Ikeda, Yoshihiro; Do, Hoa; Takano, Kentaro; Florez, Sylvia; Terris, Bruce D.; Wu, Benny; Graves, Catherine; Shu, Michael; Rick, Ramon; Scherz, Andreas; Stöhr, Joachim; Hellwig, Olav

    2013-09-01

    We analyze the magnetic design for different generations of perpendicular magnetic recording (PMR) media using resonant soft x-ray small angle x-ray scattering. This technique allows us to simultaneously extract in a single experiment the key structural and magnetic parameters, i.e., lateral structural grain and magnetic cluster sizes as well as their distributions. We find that earlier PMR media generations relied on an initial reduction in the magnetic cluster size down to the grain level of the high anisotropy granular base layer, while very recent media designs introduce more exchange decoupling also within the softer laterally continuous cap layer. We highlight that this recent development allows optimizing magnetic cluster size and magnetic cluster size distribution within the composite media system for maximum achievable area density, while keeping the structural grain size roughly constant.

  12. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    SciTech Connect

    Solves-Llorens, J. A.; Rupérez, M. J. Monserrat, C.; Lloret, M.

    2014-08-15

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  13. Spin reorientation transition in Fe/CeH2 multilayers probed by soft X-ray resonant magnetic scattering

    NASA Astrophysics Data System (ADS)

    Dürr, H. A.; Münzenberg, M.; Felsch, W.; Dhesi, S. S.

    The magnetic domain configurations of Fe 3d spins in Fe/CeH2 multilayers were measured by soft X-ray resonant magnetic scattering. The interface region could be probed by setting up X-ray standing waves due to the multilayer periodicity. By resolving first- and second-order magnetic scattering contributions, we show that the latter probe directly the magneto-crystalline anisotropy which is dominated by the Fe interface layers causing a spin reorientation transition when the temperature is lowered.

  14. Dynamical process of skyrmion-helical magnetic transformation of the chiral-lattice magnet FeGe probed by small-angle resonant soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamasaki, Y.; Morikawa, D.; Honda, T.; Nakao, H.; Murakami, Y.; Kanazawa, N.; Kawasaki, M.; Arima, T.; Tokura, Y.

    2015-12-01

    Small-angle soft x-ray scattering in resonance with Fe L absorption edge has been investigated for helical magnetic order and magnetic skyrmion crystal (SkX) in B20-type cubic FeGe. Transformation of magnetic structures among helical, conical, SkX, and field-polarized spin-collinear forms is observed with the application of a magnetic field parallel to the incident soft x-ray. The resonant soft x-ray scattering with high q -resolution revealed a transient dynamics of SkX, such as rotation of SkX and variation of the SkX lattice constant, upon the change of magnetic field.

  15. X-Ray Detected Magnetic Resonance: A Unique Probe of the Precession Dynamics of Orbital Magnetization Components

    PubMed Central

    Goulon, Jośe; Rogalev, Andrei; Goujon, Gérard; Wilhelm, Fabrice; Ben Youssef, Jamal; Gros, Claude; Barbe, Jean-Michel; Guilard, Roger

    2011-01-01

    X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence. PMID:22272105

  16. X-ray ferromagnetic resonance spectroscopy

    SciTech Connect

    Boero, G.; Rusponi, S.; Bencok, P.; Popovic, R.S.; Brune, H.; Gambardella, P.

    2005-10-10

    We present a method to measure continuous-wave ferromagnetic resonance (FMR) spectra based on the core-level absorption of circularly polarized x rays. The technique is demonstrated by using a monochromatic x-ray beam incident on an yttrium-iron-garnet sample excited by a microwave field at 2.47 GHz. FMR spectra are obtained by monitoring the x-ray absorption intensity at the photon energy corresponding to the maximum of the magnetic circular dichroism effect at the iron L{sub 2,3} edges as a function of applied magnetic field. The x-ray FMR signal is shown to be energy dependent, which makes the technique element sensitive and opens up new possibilities to perform element-resolved FMR in magnetic alloys and multilayers.

  17. Shape memory polymers with enhanced visibility for magnetic resonance- and X-ray imaging modalities.

    PubMed

    Weems, A C; Szafron, J M; Easley, A D; Herting, S; Smolen, J; Maitland, D J

    2017-03-01

    Currently, monitoring of minimally invasive medical devices is performed using fluoroscopy. The risks associated with fluoroscopy, including increased risk of cancer, make this method especially unsuitable for pediatric device delivery and follow-up procedures. A more suitable method is magnetic resonance (MR) imaging, which makes use of harmless magnetic fields rather than ionizing radiation when imaging the patient; this method is safer for both the patient and the performing technicians. Unfortunately, there is a lack of research available on bulk polymeric materials to enhance MR-visibility for use in medical devices. Here we show the incorporation of both physical and chemical modifying agents for the enhancement of both MR and X-ray visibility. Through the incorporation of these additives, we are able to control shape recovery of the polymer without sacrificing the thermal transition temperatures or the mechanical properties. For long-term implantation, these MR-visible materials do not have altered degradation profiles, and the release of additives is well below significant thresholds for daily dosages of MR-visible compounds. We anticipate our materials to be a starting point for safer, MR-visible medical devices incorporating polymeric components.

  18. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    PubMed

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  19. Imaging of stroke: a comparison between X-ray fluorescence and magnetic resonance imaging methods.

    PubMed

    Zheng, Weili; Haacke, E Mark; Webb, Samuel M; Nichol, Helen

    2012-12-01

    A dual imaging approach, combining magnetic resonance imaging to localize lesions and synchrotron rapid scanning X-ray fluorescence (XRF) mapping to localize and quantify calcium, iron and zinc was used to examine one case of recent stroke with hemorrhage and two cases of ischemia 3 and 7 years before death with the latter showing superficial necrosis. In hemorrhagic lesions, more Fe is found accompanied with less Zn. In chronic ischemic lesions, Fe, Zn and Ca are lower indicating that these elements are removed as the normal tissue dies and scar tissue forms. Both susceptibility and T2* maps were calculated to visualize iron in hemorrhages and validated by XRF Ca and Fe maps. The former was superior for imaging iron in hemorrhagic transformation and necrosis but did not capture ischemic lesions. In contrast, T2* could not differentiate Ca from Fe in necrotic tissue but did capture ischemic lesions, complementing the susceptibility mapping. The spatial localization, accurate quantitative data and elemental differentiation shown here could also be valuable for imaging other brain tissue damage with abnormal Ca and Fe content.

  20. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K. |; Jia, J.J.; Underwood, J.H.

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.

  1. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; ...

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  2. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  3. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ∼18 K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ∼3 K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  4. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Sainctavit, Philippe; Ollefs, Katharina; Sikora, Marcin; Filipponi, Adriano; Glatzel, Pieter; Wilhelm, Fabrice; Rogalev, Andrei

    2016-12-01

    X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of  ∼4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.

  5. Application of polarized neutron reflectometry and x-ray resonant magnetic reflectometry for determining the inhomogeneous magnetic structure in Fe/Gd multilayers.

    SciTech Connect

    Kravtsov, E. A.; Haskel, D.; te Velthuis, S. G. E.; Jiang, J. S.; Kirby, B. J.

    2010-01-01

    The evolution of the magnetic structure of multilayer [Fe (35 {angstrom})/Gd (50 {angstrom}){sub 5}] with variation in temperature and an applied magnetic field was determined using a complementary approach combining polarized neutron and X-ray resonant magnetic reflectometry. Self-consistent simultaneous analysis of X-ray and neutron spectra allowed us to determine the elemental and depth profiles in the multilayer structure with unprecedented accuracy, including the identification of an inhomogeneous intralayer magnetic structure with near-atomic resolution.

  6. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  7. Combined Time-Resolved X-ray Magnetic Circular Dichroism and Ferromagnetic Resonance Studies of Magnetic Alloys and Multilayers (invited)

    SciTech Connect

    Arena,D.; Vescovo, E.; Kao, C.; Guan, Y.; Bailey, W.

    2007-01-01

    We present measurements of element- and time-resolved ferromagnetic resonance (FMR) in magnetic thin films at gigahertz frequencies via an implementation of time-resolved x-ray magnetic circular dichroism (TR-XMCD). By combining TR-XMCD and FMR, using a rf excitation that is phase locked to the photon bunch clock, the dynamic response of individual layers or precession of individual elements in an alloy can be measured. The technique also provides extremely accurate measurements of the precession cone angle (to 0.1{sup o}) and the phase of oscillation (to 2{sup o}, or {approx}5 ps at 2.3 GHz). TR-XMCD combined with FMR can be used to study the origins of precessional damping by measuring the relative phase of dissimilar precessing magnetic moments. We have used the technique to measure the response of specific elements and separate layers in several alloys and structures, including a single Ni{sub 81}Fe{sub 19} layer, a pseudo-spin-valve structure (Ni{sub 81}Fe{sub 19}/Cu/Co{sub 93}Zr{sub 7}), magnetic bilayers consisting of low damping (Co{sub 93}Zr{sub 7}) and high damping (Tb-doped Ni{sub 81}Fe{sub 19}) layers joined across a common interface, and elemental moments in Tb-doped Ni{sub 81}Fe{sub 19}.

  8. Perpendicular Magnetic Anisotropy and Induced Magnetic Structures of Pt Layers in the Fe/Pt Multilayers Investigated by Resonant X-ray Magnetic Scattering

    NASA Astrophysics Data System (ADS)

    Lee, Mihee; Takechi, Ryota; Hosoito, Nobuyoshi

    2017-02-01

    Depth distribution of the magnetization induced in the paramagnetic Pt layers of Fe/Pt multilayers was investigated by resonant X-ray magnetic scattering (RXMS) near the Pt L3 absorption edge. Two samples with different perpendicular magnetic anisotropy (PMA) were chosen for RXMS measurements. The magnetic depth profile of the Pt layer was determined in the magnetic saturation state of the Fe magnetization with the sample of weak PMA. The magnetization process of the Pt layer was investigated with the sample of moderate PMA. It is found that the Pt atoms near the interface region have a perpendicular component of the induced magnetization even in the saturation state of the Fe magnetization, suggesting that the PMA of Fe/Pt multilayers originates from the Pt atoms near the interface region. Concerning the magnetization process, the induced Pt magnetization is not proportional to the Fe magnetization. This implies a complicated magnetizing mechanism of the Pt layer by the Fe magnetization.

  9. Ground state of the quasi-1D compound BaVS3 resolved by resonant magnetic x-ray scattering.

    PubMed

    Leininger, Ph; Ilakovac, V; Joly, Y; Schierle, E; Weschke, E; Bunau, O; Berger, H; Pouget, J-P; Foury-Leylekian, P

    2011-04-22

    Resonant magnetic x-ray scattering near the vanadium L2,3-absorption edges has been used to investigate the low temperature magnetic structure of high quality BaVS3 single crystals. Below T(N)=31  K, the strong resonance revealed a triple-incommensurate magnetic ordering at the wave vector (0.226   0.226   ξ) in hexagonal notation, with ξ=0.033. The azimuthal-angle dependence of the scattering signal and time-dependent density functional theory simulations indicate an antiferromagnetic order within the ab plane with the spins polarized along a in the monoclinic structure.

  10. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  11. Fe K-edge X-ray resonant magnetic scattering from Ba(Fe1−xCox)2As2 superconductors

    SciTech Connect

    Kim, Min Gyu; Kreyssig, Andreas; Lee, Yongbin; McQueeney, Robert J.; Harmon, Bruce N.; Goldman, Alan I.

    2012-06-15

    We present an X-ray resonant magnetic scattering study at the Fe-K absorption edge of the BaFe2As2 compound. The energy spectrum of the resonant scattering, together with our calculation using the full-potential linear-augmented plane wave method with a local density functional suggests that the observed resonant scattering arises from electric dipole (E1) transitions. We discuss the role of Fe K-edge X-ray resonant magnetic scattering in understanding the relationship between the structure and the antiferromagnetic transition in the doped Ba(Fe1−xCox)2As2 superconductors.

  12. A Comparison of Rapid-Scanning X-Ray Fluorescence Mapping And Magnetic Resonance Imaging to Localize Brain Iron Distribution

    SciTech Connect

    McCrea, R.P.E.; Harder, S.L.; Martin, M.; Buist, R.; Nichol, H.

    2009-05-26

    The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1, T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences.

  13. Interaction between x-ray and magnetic vortices

    NASA Astrophysics Data System (ADS)

    van Veenendaal, Michel

    2015-12-01

    The interaction between two topological objects, an x-ray beam carrying orbital angular momentum (OAM) and a magnetic vortex, is studied theoretically. The resonant x-ray scattering intensity is calculated as a function of the relative position of the magnetic and x-ray vortices. For a homogeneous system, the charge scattering is zero. For magnetic scattering, the intensity profile strongly depends on the relative topological indices of the x-ray and magnetic singularities. A strong enhancement in the intensity profile is observed for equal winding factors. Additionally, the profile displays edge effects, which depend on the scattering conditions, the radial dependence of the magnetic vortex, and the Laguerre-Gaussian mode of the OAM x-ray beam. The potential of resonant OAM x-ray scattering from magnetic vortices opens the door to study the dynamics and switching of magnetic vortices.

  14. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data.

    PubMed Central

    Byron, O

    1997-01-01

    Computer software such as HYDRO, based upon a comprehensive body of theoretical work, permits the hydrodynamic modeling of macromolecules in solution, which are represented to the computer interface as an assembly of spheres. The uniqueness of any satisfactory resultant model is optimized by incorporating into the modeling procedure the maximal possible number of criteria to which the bead model must conform. An algorithm (AtoB, for atoms to beads) that permits the direct construction of bead models from high resolution x-ray crystallographic or nuclear magnetic resonance data has now been formulated and tested. Models so generated then act as informed starting estimates for the subsequent iterative modeling procedure, thereby hastening the convergence to reasonable representations of solution conformation. Successful application of this algorithm to several proteins shows that predictions of hydrodynamic parameters, including those concerning solvation, can be confirmed. PMID:8994627

  15. X-ray induced demagnetization of single-molecule magnets

    SciTech Connect

    Dreiser, Jan; Westerström, Rasmus; Piamonteze, Cinthia; Nolting, Frithjof; Rusponi, Stefano; Brune, Harald; Yang, Shangfeng; Popov, Alexey; Dunsch, Lothar; Greber, Thomas

    2014-07-21

    Low-temperature x-ray magnetic circular dichroism measurements on the endohedral single-molecule magnet DySc{sub 2}N@C{sub 80} at the Dy M{sub 4,5} edges reveal a shrinking of the opening of the observed hysteresis with increasing x-ray flux. Time-dependent measurements show that the exposure of the molecules to x-rays resonant with the Dy M{sub 5} edge accelerates the relaxation of magnetization more than off-resonant x-rays. The results cannot be explained by a homogeneous temperature rise due to x-ray absorption. Moreover, the observed large demagnetization cross sections indicate that the resonant absorption of one x-ray photon induces the demagnetization of many molecules.

  16. Employing soft x-ray resonant magnetic scattering to study domain sizes and anisotropy in Co/Pd multilayers

    NASA Astrophysics Data System (ADS)

    Bagschik, Kai; Frömter, Robert; Bach, Judith; Beyersdorff, Björn; Müller, Leonard; Schleitzer, Stefan; Berntsen, Magnus Hârdensson; Weier, Christian; Adam, Roman; Viefhaus, Jens; Schneider, Claus Michael; Grübel, Gerhard; Oepen, Hans Peter

    2016-10-01

    It is demonstrated that the magnetic diffraction pattern of the isotropic disordered maze pattern is well described utilizing a gamma distribution of domain sizes in a one-dimensional model. From the analysis, the mean domain size and the shape parameter of the distribution are obtained. The model reveals an average domain size that is significantly different from the value that is determined from the peak position of the structure factor in reciprocal space. As a proof of principle, a wedge-shaped (Cot Å/Pd10 Å)8 multilayer film, that covers the thickness range of the spin-reorientation transition, has been used. By means of soft x-ray resonant magnetic scattering (XRMS) and imaging techniques the thickness-driven evolution of the magnetic properties of the cobalt layers is explored. It is shown that minute changes of the domain pattern concerning domain size and geometry can be investigated and analyzed due to the high sensitivity and lateral resolution of the XRMS technique. The latter allows for the determination of the magnetic anisotropies of the cobalt layers within a thickness range of a few angstroms.

  17. Classification of materials using nuclear magnetic resonance dispersion and/or x-ray absorption

    DOEpatents

    Espy, Michelle A.; Matlashov, Andrei N.; Schultz, Larry J.; Volegov, Petr L.; Urbaitis, Algis; Sandin, Henrik; Yoder, Jacob; Surko, Stephen

    2017-01-31

    Methods for determining the identity of a substance are provided. A classification parameter set is defined to allow identification of substances that previously could not be identified or to allow identification of substances with a higher degree of confidence. The classification parameter set may include at least one of relative nuclear susceptibility (RNS) or an x-ray linear attenuation coefficient (LAC). RNS represents the density of hydrogen nuclei present in a substance relative to the density of hydrogen nuclei present in water. The extended classification parameter set may include T.sub.1, T.sub.2, and/or T.sub.1.rho. as well as at least one additional classification parameter comprising one of RNS or LAC. Values obtained for additional classification parameters as well as values obtained for T.sub.1, T.sub.2, and T.sub.1.rho. can be compared to known classification parameter values to determine whether a particular substance is a known material.

  18. Element-specific characterization of the interface magnetism in [Co{sub 2}MnGe/Au]{sub n} multilayers by x-ray resonant magnetic scattering

    SciTech Connect

    Grabis, J.; Bergmann, A.; Nefedov, A.; Westerholt, K.; Zabel, H.

    2005-07-01

    The magnetism of the ferromagnetic half-metallic Heusler compounds at the interface with other metals, insulators, and semiconductors is a critical issue when judging the prospects for these materials to be used in future spintronic devices. We study the interface magnetism of the ferromagnetic half metal Co{sub 2}MnGe in a high-quality [Co{sub 2}MnGe/Au]{sub 50} multilayer by x-ray resonant magnetic reflectivity using circularly polarized x-ray radiation in the energy range of the Co and Mn L{sub 2,3} edges. An analysis of the magnetic part of the reflectivity at the superlattice Bragg peaks allows a precise determination of the magnetization profile within the Co{sub 2}MnGe layers. We find that the profile is definitely different for Mn and Co spins and asymmetric with respect to the growth direction. At room temperature nonferromagnetic interface layers exist with a thickness of about 0.45 nm at the bottom and 0.3 nm at the top of the Co{sub 2}MnGe layers. Additionally, the comparison of the nonresonant and resonant magnetic diffuse scattering reveals that the correlated structural and magnetic roughness are almost identical, the corresponding length scale being the in-plane crystallite size.

  19. Spin-flop transition on Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy

    SciTech Connect

    Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Lang, J. C.; Islam, Z.; Lograsso, T.; Schlagel, D.; Pecharsky, V.; Gschneidner, K.; Canfield, P.; Harmon, B.; McQueeney, R.; Goldman, A.

    2008-02-21

    X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd{sub 5}Ge{sub 4} and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90{sup o} from the c axis to the a axis when a magnetic field, H{sub sf} = 9 kOe, is applied along the c axis at T = 9 K. The magnetic space group changes from Pnm'a to Pn'm'a' for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition.

  20. Characterization of the phosphoserine of pepsinogen using /sup 31/P nuclear magnetic resonance: corroboration of X-ray crystallographic results

    SciTech Connect

    Williams, S.P.; Bridger, W.A.; James, M.N.G.

    1986-10-21

    The endogenous phosphoserine residue in porcine pepsinogen has been titrated with use of phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR). It has an observed pK/sub a/sub 2// of 6.7 and a narrow line width (approx. =10 Hz). The phosphate can be readily removed by an acid phosphatase from potato; however, it is resistant to hydrolysis by several alkaline phosphatases. The X-ray crystal structure of porcine pepsinogen at 1.8-A resolution shows a rather weak and diffuse region of electron density in the vicinity of the phosphorylated serine residue. This suggests considerable dynamic mobility or conformational disorder of the phosphate. In order to define more fully this behavior the NMR data have been used to corroborate these crystallographic results. All these physical data are consistent with a highly mobile phosphoserine residue on the surface of the zymogen and freely exposed to solvent. In addition, certain properties of this phosphoserine moiety on pepsinogen are similar to those of one of the phosphorylated residues of ovalbumin. The possible significance of this is discussed.

  1. Ce 5d magnetic profile in Fe/Ce multilayers for the α and γ-like Ce phases by x-ray resonant magnetic scattering

    NASA Astrophysics Data System (ADS)

    Jaouen, N.; Tonnerre, J. M.; Raoux, D.; Bontempi, E.; Ortega, L.; Müenzenberg, M.; Felsch, W.; Rogalev, A.; Dürr, H. A.; Dudzik, E.; van der Laan, G.; Maruyama, H.; Suzuki, M.

    2002-10-01

    The in-depth distribution of the induced 5d magnetic moments across the Ce layers in Fe/Ce/La/Ce, Fe/La/Ce/La and Fe/CeH2-δ multilayers has been investigated by x-ray resonant magnetic scattering (XRMS) at the Ce L2 edge. The determination of the composition profile across the period of the multilayer is required for a quantitative analysis of XRMS and has been derived from x-ray resonant reflectivity measurements. In Fe/Ce/La/Ce and Fe/La/Ce/La multilayers, Ce adopts an α-like electronic configuration and the local magnetization, across the Ce layer, is found to be highly nonuniform. The Ce 5d magnetic profile shows an oscillating behavior with an amplitude decreasing from the Fe interface in Fe/Ce/La/Ce. Conversely, in Fe/La/Ce/La, where the Ce atoms are not in direct contact with Fe atoms, it presents an oscillatory profile with, however, a nearly constant amplitude. In Fe/CeH2-δ multilayers, where hydrogen leads to a strain relaxation and to a 4f relocalization (Ce γ-like configuration), a nonoscillating decreasing profile has been observed. These experiments allow one to evidence an antiferromagnetic component in a α Ce ultrathin layer and a sharply decreasing induced magnetization due to 5d-3d hybridization at the interface.

  2. Substituent effect in 2-benzoylmethylenequinoline difluoroborates exhibiting through-space couplings. Multinuclear magnetic resonance, X-ray diffraction, and computational study.

    PubMed

    Zakrzewska, Anna; Kolehmainen, Erkki; Valkonen, Arto; Haapaniemi, Esa; Rissanen, Kari; Chęcińska, Lilianna; Ośmiałowski, Borys

    2013-01-10

    The series of nine 2-benzoylmethylenequinoline difluoroborates have been synthesized and characterized by multinuclear magnetic resonance, X-ray diffraction (XRD), and computational methods. The through-space spin-spin couplings between (19)F and (1)H/(13)C nuclei have been observed in solution. The NMR chemical shifts have been correlated to the Hammett substituent constants. The crystal structures of six compounds have been solved by XRD. For two derivatives the X-ray wave function refinement was performed to evaluate the character of bonds in the NBF(2)O moiety by topological and integrated bond descriptors.

  3. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  4. Magnetic fan structures in Ba0.5Sr1.5Zn2Fe12O22 hexaferrite revealed by resonant soft x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Hearmon, Alexander J.; Johnson, R. D.; Beale, T. A. W.; Dhesi, S. S.; Luo, X.; Cheong, S.-W.; Steadman, P.; Radaelli, Paolo G.

    2013-11-01

    The hexaferrites are known to exhibit a wide range of magnetic structures, some of which are connected to important technological applications and display magnetoelectric properties. We present data on the low magnetic field structures stabilized in a Y-type hexaferrite as observed by resonant soft x-ray diffraction. The helical spin block arrangement that is present in zero applied magnetic field becomes fanlike as a field is applied in plane. The propagation vectors associated with each fan structure are studied as a function of magnetic field, and a new magnetic phase is reported. Mean field calculations indicate this phase should stabilize close to the boundary of the previously reported phases.

  5. X-ray spectroscopy of magnetic CVs

    NASA Astrophysics Data System (ADS)

    Matt, Giorgio

    I discuss two topics in X-ray spectroscopy of magnetic CVs: reflection from the white dwarf surface, and opacity effects in the post shock plasma. I also briefly mention future observational perspectives, with particular emphasis on the Constellation X-ray mission.

  6. Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance

    PubMed Central

    Grangeon, Sylvain; Claret, Francis; Roosz, Cédric; Sato, Tsutomu; Gaboreau, Stéphane; Linard, Yannick

    2016-01-01

    The structure of nanocrystalline calcium silicate hydrates (C–S–H) having Ca/Si ratios ranging between 0.57 ± 0.05 and 1.47 ± 0.04 was studied using an electron probe micro-analyser, powder X-ray diffraction, 29Si magic angle spinning NMR, and Fourier-transform infrared and synchrotron X-ray absorption spectroscopies. All samples can be described as nanocrystalline and defective tobermorite. At low Ca/Si ratio, the Si chains are defect free and the Si Q 3 and Q 2 environments account, respectively, for up to 40.2 ± 1.5% and 55.6 ± 3.0% of the total Si, with part of the Q 3 Si being attributable to remnants of the synthesis reactant. As the Ca/Si ratio increases up to 0.87 ± 0.02, the Si Q 3 environment decreases down to 0 and is preferentially replaced by the Q 2 environment, which reaches 87.9 ± 2.0%. At higher ratios, Q 2 decreases down to 32.0 ± 7.6% for Ca/Si = 1.38 ± 0.03 and is replaced by the Q 1 environment, which peaks at 68.1 ± 3.8%. The combination of X-ray diffraction and NMR allowed capturing the depolymerization of Si chains as well as a two-step variation in the layer-to-layer distance. This latter first increases from ∼11.3 Å (for samples having a Ca/Si ratio <∼0.6) up to 12.25 Å at Ca/Si = 0.87 ± 0.02, probably as a result of a weaker layer-to-layer connectivity, and then decreases down to 11 Å when the Ca/Si ratio reaches 1.38 ± 0.03. The decrease in layer-to-layer distance results from the incorporation of interlayer Ca that may form a Ca(OH)2-like structure, nanocrystalline and intermixed with C–S–H layers, at high Ca/Si ratios. PMID:27275135

  7. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  8. Temperature and field dependent magnetization in a sub-μm patterned Co/FeRh film studied by resonant x-ray scattering

    NASA Astrophysics Data System (ADS)

    Lounis, Lounès; Spezzani, Carlo; Delaunay, Renaud; Fortuna, Franck; Obstbaum, Martin; Günther, Stefan; Back, Christian H.; Popescu, Horia; Vidal, Franck; Sacchi, Maurizio

    2016-05-01

    We studied the temperature and field dependence of the magnetization in a Co/FeRh/MgO(0 0 1) film patterned into a matrix of sub-μm sized rectangles, using element selective resonant scattering of polarized soft x-rays. We show that it is possible to reverse partially the magnetization of the Co layer in a thermal cycle that crosses the FeRh antiferromagnetic to ferromagnetic transition. Our results support interest in patterned Co/FeRh films and their potential for achieving temperature induced magnetization switching.

  9. Stimulated Resonant X-Ray Emission in Solids

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Higley, Daniel; Hantschmann, Markus; Mehta, Virat; Beye, Martin; Schlotter, William; Stohr, Joachim

    We present direct evidence of resonant stimulated X-Ray emission in magnetically patterned Co/Pd multilayers. At a free electron laser, we measure X-Ray transmission through Co/Pd of ultrafast (~2fs) X-Ray pulses at the Co L3 edge for fluences of up to 2 J/cm2/fs simultaneously in the transmission and scattering geometries. With increasing fluence, we observe a nonlinear decrease in first-order scattering intensity together with a compensating increase in transmitted forward intensity for all energies within the Co resonant absorption edge. At high enough fluences (>1 J/cm2/fs), the sample absorption spectrum and scattering intensity are both suppressed by over two orders of magnitude, leaving the sample effectively transparent to X-Rays. In our geometry, these two effects are indicative of elastic stimulated scattering, which favors forward transmission at the cost of scattered intensity in all other directions. We then show that our data is well-described by stimulated emission calculations using the optical Bloch equations. Our dual measurement serves as a pioneering study of X-Ray stimulated processes, and paves the way for experiments on realizing potentially powerful X-Ray spectroscopic techniques such as stimulated RIXS.

  10. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure

  11. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N. Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-01-01

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors’ assembly were also

  12. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    SciTech Connect

    Lillaney, Prasheel; Pelc, Norbert; Shin Mihye; Hinshaw, Waldo; Fahrig, Rebecca; Bennett, N. Robert

    2013-02-15

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also

  13. Assessment of alterations in X-ray irradiation-induced DNA damage of glioma cells by using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Li, Hongxia; Xu, Yanjie; Shi, Wenqi; Li, Fuyan; Zeng, Qingshi; Yi, Cui

    2017-03-01

    Glioma is one of the most common types of brain tumors. DNA damage is closely associated with glioma cell apoptosis induced by X-ray irradiation. Alterations of metabolites in glioma can be detected noninvasively by proton nuclear magnetic resonance (1H NMR) spectroscopy. To noninvasively explore the micro mechanism in X-ray irradiation-induced apoptosis, the relationship between metabolites and DNA damage in glioma cells was investigated. Three glioma cell lines (C6, U87 and U251) were randomly designated as control (0Gy) and treatment groups (1, 5, 10, 15Gy). After X-ray exposure, each group was separated into four parts: (i) to detect metabolites by 1H NMR spectroscopy; (ii) to make cell colonies; (iii) to detect cell cycle distribution and apoptosis rate by flow cytometry; and (iv) to measure DNA damage by comet assay. The metabolite ratios of lactate/creatine and succinate/creatine decreased (lactate/creatine: C6, 22.17-66.27%; U87, 15.93-44.56%; U251, 26.27-74.48%. succinate/creatine: C6, 14.41-48.35%; U87, 22.03-70.62%; U251, 17.33-60.06%) and choline/creatine increased (C6, 52.22-389.68%; U87, 56.15-82.36%; U251, 31.87-278.62%) in the treatment groups compared with the control group (each P<0.05), which linearly depended on DNA damage. An increasing dose of X-ray irradiation increased numbers of apoptotic cells (P<0.01), and the DNA damage parameters were dose-dependent (P<0.05). The colony-forming rate declined (P<0.01) and the percentage of cells at G1 stage increased when exposed to 1Gy X-ray (three cell lines, P<0.05). Metabolite alterations detected by 1H NMR spectroscopy can be used to determine DNA damage induced by X-ray irradiation. 1H NMR spectroscopy is a noninvasive method to predict DNA damage of glioma cell at the micro level.

  14. Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls.

    PubMed

    Newman, Roger H; Hill, Stefan J; Harris, Philip J

    2013-12-01

    A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.

  15. Pump-probe measurement of short and long-range exchange interactions in a rare-earth magnet using resonant x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Langner, Matthew; Roy, Sujoy; Chuang, Yi-De; Versteeg, Rolf; Zhu, Yi; Hertlein, Marcus; Glover, Thornton; Dumesnil, Karine; Schoenlein, Robert

    2014-03-01

    The combined effects of spin-orbit interactions, magnetostriction, and long-range exchange coupling lead to a wide variety of magnetic phases in the rare earth magnets. In dysprosium, core level spins develop a spiral phase as a result of competition between short and long-range RKKY exchange interactions mediated by the conducting electrons. We use time-resolved resonant x-ray diffraction to directly probe the spiral order parameter of the core level magnetism in response to optical pumping of the conduction electrons that mediate the exchange interaction. The dynamics of the diffraction intensity and spiral turn angle occur on different time scales, and through free-energy analysis, we associate these dynamics with changes in the short and long-range exchange coupling.

  16. Resonant X-ray emission with a standing wave excitation

    PubMed Central

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  17. Conformational isomerism in solid state of AMG 853--structure studies using solid-state nuclear magnetic resonance and X-ray diffraction.

    PubMed

    Kiang, Y-H; Nagapudi, Karthik; Wu, Tian; Peterson, Matthew L; Jona, Janan; Staples, Richard J; Stephens, Peter W

    2015-07-01

    Investigation of an additional resonance peak in the (19) F solid-state nuclear magnetic resonance (NMR) spectrum of AMG 853, a dual antagonist of DP and CRTH2 previously in clinical development for asthma, has led to the identification of two conformational isomers coexisting in the crystal lattice in a continuous composition range between 89.7%:10.3% and 96.5%:3.5%. These two isomers differ in the chloro-flurorophenyl moiety orientation-the aromatic ring is flipped by 180° in these two isomers. The level of the minor isomer is directly measured through integration of the two peaks in the (19) F solid-state NMR spectrum. The values obtained from the NMR data are in excellent agreement with the degree of disorder of the fluorine atom in the crystal structure, refined using both single-crystal and high-resolution powder X-ray diffraction data.

  18. X-ray resonator with pear-shaped reflectors

    SciTech Connect

    Churikov, V A

    2003-11-30

    An X-ray resonator design is proposed in which peculiar pear-shaped reflectors, which are grazing-incidence X-ray mirrors, serve as optical elements. Special features of this resonator are relatively high reflector efficiencies and the axial symmetry of the output radiation. (resonators)

  19. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging.

    PubMed

    Ni, Dalong; Zhang, Jiawen; Bu, Wenbo; Zhang, Chen; Yao, Zhenwei; Xing, Huaiyong; Wang, Jing; Duan, Fei; Liu, Yanyan; Fan, Wenpei; Feng, Xiaoyuan; Shi, Jianlin

    2016-01-01

    It is well-known that multimodal imaging can integrate the advantages of different imaging modalities by overcoming their individual limitations. As ultra-high field magnetic resonance imaging (MRI) will be inevitably used in future MRI/X-ray computed tomography (CT) scanner, it is highly expected to develop high-performance nano-contrast agents for ultra-high field MR and CT dual-modality imaging, which has not been reported yet. Moreover, specific behavior of nano-contrast agents for ultra-high field MRI is a challenging work and still remains unknown. Herein, a novel type of NaHoF4 nanoparticles (NPs) with varied particle sizes were synthesized and explored as high-performance dual-modality contrast agents for ultra-high field MR and CT imaging. The specific X-ray absorption and MR relaxivity enhancements with varied nanoparticle diameters (3 nm, 7 nm, 13 nm and 29 nm) under different magnetic field (1.5/3.0/7.0 T) are investigated. Based on experimental results and theoretical analysis, the Curie and dipolar relaxation mechanisms of NaHoF4 NPs are firstly separated. Our results will greatly promote the future medical translational development of the NaHoF4 nano-contrast agents for ultra-high field MR/CT dual-modality imaging applications.

  20. Resonant soft X-ray diffraction - in extremis.

    PubMed

    Hatton, P D; Wilkins, S B; Beale, T A W; Johal, T K; Prabhakaran, D; Boothroyd, A T

    2005-07-01

    The use of softer-energy X-rays produced by synchrotron radiation for diffraction is an area of current interest. In this paper, experiments exploiting resonant scattering at the L absorption edges of 3d transition metal elements are reported. Such energies, typically 500-1000 eV, are at the extreme limit of soft X-ray diffraction where absorption effects are so severe that the sample and diffractometer must be placed in a windowless high-vacuum vessel. In addition, the Ewald sphere is so small as to likely contain, at most, only a single Bragg reflection. Advantages of using such radiation for the study of weak diffraction effects such as anomalous scattering, charge ordering, magnetic diffraction and orbital ordering are reported.

  1. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study.

    PubMed

    Nakashima, Yoshito; Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2011-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm(3). The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M(0)-T2 plot, where M(0) is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores.

  2. Furthering the understanding of silicate-substitution in α-tricalcium phosphate: an X-ray diffraction, X-ray fluorescence and solid-state nuclear magnetic resonance study.

    PubMed

    Duncan, J; Hayakawa, S; Osaka, A; MacDonald, J F; Hanna, J V; Skakle, J M S; Gibson, I R

    2014-03-01

    High-purity (SupT) and reagent-grade (ST), stoichiometric and silicate-containing α-tricalcium phosphate (α-TCP: ST0/SupT0 and Si-TCP x=0.10: ST10/SupT10) were prepared by solid-state reaction based on the substitution mechanism Ca3(PO4)(2-x)(SiO4)x. Samples were determined to be phase pure by X-ray diffraction (XRD), and Rietveld analysis performed on the XRD data confirmed inclusion of Si in the α-TCP structure as determined by increases in unit cell parameters; particularly marked increases in the b-axis and β-angle were observed. X-ray fluorescence (XRF) confirmed the presence of expected levels of Si in Si-TCP compositions as well as significant levels of impurities (Mg, Al and Fe) present in all ST samples; SupT samples showed both expected levels of Si and a high degree of purity. Phosphorus ((31)P) magic-angle-spinning solid-state nuclear magnetic resonance (MAS NMR) measurements revealed that the high-purity reagents used in the synthesis of SupT0 can resolve the 12 expected peaks in the (31)P spectrum of α-TCP compared to the low-purity ST0 that showed significant spectral line broadening; line broadening was also observed with the inclusion of Si which is indicative of induced structural disorder. Silicon ((29)Si) MAS NMR was also performed on both Si-TCP samples which revealed Q(0) species of Si with additional Si Q(1)/Q(2) species that may indicate a potential charge-balancing mechanism involving the inclusion of disilicate groups; additional Q(4) Si species were also observed, but only for ST10. Heating and cooling rates were briefly investigated by (31)P MAS NMR which showed no significant line broadening other than that associated with the emergence of β-TCP which was only realised with the reagent-grade sample ST0. This study provides an insight into the structural effects of Si-substitution in α-TCP and could provide a basis for understanding how substitution affects the physicochemical properties of the material.

  3. Left-sided scimitar vein causing cyanosis after Fontan operation: successful transcatheter device occlusion using magnetic resonance imaging X-ray fusion.

    PubMed

    Downing, Tacy E; Dori, Yoav; Harris, Matthew A; Glatz, Andrew C

    2014-01-01

    We present the case of a 3-year-old boy with asplenia-type heterotaxy syndrome and functionally single ventricle congenital heart disease who developed cyanosis early after the Fontan operation. Combined cardiac magnetic resonance imaging (MRI) and catheterization identified a large hepatic vein to pulmonary vein connection as the source of right to left shunt. The anatomy was quite unusual, suggesting an underlying diagnosis of mixed total anomalous pulmonary venous connection with left-sided scimitar vein. This pattern of pulmonary venous return has not been previously reported in a patient with asplenia. MRI x-ray fusion was used to guide transcatheter device occlusion of the scimitar vein, resulting in marked clinical improvement.

  4. Mn L{sub 2,3} edge resonant x-ray scattering in manganites: Influence of the magnetic state

    SciTech Connect

    Stojic, N.; Binggeli, N.; Altarelli, M.

    2005-09-01

    We present an analysis of the dependence of the resonant orbital-order and magnetic scattering spectra on the spin configuration. We consider an arbitrary spin direction with respect to the local crystal field axis, thus lowering significantly the local symmetry. To evaluate the atomic scattering in this case, we generalized the Hannon-Trammel formula and implemented it inside the framework of atomic multiplet calculations in a crystal field. For an illustration, we calculate the magnetic and orbital scattering in the CE phase of La{sub 0.5}Sr{sub 1.5}MnO{sub 4} in the cases when the spins are aligned with the crystal lattice vector a (or equivalently b) and when they are rotated in the ab-plane by 45 deg. with respect to this axis. Magnetic spectra differ for the two cases. For the orbital scattering, we show that for the former configuration there is a non-negligible {sigma}{yields}{sigma}{sup '} ({pi}{yields}{pi}{sup '}) scattering component, which vanishes in the 45 deg. case, while the {sigma}{yields}{pi}{sup '} ({pi}{yields}{sigma}{sup '}) components are similar in the two cases. From the consideration of two 90 deg. spin canted structures, we conclude there is a significant dependence of the orbital scattering spectra on the spin arrangement. Recent experiments detected a sudden decrease of the orbital scattering intensity upon increasing the temperature above the Neel temperature in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. We discuss this behavior considering the effect of different types of misorientations of the spins on the orbital scattering spectrum.

  5. Studies on x-ray and UV emissions in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.

    2008-02-15

    A novel electron cyclotron resonance x-ray source is constructed based on the ECR technique. In this paper, the possibility of using the ECR x-ray source for producing UV rays by optimizing the plasma parameters is explored. X-ray and UV emissions from the ECR x-ray source are carried out for argon, nitrogen, and CO{sub 2} plasma. The x-ray spectral and dose measurements are carried with NaI(Tl) based spectrometer and dosimeter, respectively. For UV measurement, a quartz window arrangement is made at the exit port and the UV intensity is measured at 5 cm from the quartz plate using UV meter. The x-ray and UV emissions are carried out for different microwave power levels and gas pressures. The x-ray emission is observed in the pressure range {<=}10{sup -5} Torr, whereas the UV emission is found to be negligible for the gas pressures <10{sup -5} Torr and it starts increasing in the pressure range between 10{sup -5} and 10{sup -3} Torr. At high-pressure range, collision frequency of electron-atom is large which leads to the higher UV flux. At low pressure, the electron-atom collision frequency is low and hence the electrons reach high energy and by hitting the cavity wall produces higher x-ray flux. By choosing proper experimental conditions and plasma gas species, the same source can be used as either an x-ray source or an UV source.

  6. X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)

    SciTech Connect

    Nandi, Shibabrata

    2009-01-01

    Electricity and magnetism were unified into a common subject by James Clerk Maxwell in the nineteenth century yielding the electromagnetic theory. Four equations govern the dynamics of electric charges and magnetic fields, commonly known as Maxwell's equations. Maxwell's equations demonstrate that an accelerated charged particle can produce magnetic fields and a time varying magnetic field can induce a voltage - thereby linking the two phenomena. However, in solids, electric and magnetic ordering are most often considered separately and usually with good reason: the electric charges of electrons and ions are responsible for the charge effects, whereas the electron spin governs magnetic properties.

  7. Synthesis, Characterization, In Vitro Phantom Imaging, and Cytotoxicity of A Novel Graphene-Based Multimodal Magnetic Resonance Imaging - X-Ray Computed Tomography Contrast Agent

    PubMed Central

    Lalwani, Gaurav; Sundararaj, Joe Livingston; Schaefer, Kenneth; Button, Terry; Sitharaman, Balaji

    2014-01-01

    Graphene nanoplatelets (GNPs), synthesized using potassium permanganate-based oxidation and exfoliation followed by reduction with hydroiodic acid (rGNP-HI), have intercalated manganese ions within the graphene sheets, and upon functionalization with iodine, show excellent potential as biomodal contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT). Structural characterization of rGNP-HI nanoparticles with low- and high-resolution transmission electron microscope (TEM) showed disc-shaped nanoparticles (average diameter, 200 nm, average thickness, 3 nm). Energy dispersive X-ray spectroscopy (EDX) analysis confirmed the presence of intercalated manganese. Raman spectroscopy and X-ray diffraction (XRD) analysis of rGNP-HI confirmed the reduction of oxidized GNPs (O-GNPs), absence of molecular and physically adsorbed iodine, and the functionalization of graphene with iodine as polyiodide complexes (I3− and I5−). Manganese and iodine content were quantified as 5.1 ± 0.5 and 10.54 ± 0.87 wt% by inductively-coupled plasma optical emission spectroscopy and ion-selective electrode measurements, respectively. In vitro cytotoxicity analysis, using absorbance (LDH assay) and fluorescence (calcein AM) based assays, performed on NIH3T3 mouse fibroblasts and A498 human kidney epithelial cells, showed CD50 values of rGNP-HI between 179-301 µg/ml, depending on the cell line and the cytotoxicity assay. CT and MRI phantom imaging of rGNP-HI showed high CT (approximately 3200% greater than HI at equimolar iodine concentration) and MRI (approximately 59% greater than equimolar Mn2+ solution) contrast. These results open avenues for further in vivo safety and efficacy studies towards the development of carbon nanostructure-based multimodal MRI-CT contrast agents. PMID:24999431

  8. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L; Freund, Stefan M; Menzel, Andreas; Fersht, Alan R; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.

  9. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  10. Magnetic-field-induced charge order in the filled skutterudite SmRu4P12: Evidence from resonant and nonresonant x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Michimura, Shinji; Inami, Toshiya; Hayashi, Yuya; Fushiya, Kengo; Matsuda, Tatsuma D.; Higashinaka, Ryuji; Aoki, Yuji; Sugawara, Hitoshi

    2014-04-01

    The antiferromagnetic ordered phase in SmRu4P12 below the metal-insulator transition at TMI=16.5 K with an unresolved transition at T*˜14 K has been studied by resonant and nonresonant x-ray diffraction in magnetic fields. In the intermediate phase, a nonresonant Thomson scattering with q =(1,0,0) is induced by applying a magnetic field, which is presumably caused by atomic displacements reflecting the charge order in the p band, as predicted theoretically [R. Shiina, J. Phys. Soc. Jpn. 82, 083713 (2013), 10.7566/JPSJ.82.083713]. Simultaneously, the antiferromagnetic moment of Sm is enhanced along the field direction, which is considered to reflect the staggered ordering of the Γ7-Γ8 crystal-field states (scalar or hexadecapole order). The present results show that the orbital-dependent p-f hybridization in association with the nesting instability in the p band gives rise to the unconventional charge order similarly with PrRu4P12 and PrFe4P12.

  11. Trifunctional Polymeric Nanocomposites Incorporated with Fe₃O₄/Iodine-Containing Rare Earth Complex for Computed X-ray Tomography, Magnetic Resonance, and Optical Imaging.

    PubMed

    Wang, Xin; Tu, Mengqi; Yan, Kai; Li, Penghui; Pang, Long; Gong, Ying; Li, Qing; Liu, Ruiqing; Xu, Zushun; Xu, Haibo; Chu, Paul K

    2015-11-11

    In this study, a novel polymerizable CT contrast agent integrating iodine with europium(III) has been developed by a facile and universal coordination chemistry method. The Fe3O4 nanoparticles are then incorporated into this iodine-containing europium complex by seed-emulsifier-free polymerization. The nanocomposites combining the difunctional complex and superparamagnetic Fe3O4 nanoparticles, which have uniform size dispersion and high encapsulation rate, are suitable for computed X-ray tomography (CT), magnetic resonance imaging (MRI), and optical imaging. They possess good paramagnetic properties with a maximum saturation magnetization of 2.16 emu/g and a transverse relaxivity rate of 260 mM(-1) s(-1), and they exhibit obvious contrast effects with an iodine payload less than 4.8 mg I/mL. In the in vivo optical imaging assessment, vivid fluorescent dots can be observed in the liver and spleen by two-photon confocal scanning laser microscopy (CLSM). All the results showed that nanocomposites as polymeric trifunctional contrast agents have great clinical potential in CT, MR, and optical imaging.

  12. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGES

    Wakimoto, S.; Ishii, K.; Kimura, H.; ...

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  13. Resonant Auger Effect at High X-Ray Intensity

    SciTech Connect

    Rohringer, N; Santra, R

    2008-03-27

    The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.

  14. Resonant Soft X-ray Scattering for Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Young, Athony; Hexemer, Alexander; Padmore, Howard

    2015-03-01

    Over the past a few years, we have developed Resonant Soft X-ray Scattering (RSoXS) and constructed the first dedicated resonant soft x-ray scattering beamline at the Advanced Light Source, LBNL. RSoXS combines soft x-ray spectroscopy with x-ray scattering thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized x-rays and high coherence have shown great potential for chemical/morphological structure characterization for many classes of materials. Some recent development of in-situ soft x-ray scattering with in-vacuum sample environment will be discussed. In order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, customized designed liquid/gas environmental cells will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Recent RSoXS results on organic electronics, block copolymer thin films, and membrane structure will be presented.

  15. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  16. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    SciTech Connect

    Mascali, David Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Romano, Francesco Paolo; Torrisi, Giuseppe

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  17. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  18. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    SciTech Connect

    Lee, Yongbin

    2004-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB14.

  19. X-ray fluorescence elemental mapping and microscopy to follow hepatic disposition of a Gd-based magnetic resonance imaging contrast agent.

    PubMed

    Delfino, Riccarda; Altissimo, Matteo; Menk, Ralf Hendrik; Alberti, Roberto; Klatka, Tomasz; Frizzi, Tommaso; Longoni, Antonio; Salomè, Murielle; Tromba, Giuliana; Arfelli, Fulvia; Clai, Milan; Vaccari, Lisa; Lorusso, Vito; Tiribelli, Claudio; Pascolo, Lorella

    2011-12-01

    1. Spatially resolved X-ray fluorescence (XRF) spectroscopy with synchrotron radiation is a technique that allows imaging and quantification of chemical elements in biological specimens with high sensitivity. In the present study, we applied XRF techniques at a macro and micro level to carry out drug distribution studies on ex vivo models to confirm the hepatobiliary disposition of the Gd-based magnetic resonance imaging contrast agent B22956/1. 2. Gd presence was selectively quantified allowing the determination of the time dependent disappearance of the drug from blood and its hepatic accumulation in mice after administration. Elemental mapping highlighted the drug distribution differences between healthy and diseased livers. XRF microanalyses showed that in CCl(4) -induced hepatitis, B22956/1 has greatly reduced hepatic accumulation, shown as a 20-fold reduction of Gd presence. Furthermore, a significant increase of Fe presence was found in steatotic compared with healthy livers, in line with the disease features. 3. The present results show that XRF might be useful in preclinical pharmacological studies with drugs containing exogenous elements. Furthermore, quantitative and high-sensitivity elemental mapping allows simultaneous detection of chemical variation, showing pathological conditions. This approach was useful in suggesting reduced B22956/1 accumulation in steatotic livers, thus opening possible new diagnostic perspectives for this drug.

  20. Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice.

    PubMed

    Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew

    2014-10-08

    Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.

  1. Applications of soft x-ray magnetic dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, G.

    2013-04-01

    Applications of x-ray magnetic circular and linear dichroism (XMCD and XMLD) are reviewed in the soft x-ray region, covering the photon energy range 0.4-2 keV, which includes important absorption edges such as the 3d transition metal L2,3 and rare earth M4,5. These techniques enable a broad range of novel and exciting studies such as on the electronic properties and magnetic ordering of novel nanostructured systems. XMCD has a sensitivity better than 0.01 monolayer (at the surface) and due to simple detection methods, such as electron yield and fluorescence yield, it has become a workhorse technique in physics and materials science. It is the only element-specific technique able to distinguish between the spin and orbital parts of the magnetic moments. The applications are vast, e.g., in x-ray holographic imaging, XMCD gives a spatial resolution of tens of nm. While many studies in the past were centered on physics, more recently new applications have emerged in areas such as chemistry, biology and earth and environmental sciences. For instance, XMCD allows the determination of the cation occupations in spinels and other ternary oxides. In scanning transmission x-ray microscopy (STXM), XMCD enables us to map biogenic magnetite redox changes resulting in a surprising degree of variation on the nanoscale. Another recent development is ferromagnetic resonance (FMR) detected by time-resolved XMCD which opens the door to element-, site- and layer-specific dynamical measurements. By exploiting the time structure of the pulsed synchrotron radiation from the storage ring the relative phase of precession in the individual magnetic layers of a multilayer stack can be determined.

  2. Resonant soft x-ray magnetic scattering from the 4f and 3d electrons in DyFe{sub 4}Al{sub 8}: Magnetic interactions in a cycloidal antiferromagnet

    SciTech Connect

    Beale, T. A. W.; Hatton, P. D.; Wilkins, S. B.; Abbamonte, P.; Stanescu, S.; Paixao, J. A.

    2007-05-01

    Soft x-ray resonant scattering has been used to examine the charge and magnetic interactions in the cycloidal antiferromagnetic compound DyFe{sub 4}Al{sub 8}. By tuning to the Dy M{sub 4} and M{sub 5} absorption edges and the Fe L{sub 2} and L{sub 3} absorption edges, we can directly observe the behavior of the Dy 4f and Fe 3d electron shells. Magnetic satellites surrounding the (110) Bragg peak were observed below 65 K. The diffraction peaks display complex spectra at the Dy M{sub 5} edge, indicative of a split 4f electron band. This is in contrast to the simple resonance observed at the Fe L{sub 3} absorption edge, which probes the Fe 3d electron shell. Temperature-dependent measurements detail the ordering of the magnetic moments on both the iron and the dysprosium antiferromagnetic cycloids. The ratio between the superlattice peak intensities of the Dy M{sub 4} and M{sub 5} absorption edges remained constant throughout the temperature range, in contrast to a previous study conducted at the Dy L{sub 2,3} edges. Our results demonstrate the ability of soft x-ray diffraction to separate the individual magnetic components in complicated multielement magnetic structures.

  3. PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Pu, Fang; Liu, Jianhua; Jiang, Liyan; Yuan, Qinghai; Li, Zhengqiang; Ren, Jinsong; Qu, Xiaogang

    2013-05-01

    Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material. Compared with routinely used Iobitridol in clinic, our PEG-Yb2O3:Gd nanoparticles could provide much significantly enhanced contrast upon various clinical voltages ranging from 80 kVp to 140 kVp owing to the high atomic number and well-positioned K-edge energy of ytterbium. By the doping of gadolinium, our nanoparticulate contrast agent could perform perfect MR imaging simultaneously, revealing similar organ enrichment and bio-distribution with the CT imaging results. The super improvement in imaging efficiency was mainly attributed to the high content of Yb and Gd in a single nanoparticle, thus making these nanoparticles suitable for dual-modal diagnostic imaging with a low single-injection dose. In addition, detailed toxicological study in vitro and in vivo indicated that uniformly sized PEG-Yb2O3:Gd nanoparticles possessed excellent biocompatibility and revealed overall safety.Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material

  4. High-resolution magnetic resonance coronary angiography of the entire heart using a new blood-pool agent, NC100150 injection: comparison with invasive x-ray angiography in pigs.

    PubMed

    Johansson, L O; Nolan, M M; Taniuchi, M; Fischer, S E; Wickline, S A; Lorenz, C H

    1999-01-01

    Recent developments of novel magnetic resonance intravascular contrast agents with low T1 in blood and a long intravascular half-life will rapidly position magnetic resonance coronary angiography (MRCA) at the threshold of clinical application. This article describes the use of one such intravascular contrast agent for noninvasive coronary angiography and comparison with routine invasive x-ray angiography. Six domestic farm pigs with an artificial stenoses at the left circumflex were studied. NC100150 Injection, a new ultra-small superparmagnetic iron oxide (Nycomed Amersham Imaging, Oslo, Norway), was injected using a dose of 5.0 mg Fe/kg body weight. Scanning was done using a 1.5-T Gyroscan ACS-NT. A high-resolution electrocardiogram-triggered scan covering the entire heart was applied. Navigator echoes were used for respiratory triggering. In all animals the location of the stenoses detected with MRCA correlated well with x-ray angiography. The correlation factor between the grade of stenoses determined by MRCA and x-ray angiography was 0.993. MRCA using NC100150 Injection can depict the major coronary arteries and branches well. Decreases in vessel caliber detected by MRCA correlate well with x-ray angiography. The use of such intravascular contrast agents show great promise for clinical applications for noninvasive detection of coronary artery disease in humans.

  5. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  6. The prediction of total skeletal muscle mass in a Caucasian population - comparison of Magnetic resonance imaging (MRI) and Dual-energy X-ray absorptiometry (DXA).

    PubMed

    Geisler, Corinna; Pourhassan, Maryam; Braun, Wiebke; Schweitzer, Lisa; Müller, Manfred J

    2017-03-01

    Dual-energy X-ray (DXA) is an alternative to magnetic resonance imaging (MRI) to measure skeletal muscle mass. DXA assesses lean body mass (LBM), and MRI measures skeletal muscle mass (SMM). Kim et al. (Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655) developed MRI-based algorithms to estimate whole-body SMM by DXA. These algorithms were based on an ethnically mixed study population (Kim et al., Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655). It is unclear whether Kim's algorithms are accurate in an exclusive Caucasian population. The aim of our study was to validate Kim's equation in a Caucasian population of 346 subjects. SMMMRI was assessed using MRI, and LBM and BMCDXA were measured by DXA and fat mass (FMADP ) by air-displacement plethysmographie (ADP). SMMMRI and predicted SMM were highly correlated (r = 0·944; P<0·05). The standard error of estimate of the regression equation was 2·4 kg. However, Bland-Altman plots showed a significant (P<0·001) systematic bias between SMMMRI (median 25·1 kg; IQ 20·2-31·1 kg) and predicted SMM (median 26·3 kg; IQ 22·6-33·0 kg), overestimating SMM by 9·8%. Multiple regression analyses showed that weight explained 4·4% of the variance in the differences between SMMMRI and predicted SMM with the major part unexplained. Kim's algorithm has a systematic unexplained bias and is not recommended in Caucasians.

  7. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition.

    PubMed

    Wang, Ji-Guang; Zhang, Yi; Chen, Han-E; Li, Yan; Cheng, Xiao-Guang; Xu, Li; Guo, Zhe; Zhao, Xing-Shan; Sato, Tetsuya; Cao, Qi-Yun; Chen, Ke-Min; Li, Biao

    2013-01-01

    We compared a 4-limb bioelectrical impedance analysis (BIA) system, HBF 359 (Omron), and a 2-limb foot-to-foot device, BC 532 (Tanita), with the standard dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) methods for the measurement of body fat percentage (BF), skeletal muscle mass percentage (SMM, or fat-free mass [FFM] for BC 532), and visceral fat level (VF). Body composition was measured in 200 healthy volunteers (100 men and 100 women, mean age 48 years) by HBF 359 and BC 532 and by DXA and MRI. The agreement was assessed by correlation analysis and paired t-test. The correlation coefficients between BIA and DXA or MRI ranged from 0.71 to 0.89 for BF, SMM, and VF by HBF 359 and from 0.77 to 0.90 for BF, FFM, and VF by BC 532 in all subjects and in men and women separately (p < 0.001 for all). Compared with DXA, HBF 359 significantly (p < 0.001) underestimated BF by -5.8% in men and -9.6% in women. Compared with MRI, the corresponding underestimatons (negative) or overestimations (positive) by HBF 359 in men and women were, respectively, +1.9% (p = 0.02) and +1.7% (p = 0.10) for SMM, and +13.3% (p < 0.001) and -8.5% (p = 0.006), for VF. The corresponding values by BC 532 in men and women were -10.7 and -6.2% for BF, -1.4 and -2.5% for FFM, and +20.4 and -18.0% for VF. The BIA devices are accurate in the estimation of body composition, especially skeletal muscle mass or FFM.

  8. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  9. RESONANT INELASTIC X-RAY SCATTERING FROM TRANSITION METAL OXIDES.

    SciTech Connect

    HILL,J.P.

    1999-08-23

    Recent developments in hard x-ray resonant inelastic x-ray scattering as a probe of strongly correlated systems are reviewed. Particular attention is paid to studies of Nd{sub 2}CuO{sub 4}. A charge transfer excitation is observed when the incident photon energy is tuned in the vicinity of the copper K-edge. It is shown that the presence of resonant enhancements is controlled by the polarization dependence of the excitation process and by the overlap between a given intermediate state and the particular excitation being studied. This latter observation has shed light on the non-local effects present in certain intermediate states.

  10. Enhanced x-rays from resonant betatron oscillations in laser wakefield with external wigglers

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Yu, M. Y.; Deng, Z. G.; Teng, J.; He, S. K.; Gu, Y. Q.

    2016-11-01

    Generation of ultra-short betatron x-rays by laser-accelerated electron beams is of great research interest as it has many applications. In this paper, we propose a scheme for obtaining bright betatron x-rays by applying external wiggler magnetic field in the laser wakefield to resonantly drive the betatron oscillations of the accelerated electrons therein. This results in a significant enhancement of the betatron oscillation amplitude and generation of bright x-rays with high photon energy. The scheme is demonstrated using two-dimensional particle-in-cell simulation and discussed using a simple analytical model.

  11. X-ray emission from massive stars with magnetic fields

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Hamann, W.-R.; Cassinelli, J. P.; Brown, J. C.; Todt, H.

    2011-12-01

    We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from ``normal'' massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a ``hybrid'' scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. Based on observations obtained with \\xmm and \\cxo.

  12. Magnetic circular dichroism in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Rogalev, A.; Wilhelm, F.

    2015-12-01

    An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

  13. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  14. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  15. The effect of water on the structure and dynamics of spider silk and silk-like polymers studied by magnetic resonance and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Zhitong

    Due to its unique combination of tensile strength and elasticity, the dragline silk of the orb-weaving spider Nephila clavipes has attracted much attention. Most importantly, it has a high energy to break that is unparalleled in other fibers. Though the basis for the strength of the silk fiber has been uncovered, the molecular reason of the fiber's large shrinkage in water is unknown. This has been a major hurdle in the practical applications of the fiber, and to any man-made copy of this material. Small-angle X-ray scattering (SAXS) is used to probe of the long-range structures in the semicrystalline silk. Scattering patterns of wet and dry samples indicate that the crystalline regions stack along the fiber axis to form lamellar structures. These structures are sparsely dispersed in a softer matrix with a long spacing of 8.4 nm. This spacing increases reversibly by 4% when fibers are stretched by 10%, and shrinks to 5.8 nm when fibers shrink 45% in length on wetting. Solid-state nuclear magnetic resonance (NMR) experiments are performed to reveal the microscopic details of the dynamics in the silk. Cross-polarization magic-angle spinning 13C NMR demonstrates that a substantial fraction of the glycine, glutamine, tyrosine, serine, and leucine residues experience dramatic increases in the rate of large-amplitude reorientation at the protein backbone when fibers are wet. Variable temperature deuterium NMR measurements were carried out on silk samples that incorporate leucine deuterated at the methyl group. Results show that only a subset of these leucine residues is strongly affected by water. Quantitative analysis and chemical considerations suggest that the highly conserved YGGLGS(N)QGAGR blocks, only found in the dragline silk protein, play a major role in the supercontraction process. Protein sequences are proposed to produce artificial spider silk with similar mechanical properties, but without the undesired phenomenon of supercontraction. The spinning and

  16. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  17. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  18. Frontiers in imaging magnetism with polarized x-rays

    DOE PAGES

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. The opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  19. Multidimensional resonant nonlinear spectroscopy with coherent broadband x-ray pulses

    NASA Astrophysics Data System (ADS)

    Bennett, Kochise; Zhang, Yu; Kowalewski, Markus; Hua, Weijie; Mukamel, Shaul

    2016-12-01

    New x-ray free electron laser (XFEL) and high harmonic generation (HHG) light sources are capable of generating short and intense pulses that make x-ray nonlinear spectroscopy possible. Multidimensional spectroscopic techniques, which have long been used in the nuclear magnetic resonance, infrared, and optical regimes to probe the electronic structure and nuclear dynamics of molecules by sequences of short pulses with variable delays, can thus be extended to the attosecond x-ray regime. This opens up the possibility of probing core-electronic structure and couplings, the real-time tracking of impulsively created valence-electronic wavepackets and electronic coherences, and monitoring ultrafast processes such as nonadiabatic electron-nuclear dynamics near conical-intersection crossings. We survey various possible types of multidimensional x-ray spectroscopy techniques and demonstrate the novel information they can provide about molecules.

  20. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements

    SciTech Connect

    Boero, G.; Rusponi, S.; Kavich, J.; Rizzini, A. Lodi; Piamonteze, C.; Nolting, F.; Tieg, C.; Thiele, J.-U.; Gambardella, P.

    2009-12-15

    We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni{sub 73}Fe{sub 18}Gd{sub 7}Co{sub 2}) at the L{sub 3}/L{sub 2}-edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/{radical}(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

  1. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements.

    PubMed

    Boero, G; Rusponi, S; Kavich, J; Rizzini, A Lodi; Piamonteze, C; Nolting, F; Tieg, C; Thiele, J-U; Gambardella, P

    2009-12-01

    We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni(73)Fe(18)Gd(7)Co(2)) at the L(3)/L(2)-edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/square root(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

  2. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  3. Lensless imaging of magnetic nanostructures by X-ray spectro-holography.

    PubMed

    Eisebitt, S; Lüning, J; Schlotter, W F; Lörgen, M; Hellwig, O; Eberhardt, W; Stöhr, J

    2004-12-16

    Our knowledge of the structure of matter is largely based on X-ray diffraction studies of periodic structures and the successful transformation (inversion) of the diffraction patterns into real-space atomic maps. But the determination of non-periodic nanoscale structures by X-rays is much more difficult. Inversion of the measured diffuse X-ray intensity patterns suffers from the intrinsic loss of phase information, and direct imaging methods are limited in resolution by the available X-ray optics. Here we demonstrate a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern. Our implementation places the sample behind a lithographically manufactured mask with a micrometre-sized sample aperture and a nanometre-sized hole that defines a reference beam. As an example, we have used the resonant X-ray magnetic circular dichroism effect to image the random magnetic domain structure in a Co/Pt multilayer film with a spatial resolution of 50 nm. Our technique, which is a form of Fourier transform holography, is transferable to a wide variety of specimens, appears scalable to diffraction-limited resolution, and is well suited for ultrafast single-shot imaging with coherent X-ray free-electron laser sources.

  4. Magnetic x-ray dichroism in ultrathin epitaxial films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of high resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.

  5. Stellar X-ray Emission From Magnetically Funneled Shocks

    NASA Astrophysics Data System (ADS)

    Guenther, Hans

    Stars and planets form in giant molecular clouds, so they are deeply embedded in their early stages. When they become optically visible, the young stars are still surrounded by a proto-planetary disk, where planets evolve. These stars are called classical T Tauri stars (CTTS). A key, yet poorly constrained, parameter for the disk evolution is the stellar high-energy emission. It can ionize the outer layers of the disk, change its chemistry and even drive photoevaporation of the disk. Thus the spectral shape and the temporal variability of the stellar X-ray and UV emission shapes the gas and dust properties in some regions of the disk. It sets the photoevaporation timescale which provides an upper limit for planet formation. CTTS still actively accrete mass from their disk. The infalling matter is funneled by the stellar magnetic field and impacts on the star close to free fall velocity. A hot accretion shock develops, which emits X-rays which are distinct from any coronal X-rays. Eventually the disk disperses and bulk planet formation comes to an end. X-ray emitting shocks can still occur at a later stage in stellar evolution, if e.g. the magnetic field is strong enough to funnel the stellar wind to collide in the disk midplane. This so-called magnetically confined wind shock model was originally developed for the A0p star IQ Aur. The magnetically funneled accretion model has been successfully tested for CTTS in a small mass range only; the magnetically confined wind shock model lacks a comparison for high-resolution X-ray grating spectra for all but the most massive stars. In this proposal we request funding to analyze three XMM-Newton observations, which will probe X-ray emitting shocks in stars with magnetic fields: DN Tau (observed as category C target in cycle 8), a CTTS with much lower mass than previous CTTS with X- ray grating spectroscopy; MN Lup (to be observed in cycle 9), a prime candidate for simultaneous X-ray/Doppler-imaging studies; and IQ Aur (to

  6. Synthesis, X-ray structure, magnetic resonance, and DFT analysis of a soluble copper(II) phthalocyanine lacking C-H bonds.

    PubMed

    Moons, Hans; Łapok, Łukasz; Loas, Andrei; Van Doorslaer, Sabine; Gorun, Sergiu M

    2010-10-04

    The synthesis, crystal structure, and electronic properties of perfluoro-isopropyl-substituted perfluorophthalocyanine bearing a copper atom in the central cavity (F(64)PcCu) are reported. While most halogenated phthalocyanines do not exhibit long-term order sufficient to form large single crystals, this is not the case for F(64)PcCu. Its crystal structure was determined by X-ray analysis and linked to the electronic properties determined by electron paramagnetic resonance (EPR). The findings are corroborated by density functional theory (DFT) computations, which agree well with the experiment. X-band continuous-wave EPR spectra of undiluted F(64)PcCu powder, indicate the existence of isolated metal centers. The electron-withdrawing effect of the perfluoroalkyl (R(f)) groups significantly enhances the complexes solubility in organic solvents like alcohols, including via their axial coordination. This coordination is confirmed by X-band (1)H HYSCORE experiments and is also seen in the solid state via the X-ray structure. Detailed X-band CW-EPR, X-band Davies and Mims ENDOR, and W-band electron spin-echo-detected EPR studies of F(64)PcCu in ethanol allow the determination of the principal g values and the hyperfine couplings of the metal, nitrogen, and fluorine nuclei. Comparison of the g and metal hyperfine values of F(64)PcCu and other PcCu complexes in different matrices reveals a dominant effect of the matrix on these EPR parameters, while variations in the ring substituents have only a secondary effect. The relatively strong axial coordination occurs despite the diminished covalency of the C-N bonds and potentially weakening Jahn-Teller effects. Surprisingly, natural abundance (13)C HYSCORE signals could be observed for a frozen ethanol solution of F(64)PcCu. The (13)C nuclei contributing to the HYSCORE spectra could be identified as the pyrrole carbons by means of DFT. Finally, (19)F ENDOR and easily observable paramagnetic NMR were found to relate well to the

  7. Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy.

    PubMed

    La Pierre, Henry S; Minasian, Stefan G; Abubekerov, Mark; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Arnold, John; Bergman, Robert G; Toste, F Dean

    2013-10-07

    Syntheses of neutral halide and aryl vanadium bisimides are described. Treatment of VCl2(NtBu)[NTMS(N(t)Bu)], 2, with PMe3, PEt3, PMe2Ph, or pyridine gave vanadium bisimides via TMSCl elimination in good yield: VCl(PMe3)2(N(t)Bu)2 3, VCl(PEt3)2(N(t)Bu)2 4, VCl(PMe2Ph)2(N(t)Bu)2 5, and VCl(Py)2(N(t)Bu)2 6. The halide series (Cl-I) was synthesized by use of TMSBr and TMSI to give VBr(PMe3)2(N(t)Bu)2 7 and VI(PMe3)2(N(t)Bu)2 8. The phenyl derivative was obtained by reaction of 3 with MgPh2 to give VPh(PMe3)2(N(t)Bu)2 9. These neutral complexes are compared to the previously reported cationic bisimides [V(PMe3)3(N(t)Bu)2][Al(PFTB)4] 10, [V(PEt3)2(N(t)Bu)2][Al(PFTB)4] 11, and [V(DMAP)(PEt3)2(N(t)Bu)2][Al(PFTB)4] 12 (DMAP = dimethylaminopyridine, PFTB = perfluoro-tert-butoxide). Characterization of the complexes by X-ray diffraction, (13)C NMR, (51)V NMR, and V L(3,2)-edge X-ray absorption near-edge structure (XANES) spectroscopy provides a description of the electronic structure in comparison to group 6 bisimides and the bent metallocene analogues. The electronic structure is dominated by π bonding to the imides, and localization of electron density at the nitrogen atoms of the imides is dictated by the cone angle and donating ability of the axial neutral supporting ligands. This phenomenon is clearly seen in the sensitivity of (51)V NMR shift, (13)C NMR Δδ(αβ), and L3-edge energy to the nature of the supporting phosphine ligand, which defines the parameters for designing cationic group 5 bisimides that would be capable of breaking stronger σ bonds. Conversely, all three methods show little dependence on the variable equatorial halide ligand. Furthermore, this analysis allows for quantification of the electronic differences between vanadium bisimides and the structurally analogous mixed Cp/imide system CpV(N(t)Bu)X2 (Cp = C5H5(1-)).

  8. Resonance modes filtering in structured x-ray waveguides

    NASA Astrophysics Data System (ADS)

    Bukreeva, Inna; Cedola, Alessia; Sorrentino, Andrea; Pelliccia, Daniele; Asadchikov, Viktor; Lagomarsino, Stefano

    2011-07-01

    We discuss the self-imaging effect that occurs in a multimode planar x-ray waveguide (WG) with a nanometer vacuum gap, where an additional longitudinal periodicity has been imposed by a periodical structure (a micron scale step-like grating) on the reflecting sidewalls. Taking into account the general Montgomery conditions and the particular case of Talbot effect, we show that this additional longitudinal periodicity, if suitably designed, can filter out the asymmetric and the high order resonance modes, providing a coherent beam at the exit, even if the WG is illuminated by an incoherent source.

  9. Stripe order of La1.64Eu0.2Sr0.16CuO4 in magnetic fields studied by resonant soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Zwiebler, M.; Schierle, E.; Weschke, E.; Büchner, B.; Revcolevschi, A.; Ribeiro, Patrick; Geck, J.; Fink, J.

    2016-10-01

    We present results on the magnetic field dependence of the stripe order in La1.64Eu0.2Sr0.16CuO4 (LESCO). Using resonant soft x-ray scattering at the oxygen K edge to probe the (0.259,0,0.648) superlattice reflection, which is commonly associated to charge stripes, we found no pronounced difference in the wave vector, peak widths, and integrated intensity for magnetic fields up to B =6 T. This is in strong contrast to the behavior observed for La1.875Sr0.125CuO4 , where a stabilization of the charge modulation in high magnetic fields has been demonstrated.

  10. Resonant soft x-ray scattering investigation of orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    SciTech Connect

    Wilkins, S.B.; Stojic, N.; Binggeli, N.; Beale, T.A.W.; Hatton, P.D.; Castleton, C.W.M.; Prabhakaran, D.; Boothroyd, A.T.; Altarelli, M.

    2005-06-15

    We report resonant x-ray scattering data of the orbital and magnetic ordering at low temperatures at the Mn L{sub 2,3} edges in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. The orderings display complex energy features close to the Mn absorption edges. Systematic modeling with atomic multiplet crystal field calculations was used to extract meaningful information regarding the interplay of spin, orbital, and Jahn-Teller order. These calculations provide a good general agreement with the observed energy dependence of the scattered intensity for a dominant orbital ordering of the d{sub x{sup 2}}{sub -z{sup 2}}/d{sub y{sup 2}}{sub -z{sup 2}} type. In addition, the origins of various spectral features are identified. The temperature dependence of the orbital and magnetic ordering was measured and suggests a strong interplay between the magnetic and orbital order parameters.

  11. Note: Studies on x-ray production in electron cyclotron resonance x-ray source based on ridged cylindrical cavity

    SciTech Connect

    Selvakumaran, T. S.; Baskaran, R.

    2012-02-15

    A ridged cylindrical cavity has been designed using MICROWAVE STUDIO programme and it is used in the electron cyclotron resonance (ECR) x-ray source. The experimental parameters of the source are optimized for maximizing the x-ray output, and an x-ray dose rate of {approx}1000 {mu}Sv/h was observed at 20 cm from the port, for 500 W of microwave power without using any target. With the molybdenum target located at optimum position of the ridged cavity, the dose rate is found to be increased only by 10%. In order to understand the experimental observation, the electric field pattern of the cavity with the target placed at various radial distances is studied. In this note, the experimental and theoretical studies on ECR x-ray source using the ridged cylindrical cavity are presented.

  12. Circularly polarized soft x-ray diffraction study of helical magnetism in hexaferrite

    NASA Astrophysics Data System (ADS)

    Mulders, A. M.; Lawrence, S. M.; Princep, A. J.; Staub, U.; Bodenthin, Y.; García-Fernández, M.; Garganourakis, M.; Hester, J.; Macquart, R.; Ling, C. D.

    2010-03-01

    Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measurement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.

  13. Note: Studies on target placement in TE{sub 111} cylindrical cavity of electron cyclotron resonance x-ray source for the enhancement of x-ray dose

    SciTech Connect

    Selvakumaran, T. S.; Baskaran, R.; Singh, A. K.; Sista, V. L. S. Rao

    2010-03-15

    X-ray source based on electron cyclotron resonance principle has been constructed using TE{sub 111} cylindrical cavity. At present the device is used to provide low energy x-ray field for thermoluminescent dosimeter badge calibration. Theoretical and experimental studies on the effect of target placement inside the TE{sub 111} cylindrical cavity for enhancing the x-ray output are carried out and the results are presented in this note. Optimum target location is identified by theoretical analysis on the electric field distribution inside the cavity using MICROWAVE STUDIO program. By modifying the magnetic field configuration, the resonance region is shifted to the optimum target location. The microwave transmission line is upgraded with a three stub tuner which improves the microwave coupling from the source to the target loaded cavity. Molybdenum target is located at a radial distance of 2.5 cm from the cavity center and the x-ray dose rate is measured at 20 cm from the exit port for different microwave power. With the introduction of the target, the x-ray output has improved nearly from 70% to 160% in the microwave power of 150-500 W.

  14. Exploring the accessible frequency range of phase-resolved ferromagnetic resonance detected with x-rays

    NASA Astrophysics Data System (ADS)

    Warnicke, P.; Knut, R.; Wahlström, E.; Karis, O.; Bailey, W. E.; Arena, D. A.

    2013-01-01

    We present time- and element-resolved measurements of the magnetization dynamics in a ferromagnetic trilayer structure. A pump-probe scheme was utilized with a microwave magnetic excitation field phase-locked to the photon bunches and x-ray magnetic circular dichroism in transmission geometry. Using a relatively large photon bunch length with a full width at half maximum of 650 ps, the precessional motion of the magnetization was resolved up to frequencies of 2.5 GHz, thereby enabling sampling at frequencies significantly above the inverse bunch length. By simulating the experimental data with a numerical model based on a forced harmonic oscillator, we obtain good correlation between the two. The model, which includes timing jitter analysis, is used to predict the accessible frequency range of x-ray detected ferromagnetic resonance.

  15. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation, and resonant effects

    SciTech Connect

    Yang, S.-H.; Gray, A. X.; Kaiser, A. M.; Mun, B. S.; Sell, B. C.; Kortright, J. B.; Fadley, C. S.

    2013-02-21

    We present a general theoretical methodology and related open-access computer program for carrying out the calculation of photoelectron, Auger electron, and x-ray emission intensities in the presence of several x-ray optical effects, including total reflection at grazing incidence, excitation with standing-waves produced by reflection from synthetic multilayers and at core-level resonance conditions, and the use of variable polarization to produce magnetic circular dichroism. Calculations illustrating all of these effects are presented, including in some cases comparisons to experimental results. Sample types include both semi-infinite flat surfaces and arbitrary multilayer configurations, with interdiffusion/roughness at their interfaces. These x-ray optical effects can significantly alter observed photoelectron, Auger, and x-ray intensities, and in fact lead to several generally useful techniques for enhancing surface and buried-layer sensitivity, including layer-resolved densities of states and depth profiles of element-specific magnetization. The computer program used in this study should thus be useful for a broad range of studies in which x-ray optical effects are involved or are to be exploited in next-generation surface and interface studies of nanoscale systems.

  16. In situ small-angle x-ray and nuclear resonant scattering study of the evolution of structural and magnetic properties of an Fe thin film on MgO (001)

    NASA Astrophysics Data System (ADS)

    Sharma, Gagan; Gupta, Ajay; Gupta, Mukul; Schlage, Kai; Wille, H.-C.

    2015-12-01

    Growth of magnetron sputtered Fe films on clean single crystalline MgO (001) substrate has been studied using in situ grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence nuclear resonant scattering (GINRS) measurements. While GISAXS provides information about morphological changes, GINRS provides information about structural and magnetic properties, thus making it possible to correlate the evolution of magnetic properties with that of morphology and structure of the film. The film exhibits a Volmer-Weber type growth, with percolation transition occurring around 2 nm film thickness. Presence of a finite quadrupole splitting, as seen in GINRS measurements, suggests a significant distortion from cubic symmetry up to a film thickness of 3.5 nm, which can be attributed to hybridization between Fe 3 d and O 2 p orbitals at the interface as well as in-plane tensile strain induced as a result of coalescence of islands. Initially Fe islands exhibit superparamagnetic relaxation, while finite magnetic moment appears upon formation of macroscopic percolation islands. The film exhibits a weak perpendicular magnetic anisotropy (PMA), which vanishes concurrently with disappearance of structural distortion, suggesting that the observed PMA at least partly originates from inherent strain in the film. No presence of any known oxide of Fe was detected at the interface. More precise information about topological and magnetic structure of the interfaces between Fe and MgO layers is obtained using combined x-ray reflectivity and nuclear resonance reflectivity measurements on a 57Fe/MgO multilayer. Measurements show that about two monolayers of Fe at the interface have a reduced hyperfine field, providing evidence for hybridization with O atoms, as predicted by theory.

  17. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator.

    PubMed

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J

    2016-10-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc.

  18. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  19. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances

    PubMed Central

    Gunst, Jonas; Keitel, Christoph H.; Pálffy, Adriana

    2016-01-01

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented. PMID:27118340

  20. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances

    NASA Astrophysics Data System (ADS)

    Gunst, Jonas; Keitel, Christoph H.; Pálffy, Adriana

    2016-04-01

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented.

  1. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid x-ray/MR imaging system.

    PubMed

    Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J

    2005-06-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  2. Evidence for hidden quadrupolar fluctuations behind the octupole order in Ce0.7La0.3B6 from resonant x-ray diffraction in magnetic fields

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Michimura, Shinji; Inami, Toshiya; Otsubo, Toru; Tanida, Hiroshi; Iga, Fumitoshi; Sera, Masafumi

    2014-01-01

    The multipole ordered phase in Ce0.7La0.3B6, emerging below 1.5 K and named phase IV, has been studied by resonant x-ray diffraction in magnetic fields. By utilizing diamond x-ray phase plates to rotate the incident linear polarization and a conventional crystal analyzer system, full linear polarization analysis has been performed to identify the order parameters. The analysis shows that the Γ5g(Oyz, Ozx, Oxy) quadrupoles are more induced by the field than the Γ3g (O20 and O22) quadrupoles on the Γ5u (Tx+y +zβ) antiferro-octupole order in phase IV. The problem is that this result is contradictory to a mean-field calculation, which inevitably gives the Γ3g quadrupole as the main induced moment. This result indicates that the Γ5g quadrupole order is close in energy. We consider that a large fluctuation of the Γ5g quadrupole is hidden behind the primary ordering of the Γ5u octupole and that the multipolar fluctuation significantly affects the ordering phenomenon.

  3. Miniature pulsed magnet system for synchrotron x-ray measurements

    SciTech Connect

    Linden, Peter J. E. M. van der; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-15

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulses/min was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 {mu}s and 1 ms. The setup was used for nuclear forward scattering measurements on {sup 57}Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  4. Miniature pulsed magnet system for synchrotron x-ray measurements.

    PubMed

    van der Linden, Peter J E M; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-01

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulsesmin was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 mus and 1 ms. The setup was used for nuclear forward scattering measurements on 57Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  5. Are the Galactic-bulge X-ray sources magnetized?

    NASA Technical Reports Server (NTRS)

    Kundt, W.; Ozel, M. E.; Ercan, E. N.

    1987-01-01

    This paper attempts to demonstrate that a better understanding of Galactic-bulge X-ray sources can be achieved if their magnetic moments are assumed to have the same values as those of young pulsars. It is argued that most of the matter leaving the inner edge of the accretion disk can reach the neutron star's surface in the form of massive clumps in quasi-Keplerian orbits. As a result, most of the accretion flow covers a broad equatorial belt rather than the polar caps, and the star shines as an almost unpulsed source. The liberation of half of the accretion power before the surface is reached can lead to the reported UHE pulses and bright infrared bursts. Spasmodic accretion is discussed as a model for gamma-ray bursts, and the observed low-energy X-ray absorption features are considered as an indication of strong magnetic fields shifted to lower energies during super-Eddington outbursts.

  6. Investigation of electron trajectories of an x-ray tube in magnetic fields of MR scanners.

    PubMed

    Wen, Zhifei; Fahrig, Rebecca; Conolly, Steven; Pelc, Norbert J

    2007-06-01

    A hybrid x-ray/MR system combining an x-ray fluoroscopic system and an open-bore magnetic resonance (MR) system offers advantages from both powerful imaging modalities and thus can benefit numerous image-guided interventional procedures. In our hybrid system configurations, the x-ray tube and detector are placed in the MR magnet and therefore experience a strong magnetic field. The electron beam inside the x-ray tube can be deflected by a misaligned magnetic field, which may damage the tube. Understanding the deflection process is crucial to predicting the electron beam deflection and avoiding potential damage to the x-ray tube. For this purpose, the motion of an electron in combined electric (E) and magnetic (B) fields was analyzed theoretically to provide general solutions that can be applied to different geometries. For two specific cases, a slightly misaligned strong field and a perpendicular weak field, computer simulations were performed with a finite-element method program. In addition, experiments were conducted using an open MRI magnet and an inserted electromagnet to quantitatively verify the relationship between the deflections and the field misalignment. In a strong (B > E/c; c: speed of light) and slightly misaligned magnetic field, the deflection in the plane of E and B caused by electrons following the magnetic field lines is the dominant component compared to the deflection in the E X B direction due to the drift of electrons. In a weak magnetic field (B < or = E/c), the main deflection is in the E x B direction and is caused by the perpendicular component of the magnetic field.

  7. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ

    DOE PAGES

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; ...

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less

  8. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    SciTech Connect

    Ollefs, K.; Meckenstock, R.; Spoddig, D.; Römer, F. M.; Hassel, Ch.; Schöppner, Ch.; Farle, M.; Ney, V.; Ney, A.

    2015-06-14

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and therefore does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.

  9. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  10. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  11. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE PAGES

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; ...

    2016-10-07

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  12. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    SciTech Connect

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-07

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  13. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    NASA Astrophysics Data System (ADS)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-01

    Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  14. Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield

    SciTech Connect

    Marcham, M. K.; Keatley, P. S.; Neudert, A.; Hicken, R. J.; Cavill, S. A.; Shelford, L. R.; van der Laan, G.; Telling, N. D.; Childress, J. R.; Katine, J. A.; Shafer, P.; Arenholz, E.

    2010-10-14

    Phase-resolved x-ray ferromagnetic resonance (XFMR) has been measured in fluorescence yield, extending the application of XFMR to opaque samples on opaque substrates. Magnetization dynamics were excited in a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5) bilayer by means of a continuous wave microwave excitation, while x-ray magnetic circular dichroism (XMCD) spectra were measured stroboscopically at different points in the precession cycle. By tuning the x-ray energy to the L{sub 3} edges of Ni and Fe, the dependence of the real and imaginary components of the element specific magnetic susceptibility on the strength of an externally applied static bias field was determined. First results from measurements on a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5)/Dy(1) sample confirm that enhanced damping results from the addition of the Dy cap.

  15. X-ray studies of flaring magnetic structures

    NASA Astrophysics Data System (ADS)

    Goff, Christopher Philip

    This thesis studies non-thermal emission from flaring magnetic structures by looking at HXR emission from flare footpoints at a faint X-ray source above a flare loop and finally at radio emission generated by eruptions. By complementing high quality data from recent missions with data from older instrumentation, studies were performed to compare with accepted models. The relation between Hard X-ray footpoint emission and magnetic field strength in a sample of 32 flares was studied in order to investigate the effects of the magnetic field on the transport of accelerated electrons. It was found that one third of compact flares studied had stronger footpoints in stronger magnetic regions whereas the reverse is anticipated from magnetic trapping arguments. On 16th April 2002, a limb flare was studied in many wavelengths. This provided an opportunity to study an erupting filament from the low corona and into interplanetary space. RHESSI identified a moving X-ray source associated with a rising filament, confirming the plasmoid definition of Tsuneta (1997). The velocity profile of the filament was determined along with its exponential acceleration. This suggested that an instability was responsible for eruption, possibly the kink instability. Doppler shifts were observed on either side of the filament as it crossed the slit field of view, suggesting helical flows and thus a flux rope. A succession of quadrupolar flares, followed by an LDE were then studied. An associated CME was seen and appeared linked to the quadrupolar flares which should re main confined. The flaring region triggered loop expansion, which interacted with a neighbouring large-scale streamer. This led to a fast CME front, which weakened the restraining field above the active region filaments allowing a partial filament eruption. Although at first glance the observations appeared contradictory it was demonstrated that the quadrupolar flares remained confined while triggering a large-scale eruption.

  16. Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Beattie, Bradley J.; Klose, Alexander D.; Le, Carl H.; Longo, Valerie A.; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A.; Blasberg, Ronald G.

    2009-03-01

    The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.

  17. Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms.

    PubMed

    Beattie, Bradley J; Klose, Alexander D; Le, Carl H; Longo, Valerie A; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A; Blasberg, Ronald G

    2009-01-01

    The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.

  18. Does a fast nuclear magnetic resonance spectroscopy- and X-ray crystallography hybrid approach provide reliable structural information of ligand-protein complexes? A case study of metalloproteinases.

    PubMed

    Isaksson, Johan; Nyström, Susanne; Derbyshire, Dean; Wallberg, Hans; Agback, Tatiana; Kovacs, Helena; Bertini, Ivano; Giachetti, Andrea; Luchinat, Claudio

    2009-03-26

    A human matrix metalloproteinase (MMP) hydroxamic acid inhibitor (CGS27023A) was cross-docked into 15 MMP-12, MMP-13, MMP-9, and MMP-1 cocrystal structures. The aim was to validate a fast protocol for ligand binding conformation elucidation and to probe the feasibility of using inhibitor-protein NMR contacts to dock an inhibitor into related MMP crystal structures. Such an approach avoids full NMR structure elucidation, saving both spectrometer- and analysis time. We report here that for the studied MMPs, one can obtain docking results well within 1 A compared to the corresponding reference X-ray structure, using backbone amide contacts only. From the perspective of the pharmaceutical industry, these results are relevant for the binding studies of inhibitor series to a common target and have the potential advantage of obtaining information on protein-inhibitor complexes that are difficult to crystallize.

  19. Structural studies of a non-stoichiometric channel hydrate using high resolution X-ray powder diffraction, solid-state nuclear magnetic resonance, and moisture sorption methods.

    PubMed

    Kiang, Y-H; Cheung, Eugene; Stephens, Peter W; Nagapudi, Karthik

    2014-09-01

    Structural investigations of a nonstoichiometric hydrate, AMG 222 tosylate, a DPP-IV inhibitor in clinical development for type II diabetes, were performed using a multitechnique approach. The moisture sorption isotherm is in good agreement with a simple Langmuir model, suggesting that the hydrate water is located in well-defined crystallographic sites, which become vacant during dehydration. Crystal structures of AMG 222 tosylate at ambient and dry conditions were determined from high-resolution X-ray diffraction using the direct space method. On the basis of these crystal structures, hydrated water is located in channels formed by the drug framework. Upon dehydration, an isostructural dehydrate is formed with the channels remaining void and accessible to water for rehydration. Kitaigorodskii packing coefficients of the solid between relative humidity of 0% and 90% indicate that the equilibrium form of AMG 222 tosylate is the fully hydrated monohydrate.

  20. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Bandler, Simon

    The "X-ray Surveyor" has been listed by NASA as one of the four major large mission concepts to be studied in the next Astrophysics Decadal Review in its preliminary list of large concepts. One of the key instruments on such a mission would be a very large format X-ray microcalorimeter array, with an array size of greater than 100 thousand pixels. Magnetically-coupled microcalorimeters (MCC) are one of the technologies with the greatest potential to meet the requirements of this mission, and this proposal is one to carry out research specifically to reach the goals of this vision. The "X-ray Surveyor" is a concept for a future mission that will make X-ray observations that are instrumental to understanding the quickly emerging population of galaxies and supermassive black holes at z ~10. The observations will trace the formation of galaxies and their assembly into large-scale structures starting from the earliest possible epochs. This mission would be observing baryons and large-scale physical processes outside of the very densest regions in the local Universe. This can be achieved with an X-ray observatory with similar angular resolution as Chandra but with significantly improved optic area and detector sensitivity. Chandra-scale angular resolution (1" or better) is essential in building more powerful, higher throughput observatories to avoid source confusion and remain photon-limited rather than background-limited. A prime consideration for the microcalorimeter camera on this type of mission is maintaining ~ 1 arcsec spatial resolution over the largest possible field of view, even if this means a slight trade-off against the spectral resolution. A uniform array of 1" pixels covering at least 5'x5' field of view is desired. To reduce the number of sensors read out, in geometries where extremely fine pitch (~50 microns) is desired, the most promising technologies are those in which a thermal sensor such an MCC can read out a sub-array of 20-25 individual 1'

  1. Magnetic Field in X-Ray Binary Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Karitskaya, E. A.; Bochkarev, N. G.; Hubrig, S.; Gnedin, Yu. N.; Pogodin, M. A.; Yudin, R. V.; Agafonov, M. I.; Sharova, O. I.

    Our spectroscopic observations with FORS1 at 8.2-m VLT telescope (Paranal, Chile) lead to detection of magnetic field in the X-ray binary Cyg X-1. That is the first successful attempt of measuring magnetic field in a binary with a black hole. The value of the mean longitudinal magnetic field in optical component (O9.7 Iab supergiant) changes regularly with the orbital phase reaching its maximum of 130 G (σ≈20 G). The measurements based on Zeeman effect were carried through over all observed supergiant photosphere absorption spectral lines. Similar measurements over the emission line He II λ 4686 Å yielded a value of several hundreds Gauss of a smaller significance level. The system Doppler tomogram we build over the line profiles shows that He II λ 4686 Å originates in the outer regions of the accretion structure. The values measured correspond, in the frame of the disc accretion standard model, to a near-black-hole field of ˜ 10^8-10^9 G and may be responsible for the observed Cyg X-1 X-ray flickering. Also some consequences of such magnetic field existence in Cyg X-1 optical component photosphere were suggested.

  2. Combined surface plasmon resonance and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; Rodriguez de La Fuente, Oscar; Castro, German R.

    2012-02-01

    We present a system for the excitation and measurement of surface plasmons in metallic films based on the Kretschmann-Raether configuration that can be installed in a synchrotron beamline. The device was mounted an tested in a hard X-ray Absorption beamline, BM25 Spline at ESRF. Whit this device it is possible to carry on experiments combining surface plasmon and X-ray absorption spectroscopies. The surface plasmons can be use to monitor in situ changes induced by the X-rays in the metallic films or the dielectric overlayer. Similarly, the changes in the electronic configuration of the material when surface plasmons are excited can be measured by X-ray absorption spectroscopy. The resolution of the system allows to observe changes in the signals of the order of 10-3 to 10-5 depending on the particular experiment and used configuration. The system is available for experiments at the beamline.

  3. The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines.

    PubMed

    Bignami, G F; Caraveo, P A; De Luca, A; Mereghetti, S

    2003-06-12

    Isolated neutron stars are highly magnetized, fast-rotating objects that form as an end point of stellar evolution. They are directly observable in X-ray emission, because of their high surface temperatures. Features in their X-ray spectra could in principle reveal the presence of atmospheres, or be used to estimate the strength of their magnetic fields through the cyclotron process, as is done for X-ray binaries. Almost all isolated neutron star spectra observed so far appear as featureless thermal continua. The only exception is 1E1207.4-5209 (refs 7-9), where two deep absorption features have been detected, but with insufficient definition to permit unambiguous interpretation. Here we report a long X-ray observation of the same object in which the star's spectrum shows three distinct features, regularly spaced at 0.7, 1.4 and 2.1 keV, plus a fourth feature of lower significance, at 2.8 keV. These features vary in phase with the star's rotation. The logical interpretation is that they are features from resonant cyclotron absorption, which allows us to calculate a magnetic field strength of 8 x 10(10) G, assuming the absorption arises from electrons.

  4. Resonant Soft X-ray Scattering Studies of Multiferroic YMn2O5

    SciTech Connect

    Partzsch, S.; Wilkins, S.B.; Schierle, E.; Soltwisch, V.; Hill, J.P.; Weschke, E.; Souptel, D.; Buchner, B.; Geck, J.

    2011-06-17

    We performed soft x-ray resonant scattering at the MnL{sub 2,3}- and OK edges of YMn{sub 2}O{sub 5}. While the resonant intensity at the MnL{sub 2,3} edges represent the magnetic order parameter, the resonant scattering at the OK edge is found to be directly related to the macroscopic ferroelectric polarization. The latter observation reveals the important role of the spin-dependent Mn-O hybridization for the multiferroicity of YMn{sub 2}O{sub 5}. We present details about how to obtain correct energy dependent lineshapes and discuss the origin of the resonant intensity at the OK edge.

  5. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  6. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    SciTech Connect

    Kirchheim,, A. P.; Dal Molin, D.C.; Emwas, Abdul-Hamid; Provis, J.L.; Fischer, P.; Monteiro, P.J.M.

    2010-12-01

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping.

  7. Monolayer to interdigitated partial bilayer smectic C transition in thiophene-based spacer mesogens: X-ray diffraction and (13)C nuclear magnetic resonance studies.

    PubMed

    Kesava Reddy, M; Varathan, E; Lobo, Nitin P; Roy, Arun; Narasimhaswamy, T; Ramanathan, K V

    2015-10-06

    Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state (13)C NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.

  8. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy.

    PubMed

    Popescu, Carmen-Mihaela; Larsson, Per Tomas; Tibirna, Carmen Mihaela; Vasile, Cornelia

    2010-09-01

    X-ray diffraction, scanning electron microscopy (SEM), and solid-state cross-polarization magic-angle-spinning (CP/MAS) (13)C-NMR spectroscopy were applied to determine changes over time in the morphology and crystallinity of lime wood (Tilia cordata Miller) generated by the soft-rot fungi. Wood samples were inoculated with Trichoderma viride Pers for various durations up to 84 days. Structural and morphological modifications were assessed by comparing the structural features of decayed lime wood samples with references. Significant morphology changes such as defibration or small cavities were clearly observed on the SEM micrographs of lime wood samples exposed to fungi. Following the deconvolution process of the diffraction patterns, the degree of crystallinity, apparent lateral crystallite size, the proportion of crystallite interior chains, and the cellulose fraction have been determined. It was found that all crystallographic data vary with the duration of exposure to fungi. The degree of crystallinity and cellulose fraction tend to decrease, whereas the apparent lateral crystallite size and the proportion of crystallite interior chains increase with prolonged biodegradation processes. The most relevant signals in CP/MAS (13)C-NMR spectra were assigned according to literature data. The differences observed were discussed in terms of lignin and cellulose composition: by fixing the lignin reference signal intensity, the cellulose and hemicelluloses moieties showed a relative decrease compared to the lignin signals in decayed wood.

  9. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-01

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  10. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    SciTech Connect

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-07

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  11. Paramagnon excitations' theory for resonant inelastic X-ray scattering in doped plane copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Larionov, I. A.

    2015-04-01

    A relaxation function theory with paramagnon excitations for doped S = 1 / 2 two-dimensional Heisenberg antiferromagnetic system in the paramagnetic state is given in view of magnetic response of high-Tc copper oxide superconductors as obtained by resonant inelastic X-ray scattering (RIXS). The results of the theory on Nd(La)-Ba(Sr)-Cu-O and Y-Ba-Cu-O family compounds give fair agreement without especially adjusted parameters to RIXS data. It is shown that RIXS data analysis depends on paramagnon damping and thus affected by approximations made for dynamic spin susceptibility.

  12. Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance.

    PubMed

    Halldorsdottir, Solveig; Carmody, Jill; Boozer, Carol N; Leduc, Charles A; Leibel, Rudolph L

    2009-01-01

    OBJECTIVE: To assess the accuracy and reproducibility of dual-energy absorptiometry (DXA; PIXImus(™)) and time domain nuclear magnetic resonance (TD-NMR; Bruker Optics) for the measurement of body composition of lean and obese mice. SUBJECTS AND MEASUREMENTS: Thirty lean and obese mice (body weight range 19-67 g) were studied. Coefficients of variation for repeated (x 4) DXA and NMR scans of mice were calculated to assess reproducibility. Accuracy was assessed by comparing DXA and NMR results of ten mice to chemical carcass analyses. Accuracy of the respective techniques was also assessed by comparing DXA and NMR results obtained with ground meat samples to chemical analyses. Repeated scans of 10-25 gram samples were performed to test the sensitivity of the DXA and NMR methods to variation in sample mass. RESULTS: In mice, DXA and NMR reproducibility measures were similar for fat tissue mass (FTM) (DXA coefficient of variation [CV]=2.3%; and NMR CV=2.8%) (P=0.47), while reproducibility of lean tissue mass (LTM) estimates were better for DXA (1.0%) than NMR (2.2%) (

  13. Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance

    PubMed Central

    Halldorsdottir, Solveig; Carmody, Jill; Boozer, Carol N.; Leduc, Charles A.; Leibel, Rudolph L.

    2011-01-01

    Objective To assess the accuracy and reproducibility of dual-energy absorptiometry (DXA; PIXImus™) and time domain nuclear magnetic resonance (TD-NMR; Bruker Optics) for the measurement of body composition of lean and obese mice. Subjects and measurements Thirty lean and obese mice (body weight range 19–67 g) were studied. Coefficients of variation for repeated (x 4) DXA and NMR scans of mice were calculated to assess reproducibility. Accuracy was assessed by comparing DXA and NMR results of ten mice to chemical carcass analyses. Accuracy of the respective techniques was also assessed by comparing DXA and NMR results obtained with ground meat samples to chemical analyses. Repeated scans of 10–25 gram samples were performed to test the sensitivity of the DXA and NMR methods to variation in sample mass. Results In mice, DXA and NMR reproducibility measures were similar for fat tissue mass (FTM) (DXA coefficient of variation [CV]=2.3%; and NMR CV=2.8%) (P=0.47), while reproducibility of lean tissue mass (LTM) estimates were better for DXA (1.0%) than NMR (2.2%) (

  14. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    SciTech Connect

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.

  15. Quantification of the orientational disorder in ortho-dichlorotetramethylbenzene: A single crystal deuterium nuclear magnetic resonance and x-ray study of the site populations

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Poupko, Raphy; Luz, Zeev; Zimmermann, Herbert; Haeberlen, Ulrich

    2001-11-01

    The title compound, 1,2-dichloro-3,4,5,6-tetramethylbenzene (DCTMB) exhibits three solid phases, III, II, and I, of which two, Phase III (<170 K) and Phase II (170-381 K), have been investigated in the present study by means of x-ray diffraction and deuterium NMR. The latter measurements were performed on powder and single crystal samples of perdeuterated DCTMB (DCTMB-d12). Phase III is "right-left" disordered, with the molecular para axes (the axes having two methyls in para positions) well ordered in the crystal. The right-left disorder is manifested by the fact that the chlorine and ortho methyls have each an occupancy number of 1/2, thus ensuring an average inversion symmetry at the molecular site. The NMR results also indicate that at least one of the ortho methyls, and probably the second one too, are slightly distorted, randomly up and down, relative to the benzene plane. Except for fast methyl group rotation the molecules in this phase are static on the NMR time scale. Phase II is much more mobile and disordered, with the molecular para axes distributed over all six local crystallographic orientations. A detailed analysis of the single crystal NMR results shows that the fractional populations in the various orientations are biased with some orientations more populated than others (while keeping average inversion symmetry). It is shown that this bias is due to differences in both the enthalpy and entropy associated with the various orientations. NMR line shape and T1 relaxation data in Phase II (and I) indicate rapid jumps between the different orientations in the high temperature range of the measurements. The estimated activation parameters for the reorientational jumps are Ea=33 kJ/mol and k(260 K)=4.5×107 s-1.

  16. X-ray Characterization of Oxide-based Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Idzerda, Yves

    2008-05-01

    Although the evidence for magnetic semiconductors (not simply semiconductors which are ferromagnetic) is compelling, there is much uncertainty in the mechanism for the polarization of the carriers, suggesting that it must be quite novel. Recent experimental evidence suggests that this mechanism is similar to the polaron percolation theory proposed by Kaminski and Das Sarma,ootnotetextKaminski and S. Das Sarma, Physical Review Letters 88, 247202 (2002). which was recently applied specifically to doped oxides by Coey et al.ootnotetextJ. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005). where the ferromagnetism is driven by the percolation of polarons generated by defects or dopants. We have used X-ray absorption spectroscopy at the L-edges and K-edges for low concentrations transition metal (TM) doped magnetic oxides (including TiO2, La1-xSrxO3, HfO2, and In2O3). We have found that in most cases, the transition metal assumes a valence consistent with being at a substitutional, and not interstitial site. We have also measured the X-ray Magnetic Circular Dichroism spectra. Although these materials show strong bulk magnetization, we are unable to detect a robust dichroism feature associated with magnetic elements in the host semiconductor. In the cases where a dichroism signal was observed, it was very weak and could be ascribed to a distinct ferromagnetic phase (TM metal cluster, TM oxide particulate, etc.) separate from the host material. This fascinating absence of a dichroic signal and its significant substantiation of important features of the polaron percolation model may help to finally resolve the issue of ferromagnetism in magnetically doped oxides.

  17. Magnetic x-ray linear dichroism in the photoelectron spectroscopy of ultrathin magnetic alloy films

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Goodman, K. W.; Mankey, G. J.; Willis, R. F.; Denlinger, J. D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    The magnetic structure of nanoscale alloy films has been probed using the magnetic x-ray linear dichroism in photoelectron spectroscopy. FeNi and CoFe epitaxial films were grown on Cu(001), in situ and using molecular beam epitaxy techniques. The magnetic x-ray linear dichroism measurements were made at the Spectromicroscopy Facility of the Third Generation Advanced Light Source. Because soft x-rays were used to generate photoemission from the 3p core levels, both elemental selectivity and magnetic sensitivity were achieved simultaneously.

  18. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  19. Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures

    SciTech Connect

    Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

    2007-06-01

    Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

  20. Chemical Segregation in GdFeCo: An X-ray view on Magnetic Coercivity

    NASA Astrophysics Data System (ADS)

    Reid, Alexander; Graves, Catherine; Wu, Benny; Wang, Tianhan; Kimel, Alexey; Kirilyuk, Andrei; Tsukamoto, Arata; Itoh, A.; Stöhr, Joachim; Rasing, Theo; Dürr, Hermann; Scherz, Andreas

    2012-02-01

    The magnetic coercivity in intermetallic alloys is known to be dominated by microscopic inhomogeneities. These control the characteristics of magnetic switching as they provide nuclei for magnetic domain formation, and the pinning sites governing domain wall propagation. However, such regions exist on nanometer length scales with weak magnetic contrast to their surroundings; their characterization has therefore remained illusive. Here we demonstrate how resonant x-ray scattering is intrinsically sensitive to magnetic changes in a segregated phase. We utilizes the fact that magnetic scattering asymmetry directly probes regions where this phase segregation occurs. Our measurements on GdFeCo show strongly temperature dependant magnetic canting in the segregated regions due to local changes in magnetic anisotropy. Understanding the origin and importance of these chemically segregated regions will allow a better understanding of the magnetic switching process in GdFeCo.

  1. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    PubMed Central

    Bi, Wenli; Zhao, Jiyong; Lin, Jung-Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    A new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability. PMID:25931094

  2. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    DOE PAGES

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; ...

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technicalmore » development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.« less

  3. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature.

    PubMed

    Bi, Wenli; Zhao, Jiyong; Lin, Jung-Fu; Jia, Quanjie; Hu, Michael Y; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E Ercan

    2015-05-01

    A new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal-insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu(57)Fe2As2 at high pressure and low temperature were derived by using this new capability.

  4. X-ray laser resonator for the kilo-electron-volt range

    SciTech Connect

    Chen, Jie; Tomov, Ivan V.; Er, Ali O.; Rentzepis, Peter M.

    2013-04-29

    We have designed, constructed, and tested an x-ray laser resonator operating in the hard x-ray, keV energy region. This ring x-ray laser cavity is formed by four highly oriented pyrolytic graphite crystals. The crystals are set at the Bragg angles that allow for the complete 360 Degree-Sign round trip of the 2.37 A, 5.23 keV L{sub {alpha}} line of neodymium. In addition, we also present experimental data of a similar ring laser resonator that utilizes the Cr K{sub {alpha}}, 5.41 keV, x-ray line to propagate through the four mirrors of the cavity. The specific properties of these x-ray laser resonator mirrors, including reflection losses and cavity arrangement, are presented.

  5. X-ray Spectroscopy and Magnetism in Mineralogy

    NASA Astrophysics Data System (ADS)

    Sainctavit, Philippe; Brice-Profeta, Sandrine; Gaudry, Emilie; Letard, Isabelle; Arrio, Marie-Anne

    The objective of this paper is to present the kind of information that can be gained in the field of mineralogy from the use of x-ray magnetic spectroscopies. We review some of the questions that are unsettled and that could benefit from an interdisciplinary approach where magnetism, spectroscopy and mineralogy could be mixed. Most of the attention is focused on iron and some other 3d transition elements. The mineralogy of planetary cores and its relation with known meteorites are exemplified. The various oxide phases in the mantle and the nature of iron in these phases is also underlined. The presence of transition elements in insulating minerals and its relation with macroscopic properties such as the color of gemstones are reviewed. Finally an introduction to paleomagnetism is given with a special attention to nanomaghemites.

  6. Performance of Magnetic Penetration Thermometers for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Nagler, P. C.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W. T.; Kelly, D. P.; Porst, J. P.; Sadleir, J. E.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    The ideal X-ray camera for astrophysics would have more than a million pixels and provide an energy resolution of better than leV FWHM for energies up to 10 keY. We have microfabricated and characterized thin-film magnetic penetration thermometers (MPTs) that show great promise towards meeting these capabilities. MPTs operate in similar fashion to metallic magnetic calorimeters (MMCs), except that a superconducting sensor takes the place of a paramagnetic sensor and it is the temperature dependence of the superconductor's diamagnetic response that provides the temperature sensitivity. We present a description of the design and performance of our prototype thin-film MPTs with MoAu bilayer sensors, which have demonstrated an energy resolution of approx 2 eV FWHM at 1.5 keY and 4.3 eV FWHM at 5.9 keY.

  7. Synchrotron X-ray diffraction for pyrolytic magnetic carbon

    NASA Astrophysics Data System (ADS)

    Kamishima, K.; Noda, T.; Kadonome, F.; Kakizaki, K.; Hiratsuka, N.

    We have prepared pyrolytic carbon samples from triethylamine and investigated their magnetic and crystallographic properties. The magnetic property depends on pyrolysis temperatures. A ferromagnetic sample with M=5×10-1 emu/g was obtained from the pyrolysis products even at room temperature. The synchrotron X-ray diffraction experiments were performed for the pyrolytic carbon samples in order to see the crystal structure of ferromagnetic samples. Diffraction peaks of iron or iron oxides were not observed for the ferromagnetic samples, whereas the major diffraction peak of the intermediate graphite-diamond (IGD) structure was clearly observed for ferromagnetic and nonmagnetic samples. Therefore, the IGD structure is not the direct cause of ferromagnetism. The ferromagnetism may be related to the graphite-like structure.

  8. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method.

    PubMed

    Rahman, Ziyaur; Bykadi, Srikant; Siddiqui, Akhtar; Khan, Mansoor A

    2015-05-01

    The focus of present investigation was to explore X-ray powder diffraction (XRPD) and solid-state nuclear magnetic resonance (ssNMR) techniques for amorphous and crystalline tacrolimus quantification in the sustained-release amorphous solid dispersion (ASD), and to propose discriminating dissolution method that can detect crystalline drug. The ASD and crystalline physical mixture was mixed in various proportions to make sample matrices containing 0%-100% crystalline-amorphous tacrolimus. Partial-least-square regression and principle component regression were applied to the spectral data. Dissolution of the ASD in the US FDA recommended dissolution medium with and without surfactant was performed. R(2) > 0.99 and slope was close to one for all the models. Root-mean-square of prediction, standard error of prediction, and bias were higher in ssNMR-based models when compared with XRPD data models. Dissolution of the ASD decreased with an increase in the crystalline tacrolimus in the formulations. Furthermore, detection of crystalline tacrolimus in the ASD was progressively masked with an increase in the surfactant level in the dissolution medium. XRPD and ssNMR can be used equally to quantitate the crystalline and amorphous fraction of tacrolimus in the ASD with good accuracy; however, ssNMR data collection time is excessively long, and minimum surfactant level in the dissolution medium maximizes detection of crystalline reversion in the formulation.

  9. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1 -antitrypsin upon ligand binding.

    PubMed

    Nyon, Mun Peak; Prentice, Tanya; Day, Jemma; Kirkpatrick, John; Sivalingam, Ganesh N; Levy, Geraldine; Haq, Imran; Irving, James A; Lomas, David A; Christodoulou, John; Gooptu, Bibek; Thalassinos, Konstantinos

    2015-08-01

    Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1 -antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1 -antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1 -antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1 -antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest.

  10. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    NASA Astrophysics Data System (ADS)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  11. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-01-01

    Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric

  12. Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.; Rodrigues, G.; Kanjilal, D.; Roy, A.

    2008-02-15

    From the ECR plasma, hot electrons leak across the magnetic lines of force and by striking the plasma chamber produce bremsstrahlung x-rays. The wall bremsstrahlung gives information on the confinement status of hot electron. In our studies, experimental measurements are carried out in NANOGAN electron cyclotron resonance (ECR) ion source for the wall bremsstrahlung x-rays and the results are presented. While optimizing a particular charge state in ECR ion source, experimental parameters are adjusted to get a maximum current. The wall bremsstrahlung components are studied in these cases for understanding the hot electron confinement conditions.

  13. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.

    2006-03-15

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150 keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10x10 cm{sup 2} has been marked at 20 cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05 mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7 min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10{sup -5} Torr, microwave power: 350 W, and coil current: 0 A. The effective energy of the x-ray spectrum is nearly 40 keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  14. Collective Nature of Spin Excitations in Superconducting Cuprates Probed by Resonant Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Minola, M.; Dellea, G.; Gretarsson, H.; Peng, Y. Y.; Lu, Y.; Porras, J.; Loew, T.; Yakhou, F.; Brookes, N. B.; Huang, Y. B.; Pelliciari, J.; Schmitt, T.; Ghiringhelli, G.; Keimer, B.; Braicovich, L.; Le Tacon, M.

    2015-05-01

    We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6 +x over a wide range of doping levels (0.1 ≤x ≤1 ). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x . These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002 (2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.

  15. Full Polarization Analysis of Resonant Superlattice and Forbidden x-ray Reflections in Magnetite

    SciTech Connect

    Wilkins, S.B.; Bland, S.R.; Detlefs, B.; Beale, T.A.W.; Mazzoli, C.; Joly, Y.; Hatton, P.D.; Lorenzo, J.E.; Brabers, V.A.M.

    2009-12-02

    Despite being one of the oldest known magnetic materials, and the classic mixed valence compound, thought to be charge ordered, the structure of magnetite below the Verwey transition is complex and the presence and role of charge order is still being debated. Here, we present resonant x-ray diffraction data at the iron K-edge on forbidden (0, 0, 2n+1){sub C} and superlattice (0, 0, 2n+1/2)C reflections. Full linear polarization analysis of the incident and scattered light was conducted in order to explore the origins of the reflections. Through simulation of the resonant spectra we have confirmed that a degree of charge ordering takes place, while the anisotropic tensor of susceptibility scattering is responsible for the superlattice reflections below the Verwey transition. We also report the surprising result of the conversion of a significant proportion of the scattered light from linear to nonlinear polarization.

  16. Soft X-Ray Magnetic Imaging of Focused Ion Beam Lithographically Patterned Fe Thin Films

    SciTech Connect

    Cook, Paul J.; Shen, Tichan H.; Grundy, PhilJ.; Im, Mi Young; Fischer, Peter; Morton, Simon A.; Kilcoyne, Arthur D.L.

    2008-11-09

    We illustrate the potential of modifying the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no change to the chemical environment of Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions.

  17. Unraveling skyrmion spin texture using resonant soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Roy, Sujoy

    2015-03-01

    The recent discovery of skyrmions, that were originally predicted in context of high energy physics, in magnetic materials has sparked tremendous interest in the research community due to its rich physics and potential in spintronics applications. Skyrmions have an unusual spin texture that manifests as magnetic knot and can be easily moved around. Understanding the fundamental physics and mechanisms for controlling their dynamical properties presents important scientific challenges. So far experimental verifications of the skyrmions in magnetic systems have come from neutron scattering and Lorentz transmission electron microscopy (TEM) measurements. In this talk we report the first observation of the skyrmions using resonant soft x-ray scattering. We have used soft x-rays tuned to the Cu L3 edge to diffract off the skyrmion lattice in a multiferroic Cu2OSeO3 compound. We show that in Cu2OSeO3 there exist two skyrmion lattices arising due to the two inequivalent Cu-O sublattices that have two different magnetically active d-orbitals. The two skyrmion sublattices are mutually rotated with respect to each other. The angle of rotation could be changed by an external magnetic field, thereby indicating possible existence of a new phase. We have also studied skyrmion spin texture in an ultra-thin Fe/Gd multilayer that shows perpendicular anisotropy. The Fe/Gd sample exhibits a near perfect aligned stripe phase. Within a small range of temperature and magnetic field we observe a hexagonal scattering pattern due to skyrmion bubbles. Analysis of the scattering pattern suggests that the skyrmion lattice unit cell contains two skyrmions. The biskyrmion state is also revealed by Lorentz TEM images. The near room temperature discovery of skyrmion in a technology relevant material is a significant step towards using skyrmions in magnetic devices. Work at LBNL was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231).

  18. Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films

    NASA Astrophysics Data System (ADS)

    Shi, X.; Fischer, P.; Neu, V.; Elefant, D.; Lee, J. C. T.; Shapiro, D. A.; Farmand, M.; Tyliszczak, T.; Shiu, H.-W.; Marchesini, S.; Roy, S.; Kevan, S. D.

    2016-02-01

    High spatial resolution magnetic x-ray spectromicroscopy at x-ray photon energies near the cobalt L3 resonance was applied to probe an amorphous 50 nm thin SmCo5 film prepared by off-axis pulsed laser deposition onto an x-ray transparent 200 nm thin Si3N4 membrane. Alternating gradient magnetometry shows a strong in-plane anisotropy and an only weak perpendicular magnetic anisotropy, which is confirmed by magnetic transmission soft x-ray microscopy images showing over a field of view of 10 μm a primarily stripe-like domain pattern but with local labyrinth-like domains. Soft x-ray ptychography in amplitude and phase contrast was used to identify and characterize local magnetic and structural features over a field of view of 1 μm with a spatial resolution of about 10 nm. There, the magnetic labyrinth domain patterns are accompanied by nanoscale structural inclusions that are primarily located in close proximity to the magnetic domain walls. Our analysis suggests that these inclusions are nanocrystalline Sm2Co17 phases with nominally in-plane magnetic anisotropy.

  19. X-ray studies of neutron stars and their magnetic fields

    PubMed Central

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  20. X-ray studies of neutron stars and their magnetic fields

    NASA Astrophysics Data System (ADS)

    Makishima, K.

    2016-05-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1?7) × 10^8 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states.

  1. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system.

    PubMed

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T; Pelc, Norbert J

    2008-09-01

    In this x-ray/MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is approximately 0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner.

  2. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7.

    PubMed

    Smith, A L; Raison, P E; Martel, L; Charpentier, T; Farnan, I; Prieur, D; Hennig, C; Scheinost, A C; Konings, R J M; Cheetham, A K

    2014-01-06

    The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αβ = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to β phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry.

  3. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32

    PubMed Central

    Kummer, K.; Fondacaro, A.; Jimenez, E.; Velez-Fort, E.; Amorese, A.; Aspbury, M.; Yakhou-Harris, F.; van der Linden, P.; Brookes, N. B.

    2016-01-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  4. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  5. Alkyl chlorido hydridotris(3,5-dimethylpyrazolyl)borate imido niobium and tantalum(V) complexes: synthesis, conformational states of alkyl groups in solid and solution, X-ray diffraction and multinuclear magnetic resonance spectroscopy studies.

    PubMed

    Galájov, Miguel; García, Carlos; Gómez, Manuel; Gómez-Sal, Pilar

    2014-04-21

    The alkylation of the starting pseudooctahedral dichlorido imido hydridotris(3,5-dimethylpyrazolyl)borate niobium and tantalum(v) compounds [MTp*Cl2(NtBu)] (M = Nb,Ta; Tp* = BH(3,5-Me2C3HN2)3) with MgClR in different conditions led to new alkyl chlorido imido derivatives [MTp*ClR(NtBu)] (M = Nb/Ta, R = CH2CH31a/1b, CH2Ph 2a/2b, CH2tBu 3a/3b, CH2SiMe34a/4b, CH2CMe2Ph 5a/5b), whereas the dimethyl derivatives [MTp*Me2(NtBu)] (M = Nb 6a, Ta 6b) could be isolated as unitary species when the reaction was carried out using 2 equivalents of the magnesium reagent MgClMe. However, the chlorido methyl [MTp*ClMe(NtBu)] (M = Nb 7a, Ta 7b) complexes were obtained by heating at 50 °C the dichlorido and dimethyl imido complexes mixtures in a 1 : 1 ratio. All of the complexes were studied by multinuclear magnetic resonance spectroscopy and the molecular structures of 1b, 2a/b, 3a/b, 4a and 5a/b were determined by X-ray diffraction methods. In the solid state the complexes 1b, 4a and 5a exhibit only a gauche-anti conformation and the complexes 2a/b, 3a/b and 5b exhibit only a gauche-syn conformation of the alkyl substituents, whereas both conformational states, which do not show mutual exchange in the NMR time scale, were observed for 3a/b in a benzene-d6 solution. The (15)N chemical shifts of the complexes 1-7 are discussed.

  6. X-ray magnetic circular dichroism and x-ray absorption spectroscopy of novel magnetic thin films

    SciTech Connect

    Brewer, M.A.; Ju, H.L.; Krishnan, K.M.

    1997-04-01

    The optimization of the magnetic properties of materials for a wide range of applications requires a dynamic iteration between synthesis, property measurements and characterization at appropriate length scales. The authors interest arises both from the increased appreciation of the degree to which magnetic properties can be influenced by tailored microstructures and the ability to characterize them by x-ray scattering/dichroism techniques. Preliminary results of this work at the ALS on `giant` moment in {alpha}{double_prime}-Fe{sub 16}N{sub 2} and `colossal` magnetoresistance in manganite perovskites is presented here. It has recently been claimed that {alpha}{double_prime}-Fe{sub 16}N{sub 2} possesses a giant magnetization of 2.9 T ({approximately}2300 emu/cc) when grown on lattice-matched In{sub 0.2}Ga{sub 0.8}As(001) and Fe/GaAs(001). However, attempts at growth on simpler substrates have resulted in only a modest enhancement in moment and often in multiphase mixtures. Theoretical calculations based on the band structure of Fe{sub 16}N{sub 2} predict values for the magnetization around 2.3 T ({approximately}1780 emu/cc), well below Sugita`s claims, but consistent with the magnetization reported by several other workers. Using appropriate sum rules applied to the integrated MCD spectrum, they hope to determine the magnetic moment of the iron species in the {alpha}{double_prime}-Fe{sub 16}N{sub 2} films and other phases and resolve the orbital and spin contributions to the moment. There is also rapidly growing interest in the `colossal magnetoresistance` effect observed in manganese oxides for both fundamental and commercial applications. To address some of these issues the authors have measured the electron energy loss spectra (EELS) of manganese perovskites at room temperature.

  7. Thermally activated charge transfer in a Prussian blue derivative probed by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Jarrige, I.; Cai, Y. Q.; Ishii, H.; Hiraoka, N.; Bleuzen, A.

    2008-08-01

    Charge-transfer excitation is at the source of the photoinduced magnetism observed in several Prussian blue molecule-based magnets. Using resonant inelastic x-ray scattering and x-ray absorption spectroscopy, we probe directly the thermally activated charge transfer in a photomagnetic Fe-Co cyanide, Cs0.7Co4[Fe(CN)6]2.9[◻]1.1.16H2O, where [◻] represents [Fe(CN)6] vacancies. The temperature dependence of both Co and Fe valence ratios is estimated for the first time in one cooling run, thus yielding a more complete picture of the temperature-induced cooperative electronic modifications. This novel approach, benefiting from relatively short acquisition times, opens the possibility for realtime characterization of the photoinduced magnetism in molecule-based magnets.

  8. Imaging nanoscale magnetic structures with polarized soft x-ray photons

    SciTech Connect

    Fischer, P.; Im, M.-Y.

    2010-01-18

    Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

  9. X-ray scattering study of pyrochlore iridates: Crystal structure, electronic, and magnetic excitations

    SciTech Connect

    Clancy, J. P.; Gretarsson, H.; Lee, E. K. H.; Tian, Di; Kim, J.; Upton, M. H.; Casa, D.; Gog, T.; Islam, Z.; Jeon, Byung -Gu; Kim, Kee Hoon; Desgreniers, S.; Kim, Yong Baek; Julian, S. J.; Kim, Young -June

    2016-07-06

    We have investigated the structural, electronic, and magnetic properties of the pyrochlore iridates Eu2Ir2O7 and Pr2Ir2O7 using a combination of resonant elastic x-ray scattering, x-ray powder diffraction, and resonant inelastic x-ray scattering (RIXS). The structural parameters of Eu2Ir2O7 have been examined as a function of temperature and applied pressure, with a particular emphasis on regions of the phase diagram where electronic and magnetic phase transitions have been reported. We find no evidence of crystal symmetry change over the range of temperatures (~6 to 300 K) and pressures (~0.1 to 17 GPa) studied. We have also investigated the electronic and magnetic excitations in single-crystal samples of Eu2Ir2O7 and Pr2Ir2O7 using high-resolution Ir L-3-edge RIXS. In spite of very different ground state properties, we find that these materials exhibit qualitatively similar excitation spectra, with crystal field excitations at ~3-5 eV, spin-orbit excitations at ~ 0.5-1 eV, and broad low-lying excitations below ~0.15 eV. In single-crystal samples of "Eu-rich" Eu2Ir2O7 (found to possess an actual stoichiometry of Eu2.18Ir1.82O7.06) we observe highly damped magnetic excitations at ~45 meV, which display significant momentum dependence. Here, we compare these results with recent dynamical structure factor calculations

  10. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  11. X-ray scattering study of pyrochlore iridates: Crystal structure, electronic, and magnetic excitations

    DOE PAGES

    Clancy, J. P.; Gretarsson, H.; Lee, E. K. H.; ...

    2016-07-06

    We have investigated the structural, electronic, and magnetic properties of the pyrochlore iridates Eu2Ir2O7 and Pr2Ir2O7 using a combination of resonant elastic x-ray scattering, x-ray powder diffraction, and resonant inelastic x-ray scattering (RIXS). The structural parameters of Eu2Ir2O7 have been examined as a function of temperature and applied pressure, with a particular emphasis on regions of the phase diagram where electronic and magnetic phase transitions have been reported. We find no evidence of crystal symmetry change over the range of temperatures (~6 to 300 K) and pressures (~0.1 to 17 GPa) studied. We have also investigated the electronic and magneticmore » excitations in single-crystal samples of Eu2Ir2O7 and Pr2Ir2O7 using high-resolution Ir L-3-edge RIXS. In spite of very different ground state properties, we find that these materials exhibit qualitatively similar excitation spectra, with crystal field excitations at ~3-5 eV, spin-orbit excitations at ~ 0.5-1 eV, and broad low-lying excitations below ~0.15 eV. In single-crystal samples of "Eu-rich" Eu2Ir2O7 (found to possess an actual stoichiometry of Eu2.18Ir1.82O7.06) we observe highly damped magnetic excitations at ~45 meV, which display significant momentum dependence. Here, we compare these results with recent dynamical structure factor calculations« less

  12. Magnetic fields in X-ray emitting A-type stars

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-04-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this hypothesis can be shown to be correct in some cases, there is also evidence suggesting that low-mass companions cannot be the proper cause for the observed X-ray activity in all cases. Babel and Montmerle (1997) presented a theoretical framework to explain the X-ray emission from magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. We test whether this theoretical model is capable of explaining the observed X-ray emissions. We present observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS 1. Although the emission of those objects with magnetic fields does fit the prediction of the Babel & Montmerle model, not all X-ray detections are related to the presence of a magnetic field. Additionally, the strengths of magnetic fields do not correlate with the X-ray luminosity and thus the magnetically-confined wind shock model cannot explain the X-ray emission from all investigated stars.

  13. Resonant photoemission and X-ray absorption spectroscopies of lithiated magnetite thin film

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Kawamura, Kinya; Namiki, Wataru; Furuichi, Shoto; Takayanagi, Makoto; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Terabe, Kazuya; Higuchi, Tohru

    2017-04-01

    Resonant photoemission spectroscopy (RPES) and X-ray absorption spectroscopy (XAS) were used to investigate the effect of lithiation on the electronic structure of Fe3O4 thin film relevant to the operation mechanism of nanoionic devices to enable magnetic property tuning. Comparison of the Fe 2p XAS spectrum for lithiated Fe3O4 (Li-Fe3O4) with that for pristine Fe3O4 clearly demonstrated that the number of Fe2+ ions at octahedral B sites is increased by lithiation. The valence band RPES spectra of Li-Fe3O4 further showed that lithiation increases the density of states near the Fermi level originating Fe2+ ions at octahedral B sites. These findings agree well with the observed decrease in the saturation magnetization in the magnetization-magnetic field (M-H) loop of Li-Fe3O4 thin film, indicating that minority spins (down spins) increase (i.e., total spins decrease) due to lithiation. The variation in the number of Fe2+ ions at B sites is suggested to be an underlying operating mechanism of a nanoionics-based magnetic property tuning device.

  14. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  15. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    SciTech Connect

    Glans, P.; Gunnelin, K.; Guo, J.

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  16. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  17. Resonant X-Ray Scattering Studies of Charge Order in Cuprates

    NASA Astrophysics Data System (ADS)

    Comin, Riccardo; Damascelli, Andrea

    2016-03-01

    X-ray techniques have been used for more than a century to study the atomic and electronic structure in practically any type of material. The advent of correlated electron systems, in particular complex oxides, brought about new scientific challenges and opportunities for the advancement of conventional X-ray methods. In this context, the need for new approaches capable of selectively sensing new forms of orders involving all degrees of freedom -- charge, orbital, spin, and lattice -- paved the way for the emergence and success of resonant X-ray scattering, which has become an increasingly popular and powerful tool for the study of electronic ordering phenomena in solids. We review the recent resonant X-ray scattering breakthroughs in the copper oxide high-temperature superconductors, in particular regarding the phenomenon of charge order, a broken-symmetry state occurring when valence electrons self-organize into periodic structures. After a brief historical perspective on charge order, we outline the milestones in the development of resonant X-ray scattering as well as the basic theoretical formalism underlying its unique capabilities. The rest of the review focuses on the recent contributions of resonant scattering to the advancements in our description and understanding of charge order. To conclude, we propose a series of present and upcoming challenges and discuss the future outlook for this technique.

  18. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    SciTech Connect

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  19. Critical Reexamination of Resonant Soft X-Ray Bragg Forbidden Reflections in Magnetite

    SciTech Connect

    Wilkins, S.B.; Di Matteo, S.; Beale, T.A.W.; Joly, Y.; Mazzoli, C.; Hatton, P.D.; Bencok, P.; Yakhou, F.; Brabers, V.A.M.

    2009-05-01

    Magnetite, Fe{sub 3}O{sub 4}, displays a highly complex low-temperature crystal structure that may be charge and orbitally ordered. Many of the recent experimental claims of such ordering rely on resonant soft x-ray diffraction at the oxygen K and iron L edges. We have reexamined this system and undertaken soft x-ray diffraction experiments on a high-quality single crystal. Contrary to previous claims in the literature, we show that the intensity observed at the Bragg forbidden (001/2){sub c} reflection can be explained purely in terms of the low-temperature structural displacements around the resonant atoms. This does not necessarily mean that magnetite is not charge or orbitally ordered but rather that the present sensitivity of resonant soft x-ray experiments does not allow conclusive demonstration of such ordering.

  20. Multicavity X-Ray Fabry-Perot Resonance with Ultrahigh Resolution and Contrast

    SciTech Connect

    Huang X. R.; Siddons D.; Macrander, A.T.; Peng, R.W.; Wu, X.S.

    2012-05-31

    Realization of x-ray Fabry-Perot (FP) resonance in back-Bragg-reflection crystal cavities has been proposed and explored for many years, but to date no satisfactory performance has been achieved. Here we show that single-cavity crystal resonators intrinsically have limited finesse and efficiency. To break this limit, we demonstrate that monolithic multicavity resonators with equal-width cavities and specific plate thickness ratios can generate ultrahigh-resolution FP resonance with high efficiency, steep peak tails, and ultrahigh contrast simultaneously. The resonance mechanism is similar to that of sequentially cascaded single-cavity resonators. The ultranarrow-bandwidth FP resonance is anticipated to have various applications, including modern ultrahigh-resolution or precision x-ray monochromatization, spectroscopy, coherence purification, coherent diffraction, phase contrast imaging, etc.

  1. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  2. Rydberg-resolved resonant inelastic soft x-ray scattering: dynamics at core ionization thresholds.

    PubMed

    Rubensson, J-E; Söderström, J; Binggeli, C; Gråsjö, J; Andersson, J; Såthe, C; Hennies, F; Bisogni, V; Huang, Y; Olalde, P; Schmitt, T; Strocov, V N; Föhlisch, A; Kennedy, B; Pietzsch, A

    2015-04-03

    Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.

  3. In vivo body composition in autochthonous and conventional pig breeding groups by dual-energy X-ray absorptiometry and magnetic resonance imaging under special consideration of Cerdo Ibérico.

    PubMed

    Kremer, P V; Fernández-Fígares, I; Förster, M; Scholz, A M

    2012-12-01

    The improvement of carcass quality is one of the main breeding goals in pig production. To select appropriate breeding animals, it is of major concern to exactly and reliably analyze the body composition in vivo. Therefore, the objective of the study was to examine whether the combination of dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) offers the opportunity to reliably analyze quantitative and qualitative body composition characteristics of different pig breeding groups in vivo. In this study, a total of 77 pigs were studied by DXA and MRI at an average age of 154 days. The pigs originated from different autochthonous or conventional breeds or crossbreeds and were grouped into six breed types: Cerdo Ibérico (Ib); Duroc × Ib (Du_Ib); White Sow Lines (WSL, including German Landrace and German Large White); Hampshire/Pietrain (Pi_Ha, including Hampshire, Pietrain × Hampshire (PiHa) and Pietrain × PiHa); Pietrain/Duroc (Pi_Du, including Pietrain × Duroc (PiDu) and Pietrain × PiDu); crossbred WSL (PiDu_WSL, including Pietrain × WSL and PiDu × WSL). A whole-body scan was performed by DXA with a GE Lunar DPX-IQ in order to measure the amount and percentage of fat tissue (FM; %FM), lean tissue (LM; %LM) and bone mineral, whereas a Siemens Magnetom Open with a large body coil was used for MRI in the thorax region between 13th and 14th vertebrae in order to measure the area of the loin (LA) and the above back fat area (FA) of both body sides. A GLM procedure using SAS 9.2 was used to analyze the data. As expected, the native breed Ib followed by Du_Ib crossbreeds showed the highest %FM (27.2%, 25.0%) combined with the smallest LA (46.2 cm2, 73.6 cm2), whereas Ib had the lowest BW at an average age of 154 days. Pigs with Pi_Ha origin presented the least %FM (12.4%) and largest LA (99.5 cm2). The WSL and PiDu_WSL showed an intermediate body composition. Therefore, it could be concluded that DXA and MRI and especially their combination

  4. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2).

    PubMed

    Lovesey, S W; Detlefs, C; Rodríguez-Fernández, A

    2012-06-27

    The low-temperature ordered state of neptunium dioxide (NpO(2)) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group ̅3m (D(3d)), because corresponding magnetic groups ̅3m', ̅3'm', and ̅3'm are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M(2,3) and L(2,3) resonant scattering via E2–E2 events. The Lorentzian-squared lineshape observed at the M(4) resonance is shown to be the result of the anisotropy of the 3p(3/2) core levels. Quantitative comparison of our calculations to the measured data yields a core–hole width Γ = 2.60(7) eV and a core-state exchange energy [absolute value]ε(1/2)[absolute value] = 0.76(2) eV.

  5. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2)

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Detlefs, C.; Rodríguez-Fernández, A.

    2012-06-01

    The low-temperature ordered state of neptunium dioxide (NpO2) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group \\bar {3}m (D3d), because corresponding magnetic groups \\bar {3}{m}^{\\prime}, {\\bar {3}}^{\\prime}{m}^{\\prime} and {\\bar {3}}^{\\prime}m are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M2,3 and L2,3 resonant scattering via E2-E2 events. The Lorentzian-squared lineshape observed at the M4 resonance is shown to be the result of the anisotropy of the 3p3/2 core levels. Quantitative comparison of our calculations to the measured data yields a core-hole width Γ = 2.60(7) eV and a core-state exchange energy \\vert \\varepsilon (\\frac{1}{2})\\vert =0.7 6(2) eV.

  6. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    SciTech Connect

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.

  7. Resonant soft X-ray scattering—a new probe of charge, spin and orbital ordering in the manganites

    NASA Astrophysics Data System (ADS)

    Hatton, P. D.; Wilkins, S. B.; Beale, T. A. W.; Johal, T. K.; Prabhakaran, D.; Boothroyd, A. T.

    2005-04-01

    Soft X-ray resonant diffraction is a new technique pioneered by our group. We have published examples of the huge resonant enhancements of charge and magnetic scattering that can be obtained at the L-edges of 3d transition metal oxides. In this paper we will also show how resonant soft X-ray scattering enables direct observation of orbital ordering. We have studied the low temperature phase of La0.5Sr1.5MnO4 that displays charge, spin and orbital ordering. We have employed resonant soft X-ray scattering at the manganese L edges which provide a direct measurement of the orbital ordering. Energy scans at constant wavevector have been compared to theoretical predictions and show that at all temperatures there are two separate contributions to the observed scattering, direct Goodenough orbital ordering and strong cooperative Jahn-Teller distortions of the Mn ions. Finally, we will show how that the spin and orbital degrees of freedom are strongly correlated in these materials.

  8. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    NASA Astrophysics Data System (ADS)

    Adams, B. W.; Kim, K.-J.

    2015-03-01

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as 57Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as 181Ta or 45Sc.

  9. X-Ray Comb Generation from Nuclear-Resonance-Stabilized X-Ray Free-Electron Laser Oscillator for Fundamental Physics and Precision Metrology

    SciTech Connect

    Adams, B. W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as Fe-57 as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as Ta-181 or Sc-45.

  10. Resonantly excited cascade x-ray emission from La

    SciTech Connect

    Moewes, A.; Wilks, R.G.; Kochur, A.G.; Kurmaev, E.Z.

    2005-08-15

    We are monitoring the intensity of the La 5p-4d emission for La metal while scanning across the deeper lying 3d-4f photoexcitation resonances of the same atom. A strong resonant enhancement in the integral intensity of the La 5p-4d fluorescence emission is observed, which is due to cascading decay of the resonantly excited 3d{sup 9}4f{sup +1} configuration. The corresponding emission spectrum features a complex satellite structure reflecting the multitude of transitions taking place in a variety of multi-vacancy configurations created by the cascade. We calculate the probability of 5p{yields}4d emission produced by the cascading decay and then take into account self-absorption of the emitted photons. This model provides good agreement with the experimental results. The number of 4d vacancies increases immensely due to electronic cascades. We also observe an enhanced integral intensity in the 5p-4d fluorescence compared to our calculations, which we attribute to intra-atomic resonance processes.

  11. Magnetic fields in A-type stars associated with X-ray emission

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-06-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this assumption can be shown to be correct in some cases, a number of lines of evidence suggests that low-mass companions cannot be the correct cause for the observed activity in all cases. A model explains the X-ray emission for magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. In this paper we test whether this theoretical model is able to explain the observed X-ray emission. We present the observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS1. Although the emission of those objects that possess magnetic fields fits the prediction of the Babel and Montmerle model, not all X-ray detections are connected to the presence of a magnetic field. Additionally, the measured magnetic fields do not correlate with the X-ray luminosity. Accordingly, the magnetically confined wind shock model cannot explain the X-ray emission from all the presented stars.

  12. A long-lived coronal X-ray arcade. [force-free magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Mcguire, J. P.; Tandberg-Hanssen, E.; Krall, K. R.; Wu, S. T.; Smith, J. B., Jr.; Speich, D. M.

    1977-01-01

    A large, long-lived, soft X-ray emitting arch system observed during a Skylab mission is analyzed. The supposition is that these arches owe their stability to the stable coronal magnetic-field configuration. A global constant alpha force-free magnetic field analysis, is used to describe the arches which stayed in the same approximate position for several solar rotations. A marked resemblance is noted between the theoretical magnetic field configuration and the observed X-ray emmitting feature.

  13. A waveguide electron cyclotron resonance source of X-ray emission for low-dose introscopy

    NASA Astrophysics Data System (ADS)

    Sergeichev, K. F.; Ionidi, V. Yu.; Karfidov, D. M.; Lukina, N. A.

    2013-12-01

    It is shown that a "point" target in a conventional evacuated waveguide in the magnetic field of a mirror trap formed by two disk magnets axially magnetized in the direction perpendicular to the electric field vector represents a source of X-ray bremsstrahlung of electrons accelerated in an ECR discharge with a broad range of photon energies up to 0.8 MeV. The dosage rate of the source is ˜1 R/h. The source fed from a conventional microwave oven has small dimensions and a low weight. It is easy-to-use and is suitable as a laboratory tool, in particular, in radiobiology and introscopy. After passing through the object, X-ray emission is recorded by a digital camera with the help of a highly sensitive X-ray fluorescent screen, which converts it into an optical image.

  14. K{beta} resonant x-ray emission spectra in MnF{sub 2}

    SciTech Connect

    Taguchi, M.; Parlebas, J. C.; Uozumi, T.; Kotani, A.; Kao, C.-C.

    2000-01-15

    We report experimental and theoretical results on Mn K{beta} resonant x-ray emission spectra (K{beta} RXES) at the pre-edge region of K-edge x-ray absorption spectroscopy in a powdered MnF{sub 2} sample. The experimental results are studied theoretically in terms of coherent second-order optical process, using a MnF{sub 6}{sup -4} cluster model with the effects of intra-atomic multiplet coupling and interatomic hybridization in the space of three configurations and taking into account both the Mn 1s-3d quadrupole excitation and the Mn 1s-4p dipole excitation. The agreement between theory and experiment is good. Moreover, we show that if the sample is a single crystal the resonant x-ray emission spectroscopy caused by the quadrupole excitation has a strong sensitivity to the angle of the incident photon. (c) 2000 The American Physical Society.

  15. X-rays from magnetic intermediate mass Ap/Bp stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    2016-09-01

    The X-ray emission of magnetic intermediate mass Ap/Bp stars is reviewed and put into context of intrinsic as well as extrinsic hypotheses for its origin. New X-ray observations of Ap/Bp stars are presented and combined with an updated analysis of the available datasets, providing the largest sample of its type that is currently available. In the studied stars the X-ray detections are found predominantly among the more massive, hotter and more luminous targets. Their X-ray properties are quite diverse and beside strong soft X-ray emission significant magnetic activity is frequently present. While a connection between more powerful winds and brighter X-ray emission is expected in intrinsic models, the scatter in X-ray luminosity at given bolometric luminosity is so far unexplained and several observational features like X-ray light curves and flaring, luminosity distributions and spectral properties are often similar to those of low-mass stars. It remains to be seen if these features can be fully reproduced by magnetospheres of intermediate mass stars. The article discusses implications for magnetically confined wind-shock models (MCWS) and stellar magnetospheres under the assumption that the intrinsic model is applicable, but also examines the role of possible companions. Further, related magnetospheric phenomena are presented and an outlook on future perspectives is given.

  16. Evidence for Resonance Scattering in the X-ray Spectrum of Zeta Puppis

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice

    2008-01-01

    We present XMM-Newton Reflection Grating Spectrometer observations of pairs of X-ray emission line profiles from the 0 star Zeta Pup that originate from the same He-like ion. The two profiles in each pair have different shapes and cannot both be consistently fit by models assuming the same wind parameters. We show that the differences in profile shape can be accounted for in a model including the effects of resonance scattering, which affects the resonance line in the pair but not the intercombination line. This implies that resonance scattering is also important in single resonance lines, where its effect is difficult to distinguish from a low effective continuum optical depth in the wind. Thus, resonance scattering may help reconcile X-ray line profile shapes with literature mass-loss rates.

  17. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Mankey, G.J.; Willis, R.F.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    We have begun a program to characterize magnetic alloy overlays using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  18. Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.

    PubMed

    Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H

    2015-08-17

    While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions.

  19. X-ray magnetic circular dichroism measurements using an X-ray phase retarder on the BM25 A-SpLine beamline at the ESRF

    PubMed Central

    Boada, Roberto; Laguna-Marco, María Ángeles; Gallastegui, Jon Ander; Castro, Germán R.; Chaboy, Jesús

    2010-01-01

    Circularly polarized X-rays produced by a diamond X-ray phase retarder of thickness 0.5 mm in the Laue transmission configuration have been used for recording X-ray magnetic circular dichroism (XMCD) on the bending-magnet beamline BM25A (SpLine) at the ESRF. Field reversal and helicity reversal techniques have been used to carry out the measurements. The performance of the experimental set-up has been demonstrated by recording XMCD in the energy range from 7 to 11 keV. PMID:20400827

  20. Micro-fabricated magnetic microcalorimeter development for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Bandler, Simon R.; Adams, Joseph S.; Beyer, Joern; Hseih, Wen-Ting; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas

    2008-07-01

    X-ray microcalorimeters using magnetic sensors show great promise for use in astronomical x-ray spectroscopy. We have begun to develop technology for fabricating arrays of magnetic calorimeters for X-ray astronomy. The magnetization change in each pixel of the paramagnetic sensor material due to the heat input of an absorbed x-ray is sensed by a meander shaped coil. With this geometry it is possible to obtain excellent energy sensitivity, low magnetic cross-talk and large format arrays fabricated on wafers that are separate from the SQUID read-out. We report on the results from our prototype arrays, which are coupled to low noise 2-stage SQUIDs developed at the PTB Berlin. The first testing results are presented and the sensitivity compared with calculations.

  1. Resonant inelastic x-ray scattering as a probe of band structure effects in cuprates

    NASA Astrophysics Data System (ADS)

    Kanász-Nagy, M.; Shi, Y.; Klich, I.; Demler, E. A.

    2016-10-01

    We analyze within quasiparticle theory a recent resonant inelastic x-ray scattering (RIXS) experiment on YBa2Cu3O6+x with the incoming photon energy detuned at several values from the resonance maximum [Minola et al., Phys. Rev. Lett. 114, 217003 (2015), 10.1103/PhysRevLett.114.217003]. Surprisingly, the data show a much weaker dependence on detuning than expected from recent measurements on a different cuprate superconductor, Bi2Sr2CuO6+x [Guarise et al., Nat. Commun. 5, 5760 (2014), 10.1038/ncomms6760]. We demonstrate here that this discrepancy, originally attributed to collective magnetic excitations, can be understood in terms of the differences between the band structures of these materials. We find good agreement between theory and experiment over a large range of dopings, both in the underdoped and overdoped regimes. Moreover, we demonstrate that the RIXS signal depends sensitively on excitations at energies well above the Fermi surface that are inaccessible to traditionally used band structure probes, such as angle-resolved photoemission spectroscopy. This makes RIXS a powerful probe of band structure, not suffering from surface preparation problems and small sample sizes, making it potentially applicable to a number of cuprate materials.

  2. Resonant inelastic x-ray scattering as a band structure probe of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kanasz-Nagy, Marton; Shi, Yifei; Klich, Israel; Demler, Eugene

    I will analyze recent resonant inelastic x-ray scattering (RIXS) experimental data on YBa2Cu3O6 + x [Minola et al., Phys. Rev. Lett. 114, 217003 (2015)] within quasi-particle theory. This measurement has been performed with the incoming photon energy detuned at several values from the resonance maximum, and, surprisingly, the data shows much weaker dependence on detuning than expected from recent measurements on a different cuprate superconductor, Bi2Sr2CuO6 + x [Guarise et al., Nat. Commun. 5, 5760 (2014)]. I will demonstrate, that this discrepancy, originally attributed to collective magnetic excitations, can be understood in terms of the differences between the band structures of these materials. We found good agreement between theory and experiment over a large range of dopings [M. Kanasz-Nagy et al., arXiv:1508.06639]. Moreover, I will demonstrate that the RIXS signal depends sensitively on excitations at energies well above the Fermi surface, that are inaccessible to traditionally used band structure probes, such as angle-resolved photoemission spectroscopy. This makes RIXS a powerful probe of band structure, not suffering from surface preparation problems and small sample sizes, making it potentially applicable to a wide range of materials. The work of M. K.-N. was supported by the Harvard-MIT CUA, NSF Grant No. DMR-1308435, AFOSR Quantum Simulation MURI, the ARO-MURI on Atomtronics, and ARO MURI Quism program.

  3. X-ray diffraction measurements in high magnetic fields and at high temperatures

    PubMed Central

    Mitsui, Yoshifuru; Koyama, Keiichi; Watanabe, Kazuo

    2009-01-01

    A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research. PMID:27877263

  4. Resonant inelastic x-ray scattering at the limit of subfemtosecond natural lifetime

    SciTech Connect

    Marchenko, T.; Journel, L.; Marin, T.; Guillemin, R.; Carniato, S.; Simon, M.; Zitnik, M.; Kavcic, M.; Bucar, K.; Mihelic, A.; Hoszowska, J.; Cao, W.

    2011-04-14

    We present measurements of the resonant inelastic x-ray scattering (RIXS) spectra of the CH{sub 3}I molecule in the hard-x-ray region near the iodine L{sub 2} and L{sub 3} absorption edges. We show that dispersive RIXS spectral features that were recognized as a fingerprint of dissociative molecular states can be interpreted in terms of ultrashort natural lifetime of {approx}200 attoseconds in the case of the iodine L-shell core-hole. Our results demonstrate the capacity of the RIXS technique to reveal subtle dynamical effects in molecules with sensitivity to nuclear rearrangement on a subfemtosecond time scale.

  5. Multidimensional Attosecond Resonant X-Ray Spectroscopy of Molecules: Lessons from the Optical Regime

    PubMed Central

    Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.

    2013-01-01

    New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522

  6. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Casa, Diego; Kim, Jungho; Gog, Thomas; Li, Chengyang; Burns, Clement

    2016-08-01

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  7. Magnetic imaging by Fourier transform holography using linearly polarized x-rays.

    PubMed

    Sacchi, Maurizio; Popescu, Horia; Jaouen, Nicolas; Tortarolo, Marina; Fortuna, Franck; Delaunay, Renaud; Spezzani, Carlo

    2012-04-23

    We present a method for imaging magnetic domains via x-ray Fourier transform holography at linearly polarized sources. Our approach is based on the separation of holographic mask and sample and on the Faraday rotation induced on the reference wave. We compare images of perpendicular magnetic domains obtained with either linearly or circularly polarized x-rays and discuss the relevance of this method to future experiments at free-electron laser and high-harmonic-generation sources.

  8. X-ray and magnetic-field-enhanced change in physical characteristics of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Krit, A. N.; Kalinichenko, D. V.; Kurylyuk, A. N.; Naumenko, S. N.

    2012-07-01

    The effect of low-energy ( W = 8 keV) low-dose ((0.3-7.3) × 102 Gy) radiation and a dc magnetic field ( B = 0.17 T) on structural, micromechanical, and microplastic characteristics of silicon crystals has been studied. The features in the dynamic behavior of dislocations in silicon crystals, which manifest themselves upon only X-ray exposure and combined (X-ray and magnetic) exposure, have been revealed.

  9. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  10. High-resolution hard x-ray magnetic imaging with dichroic ptychography

    NASA Astrophysics Data System (ADS)

    Donnelly, Claire; Scagnoli, Valerio; Guizar-Sicairos, Manuel; Holler, Mirko; Wilhelm, Fabrice; Guillou, Francois; Rogalev, Andrei; Detlefs, Carsten; Menzel, Andreas; Raabe, Jörg; Heyderman, Laura J.

    2016-08-01

    Imaging the magnetic structure of a material is essential to understanding the influence of the physical and chemical microstructure on its magnetic properties. Magnetic imaging techniques, however, have been unable to probe three-dimensional micrometer-size systems with nanoscale resolution. Here we present the imaging of the magnetic domain configuration of a micrometer-thick FeGd multilayer with hard x-ray dichroic ptychography at energies spanning both the Gd L3 edge and the Fe K edge, providing a high spatial resolution spectroscopic analysis of the complex x-ray magnetic circular dichroism. With a spatial resolution reaching 45 nm , this advance in hard x-ray magnetic imaging is a first step towards the investigation of buried magnetic structures and extended three-dimensional magnetic systems at the nanoscale.

  11. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    SciTech Connect

    Bansil, Arun

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  12. Magnetic properties of GdT2Zn20 (T = Fe, Co) investigated by x-ray diffraction and spectroscopy

    DOE PAGES

    J. R. L. Mardegan; Fabbris, G.; Francoual, S.; ...

    2016-01-26

    In this study, we investigate the magnetic and electronic properties of the GdT2Zn20 (T=Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo2Zn20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector →/τ = (12,12,12) below the Néel temperature (TN ~ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6. For the ferromagnetic GdFe2Zn20 compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD. Amore » strong XMCD signal of about 12.5% and 9.7% is observed below the Curie temperature (TC ~ 85K) at the Gd L2 and L3 edges, respectively. In addition, a small magnetic signal of about 0.06% of the jump is recorded at the Zn K edge, suggesting that the Zn 4p states are spin polarized by the Gd 5d extended orbitals.« less

  13. Resonantly photo-pumped nickel-like erbium X-ray laser

    DOEpatents

    Nilsen, Joseph

    1990-01-01

    A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).

  14. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    DOE PAGES

    Liu, X.; Dean, M. P. M.; Liu, J.; ...

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less

  15. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    SciTech Connect

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; Hill, J. P.

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  16. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    SciTech Connect

    Xie, M.

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  17. Role of screening and angular distributions in resonant soft-x-ray emission of CO

    SciTech Connect

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    In the present work the authors focus on two particular properties of resonant X-ray emission, namely core hole screening of the excited electron, and anisotropy caused by the polarization of the exciting synchrotron radiation. The screening of the core hole by the excited electron causes energy shifts and intensity variations in resonant spectra compared to the non-resonant case. The linear polarization of the synchrotron radiation and the dipole nature of the absorption process create a preferential alignment selection of the randomly oriented molecules in the case of resonant excitation, producing an anisotropy in the angular distribution of the emitted X-rays. The authors have chosen CO for this study because this molecule has previously served as a showcase for non-resonant X-ray emission, mapping the valence electronic structure differently according to the local selection rules. With the present work they take interest in how this characteristic feature of the spectroscopy is represented in the resonant case.

  18. Irreversible transformation of ferromagnetic ordered stripe domains in single-shot infrared-pump/resonant-x-ray-scattering-probe experiments

    NASA Astrophysics Data System (ADS)

    Bergeard, Nicolas; Schaffert, Stefan; López-Flores, Víctor; Jaouen, Nicolas; Geilhufe, Jan; Günther, Christian M.; Schneider, Michael; Graves, Catherine; Wang, Tianhan; Wu, Benny; Scherz, Andreas; Baumier, Cédric; Delaunay, Renaud; Fortuna, Franck; Tortarolo, Marina; Tudu, Bharati; Krupin, Oleg; Minitti, Michael P.; Robinson, Joe; Schlotter, William F.; Turner, Joshua J.; Lüning, Jan; Eisebitt, Stefan; Boeglin, Christine

    2015-02-01

    The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.

  19. Lattice model of resonant inelastic x-ray scattering in metals: relation of a strong core hole to the x-ray edge singularity.

    PubMed

    Markiewicz, R S; Rehr, J J; Bansil, A

    2014-06-13

    We show how the classic approach of Nozières and di Domenicis for treating the edge singularity in x-ray absorption and emission can be generalized to treat the more complex case of the resonant inelastic x-ray scattering (RIXS) process, including effects of the intermediate states involved therein in the presence of the core hole. We solve our lattice model essentially exactly (numerically) to obtain a novel form of edge singularity at the RIXS threshold energy. Our RIXS spectrum naturally includes both the well and poorly screened spectral components and their dispersions and allows its separation into pair and multiple-pair excitations.

  20. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  1. The X-ray Light Curves of Magnetic Cataclysmic Variables with Non-zero Shock Heights

    NASA Astrophysics Data System (ADS)

    Mukai, Koji

    The hard X-ray emitting shocks in magnetic CVs are probably 0.01-0.1 Rwd tall. Self occultation of X-ray emitting regions under such shocks must be calculated using a full, three-dimensional geometry: The difference between the top and the bottom of the shock is substantial in this regard. In this paper, I present the results of crude simulations showing that the non-zero shock height probably is an important factor in the hard X-ray spin modulations of IPs, with applications to XY Ari and EX Hya.

  2. Effects of dispersion and absorption in resonant Bragg diffraction of x-rays.

    PubMed

    Lovesey, S W; Scagnoli, V; Dobrynin, A N; Joly, Y; Collins, S P

    2014-03-26

    Resonant diffraction of x-rays by crystals with anisotropic optical properties is investigated theoretically, to assess how the intensity of a Bragg spot is influenced by effects related to dispersion (birefringence) and absorption (dichroism). Starting from an exact but opaque expression, simple analytic results are found to expose how intensity depends on dispersion and absorption in the primary and secondary beams and, also, the azimuthal angle (rotation of the crystal about the Bragg wavevector). If not the full story for a given application, our results are more than adequate to explore consequences of dispersion and absorption in the intensity of a Bragg spot. Results are evaluated for antiferromagnetic copper oxide, and low quartz. For CuO, one of our results reproduces all salient features of a previously published simulation of the azimuthal-angle dependence of a magnetic Bragg peak. It is transparent in our analytic result that dispersion and absorption effects alone cannot reproduce published experimental data. Available data for the azimuthal-angle dependence of space-group forbidden reflections (0,0, l), with l ≠ 3n, of low quartz depart from symmetry imposed by the triad axis of rotation symmetry. The observed asymmetry can be induced by dispersion and absorption even though absorption coefficients are constant, independent of the azimuthal angle, in this class of reflections.

  3. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gabbasov, Raul; Polikarpov, Michael; Cherepanov, Valery; Chuev, Michael; Mischenko, Iliya; Lomov, Andrey; Wang, Andrew; Panchenko, Vladislav

    2015-04-01

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5-25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results.

  4. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    SciTech Connect

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko

    2015-11-16

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10{sup 4} times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO{sub 4} tetrahedra, which efficiently transduce electric energy into elastic energy.

  5. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    SciTech Connect

    Mini, S.M. |; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of {approx}2.5{mu}{sub B} per interface Pd atom.

  6. Calibration standard of body tissue with magnetic nanocomposites for MRI and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Woodward, Robert; House, Michael; Engineer, Diana; Feindel, Kirk; Dutz, Silvio; Odenbach, Stefan; StPierre, Tim

    2016-05-01

    We present a first study of a long-term phantom for Magnetic Resonance Imaging (MRI) and X-ray imaging of biological tissues with magnetic nanocomposites (MNC) suitable for 3-dimensional and quantitative imaging of tissues after, e.g. magnetically assisted cancer treatments. We performed a cross-calibration of X-ray microcomputed tomography (XμCT) and MRI with a joint calibration standard for both imaging techniques. For this, we have designed a phantom for MRI and X-ray computed tomography which represents biological tissue enriched with MNC. The developed phantoms consist of an elastomer with different concentrations of multi-core MNC. The matrix material is a synthetic thermoplastic gel, PermaGel (PG). The developed phantoms have been analyzed with Nuclear Magnetic Resonance (NMR) Relaxometry (Bruker minispec mq 60) at 1.4 T to obtain R2 transverse relaxation rates, with SQUID (Superconducting QUantum Interference Device) magnetometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to verify the magnetite concentration, and with XμCT and 9.4 T MRI to visualize the phantoms 3-dimensionally and also to obtain T2 relaxation times. A specification of a sensitivity range is determined for standard imaging techniques X-ray computed tomography (XCT) and MRI as well as with NMR. These novel phantoms show a long-term stability over several months up to years. It was possible to suspend a particular MNC within the PG reaching a concentration range from 0 mg/ml to 6.914 mg/ml. The R2 relaxation rates from 1.4 T NMR-relaxometry show a clear connection (R2=0.994) with MNC concentrations between 0 mg/ml and 4.5 mg/ml. The MRI experiments have shown a linear correlation of R2 relaxation and MNC concentrations as well but in a range between MNC concentrations of 0 mg/ml and 1.435 mg/ml. It could be shown that XμCT displays best moderate and high MNC concentrations. The sensitivity range for this particular XμCT apparatus yields from 0.569 mg/ml to 6.914 mg/ml. The

  7. IQ Aur: A new mode of X-ray generation in magnetic stars ?

    NASA Astrophysics Data System (ADS)

    Schmitt, Jurgen

    2007-10-01

    We propose to obtain the first high-resolution X-ray spectrum of the peculiar magnetic A-type star IQ Aur. From previous X-ray observations IQ Aur is known as a strong (LX ~ 4 10**29 erg/s), but very soft (TX ~ 0.29 keV) X-ray source. An attribution of IQ~Aur's X-ray emission to a low-mass companion would imply totally unusual properties of such an hypothesized object, thus IQ Aur is a good candidate for an A-type star with intrinsic X-ray emission.The XMM-Newton RGS spectrum will constrain the location of the X-ray emission site from a measurement or upper limit to the strength of the OVII f line, the overall RGS spectrum will determine the elemental abundances, which may be far away from solar,and the phase coverage will allow a search for rotational modulation of IQ Aur's X-ray flux.

  8. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    PubMed Central

    Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul

    2017-01-01

    Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry. PMID:28191484

  9. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  10. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies.

    PubMed

    Szlachetko, J; Nachtegaal, M; de Boni, E; Willimann, M; Safonova, O; Sa, J; Smolentsev, G; Szlachetko, M; van Bokhoven, J A; Dousse, J-Cl; Hoszowska, J; Kayser, Y; Jagodzinski, P; Bergamaschi, A; Schmitt, B; David, C; Lücke, A

    2012-10-01

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  11. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  12. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  13. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-06-08

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

  14. Identification of inversion domains in KTiOPO{sub 4}via resonant X-ray diffraction

    SciTech Connect

    Fabrizi, Federica; Thomas, Pamela A.; Nisbet, Gareth; Collins, Stephen P.

    2015-05-14

    The identification and high-resolution mapping of the absolute crystallographic structure in multi-domain ferroelectric KTiOPO{sub 4} is achieved through a novel synchrotron X-ray diffraction method. On a single Bragg reflection, the intensity ratio in resonant diffraction below and above the Ti absorption K edge demonstrates a domain contrast up to a factor of ∼270, thus implementing a non-contact, non-destructive imaging technique with micrometre spatial resolution, applicable to samples of arbitrarily large dimensions. A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO{sub 4}. Resonant (or ‘anomalous’) X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics)

  15. Thermal X-ray emission from massive, fast rotating, highly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Cáceres, D. L.; de Carvalho, S. M.; Coelho, J. G.; de Lima, R. C. R.; Rueda, Jorge A.

    2017-03-01

    There is solid observational evidence on the existence of massive, M ∼ 1 M⊙, highly magnetized white dwarfs (WDs) with surface magnetic fields up to B ∼ 109 G. We show that, if in addition to these features, the star is fast rotating, it can become a rotation-powered pulsar-like WD and emit detectable high-energy radiation. We infer the values of the structure parameters (mass, radius, moment of inertia), magnetic field, rotation period and spin-down rates of a WD pulsar death-line. We show that WDs above the death-line emit blackbody radiation in the soft X-ray band via the magnetic polar cap heating by back flowing pair-created particle bombardment and discuss as an example the X-ray emission of soft gamma-repeaters and anomalous X-ray pulsars within the WD model.

  16. Synchrotron x-ray powder diffraction studies in pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Frings, P.; Vanacken, J.; Detlefs, C.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G. L. J. A.

    2006-06-01

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beamline (BM26B) at the ESRF. A mobile generator delivered 110kJ to the magnet coil, which was sufficient to generate peak fields of 30T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8 and 300K. Powder diffraction patterns of several samples were recorded using 21keV monochromatic x-rays and an on-line image plate detector. Here we present the first results on the suppression of the Jahn-Teller structural distortion in TbVO4 by magnetic field. These data clearly demonstrate the feasibility of x-ray powder diffraction experiments under pulsed magnetic fields with relatively inexpensive instrumentation.

  17. Development of an x-ray diffraction camera used in magnetic fields up to 10 T.

    PubMed

    Mitsui, Yoshifuru; Koyama, Keiichi; Takahashi, Kohki; Watanabe, Kazuo

    2011-12-01

    A high-field x-ray diffraction (HF-XRD) camera was developed to observe structural changes of magnetic materials in magnetic fields up to 10 T. The instrument mainly consists of a Debye-Scherrer-type camera with a diameter of 80.1 mm, a 10-T cryocooled superconducting magnet with a 100-mm room-temperature bore, an x-ray source, a power supply, and a chiller for the x-ray source. An x-ray detector (image plate) in the HF-XRD camera can be taken out and inserted into the magnet without changing the sample position. The performance of the instrument was tested by measuring the HF-XRD for silicon and ferromagnetic MnBi powders. A change of x-ray diffraction pattern was observed due to the magnetic orientation of MnBi, showing that the instrument is useful for studying field-induced orientation processes and structural properties of field-controlled materials.

  18. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  19. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  20. Resonant bound-free contributions to Thomson scattering of X-rays by warm dense matter

    NASA Astrophysics Data System (ADS)

    Johnson, W. R.; Nilsen, J.; Cheng, K. T.

    2013-09-01

    Recent calculations [Nilsen et al. arXiv:1212.5972] predict that contributions to the scattered photon spectrum from 3s and 3p bound states in chromium (Z = 24) at metallic density and T = 12 eV resonate below the respective bound-state thresholds. These resonances are shown to be closely related to continuum lowering, where 3d bound states in the free atom dissolve into a resonant l = 2 partial wave in the continuum. The resulting d-state resonance dominates contributions to the bound-free dynamic structure function, leading to the predicted resonances in the scattered X-ray spectrum. Similar resonant features are shown to occur in all elements in the periodic table between Ca and Mn (20 ≤ Z ≤ 25).

  1. High Spectral Resolution X-ray Observation of Magnetic CVs: EX Hya

    SciTech Connect

    Luna, G; Brickhouse, N S; Mauche, C W

    2008-04-07

    In magnetic cataclysmic variables (CVs) the primary is a highly magnetized white dwarf (WD) whose field controls the accretion flow close to the WD, leading to a shock and accretion column that radiate chiefly in X-rays. We present preliminary results from a 500 ks Chandra HETG observation of the brightest magnetic CV EX Hya. From the observational dataset we are able to measure the temperature and density at different points of the cooling accretion column using sensitive line ratios. We also construct line-based light curves to search for rotational modulation of the X-ray emission.

  2. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  3. Dissociation of chloromethanes upon resonant σ{sup *} excitation studied by x-ray scattering

    SciTech Connect

    Bohinc, R.; Bučar, K.; Kavčič, M.; Žitnik, M.; Journel, L.; Guillemin, R.; Marchenko, T.; Simon, M.; Cao, W.

    2013-10-07

    The dissociation process following the Cl K-shell excitation to σ{sup *} resonances is studied by high resolution spectroscopy of resonant elastic and inelastic x-ray scattering on CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and CCl{sub 4} molecules. Calculations employing the transition potential and Delta-Kohn-Sham DFT approach are in good agreement with the measured total fluorescence yield and show the presence of a second quasidegenerate group of states with σ{sup *} character above the lowest σ{sup *} unoccupied molecular orbital for molecules with more than one Cl atom. A bandwidth narrowing and a nonlinear dispersion behavior is extracted from the Kα spectral maps for both σ{sup *} resonances. The fitted data indicate that the widths of the Franck-Condon distributions for the first and second σ{sup *} resonances are comparable for all the molecules under study. In addition, an asymmetric broadening of the emission peaks is observed for resonant elastic x-ray scattering with zero detuning on both σ{sup *} resonances. This is attributed to the fast dissociation, transferring about 0.15 of the scattering probability into higher vibrational modes.

  4. Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy.

    PubMed

    Fuchs, O; Zharnikov, M; Weinhardt, L; Blum, M; Weigand, M; Zubavichus, Y; Bär, M; Maier, F; Denlinger, J D; Heske, C; Grunze, M; Umbach, E

    2008-01-18

    High-resolution x-ray absorption and emission spectra of liquid water exhibit a strong isotope effect. Further, the emission spectra show a splitting of the 1b1 emission line, a weak temperature effect, and a pronounced excitation-energy dependence. They can be described as a superposition of two independent contributions. By comparing with gas phase, ice, and NaOH/NaOD, we propose that the two components are governed by the initial state hydrogen bonding configuration and ultrafast dissociation on the time scale of the O 1s core hole decay.

  5. Monochromatic X-ray propagation in multi-Z media for imaging and diagnostics including Kα Resonance Fluorescence

    NASA Astrophysics Data System (ADS)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Pradhan, Anil

    2016-05-01

    Aimed at monochromatic X-ray imaging and therapy, broadband, monochromatic, and quasi-monochromatic X-ray sources and propagation through low and high-Z (HZ) media were studied with numerically and experimentally. Monte Carlo simulations were performed using the software package Geant4, and a new code Photx, to simulate X-ray image contrast, depth of penetration, and total attenuation. The data show that monochromatic and quasi-monochromatic X-rays achieve improved contrast at lower absorbed radiation doses compared to conventional broadband 120 kV or CT scans. Experimental quasi-monochromatic high-intensity laser-produced plasma sources and monochromatic synchrotron beam data are compared. Physical processes responsible for X-ray photoexcitation and absorption are numerically modelled, including a novel mechanism for accelerating Kα resonance fluorescence via twin monochromatic X-ray beam. Potential applications are medical diagnostics and high-Z material detection. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  6. Synchrotron X-ray Powder Diffraction Studies in Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Detlefs, C.; Frings, P.; Vanacken, J.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G. L. J. A.

    2007-01-01

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beamline (BM26B) at the ESRF. A mobile generator delivered 110kJ to the magnet coil, which was sufficient to generate peak fields of 30T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8K and 300K.

  7. Resonant x-ray emission from gas-phase TiCl{sub 4}

    SciTech Connect

    Hague, C.F.; Tronc, M.; De Groot, F.

    1997-04-01

    Resonant x-ray emission spectroscopy (RXES) has proved to be a powerful tool for studying the electronic structure of condensed matter. Over the past few years it has been used mainly for studying the valence bands of solids and condensed molecules. Very recently the advent of high brightness photon beams provided by third generation synchrotron radiation source undulators, associated with efficient x-ray emission spectrometers has made it possible to perform experiments on free diatomic molecular systems. RXE spectra of free molecules are of prime importance to gain insight into their electronic structure and bonding as they reflect the symmetry of orbitals engaged in the two-electron, two-step process with the l = 0, {+-}2 parity-conserving selection rule, and are free from solid state effects which can introduce difficulties in the interpretation. They provide information (more so than XAS) on the core excited states, and, when performed at fixed incident photon energy as a function of the emitted photon energy, on the electronic excitation (charge transfer, multiplet states). Moreover the anisotropy of the angular distribution of resonant x-ray emission affects the relative intensity of the emission peaks and provides information concerning the symmetries of final states. This is a preliminary report on what are the first RXE spectra of a 3d transition metal complex in the gas phase. The experiment concerns the Ti 3d {yields}2p emission spectrum of TiCl{sub 4} over the 450 to 470 eV region.

  8. Resonant soft x-ray scattering from La1-xSrxMnO3 quantum wire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Smadici, Serban; Lee, James; Odlyzko, Michael; Zhai, Xiaofang; Eckstein, James; Shah, Amish; Zuo, Jian-Min; Abbamonte, Peter; Bhattacharya, Anand

    2009-03-01

    Any finite sized, patterned system with an energy gap is expected to have elementary excitations that are characteristic of its boundary. To test this idea we have fabricated large arrays (>60000 elements) of colossal magnetoresistance- phase La2/3 Sr1/3 MnO3 quantum wires. These wires are 80 nm in width so have properties that are dominated by edge effects. We used resonant soft x-ray scattering (RSXS) and SQUID magnetometry to study their magnetic properties. We found that patterning lowers the Curie temperature and suppresses the degree of magnetization. RSXS studies show diffraction maxima from the wire period, as well as temperature-dependent diffuse scattering. We will discuss these results in the context of combined structural and magnetic disorder. Funding #: DOE grants DE-FG02-07ER46453 and DE-FG02-06ER46285

  9. Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized x-rays.

    PubMed

    Tanaka, Y; Collins, S P; Lovesey, S W; Matsumami, M; Moriwaki, T; Shin, S

    2010-03-31

    Many proteins, sugars and pharmaceuticals crystallize into two forms that are mirror images of each other (enantiomers) like our right and left hands. Tellurium is one enantiomer having a space group pair, P3(1)21 (right-handed screw) and P3(2)21 (left-handed screw). X-ray diffraction with dispersion correction terms has been playing an important role in determining the handedness of enantiomers for a long time. However, this approach is not applicable for an elemental crystal such as tellurium or selenium. We have demonstrated that positive and negative circularly polarized x-rays at the resonant energy of tellurium can be used to absolutely distinguish right from left tellurium. This method is applicable to chiral motifs that occur in biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.

  10. Selective gating to vibrational modes through resonant X-ray scattering

    PubMed Central

    Couto, Rafael C.; Cruz, Vinícius V.; Ertan, Emelie; Eckert, Sebastian; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Guimarães, Freddy F.; Ågren, Hans; Gel'mukhanov, Faris; Odelius, Michael; Kimberg, Victor; Föhlisch, Alexander

    2017-01-01

    The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations. PMID:28106058

  11. Selective gating to vibrational modes through resonant X-ray scattering.

    PubMed

    Couto, Rafael C; Cruz, Vinícius V; Ertan, Emelie; Eckert, Sebastian; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Guimarães, Freddy F; Ågren, Hans; Gel'mukhanov, Faris; Odelius, Michael; Kimberg, Victor; Föhlisch, Alexander

    2017-01-20

    The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.

  12. Selective gating to vibrational modes through resonant X-ray scattering

    NASA Astrophysics Data System (ADS)

    Couto, Rafael C.; Cruz, Vinícius V.; Ertan, Emelie; Eckert, Sebastian; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Guimarães, Freddy F.; Ågren, Hans; Gel'Mukhanov, Faris; Odelius, Michael; Kimberg, Victor; Föhlisch, Alexander

    2017-01-01

    The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.

  13. Element-specific magnetization reversal in Fe/Ce multilayers:. a study by X-ray magnetic circular dichroism and the magneto-optic Kerr effect

    NASA Astrophysics Data System (ADS)

    Münzenberg, M.; Arend, M.; Felsch, W.; Pizzini, S.; Fontaine, A.; Neisius, T.; Pascarelli, S.

    2000-10-01

    Fe/Ce multilayers are magnetically soft with coercive fields of a few Oersteds. In this artificial system, the itinerant 5d electrons of Ce are magnetically polarized by hybridization with the spin-split 3d states of Fe. To obtain an insight into the magnetization reversal process, the element selectivity of X-ray magnetic circular dichroism was used to measure the magnetization of the Ce-5d electrons as a function of an applied magnetic field. Comparison with the magnetization curves studied by the magneto-optic Kerr effect, which averages over the whole system, revealed that the coercivity in the hysteresis of the ordered Ce-5d moments is reduced by 50%. We propose that this is an effect of the magnetically disturbed interface or of the complex non-collinear magnetic structure of the Ce layers detected by recent experiments of X-ray resonant magnetic scattering. The results are compared to the X-ray dichroic and Kerr hysteresis loops of the multilayers Fe/La/Ce/La and Fe/CeH 2- δ. These systems are magnetically harder and their coercivities are identical.

  14. Resonant x-ray scattering study of the antiferroelectric and ferrielectric phases in liquid crystal devices

    SciTech Connect

    Matkin, L. S.; Watson, S. J.; Gleeson, H. F.; Pindak, R.; Pitney, J.; Johnson, P. M.; Huang, C. C.; Barois, P.; Levelut, A.-M.; Srajer, G.

    2001-08-01

    Resonant x-ray scattering has been used to investigate the interlayer ordering of the antiferroelectric and ferrielectric smectic C{sup *} subphases in a device geometry. The liquid crystalline materials studied contain a selenium atom and the experiments were carried out at the selenium K edge allowing x-ray transmission through glass. The resonant scattering peaks associated with the antiferroelectric phase were observed in two devices containing different materials. It was observed that the electric-field-induced antiferroelectric to ferroelectric transition coincides with the chevron to bookshelf transition in one of the devices. Observation of the splitting of the antiferroelectric resonant peaks as a function of applied field also confirmed that no helical unwinding occurs at fields lower than the chevron to bookshelf threshold. Resonant features associated with the four-layer ferrielectric liquid crystal phase were observed in a device geometry. Monitoring the electric field dependence of these ferrielectric resonant peaks showed that the chevron to bookshelf transition occurs at a lower applied field than the ferrielectric to ferroelectric switching transition.

  15. Enhancement of X-ray Production in Z-Pinch Plasmas Using Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Edison, N. S.; Etlicher, B.; Attelan, S.; Rouillé, C.; Chuvatin, A. S.; Aliaga, R.

    1994-03-01

    We are investigating the effects of an axial magnetic field to stabilize an aluminum vapor z-pinch. An aluminum plasma jet is created from an exploding foil in a DC magnetic field (Bz0 ≤ 300 G). The applied field is small compared to the azimuthal field, Bz0 ≫ Bϑ, and is intended to reduce the growth of instabilities during the compression phase. The pinch is driven by a 2 Ω, 0.1 TW generator (250 kA in 80 ns). Additionally, a micron sized wire may be placed on the pinch axis leading to the plasma-on-wire (POW) configuration. Qualitatively, increasing the axial magnetic field improves the pinch with the m=1 instabilities becoming negligible for fields higher than 150 G. We find that the externally applied fields can enhance x-ray production up to a critical field. Above this critical field x-ray emission decreases even though the pulse length of the radiation may still be increasing. As the applied field increases, the period of x-ray emission increases with the harder spectrum affected the least. The x-ray yield peaks for the POW and Al jet alone configurations at 150 G and 50 G respectively. Diagnostics include filtered PIN x-ray diodes, time-resolved schlieren photography, and time-integrated multiple filtered pinholes. We will present the results comparing the POW and aluminum jet configurations described above.

  16. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars.

    PubMed

    Colpi; Geppert; Page

    2000-01-20

    We confront theoretical models for the rotational, magnetic, and thermal evolution of an ultramagnetized neutron star, or magnetar, with available data on the anomalous X-ray pulsars (AXPs). We argue that, if the AXPs are interpreted as magnetars, their clustering of spin periods between 6 and 12 s (observed at present in this class of objects), their period derivatives, their thermal X-ray luminosities, and the association of two of them with young supernova remnants can only be understood globally if the magnetic field in magnetars decays significantly on a timescale of the order of 104 yr.

  17. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    SciTech Connect

    Bansil, Arun

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  18. An X-ray magnetic circular dichroism study of the interface Magnetism in titanate Heterostructures

    NASA Astrophysics Data System (ADS)

    Salluzzo, Marco; CNR-SPIN Team

    2014-03-01

    The 2D-electron system (2DES) created at the interface between LaAlO3 and SrTiO3 have attracted strong interest in recent years. This system shows an intriguing inversion the Ti3d bands hierarchy at the interface respect the bulk, and some reports even suggested coexistence between ferromagnetism and superconductivity. By using x-ray magnetic circular dichroism we show that oxygen vacancies induce magnetic interfacial localized Ti3 + states, which couple to the 2DES, with a negative exchange interaction. The magnetic dichroism signal is quenched in standard LAO/STO interfaces annealed in high oxygen pressure after the deposition and showing a homogeneous superconducting ground state, suggesting a decisive role of oxygen vacancies in the magnetism of these oxide interfaces.

  19. Resonance-mediated atomic ionization dynamics induced by ultraintense x-ray pulses

    SciTech Connect

    Ho, Phay J.; Kanter, E. P.; Young, L.

    2015-12-31

    We describe the methodology of our recently developed Monte Carlo rate equation (MCRE) approach, which systematically incorporates bound-bound resonances to model multiphoton ionization dynamics induced by high-fluence, high-intensity x-ray free-electron laser (XFEL) pulses. These resonances are responsible for ionization far beyond that predicted by the sequential single photon absorption model and are central to a quantitative understanding of atomic ionization dynamics in XFEL pulses. We also present calculated multiphoton ionization dynamics for Kr and Xe atoms in XFEL pulses for a variety of conditions, to compare the effects of bandwidth, pulse duration, pulse fluence, and photon energy. This comprehensive computational investigation reveals areas in the photon energy–pulse fluence landscape where resonances are critically important. We also uncover a mechanism, preservation of inner-shell vacancies (PIVS), whereby radiation damage is enhanced at higher XFEL intensities and identify the sequence of core-outer–Rydberg, core-valence, and core-core resonances encountered during multiphoton x-ray ionization.

  20. Characterization of Co distribution in ZnO by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, Z.; Cao, J. X.

    2013-05-01

    We analyze the electronic and magnetic properties of the various atomic arrangements of Zn1-xCoxO with x = 10% using K-edge x-ray absorption and magnetic circular dichroism spectra from both measurements and first principle calculations. Significantly, the K-edge spectroscopic features of Co are highly sensitive to the local atomic arrangement, and thus can be used as a powerful tool to investigate structural properties of dilute magnetic semiconductors. We clearly showed that defects such as interstitial Co and O vacancy near to substitutional Co are present in the 10% Co doped ZnO sample. The magnetic ordering of ZnO-based diluted magnetic semiconductors is strongly correlated with the presence of oxygen vacancies. Finally, we elucidated the origin of the X-ray magnetic circular dichroism signals.

  1. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    SciTech Connect

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  2. Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser

    PubMed Central

    Dell’Angela, M.; Hieke, F.; Malvestuto, M.; Sturari, L.; Bajt, S.; Kozhevnikov, I. V.; Ratanapreechachai, J.; Caretta, A.; Casarin, B.; Glerean, F.; Kalashnikova, A. M.; Pisarev, R. V.; Chuang, Y.-D.; Manzoni, G.; Cilento, F.; Mincigrucci, R.; Simoncig, A.; Principi, E.; Masciovecchio, C.; Raimondi, L.; Mahne, N.; Svetina, C.; Zangrando, M.; Passuello, R.; Gaio, G.; Prica, M.; Scarcia, M.; Kourousias, G.; Borghes, R.; Giannessi, L.; Wurth, W.; Parmigiani, F.

    2016-01-01

    In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup. PMID:27941842

  3. Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Dell’Angela, M.; Hieke, F.; Malvestuto, M.; Sturari, L.; Bajt, S.; Kozhevnikov, I. V.; Ratanapreechachai, J.; Caretta, A.; Casarin, B.; Glerean, F.; Kalashnikova, A. M.; Pisarev, R. V.; Chuang, Y.-D.; Manzoni, G.; Cilento, F.; Mincigrucci, R.; Simoncig, A.; Principi, E.; Masciovecchio, C.; Raimondi, L.; Mahne, N.; Svetina, C.; Zangrando, M.; Passuello, R.; Gaio, G.; Prica, M.; Scarcia, M.; Kourousias, G.; Borghes, R.; Giannessi, L.; Wurth, W.; Parmigiani, F.

    2016-12-01

    In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

  4. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells

    PubMed Central

    Teodori, Laura; Giovanetti, Anna; Albertini, Maria Cristina; Rocchi, Marco; Perniconi, Barbara; Valente, Maria Giovanna; Coletti, Dario

    2014-01-01

    Although static magnetic fields (SMFs) are used extensively in the occupational and medical fields, few comprehensive studies have investigated their possible genotoxic effect and the findings are controversial. With the advent of magnetic resonance imaging-guided radiation therapy, the potential effects of SMFs on ionizing radiation (IR) have become increasingly important. In this study we focused on the genotoxic effect of 80 mT SMFs, both alone and in combination with (i.e. preceding or following) X-ray (XR) irradiation, on primary glioblastoma cells in culture. The cells were exposed to: (i) SMFs alone; (ii) XRs alone; (iii) XR, with SMFs applied during recovery; (iv) SMFs both before and after XR irradiation. XR-induced DNA damage was analyzed by Single Cell Gel Electrophoresis assay (comet assay) using statistical tools designed to assess the tail DNA (TD) and tail length (TL) as indicators of DNA fragmentation. Mitochondrial membrane potential, known to be affected by IR, was assessed using the JC-1 mitochondrial probe. Our results showed that exposure of cells to 5 Gy of XR irradiation alone led to extensive DNA damage, which was significantly reduced by post-irradiation exposure to SMFs. The XR-induced loss of mitochondrial membrane potential was to a large extent averted by exposure to SMFs. These data suggest that SMFs modulate DNA damage and/or damage repair, possibly through a mechanism that affects mitochondria. PMID:24345558

  5. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells.

    PubMed

    Teodori, Laura; Giovanetti, Anna; Albertini, Maria Cristina; Rocchi, Marco; Perniconi, Barbara; Valente, Maria Giovanna; Coletti, Dario

    2014-03-01

    Although static magnetic fields (SMFs) are used extensively in the occupational and medical fields, few comprehensive studies have investigated their possible genotoxic effect and the findings are controversial. With the advent of magnetic resonance imaging-guided radiation therapy, the potential effects of SMFs on ionizing radiation (IR) have become increasingly important. In this study we focused on the genotoxic effect of 80 mT SMFs, both alone and in combination with (i.e. preceding or following) X-ray (XR) irradiation, on primary glioblastoma cells in culture. The cells were exposed to: (i) SMFs alone; (ii) XRs alone; (iii) XR, with SMFs applied during recovery; (iv) SMFs both before and after XR irradiation. XR-induced DNA damage was analyzed by Single Cell Gel Electrophoresis assay (comet assay) using statistical tools designed to assess the tail DNA (TD) and tail length (TL) as indicators of DNA fragmentation. Mitochondrial membrane potential, known to be affected by IR, was assessed using the JC-1 mitochondrial probe. Our results showed that exposure of cells to 5 Gy of XR irradiation alone led to extensive DNA damage, which was significantly reduced by post-irradiation exposure to SMFs. The XR-induced loss of mitochondrial membrane potential was to a large extent averted by exposure to SMFs. These data suggest that SMFs modulate DNA damage and/or damage repair, possibly through a mechanism that affects mitochondria.

  6. X-Ray Emission from Magnetically Torqued Disks of Oe/Be Stars

    NASA Astrophysics Data System (ADS)

    Li, Q.; Cassinelli, J. P.; Brown, J. C.; Waldron, W. L.; Miller, N. A.

    2008-01-01

    The near-main-sequence B stars show a sharp dropoff in their X-ray-to-bolometric luminosity ratio in going from B1 to later spectral types. Here we focus attention on the subset of these stars that are also Oe/Be stars, to test the concept that the disks of these stars form by magnetic channeling of wind material toward the equator. Calculations are made of the X-rays expected from the magnetically torqued disk (MTD) model for Be stars discussed by Cassinelli et al., Maheswaran, and Brown et al. In this model, the wind outflow from Be stars is channeled and torqued by a magnetic field such that the flows from the upper and lower hemispheres of the star collide as they approach the equatorial zone. X-rays are produced by the material that enters the shocks above and below the disk region and radiatively cools and compresses while moving toward the MTD central plane. The model predictions are compared with ROSAT observations obtained for an O9.5 star, ζ Oph, by Berghöfer et al. and for seven Be stars from Cohen et al. Two types of fitting models are used to compare predictions with observations of X-ray luminosity versus spectral type. Extra consideration is also given here to the well-studied Oe star ζ Oph, for which we have Chandra observations of the X-ray line profiles of the triad of He-like lines from the ion Mg XI. Thus, the X-ray properties add to the list of observables that can be explained within the context of the MTD concept. This list already includes the Hα equivalent widths and white-light polarization of Be stars.

  7. Trends in ultracool dwarf magnetism. I. X-ray suppression and radio enhancement

    SciTech Connect

    Williams, P. K. G.; Berger, E.; Cook, B. A.

    2014-04-10

    Although ultracool dwarfs (UCDs) are now known to generate and dissipate strong magnetic fields, a clear understanding of the underlying dynamo is still lacking. We have performed X-ray and radio observations of seven UCDs in a narrow range of spectral type (M6.5-M9.5) but spanning a wide range of projected rotational velocities (vsin i ≈ 3-40 km s{sup –1}). We have also analyzed unpublished archival Chandra observations of four additional objects. All of the newly observed targets are detected in the X-ray, while only one is detected in the radio, with the remainder having sensitive upper limits. We present a database of UCDs with both radio and X-ray measurements and consider the data in light of the so-called Güdel-Benz relation (GBR) between magnetic activity in these bands. Some UCDs have very bright radio emission and faint X-ray emission compared to what would be expected for rapid rotators, while others show the opposite behavior. We show that UCDs would still be radio-overluminous relative to the GBR even if their X-ray emission were at standard rapid-rotator 'saturation' levels. Recent results from Zeeman-Doppler imaging and geodynamo simulations suggest that rapidly rotating UCDs may harbor a bistable dynamo that supports either a stronger, axisymmetric magnetic field or a weaker, non-axisymmetric field. We suggest that the data can be explained in a scenario in which strong-field objects obey the GBR while weak-field objects are radio-overluminous and X-ray-underluminous, possibly because of a population of gyrosynchrotron-emitting coronal electrons that is continuously replenished by low-energy reconnection events.

  8. Electronic ground states of Fe2(+) and Co2(+) as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy.

    PubMed

    Zamudio-Bayer, V; Hirsch, K; Langenberg, A; Ławicki, A; Terasaki, A; V Issendorff, B; Lau, J T

    2015-12-28

    The (6)Π electronic ground state of the Co2 (+) diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, (6)Φ, (8)Φ, and (8)Γ, for the electronic ground state of Fe2 (+) have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d transition elements cannot generally be assumed to be connected by a one-electron process.

  9. Synchrotron X-ray Powder Diffraction and Absorption Spectroscopy in Pulsed Magnetic Fields with Milliseconds Duration

    NASA Astrophysics Data System (ADS)

    Vanacken, J.; Detlefs, C.; Mathon, O.; Frings, P.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Dominguez, M.-C.; Herczeg, J.; Bras, W.; Moshchalkov, V. V.; Rikken, G.

    2007-03-01

    X-ray Powder Diffraction and X-ray Absorption Spectroscopy experiments (WAS) and X-ray magnetic circular dichroism (XMCD) experiments were carried out at the ESRF DUBBLE beam line (BM26) and at the energy dispersive beam line (ID24), respectively. A mobile pulse generator, developed at the LNCMP, delivered 110kJ to the load coil, which was sufficient to generate peak fields of 30T with a rise time of about 5 ms. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 4.2K and 300K. Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and using an on-line image plate detector. We observed the suppression of the Jahn-Teller structural distortion in TbVO4 due to the high magnetic pulsed field. XAS spectra could be measured and finite XMCD signals, directly proportional to the magnetic moment on the Gd absorber atom, were measured in thin Gd foils. Thanks to its element and orbital selectivity, XMCD proofs to be very useful in probing the magnetic properties and due to the strong brilliance of the synchrotron beam, the signals can be measured even in the ms range.

  10. Enhanced charge excitations in electron-doped cuprates by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Tohyama, Takami; Tsutsui, Kenji; Mori, Michiyasu; Sota, Shigetoshi; Yunoki, Seiji

    2015-07-01

    Resonant inelastic x-ray scattering (RIXS) tuned for the Cu L edge is a possible tool to detect charge excitations in cuprate superconductors. We theoretically investigate the possibility for observing a collective charge excitation by the RIXS. The RIXS process via the intermediate state inevitably makes the spectral weight of charge excitation stronger in electron doping than in hole doping. Electron-hole asymmetry also appears in the dynamical charge structure factor, showing a new enhanced small-momentum low-energy mode in electron doping. These facts indicate a possibility of detecting the new charge mode by RIXS in electron-doped systems.

  11. Numerical study of Resonant inelastic x-ray scattering for cuprates and transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Jia, Chunjing; Wang, Yao; Chen, Cheng-Chien; Moritz, Brian; Devereaux, Thomas

    A theoretical understanding of resonant inelastic x-ray scattering (RIXS) measurements on cuprates and other transition-metal oxides remains an important yet challenging topic, especially for its ability to resolve the momentum and photon-polarization dependence of low energy elementary excitations. Here we present our exact diagonalization studies for RIXS spectra at the Cu L-edge for cuprates, with a focus on the dependence of both incoming and outgoing photon polarization and incoming photon energy. A more general method for calculating RIXS on other transition-metal oxides (such as NiO), which includes the multiplet and charge-transfer effects, will also be discussed.

  12. Resonant inelastic soft x-ray scattering at double core excitations in solid LiCl

    SciTech Connect

    Agaaker, Marcus; Ahuja, Rajeev; Soederstroem, Johan; Rubensson, Jan-Erik; Kaeaembre, Tanel; Glover, Chris; Schmitt, Thorsten; Mattesini, Maurizio

    2006-06-15

    Inelastic soft x-ray scattering in LiCl, resonantly enhanced at states with two Li 1s vacancies, is investigated. States in which both excited electrons are localized during the double core hole lifetime, in which one of the electrons delocalize, as well as triply excited states in which the double core excitation is accompanied by a valence-to-conduction band excitation, contribute to the scattering. The angular momentum symmetry of the involved states and the vibronic coupling during the scattering process are reflected in the angular anisotropy. The effect on the local electronic structure of multiple core holes is theoretically studied by means of supercell band calculations.

  13. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    SciTech Connect

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  14. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGES

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  15. X-ray study of aligned magnetic stripe domains in perpendicular multilayers

    SciTech Connect

    Hellwig, O.; Denbeaux, G.P.; Kortright, J.B.; Fullerton, Eric E.

    2003-03-03

    We have investigated the stripe domain structure and the magnetic reversal of perpendicular Co/Pt based multilayers at room temperature using magnetometry, magnetic imaging and magnetic x-ray scattering. In-plane field cycling aligns the stripe domains along the field direction. In magnetic x-ray scattering the parallel stripe domains act as a magnetic grating resulting in observed Bragg reflections up to 5th order. We model the scattering profile to extract and quantify the domain as well as domain wall widths. Applying fields up to {approx}1.2 kOe perpendicular to the film reversibly changes the relative width of up versus down domains while maintaining the overall stripe periodicity. Fields above 1.2 kOe introduce irreversible changes into the domain structure by contracting and finally annihilating individual stripe domains. We compare the current results with modeling and previous measurements of films with perpendicular anisotropy.

  16. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  17. Resonant elastic x-ray scattering from the skyrmion lattice in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; Bauer, A.; Berger, H.; Pfleiderer, C.; van der Laan, G.; Hesjedal, T.

    2016-06-01

    We report the study of the skyrmion state near the surface of Cu2OSeO3 using soft resonant elastic x-ray scattering (REXS) at the Cu L3 edge. Within the lateral sampling area of 200 ×200 μ m2 , we found a long-range-ordered skyrmion lattice phase as well as the formation of skyrmion domains via the multiple splitting of the diffraction spots. In a recent REXS study of the skyrmion phase of Cu2OSeO3 [M. C. Langner, S. Roy, S. Mishra, J. Lee, X. Shi, M. Hossain, Y.-D. Chuang, S. Seki, Y. Tokura, S. Kevan, and R. Schoenlein, Phys. Rev. Lett. 112, 167202 (2014), 10.1103/PhysRevLett.112.167202], the authors reported the observation of the unexpected existence of two distinct skyrmion sublattices that arise from inequivalent Cu sites, and that the rotation and superposition of the two periodic structures lead to a moiré pattern. However, we find no energy splitting of the Cu peak in x-ray-absorption measurements and, instead, discuss alternative origins of the peak splitting. In particular, we find that for magnetic field directions deviating from the major cubic axes a multidomain skyrmion lattice state is obtained, which consistently explains the splitting of the magnetic spots into two—and more—peaks.

  18. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    SciTech Connect

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  19. Instrument for x-ray magnetic circular dichroism measurements at high pressures

    SciTech Connect

    Haskel, D.; Tseng, Y. C.; Lang, J. C.; Sinogeikin, S.

    2007-08-15

    An instrument has been developed for x-ray magnetic circular dichroism (XMCD) measurements at high pressures and low temperatures. This instrument couples a nonmagnetic copper-beryllium diamond anvil cell featuring perforated diamonds with a helium flow cryostat and an electromagnet. The applied pressure can be controlled in situ using a gas membrane and calibrated using Cu K-edge x-ray absorption fine structure measurements. The performance of this instrument was tested by measuring the XMCD spectra of the Gd{sub 5}Si{sub 2}Ge{sub 2} giant magnetocaloric material.

  20. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  1. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  2. X-Ray Rocking Curve and Ferromagnetic Resonance Investigations of Ion-Implanted Crystals

    NASA Astrophysics Data System (ADS)

    Speriosu, Virgil Simon

    A kinematical model for general Bragg case x-ray diffraction in nonuniform films is presented. The model incorporates depth-dependent strain and structure factor. Profiles of strain and structure factor are obtained by fitting experimental rocking curves. The method is applicable to ion-implanted, diffused and multilayer crystalline structures such as heterojunctions. A comparison is made between profiles of strain and incoherent atomic displacements obtained from rocking curves and Rutherford backscattering spectrometry in Ne('+) -implanted Gd(,3)Ga(,5)O(,12). The ranges of sensitivity of the two techniques overlap for about one decade in implantation dose up to the amorphous threshold. The two techniques are in excellent agreement on the near-surface strain, but differ significantly at depths below (TURNEQ)500A. The profiles of incoherently displaced atoms agree within a factor of two. The rocking curve method is combined with analysis of ferromagnetic resonance spectra for characterization of Gd,Tm,Ga:YIG films implanted with Ne('+), He('+), and H(,2)('+) over a wide range of doses. Profiles of normal strain, lateral strain and damage were obtained. Magnetic profiles were compared with the strain profiles. The local change in uniaxial anisotropy field (DELTA)H(,k) with increasing strain shows an initially linear rise for both He('+) and Ne('+), in agreement with the magnetostriction effect. For strain values greater than (TURNEQ)1.5%, (DELTA)H(,k) saturates and decreases to nearly zero when the material becomes paramagnetic. For H(,2)('+) implantation the total (DELTA)H(,k) consists of a magnetostrictive contribution due to strain and of a comparable excess contribution associated with the local concentration of hydrogen. With increasing annealing temperature the excess (DELTA)H(,k) diminishes and above 400(DEGREES)C the only component of (DELTA)H(,k) is magnetostrictive. For all three species the behavior of the saturation magnetization 4(pi)M, the exchange

  3. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis

    NASA Astrophysics Data System (ADS)

    Ribière, M.; d'Almeida, T.; Cessenat, O.; Maulois, M.; Pouzalgues, R.; Crabos, B.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-12-01

    We investigate air plasmas generated by multi-MeV pulsed X-rays at pressures ranging from 10-5 to 10-1 mbar. The experimental approach used for these studies is based on measurements of resonant frequencies damping and shift for different electromagnetic modes within a cylindrical cavity. Time-integrated electron densities in X-ray-induced air plasmas are inferred from the damping rate of the measured magnetic fields and their corresponding frequency shifts. In the present study, electron densities ranging from 108 to 109 cm-3 at pressures ranging from 10-3 to 10-1 mbar have been measured. Experimental results were confronted to 3D Maxwell-Vlasov Particle-In-Cell simulations incorporating a radiation-induced electric conductivity model. The method used in this work enables determining microscopic and macroscopic physical quantities within low pressure air plasmas generated by pulsed X-ray.

  4. A portable high-field pulsed magnet system for x-ray scattering studies.

    SciTech Connect

    Islam, Z.; Ruff, J.P.C.; Nojiri, H.; Matsuda, Y. H.; Ross, K. A.; Gaulin, B. D.; Qu, Z.; Lang, J. C.

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (- 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  5. RESONANT X-RAY SCATTERING AS A PROBE OF ORBITAL AND CHARGE ORDERING.

    SciTech Connect

    NELSON,C.S.; HILL,J.P.; GIBBS,D.

    2002-05-13

    Resonant x-ray scattering is a powerful experimental technique for probing orbital and charge ordering. It involves tuning the incident photon energy to an absorption edge of the relevant ion and observing scattering at previously ''forbidden'' Bragg peaks, and it allows high-resolution, quantitative studies of orbital and charge order--even from small samples. Further, resonant x-ray scattering from orbitally ordered systems exhibits polarization- and azimuthal-dependent properties that provide additional information about the details of the orbital order that is difficult, or impossible, to obtain with any other technique. In the manganites, the sensitivity to charge and orbital ordering is enhanced when the incident photon energy is tuned near the Mn K absorption edge (6.539 keV), which is the lowest energy at which a 1s electron can be excited into an unoccupied state. In this process, the core electron is promoted to an intermediate excited state, which decays with the emission of a photon. The sensitivity to charge ordering is believed to be due to the small difference in K absorption edges of the Mn{sup 3+} and Mn{sup 4+} sites. For orbital ordering, the sensitivity arises from a splitting--or difference in the weight of the density of states [239]--of the orbitals occupied by the excited electron in the intermediate state. In the absence of such a splitting, there is no resonant enhancement of the scattering intensity. In principle, other absorption edges in which the intermediate state is anisotropic could be utilized, but the strong dipole transition to the Mn 4p levels--and their convenient energies for x-ray diffraction--make the K edge well-suited to studies of manganites. The Mn 4p levels are affected by the symmetry of the orbital ordering, which makes the technique sensitive to the orbital degree of freedom. Therefore resonant x-ray scattering can be used to obtain important quantitative information concerning the details of this electronic order

  6. X-ray magnetic circular dichroism in Co2FeGa: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Kukusta, D. A.; Antonov, V. N.; Yaresko, A. N.

    2011-08-01

    The electronic structure and x-ray magnetic circular dichroism (XMCD) spectra of the Heusler alloy Co2FeGa were investigated theoretically from first principles, using the fully relativistic Dirac linear MT-orbital (LMTO) band structure method. Densities of valence states, orbital and spin magnetic moments are analyzed and discussed. The origin of the XMCD spectra in the Co2FeGa compound is examined. The calculated results are compared with available experimental data.

  7. Effects of x-ray radiation on the magnetization of high T sub c superconductors

    SciTech Connect

    Artuso, J.; Franks, L.; Hull, K. . Energy Measurements Group); Symko, O.G. . Dept. of Physics)

    1990-01-01

    Experimental results are presented on the effects of x-ray radiation on superconducting samples of polycrystalline YBaCuO and BiSrCaCuO. The radiation effects are detected by changes of the magnetization of the sample using a SQUID magnetometer. In the presence of radiation, the changes in magnetization correspond to release of trapped flux, fluxon destruction, and to low frequency noise due to flux flow. 3 refs., 4 figs.

  8. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  9. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-29

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  10. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  11. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    SciTech Connect

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  12. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory

    PubMed Central

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-01-01

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and \\documentclass[12pt]{minimal}\\begin{document}$\\textrm {L}_{2,3}$\\end{document}L2,3 edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule. PMID:23181305

  13. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  14. X-ray emission from star-forming galaxies - signatures of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2015-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons travelling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the higher temperature of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional contribution to the X-ray luminosity comes from X-ray binaries. We estimate this contribution with an analytical model as well as with an observational relation, and compare it to the pure inverse Compton luminosity. Using data from the Chandra Deep Field Survey and far-infrared observations from Atacama Large Millimeter/Submillimeter Array, we then determine upper limits for the cosmic ray energy. Assuming that the magnetic energy in a galaxy is in equipartition with the energy density of the cosmic rays, we obtain upper limits for the magnetic field strength. Our results suggest that the mean magnetic energy of young galaxies is similar to the one in local galaxies. This points towards an early generation of galactic magnetic fields, which is in agreement with current dynamo evolution models.

  15. Direction dependent diffusion of aligned magnetic rods by means of x-ray photon correlation spectroscopy.

    PubMed

    Wagner, Joachim; Märkert, Christian; Fischer, Birgit; Müller, Leonard

    2013-01-25

    Rodlike hematite particles in suspension align perpendicular to an external magnetic field due to a negative anisotropy of their magnetic susceptibility Δχ. The diffusion tensor consists of two principal constants D(∥) and D(⊥) for the diffusion parallel and perpendicular to the long particle axis. X-ray photon correlation spectroscopy is capable of probing the diffusive motion in optically opaque suspensions of rodlike hematite particles parallel to the direction of the scattering vector Q. Choosing Q parallel or perpendicular to the direction of an external magnetic field H the direction dependent intermediate scattering function is measured by means of x-ray photon correlation spectroscopy. From the intermediate scattering function in both directions the principal diffusion constants D(∥) and D(⊥) are determined. The ratio D(∥)/D(⊥) increases with increasing aspect ratio of the particles and can be described via a rescaled theoretical approach for prolate ellipsoids of revolution.

  16. X-ray detection of transient magnetic moments induced by a spin current in Cu

    SciTech Connect

    Kukreja, R.; Bonetti, S.; Chen, Z.; Backes, D.; Acremann, Y.; Katine, J.; Kent, A. D.; Durr, H. A.; Ohldag, H.; Stohr, J.

    2015-08-24

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10–5μB on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott’s two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10–3μB per atom. As a result, this reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  17. The correspondence between X-ray bright points and evolving magnetic features in the quiet sun

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Martin, S. F.; Moses, D.; Harvey, J. W.

    1993-01-01

    The results of a study of X-ray bright points (XBPs) and small-scale evolving magnetic structures are presented. X-ray images obtained during rocket flights, full-disk magnetograms, and time-lapse magnetograms of multiple fields make up the coordinated data set. XBPs were found to be more frequently associated with pre-existing magnetic features of opposite polarity which appeared to be cancelling than with new or emerging flux regions. Most of the XBPs appeared to correspond to opposite polarity magnetic features which were converging towards each other, and some of which had not yet begun cancelling. It is suggested that most XBPs are created when converging flow brings together oppositely directed field lines. This leads to reconnection and heating in the low corona of the newly-formed loops.

  18. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  19. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source (abstract only)

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-02-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency.

  20. Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu

    2017-02-01

    We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magnetic field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ-ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ-ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ-ray bands.

  1. A magnetizing system for dichroism measurements in soft x-ray emission excited by synchrotron radiation

    SciTech Connect

    Dallera, C.; Ghiringhelli, G.; Braicovich, L.

    1996-02-01

    We present the design and performance of a magnetic circuit suitable for magnetizing solid samples in the measurements of soft x-ray emission dichroism excited by synchrotron radiation. The system allows a variety of samples to be magnetized and satisfies the rather stringent geometrical constraints due to the need for minimizing the effect of photon self-absorption by the sample. The magnetic circuit is ultrahigh vacuum compatible, can reach about 2800 G, and allows fine adjustment of sample position. {copyright} {ital 1996 American Institute of Physics.}

  2. The Study of Highly Magnetized Neutron Stars with X-ray Polarimetry Observations

    NASA Astrophysics Data System (ADS)

    Krawczynski, H.

    X-ray polarization observations have the prospect to give us qualitatively new insights into the structure of the magnetic field of strongly magnetized pulsars and magnetars. In this talk, I will give a review over the pulsar and magnetar properties that can be studied with X-ray polarization observations. Furthermore, I will describe the balloon borne polarimeter X-Calibur and describe which insights we expect to gain from the scheduled X-Calibur flights in Fall 2014 (from Fort Sumner, New Mexico) and in 2016/2017 (McMurdo, Antarctic). I will conclude with an overview of studies that can be performed with a space-borne version of such an experiment.

  3. Magnetic control in the RAP-200K-20 x-ray equipment

    SciTech Connect

    Gusev, E.A.; Drankov, V.P.; Naboishchikov, V.D.

    1989-03-01

    A description is given of the RAP-200K-20 cable-connected x-ray equipment, where a three-phase EHT transformer with magnetic control is used in the main circuit. The apparatus is compared with the best foreign competition. The circuit has an advantage over a pulse regulator in that the overvoltage level is low; there is also no interference and the efficiency is higher. All these advantages improve the performance and reliability in TV and fluorescent monitoring.

  4. Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines

    SciTech Connect

    Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

    1985-01-01

    The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed.

  5. X-ray imaging of extended magnetic domain walls in Ni80Fe20 wires

    SciTech Connect

    Basu, S.; Fry, P. W.; Allwood, D. A.; Bryan, M. T.; Gibbs, M. R. J.; Schrefl, T.; Im, M.-Y.; Fischer, P.

    2009-06-20

    We have used magnetic transmission X-ray microscopy to image magnetization configurations in 700 nm wide Ni{sub 80}Fe{sub 20} planar wires attached to 'nucleation' pads Domain walls were observed to inject only across half of the wire width but extend to several micrometers in length. Magnetostatic interactions with adjacent wires caused further unusual domain wall behavior. Micromagnetic modeling suggests the extended walls have Neel-like structure along their length and indicates weaker exchange coupling than is often assumed. These observations explain previous measurements of domain wall injection and demonstrate that magnetic domain walls in larger nanowires cannot always be considered as localized entities.

  6. UCSD High Energy X-ray Timing Experiment magnetic shield design and test results

    NASA Technical Reports Server (NTRS)

    Rothschild, Richard E.; Pelling, Michael R.; Hink, Paul L.

    1991-01-01

    Results are reported from an effort to define a passive magnetic field concept for the High Energy X-ray Timing Experiment (HEXTE), in the interest of reducing the detector-gain variations due to 0.5-1.0-sec timescale magnetic field variations. This will allow a sensitivity of the order of 1 percent of the HEXTE background. While aperture modulation and automatic gain control will minimize effects on timescales of tens of seconds and longer, passive magnetic shielding of the photomultiplier tubes will address 1-sec timescale variations due to aperture motions.

  7. Measurement of collective excitations in VO2 by resonant inelastic x-ray scattering

    DOE PAGES

    He, Haowei; Gray, A. X.; Granitzka, P.; ...

    2016-10-15

    Vanadium dioxide is of broad interest as a spin-1/2 electron system that realizes a metal-insulator transition near room temperature, due to a combination of strongly correlated and itinerant electron physics. Here, resonant inelastic x-ray scattering is used to measure the excitation spectrum of charge and spin degrees of freedom at the vanadium L edge under different polarization and temperature conditions, revealing excitations that differ greatly from those seen in optical measurements. Furthermore, these spectra encode the evolution of short-range energetics across the metal-insulator transition, including the low-temperature appearance of a strong candidate for the singlet-triplet excitation of a vanadium dimer.

  8. Some notes on data analysis for nuclear resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Hu, Michael Y.

    2016-12-01

    Nuclear Resonant Inelastic X-ray Scattering (NRIXS) is a spectroscopy method to study atomic vibrations and dynamics, currently done with synchrotron radiation at a few high energy third generation facilities. It finds a wide range of applications in condensed matter physics, materials science, chemistry, biophysics, geosciences, and high-pressure researches. Many atomic dynamics and lattice thermodynamics information can be derived from NRIXS measurements. Phonon Density of States (DOS) characterizes lattice dynamics of a material and can be derived under the quasi-harmonic approximation. Combined with modeling and simulations, results from NRIXS can provide unique and clarifying insights into many fields of research. As for a spectroscopic technique, in order to be able to provide reliable information, close attention should be paid to many issues during experiments and data analysis afterwards. Here we discuss several issues relevant to its data analysis, namely, those of multiple sites, background treatments, and error estimates for some derived quantities.

  9. Nematicity in stripe ordered cuprates probed via resonant x-ray scattering

    DOE PAGES

    Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; ...

    2016-02-05

    We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. Ourmore » results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less

  10. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    SciTech Connect

    Cobble, James Allen; Sinars, Daniel Brian

    2016-06-02

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.

  11. Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy

    PubMed Central

    Blanco-Roldán, C.; Quirós, C.; Sorrentino, A.; Hierro-Rodríguez, A.; Álvarez-Prado, L. M.; Valcárcel, R.; Duch, M.; Torras, N.; Esteve, J.; Martín, J. I.; Vélez, M.; Alameda, J. M.; Pereiro, E.; Ferrer, S.

    2015-01-01

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55–120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices. PMID:26337838

  12. Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy.

    PubMed

    Blanco-Roldán, C; Quirós, C; Sorrentino, A; Hierro-Rodríguez, A; Álvarez-Prado, L M; Valcárcel, R; Duch, M; Torras, N; Esteve, J; Martín, J I; Vélez, M; Alameda, J M; Pereiro, E; Ferrer, S

    2015-09-04

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55-120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices.

  13. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    SciTech Connect

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-10

    In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.

  14. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    SciTech Connect

    Bonetti, Stefano Chen, Zhao; Kukreja, Roopali; Spoddig, Detlef; Schöppner, Christian; Meckenstock, Ralf; Ollefs, Katharina; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-15

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ∼6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ∼0.1° amplitude at ∼9 GHz in a micrometer-sized cobalt strip.

  15. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-01

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ˜6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ˜0.1° amplitude at ˜9 GHz in a micrometer-sized cobalt strip.

  16. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    DOE PAGES

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; ...

    2015-09-10

    In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range,more » with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.« less

  17. Optical and resonant X-ray diffraction studies of molecular arrangements in several liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Suntao

    Using optical and x-ray techniques, we have studied several selected liquid crystal compounds formed by three types of molecules: rod-like; hockey-stick-shaped and bent-core-shaped molecules. This thesis describes four research projects. The first one is a study of the molecular arrangements in freestanding films of three chiral compounds showing no-layer-shrinkage behavior above their bulk SmA-SmC* transition temperatures. Upon cooling under a proper electric field, novel nonplanar-anticlinic-synclinic and nonplanar-synclinic transitions have been observed in two compounds. Increasing electric field can induce a rare transition from a synclinic to an anticlinic structure. Results from both x-ray diffraction and optical studies indicate that different molecular packing arrangements exist within the Sm A phase window. The second project is to investigate three achiral meta-substituted three-ring compounds. These compounds exhibit two different tilted smectic phases, Sm C1 and SmC2. A recent paper has reported that mirror symmetry is broken in one of these compounds. However, no mirror symmetry breaking has been observed in our studies of the same compound. Our studies of another two compounds confirmed previous results that the Sm C1 and SmC2 phases are Sm C and SmCA, respectively. Thirdly, we confirmed the SM C*FI2 -SmC* phase sequence reversal in one liquid crystal compound and specially prepared binary mixtures. This phase sequence reversal was predicted by a recent phenomenological model. Moreover, the temperature range for the SM C*FI2 phase increases significantly in the mixture suggesting that such a phase sequence may exist in other compounds. The last project is to study the B2 phase formed by bent-core molecules using polarization-analyzed resonant x-ray diffraction. The B2 phase has three possible arrangements which show a two-layer unit cell. We analyzed the polarization of the resonant peaks at different Bragg orders. By comparing a theoretical

  18. Sub-100 nanometer lensless probing of Co/Pd magnetic nanodomains using a table-top femtosecond soft X-ray harmonic source

    NASA Astrophysics Data System (ADS)

    Ge, X.; Ducousso, M.; Boutu, W.; Tudu, B.; Barbrel, B.; Gauthier, D.; Borta, A.; Gonzalez, A.-I.; Wang, F.; Iwan, B.; Billon, M.; Perdrix, M.; Guillaumet, D.; Lepetit, F.; Vodungbo, B.; Gautier, J.; Hawaldar, R.; Tortarolo, M.; Delaunay, R.; Zeitoun, P.; Lüning, J.; Merdji, H.

    2013-10-01

    We present recent developments of our table-top femtosecond high flux harmonic beamline towards single-shot probing of magnetic nanostructures. High harmonic generation (HHG) optimization in a single and two-color infrared laser pulse mode was investigated at high laser energy. Up to 109 photons per harmonic are generated between 40 and 80 eV in a single femtosecond laser shot. These soft X-ray harmonic photons are employed to characterize at the nanoscale the magnetic network of Co/Pd multilayer samples using resonant small-angle X-ray scattering. Selecting harmonics in the vicinity of magnetically dichroic absorption resonances of cobalt and palladium (Co M2,3 at 60 eV and Pd N2,3 at 51 eV) gives access to the magnetic nanodomain spatial structure. The magnetic scattering efficiency at the Pd edge is found to be comparable to that at the Co edge. This indicates that the Pd layers exhibit a significant induced magnetic moment. Magnetic sample optimization is then performed by characterizing its scattering efficiency as a function of layer composition and number of repetitions. We finally measure the spatial organization of magnetic nanodomains with a sub-100 nm spatial resolution from a single femtosecond X-ray pulse.

  19. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.

    PubMed

    Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura

    2005-12-01

    The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.

  20. Magnetic sensors for x-ray and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Enss, C.

    2002-02-01

    In the past few years metallic magnetic calorimeters have been developed for particle detection. A magnetic calorimeter consists of an absorber, appropriate for the particles being detected, and a paramagnetic sensor located in a small magnetic field that serves as a thermometer. These two components are strongly coupled thermally together and weakly coupled to a thermal bath. The energy deposition of an incident particle produces a change in the absorber temperature and thus a change of the magnetization of the sensor. This change in magnetization can be measured with high resolution using a sensitive DC-SQUID. The performance of metallic magnetic calorimeters has improved rapidly and has now reached a level where various applications are conceivable. We discuss the principles of operation and the optimization criteria for magnetic calorimeters, and the design and performance of prototype detectors for both x-ray and gamma-ray detection. In addition, we comment on the fundamental limits of the energy resolution of such detectors. .

  1. Mechanical design and analysis of an eight-pole superconducting vector magnet for soft x-ray magnetic dichroism measurements

    SciTech Connect

    Arbelaez, D.; Black, A.; Prestemon, S.O.; Wang, S.; Chen, J.; Arenholz, E.

    2010-01-13

    An eight-pole superconducting magnet is being developed for soft x-ray magnetic dichroism (XMD) experiments at the Advanced Light Source, Lawrence Berkley National Laboratory (LBNL). Eight conical Nb{sub 3}Sn coils with Holmium poles are arranged in octahedral symmetry to form four dipole pairs that provide magnetic fields of up to 5 T in any direction relative to the incoming x-ray beam. The dimensions of the magnet yoke as well as pole taper, diameter, and length were optimized for maximum peak field in the magnet center using the software package TOSCA. The structural analysis of the magnet is performed using ANSYS with the coil properties derived using a numerical homogenization scheme. It is found that the use of orthotropic material properties for the coil has an important influence in the design of the magnet.

  2. Ultrasensitive Scanning Transmission X-ray Microscopy: Pushing the Limits of Time Resolution and Magnetic Sensitivity

    NASA Astrophysics Data System (ADS)

    Ohldag, Hendrik

    Understanding magnetic properties at ultrafast timescales is crucial for the development of new magnetic devices. Samples of interest are often thin film magnetic multilayers with thicknesses in the range of a few atomic layers. This fact alone presents a sensitivity challenge in STXM microscopy, which is more suited toward studying thicker samples. In addition the relevant time scale is of the order of 10 ps, which is well below the typical x-ray pulse length of 50 - 100 ps. The SSRL STXM is equipped with a single photon counting electronics that effectively allows using a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency) to provide the required sensitivity. In the first year of operation the excellent spatial resolution, temporal stability and sensitivity of the detection electronics of this microscope has enabled researchers to acquire time resolved images of standing as well as traveling spin waves in a spin torque oscillator in real space as well as detect the real time spin accumulation in non magnetic Copper once a spin polarized current is injected into this material. The total magnetic moment is comparable to that of a single nanocube of magnetic Fe buried under a micron of non-magnetic material.

  3. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction.

    PubMed

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-07

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  4. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-01

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  5. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGES

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  6. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    SciTech Connect

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw -Wai; Rose, Volker

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  7. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  8. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  9. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    SciTech Connect

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-10-01

    We are developing large pixel count, fast ({>=}100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory.

  10. Studies of SmCo5/Fe nanocomposite magnetic bilayers with magnetic soft x-ray transmission microscopy

    SciTech Connect

    Shahzad, F.; Siddiqi, S. A.; Im, M.-Y.; Avallone, A.; Fischer, P.; Hussain, Z.; Siddiqi, I.; Hellman, F.; Zhao, J.

    2009-12-04

    A hard/soft SmCo{sub 5}/Fe nanocomposite magnetic bilayer system has been fabricated on X-ray transparent 100-200 nm thin Si{sub 3}N{sub 4} membranes by magnetron sputtering. The microscopic magnetic domain pattern and its behavior during magnetization reversal in the hard and soft magnetic phases have been individually studied by element specific magnetic soft x-ray microscopy at a spatial resolution of better than 25nm. We observe that the domain patterns for soft and hard phases switch coherently throughout the full hysteresis cycle upon applying external magnetic fields. We derived local M(H) curves from the images for Fe and SmCo5 separately and found switching for both hard and soft phases same.

  11. X-ray absorption and magnetic circular dichroism studies of Co2FeAl in magnetic tunnel junctions

    SciTech Connect

    Ebke, D.; Kugler, Z.; Thomas, P.; Schebaum, O.; Schafers, M.; Nissen, D.; Schmalhorst, J.; Hutten, A.; Arenholz, E.; Thomas, A.

    2010-01-11

    The bulk magnetic moment and the element specific magnetic moment of Co{sub 2}FeAl thin films were examined as a function of annealing temperature by alternating gradient magnetometer (AGM) and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD), respectively. A high magnetic moment can be achieved for all annealing temperatures and the predicted bulk and interface magnetic moment of about 5 {tilde A}{sub B} are reached via heating. We will also present tunnel magnetoresistance (TMR) values of up to 153% at room temperature and 260% at 13 K for MgO based magnetic tunnel junctions (MTJs) with Co{sub 2}FeAl and Co-Fe electrodes.

  12. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  13. Sub-micron mapping of GHz magnetic susceptibility using scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Bailey, William E.

    2012-10-01

    We report submicron imaging (˜0.75 μm resolution) of complex magnetic susceptibility in a micron-size ferromagnetic heterostructure using time-resolved scanning transmission x-ray microscopy. The real and imaginary parts of the susceptibility are extracted from the phase and amplitude of the small-angle (<20°) rotational response of the local magnetization under microwave excitation. Frequency-dependent response patterns were observed in an incompletely saturated bilayer element. The technique is extensible to higher frequencies (to ˜10 GHz), better spatial resolution, and layer-specific measurement.

  14. Evolution of Intermediate-mass X-Ray Binaries Driven by the Magnetic Braking of AP/BP Stars. I. Ultracompact X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cong; Podsiadlowski, Philipp

    2016-10-01

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40-60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100-10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10-5, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10-3, and 10-5, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  15. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG

  16. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Fischer, Peter; ...

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  17. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    SciTech Connect

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.

  18. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    PubMed Central

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-01-01

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. The present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape. PMID:26139445

  19. X-Ray Resonant Irradiation and High-Z Radiosensitization in Cancer Therapy Using Platinum Nano-Reagents

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Lim, S.; Montenegro, M.; Pradhan, A. K.; Barth, R.; Bell, E.; Turro, C.; Pitzer, R.

    2012-06-01

    %TEXT OF YOUR ABSTRACT We describe the atomic-molecular-bio physics of X-ray irradiation of High-Z heavy-element nanomaterials as radiosensitizing agents in cancer therapy. Our reports in past few ISMSs showed that compounds of High-Z elements, Pt and Au, embedded in tumors could provide the most efficient therapy and diagnostics (theranostics) when X-rays are targeted at their resonant energies. Harmful damages due to unnecessary broadband radiation from conventional X-ray sources can be reduced considerably by using a monochromatic X-ray source at resonant energy. We will present our recent findings from Monte Carlo simulations, using Geant4 code, for X-ray energy absorption and dose deposition in tissues where the broadband X-ray sources have three different peak voltages, 100 keV, 170 keV and 6 MeV. We use platinum as an agent for killing cancerous cells via increased linear-energy-transfer (LET) and dose enhancement. We find that X-ray energies in the range below 100 keV are most efficient in achieving both the required tissue penetrative depths and deposition of energy. This confirms the previous results for Au that it is only the low-energy component around 100 keV from the 6 MV linear accelerator (LINAC) that is most effective in dose-enhanced cell killing. Preliminary experimental results cancer cells with Pt and results on Kα radiation of Al will also be presented. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  20. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    SciTech Connect

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  1. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    NASA Astrophysics Data System (ADS)

    Garanin, S. G.; Ivanovskiy, A. V.

    2015-12-01

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  2. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    SciTech Connect

    Garanin, S. G.; Ivanovskiy, A. V.

    2015-12-15

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  3. X-ray imaging of vortex cores in confined magnetic structures

    SciTech Connect

    Fischer, P; Im, M -Y; Kasai, S; Yamada, K; Ono, T; Thiaville, A

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analyzed by high-resolution magnetic soft x-ray microscopy. A decrease of the vortex-core radius was observed from approximately 38 to 18 nm with decreasing disk thickness. By comparing with full three-dimensional micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement, taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  4. Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering.

    PubMed

    Bohinc, R; Žitnik, M; Bučar, K; Kavčič, M; Carniato, S; Journel, L; Guillemin, R; Marchenko, T; Kawerk, E; Simon, M; Cao, W

    2016-04-07

    We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(K(α)) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ* and π* resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.

  5. Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Bohinc, R.; Žitnik, M.; Bučar, K.; Kavčič, M.; Carniato, S.; Journel, L.; Guillemin, R.; Marchenko, T.; Kawerk, E.; Simon, M.; Cao, W.

    2016-04-01

    We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(Kα) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ∗ and π∗ resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.

  6. Resonant X-ray Scattering Studies of Smectic and Columnar Bent-Core Liquid Crystal Phases

    NASA Astrophysics Data System (ADS)

    Pindak, Ronald; Barois, Philippe; Ponsinet, Virginie; Folcia, Cesar; Ortega, Josu; Pan, Lidong; Wang, Shun; Wang, Suntao; Huang, Cheng-Cher

    2012-02-01

    Resonant X-ray scattering provides a direct probe of orientational structures in liquid crystals with periodicities that range from molecular dimensions (0.1 nm) to dimensions that can be observed with visible light (1.0 micron). We have recently applied this technique to study the orientational ordering of bent-core molecules in the smectic B2 phase and the columnar B1 phase. Using resonant scattering ``forbidden'' reflections due to glide or screw symmetry elements can be measured and an analysis of their polarization state enabled us to identify a chiral anticlinic antiferroelecrtic B2 phase (Smectic CAPA) coexisting with an achiral synclinic antiferroelectric B2 phase (Smectic CSPA) [1]. We were also able to determine the structure of a columnar B1 phase and study the transition mechanism between the B1 and B2 phases [2]. [4pt] [1] V. Ponsinet, et al., Phys. Rev. E 84, 011706 (2011).[0pt] [2] C. Folcia, et al., Phys. Rev. E 84, 010701R (2011).

  7. Performance Verification of the Gravity and Extreme Magnetism Small Explorer GEMS X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Kenward, David

    2014-01-01

    olarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor greater than or equal to 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, approximately 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  8. Performance and Characterization of Magnetic Penetration Thermometer Devices for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Porst, J. -P.; Adams, J. S.; Bandler, S. R.; Balvin, M.; Busch, S. E.; Denis, K. L.; Kelly, D.; Nagler, P.; Sadleir, J. E.; Seidel, G. M.; Smith, S.; Stevenson, T. R.

    2012-01-01

    We are developing magnetic penetration thermometers (MPTs) for applications in X-ray astronomy. These non-dissipative devices consist of an X-ray absorber in good thermal contact to a superconducting thin film with a transition temperature around T=100mK. A microfabricated superconducting planar inductor underneath is used to store a persistent current and couple the superconductor's diamagnetic response to a readout SQUID. The strong temperature dependence of the diamagnetic response make these devices suitable for highly sensitive macroscopic thermometers that are capable of achieving very high energy resolution. We present results achieved with MPTs consisting of MoAu bilayer sensors attached to overhanging square 250 micron by 250 micron gold absorbers that have demonstrated an energy resolution of delta E_FWHM=2.3eV at an X-ray energy of 5.9keV. A similar device has shown delta E_FWHM=2.0eV at 1.5 keV. Under certain conditions and for specific device geometries, the temperature responsivity of the MPTs can vary on long timescales degrading the spectral performance. We present the characterization of different inductor geometries to optimize the design for the highest possible temperature sensitivity and compare different device designs with respect to responsivity stability.

  9. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  10. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed

    2014-07-01

    Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  11. Effect of external resonant fields and limiter biasing on hard X-ray intensity and mirnov oscillations in IR-T1 Tokamak

    NASA Astrophysics Data System (ADS)

    Ghanbari, K.; Ghoranneviss, M.; Elahi, A. Salar

    2015-01-01

    Runaway electrons in tokamaks can cause serious damage to the first wall of the reactor and decrease its life time. Also, hard x-ray emission generated from high energy runaway electrons lead to the plasma energy loss. Therefore, suggesting methods to minimize runaway electron in tokamaks are very important. Applying external resonant field is one of the methods for controlling the Magneto Hydrodynamic (MHD) activity. Relation between the MHD activity and runaway electrons has already been studied (Jaspers et al. 1994; Ghanbari et al. 2012) Jaspers, R., et al. 1994 Phys. Rev. Lett. 72, 4093; Ghanbari, M. R., et al. 2012a Phys. Scr. 83, 055501. Present study attempts to investigate the effects of limiter biasing and Resonant Helical magnetic Field (RHF) on the generation of runaway electrons. For this purpose, plasma parameters such as plasma current, MHD oscillation, loop voltage, emitted hard x-ray intensity, Halpha impurity, safety factor in the presence and absence of external fields, were measured. Frequency activity was investigated with FFT analysis. The results show that applying resonant fields can control the MHD activity, and then hard x-ray emitted from the runaway electrons.

  12. Possible detection of a cyclotron resonance scattering feature in the X-ray pulsar 4U 1909+07

    SciTech Connect

    Jaisawal, Gaurava K.; Naik, Sachindra; Paul, Biswajit

    2013-12-10

    We present timing and broad band spectral studies of the high-mass X-ray binary pulsar 4U 1909+07 using data from Suzaku observations during 2010 November 2-3. The pulse period of the pulsar is estimated to be 604.11 ± 0.14 s. Pulsations are seen in the X-ray light curve up to ∼70 keV. The pulse profile is found to be strongly energy-dependent: a complex, multi-peaked structure at low energy becomes a simple single peak at higher energy. We found that the 1-70 keV pulse-averaged continuum can be fit by the sum of a blackbody and a partial covering Negative and Positive power law with Exponential cutoff model. A weak iron fluorescence emission line at 6.4 keV was detected in the spectrum. An absorption-like feature at ∼44 keV was clearly seen in the residuals of the spectral fitting, independent of the continuum model adopted. To check the possible presence of a cyclotron resonance scattering feature (CRSF) in the spectrum, we normalized the pulsar spectrum with the spectrum of the Crab Nebula. The resulting Crab ratio also showed a clear dip centered at ∼44 keV. We performed statistical tests on the residuals of the spectral fitting and also on the Crab spectral ratio to determine the significance of the absorption-like feature and identified it as a CRSF of the pulsar. We estimated the corresponding surface magnetic field of the pulsar to be 3.8 × 10{sup 12} G.

  13. CARINA OB STARS: X-RAY SIGNATURES OF WIND SHOCKS AND MAGNETIC FIELDS

    SciTech Connect

    Gagne, Marc; Fehon, Garrett; Savoy, Michael R.; Cohen, David H.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Corcoran, Michael F.; Remage Evans, Nancy; Moffat, Anthony F. J.; Naze, Yael; Oskinova, Lida M.

    2011-05-01

    The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L{sub X}/L{sub bol} relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L{sub X} cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.

  14. Magnetic properties of GdT2Zn20 (T = Fe, Co) investigated by x-ray diffraction and spectroscopy

    SciTech Connect

    J. R. L. Mardegan; Fabbris, G.; Francoual, S.; Veiga, L. S. I.; Strempfer, J.; Haskel, D.; Ribeiro, R. A.; Avila, M. A.; Giles, C.

    2016-01-26

    In this study, we investigate the magnetic and electronic properties of the GdT2Zn20 (T=Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo2Zn20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector /τ = (12,12,12) below the Néel temperature (TN ~ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6. For the ferromagnetic GdFe2Zn20 compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD. A strong XMCD signal of about 12.5% and 9.7% is observed below the Curie temperature (TC ~ 85K) at the Gd L2 and L3 edges, respectively. In addition, a small magnetic signal of about 0.06% of the jump is recorded at the Zn K edge, suggesting that the Zn 4p states are spin polarized by the Gd 5d extended orbitals.

  15. Bright X-ray arcs and the emergence of solar magnetic flux

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Broussard, R. M.

    1977-01-01

    The Skylab S-056 and S-082A experiments and ground-based magnetograms have been used to study the role of bright X-ray arcs and the emergence of solar magnetic flux in the McMath region 12476. The S-056 X-ray images show a system of one or sometimes two bright arcs within a diffuse emitting region. The arcs seem to directly connect regions of opposite magnetic polarity in the photosphere. Magnetograms suggest the possible emergence of a magnetic flux. The width of the main arc is approximately 6 arcsec when most clearly defined, and the length is approximately 30-50 arcsec. Although the arc system is observed to vary in brightness over a period exceeding 24 hours, it remains fixed in orientation. The temperature of the main arc is approximately 3 x 10 to the 6th K. It is suggested that merging magnetic fields may provide the primary energy source, perhaps accompanied by resistive heating from a force-free current.

  16. Development of low temperature and high magnetic field X-ray diffraction facility

    SciTech Connect

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P. Chaddah, P.

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  17. Superconducting Effects in Optimization of Magnetic Penetration Thermometers for X-ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Balvin, M. A.; Denis, K. L.; Hsieh, W.-T.; Sadleir, J. E.; Bandler, Simon E.; Busch, Sarah E.; Merrell, W.; Kelly, Daniel P.; Nagler, Peter C.; Porst, J.-P.; Seidel, George E.; Smith, Stephen J.

    2012-01-01

    We have made high resolution x-ray microcalorimeters using superconducting MoAu bilayers and Nb meander coils. The temperature sensor is a Magnetic Penetration Thermometer (MPT). Operation is similar to metallic magnetic calorimeters, but instead of the magnetic susceptibility of a paramagnetic alloy, we use the diamagnetic response of the superconducting MoAu to sense temperature changes in an x-ray absorber. Flux-temperature responsivtty can be large for small sensor heat capacity, with enough dynamic range for applications. We find models of observed flux-temperature curves require several effects to explain flux penetration or expulsion in the microscopic devices. The superconductor is non-local, with large coherence length and weak pinning of flux. At lowest temperatures, behavior is dominated by screening currents that vary as a result of the temperature dependence of the magnetic penetration depth, modified by the effect of the nonuniformity of the applied field occurring on a scale comparable to the coherence length. In the temperature regime where responslvity is greatest, spadal variations in the order parameter become important: both local variations as flux enters/leaves the film and an intermediate state is formed, and globally as changing stability of the electrical circuit creates a Meissner transition and flux is expelled/penetrates to minimize free energy.

  18. Development of low temperature and high magnetic field X-ray diffraction facility

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P.; Chaddah, P.

    2015-06-01

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to -8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr0.5Sr0.5MnO3 sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  19. Magnetic x-ray microscopy at low temperatures – Visualization of flux distributions in superconductors

    SciTech Connect

    Stahl, Claudia Ruoß, Stephen; Weigand, Markus; Bechtel, Michael; Schütz, Gisela; Albrecht, Joachim

    2016-01-28

    X-ray Magnetic Circular Dichroism (XMCD) microscopy at liquid nitrogen temperature has been performed on bilayers of high-T{sub c} superconducting YBCO (YBa{sub 2}Cu{sub 3}O{sub 7-δ}) and soft-magnetic Co{sub 40}Fe{sub 40}B{sub 20}. This should allow us to map the magnetic flux density distribution in the current-carrying state of the superconductor with high spatial resolution. For that purpose the UHV scanning X-ray microscope MAXYMUS has been upgraded by a MMR Micro Miniature Joule-Thompson cryostat capable of temperatures between 75 K and 580 K. Resulting XMCD images of the magnetic flux density in the superconductor with a field of view ranging from millimeters to micrometers are presented. The microscope’s unique combination of total electron yield (TEY) measurements together with low temperatures offers novel possibilities concerning the current transport in superconductors on small length scales.

  20. Chromospheric magnetic field and density structure measurements using hard X-rays in a flaring coronal loop

    NASA Astrophysics Data System (ADS)

    Kontar, E. P.; Hannah, I. G.; MacKinnon, A. L.

    2008-10-01

    Aims: A novel method of using hard X-rays as a diagnostic for chromospheric density and magnetic structures is developed to infer sub-arcsecond vertical variation of magnetic flux tube size and neutral gas density. Methods: Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data and the newly developed X-ray visibilities forward fitting technique we find the FWHM and centroid positions of hard X-ray sources with sub-arcsecond resolution (~0.2'') for a solar limb flare. We show that the height variations of the chromospheric density and the magnetic flux densities can be found with an unprecedented vertical resolution of ~150 km by mapping 18-250 keV X-ray emission of energetic electrons propagating in the loop at chromospheric heights of 400-1500 km. Results: Our observations suggest that the density of the neutral gas is in good agreement with hydrostatic models with a scale height of around 140 ± 30 km. FWHM sizes of the X-ray sources decrease with energy suggesting the expansion (fanning out) of magnetic flux tubes in the chromosphere with height. The magnetic scale height B(z)(dB/dz)-1 is found to be of the order of 300 km and a strong horizontal magnetic field is associated with noticeable flux tube expansion at a height of ~900 km.

  1. On the Magnetic Field of the Ultraluminous X-Ray Pulsar M82 X-2

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Li, Xiang-Dong

    2017-04-01

    The discovery of the ultraluminous X-ray pulsar M82 X-2 has stimulated lively discussion on the nature of the accreting neutron star. In most of the previous studies the magnetic field of the neutron star was derived from the observed spin-up/down rates based on the standard thin, magnetized accretion disk model. However, under super-Eddington accretion the inner part of the accretion disk becomes geometrically thick. In this work we consider both radiation feedback from the neutron star and the sub-Keplerian rotation in a thick disk and calculate the magnetic moment–mass accretion rate relations for the measured rates of spin change. We find that the derived neutron star's dipole magnetic field depends on the maximum accretion rate adopted, but is likely ≲1013 G. The predicted accretion rate change can be used to test the proposed models by comparison with observations.

  2. A comparison between soft x-ray and magnetic phase data on the Madison symmetric torus

    NASA Astrophysics Data System (ADS)

    VanMeter, P. D.; Franz, P.; Reusch, L. M.; Sarff, J. S.; Den Hartog, D. J.

    2016-11-01

    The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras to determine the emissivity structure of the plasma. This structure should directly correspond to the structure of the magnetic field; however, there is an apparent phase difference between the emissivity reconstructions and magnetic field reconstructions when using a cylindrical approximation. The difference between the phase of the dominant rotating helical mode of the magnetic field and the motion of the brightest line of sight for each SXR camera is dependent on both the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phase difference is shown to be consistent over multiple measurements when only toroidal or poloidal magnetic field components are considered. These differences emerge from physical effects of the toroidal geometry which are not captured in the cylindrical approximation.

  3. A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

    SciTech Connect

    Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe; Kalus, Christian; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; and others

    2012-12-15

    We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

  4. The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and x-ray fiber diffraction study.

    PubMed Central

    Bras, W; Diakun, G P; Díaz, J F; Maret, G; Kramer, H; Bordas, J; Medrano, F J

    1998-01-01

    The orientational behavior of microtubules assembled in strong magnetic fields has been studied. It is shown that when microtubules are assembled in a magnetic field, they align with their long axis parallel to the magnetic field. The effect of several parameters known to affect the microtubule assembly are investigated with respect to their effect on the final degree of alignment. Aligned samples of hydrated microtubules suitable for low-resolution x-ray fiber diffraction experiments have been produced, and the results obtained from the fiber diffraction experiments have been compared with the magnetic birefringence experiments. Comparisons with earlier fiber diffraction work and small-angle x-ray solution scattering experiments have been made. PMID:9512047

  5. Observation of x-ray resonant Raman scattering: The early days

    SciTech Connect

    Sparks, C.J.

    1995-12-31

    My early observation of Raman scattering came as a serendipitous by-product of our efforts to achieve the best possible signal for x-ray fluorescent analysis. We were also investigating the x-ray spectrum produced by a monochromatic x-ray beam striking metal targets which might contribute to the inelastic background. This background could contaminate the very weak diffusively distributed elastically scattered radiation associated with defects in the perfect periodicity of crystals. Energy analysis of the x-ray spectra created by monochromatic Cu K{sub {alpha}} and Mo K{sub {alpha}} radiation impinging on highly pure metal targets showed an inelastically scattered intensity related to the energy difference between the exciting radiation and the nearest bound state. Confirmation of these observations and availability of synchrotron radiation has led to wide application of this new x-ray spectroscopy in atomic physics including its use as a probe of the unoccupied density of states.

  6. Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbăian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; Hill, J. P.

    2015-05-01

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.

  7. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  8. Electronic structure and characteristics of Fe 3d valence states of Fe(1.01)Se superconductors under pressure probed by x-ray absorption spectroscopy and resonant x-ray emission spectroscopy.

    PubMed

    Chen, J M; Haw, S C; Lee, J M; Chen, S A; Lu, K T; Deng, M J; Chen, S W; Ishii, H; Hiraoka, N; Tsuei, K D

    2012-12-28

    The electronic structure and characteristics of Fe 3d valence states of iron-chalcogenide Fe(1.01)Se superconductors under pressure were probed with x-ray absorption spectroscopy and resonant x-ray emission spectroscopy (RXES). The intensity of the pre-edge peak at ~7112.7 eV of the Fe K-edge x-ray absorption spectrum of Fe(1.01)Se decreases for pressure from 0.5 GPa increased to 6.9 GPa. The satellite line Kβ' was reduced in intensity upon applying pressure and became absent for pressure 52 GPa. Fe(1.01)Se shows a small net magnetic moment of Fe(2+), likely arising from strong Fe-Fe spin fluctuations. The 1s3p-RXES spectra of Fe(1.01)Se at pressures 0.5, 6.9, and 52 GPa recorded at the Fe K-edge reveal that unoccupied Fe 3d states exhibit a delocalized character, stemming from hybridization of Fe 3d and 4p orbitals arising from a local distortion around the Fe atom in a tetrahedral site. Application of pressure causes suppression of this on-site Fe 3d-Fe 4p hybridization, and thereby decreases the intensity of the pre-edge feature in the Fe K-edge absorption spectrum of Fe(1.01)Se. Compression enhances spin fluctuations at Fe sites in Fe(1.01)Se and increases the corresponding T(c), through a competition between nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic superexchange interactions. This result aids our understanding of the physics underlying iron-based superconductors.

  9. Signatures of strong correlation effects in resonant inelastic x-ray scattering studies on cuprates

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Lin, Cheng-Ju; Lee, Ting-Kuo

    2016-08-01

    Recently, spin excitations in doped cuprates have been measured using resonant inelastic x-ray scattering. The paramagnon dispersions show the large hardening effect in the electron-doped systems and seemingly doping independence in the hole-doped systems, with the energy scales comparable to that of the antiferromagnetic (AFM) magnons. This anomalous hardening effect and the lack of softening were partially explained by using the strong-coupling t -J model but with a three-site term [Nat. Commun. 5, 3314 (2014), 10.1038/ncomms4314], although the hardening effect is already present even without the latter. By considering the t -t'-t''-J model and using the slave-boson mean-field theory, we obtain, via the spin-spin susceptibility, the spin excitations in qualitative agreement with the experiments. The doping-dependent bandwidth due to the strong correlation physics is the origin of the hardening effect. We also show that dispersions in the AFM regime, different from those in the paramagnetic (PM) regime, hardly vary with dopant density. These excitations are mainly collective in nature instead of particle-hole-like. We further discuss the interplay and different contributions of these two kinds of excitations in the PM phase and show that the dominance of the collective excitation increases with decreasing dopant concentrations.

  10. Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics

    PubMed Central

    Gorfman, S.; Simons, H.; Iamsasri, T.; Prasertpalichat, S.; Cann, D. P.; Choe, H.; Pietsch, U.; Watier, Y.; Jones, J. L.

    2016-01-01

    Structure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviour. PMID:26864859

  11. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    PubMed Central

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; He, Y.; Shen, Z. X.; Yoshida, Y.; Eisaki, H.; Mou, C. Y.; Chen, C. T.; Huang, D. J.

    2016-01-01

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors. PMID:26794437

  12. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    SciTech Connect

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; He, Y.; Shen, Z. X.; Yoshida, Y.; Eisaki, H.; Mou, C. Y.; Chen, C. T.; Huang, D. J.

    2016-01-22

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.

  13. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    DOE PAGES

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; ...

    2016-01-22

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less

  14. Probing orbitons in YTiO3 with Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Ament, Lucas; Khaliullin, Giniyat; van den Brink, Jeroen

    2009-03-01

    In YTiO3, a strongly correlated electron system with degenerate orbitals, orbitons are predicted to exist [1]. The hallmark of collective excitations is dispersion. To observe the orbiton dispersion, the rapidly developing technique of Resonant Inelastic X-ray Scattering (RIXS) is especially well suited. We analyze recent experimental RIXS data on YTiO3 in the Ultrashort Core hole Lifetime framework [2]. The Ti ions in this material have a 3d^1 configuration, and the electron occupies one of the three degenerate t2g orbitals. Many of this compound's ground state properties are explained by assuming that the orbitals on these Ti ions talk to each other through a superexchange mechanism [1]. RIXS could couple to the orbital excitations (orbitons) in these kind of materials in two ways: via modulation of the superexchange interactions [3] and via a shakeup process. We compare our theoretical RIXS spectra to experimental ones, giving strong evidence for the existence of orbitons. // [1] G. Khaliullin and S. Okamoto, Phys. Rev. B 68, 205109 (2003) // [2] J. van den Brink and M. van Veenendaal, Europhys. Lett. 73, 121 (2006); L. J. P. Ament, F. Forte and J. van den Brink, Phys. Rev. B 75, 115118 (2007) // [3] compare F. Forte, L. J. P. Ament and J. van den Brink, PRL (2008)

  15. Density functional simulation of resonant inelastic X-ray scattering experiments in liquids: acetonitrile.

    PubMed

    Niskanen, Johannes; Kooser, Kuno; Koskelo, Jaakko; Käämbre, Tanel; Kunnus, Kristjan; Pietzsch, Annette; Quevedo, Wilson; Hakala, Mikko; Föhlisch, Alexander; Huotari, Simo; Kukk, Edwin

    2016-09-21

    In this paper we report an experimental and computational study of liquid acetonitrile (H3C-C[triple bond, length as m-dash]N) by resonant inelastic X-ray scattering (RIXS) at the N K-edge. The experimental spectra exhibit clear signatures of the electronic structure of the valence states at the N site and incident-beam-polarization dependence is observed as well. Moreover, we find fine structure in the quasielastic line that is assigned to finite scattering duration and nuclear relaxation. We present a simple and light-to-evaluate model for the RIXS maps and analyze the experimental data using this model combined with ab initio molecular dynamics simulations. In addition to polarization-dependence and scattering-duration effects, we pinpoint the effects of different types of chemical bonding to the RIXS spectrum and conclude that the H2C-C[double bond, length as m-dash]NH isomer, suggested in the literature, does not exist in detectable quantities. We study solution effects on the scattering spectra with simulations in liquid and in vacuum. The presented model for RIXS proved to be light enough to allow phase-space-sampling and still accurate enough for identification of transition lines in physical chemistry research by RIXS.

  16. Quasi-particle interference of heavy fermions in resonant x-ray scattering

    PubMed Central

    Gyenis, András; da Silva Neto, Eduardo H.; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-01-01

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique. PMID:27757422

  17. A new method to derive electronegativity from resonant inelastic x-ray scattering

    SciTech Connect

    Carniato, S.; Journel, L.; Guillemin, R.; Piancastelli, M. N.; Simon, M.; Stolte, W. C.; Lindle, D. W.

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p{sup -1}LUMO{sup 1} electronic states reached after Cl 1s{yields} LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p{sub z} atomic orbital contributing to the Cl 2p{sub 3/2} molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

  18. Nematicity in stripe ordered cuprates probed via resonant x-ray scattering

    SciTech Connect

    Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; He, F.; Sutarto, R.; Dijianto, Isaiah; Hao, Zhihao; Gingras, Michael J.P.; Hucker, M.; Gu, G. D.; Revcolevschi, A.; Zhang, H.; Kim, Y. -J.; Geck, J.; D. G. Hawthorn

    2016-02-05

    We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.

  19. Nuclear resonant inelastic x-ray scattering: Methodology and extraction of vibrational properties of minerals

    NASA Astrophysics Data System (ADS)

    Hu, M. Y.; Alp, E. E.; Bi, W.; Sturhahn, W.; Toellner, T. S.; Zhao, J.

    2013-12-01

    Nuclear resonant inelastic x-ray scattering (NRIXS) is a synchrotron radiation based experimental method [1]. Since its introduction almost 20 years ago [2], NRIXS has found an expanding range of applications of studying lattice dynamics in condensed matter physics, materials science, high-pressure research, geosciences, and biophysics. After the first high pressure application in geophysics of measuring sound velocity of iron up to 153 GPa [3], it has become a widely used method to investigate deep earth compositions through sound velocity measurements [4,5]. Thermodynamic properties are also explored, in particular Grueneisen parameters [6]. Later, it was realized that isotope fractionaton factors can be derived from NRIXS measurements [7,8]. Sum rules and moments of NRIXS is a critical part of this methodology [9,10]. We will discuss this and in general the data analysis of NRIXS which enables the above mentioned applications. [1] Alp et al. Hyperfine Interactions 144/145, 3 (2002) [2] Sturhahn et al., PRL 74, 3832 (1995) [3] Mao et al., Science 292, 914 (2001) [4] Hu et al., PRB 67, 094304 (2003) [5] Sturhahn & Jackson, GSA special paper 421 (2007) [6] Murphy et al., Geophys. Res. Lett. 38, L24306 (2011) [7] Polyakov, Science 323, 912 (2009) [8] Dauphas et al., Geochimica et Cosmochimica Acta 94, 254 (2012) [9] Lipkin, PRB 52, 10073 (1995) [10] Hu et al., PRB 87, 064301 (2013)

  20. Quasi-particle Interference of Heavy Fermions in Resonant X-ray Scattering

    DOE PAGES

    Gyenis, Andras; da Silva Neto, Eduardo H.; Sutarto, Ronny; ...

    2016-10-14

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and elementmore » selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.« less

  1. Quasi-particle Interference of Heavy Fermions in Resonant X-ray Scattering

    SciTech Connect

    Gyenis, Andras; da Silva Neto, Eduardo H.; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-10-14

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

  2. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-01

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10-9 to 10-5 s) and a scattering vector Q range (9.6-40 nm-1), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow β-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature Tc in the mode coupling theory. The results suggest the important roles of hopping motions below Tc, which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

  3. Machine learning from hard x-ray surveys: applications to magnetic cataclysmic variable studies

    NASA Astrophysics Data System (ADS)

    Scaringi, Simone

    2009-11-01

    Within this thesis are discussed two main topics of contemporary astrophysics. The first is that of machine learning algorithms for astronomy whilst the second is that of magnetic cataclysmic variables (mCVs). To begin, an overview is given of ISINA: INTEGRAL Scouce Identifiction Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. The feature extraction process on an initial candidate list is described together with feature merging. Three trainng and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. ISINA is also compared to the more conventional approach of visual inspection. Next mCVs are discussed, and in particular the properties arising from a hard X-ray selected sample which has proven remarkably efficient in detecting intermediate polars and asynchronous polars, two of the rarest type of cataclysmic variables (CVs). This thesis focuses particularly on the link between hard X-ray properties and spin/orbital periods. To this end, a new sample of these objects is constructed by cross-corelating candidate sources detected in INTEGRAL/IBIS observations against catalogues of known CVs. Also included in the analysis are hard X-ray Observations from Swift/BAT and SUZAKU/HXD in order to make the study more complete. It is found that most hard X-ray detected mCVs have Pspin/Porb<0.1 above the period gap. In this respect, attention is given to the very low number of detected systems in any ban

  4. Investigations of the R5(SixGe1-x)4 Intermetallic Compounds by X-Ray Resonant Magnetic Scattering

    SciTech Connect

    Tan, Lizhi

    2008-08-18

    The XRMS experiment on the Gd5Ge4 system has shown that, below the Neel temperature, TN = 127 K, the magnetic unit cells is the same as the chemical unit cell. From azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same magnetic space group Pnma. The magnetic moments are aligned along the c-axis and the c-components of the magnetic moments at the three different sites are equal. The ferromagnetic slabs are stacked antiferromagnetically along the b-direction. They found an unusual order parameter curve in Gd5Ge4. A spin-reorientation transition is a possibility in Gd5Ge4, which is similar to the Tb5Ge4 case. Tb5Ge4 possesses the same Sm5Ge4-type crystallographic structure and the same magnetic space group as Gd5Ge4 does. The difference in magnetic structure is that Tb5Ge4 has a canted one but Gd5Ge4 has nearly a collinear one in the low temperature antiferromagnetic phase. The competition between the magneto-crystalline anisotropy and the nearest-neighbor magnetic exchange interactions may allow a 3-dimensional canted antiferromagnetic structure in Tb5Ge4. The spin-reorientation transition in both Gd5Ge4 and Tb5Ge4 may arise from the competition between the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and the dipolar interactions anisotropy.

  5. X-Ray Lithography Patterning of Magnetic Materials and Their Characterization

    NASA Astrophysics Data System (ADS)

    Candeloro, Patrizio; Kumar, Rakesh; Altissimo, Matteo; Businaro, Luca; Fabrizio, Enzo Di; Conti, Massimo; Gubbiotti, Gianluca; Carlotti, Giovanni; Gerardino, Annamaria; Zivieri, Roberto; Donzelli, Onofrio

    2003-06-01

    Magnetic arrays of rectangular dots 1100 nm× 300 nm with 200 nm spacing (pattern a) and dots 800 nm× 550 nm with 200 nm spacing (pattern b) with the nominal thickness of 30 nm in Permalloy (Ni81Fe19) material were fabricated using X-ray lithography in combination of lift-off technique. A detailed magnetic characterization of the dot arrays was accomplished by magneto-optical Kerr effect investigations and micro-magnetic simulations, with emphasis given to the dependence of the hysteresis loop of the dots on their aspect ratio (shape anisotropy). In addition, the high frequency dynamical properties were probed by Brillouin light scattering (BLS) showing a marked discretization of the Damon-Eshbach surface spin-wave mode induced by the finite lateral dimensions. The measured frequencies compare fairly well to those calculated by an analytical method which considers spin waves confined in rectangular prisms.

  6. Magnetic studies of magnetotactic bacteria by soft x-ray STXM and ptychography

    NASA Astrophysics Data System (ADS)

    Zhu, X. H.; Tyliszczak, T.; Shiu, H.-W.; Shapiro, D.; Bazylinski, D. A.; Lins, U.; Hitchcock, A. P.

    2016-01-01

    Magnetotactic bacteria (MTB) biomineralize chains of nanoscale magnetite single crystals which align the cell with the earth's magnetic field and assist the cell to migrate to, and maintain its position at, the oxic-anoxic transition zone, their preferred habitat. Here we describe use of multi-edge scanning transmission X-ray microscopy (STXM) to investigate the chemistry and magnetism of MTB on an individual cell basis. We report measurements of the orientation of the magnetic vector of magnetosome chains relative to the location of the single flagellum in marine vibrio, Magnetovibrio blakemorei strain MV-1 cells from both the southern and northern hemisphere. We also report a major improvement in both spatial resolution and spectral quality through the use of spectro-ptychography at the Fe L3 edge.

  7. Probing the graphite band structure with resonant soft-x-ray fluorescence

    SciTech Connect

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A.

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  8. X-ray magnetic dichroism in (Zn,Mn)O diluted magnetic semiconductors: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Mazur, D. V.; Germash, L. P.

    2012-06-01

    The electronic structure of (Zn,Mn)O diluted magnetic semiconductors was investigated theoretically from first principles by using the fully-relativistic Dirac linear muffin-tin orbital band structure method with the local spin-density approximation (LSDA) and the LSDA+ U approach. The X-ray magnetic circular dichroism (XMCD) spectra at the Mn, Zn, and O K and Mn L 2,3 edges were investigated theoretically from first principles. The origin of the XMCD spectra in these compounds was examined. The effect of oxygen vacancy atoms was found to be crucial for the X-ray magnetic dichroism at the Mn L 2,3 edges. The calculated results are compared with available experimental data.

  9. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    PubMed

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-06

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

  10. Elimination of X-Ray Diffraction through Stimulated X-Ray Transmission

    NASA Astrophysics Data System (ADS)

    Wu, B.; Wang, T.; Graves, C. E.; Zhu, D.; Schlotter, W. F.; Turner, J. J.; Hellwig, O.; Chen, Z.; Dürr, H. A.; Scherz, A.; Stöhr, J.

    2016-07-01

    X-ray diffractive imaging with laterally coherent x-ray free-electron laser (XFEL) pulses is increasingly utilized to obtain ultrafast snapshots of matter. Here we report the amazing disappearance of single-shot charge and magnetic diffraction patterns recorded with resonantly tuned, narrow bandwidth XFEL pulses. Our experimental results reveal the exquisite sensitivity of single-shot charge and magnetic diffraction patterns of a magnetic film to the onset of field-induced stimulated elastic x-ray forward scattering. The loss in diffraction contrast, measured over 3 orders of magnitude in intensity, is in remarkable quantitative agreement with a recent theory that is extended to include diffraction.

  11. Observation of Laser Induced Magnetization Dynamics in Co/Pd Multilayers with Coherent X-ray Scattering

    SciTech Connect

    Wu, Benny

    2012-04-05

    We report on time-resolved coherent x-ray scattering experiments of laser induced magnetization dynamics in Co/Pd multilayers with a high repetition rate optical pump x-ray probe setup. Starting from a multi-domain ground state, the magnetization is uniformly reduced after excitation by an intense 50 fs laser pulse. Using the normalized time correlation, we study the magnetization recovery on a picosecond timescale. The dynamic scattering intensity is separated into an elastic portion at length scales above 65 nm which retains memory of the initial domain magnetization, and a fluctuating portion at smaller length scales corresponding to domain boundary motion during recovery.

  12. Magnetic fields in Supernova Remnants and Pulsar-Wind Nebulae: Deductions from X-ray Observations

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    2016-06-01

    Magnetic field strengths B in synchrotron sources are notoriously difficult to measure. Simple arguments such as equipartition of energy can give values for which the total energy is a minimum, but there is no guarantee that Nature obeys it, or even if so, what particle population (just electrons? electrons plus ions?) should have an energy density comparable to that in magnetic field. However, the operation of synchrotron losses can provide additional information, if those losses are manifested in the synchrotron spectra as steepenings of the spectral-energy distribution above some characteristic frequency often called a "break" (though it is more typically a gradual curvature). A source of known age, if it has been accelerating particles continuously, will have such a break above the energy at which particle radiative lifetimes equal the source age, and this can give B. However, in spatially resolved sources such as supernova remnants (SNRs) and pulsar-wind nebulae (PWNe), systematic advection of particles, if at a known rate, gives a second measure of particle age to compare with radiative lifetimes. In most young SNRs, synchrotron X-rays make a contribution to the X-ray spectrum, and are usually found in thin rims at the remnant edges. If the rims are thin in the radial direction due to electron energy losses, a magnetic-field strength can be estimated. I present recent modeling of this process, along with models in which rims are thin due to decay of magnetic turbulence, and apply them to the remnants of SN 1006 and Tycho. In PWNe, outflows of relativistic plasma behind the pulsar wind termination shock are likely quite inhomogeneous, so magnetic-field estimates based on source lifetimes and assuming spatial uniformity can give misleading values for B. I shall discuss inhomogeneous PWN models and the effects they can have on B estimates.

  13. Dysprosium compounds studied by resonant inelastic X-ray scattering and high-resolution X-ray absorption near edge structure spectroscopy.

    PubMed

    Zhou, K J; Cui, M Q; Hua, W; Ma, C Y; Zhao, Y D; Huang, Y Y; He, W; Wu, Z Y

    2008-11-15

    A set of resonant inelastic X-ray scattering (RIXS) studies focusing on the 2p64f(n)-->2p54f(n)5d1(2p54f(n+1)5d0)-->2p63d94f(n)5d1(2p63d94f(n+1)5d0) channel of dysprosium in Dy metal, Dy2O3, DyNi3 and Dy25Fe18 compounds have been carried out. Data showed with high statistics and resolution, the different delocalization degree of the 5d band of dysprosium in these compounds, e.g., decreasing from Dy metal to DyNi3, Dy25Fe18 and to dysprosium oxide, in agreement with the high-resolution XANES (HRXANES) spectra. Band structure calculations performed on Dy metal and Dy2O3 confirm both RIXS and HRXANES results in the increasing delocalization of the dysprosium 5d band in Dy metal with respect to Dy2O3. The 5d orbital occupancies of DyNi3 and Dy25Fe18 alloys have been also studied by comparison of the HRXANES white line (WL) area with the behavior of the final states energy position in RIXS spectra and we show that DyNi3 has a higher 5d orbital occupancy than Dy25Fe18.

  14. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    NASA Astrophysics Data System (ADS)

    Sutter, John P.; Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-01

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  15. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    SciTech Connect

    Sutter, John P. Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  16. Resonant X-Ray Scattering and Absorption for the Global and Local Structures of Cu-modified Metallothioneins in Solution

    PubMed Central

    Li, Meiyi; Huang, Yu-Shan; Jeng, U-Ser; Hsu, I-Jui; Sermon Wu, YewChung; Lai, Ying-Huang; Su, Chiu-Hun; Lee, Jyh-Fu; Wang, Yu; Chang, Chia-Ching

    2009-01-01

    Abstract With Cd and Zn metal ions removed from the native rabbit-liver metallothionein upon unfolding, Cu-modified metallothioneins (Cu-MTs) were obtained during refolding in solutions containing CuI or CuII ions. X-ray absorption near-edge spectroscopic results confirm the respectively assigned oxidation states of the copper ions in CuI-MT and CuII-MT. Global and local structures of the Cu-MTs were subsequently characterized by anomalous small-angle x-ray scattering (ASAXS) and extended x-ray absorption fine structure. Energy-dependent ASAXS results indicate that the morphology of CuII-MT resembles that of the native MT, whereas CuI-MT forms oligomers with a higher copper content. Both dummy-residue simulation and model-shape fitting of the ASAXS data reveal consistently rodlike morphology for CuII-MT. Clearly identified Cu-S, Cu-O, and Cu-Cu contributions in the extended x-ray absorption fine structure analysis indicate that both CuI and CuII ions are bonded with O and S atoms of nearby amino acids in a four-coordination environment, forming metal clusters smaller than metal thiolate clusters in the native MT. It is demonstrated that a combination of resonant x-ray scattering and x-ray absorption can be particularly useful in revealing complementary global and local structures of metalloproteins due to the atom specific characteristics of the two techniques. PMID:19619476

  17. DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS

    SciTech Connect

    Keshet, Uri; Markevitch, Maxim; Birnboim, Yuval; Loeb, Abraham

    2010-08-10

    Cold fronts (CFs)-density and temperature plasma discontinuities-are ubiquitous in cool cores of galaxy clusters, where they appear as X-ray brightness edges in the intracluster medium, nearly concentric with the cluster center. We analyze the thermodynamic profiles deprojected across core CFs found in the literature. While the pressure appears continuous across these CFs, we find that all of them require significant centripetal acceleration beneath the front. This is naturally explained by a tangential, nearly sonic bulk flow just below the CF, and a tangential shear flow involving a fair fraction of the plasma beneath the front. Such shear should generate near-equipartition magnetic fields on scales {approx}<50pc from the front and could magnetize the entire core. Such fields would explain the apparent stability of cool core CFs and the recently reported CF-radio minihalo association.

  18. Modelling X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2017-03-01

    The early stages of a star birth are characterized by a variety of mass ejection phenomena, including outflows and collimated jets that are strongly related to the accretion process developed in the context of the star-disc interaction. Jets move through the ambient medium producing complex structures observed at different wavelengths. In particular, X-ray observations show evidence of strong shocks heating the plasma up to a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. We aim at investigating the physical properties of the shocked plasma and the role of magnetic fields on the collimation of the jet and the formation of a stationary shock. We performed 2.5D MHD simulations modelling the propagation of a jet ramming with a supersonic speed into an initially isothermal and homogeneous magnetized medium and compared the results with observations.

  19. Applications of Full-Field X-ray Microscopy for High Spatial Resolution Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Denbeaux, Gregory; Chao, Weilun; Fischer, Peter; Kusinski, Greg; Le Gros, Mark; Pearson, Angelic; Schneider, Gerd

    2001-03-01

    The XM-1 soft x-ray microscope, located at the Advanced Light Source at Lawrence Berkeley National Laboratory has recently been established as a tool for high-resolution imaging of magnetic domains. It is a "conventional" full-field transmission microscope which is able to achieve a resolution of 25 nm by using high-precision zone plates. It uses off-axis bend magnet radiation to illuminate samples with elliptically polarized light. When the illumination energy is tuned to absorption edges of specific elements, it can be used as an element-specific probe of magnetism on a 25 nm scale with a contrast provided by magnetic circular dichroism. The illumination energy can be tuned between 250-850 eV. This allows imaging of specific elements including chromium, iron and cobalt. The spectral resolution has been shown to be E/DE = 500-700. This spectral resolution allows a high sensitivity so that magnetization has been imaged within layers as thin as 3 nm. Since this is a photon based magnetic microscopy, fields can be applied to the sample even during imaging without affect ng the spatial resolution. Recent magnetic imaging results will be shown.

  20. Resonance Scattering of Fe XVII X-ray and EUV Lines

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Saba, J. L. R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Over the years a number of calculations have been carried out to derive intensities of various X-ray and EUV lines in Fe XVII to compare with observed spectra. The predicted intensities have not agreed with solar observations, particularly for the line at 1.5.02 Angstroms; resonance scattering has been suggested as the source for much of the disagreement. The atomic data calculated earlier used seven configurations having n=3 orbitals and the scattering calculations were carried out only for incident energies above the threshold of the highest fine-structure level. These calculations have now been extended to thirteen configurations having n=4 orbitals and the scattering calculations are carried out below as well as above the threshold of the highest fine structure level. These improved calculations of Fe XVII change the intensity ratios compared to those obtained earlier, bringing the optically thin F(15.02)/F(16.78) ratio and several other ratios closer to the observed values. However, some disagreement with the solar observations still persists, even thought the agreement of the presently calculated optically thin F(15.02)/F(15.26) ratio with the experimental results of Brown et al. (1998) and Laming et al. (2000) has improved. Some of the remaining discrepancy is still thought to be the effect of opacity, which is consistent with expected physical conditions for solar sources. EUV intensity ratios are also calculated and compared with observations. Level populations and intensity ratios are calculated, as a function of column density of Fe XVII, in the slab and cylindrical geometries. As found previously, the predicted intensities for the resonance lines at 15.02 and 15.26 Angstroms exhibit initial increases in flux relative to the forbidden line at 17.10 Angstroms and the resonance line at 16.78 Angstroms as optical thickness increases. The same behavior is predicted for the lines at 12.262 and 12.122 Angstroms. Predicted intensities for some of the allowed

  1. Local electronic states of Fe4N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Toko, Kaoru; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Suemasu, Takashi; Kimura, Akio

    2015-05-01

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L2,3 and N K-edges for Fe4N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe4N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L2,3-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by σ* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by π* and σ* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe4N.

  2. Local electronic states of Fe{sub 4}N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect

    Ito, Keita; Toko, Kaoru; Suemasu, Takashi; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Kimura, Akio

    2015-05-21

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L{sub 2,3} and N K-edges for Fe{sub 4}N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe{sub 4}N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L{sub 2,3}-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by σ* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by π* and σ* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe{sub 4}N.

  3. Advantages of a Synchrotron Bending Magnet as the Sample Illuminator for a Wide-field X-ray Microscope

    SciTech Connect

    Feser, M.; Howells, M. R.; Kirz, J.; Rudati, J.; Yun, W.

    2012-09-01

    In our paper the choice between bending magnets and insertion devices as sample illuminators for a hard X-ray full-field microscope is investigated. An optimized bending-magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion-device beamlines. The fact that imaging X-ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid-for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending-magnet beamlines that are dedicated to transmission X-ray microscope facilities. We expect that demand for such facilities will increase as three-dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three-dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.

  4. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission X-ray microscopy

    SciTech Connect

    Bryan, M. T.; Fry, P. W.; Fischer, P.; Allwood, D. A.

    2007-12-01

    Magnetic transmission X-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300 nm wide, 24 nm thick Ni{sub 81}Fe{sub 19} nanowire. Both transverse and vortex type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences, or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  5. X-ray magnetic circular dichroism in (Ge,Mn) compounds: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Tardif, Samuel; Titov, Andrey; Arras, Emmanuel; Slipukhina, Ivetta; Hlil, El-Kébir; Cherifi, Salia; Joly, Yves; Jamet, Matthieu; Barski, André; Cibert, Joël; Kulatov, Erkin; Uspenskii, Yurii A.; Pochet, Pascal

    2014-03-01

    X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L2,3 edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early ab initio studies show that the Density Functional Theory (DFT) can very well describe the valence band electronic properties but fails to reproduce a characteristic change of sign in the L3 XMCD spectrum of Mn in Ge3Mn5, which is observed in experiments. In this work we demonstrate that this disagreement is partially related to an underestimation of the exchange splitting of Mn 2p core states within the local density approximation. It is shown that the change in sign experimentally observed is reproduced if the exchange splitting is accurately calculated within the Hartree-Fock approximation, while the final states can be still described by the DFT. This approach is further used to calculate the XMCD in different (Ge,Mn) compounds. It demonstrates that the agreement between experimental and theoretical spectra can be improved by combining state of the art calculations for the core and valence states respectively.

  6. Study of a possible X-ray sensor based on the Plasmon Surface Resonance for the next generation of instruments

    NASA Astrophysics Data System (ADS)

    Hervé, Anthony; Hastanin, Juriy; Habraken, Serge; Rauw, Gregor

    2011-01-01

    With the new generation of X-ray space observatories, such as IXO in preparation, we explore a new technology in order to improve the spectral resolution and the sensitivity of future instruments. We have studied the possibility to create a sensor based on the Surface Plasmon Resonance (SPR), already used in chemistry and biomedical applications, and have determined the preliminary constraints on its size, energy resolution and working temperature.

  7. Data Mining Solar X-Ray Flares Triggered by Emerging Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Loftus, Kaitlyn; Saar, Steven H.; Schanche, Nicole

    2017-01-01

    We investigate the association between emerging magnetic flux and solar X-ray flares to identify, and if possible quantify, distinguishing physical properties of flares triggered by flux emergence versus those triggered by other sources. Our study uses as its basis GOES-classified solar flares from March 2011 through June 2016 that have been identified by the Space Weather Prediction Center’s flare detection algorithm. The basic X-ray flare data is then enriched with data about related EUV-spectrum flares, emerging fluxes, active regions, eruptions, and sigmoids, which are all characterized by event-specific keywords, identified via SDO feature finding tools, and archived in the Heliophysics Events Knowledgebase (HEK). Using appropriate spatial and temporal parameters for each event type to determine association, we create a catalogue of solar events associated with each GOES-classified flare. After accounting for the primitive state of many of these event detection algorithms, we statistically analyze the compiled dataset to determine the effects of an emerging flux trigger on flare properties. A two-sample Kolmogorov-Smirnov test confirms with 99.9% confidence that flares triggered by emerging flux have a different peak flux distribution than non-emerging-flux-associated flares. We observe no linear or logarithmic correlations between flares’ and their associated emerging fluxes’ individual properties and find flares triggered by emerging flux are ~ 10% more likely to cause an eruption inside an active region while outside of an active region, the flare’s association with emerging flux has no effect on its likeliness to cause an eruption. We also compare the morphologies of the flares triggered by emerging flux and flares not via a superposed epoch analysis of lightcurves. Our results will be of interest for predicting flare behavior as a function of magnetic activity (where we can use enhanced rates of emerging flux as a proxy for heightened stellar

  8. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  9. X-ray irradiation of soda-lime glasses studied in situ with surface plasmon resonance spectroscopy

    SciTech Connect

    Serrano, A.; Galvez, F.; Rodriguez de la Fuente, O.; Garcia, M. A.

    2013-03-21

    We present here a study of hard X-ray irradiation of soda-lime glasses performed in situ and in real time. For this purpose, we have used a Au thin film grown on glass and studied the excitation of its surface plasmon resonance (SPR) while irradiating the sample with X-rays, using a recently developed experimental setup at a synchrotron beamline [Serrano et al., Rev. Sci. Instrum. 83, 083101 (2012)]. The extreme sensitivity of the SPR to the features of the glass substrate allows probing the modifications caused by the X-rays. Irradiation induces color centers in the soda-lime glass, modifying its refractive index. Comparison of the experimental results with simulated data shows that both, the real and the imaginary parts of the refractive index of soda-lime glasses, change upon irradiation in time intervals of a few minutes. After X-ray irradiation, the effects are partially reversible. The defects responsible for these modifications are identified as non-bridging oxygen hole centers, which fade by recombination with electrons after irradiation. The kinetics of the defect formation and fading process are also studied in real time.

  10. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    SciTech Connect

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-05-15

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity ({approx_equal}1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  11. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain

    PubMed Central

    Logan, Jonathan; Harder, Ross; Li, Luxi; Haskel, Daniel; Chen, Pice; Winarski, Robert; Fuesz, Peter; Schlagel, Deborah; Vine, David; Benson, Christa; McNulty, Ian

    2016-01-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2 crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2 nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered. PMID:27577777

  12. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain.

    PubMed

    Logan, Jonathan; Harder, Ross; Li, Luxi; Haskel, Daniel; Chen, Pice; Winarski, Robert; Fuesz, Peter; Schlagel, Deborah; Vine, David; Benson, Christa; McNulty, Ian

    2016-09-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2 crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2 nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.

  13. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain

    SciTech Connect

    Logan, Jonathan; Harder, Ross; Li, Luxi; Haskel, Daniel; Chen, Pice; Winarski, Robert; Fuesz, Peter; Schlagel, Deborah; Vine, David; Benson, Christa; McNulty, Ian

    2016-01-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.

  14. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain

    DOE PAGES

    Logan, Jonathan; Harder, Ross; Li, Luxi; ...

    2016-01-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1)more » using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less

  15. Magnetic field amplification in the thin X-ray rims of SN 1006

    SciTech Connect

    Ressler, Sean M.; Katsuda, Satoru; Reynolds, Stephen P.; Long, Knox S.; Petre, Robert; Williams, Brian J.; Winkler, P. Frank

    2014-08-01

    Several young supernova remnants, including SN 1006, emit synchrotron X-rays in narrow filaments, hereafter thin rims, along their periphery. The widths of these rims imply 50-100 μG fields in the region immediately behind the shock, far larger than expected for the interstellar medium compressed by unmodified shocks, assuming electron radiative losses limit rim widths. However, magnetic field damping could also produce thin rims. Here we review the literature on rim width calculations, summarizing the case for magnetic field amplification. We extend these calculations to include an arbitrary power-law dependence of the diffusion coefficient on energy, D∝E {sup μ}. Loss-limited rim widths should shrink with increasing photon energy, while magnetic-damping models predict widths almost independent of photon energy. We use these results to analyze Chandra observations of SN 1006, in particular the southwest limb. We parameterize the FWHM in terms of energy as FWHM ∝E{sub γ}{sup m{sub E}}. Filament widths in SN 1006 decrease with energy; m{sub E} ∼ –0.3 to –0.8, implying magnetic field amplification by factors of 10-50, above the factor of four expected in strong unmodified shocks. For SN 1006, the rapid shrinkage rules out magnetic damping models. It also favors short mean free paths (small diffusion coefficients) and strong dependence of D on energy (μ ≥ 1).

  16. Magnetic Field Amplification in the Thin X-Ray Rims of SN 1006

    NASA Astrophysics Data System (ADS)

    Ressler, Sean M.; Katsuda, Satoru; Reynolds, Stephen P.; Long, Knox S.; Petre, Robert; Williams, Brian J.; Winkler, P. Frank

    2014-08-01

    Several young supernova remnants, including SN 1006, emit synchrotron X-rays in narrow filaments, hereafter thin rims, along their periphery. The widths of these rims imply 50-100 μG fields in the region immediately behind the shock, far larger than expected for the interstellar medium compressed by unmodified shocks, assuming electron radiative losses limit rim widths. However, magnetic field damping could also produce thin rims. Here we review the literature on rim width calculations, summarizing the case for magnetic field amplification. We extend these calculations to include an arbitrary power-law dependence of the diffusion coefficient on energy, DvpropE μ. Loss-limited rim widths should shrink with increasing photon energy, while magnetic-damping models predict widths almost independent of photon energy. We use these results to analyze Chandra observations of SN 1006, in particular the southwest limb. We parameterize the FWHM in terms of energy as FWHM \\propto Em_Eγ . Filament widths in SN 1006 decrease with energy; mE ~ -0.3 to -0.8, implying magnetic field amplification by factors of 10-50, above the factor of four expected in strong unmodified shocks. For SN 1006, the rapid shrinkage rules out magnetic damping models. It also favors short mean free paths (small diffusion coefficients) and strong dependence of D on energy (μ >= 1).

  17. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  18. A gamma- and X-ray detector for cryogenic, high magnetic field applications

    NASA Astrophysics Data System (ADS)

    Cooper, R. L.; Alarcon, R.; Bales, M. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Byrne, J.; Chupp, T. E.; Coakley, K. J.; Dewey, M. S.; Fu, C.; Gentile, T. R.; Mumm, H. P.; Nico, J. S.; O'Neill, B.; Pulliam, K.; Thompson, A. K.; Wietfeldt, F. E.

    2012-11-01

    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector are presented, as well as information on operation of APDs at cryogenic temperatures.

  19. Analytical modelling and x-ray imaging of oscillations of a single magnetic domain wall

    SciTech Connect

    Bocklage, Lars; Kruger, Benjamin; Fischer, Peter; Meier, Guido

    2009-07-10

    Domain-wall oscillation in a pinnig potential is described analytically in a one dimensional model for the feld-driven case. For a proper description the pinning potential has to be extended by nonharmonic contributions. Oscillations of a domain wall are observed on its genuine time scale by magnetic X-ray microscopy. It is shown that the nonharmonic terms are present in real samples with a strong restoring potential. In the framework of our model we gain deep insight into the domain-wall motion by looking at different phase spaces. The corrections of the harmonic potential can change the motion of the domain wall significantly. The damping parameter of permalloy is determined via the direct imaging technique.

  20. Resonant Auger decay of the core-excited C{sup *}O molecule in intense x-ray laser fields

    SciTech Connect

    Demekhin, Philipp V.; Chiang, Ying-Chih; Cederbaum, Lorenz S.

    2011-09-15

    The dynamics of the resonant Auger (RA) process of the core-excited C*O(1s{sup -1}{pi}*,v{sub r}=0) molecule in an intense x-ray laser field is studied theoretically. The theoretical approach includes the analog of the conical intersections of the complex potential energy surfaces of the ground and 'dressed' resonant states due to intense x-ray pulses, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the same final ionic states coherently, as well as the direct photoionization of the resonance state itself. The light-induced nonadiabatic effect of the analog of the conical intersections of the resulting complex potential energy surfaces gives rise to strong coupling between the electronic, vibrational, and rotational degrees of freedom of the diatomic CO molecule. The interplay of the direct photoionization of the ground state and of the decay of the resonance increases dramatically with the field intensity. The coherent population of a final ionic state via both the direct photoionization and the resonant Auger decay channels induces strong interference effects with distinct patterns in the RA electron spectra. The individual impact of these physical processes on the total electron yield and on the CO{sup +}(A {sup 2}{Pi}) electron spectrum are demonstrated.

  1. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  2. Analysis of Order Formation in Block Copolymer Thin Films UsingResonant Soft X-Ray Scattering

    SciTech Connect

    Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara,Nitash P.; Segalman, Rachel A.

    2006-11-27

    The lateral order of poly(styrene-block-isoprene) copolymer(PS-b-PI) thin films is characterized by the emerging technique ofresonant soft X-ray scattering (RSOXS) at the carbon K edge and comparedto ordering in bulk samples of the same materials measured usingconventional small-angle X-ray scattering. We show resonance using theoryand experiment that the loss of scattering intensity expected with adecrease in sample volume in the case of thin films can be overcome bytuning X-rays to the pi* resonance of PS or PI. Using RSOXS, we study themicrophase ordering of cylinder- and phere-forming PS-b-PI thin films andcompare these results to position space data obtained by atomic forcemicroscopy. Our ability to examine large sample areas (~;9000 mu m2) byRSOXS enables unambiguous identification of the lateral lattice structurein the thin films. In the case of the sphere-forming copolymer thin film,where the spheres are hexagonally arranged, the average sphere-to-spherespacing is between the bulk (body-centered cubic) nearest neighbor andbulk unit cell spacings. In the case of the cylinder-forming copolymerthin film, the cylinder-to-cylinder spacing is within experimental errorof that obtained in the bulk.

  3. Time-resolved soft X-ray microscopy of magnetic nanostructures at the P04 beamline at PETRA III

    NASA Astrophysics Data System (ADS)

    Wessels, P.; Ewald, J.; Wieland, M.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Vogel, A.; Neumann, A.; Viefhaus, J.; Oepen, H. P.; Meier, G.; Wilhein, T.; Drescher, M.

    2014-04-01

    We present first time-resolved measurements of a new mobile full-field transmission microscope [1] obtained at the soft X-ray beamline P04 at the high brilliance synchrotron radiation source PETRA III. A nanostructured magnetic permalloy (Ni80Fe20) sample can be excited by the magnetic field of a 400 ps full width at half maximum (FWHM) long electric current pulse in a coplanar waveguide. The full-field soft X-ray microscope successively probes the time evolution of the sample magnetization via X-ray magnetic circular dichroism (XMCD) [2] spectromicroscopy in a pump-probe scheme by varying the delay between pump and probe pulses electronically. Static and transient magnetic fields of a permanent magnet and a coil are available in the sample plane to reset the system and to provide external offset fields. The microscope generates a flat-top illumination field of 20 μm diameter by using a grating condenser [3] and the sample plane is directly imaged by a micro zone plate with 60 nm resolution onto a 2D gateable X-ray detector to select the particular bunch in the storage ring that contains the dynamic information. The setup is built into a mobile endstation vacuum system with in-house developed three-axis piezo motorized stages for high accuracy positioning of all microscopy-components inside the chambers.

  4. Revealing the insulating gap in α'-NaV (2)O(5) with resonant inelastic x-ray scattering.

    PubMed

    Bondino, F; Barla, A; Schmitt, T; Strocov, V N; Henry, J-Y; Sanchez, J-P

    2012-08-15

    We measured the low energy excitation spectrum of α'-NaV (2)O(5) across its charge ordering and crystallographic phase transition with resonant inelastic x-ray scattering (RIXS) at the V L(3) edge. Exploiting the polarization dependence of the RIXS signal and the high resolution of the data, we reveal the excitation across the insulating gap at 1 eV and identify the excitations from occupied 3d(xy) bonding orbitals to unoccupied bonding 3d(xy) and 3d(yz)/3d(xz) orbitals. Furthermore we observe a progressive change of the electronic structure of α'-NaV (2)O(5) induced by soft x-ray irradiation, with the appearance of features characteristic of sodium deficient Na(x)V (2)O(5) (x < 1).

  5. A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering.

    PubMed

    Vaz da Cruz, Vinícius; Ertan, Emelie; Couto, Rafael C; Eckert, Sebastian; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Guimarães, Freddy F; Ågren, Hans; Gel'mukhanov, Faris; Odelius, Michael; Föhlisch, Alexander; Kimberg, Victor

    2017-03-29

    In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.

  6. Optical identification of X-ray source 1RXS J180431.1-273932 as a magnetic cataclysmic variable

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Nucita, A. A.; Parisi, P.

    2012-08-01

    The X-ray source 1RXS J180431.1-273932 has been proposed as a new member of the symbiotic X-ray binary (SyXB) class of systems, which are composed of a late-type giant that loses matter to an extremely compact object, most likely a neutron star. In this paper, we present an optical campaign of imaging plus spectroscopy on selected candidate counterparts of this object. We also reanalyzed the available archival X-ray data collected with XMM-Newton. We find that the brightest optical source inside the 90% X-ray positional error circle is spectroscopically identified as a magnetic cataclysmic variable (CV), most likely of intermediate polar type, through the detection of prominent Balmer, He i, He ii, and Bowen blend emissions. On either spectroscopic or statistical grounds, we discard as counterparts of the X-ray source the other optical objects in the XMM-Newton error circle. A red giant star of spectral type M5 III is found lying just outside the X-ray position: we consider this latter object as a fore-/background one and likewise rule it out as a counterpart of 1RXS J180431.1-273932. The description of the X-ray spectrum of the source using a bremsstrahlung plus black-body model gives temperatures of kTbr ~ 40 keV and kTbb ~ 0.1 keV for these two components. We estimate a distance of d ~ 450 pc and a 0.2-10 keV X-ray luminosity of LX ~ 1.7 × 1032 erg s-1 for this system and, using the information obtained from the X-ray spectral analysis, a mass MWD ~ 0.8 M⊙ for the accreting white dwarf (WD). We also confirm an X-ray periodicity of 494 s for this source, which we interpret as the spin period of the WD. In summary, 1RXS J180431.1-273932 is identified as a magnetic CV and its SyXB nature is excluded. Partly based on observations collected at the Italian Telescopio Nazionale Galileo, located at the Observatorio del Roque de los Muchachos (Canary Islands, Spain).Reduced data used for imaging and spectra is only available at the CDS via anonymous ftp to cdsarc

  7. Note: Theoretical study on the gas pressure dependence of x-ray yield in TE{sub 111} cavity based electron cyclotron resonance x-ray source

    SciTech Connect

    Selvakumaran, T. S. Sen, Soubhadra; Baskaran, R.

    2014-11-15

    Adopting Langevin methodology, a pressure dependent frictional force term which represents the collisional effect is added to the Lorentz equation. The electrons are assumed to be starting from the uniformly distributed co-ordinates on the central plane. The trajectory of each electron is numerically simulated by solving the modified Lorentz equation for a given pressure. The Bremsstrahlung x-ray energy spectrum for each electron crossing the cavity wall boundary is obtained using the Duane-Hunt law. The total x-ray yield is estimated by adding the spectral contribution of each electron. The calculated yields are compared with the experimental results and a good agreement is found.

  8. Magnetism at spinel thin film interfaces probed through soft x-ray spectroscopy techniques

    SciTech Connect

    Chopdekar, R.V.; Liberati, M.; Takamura, Y.; Kourkoutis, L. Fitting; Bettinger, J. S.; Nelson-Cheeseman, B. B.; Arenholz, E.; Doran, A.; Scholl, A.; Muller, D. A.; Suzuki, Y.

    2009-12-16

    Magnetic order and coupling at the interfaces of highly spin polarized Fe{sub 3}O{sub 4} heterostructures have been determined by surface sensitive and element specific soft x-ray spectroscopy and spectromicroscopy techniques. At ambient temperature, the interface between paramagnetic CoCr{sub 2}O{sub 4} or MnCr{sub 2}O{sub 4} and ferrimagnetic Fe{sub 3}O{sub 4} isostructural bilayers exhibits long range magnetic order of Co, Mn and Cr cations which cannot be explained in terms of the formation of interfacial MnFe{sub 2}O{sub 4} or CoFe{sub 2}O{sub 4}. Instead, the ferrimagnetism is induced by the adjacent Fe{sub 3}O{sub 4} layer and is the result of the stabilization of a spinel phase not achievable in bulk form. Magnetism at the interface region is observable up to 500 K, far beyond the chromite bulk Curie temperature of 50-95 K.

  9. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  10. Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Navigation at 1.5 T versus X-ray Fluoroscopy

    PubMed Central

    Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Cooke, Daniel L.; Wilson, Mark W.; Thorne, Bradford R. H.; Sincic, Ryan S.; Arenson, Ronald L.; Saeed, Maythem

    2014-01-01

    Purpose To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. Materials and Methods The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. Results The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. Conclusion In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization

  11. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  12. Soft x-ray magnetic circular dichroism of L21-type Co2FeGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Umetsu, R. Y.; Nakamura, T.; Kobayashi, K.; Kainuma, R.; Sakuma, A.; Fukamichi, K.; Ishida, K.

    2010-03-01

    Spin and orbital magnetic moments of the L21-type Co2FeGa Heusler alloy have been investigated using x-ray magnetic circular dichroism spectra in the soft x-ray region. From the spectra of the L2,3-edge of Co and Fe, the ratios of the orbital magnetic moment to the spin magnetic moment Morb/Mspin are estimated to be 0.06 for Co and 0.02 for Fe, in agreement with the available theoretical values. The orbital magnetic moments of these two elements are small in line with theoretical results, reflecting the high symmetry of the L21-type crystal structure. Furthermore, it has been confirmed that the magnetic moment of Ga is induced in the present alloy.

  13. Electronic Structure of the ID Conductor K0.3MoO3 studied using resonant inelastic x-ray scattering and soft x-ray emission spectroscopy

    SciTech Connect

    Learmonth, T.; Glans, P.-A.; McGuinness, C.; Plucinski, L.; Zhang, Y.; Guo, J.-H.; Greenblatt, M.; Smith, K.E.

    2008-09-24

    The electronic structure of the quasi-one dimensional conductor K{sub 0.3}MoO{sub 3} has been measured using high resolution resonant inelastic x-ray scattering and x-ray absorption spectroscopy. The data is compared to that from the related two dimensional insulator {alpha}-MoO{sub 3}. Scattering features are observed from both oxides that are explained in terms of the band momentum selectivity of the scattering process, allowing a comparison of the scattering data to recent band structure calculations.

  14. X-ray magnetic circular dichroism and reflection anisotropy spectroscopy Kerr effect studies of capped magnetic nanowires

    SciTech Connect

    Cunniffe, J. P.; McNally, D.E.; Liberati, M.; Arenholz, E.; McGuinness, C.; McGilp, J. F.

    2010-03-02

    Aligned Co wires grown on Pt(997) under ultra-high vacuum conditions have been capped successfully by the epitaxial growth of Au monolayers (ML) at room temperature. The samples were kept under vacuum except when transferring between apparatus or when making some of the measurements. No degradation of the Co wires was detected during the measurements. The magneto-optic response of the system was measured using X-ray magnetic circular dichroism (XMCD) at the Co L{sub 2,3} edge and reflection anisotropy spectroscopy (RAS) at near normal incidence, which is sensitive to the normal component of the out-of-plane magnetization via the Kerr effect (MOKE). Capping the wires significantly impacts their magnetic properties. Comparison of the magneto-optic response of the system at X-ray and optical energies reveals small differences that are attributed to the induced moment in the Pt substrate and Au capping layer not picked up by the element specific XMCD measurements. The sensitivity of RAS-MOKE is sufficient to allow the determination of the easy axis direction of the capped wires to within a few degrees. The results for a 6-atom-wide Co wire sample, capped with 6 ML of Au, are consistent with the capped wires possessing perpendicular magnetization.

  15. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  16. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  17. Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules

    SciTech Connect

    Weinhardt, Lothar; Benkert, Andreas; Meyer, Frank; Blum, Monika; Wilks, Regan G.; Yang, Wanli; Baer, Marcus; Reinert, Friedrich; and others

    2012-04-14

    The electronic structure of gas-phase H{sub 2}O and D{sub 2}O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a{sub 1} resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.

  18. X-Ray Photoelectron Diffraction Studies of Structural and Magnetic Disordering Transitions Near Surfaces

    NASA Astrophysics Data System (ADS)

    Tran, Thuy Thu

    This thesis deals with order/disorder transitions near solid surfaces as studied by x-ray photoelectron diffraction and photoelectron holography. Transitions involving both atomic positional order and magnetic order have been studied. Further evidence for a reversible high-temperature surface-disordering phase transition on Ge(111) has been found using Ge 3p x-ray photoelectron diffraction (a short -range-order probe of surface structure) and photoelectron holography. Azimuthal diffraction data at takeoff angles with respect to the surface of theta = 19^circ and theta = 55^circ show abrupt drops in intensity of ~30%-40% over the temperature interval of 900-1200 K. Photoelectron holographic near-neighbor images at temperatures below and above the transition region furthermore indicate an identical near-neighbor structure for all atoms present in ordered sites. These combined diffraction and holography data show that by 1200 K, the Ge(111) surface is covered by a completely disordered overlayer of about 2 Ge monolayers in thickness. The rate of growth of this overlayer with increasing temperature is in excellent agreement with recent medium-energy ion scattering results, although the thickness we find for the overlayer is 1.5-2.0x larger than that derived from ion scattering. Based on these data, a disordering model for the Ge(111) surface phase transition occurring at 1050 K is discussed. Spin-polarized photoelectron diffraction is a recently developed and promising application of photoelectron diffraction to the study of the magnetic structure near surfaces. This technique is based on an internal source of spin-polarized electrons as produced in core-level multiplet splittings and it is thus sensitive to the short-range magnetic order around a given type of emitter in the crystal. In prior studies, it has been applied to two antiferromagnets, KMnF_3 and MnO, and the effects seen at temperatures well above the Neel (or long-range -order) temperature have been

  19. Experimental setup for lensless imaging via soft x-ray resonant scattering

    SciTech Connect

    Sacchi, Maurizio; Spezzani, Carlo; Carpentiero, Alessandro; Prasciolu, Mauro; Delaunay, Renaud; Luening, Jan; Polack, Francois

    2007-04-15

    We have developed a setup for measuring holographically formed interference patterns using an integrated sample-mask design. The direct space image of the sample is obtained via a two-dimensional Fourier transform of the x-ray diffraction pattern. We present the details of our setup, commenting on the influence of geometrical parameters on the imaging capabilities. As an example, we present and discuss the results of test experiments on a patterned Co film.

  20. Dominance of magnetic cataclysmic variables in the resolved Galactic ridge X-ray emission of the limiting window

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub

    2012-12-01

    The diffuse appearance of the Galactic ridge X-ray emission has been puzzling since its discovery due to the lack of compelling theories for sustainable hot diffuse X-ray emission in the Galactic plane. Recently, Revnivtsev et al. claimed that ˜90 per cent of the 6.5-7.1 keV X-ray flux from a small section of a low-extinction region at 1°.4 south of the Galactic Centre has been resolved to discrete sources with LX, 2-10 keV ≳4×10-16 erg s-1 cm-2, using ultradeep (1 Ms) observations made by the Chandra X-ray Observatory. They also concluded that coronally active stars such as active binaries (ABs) contribute ˜60 per cent of the resolved flux. However, our recent discovery of a large population of magnetic cataclysmic variables (MCVs) in the same region suggests their significant role in the resolved hard X-ray flux. In addition, deep X-ray surveys of other several Galactic bulge fields over the past decade have indicated that MCVs are likely the major contributor in the hard X-ray emission above 2-3 keV. To solve this mystery, we have conducted an independent in-depth analysis of discrete X-ray sources in the low-extinction region. The total fraction of the 6.5-7.1 keV flux we can confidently claim as resolved is ˜70-80 per cent, which largely agrees with Revnivtsev et al., but leaves some room for diffuse components. However, despite the various attempts, we consistently find that the resolved hard X-ray flux above 3 keV is dominated by relatively bright, hard X-ray sources such as MCVs, whereas the contribution from relatively faint, soft sources such as ABs is below 20 per cent. We describe in detail our analysis procedure in order to elucidate possible origins of the discrepancy.

  1. X-ray speckle experiments on the persistence and disintegration of magnetic memory

    NASA Astrophysics Data System (ADS)

    Pierce, Michael Scott

    Beautiful theories based on random microscopic disorder have been developed over the past ten years. My goal was to directly compare these theories with precise experiments. To do so, I first developed and then applied coherent x-ray speckle metrology to a series of thin multilayer perpendicular magnetic materials. To directly observe the effects of disorder, increasing degrees of disorder was deliberately introduced into a series of magnetic films. I used coherent x-rays, produced at the Advanced Light Source at Lawrence Berkeley National Laboratory, to generate highly speckled magnetic scattering patterns. The scattering patterns provided both the ensemble average characteristics of the magnetic domains, but were also directly sensitive to the microscopic magnetic domains. The apparently "random" arrangement of the speckles is due to the exact configuration of the magnetic domains in the sample. In effect, each speckle pattern acts as a unique fingerprint for the magnetic domain configuration. Small changes in the domain structure change the speckles, and comparison of the different speckle patterns provides a quantitative determination of how much the domain structure has changed. My experiments quickly answered one longstanding question: How is the magnetic domain configuration at one point on the major hysteresis loop related to the configurations at the same point on the loop during subsequent cycles? This is called microscopic return point memory (RPM). I found the RPM is partial and imperfect in the disordered samples, and completely absent when the disorder was not present. I also introduced and answered a second important, new question: How are the magnetic domains at one point on the major hysteresis loop related to the domains at the complementary point, the inversion symmetric point on the loop, during the same and during subsequent cycles? This is called microscopic complementary point memory (CPM). I found the CPM is also partial and imperfect in the

  2. X-ray absorption and resonant inelastic x-ray scattering (RIXS) show the presence of Cr{sup +} at the surface and in the bulk of CrF{sub 2}

    SciTech Connect

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2015-07-23

    X-Ray absorption and resonant inelastic x-ray scattering (RIXS) spectra of CrF{sub 2} recorded at the chromium L{sub 2,3} are presented. An atomic multiplet crystal field calculation is compared with the experimental data. Experiment and theory are in agreement once the calculation includes three chromium oxidation states, namely Cr{sup +}, Cr{sup 2+}, and Cr{sup 3+}. X-Ray absorption allows a direct determination of the surface oxidation, while the RIXS spectra shows the presence of these three oxidation states in the sample bulk. To give a quantitative interpretation of the RIXS data the effect of the incomming and outgoing photon penetration depth and self-absorption must be considered. For the much simpler case of MnF{sub 2}, with only one metal oxidation state, the measured RIXS spectra relative intensities are found to be proportional to the square of the sample attenuation length.

  3. Nerves on magnetic resonance imaging.

    PubMed Central

    Collins, J. D.; Shaver, M. L.; Batra, P.; Brown, K.

    1989-01-01

    Nerves are often visualized on magnetic resonance imaging (MRI) studies of the soft tissues on the chest and shoulder girdle. To learn the reasons for the contrast between the nerves and adjacent tissues, the authors obtained a fresh specimen containing part of the brachial plexus nerves from the left axilla and compared MRI with x-ray projections and photomicrographs of histologic sections. The results suggest that the high signals from the nerves stand out in contrast to the low signals from their rich vascular supply. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 PMID:2733051

  4. X-ray emission and the incidence of magnetic fields in the massive stars of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Petit, V.; Wade, G. A.; Montmerle, T.; Drissen, L.; Grosso, N.; Menard, F.

    Magnetic fields have been frequently invoked as a likely source of variability and confinement of the winds of massive stars. To date, the only magnetic field detected in O-type stars are those of θ1 Ori C (HD 37022; Donati et al. 2002), the brightest and most massive member of the Orion Nebula Cluster (ONC), and HD 191612 (Donati et al. 2006). Notably, θ1 Ori C is an intense X-ray emitter, and the source of these X-rays is thought to be strong shocks occurring in its magnetically-confined wind (Babel & Montmerle 1997a, Donati et al. 2002). Recently, Stelzer et al. (2005) have found significant X-ray emission from all massive stars in the ONC. Periodic rotational modulation in X-rays and other indicators suggested that θ1 Ori C may be but one of many magnetic B- and O-type stars in this star-forming region. In 2005B we carried out sensitive ESPaDOnS observations to search for direct evidence of such fields, detecting unambiguous Zeeman signatures in two objects.

  5. IRMA-2 at SOLEIL: a set-up for magnetic and coherent scattering of polarized soft x-rays

    NASA Astrophysics Data System (ADS)

    Sacchi, M.; Popescu, H.; Gaudemer, R.; Jaouen, N.; Avila, A.; Delaunay, R.; Fortuna, F.; Maier, U.; Spezzani, C.

    2013-03-01

    We have designed, built and tested a new instrument for soft x-ray scattering experiments. IRMA-2 is a UHV set-up for elastic and coherent scattering experiments developed at the SEXTANTS beamline of the SOLEIL synchrotron. Applications will be in the field of solid state physics, with emphasis on the investigation of the magnetic properties of artificially structured materials.

  6. Element-specific magnetic imaging with an x-ray microscope with 25 nm resolution: recent results and future goals

    NASA Astrophysics Data System (ADS)

    Denbeaux, Gregory; Chao, Weilun; Pearson, Angelic; Schneider, Gerd; Kusinski, Greg; Fischer, Peter

    2002-03-01

    The XM-1 soft x-ray microscope, located at the Advanced Light Source at Lawrence Berkeley National Laboratory has been used to image magnetization with 25 nm spatial resolution. The microscope illumination can be adjusted between 300 and 1800 eV allowing element-specific magnetic imaging with x-ray magnetic circular dichroism contrast for various elements including for Fe, Co, Ni, and Gd. This has been demonstrated to have a high sensitivity, which allows imaging of magnetic layers as thin as 3 nm. Since the imaging is photon-based, the presence of an applied magnetic field during imaging does not disrupt the image formation. Currently, samples can be imaged in an applied field of up to 3000 Oe. We will show recent results of high-resolution, element specific imaging of various multilayers and patterned structures.

  7. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    SciTech Connect

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W. -S.; Shen, Z. -X.; Ghiringhelli, G.; Braicovich, L.

    2016-10-25

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.

  8. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L.

    2016-10-01

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one's ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.

  9. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100 eV: probing first-row transition-metal M-edges in chemical complexes.

    PubMed

    Wang, Hongxin; Young, Anthony T; Guo, Jinghua; Cramer, Stephen P; Friedrich, Stephan; Braun, Artur; Gu, Weiwei

    2013-07-01

    X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d-d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed.

  10. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  11. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering.

    PubMed

    Kim, Jungho; Shi, Xianbo; Casa, Diego; Qian, Jun; Huang, XianRong; Gog, Thomas

    2016-07-01

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.

  12. X-rays and neutrons as complementary probes to muons in magnetism: A view from reciprocal space

    NASA Astrophysics Data System (ADS)

    Lander, G. H.

    2000-08-01

    Twenty years ago magnetism and superconductivity appeared mutually exclusive and life was (relatively) simple. The discovery of heavy-fermion superconductivity (1979-1984) and high Tc (1986), changed our perceptions. Gradually, it was realised that either ordered magnetism or magnetic correlations are found in most of these materials. Here I shall concentrate on heavy fermions, in which the f electrons are responsible for the magnetism as well as (probably) the superconductivity. Muons have played a key role in elucidating these the so-called “small moment” systems, such as UPt 3, URu 2Si 2, UPd 2Al 3, etc. Recenty, at the ILL we have measured the low-energy inelastic magnetic signal from UPd 2Al 3 and the response will be compared to the conclusions derived from muon studies. Interestingly, it is accepted wisdom that muons will be sensitive to any small magnetic effects. UBe 13 is fascinating as it has long been the “exception”, with no sign of any magnetism. Now, at Risø National Laboratory, we have found evidence with neutrons for weak magnetic correlations of a most unusual form in UBe 13 - so that it no longer can be regarded as an exception. Neutrons, powerful though they are, are sometimes lost in reciprocal space. U 2Pt 2 In is a non-Fermi liquid, and there is a strong muon anomaly below 10 K, but we have been unable to find the correlations with neutrons. Finally, NpO 2 is one of the oldest “small-moment systems”, and recently muons were able to see an asymmetry below 25 K, and suggested an ordered moment of 0.1μ B. However, the signal has been too small for neutrons. Here I will explain the emergence of a new technique, resonant magnetic X-ray scattering, that, especially in the actinides, has great promise. We have used this at the ESRF to determine the magnetic structure of NpO 2.

  13. Mn L3,2 X-ray absorption and magnetic circular dichroism inferromagnetic Ga1-xMnxP

    SciTech Connect

    Stone, P.R.; Scarpulla, M.A.; Farshchi, R.; Sharp, I.D.; Haller,E.E.; Dubon, O.D.; Yu, K.M.; Beeman, J.W.; Arenholz, E.; Denlinger, J.D.; Ohldag, H.

    2006-03-25

    We have measured the X-ray absorption and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edges in ferromagnetic Ga{sub 1-x}Mn{sub x}P for 0.018 {le} x {le} 0.042. Large XMCD asymmetries at the L{sub 3} edge indicate significant spin-polarization of the density of states at the Fermi energy. The temperature dependence of the XMCD and moment per Mn of 2.67 {+-} 0.45 {mu}{sub B} calculated using sum rules are consistent with magnetometry values. The spectral shapes of the X-ray absorption and XMCD are nearly identical with those for Ga{sub 1-x}Mn{sub x}As indicating that the hybridization of Mn d and anion p states is similar in the two materials.

  14. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.

    PubMed

    Riveros, Raul E; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  15. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics

    SciTech Connect

    Riveros, Raul E.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3{+-}2.5nmrms to 5.7{+-}0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  16. A bend magnet facility for production and application of circularly polarized soft x rays at the Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Bustamante, C.; Chen, C. T.; Sette, F.; Howells, M. R.; Hunt, A. J.; Kim, K. J.; Kincaid, B. M.; Maestre, M. F.; Nygren, D. R.; Wong, M.; Snyder, P. A.; Stern, E. A.

    1992-01-01

    The Advanced Light Source (ALS) is a synchrotron radiation facility based on a low-emittance, 1.5-GeV electron storage ring presently under construction at the Lawrence Berkeley Laboratory, U.S.A. Plans are under way to develop a polarized photon facility at the ALS, exploiting the natural polarization properties of the bend magnet synchrotron radiation. The radiation emitted in the plane of the storage ring is linearly polarized, while above and below the plane it is elliptically polarized. We will utilize these properties to obtain circularly polarized soft x rays. A participating research team (PRT A018) has been formed and is proceeding with the design of a high-resolution beamline in the soft x-ray energy region 100-1500 eV. Intense beams of monochromatic, tunable, pulsed, circularly polarized photons will become available. We will discuss the physical characteristics of this polarized soft x-ray source. New investigations in biology, materials science, physics, and chemistry will become accessible. Initial experiments using circularly polarized photons in the soft x-ray region are planned in the areas of differential scattering and absorption from chiral molecules and probing the electronic and magnetic properties of magnetic systems. This work was supported by the U.S. Department of Energy (DE-AC03-76SF00098).

  17. Quantum Mechanical Simulation and X-Ray Scattering Applied to Pressure-Induced Invar Anomaly in Magnetic Iron Alloy

    NASA Astrophysics Data System (ADS)

    Winterrose, Michael L.

    The Invar effect has remained at the forefront of materials research since Charles-Edouard Guillaume discovered the vanishing thermal expansion of Fe-Ni alloys in 1897. More recently, a pressure-induced Invar effect was discovered in Fe-Ni alloys, and the relationship between classical and pressure-induced Invar phenomena has added complexity to the century-old struggle to comprehend the microscopic origins of Invar behavior. In this thesis I present our recent discovery of pressure-induced Invar behavior in Pd3Fe with the ordered L12 structure. Nuclear forward scattering measurements show that the ferromagnetic ground state in Pd3Fe is destabilized with pressure, collapsing around 10GPa (V/V 0=0.96) to a low-spin magnetic state. From high-pressure synchrotron x-ray diffraction measurements we find a large volume collapse at ambient temperature to accompany the collapse of ferromagnetism. After the volume collapse there is a significant increase in the bulk modulus. Using nuclear resonant inelastic x-ray scattering to study the 57Fe phonon partial density of states (PDOS) at high pressures, we find the pressure-induced magnetic transition to cause an anomalous relative softening of the average phonon frequency. Heating our sample to 650K in a furnace at a pressure of 7GPa, synchrotron x-ray diffraction measurements reveal negligible thermal expansion from 300 to 523 K, demonstrating pressure-induced Invar behavior in Pd3Fe. Density functional theory calculations identify a ferromagnetic ground state in Pd3Fe with large moments at the Fe sites. These calculations show that the application of pressure counteracts the band-filling effect of Pd. By tuning the position of the top of the 3d band with respect to the Fermi level, pressure-induced Invar behavior resembles classical Invar behavior that is controlled by chemical composition. This insight marks the first step towards a unification of our understanding of classical and pressure-induced Invar behavior. Pressure

  18. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    SciTech Connect

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-11-15

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields ({approx}1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  19. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies.

    PubMed

    Islam, Zahirul; Ruff, Jacob P C; Nojiri, Hiroyuki; Matsuda, Yasuhiro H; Ross, Kathryn A; Gaulin, Bruce D; Qu, Zhe; Lang, Jonathan C

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  20. Voltage-controlled magnetic anisotropy in Fe|MgO tunnel junctions studied by x-ray absorption spectroscopy

    SciTech Connect

    Miwa, Shinji Matsuda, Kensho; Tanaka, Kazuhito; Goto, Minori; Suzuki, Yoshishige; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-10-19

    In this study, voltage-controlled magnetic anisotropy (VCMA) in Fe|MgO tunnel junctions was investigated via the magneto-optical Kerr effect, soft x-ray absorption spectroscopy, and magnetic circular dichroism spectroscopy. The Fe|MgO tunnel junctions showed enhanced perpendicular magnetic anisotropy under external negative voltage, which induced charge depletion at the Fe|MgO interface. Despite the application of voltages of opposite polarity, no trace of chemical reaction such as a redox reaction attributed to O{sup 2−} migration was detected in the x-ray absorption spectra of the Fe. The VCMA reported in the Fe|MgO-based magnetic tunnel junctions must therefore originate from phenomena associated with the purely electric effect, that is, surface electron doping and/or redistribution induced by an external electric field.

  1. Core-Hole Effect in the Ce L3 X-Ray Absorption Spectra of CeO2 and CeFe2: New Examination by Using Resonant X-Ray Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kotani, A.

    2013-06-01

    We consider two different resonant X-ray emission spectra for Ce compounds: Ce 3d to 2p X-ray emission (denoted by 3d-RXES) and valence to 2p X-ray emission (v-RXES), both of which follow the Ce 2p to 5d resonant excitation. We propose that the comparison of the 3d- and v-RXES spectra is a new powerful method of directly detecting the core-hole effect in the final state of Ce L3 X-ray absorption spectra (XAS). We applied this method to recent experimental RXES spectra for CeO2 and CeFe2, and showed unambiguously that the core-hole effect should be essential in the XAS of both materials. This result is confirmed by theoretical calculations, which reproduce well the experimental RXES and XAS spectra. We conclude that the ground state of CeO2 is in the mixed state of 4f0 and 4f1_{L} configurations, where _{L} is a ligand hole, instead of a pure 4f0 configuration which was proposed recently by first-principles energy band calculations. Also, we conclude that the double peaks observed in L3 XAS of CeFe2 are caused by the 4f0 and 4f1 configurations, which are mixed in the ground state but separated in energy by the large core-hole potential in the final state of XAS.

  2. Accretion Column Structure of Magnetic Cataclysmic Variables from X-ray Spectroscopy

    SciTech Connect

    Hoogerwerf, R; Brickhouse, N S; Mauche, C W

    2006-02-27

    Using Chandra HETG data we present light curves for individual spectral lines of Mg XI and Mg XII for EX Hydrae, an intermediate-polar type cataclysmic variable. The Mg XI light curve, folded on the white dwarf spin period, shows two spikes that are not seen in the Mg XII or broad-band light curves. Occultation of the accretion column by the body of the white dwarf would produce such spikes for an angle between the rotation axis and the accretion columns of {alpha} = 18{sup o} and a height of the Mg XI emission above the white dwarf surface of {approx}< 0.0004 white dwarf radii or {approx}< 4 km. The absence of spikes in the Mg XII and broad-band light curves could then be explained if the bulk of its emission forms at much larger height, > 0.004 white dwarf radii or > 40 km, above the white dwarf surface. The technique described in this letter demonstrates that high signal-to-noise ratio and high spectral resolution X-ray spectra can be used to map the temperature and density structure of accretion flows in magnetic cataclysmic variables. The Mg XI and Mg XII light curves are not consistent with the temperature and density structure predicted by the standard Aizu model.

  3. Current Profile and Magnetic Structure Measurements through Tangential Soft X-Ray Imaging in Compact Tori

    SciTech Connect

    Fonck, Raymond J.

    2004-07-12

    This report describes the fabrication and tests of a tangentially imaging soft X-ray (SXR) camera diagnostic for fusion energy plasma research. It can be used for the determination of the current distribution in strongly shaped toroidal magnetically confined plasmas, such as those found in spherical tori or advanced tokamaks. It included the development of both an appropriate imaging SXR camera and image analysis techniques necessary to deduce the plasma shape and current distribution. The basic camera concept consists of a tangentially viewing pinhole imaging system with thin-film SXR filters, a scintillator screen to provide SXR to visible conversion, a fast shuttering system, and an sensitive visible camera imaging device. The analysis approach consists of integrating the 2-D SXR image data into a Grad-Shafranov toroidal equilibrium solver code to provide strong constraints on the deduced plasma current and pressure profiles. Acceptable sensitivity in the deduced current profile can be obtained if the relative noise in the measured image can be kept in the range of 1% or less. Tests on the Pegasus Toroidal Experiment indicate very flat safety factor profiles in the plasma interior.

  4. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  5. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  6. Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds

    SciTech Connect

    Schmitt, Thorsten

    2004-01-01

    substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS. revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  7. Quasiparticle Lifetime Broadening in Resonant X-ray Scattering of NH4NO3

    PubMed Central

    Vinson, John; Jach, Terrence; Müller, Matthias; Unterumsberger, Rainer; Beckhoff, Burkhard

    2016-01-01

    It has been previously shown that two effects cause dramatic changes in the x-ray absorption and emission spectra from the N K edge of the insulating crystal ammonium nitrate. First, vibrational disorder causes major changes in the absorption spectrum, originating not only from the thermal population of phonons, but, significantly, from zero-point motion as well. Second, the anomalously large broadening (~ 4 eV) of the emission originating from nitrate σ states is due to unusually short lifetimes of quasiparticles in an otherwise extremely narrow band. In this work we investigate the coupling of these effects to core and valence excitons that are created as the initial x-ray excitation energy is progressively reduced toward the N edge. Using a GW/Bethe-Salpeter approach, we show the extent to which this anomalous broadening is captured by the GW approximation. The data and calculations demonstrate the importance that the complex self-energies (finite lifetimes) of valence bands have on the interpretation of emission spectra. We produce a scheme to explain why extreme lifetimes should appear in σ states of other similar compounds. PMID:27747308

  8. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    NASA Astrophysics Data System (ADS)

    Capelli, R.; Mahne, N.; Koshmak, K.; Giglia, A.; Doyle, B. P.; Mukherjee, S.; Nannarone, S.; Pasquali, L.

    2016-07-01

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  9. Synchrotron x-ray spectroscopy studies of valence and magnetic state in europium metal to extreme pressures

    SciTech Connect

    Bi, W.; Souza-Neto, N.M.; Haskel, D.; Fabbris, G.; Alp, E.E.; Zhao, J.; Hennig, R.G.; Abd-Elmeguid, M.M.; Meng, Y.; McCallum, Ralph W.; Dennis, Kevin; Schilling, J.S.

    2012-05-22

    In order to probe the changes in the valence state and magnetic properties of Eu metal under extreme pressure, x-ray absorption near-edge spectroscopy, x-ray magnetic circular dichroism, and synchrotron Mössbauer spectroscopy experiments were carried out. The Mössbauer isomer shift exhibits anomalous pressure dependence, passing through a maximum near 20 GPa. Density functional theory has been applied to give insight into the pressure-induced changes in both Eu's electronic structure and Mössbauer isomer shift. Contrary to previous reports, Eu is found to remain nearly divalent to the highest pressures reached (87 GPa) with magnetic order persisting to at least 50 GPa. These results should lead to a better understanding of the nature of the superconducting state found above 75 GPa and of the sequence of structural phase transitions observed to 92 GPa.

  10. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ewald, J.; Wessels, P.; Wieland, M.; Nisius, T.; Vogel, A.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Viefhaus, J.; Meier, G.; Wilhein, T.; Drescher, M.

    2016-01-01

    Sub-nanosecond magnetization dynamics of small permalloy (Ni80Fe20) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  11. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    SciTech Connect

    Ewald, J.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Wilhein, T.; Wessels, P.; Wieland, M.; Drescher, M.; Vogel, A.; Viefhaus, J.; Meier, G.

    2016-01-28

    Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  12. Magnetic structure determination of Ca3LiOsO6 using neutron and x-ray scattering

    SciTech Connect

    Calder, Stuart A; Lumsden, Mark D; Garlea, Vasile O; Kim, Jong-Woo; Shi, Y. G.; Yamaura, K.; Christianson, Andrew D

    2012-01-01

    We present a neutron and x-ray scattering investigation of Ca3LiOsO6, a material that has been predicted to host magnetic ordering through an extended superexchange pathway involving two anions. Despite the apparent 1D nature and triangular units of magnetic osmium ions the onset of magnetic correlations has been observed at a high temperature of 117 K in bulk measurements. We experimentally determine the magnetically ordered structure and show it to be long range and three dimensional. Our results support the model of extended superexchange interaction.

  13. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGES

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; ...

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  14. Advantages of a synchrotron bending magnet as the sample illuminator for a wide-field X-ray microscope.

    PubMed

    Feser, M; Howells, M R; Kirz, J; Rudati, J; Yun, W

    2012-09-01

    In this paper the choice between bending magnets and insertion devices as sample illuminators for a hard X-ray full-field microscope is investigated. An optimized bending-magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion-device beamlines. The fact that imaging X-ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid-for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending-magnet beamlines that are dedicated to transmission X-ray microscope facilities. It is expected that demand for such facilities will increase as three-dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three-dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.

  15. Rb+ adsorption at the quartz(101)-aqueous interface: comparison of resonant anomalous x-ray reflectivity with ab initio calculations

    DOE PAGES

    Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...

    2015-01-29

    We study adsorption of Rb+ to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb+ distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights of 1.8 ±more » 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb+ between these two conditions. At pH 7, the lowest energy structure shows that Rb+ adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb+ coverage was -0.11 C/m2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less

  16. X-Ray and Rotational Luminosity Correlation and Magnetic Heating of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Shibata, S.; Watanabe, E.; Yatsu, Y.; Enoto, T.; Bamba, A.

    2016-12-01

    Previous works have suggested a correlation between the X-ray luminosity {L}{{x}} and the rotational luminosity {L}{rot} of radio pulsars. However, none of the obtained regression lines is statistically acceptable due to large scatter. We construct a statistical model that has an intrinsic {L}{{x}}-{L}{rot} relation and reproduces the observed {L}{{x}} distribution about it by using a Monte Carlo simulator, which takes into account the effects obscuring the intrinsic relation, i.e., the anisotropy of radiation, additional heating, uncertainty in distance, and the detection limit of the instruments. From the ATNF pulsar catalog we collect 57 “ordinary radio pulsars” with significant detection and 42 with upper limits. The sample does not include high-magnetic-field pulsars (>1013 G), which are analyzed separately. We obtain a statistically acceptable relation {L}{{x}}{(0.5{--}10{keV})={10}31.69({L}{rot}/{L}0)}{c1} with c 1 = 1.03 ± 0.27 and L 0 = 1035.38. The distribution about the obtained {L}{{x}}-{L}{rot} relation is reproduced well by the simulator. Pulsars with abnormally high {L}{{x}} fall into two types: one is the soft gamma-ray pulsars, and the other is pulsars that are thermally bright in comparison with the standard cooling curve. On the other hand, pulsars showing low {L}{{x}} are found to have dim pulsar wind nebulae (PWNs). We argue that there is an unknown mechanism that governs both the magnetospheric emission and the PWNs, and it might involve the production rate of electron-positron pairs. High-field pulsars form a population that is distinct from ordinary pulsars due to their excess luminosities.

  17. Pulsed magnetic field synchrotron X-ray powder diffraction of the Jahn-Teller distortion in TbVO4

    NASA Astrophysics Data System (ADS)

    Vanacken, J.; Frings, P.; Detlefs, C.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G.

    2006-11-01

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beam line at the ESRF. A mobile generator delivered 110 kJ to the load coil, which was sufficient to generate peak fields of 30 T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8 K and 300 K. Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and an on-line image plate detector. We present results on the suppression of the Jahn-Teller structural distortion in TbVO4by to the magnetic field.

  18. Magnetic jets from accretion disks : field structure and X-ray emission

    NASA Astrophysics Data System (ADS)

    Memola, Elisabetta

    2002-06-01

    . We also calculate the X-ray emission in the energy range 0.2--10.1,keV from a microquasar relativistic jet close to its source of 5 solar masses. In order to do it, we apply the jet flow parameters (densities, velocities, temperatures of each volume element along the collimating jet) derived in the literature from the relativistic magnetohydrodynamic equations. We obtain theoretical thermal X-ray spectra of the innermost jet as composition of the spectral contributions of the single volume elements along the jet. Since relativistic effects as Doppler shift and Doppler boosting due to the motion of jets toward us might be important, we investigate how the spectra are affected by them considering different inclinations of the line of sight to the jet axis. Emission lines of highly ionized iron are clearly visible in our spectra, probably also observed in the Galactic microquasars GRS 1915+105 and XTE J1748-288. The Doppler shift of the emission lines is always evident. Due to the chosen geometry of the magnetohydrodynamic jet, the inner X-ray emitting part is not yet collimated. Ergo, depending on the viewing angle, the Doppler boosting does not play a major role in the total spectra. This is the first time that X-ray spectra have been calculated from the numerical solution of a magnetohydrodynamic jet. Astrophysikalische Jets sind stark kollimierte Materieströmungen hoher Geschwindigkeit. Sie stehen im Zusammenhang mit einer Fülle verschiedener astrophysikalischer Objekte wie jungen Sternen, stellaren schwarzen Löchern ('Mikro-Quasare'), Galaxien mit aktivem Kern (AGN) und wahrscheinlich auch mit dem beobachteten intensiven Aufblitzen von Gamma-Strahlung (Gamma Ray Bursts). Insbesondere hat sich gezeigt, dass die Jets der Mikro-Quasare wahrscheinlich als kleinskalige Version der Jets der AGN anzusehen sind. Neben den Beobachtungen haben vor allem auch theoretische Überlegungen gezeigt, dass Magnetfelder bei der Jetentstehung, -beschleunigung und -kollimation eine

  19. Temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals.

    PubMed

    Liao, Po-Yu; Liu, Wen-Chung; Cheng, Chih-Hao; Chiu, Yi-Hua; Kung, Ying-Yu; Chang, Shih-Lin

    2015-07-01

    This paper reports temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals, involving forbidden (002) and weak (222) reflections. Phase determination based on multiple-beam diffraction is employed to estimate phase shifts from (002)-based {(002)(375)(373̅)} four-beam cases and (222)-based { (222)(5̅33̅)} three-beam cases in the vicinity of the Ge K edge for temperatures from 20 K up to 300 K. The forbidden/weak reflections enhance the sensitivity of measuring phases at resonance. At room temperature, the resonance triplet phases reach a maximum of 8° for the four-beam cases and -19° for the three-beam cases. It is found that the peak intensities and triplet phases obtained from the (002) four-beam diffracti