Science.gov

Sample records for resonantly excited internal

  1. Nonlinear response of a clamped-clamped beam with internal resonance under sinusoidal excitation

    NASA Astrophysics Data System (ADS)

    Afaneh, Abdul-Hafiz Ahmed

    1992-01-01

    The nonlinear response characteristics of a clamped-clamped beam is investigated analytically, numerically, and experimentally. The beam is under an initial static axial load and subjected to a harmonic excitation of its support. Two ranges of the axial load are considered. These are below (the beam is initially straight) and above Euler buckling load (the beam is initially buckled). Hamilton's principle is used to derive a fourth order partial differential equation of motion which is descritized and reduced to a set of second order ordinary differential equations by applying Galerkin's method. Under certain values of the static load, the normal modes are nonlinearly coupled and this coupling results in a fourth order internal resonance condition between the first three modes when the beam is initially straight. Second and third order internal resonance conditions occur between the first two modes for the case of initially buckled beam. The multiple scales method showed the significant effects of these internal resonance conditions on the system behavior. In the straight beam case, the third mode which is externally excited transfers energy to the first two modes within a small range of internal detuning. Outside this region, the response is governed by a unimodal response of the third mode. In the neighborhood of 1:1 internal resonance, it is found that within the region of two mode interaction, the solution is either stationary or nonstationary depending on the excitation level and system parameters. Saturation and jump phenomena are found to take place in the case of two mode interaction with 2:1 internal resonance. Numerical simulation and experimental testing confirmed these predictions and revealed the occurrence of multifurcation, snap-through (escaping from one well to the other in an irregular manner), and chaotic motion.

  2. Resonant and non-resonant internal kink modes excited by the energetic electrons on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yu, L. M.; Chen, W.; Jiang, M.; Shi, Z. B.; Ji, X. Q.; Ding, X. T.; Li, Y. G.; Ma, R. R.; Shi, P. W.; Song, S. D.; Yuan, B. S.; Zhou, Y.; Ma, R.; Song, X. M.; Dong, J. Q.; Xu, M.; Liu, Y.; Yan, L. W.; Yang, Q. W.; Xu, Y. H.; Duan, X. R.; HL-2A Team

    2017-03-01

    Strong resonant and non-resonant internal kink modes (abbreviated as RKs and NRKs, respectively), which are also called resonant and non-resonant fishbones, are observed on HL-2A tokamak with high-power ECRH  +  ECCD‑ (or ECRH) and ECRH  +  ECCD+, respectively. (‘Resonant’ derives from the existence of q  =  1 surface (the resonant surface), and ‘non-resonant’ originates from the absence of q  =  1 surface ({{q}\\text{min}}>1 ). ECCD+ and ECCD‑ mean the driving direction of energetic electrons is the same and opposite to plasma current, respectively.) RK has features of periodic strong bursting amplitude and rapid chirping-down frequency, but NRK usually has the saturated amplitude, slow changed or constant frequency and long-lasting time. The NRK excited by energetic electrons is found for the first time. The reversed q-profiles are formed, and q min decreases during plasma current ramp-up. The value of q min is slightly smaller and a bit bigger than unity for RK and NRK conditions, respectively. The internal kink mode (IKM) structures of RKs and NRKs are confirmed by the ECEI system. Although there are different current drive directions of ECCD for excitation of RK and NRK, they all propagate in electron diamagnetic directions in poloidal. The radial mode structures, frequency and growth rate for IKMs are obtained by solving the dispersion relationship. The NRK is stable when q min is larger than a certain value, and with the decreasing q min the frequency drops, but the growth rate almost keeps constant when {{q}\\text{min}}>1 . This result is in agreement with experimental observation. Studying IKMs excited by energetic electrons can provide important experimental experiences for ITER, because the NRKs may be excited by high-power non-inductive drive of ECCD or ECRH in the operation of hybrid scenarios.

  3. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  4. Resonant tidal excitation of internal waves in the Earth's fluid core

    NASA Astrophysics Data System (ADS)

    Tyler, Robert H.; Kuang, Weijia

    2014-07-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  5. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  6. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  7. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.

    1959-08-01

    A cavity excitation circuit is described for rapidly building up and maintaining high-level oscillations in a resonant cavity. The circuit overcomes oscillation buildup slowing effects such as ion locking in the cavity by providing for the selective application of an amplified accelerating drive signal to the main cavity exciting oscillator during oscillation buildup and a direct drive signal to the oscillator thereafter.

  8. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  9. Excitation of internal m = 1 mode during application of resonant magnetic perturbations on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jianchao; Hu, Qiming; Ding, Yonghua; Zhang, Xiaoqing; Yu, Qingquan; Yang, Zhoujun; Chen, Zhipeng; Li, Da; Rao, Bo; Wang, Nengchao; Zhuang, Ge; the J-TEXT Team

    2017-08-01

    The excitation of internal m = 1 mode during application of resonant magnetic perturbations (RMPs) is observed on J-TEXT tokamak. It is found that the sawtooth oscillation disappears after RMPs penetration, and subsequently an internal m = 1 mode with a frequency around 2 kHz appears, were m and n are the poloidal and toroidal mode numbers, respectively. In addition, the internal m = 1 mode often coexists with a rotating m/n = 2/1 tearing mode, and its frequency increases by about 0.5 kHz when the 2/1 tearing mode is locked by RMPs. The bispectrum analysis proves that the m = 1 mode interacts with the rotating 2/1 tearing mode, which implies the mode coupling between these two modes. The frequency of m = 1 mode increases for higher electron density. These results reveal that, the internal m = 1 mode can be excited by RMPs and coexist with both locked and rotating 2/1 mode due to toroidal mode coupling.

  10. Resonant Alfven Wave Excitation

    NASA Astrophysics Data System (ADS)

    Hameiri, Eliezer

    1999-11-01

    Much of the theory of the Alfven wave resonance phenomenon was developed for a tokamak configuration where the magnetic field winds around the torus without entering the boundary. Thus, boundary conditions did not have to be considered.( J. Tataronis and W. Grossmann, Z. Phys. 261), 203 (1973). In most space plasma situations such as the magnetosphere or the Sun, as well as in the scrape-off layer of a divertor tokamak, this is not the case. When boundary conditions are considered, it is generally assumed for simplicity that the boundary is perfectly conducting, which implies that the Alfven wave bounce frequencies are real and the resonance phenomenon can be detected by some singularity in the equations. The nature of the singularity is usually described in terms of a Frobenius series.( A.N. Wright and M.J. Thompson, Phys. Plamsas 1), 691 (1994). In this work we consider resistive boundaries, which imply that the fast wave eigenfrequency is real, but the Alfven frequency is not. Thus, there is no exact resonance and no singularity in the equations. The solution of the problem is carried out asymptotically by finding an exact Laplace integral representation for the solution and then matching various regions. The energy transferred to the Alfven wave appears to be rather small.

  11. Resonant Tunneling and Resonant Excitation Transfer

    NASA Astrophysics Data System (ADS)

    Hagelstein, Peter L.

    2005-12-01

    Issues involved in the tunneling of deuterons in metal deuterides are considered in relation to experimental claims of anomalies in metal deuterides. From earlier studies, screening is thought to be similar to the case of molecular D2. Resonant tunneling has been advocated in the literature as a possible mechanism to achieve tunneling enhancements. We develop a two-level system for a piecewise constant potential model for resonant tunneling that matches the energy levels in the vicinity of a level crossing, arguing that such models are applicable for more general potential models. Resonant tunneling effects and dynamics, including acceleration due to coherence, are accounted for in the model. The model is extended to include relaxation effects, and it is found that one would not expect to find coherent effects associated with tunneling in the case of two deuterons in a metal lattice. We present a simple model for the transfer of excitation from a collection of deuterons to a collection of helium nuclei, a model closely related to resonant tunneling and also to new phonon-coupled SU(N) models under development. The excitation transfer models show coherent enhancements as well as collective effects.

  12. Stability, Bifurcation and Chaos of a Traveling Viscoelastic Beam Tuned to 3:1 Internal Resonance and Subjected to Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Sahoo, Bamadev; Panda, L. N.; Pohit, G.

    Analytical-numerical approach has been adopted to investigate the stability, bifurcation and dynamic behavior (including chaotic behavior) of axially moving viscoelastic beam subjected to parametric excitation resulting from speed variation in the presence of 3:1 internal resonance between the first two modes of vibration. The governing equation of transverse vibration is a nonlinear integro-partial-differential equation with time-dependent coefficients. The direct method of multiple scales is employed to analyze the joint influence of the combination of parametric resonance and internal resonance with the focus on steady state responses. Equilibrium solutions along with their stability and bifurcations are determined by continuation algorithm while direct time integration is used for dynamic behavior for various system parameters. The results are compared with the previous works depicting the principal parametric resonances of the first and second modes. Significant comparative analysis results are reported in the stability and bifurcation of frequency response analysis. The dynamic responses show a range of behavior viz. stable periodic, mixed mode, quasiperiodic and unstable chaotic motion of the system. Numerical results illustrate various typical and interesting nonlinear phenomena of the traveling system which are not found in the existent literature.

  13. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  14. Heave-roll-pitch coupled nonlinear internal resonance response of a spar platform considering wave and vortex exciting loads

    NASA Astrophysics Data System (ADS)

    Li, Wei; Tang, Yougang; Liu, Liqin; Liu, Shuxiao; Cai, Runbo

    2017-04-01

    Many studies have been done on the heave-pitch unstable coupling response for a spar platform by a 2-DOF model. In fact, in addition to the heave and pitch which are in one plane, the nonlinear unstable motion will also occur in roll. From the results of the experiments, the unstable roll motion plays a dominant role in the motion of a spar platform which is much stronger than that of pitch. The objective of this paper is to study 3-DOF coupling response performance of spar platform under wave and vortex-induced force. The nonlinear coupled equations in heave, roll and pitch are established by considering time-varying wet surface and coupling. The first order steady-state response is solved by multi-scales method when the incident wave frequency approaches the heave natural frequency. Numerical integration of the motion equations has been performed to verify the first-order perturbation solution. The results are confirmed by model test. There is a saturation phenomenon associated with heave mode in 3-DOF systems and all extra energy is transferred to roll and pitch. It is observed that sub-harmonic response occurs in roll and pitch when the wave force exceeds a certain value. The energy distribution in roll and pitch is determined by the initial value and damping characteristics of roll and pitch. The energy transfers from heave to pitch and then transfers from pitch to roll. Due to the influence of the low-frequency vortex-excited force, the response of roll is more complicated than that of pitch.

  15. Composite lateral electric field excited piezoelectric resonator.

    PubMed

    Zaitsev, B D; Shikhabudinov, A M; Borodina, I A; Teplykh, A A; Kuznetsova, I E

    2017-01-01

    The novel method of suppression of parasitic oscillations in lateral electric field excited piezoelectric resonator is suggested. Traditionally such resonator represents the piezoelectric plate with two electrodes on one side of the plate. The crystallographic orientation of the plate is selected so that the tangential components of electric field excite bulk acoustic wave with given polarization travelling along the normal to the plate sides. However at that the normal components of field excite the parasitic Lamb waves and bulk waves of other polarization which deteriorate the resonant properties of the resonator. In this work we suggest to separate the source of the HF electric field and resounded piezoelectric plate by air gap. In this case the tangential components of the field in piezoelectric plate do not practically weaken but normal components significantly decrease. This method is realized on the composite resonator having the structure "glass plate with rectangular electrodes - air gap - plate of 128 Y-X lithium niobate." It has been shown that there exist the optimal value of the width gap which ensure the good quality of series and parallel resonances in frequency range 3-4MHz with record values of Q-factor of ∼15,000 in both cases.

  16. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  17. Unstable resonators with excited converging wave

    SciTech Connect

    Hodgson, N. ); Weber, H. )

    1990-04-01

    This paper reports the properties of unstable resonators with an additional mirror inside or outside the resonator investigated, both experimentally and theoretically. The additional mirror excites the converging wave, and by this, output coupling is decreased without affecting beam quality. Experiments were performed with a pulsed Nd:YAG system. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically. Agreement between theory and experiments indicates that this kind of resonator provides high focusability and maximum extraction efficiency simultaneously, even with low-gain media. This enables one to apply unstable resonators to solid-state lasers with low small-signal gain, like alexandrite or CW-pumped Nd:YAG.

  18. The resonance Raman excitation profile of lutein

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    The resonance Raman excitation profiles for the ν 1, ν 2 and ν 3 vibrations of lutein in acetone, toluene and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found in acetone and toluene, but the results in carbon disulfide indicate a possible breakdown in the three-mode model. The major broadening mechanism is homogeneous, with about a 25% contribution from inhomogeneous broadening.

  19. The resonance Raman excitation profile of fucoxanthin

    NASA Astrophysics Data System (ADS)

    Ballard, L. J.; Glasgow, L. A.; Hoskins, L. C.; Krohe, T.

    1989-01-01

    The resonance Raman excitation profiles (RREPs) of the ν 1 and ν 2 vibrations of fucoxanthin in acetone and toluene solvents have been studied. Fucoxanthin, which is a predominant pigment in marine seaweed and phytoplankton, has several structural differences from carotenoids for which excitation profiles have been determined. The RREPs for fucoxanthin are interpreted in terms of a two-mode model and show a B2 value which is approximately 20% lower than for carotenoids like β-carotene and lutein which occur in higher plants. Excellent fits between experimental data and the theoretical model were observed in both solvents.

  20. Rabi resonances in the {lambda} excitation scheme

    SciTech Connect

    Godone, Aldo; Micalizio, Salvatore; Levi, Filippo

    2002-12-01

    We consider the interaction of a three-level system with phase-modulated resonant fields in the {lambda} excitation scheme. We treat theoretically the case of a sinusoidal phase modulation, a phase step perturbation, and a stochastic phase modulation. The appearance of a Rabi resonance both in the spectrum of the optical transmitted signal (electromagnetically induced transparency) and in the spectrum of the microwave emission (coherent population trapping maser) is considered in detail. All the theoretical results are compared with the analogous ones reported for the two-level system and with our experimental observations obtained for the case of rubidium in a buffer gas.

  1. Resonance Raman excitation profiles of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1981-01-01

    The resonance Raman spectrum of lycopene has been examined in acetone solvent and excitation profiles of the three fundamentals ν1, ν2, and ν3 have been determined. The excitation data and the visible spectrum have been analyzed using two-mode and three-mode vibrational models, with the two-mode model involving virtual states of ν1 and ν2 giving the best fit to the data. This mode mixing or Duskinsky effect was not observed for β-carotene. The single-mode and three-mode theories which have been used to explain the corresponding data for β-carotene are shown to be inconsistent with the experimental data of lycopene. Equations for calculating excitation profiles and visible spectra are given.

  2. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  3. Electromagnetic excitation of the Delta(1232) resonance

    SciTech Connect

    V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang

    2006-09-05

    We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.

  4. Creation of skyrmion through resonance excitation

    NASA Astrophysics Data System (ADS)

    Li, Zhi-xiong; Chen, Yi-fu; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Wang, Dao-wei; Guo, Guang-hua

    2017-07-01

    Controllable creation of magnetic skyrmions in nanostructures is a prerequisite for the application of skyrmions in spintronics. Here, we propose a new method for the creation of skyrmions. We show by using micromagnetic simulations that the skyrmions can be nucleated by resonantly exciting one of the skyrmion intrinsic oscillation modes. We first studied the dynamics of skyrmion in a ferromagnetic nanodisk with perpendicular anisotropy. One breathing mode and two non-degenerate gyrotropic modes are identified. Then we applied a circular-polarized microwave field to excite the uniformly magnetized nanodisk. When the frequency of the driving field is equal to the eigenfrequency of the skyrmion gyrotropic mode, stable skyrmions can be created from the initial uniform state. The number of skyrmions can be effectively controlled by appropriately choosing the duration of the driving field or tuning the field amplitude.

  5. Nonlinear Resonance of Mechanically Excited Sessile Drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul

    2013-11-01

    The spectrum of frequencies and mode shapes for an inviscid drop on a planar substrate have recently been documented. For vertical excitation, zonal modes respond to the driving frequency harmonically and non-zonal modes subharmonically, consistent with the prior literature. In this study, we report observations from the regime of nonlinear response. Here, zonals can respond non-harmonically, both sub- and super-harmonic responses are reported. The principal challenge to generating and observing superharmonic resonances of higher zonal modes is a mode-mixing behavior. However, using a simple visual simulation based on the ray-tracing technique, the individual contributions to the mixed resonance behavior can be extracted. In summary, results from experiment and theory show that the zonal modes, which respond harmonically and can mix with non-zonal modes without interfering with one another in the linear regime, tend to respond sub- or superharmonically and compete with non-zonal modes in the nonlinear regime.

  6. Nucleon Resonance Excitation with Virtual Photons

    NASA Astrophysics Data System (ADS)

    Tiator, L.; Kamalov, S.

    2007-04-01

    The unitary isobar model MAID is used for a partial wave analysis of pion photoproduction and electroproduction data on the nucleon. In particular we have taken emphasis on the region of the Δ(1232) resonance and have separated the resonance and background amplitudes with the K-matrix approach. This leads to electromagnetic properties of the dressed Δ resonance, where all multipole amplitudes become purely imaginary and all form factors and helicity amplitudes become purely real at the K-matrix pole of W = MΔ = 1232 MeV. The REM = E2/M1 and RSM = C2/M1 ratios of the quadrupole excitation are compared to recent data analysis of different groups. The REM ratio of MAID2005 agrees very well with the data and has a linear behavior over the whole experimentally explored Q2 region with a small positive slope that predicts a zero crossing around 3.5 GeV2. The recent RSM data for Q2 < 0.2 GeV2 indicate a qualitative change in the shape of the ratio which can be explained by the impact of the Siegert theorem at pseudothreshold (Q2 = -0.086GeV2) in the unphysical region.

  7. Resonant excitation of whistler waves by a helical electron beam

    NASA Astrophysics Data System (ADS)

    An, X.; Van Compernolle, B.; Bortnik, J.; Thorne, R. M.; Chen, L.; Li, W.

    2016-03-01

    Chorus-like whistler mode waves that are known to play a fundamental role in driving radiation belt dynamics are excited on the Large Plasma Device by the injection of a helical electron beam into a cold plasma. The mode structure of the excited whistler wave is identified using a phase correlation technique showing that the waves are excited through a combination of Landau resonance, cyclotron resonance, and anomalous cyclotron resonance. The dominant wave mode excited through cyclotron resonance is quasi-parallel propagating, whereas wave modes excited through Landau resonance and anomalous cyclotron resonance propagate at oblique angles that are close to the resonance cone. An analysis of the linear wave growth rates captures the major observations in the experiment. The results have important implications for the generation process of whistler waves in the Earth's inner magnetosphere.

  8. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  9. Excitation of giant resonances via direct reactions

    SciTech Connect

    Bertrand, F.E.

    1982-01-01

    Experimental measurements of electric giant multipole resonances are discussed. The parameters of the giant quadrupole resonance are now firmly established by an extensive set of measurements. The GQR is providing a significant influence in other areas of nuclear physics. The monopole resonance has now been established and its observation has provided the first direct measure of the nuclear compressibility. A strong case for the existence of a giant octupole resonance is now being made through a variety of hadron reactions. However, the supply of giant multipole resonances has not been exhausted. The newer techniques such as higher energy proton scattering, charge exchange reactions, heavy-ion scattering and pion reactions offer considerable hope for identifying new resonances during the next few years.

  10. Excitation of dark multipolar plasmonic resonances at terahertz frequencies

    PubMed Central

    Chen, Lin; Wei, YuMing; Zang, XiaoFei; Zhu, YiMing; Zhuang, SongLin

    2016-01-01

    We experimentally observe the excitation of dark multipolar spoof localized surface plasmon resonances in a hybrid structure consisting of a corrugated metallic disk coupled with a C-shaped dipole resonator. The uncoupled corrugated metallic disk only supports a dipolar resonance in the transmission spectrum due to perfect symmetry of the structure. However, the dark multipolar spoof localized surface plasmon resonances emerge when coupled with a bright C-shaped resonator which is placed in the vicinity of the corrugated metallic disk. These excited multipolar resonances show minimum influence on the coupling distance between the C-shaped resonator and corrugated metallic disk. The resonance frequencies of the radiative modes are controlled by varying the angle of the C-shaped resonator and the inner disk radius, both of which play dominant roles in the excitation of the spoof localized surface plasmons. Observation of such a transition from the dark to radiative nature of multipolar spoof localized plasmon resonances would find potential applications in terahertz based resonant plasmonic and metamaterial devices. PMID:26903382

  11. Excitation of dark multipolar plasmonic resonances at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Wei, Yuming; Zang, Xiaofei; Zhu, Yiming; Zhuang, Songlin

    2016-02-01

    We experimentally observe the excitation of dark multipolar spoof localized surface plasmon resonances in a hybrid structure consisting of a corrugated metallic disk coupled with a C-shaped dipole resonator. The uncoupled corrugated metallic disk only supports a dipolar resonance in the transmission spectrum due to perfect symmetry of the structure. However, the dark multipolar spoof localized surface plasmon resonances emerge when coupled with a bright C-shaped resonator which is placed in the vicinity of the corrugated metallic disk. These excited multipolar resonances show minimum influence on the coupling distance between the C-shaped resonator and corrugated metallic disk. The resonance frequencies of the radiative modes are controlled by varying the angle of the C-shaped resonator and the inner disk radius, both of which play dominant roles in the excitation of the spoof localized surface plasmons. Observation of such a transition from the dark to radiative nature of multipolar spoof localized plasmon resonances would find potential applications in terahertz based resonant plasmonic and metamaterial devices.

  12. Transform analysis of the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1992-10-01

    The resonance Raman excitation profiles (RREPs) of the ν 1, ν 2 and ν 3 vibrations of lycopene in acetone, ethyl alcohol, toluene and carbon disulphide solvents have been analyzed using the transform method for calculating resonance Raman excitation profiles. The tests show excellent agreement between the calculated and observed profiles for the ν 2 and ν 3 RREPs, but greater difference between experiment and theory occurs for the ν 1 RREP, especially in carbon disulphide solvent.

  13. Interchannel interactions following shape resonant excitation of core electrons

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Kelly, L. A.; Duffy, L. M.; Space, B.; Roy, P.; Southworth, S. H.; White, M. G.

    1989-01-01

    Interchannel coupling of a core electron shape resonance with a valence-hole ionic continuum is studied with vibrational resolution. A core-hole shape resonance is created via N 2 (1s→continuum e -) photoabsorption, and this complex decays to form the N 2+ (B 2Σ u+) state via continuum interchannel coupling. The vibrational branching ratios for the N 2+ (B 2Σ u+) state are then determined from N 2+ (B 2Σ u+→ 2Σ g+) fluorescence. The molecular motion provides excellent sensitivity to the resonant excitation, as underscored by two observations. First, the vibrational branching ratios for resonant and nonresonant excitation are qualitatively different. Secondly, the rotational motion of the ion is affected by the resonant excitation. These measurements demonstrate that continuum interchannel coupling can be probed precisely via dispersed fluorescence.

  14. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam

    SciTech Connect

    Lan, Chunbo; Qin, Weiyang Deng, Wangzheng

    2015-08-31

    We investigated the energy harvesting of a vertical beam with tip mass under vertical excitations. We applied dynamic unstability and internal resonance to improve the efficiency of harvesting. The experiments of harmonic excitation were carried out. Results show that for the beam there exist internal resonances in the dynamically unstable and the buckling bistable cases. The dynamic unstability is a determinant for strong internal resonance or mode coupling, which can be used to create a large output from piezoelectric patches. Then, the experiments of stochastic excitation were carried out. Results prove that the internal resonance or mode coupling can transfer the excitation energy to the low order modes, mainly the first and the second one. This can bring about a large output voltage. For a stochastic excitation, it is proved that there is an optimal weight of tip mass for realizing internal resonance and producing large outputs.

  15. Modeling the acoustic excitation of a resonator

    NASA Astrophysics Data System (ADS)

    Mandre, Shreyas; Mahadevan, Lakshminarayanan

    2007-11-01

    The sounding of a beverage bottle when blown on is a familiar but very little understood phenomenon. A very similar mechanism is used by musical wind instruments, like organ pipes and flutes, for sound production. This phenomenon falls under the general umbrella of flow induced oscillations and is representative of a more generic mechanism. The modeling of this phenomenon essentially involves two components. The first is the resonator, which bears the oscillations and this component is very well understood. The resonator, however, needs an external energy input to sustain the oscillations, which is provided by the jet of air blown. The dynamics of the jet and its interaction with the resonator is the primary focus of this talk. In particular, we provide a linearized model based on first principles to explain the feedback of energy from the jet to the resonator and compare the predictions with experimental results.

  16. Resonant vibrational excitation of CO by low-energy electrons

    SciTech Connect

    Poparic, G. B.; Belic, D. S.; Vicic, M. D.

    2006-06-15

    Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.

  17. Double resonance spectroscopy of multiple-photon excited molecules

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.; Melzer, J. E.

    1977-01-01

    Multiple infrared photon absorption is a quite general process which molecules can undergo when placed in a high flux of infrared energy, such as the focussed beam of a CO2 laser. In order to understand how this process works, one must be able to follow the evolution of the molecules through their internal states, populated by photon absorption. Double-resonance spectroscopy is the method of a choice for getting at this information. A system pumped by CO2 laser radiation can be examined with a tunable laser probe beam, such as that from a lead-salt diode laser. From such an experiment, one can directly observe Rabi modulation of the absorption lines, determine elementary state-to-state relaxation pathways, and locate higher excited vibrational states. Systems currently under investigation include SF6 and vinyl chloride. In suitable cases, the probe beam can be a tunable visible or UV source, such as a dye laser. Fluorescence spectroscopy can then be used to monitor the transient absorptions produced by multiple-photon excitation. Among the systems which can be examined are biacetyl and glyoxal.

  18. Spectroscopic Search for Resonant Excitation of DNA by Microwaves.

    DTIC Science & Technology

    1986-07-16

    speed as a function of relative humidity in Na- DNA films (a) p-,:pendicular to the helix ax,. and (b) along the he: .- axis. Curve 1 is calcu ited for...double helix . Coupled DNA -hydration shell excitations may account for resonant microwave absorption. Theories of the most important vibrational modes...of the double 04, helix must include excitations of the coupled DNA -water-ion system as well as explicit phosphate-phosphate interactions mediated by

  19. Doubly Excited Resonance States of Helium Atom: Complex Entropies

    NASA Astrophysics Data System (ADS)

    Kuroś, Arkadiusz; Kościk, Przemysław; Saha, Jayanta K.

    2016-12-01

    We provide a diagonal form of a reduced density matrix of S-symmetry resonance states of two electron systems determined under the framework of the complex scaling method. We have employed the variational Hylleraas type wavefunction to estimate the complex entropies in doubly excited resonance states of helium atom. Our results are in good agreement with the corresponding ones determined under the framework of the stabilization method (Lin and Ho in Few-Body Syst 56:157, 2015).

  20. Excitation of Resonant Helioseimic Modes by Solar Flares

    NASA Astrophysics Data System (ADS)

    Leibacher, John William; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2015-04-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by: applying the same analysis to other locations on the Sun at the time of the Halloween flare, analyzing other events also showing a signature of p-mode excitation, looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  1. Excitation of Resonant Helioseimic Modes by Solar Flares.

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares,, Maria Cristina

    2015-08-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by:-applying the same analysis to other locations on the Sun at the time of the Halloween flare-analyzing other events also showing a signature of p-mode excitation-looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  2. Resonating cantilever mass sensor with mechanical on-plane excitation

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Abadal, Gabriel; Jordà, Xavier; Borrise, Xavier; Davis, Zachary; Barniol, Nuria

    2003-04-01

    The aim of this paper is to report the experimental setup designed, developed and tested in order to achieve the first vibrating mode of a lateral cantilever with mechanical excitation. The on-plane oscillating cantilever is the basis of a proposed mass sensor with an expected resolution in the atto-gram scale. In a first system design, the cantilever is driven electrostatically by an electrode, which is placed parallel to the cantilever. The cantilever is driven to its first resonant mode applying an AC voltage between the cantilever and a driver. Also, a DC voltage is applied to increase the system response. The signal read-out of the transducer is the capacitive current of the cantilever-driver system. The mass sensor proposed, based on this cantilever-driver structure (CDS), is integrated with a CMOS circuitry in order to minimize the parasitic capacitances, that in this case take special relevance because of the low level output current coming from the transducer. Moreover, the electrostatic excitation introduces a parasitic current that overlaps the current due to the resonance. The mechanical excitation is an alternative excitation method which aim is to eliminate the excitation current. Here we describe the experimental facilities developed to achieve mechanical excitation and report preliminary results obtained by this excitation technique. The results are complemented with dynamic simulations of an equivalent system model that are in accordance with the experimental values.

  3. Three-photon resonant atomic excitation in spatially incoherent laser beams

    SciTech Connect

    Peet, Victor; Shchemeljov, Sergei

    2003-10-01

    Two-color excitation by spatially coherent and incoherent laser beams has been used to study three-photon-resonant excitation and subsequent ionization of xenon in conditions, when internally generated sum-frequency field plays an important role in excitation of atomic resonances through interfering one-photon excitation pathway. We show that the incoherence in one of the pumping fields reduces the efficiency of generated sum-frequency field, and thus suppresses the interference between the three- and the one-photon excitation channels. The degree of suppression is controlled by varying the crossing angle between coherent and incoherent laser beams. We show that ionization profiles can be analyzed on the basis of the well-studied interference of one- and three-photon transition amplitudes, but with pumping field decomposed into multiple small-scale uncorrelated domains where coherent process of four-wave mixing occurs. The gain length for a coherent process in these domains depends on the coherence degree and excitation geometry. It gives a possibility of controlling the contribution of coherent processes to the excitation of multiphoton resonances.

  4. Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction

    NASA Astrophysics Data System (ADS)

    Shahriar, M. S.; Hemmer, P. R.

    1990-10-01

    We have used a laser-induced resonance Raman transition between the ground-state hyperfine sublevels in a sodium atomic beam to excite individual dressed states of the microwave-spin hyperfine transition. In addition, we have used the microwave interaction to excite the Raman trapped state. Extension of this technique to mm waves or to the far infrared may lead to applications such as mm-wave-beam steering and holographic image conversion.

  5. Resonance Raman and photoluminescence excitation profiles and excited-state dynamics in CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Baker, Joshua A.; Kelley, David F.; Kelley, Anne Myers

    2013-07-01

    Resonance Raman excitation profiles for the longitudinal optical (LO) phonon fundamental and its first overtone have been measured for organic ligand capped, wurtzite form CdSe nanocrystals of ˜3.2 nm diameter dissolved in chloroform. The absolute differential Raman cross-section for the fundamental is much larger when excited at 532 or 543 nm, on the high-frequency side of the lowest-wavelength absorption maximum, than for excitation in the 458-476 nm range although the absorbance is higher at the shorter wavelengths. That is, the quantum yield for resonance Raman scattering is reduced for higher-energy excitation. In contrast, the photoluminescence quantum yield is relatively constant with wavelength. The optical absorption spectrum and the resonance Raman excitation profiles and depolarization dispersion curves are reproduced with a model for the energies, oscillator strengths, electron-phonon couplings, and dephasing rates of the multiple low-lying electronic excitations. The Huang-Rhys factor for LO phonon in the lowest excitonic transition is found to lie in the range S = 0.04-0.14. The strong, broad absorption feature about 0.5 eV above the lowest excitonic peak, typically labeled as the 1P3/21Pe transition, is shown to consist of at least two significant components that vary greatly in the magnitude of their electron-phonon coupling.

  6. Internal Pair Decay of Giant Resonances in Hot LEAD-200.

    NASA Astrophysics Data System (ADS)

    Adami, Susan

    Electron-positron pairs emitted during the de -excitation of the hot ^{200}Pb were detected with the Stony Brook pair detector, a phoswich array, in order to observe the internal pair decay of giant resonances (GR) built on excited states. These collective excitations are particularly well defined in heavy nuclei, and the full GR sum rule had been found in the ground state excitations of both the giant dipole resonance and the isoscalar monopole resonance. The excited compound nucleus was formed by bombarding a ^{181} Ta target with a 95 MeV pulsed ^ {19}F beam. While the gamma-decay from giant resonances of multipolarities L >=q 1 results in cross-sections 3-4 orders of magnitudes bigger than the internal pair decay, the decay of giant monopole resonances via a collective E0 transition can only be observed in the e^+ - e^ --decay channel. Another advantage of investigating electro-magnetic transitions via the pair decay channel is the fact that the correlation angle (and also the energy sharing) between the electron and the positron provides insight in the multipolarity of the observed transition. Especially the angular correlation distribution of an L = 0 transition is easily distinguished from the L >=q 1 cases. In the data analysis, the pair spectra were compared to calculations using the statistical model code CASCADE, which was modified to include the internal pair decay of giant resonances from the compound nucleus as well as from the fission fragments. In addition, gamma measurements from the same reaction at a comparable excitation energy (93 MeV) were available. The extracted pair spectra confirmed the CASCADE prediction that the giant dipole resonance dominates the pair decay from a hot, heavy nucleus. Superior statistics would be necessary in order to extract weaker modes like the monopole or quadrupole resonances and due to the lack in statistics this work can only offer a rough estimate for the width and position of the isoscalar giant monopole

  7. Resonant mode characterisation of a cylindrical Helmholtz cavity excited by a shear layer.

    PubMed

    Bennett, Gareth J; Stephens, David B; Rodriguez Verdugo, Francisco

    2017-01-01

    This paper investigates the interaction between the shear-layer over a circular cavity with a relatively small opening and the flow-excited acoustic response of the volume within to shear-layer instability modes. Within the fluid-resonant category of cavity oscillation, most research has been conducted on rectangular geometries: generally restricted to longitudinal standing waves, or when cylindrical: to Helmholtz resonance. In practical situations, however, where the cavity is subject to a range of flow speeds, many different resonant mode types may be excited. The current work presents a cylindrical cavity design where Helmholtz oscillation, longitudinal resonance, and azimuthal acoustic modes may all be excited upon varying the flow speed. Experiments performed show how lock-on between each of the three fluid-resonances and shear-layer instability modes can be generated. A circumferential array of microphones flush-mounted with the internal surface of the cavity wall was used to decompose the acoustic pressure field into acoustic modes and has verified the excitation of higher order azimuthal modes by the shear-layer. For azimuthal modes especially, the location of the cavity opening affects the pressure response. A numerical solution is validated and provides additional insight and will be applied to more complex aeronautical and automotive geometries in the future.

  8. Parametric Resonance of Magnetization Excited by Electric Field.

    PubMed

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan A; Barsukov, Igor; Tiberkevich, Vasil; Xiao, John Q; Slavin, Andrei N; Krivorotov, Ilya N

    2017-01-11

    Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus, our results pave the way toward energy-efficient nanomagnonic devices.

  9. Coherence resonances in an autonomous thermochemical model with internal fluctuations

    NASA Astrophysics Data System (ADS)

    Lemarchand, A.; Nowakowski, B.

    2005-08-01

    Direct simulations of the master equation associated with a two-variable homogeneous thermochemical model are performed in order to analyze the effects of internal fluctuations on excitability and periodic oscillations. In both regimes, coherence resonances are observed in the absence of external noise and external forcing. These results suggest that the control of the combustion of lean premixed gas requires a stochastic description at a mesoscopic level.

  10. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling

    NASA Astrophysics Data System (ADS)

    Uskov, Alexander V.; Khurgin, Jacob B.; Protsenko, Igor E.; Smetanin, Igor V.; Bouhelier, Alexandre

    2016-07-01

    A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits.A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits. Electronic supplementary information (ESI) available: Plasmonic mode in nanowires, the probability of stimulated emission in tunnelling through the Fermi's Golden Rule and electron wave functions in tunnelling structures with nonresonant and resonant tunnelling. See DOI: 10.1039/c6nr01931e

  11. Coherence-Resonance Chimeras in a Network of Excitable Elements

    NASA Astrophysics Data System (ADS)

    Semenova, Nadezhda; Zakharova, Anna; Anishchenko, Vadim; Schöll, Eckehard

    2016-07-01

    We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., the coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks.

  12. Coherence-Resonance Chimeras in a Network of Excitable Elements.

    PubMed

    Semenova, Nadezhda; Zakharova, Anna; Anishchenko, Vadim; Schöll, Eckehard

    2016-07-01

    We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., the coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks.

  13. Resonant excitation of coupled skyrmions by spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Dai, Y. Y.; Wang, H.; Yang, T.; Zhang, Z. D.

    2016-12-01

    Resonant excitations of coupled skyrmions in Co/Ru/Co nanodisks activated by spin-transfer torque (STT) have been studied by micromagnetic simulations. It is found that STT is an effective method to manipulate skyrmion dynamics. Unlike the dynamics driven by a microwave field, two skyrmions with opposite chiralities move synchronously in the same direction when they are driven by STT, which makes it easier to observe the dynamics of coupled skyrmions in experiments. Resonant excitations of coupled skyrmions can be controlled by changing the frequency or amplitude ratio of a dual-frequency alternating current (AC). In addition, the magnetostatic interaction between the two skyrmions plays an important role in the dynamics of coupled skyrmions.

  14. International Society for Magnetic Resonance in Medicine

    MedlinePlus

    ... Join the ISMRM Journals History & Mission Central Office Society Award Winners Strategic Plan Policies Corporate Members Contact ... E-Library Virtual Meetings Connect With Us International Society for Magnetic Resonance in Medicine 2300 Clayton Road, ...

  15. Are Resonant Helioseimic Modes Excited by Solar Flares?

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2016-05-01

    We critically examine reports that flares have been observed to excite resonant p-modes by:-looking in detail at the results of the ring-diagram analysis in terms of duty cycle and center-to-limb variation of ring-diagram power.-applying the same analysis to the Halloween flare using GONG and MDI data.-assessing the stability in terms of oscillation power of both instruments.

  16. Artificial excitation of ELF waves with frequency of Schumann resonance

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  17. An electromagnetically excited silicon nitride beam resonant accelerometer.

    PubMed

    Chen, Deyong; Wu, Zhengwei; Liu, Lei; Shi, Xiaojing; Wang, Junbo

    2009-01-01

    A resonant microbeam accelerometer of a novel highly symmetric structure based on MEMS bulk-silicon technology is proposed and some numerical modeling results for this scheme are presented. The accelerometer consists of two proof masses, four supporting hinges, two anchors, and a vibrating triple beam, which is clamped at both ends to the two proof masses. LPCVD silicon rich nitride is chosen as the resonant triple beam material, and parameter optimization of the triple-beam structure has been performed. The triple beam is excited and sensed electromagnetically by film electrodes located on the upper surface of the beam. Both simulation and experimental results show that the novel structure increases the scale factor of the resonant accelerometer, and ameliorates other performance issues such as cross axis sensitivity of insensitive input acceleration, etc.

  18. Evolution of the giant dipole resonance properties with excitation energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.

    2006-10-01

    The studies of the evolution of the hot Giant Dipole Resonance (GDR) properties as a function of excitation energy are reviewed. The discussion will mainly focus on the A ˜ 100-120 mass region where a large amount of data concerning the width and the strength evolution with excitation energy are available. Models proposed to interpret the main features and trends of the experimental results will be presented and compared to the available data in order to extract a coherent scenario on the limits of the development of the collective motion in nuclei at high excitation energy. Experimental results on the GDR built in hot nuclei in the mass region A ˜ 60-70 will be also shown, allowing to investigate the mass dependence of the main GDR features. The comparison between limiting excitation energies for the collective motion and critical excitation energies extracted from caloric curve studies will suggest a possible link between the disappearance of collective motion and the liquid-gas phase transition.

  19. Resonant parametric excitations driven by lower-hybrid fields

    NASA Astrophysics Data System (ADS)

    Villalon, E.

    1980-11-01

    Three-wave parametric excitation in inhomogeneous plasmas is examined in a two-dimensional geometry relevant to supplementary rf heating of tokamaks. The stabilization of resonant parametric excitation due to a linear mismatch in wavenumbers and to the Landau-damping rates of the decay waves is analyzed, assuming that the magnitude of the pump field is constant in time and in the spatial region where the resonant interaction takes place. Both types of temporally growing modes and spatially amplified instabilities are studied, using a WKB analysis. It is shown that by increasing the strength of the mismatch K prime or the width of the pump L, the growth rate of the fastest growing normal mode will decrease. The amount of spatial amplification is also reduced by the mismatch in wavenumbers and by the damping rates of the excited waves. Because of the finite spatial extent of the pump electric field, the amplification length is smaller than or equal to L, depending on the strength of the mismatch and damping rates.

  20. Resonant excitation of intense acoustic waves in crystals

    SciTech Connect

    Alshits, V. I. Bessonov, D. A.; Lyubimov, V. N.

    2013-06-15

    The resonant excitation of an intense elastic wave through nonspecular reflection of a special pump wave in a crystal is described. The choice of the plane and angle of incidence is dictated by the requirement that the excited reflected wave be close to the bulk eigenmode with its energy flow along a free boundary. The resonance parameters have been found for a medium with an arbitrary anisotropy. General relations are concretized for monoclinic, rhombic, and hexagonal systems. A criterion is formulated for an optimal selection of crystals in which the resonant reflection is close to the conversion one, when almost all of the energy from the incident beam of the pump wave falls into the near-surface narrow high-intensity reflected beam. Estimates and illustrations are given for such crystals as an example. The intensity of the reflected beam increases with its narrowing, but its diffraction divergence also increases with this narrowing. Nevertheless, the intensity of the beam can be increased by a factor of 5-10 at sufficiently high frequencies while keeping its divergence at an acceptable level. Amplification by two orders of magnitude can be achieved by compressing the beam in two dimensions through its double reflection.

  1. Improvement of electron capture efficiency by resonant excitation.

    PubMed

    Mormann, Michael; Peter-Katalinić, Jasna

    2003-01-01

    A novel pulse sequence improving the efficiency for electron capture dissociation (ECD) of an unmodified Fourier transform ion cyclotron resonance (FTICR) mass spectrometer by more than an order of magnitude is presented. Commercially available FTICR instruments are usually equipped with a filament-based electron source producing an electron beam that has a rather small cross section. An ideal overlap between the rotating ion cloud and the electron beam appears to be a prerequisite for a high ECD efficiency. A reduced interception of the ion cloud and the electron beam is probably due to the contribution of the magnetron motion to the trajectory of the ions, resulting in a precession about the z-axis of the instrument. By increasing the kinetic energy and therefore increasing the cyclotron radii of the precursor ions by resonant excitation, the overlap of the rotating ion cloud with the electron beam is improved. By use of this protocol the efficiency of electron capture is substantially increased and consequently the acquisition time of ECD spectra is reduced significantly. The capability of resonant excitation of the precursor ions during the irradiation with electrons is demonstrated for standard peptides. This approach is particularly valuable for analysis and characterization of O-glycosylated peptides. In addition to amino acid sequence information, the attachment site of the labile glycan moiety is determined, and also radical-site-induced fragmentations of the glycosidic bonds are observed.

  2. EXCITATION OF STRUCTURAL RESONANCE DUE TO A BEARING FAILURE

    SciTech Connect

    Leishear, R; David Stefanko, D

    2007-04-30

    Vibration due to a bearing failure in a pump created significant vibrations in a fifteen foot by fifteen foot by eight feet tall mounting platform due to excitation of resonant frequencies. In this particular application, an 18,000 pound pump was mounted to a structural steel platform. When bearing damage commenced, the platform vibrated with sufficient magnitude that conversations could not be heard within forty feet of the pump. Vibration analysis determined that the frequency of the bearing was coincident to one of the natural frequencies of the pump, which was, in turn, coincident to one of the natural frequencies of the mounting platform. This coincidence of frequencies defines resonance. Resonance creates excessive vibrations when the natural frequency of a structure is coincident to an excitation frequency. In this well documented case, the excitation frequency was related to ball bearing failures. The pump is a forty foot long vertical pump used to mix nuclear waste in 1,300,000 gallon tanks. A 300 horsepower drive motor is mounted to a structural steel platform on top of the tank. The pump hangs down into the tank from above to mix the waste and is inaccessible after installation. Initial awareness of the problem was due to increased noise from the pump. Initial vibration analysis indicated that the vibration levels of the bearing were within the expected range for this type of bearing, and the resonant condition was not obvious. Further analysis consisted of disassembly of the motor to inspect the bearings and extensive vibration monitoring. Vibration data for the bearings was obtained from the manufacturer and compared to measured vibration plots for the pump and mounting platform. Vibration data measured along the length of the pump was available from full scale testing, and vibrations were also measured at the installed pump. One of the axial frequencies of the pump, the platform frequency in the vertical direction, and the ball spin frequency for the

  3. Excitation and desorption of physisorbed H2 via theΣ2u electron scattering resonance

    NASA Astrophysics Data System (ADS)

    Andersson, Stig; Svensson, Krister

    2017-09-01

    Our high-resolution electron energy-loss measurements concern physisorbed H2 and comprise differential cross sections for the excitation of the internal H2 modes and the H2-surface bonding mode and their combinations and extend over the electron impact energy range of the classical low-energy H2 Σ2u resonance. Comparison with corresponding data for the excitation of the internal modes of gas phase H2 reveals that strong elastic electron reflectivity from the Cu(100) substrate profoundly distorts the inelastic scattering pattern for physisorbed H2. We find that this influence can be corrected for and that the resulting peak cross sections agree with the H2 gas phase data, in accordance with theoretical predictions for the excitation of the internal H2 vibration. We have used corrected cross sections for the rotational mode spectra of physisorbed H2, HD, and D2 in a model concerning electron induced desorption via rotation-translation energy conversion. These spectra include transitions from the ground state as well as excited levels of the physisorption potential well. H2 and HD can desorb from all levels while D2, for energetic reason, can only desorb from the excited levels. This model gives a satisfactory account of the observed desorption cross sections and predicts characteristic velocity distributions of the desorbing molecules. The cross section data for H2 and HD reveals that direct bound-free transitions also contribute to the electron induced desorption.

  4. Excitation and desorption of physisorbed H2 via theΣu2 electron scattering resonance.

    PubMed

    Andersson, Stig; Svensson, Krister

    2017-09-21

    Our high-resolution electron energy-loss measurements concern physisorbed H2 and comprise differential cross sections for the excitation of the internal H2 modes and the H2-surface bonding mode and their combinations and extend over the electron impact energy range of the classical low-energy H2 Σu2 resonance. Comparison with corresponding data for the excitation of the internal modes of gas phase H2 reveals that strong elastic electron reflectivity from the Cu(100) substrate profoundly distorts the inelastic scattering pattern for physisorbed H2. We find that this influence can be corrected for and that the resulting peak cross sections agree with the H2 gas phase data, in accordance with theoretical predictions for the excitation of the internal H2 vibration. We have used corrected cross sections for the rotational mode spectra of physisorbed H2, HD, and D2 in a model concerning electron induced desorption via rotation-translation energy conversion. These spectra include transitions from the ground state as well as excited levels of the physisorption potential well. H2 and HD can desorb from all levels while D2, for energetic reason, can only desorb from the excited levels. This model gives a satisfactory account of the observed desorption cross sections and predicts characteristic velocity distributions of the desorbing molecules. The cross section data for H2 and HD reveals that direct bound-free transitions also contribute to the electron induced desorption.

  5. Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel

    NASA Astrophysics Data System (ADS)

    Farid, M.; Gendelman, O. V.

    2016-09-01

    The paper treats dynamical responses in an equivalent mechanical model for oscillations of a liquid in partially filled vessel under horizontal harmonic ground excitation. Such excitation may lead to hydraulic impacts. The liquid sloshing mass is modeled by equivalent pendulum, which can impact the vessel walls. Parameters of the equivalent pendulum for well-explored case of cylindrical vessels are used. The hydraulic impacts are modeled by high-power potential function. Conditions for internal resonances are formulated. A non-resonant behavior and dynamic response related to 3:1 internal resonance are explored. When the excitation amplitude exceeds certain critical value, the system exhibits multiple steady state solutions. Quasi-periodic solutions appear in relatively narrow range of parameters. Numerical continuation links between resonant regimes found asymptotically for small excitation amplitude, and high-amplitude responses with intensive impacts.

  6. Excitation-energy dependence of the giant dipole resonance width

    NASA Astrophysics Data System (ADS)

    Enders, G.; Berg, F. D.; Hagel, K.; Kühn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O.; Charity, R. J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K. D.; Holzmann, R.; Mayer, R. S.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.

    1992-07-01

    High-energy γ rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of 136Xe+48Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width Γ is studied as a function of the fragment excitation energy E*. A saturation at about Γ=10 MeV is observed for E*/A>=1.0 MeV/nucleon.

  7. Rotational distributions of molecular photoions following resonant excitation

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Chan, Jeffrey C. K.; White, M. G.

    1986-11-01

    We demonstrate that the photoelectron energy mediates the rotational energy distribution of N+2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N+2 (B 2Σ+u) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron-ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed.

  8. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    DOE PAGES

    Mazza, T.; Karamatskou, A.; Ilchen, M.; ...

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less

  9. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    SciTech Connect

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O’Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  10. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  11. Multiple quantum magic-angle spinning using rotary resonance excitation

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Florian, Pierre; Massiot, Dominique; Grandinetti, Philip J.

    2001-03-01

    We have discovered rotary resonances between rf field strength, ω1, and magic-angle spinning (MAS) frequency, ωR, which dramatically enhance the sensitivity of triple quantum preparation and mixing in the multiple-quantum MAS experiment, particularly for quadrupolar nuclei having low gyromagnetic ratios or experiencing strong quadrupole couplings. Triple quantum excitation efficiency minima occur when 2ω1=nωR, where n is an integer, with significant maxima occurring between these minima. For triple quantum mixing we observe maxima when ω1=nωR. In both preparation and mixing the pulse lengths required to reach maxima exceed one rotor period. We have combined these rotary resonance conditions into a new experiment called FASTER MQ-MAS, and have experimentally demonstrated a factor of 3 enhancement in sensitivity in comparison to conventional MQ-MAS.

  12. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    NASA Astrophysics Data System (ADS)

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  13. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation.

    PubMed

    Mazza, T; Karamatskou, A; Ilchen, M; Bakhtiarzadeh, S; Rafipoor, A J; O'Keeffe, P; Kelly, T J; Walsh, N; Costello, J T; Meyer, M; Santra, R

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  14. Vibration-assisted resonance in photosynthetic excitation-energy transfer

    NASA Astrophysics Data System (ADS)

    Irish, E. K.; Gómez-Bombarelli, R.; Lovett, B. W.

    2014-07-01

    Understanding how the effectiveness of natural photosynthetic energy-harvesting systems arises from the interplay between quantum coherence and environmental noise represents a significant challenge for quantum theory. Recently it has begun to be appreciated that discrete molecular vibrational modes may play an important role in the dynamics of such systems. Here we present a microscopic mechanism by which intramolecular vibrations may be able to contribute to the efficiency and directionality of energy transfer. Excited vibrational states create resonant pathways through the system, supporting fast and efficient energy transport. Vibrational damping together with the natural downhill arrangement of molecular energy levels gives intrinsic directionality to the energy flow. Analytical and numerical results demonstrate a significant enhancement of the efficiency and directionality of energy transport that can be directly related to the existence of resonances between vibrational and excitonic levels.

  15. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    SciTech Connect

    Banihashemi, Mehdi; Ahmadi, Vahid; Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.

  16. Parametric resonance of flexible footbridges under crowd-induced lateral excitation

    NASA Astrophysics Data System (ADS)

    Piccardo, Giuseppe; Tubino, Federica

    2008-03-01

    The excessive lateral sway motion caused by crowds walking across footbridges has attracted great public attention in the past few years. Three possible mechanisms responsible for such lateral vibrations have been investigated in the literature: direct resonance, dynamic interaction, and internal resonance. In this paper, starting from a critical review of the mechanisms proposed in the literature, a parametric excitation mechanism is analyzed, based on a forcing model whose amplitude is a function of deck oscillations. A stability criterion is identified, depending on the ratio between the structural and excitation frequencies, on the ratio of the structural and pedestrian masses, and on the structural damping. The proposed mechanism can be achieved for very flexible footbridges, with a lateral natural frequency around 0.5 Hz, corresponding to a half of the lateral walking frequency. This situation can occur in modern structures, such as in the case of the London Millennium Footbridge.

  17. Resonantly excited cascade x-ray emission from La

    SciTech Connect

    Moewes, A.; Wilks, R.G.; Kochur, A.G.; Kurmaev, E.Z.

    2005-08-15

    We are monitoring the intensity of the La 5p-4d emission for La metal while scanning across the deeper lying 3d-4f photoexcitation resonances of the same atom. A strong resonant enhancement in the integral intensity of the La 5p-4d fluorescence emission is observed, which is due to cascading decay of the resonantly excited 3d{sup 9}4f{sup +1} configuration. The corresponding emission spectrum features a complex satellite structure reflecting the multitude of transitions taking place in a variety of multi-vacancy configurations created by the cascade. We calculate the probability of 5p{yields}4d emission produced by the cascading decay and then take into account self-absorption of the emitted photons. This model provides good agreement with the experimental results. The number of 4d vacancies increases immensely due to electronic cascades. We also observe an enhanced integral intensity in the 5p-4d fluorescence compared to our calculations, which we attribute to intra-atomic resonance processes.

  18. Magnetic resonance force microscopy using ferromagnetic resonance of a magnetic tip excited by microwave transmission via a coaxial resonator.

    PubMed

    Kinoshita, Yukinori; Li, Yanjun; Yoshimura, Satoru; Saito, Hitoshi; Sugawara, Yasuhiro

    2017-10-04

    The present work proposes magnetic resonance force microscopy (MRFM) based on ferromagnetic resonance (FMR) modulation of a magnetic tip using microwave transmission via a coaxial resonator instead of using conventional microwave irradiation by an external antenna. In this MRFM, the coaxial resonator is electrically connected to the magnetic cantilever tip, which enables simple implementation of FMR excitation of a magnetic tip in conventional magnetic force microscopy. The FMR frequency of the tip can be easily extracted from the reflection spectrum of a transmission line connected to the magnetic tip. The excitation of tip FMR is confirmed from the microwave frequency dependence of the mechanical response of the tip oscillation. This MRFM is effective for extracting the magnetic interaction force near a sample surface without perturbation of its sample magnetic state. Nanometer-scale imaging of magnetic domain structures on a demagnetized thin-film permanent magnet is successfully demonstrated. © 2017 IOP Publishing Ltd.

  19. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin N.

    2017-01-01

    We study the resonant tidal excitation of g modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave (GW) signal of the inspiral. Previous studies of this type treated the NS core as a normal fluid and thus did not account for its expected superfluidity. The source of buoyancy that supports the g modes is fundamentally different in the two cases: in a normal fluid core, the buoyancy is due to gradients in the proton-to-neutron fraction, whereas in a superfluid core it is due to gradients in the muon-to-electron fraction. The latter yields a stronger stratification and a superfluid NS therefore has a denser spectrum of g modes with frequencies above 10 Hz. As a result, many more g modes undergo resonant tidal excitation as the binary sweeps through the bandwidth of GW detectors such as LIGO. We find that ≃ 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and a normal fluid NS (˜10-3-10-2rad). A phase error of this magnitude is too small to be measured from a single event with the current generation of GW detectors.

  20. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin

    2017-01-01

    We study the resonant tidal excitation of g-modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave signal of the inspiral. Previous studies treated the NS core as a normal fluid and did not account for its superfluidity. The source of buoyancy that supports the g-modes is fundamentally different in the two cases: in a normal fluid core the buoyancy is due to gradients in the proton-to-neutron fraction whereas in a superfluid core it is due to gradients in the muon-to-electron (or hyperon) fraction. The latter yields a stronger stratification and a superfluid NS has a denser spectrum of g-modes. As a result, many more g-modes undergo resonant tidal excitation during the inspiral. We find that = 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and normal fluid NS ( 10-3 -10-2rad). A phase error of this magnitude is too small to be measured with the current generation of gravitational wave detectors.

  1. Resonance excitation of ions stored in a quadrupole ion trap. Part IV. Theory of quadrupolar excitation

    NASA Astrophysics Data System (ADS)

    Alfred, Roland L.; Londry, Frank A.; March, Raymond E.

    1993-06-01

    A new theoretical treatment is presented for quadrupolar resonance excitation of ions stored in a quadrupole ion trap. When the ratio of the tickle voltage amplitude to that of the drive potential is small, the equation of ion motion can be expressed in the form of a perturbation series. Exact and approximate solutions to the first-order perturbation eqations are presented. Ion trajectories calculated from these solutions are compared with those calculated by numerical integration. The resonance conditions were found to correspond to a series of angular frequencies given by [omega]u,n = n + [beta]u - [infinity] < n < [infinity]. Some of these, [beta]z[Omega], (1 + [beta]z)[Omega](1 - [beta]z)[Omega] [beta],[Omega], had been observed previously in simulation studies.

  2. Parametric excitation of multiple resonant radiations from localized wavepackets

    NASA Astrophysics Data System (ADS)

    Conforti, Matteo; Trillo, Stefano; Mussot, Arnaud; Kudlinski, Alexandre

    2015-03-01

    Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics ``time''. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front.

  3. Excitation of Ionospheric Alfvén Resonator with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.; Labenski, J.; Milikh, G. M.; Vartanyan, A.; Snyder, A. L.

    2011-12-01

    We report results from numerical and experimental studies of the excitation of ULF waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during October-November 2010 experimental campaign reveal that the IAR quality is higher during night-time conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low-Earth-orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, 1) observations from the ground-based magnetometer at the HAARP site demonstrate no any significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and 2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  4. Polarization of resonantly excited X-ray lines

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Amaro, Pedro; Steinbrügge, René; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo Lopez-Urrutia, José R.; Tashenov, Stanislav

    2017-08-01

    For a wide range of temperatures, resonantly captured electrons with energies below the excitation threshold are the strongest source of X-ray line excitation in hot plasmas containing highly charged Fe ions. The angular distribution and polarization of X-rays emitted due to these processes were experimentally studied using an electron beam ion trap. The electron-ion collision energy was scanned over the KLL dielectronic, trielectronic, and quadruelectronic recombination resonances of Fe18+..24+ and Kr28+..34+ with an exemplary resolution of ~6 eV. The angular distribution of induced X-ray fluorescence was measured along and perpendicular to the electron beam propagation direction [1]. Subsequently, the polarization of X-ray fluorescence was also measured using a novel Compton polarimeter [2, 3].The experimental data reveal the alignment of the populated excited states and exhibit a high sensitivity to the relativistic Breit interaction [2, 4]. We observed that most of the transitions lead to polarization, including hitherto-neglected trielectronic and quadruelectronic recombination channels. Furthermore, these channels dominate the polarization of the prominent Kα X-rays emitted by hot anisotropic plasmas in a wide temperature range. The present experimental results comprehensively benchmark full-order atomic calculations carried out with the FAC [5] and RATIP [6] codes. We conclude that accurate polarization diagnostics of hot anisotropic plasmas, e.~g., of solar flares and active galactic nuclei, and laboratory fusion plasmas of tokamaks can only be obtained under the premise of careful inclusion of relativistic effects and higher-order resonances which were often neglected in previous works [1]. The present experiments also demonstrate the suitability of the applied technique for accurate directional diagnostics of electron or ion beams in hot plasmas [7].[1] C. Shah et al., Phys. Rev. E 93, 061201 (R) (2016)[2] C. Shah et al., Phys. Rev. A 92, 042702 (2015

  5. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  6. Numerical simulation of the resonantly excited capillary-gravity waves

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya

    2015-11-01

    Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.

  7. Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator

    NASA Astrophysics Data System (ADS)

    Fiore, Victor; Yang, Yong; Kuzyk, Mark C.; Barbour, Russell; Tian, Lin; Wang, Hailin

    2011-09-01

    We report the experimental demonstration of storing optical information as a mechanical excitation in a silica optomechanical resonator. We use writing and readout laser pulses tuned to one mechanical frequency below an optical cavity resonance to control the coupling between the mechanical displacement and the optical field at the cavity resonance. The writing pulse maps a signal pulse at the cavity resonance to a mechanical excitation. The readout pulse later converts the mechanical excitation back to an optical pulse. The storage lifetime is determined by the relatively long damping time of the mechanical excitation.

  8. Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites

    NASA Astrophysics Data System (ADS)

    Vittoria, Carmine

    2015-08-01

    Static field properties of magnetoelectric hexaferrites have been explored extensively in the past five years. In this paper, dynamic properties of magnetoelectric hexaferrites are being explored. In particular, effects of the linear magnetoelectric coupling (α ) on ferrimagnetic resonance (FMR) and magnetoelastic excitations are being investigated. A magnetoelastic free energy which includes Landau-Lifshitz mathematical description of a spin spiral configuration is proposed to calculate FMR and magnetoelastic excitations in magnetoelectric hexaferrites. It is predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts that are proportional to magnetoelectric static and dynamic fields. The calculated FMR fields are in agreement with experiments. Furthermore, it is predicted at low frequencies (approximately megahertz ranges), near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode besides the ordinary FMR mode which can only be accounted by dynamic magnetoelectric fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale as α , the shifts in the new discovered FMR mode scale as α2. Also, magnetoelastic dispersions were calculated, and it is predicted that the effect of the α coupling are the following: (1) The strength of admixture of modes and splitting in energy between spin waves and transverse acoustic waves is proportional to α . (2) The degeneracy of the two transverse acoustic wave modes is lifted even for relatively low values of α . Interestingly, at low frequencies near zero field FMR frequencies, the surface spin wave mode branch flip-flops with the volume spin wave branch whereby one branch assumes real values of the propagation constant and the other purely imaginary upon the application of a static electric field.

  9. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  10. Internal conversion from excited electronic states of 229Th ions

    NASA Astrophysics Data System (ADS)

    Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana

    2017-03-01

    The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.

  11. Analytic Model for Self-Excited Plasma Series Resonances

    NASA Astrophysics Data System (ADS)

    Czarnetzki, Uwe; Mussenbrock, Thomas; Brinkmann, Ralf-Peter

    2006-10-01

    Self-excited Plasma Series Resonances (PSR) are observed in capacitve discharges as high frequency oscillations superimposed on the normal RF current. This high-frequency contribution to the current is generated by a series resonance between the capacitve sheath and the inductive and ohmic bulk of the plasma. The non-linearity of the sheath leads to a complex dynamic. The effect is applied e.g. as a diagnostic technique in commercial etch reactors where analysis is performed by a numerical model. Here a simple analytical investigation is introduced. In order to solve the non-linear equations analytically, a series of approximation is necessary. Nevertheless, the basic physics is conserved and excellent agreement with numerical solutions is found. The model provides explicit and simple formula for the current waveform and the spectral range of the oscillations. In particular, the dependence on the discharge parameters is shown. Further, the model gives insight into an additional dissipation channel opened by the high frequency oscillations. With decreasing pressure the ohmic resistance of the bulk is decreasing too, while the amplitude of the PSR oscillations is growing. This results in substantially higher power dissipation.

  12. Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition

    NASA Astrophysics Data System (ADS)

    Fan, L. S.; Zhou, Y. S.; Wang, M. X.; Gao, Y.; Liu, L.; Silvain, J. F.; Lu, Y. F.

    2014-07-01

    The influence of resonant vibrational excitation of ethylene molecules in combustion chemical vapor deposition of diamond was investigated. Resonant vibrational excitation of the CH2-wagging mode (a type c fundamental band, υ7, at 949.3 cm-1) in ethylene molecules was achieved by using a wavelength-tunable CO2 laser with a matching wavelength at 10.532 µm. By comparing to laser irradiation at off-resonance wavelengths, an on-resonance vibrational excitation is more efficient in energy coupling, increasing flame temperatures, accelerating the combustion reactions, and promoting diamond deposition. An enhanced rate of 5.7 was achieved in terms of the diamond growth rate with an improved diamond quality index at a high flame temperature under a resonant excitation of the CH2-wagging mode. This study demonstrates that a resonant vibrational excitation is an effective route for coupling energy into the gas phase reactions and promoting the diamond synthesis process.

  13. Internal resonance of axially moving laminated circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Wang, Yan Qing; Liang, Li; Guo, Xing Hui

    2013-11-01

    The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.

  14. On the character of increase in the field upon resonance excitation of a waveguide

    NASA Astrophysics Data System (ADS)

    Delitsyn, A. L.

    2016-12-01

    The problem of excitation of an anisotropic media-filled waveguide at critical frequencies is considered. An example of a dispersion curve with two rather than one or three singular points is presented. The possibility of excitation of back waves is studied. The character of the increase in the field upon resonance excitation of a waveguide is considered.

  15. Broadband performance of a piezoelectric energy harvester based on the internal resonance of buckled beam

    NASA Astrophysics Data System (ADS)

    Xiong, Liuyang; Tang, Lihua; Ding, Hu; Chen, Liqun; Mace, Brian

    2016-04-01

    Nonlinear internal resonance mechanism is exploited in piezoelectric vibration energy harvesting (PVEH) for the purpose of broadening the resonance band. Conventional linear energy harvester has narrow operating bandwidth. In this research, a buckled piezoelectric beam structure with preload under transverse excitation is investigated to demonstrate the superiority of internal resonance. The condition for 2:1 internal resonance could be established by truncating the continuum beam with geometrical nonlinearity. Integro-partial-differential equations are derived for governing transverse motion measured from a stable equilibrium position. At specific initial axial compressive force, two modes are coupled through the internal resonance interaction. For weak nonlinear perturbations, multiple scales method is used to explore the amplitude-frequency responses of the buckled beam system under primary resonance with 2:1 internal resonance. Numerical examples demonstrate that the resonance bandwidth is broadened thanks to the coexistence of softening and hardening nonlinear characteristics. Moreover, validity of the approximate analytical method is demonstrated by comparing with simulation. Furthermore, the optimal resistance is discussed with a pure resistive load. This research on the internal resonance of buckled beam provides a basis for structure design and optimization in broadband PVEH.

  16. Spatial-dependent resonance mode and frequency of rotationally periodic structures subjected to standing wave excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Dongsheng; Wang, Shiyu

    2017-09-01

    This work examines the distinct resonance vibration of rotationally periodic structures. An analytical model of a sample stepped-plate structure subjected to standing wave excitation is developed by elasticity theory. Spatial-dependent resonance mode and resonance frequency are formulated by perturbation-superposition method. Different from the natural mode and natural frequency, a sinusoidal fluctuation of the resonance frequency is identified between the two split natural frequencies for single standing wave excitation. The resonance mode does not have preferred orientation because it is determined by excitation orientation. The resonance behaviors are different from those near the repeated natural frequencies. The response to a standing wave pair is also calculated and compared with that to the mathematically equivalent traveling wave, where significant difference is identified. The results indicate that purer traveling wave can be created by using a standing wave pair with pre-selected spatial phase and excitation frequency. Reverse traveling direction can be realized by altering excitation frequency. A test rig is designed and fabricated for verification purpose. The experiment validates that the response near the split natural frequencies is in phase with the external standing wave excitation. The resonance frequency varies with the excitation orientation for the split natural frequencies but it remains constant for the repeated natural frequencies. Potential applications of the spatial-dependent resonance mode and frequency are presented.

  17. Investigation on driving characteristics of a piezoelectric stick–slip actuator based on resonant/off-resonant hybrid excitation

    NASA Astrophysics Data System (ADS)

    Cheng, Tinghai; Li, Hengyu; He, Meng; Zhao, Hongwei; Lu, Xiaohui; Gao, Haibo

    2017-03-01

    A resonant/off-resonant hybrid excitation of a piezoelectric stick–slip actuator is proposed in this paper. It is accomplished by a resonant sinusoidal friction regulation wave (RSFR-wave) and an off-resonant saw-tooth wave (ORST-wave). The RSFR-wave is applied to the rapid deformation stage of the ORST-wave. In this stage, the first-order longitudinal vibration mode of the stator can be obtained. By this longitudinal vibration mode, the kinetic friction between the slider and frictional rod is obviously decreased utilizing ultrasonic friction reduction. The backward displacement is remarkably restrained. The high velocity, large mass of load and smooth displacement are achieved. The operation principle of hybrid excitation was discussed in detail, and a prototype was simulated, designed, and fabricated. A series of experiments were carried out and the results indicate that the step efficiency under the saw-tooth excitation and resonant/off-resonant hybrid excitation can realize 36.9% and 91.2%, respectively. The output velocity is increased by 147.23% relative to saw-tooth excitation. The minimum input power and the minimum driving voltage are decreased by 89.56% and 58.33%, respectively. Besides, the maximum mass of load capacity is 2.88 times that of saw-tooth excitation. The driving capacity of the actuator is increased by 466.13%.

  18. Regulation of flexible structures via internal resonance

    NASA Astrophysics Data System (ADS)

    Tuer, K. L.; Duquette, A. P.; Golnaraghi, M. F.

    A technique based on internal resonance is proposed to control the vibrations of a cantilevered, flexible beam. The controller is based on a dc motor with a rigid beam/tip mass configuration attached to the motor shaft. A 2:1 internal resonance condition is established for this system by specifying the topology in such a fashion that the first two natural frequencies of the linear portions of the nonlinear equations of motion have a ratio of 2:1. Under this condition energy transfer between the modes of vibration transpires, and energy is transferred from the flexible beam to the secondary beam, where it is dissipated through velocity feedback of the motor. Experimental results show that planar oscillations of a cantilever beam, which is displaced at its tip at a distance equal to 18 percent of its length, can be reduced to a relatively small amplitude in about 5 cycles. Theoretical analysis based on an accurate mathematical model for predicting the response of the system correlates extremely well with experimental results.

  19. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    NASA Astrophysics Data System (ADS)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  20. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams

    PubMed Central

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji

    2016-01-01

    We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions. PMID:27734923

  1. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Li, Xinxin; Gan, Xiaohua; Liu, Yongjing; Liu, Xiang; Xu, Pengcheng; Li, Jungang; Liu, Min

    2009-04-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin-avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability.

  2. [Research Progress on Laser-Induced Breakdown Spectroscopy Based on Resonance Excitation].

    PubMed

    Wang, Xu-zhao; Hao, Zhong-qi; Guo, Lian-bo; Li, Xiang-you; Lu, Yong-feng; Zeng, Xiao-yan

    2015-05-01

    Laser-induced breakdown spectroscopy (LIBS), a new kind of atomic spectrum analysis technology, has attracted much atterition of the researchers due to its characteristics of real-time, simultaneous multi-element analysis, and no sample preparation. However, the poor analytical sensitivity has been an important factor that restricts the development of this technology. LIBS based on resonance excitation combines atomic fluorescence spectroscopy and laser-induced breakdown spectroscopy and selectively excites the target elements. In this way, the analytical sensitivity of LIBS can be improved substantially and its application for trace elements detection is greatly expanded. In this paper, the research development of LIBS based on resonance excitation is summarized. The generation of atomic, fluorescence spectrum in laser-induced plasma, the typical classification and the basic principle of LIBS based on resonance. excitation are introduced. The influence of ablation laser energy, resonant laser energy and wavelength, delay between the ablation laser and the resonant laser, and the gate width on spectral enhancement are analyzed in detail. The application status and deficiencies of LIBS based on resonance excitation in the fields of metallurgy, environmental monitoring and isotope detection are elaborated. Future prospects of LIBS based on resonance excitation are also described.

  3. a Survey of Giant Resonance Excitations with 200 Mev Protons

    NASA Astrophysics Data System (ADS)

    Tinsley, James Royce

    The giant resonance region in ('60)Ni, ('90)Zr, ('120)Sn, and ('208)Pb has been studied using inelastic scattering of 200 MeV protons. Angular distributions were obtained for the giant quadrupole resonance, giant octupole resonance, and for the combined giant dipole and giant monopole resonance between 4 and 20 degrees. The 2(H/2PI)(omega) component of the giant hexadecapole resonance has been directly observed for the first time in ('208)Pb. In the other nuclei, upper limits on the amount of hexadecapole strength contained within the giant quadrupole resonance have been obtained. Peaks are observed in ('60)Ni and ('90)Zr that are consistent with recently reported M1 states. Discrepancies between sum rules extracted from this data and from previous work are discussed. Possible explanations include DWBA breakdown or difficulties in estimating the magnitude of the continuum. Systematics obtained for the giant resonances are compared to earlier work.

  4. Transient processes under dynamic excitation of a coherent population trapping resonance

    NASA Astrophysics Data System (ADS)

    Khripunov, S. A.; Radnatarov, D. A.; Kobtsev, S. M.; Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu; Balabas, M. V.; Andryushkov, V. A.; Popkov, I. D.

    2016-07-01

    It is shown for the first time that under dynamic excitation of a coherent population trapping resonance in Rb vapours at different bichromatic pump modulation frequencies from a few tens of hertz and higher, the resonance is dramatically deformed as a result of emerging intensity oscillations of radiation transmitted through an Rb vapour cell. A significant change in the shape of the resonance under its dynamic excitation is confirmed experimentally and theoretically. A possible impact of the identified changes in the shape of the coherent population trapping resonance on the stability of an atomic clock is qualitatively discussed.

  5. Two-photon photocurrent autocorrelation using intersubband transitions at nearly-resonant excitation.

    PubMed

    Schneider, Harald; Maier, Thomas; Liu, H C; Walther, Martin

    2008-02-04

    We investigate nonlinear mid-infrared detection via two-photon transitions involving two bound subbands and one continuum resonance in an n-type multiple quantum well. By varying the excitation energy, we have tuned the two-photon transition from resonant, yielding optimum resonant enhancement with a real intermediate state, to nearly-resonant, with a virtual but resonantly enhanced intermediate state. For autocorrelation purposes, the latter configuration improves time resolution whilst partially retaining a resonant enhancement of the two-photon transition strength.

  6. Nonlinear mode coupling and resonant excitations in two-component Bose-Einstein condensates.

    PubMed

    Xue, Ju-Kui; Li, Guan-Qiang; Zhang, Ai-Xia; Peng, Ping

    2008-01-01

    Nonlinear excitations in two-component Bose-Einstein condensates (BECs) described by two coupled Gross-Pitaevskii equations are investigated analytically and numerically. The beating phenomenon, the higher-harmonic generation, and the mixing of the excited modes are revealed by both variational approximation and numerical method. The strong excitations induced by the parametric resonance are also studied by time-periodic modulation for the intercomponent interaction. The resonance conditions in terms of the modulation frequency and the strength of intercomponent interaction are obtained analytically, which are confirmed by numerical method. Direct numerical simulations show that, when the resonance takes place, periodic phase separation and multisoliton configurations (including soliton trains, soliton pairs, and multidomain walls) can be excited. In particular, we demonstrate a method for formation of multisoliton configurations through parametric resonance in two-component BECs.

  7. Thermooptical excitation of sound by Bessel light beams in crystalline media with internal stress

    SciTech Connect

    Mityurich, G. S. Serdyukov, A. N.

    2011-05-15

    The thermooptical excitation of sound by Bessel light beams in crystalline media with internal stress has been studied. The dependence of the thermoelastic coupling coefficient, which is due to the modulated absorption of laser radiation, on the initial strain in a crystalline sample is taken into account. The expression for the photoacoustic signal amplitude is obtained, and it is shown that, in the range of high modulation frequencies of TE modes of Bessel light beams, resonant phenomena occur which can be used to increase the resolution of laser photoacoustic diagnostics of elastically strained crystals.

  8. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2017-03-01

    The multi-frequency acoustic excitation has been employed to enhance the effects of oscillating bubbles in sonochemistry for many years. In the present paper, nonlinear dynamic oscillations of bubble under dual-frequency acoustic excitation are numerically investigated within a broad range of parameters. By investigating the power spectra and the response curves of oscillating bubbles, two unique features of bubble oscillations under dual-frequency excitation (termed as "combination resonance" and "simultaneous resonance") are revealed and discussed. Specifically, the amplitudes of the combination resonances are quantitatively compared with those of other traditional resonances (e.g. main resonances, harmonics). The influences of several paramount parameters (e.g., the bubble radius, the acoustic pressure amplitude, the energy allocation between two component waves) on nonlinear bubble oscillations are demonstrated.

  9. Fluorescent resonant excitation energy transfer in linear polyenes.

    PubMed

    Das, Mousumi; Ramasesha, S

    2010-03-28

    We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R(-2) rather than as R(-6), suggested by the Forster type of dipolar approximation. Our time-evolution study also shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Forster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Forster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Forster theory since the one-photon transition intensity to these states (from the ground state) is zero.

  10. Fluorescent resonant excitation energy transfer in linear polyenes

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Ramasesha, S.

    2010-03-01

    We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R-2 rather than as R-6, suggested by the Förster type of dipolar approximation. Our time-evolution study also shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Förster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Förster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Förster theory since the one-photon transition intensity to these states (from the ground state) is zero.

  11. Coherent quantum control of internal conversion: {S}_{2}\\;\\leftrightarrow \\;{S}_{1} in pyrazine via {S}_{0}\\;\\to \\;{S}_{2}/{S}_{1} weak field excitation

    NASA Astrophysics Data System (ADS)

    Grinev, Timur; Shapiro, Moshe; Brumer, Paul

    2015-09-01

    Coherent control of internal conversion (IC) between the first (S1) and second (S2) singlet excited electronic states in pyrazine, where the S2 state is populated from the ground singlet electronic state S0 by weak field excitation, is examined. Control is implemented by shaping the laser which excites S2. Excitation and IC are considered simultaneously, using the recently introduced resonance-based control approach. Highly successful control is achieved by optimizing both the amplitude and phase profiles of the laser spectrum. The dependence of control on the properties of resonances in S2 is demonstrated.

  12. Molecular alignment using coherent resonant excitation: A new proposal for stereodynamic control of chemical reactions.

    PubMed

    Mukherjee, Nandini

    2009-10-28

    For the mode-selective control of chemical reaction, we present a new approach of molecular alignment using coherent resonant interaction with low intensity midinfrared optical pulses. Under coherent excitation, the alignment of vibrationally excited molecules becomes a function of the optical pulse area. Depending on the type of transition, with certain values of the pulse areas, a narrow group of magnetic substates are selectively excited, which results in aligning the rotational axis of the molecular ensemble. It is shown that for a P-type transition, significant alignment in the excited vibrational state can be realized using a resonant midinfrared pulse of area approximately 2pi. Under the steady state excitation (pulse duration longer than the vibrational relaxation time), the molecular alignment is destroyed due to saturation. We design a polarization spectroscopy experiment to coherently excite and probe the molecular alignment in real time.

  13. Resonant vibrational excitation of adsorbed molecules by electron impact

    NASA Astrophysics Data System (ADS)

    Djamo, V.; Teillet-Billy, D.; Gauyacq, J. P.

    1993-11-01

    The vibrational excitation of N2 molecules adsorbed on a silver surface by low energy electron impact is studied within the newly developed coupled angular mode method. The process involves the formation of a transient negative molecular ion. The results account well for the observations of Demuth and co-workers. They also reveal that most of the vibrational excitation corresponds to electrons scattered into the metal and thus unobservable in a scattering experiment.

  14. Resonance excitation of photoluminescence in sodium uranyl acetate crystals

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Korshunov, V. M.; Voinov, Yu. P.

    2016-12-01

    The photoluminescence spectra of sodium uranyl acetate polycrystals are recorded under excitation by different sources (semiconductor light-emitting diodes, cw lasers, and repetitively pulsed lasers). The excitation wavelengths fall into the absorption band of this solid, which makes it possible to record photoluminescence beginning from an extremely small volume of the material (10-10 cm3) at exposures of 10-3 s.

  15. Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Cotting, J. E.; Hoskins, L. C.; Levan, M. E.

    1982-08-01

    The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.

  16. Angular dependent study on ferromagnetic resonance and spin excitations by spin rectification

    SciTech Connect

    Zhang, Yichao; Fan, Xiaolong Zhao, Xiaobing; Rao, Jinwei; Zhou, Hengan; Guo, Dangwei; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2015-01-14

    We report angular dependent spin rectification spectra which are applied to studying spin excitations in single permalloy stripe. Based on planar Hall effect, those spin excitations generate special resonant dc Hall voltages, which have been characterized as functions of the amplitude and direction of applied magnetic field. Through high angular resolution 2D mappings, the evolutions of different spin excitation can be directly presented, and the dynamic magnetic parameters such as the gyromagnetic ratio, effective exchange field, as well as the quantized numbers of standing spin waves can be accurately determined through fitting the angular evolution of each resonance.

  17. Definitive evidence for linked resonances in surface-enhanced Raman scattering: Excitation profile of Cu phthalocyanine

    NASA Astrophysics Data System (ADS)

    . Londero, Pablo S.; Leona, Marco; Lombardi, John R.

    2013-03-01

    We have characterized the surface-enhanced Raman spectroscopy (SERS) spectrum of copper phthalocyanine as a function of excitation wavelength in the 435-635 nm region using a tunable excitation Raman system. We show that the Raman excitation spectrum within the surface plasmon resonance is dominated by totally symmetric modes in the blue and non-totally symmetric modes in the red. The findings are compared to our recent theoretical work on the nature of SERS enhancement. The experimental results are interpreted to be a consequence of vibronically coupled intensity borrowing by charge transfer resonances from allowed molecular transitions, enhancing non-totally symmetric modes.

  18. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    SciTech Connect

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-03-30

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies.

  19. Feedback enhancement of the amplitude of dynamically excited coherent population trapping resonance in Rb vapour

    NASA Astrophysics Data System (ADS)

    Radnatarov, Daba; Khripunov, Sergey; Kobtsev, Sergey; Taichenachev, Alexey; Yudin, Valery; Basalaev, Maxim; Popkov, Ivan; Andryushkov, Valeriy; Steschenko, Tatiana

    2016-11-01

    This work reports on possibilities of contrast enhancement of dynamically excited coherent population trapping (CPT) resonance in 87Rb vapour arising from application of feedback methods. Controlling the bichromatic pump radiation power through a feedback loop that stabilises Rb atom luminescence when scanning the frequency difference of the bichromatic pump radiation resulted in a more than an order-or-magnitude improvement in the amplitude of the CPT resonance at scanning frequencies over 100 Hz. It is established that the excursion of the pump radiation power controlled by the feedback loop under dynamic excitation is by an order of magnitude smaller than that under quasistationary excitation at scan frequencies < 1 Hz.

  20. Resonance of Non-Linear Systems Subjected to Multi-Parametrically Excited Structures: (Comparison Between two Methods, Response and Stability)

    NASA Astrophysics Data System (ADS)

    El-Bassiouny, A. F.; Eissa, M.

    2004-01-01

    Most mechanical systems or structures are subject to parametric or self excitations. In the present work, simultaneous principal parametric resonance of two-degree-of-freedom systems with quadratic and cubic non-linearities subject to multi-frequency parametric excitations in the presence of two-to-one internal resonance is investigated. Two approximate methods are applied to construct a set of first order, non-linear ordinary differential equations governing the modulation of the amplitudes and phases of oscillations. The applied methods are; the method of multiple time scale perturbation and the generalized synchronization methods. Steady state solutions and their stability are studied for selected values of the different parameters. The obtained results from both methods are in excellent agreement.

  1. Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH+ ion

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs; Niyonzima, S.; Tennyson, J.; Schneider, I. F.

    2017-02-01

    A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH+, induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of {}2{{{Σ }}}+, {}2{{\\Pi }} and {}2{{Δ }} symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.

  2. Resonance excitation of the spin-wave current in hybrid structures

    NASA Astrophysics Data System (ADS)

    Lyapilin, I. I.; Okorokov, M. S.; Bebenin, N. G.

    2017-10-01

    Using the non-equilibrium statistical operator (NSO) method, we have investigated the spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure. We have analyzed the effective parameters approximation, when each of the considered subsystems (conduction electrons, magnons, and phonons) is characterized by its effective temperature. We have constructed the macroscopic equations describing the spin-wave current caused by both the resonantly exciting spin subsystem of conduction electrons and an inhomogeneous temperature field in the ferromagnetic insulator. We have shown that the spin-wave current excitation under combined resonance conditions exhibits a resonant nature.

  3. Dynamical coupling of pygmy and giant resonances in relativistic Coulomb excitation

    DOE PAGES

    Brady, N. S.; Aumann, T.; Bertulani, C. A.; ...

    2016-04-20

    We study the Coulomb excitation of pygmy dipole resonances (PDR) in heavy ion reactions at 100 MeV/nucleon and above. The reactions Ni-68 + Au-197 and Ni-68 + Pb-208 are taken as practical examples. Our goal is to address the question of the influence of giant resonances on the PDR as the dynamics of the collision evolves. We show that the coupling to the giant resonances affects considerably the excitation probabilities of the PDR, a result that indicates the need of an improved theoretical treatment of the reaction dynamics at these bombarding energies. (C) 2016 The Authors. Published by Elsevier B.V.

  4. Monolithic OLED-Microwire Devices for Ultrastrong Magnetic Resonant Excitation.

    PubMed

    Jamali, Shirin; Joshi, Gajadhar; Malissa, Hans; Lupton, John M; Boehme, Christoph

    2017-08-09

    Organic light-emitting diodes (OLEDs) make highly sensitive probes to test magnetic resonance phenomena under unconventional conditions since spin precession controls singlet-triplet transitions of electron-hole pairs, which in turn give rise to distinct recombination currents in conductivity. Electron paramagnetic resonance can therefore be detected in the absence of spin polarization. We exploit this characteristic to explore the exotic regime of ultrastrong light-matter coupling, where the Rabi frequency of a charge carrier spin is of the order of the transition frequency of the two-level system. To reach this domain, we have to lower the Zeeman splitting of the spin states, defined by the static magnetic field B0, and raise the strength of the oscillatory driving field of the resonance, B1. This is achieved by shrinking the OLED and bringing the source of resonant radio frequency (RF) radiation as close as possible to the organic semiconductor in a monolithic device structure, which incorporates an OLED fabricated directly on top of an RF microwire within one monolithic thin-film device structure. With an RF driving power in the milliwatt range applied to the microwire, the regime of bleaching and inversion of the magnetic resonance signal is reached due to the onset of the spin-Dicke effect. In this example of ultrastrong light-matter coupling, the individual resonant spin transitions of electron-hole pairs become indistinguishable with respect to the driving field, and superradiance of the magnetic dipole transitions sets in.

  5. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-06-01

    We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.

  6. Detection of internal fields in double-metal terahertz resonators

    DOE PAGES

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...

    2017-02-06

    (THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.

  7. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    SciTech Connect

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  8. Understanding of the flow behaviour on a Helmholtz resonator excited by grazing flow

    NASA Astrophysics Data System (ADS)

    Ghanadi, Farzin; Arjomandi, Maziar; Cazzolato, Benjamin; Zander, Anthony

    2014-05-01

    In this study, a large eddy simulation of the three-dimensional shear flow over a flow-excited Helmholtz resonator has been implemented. The simulations have been performed over a wide range of flow speeds to analyse the effect of the inlet flow properties on the excitation condition. For validation proposes, the results obtained from the numerical simulations have been compared with published experimental data and show that numerical modelling provides an accurate representation of the pressure fluctuations inside the cavity. The main objective of this paper is to gain an understanding of the flow features over a flow-excited Helmholtz resonator. To this end, using the numerical model, the interaction of a turbulent boundary layer with a Helmholtz resonator has been considered, and the characteristics of the flow inside the resonator and over the orifice for various flow conditions are also analysed.

  9. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  10. Reservoir-induced decoherence of resonantly excited confined polaritons

    NASA Astrophysics Data System (ADS)

    Ouellet-Plamondon, C.; Sallen, G.; Morier-Genoud, F.; Oberli, D. Y.; Portella-Oberli, M. T.; Deveaud, B.

    2017-02-01

    We report on the effect of decoherence on polariton bistability. The polariton hysteresis loop is shown to collapse in a similar way when increasing the temperature or under nonresonant excitation power. The hysteresis upward threshold is pulled to lower excitation power, whereas the downward threshold remains almost constant. This effect is explained by the population of an incoherent reservoir that induces dephasing and repulsive interaction that saturates at large densities. All experimental findings are accurately simulated with the excitonic Bloch equations and indicate that reservoir-induced dephasing can be dominant over the reservoir-induced energy blueshift.

  11. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.

    2016-11-01

    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  12. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  13. Resonant inelastic soft x-ray scattering at double core excitations in solid LiCl

    SciTech Connect

    Agaaker, Marcus; Ahuja, Rajeev; Soederstroem, Johan; Rubensson, Jan-Erik; Kaeaembre, Tanel; Glover, Chris; Schmitt, Thorsten; Mattesini, Maurizio

    2006-06-15

    Inelastic soft x-ray scattering in LiCl, resonantly enhanced at states with two Li 1s vacancies, is investigated. States in which both excited electrons are localized during the double core hole lifetime, in which one of the electrons delocalize, as well as triply excited states in which the double core excitation is accompanied by a valence-to-conduction band excitation, contribute to the scattering. The angular momentum symmetry of the involved states and the vibronic coupling during the scattering process are reflected in the angular anisotropy. The effect on the local electronic structure of multiple core holes is theoretically studied by means of supercell band calculations.

  14. Circular Dichroism in Multiphoton Ionization of Resonantly Excited He^{+} Ions.

    PubMed

    Ilchen, M; Douguet, N; Mazza, T; Rafipoor, A J; Callegari, C; Finetti, P; Plekan, O; Prince, K C; Demidovich, A; Grazioli, C; Avaldi, L; Bolognesi, P; Coreno, M; Di Fraia, M; Devetta, M; Ovcharenko, Y; Düsterer, S; Ueda, K; Bartschat, K; Grum-Grzhimailo, A N; Bozhevolnov, A V; Kazansky, A K; Kabachnik, N M; Meyer, M

    2017-01-06

    Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He^{+}(3p) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.

  15. Circular Dichroism in Multiphoton Ionization of Resonantly Excited He+ Ions

    NASA Astrophysics Data System (ADS)

    Ilchen, M.; Douguet, N.; Mazza, T.; Rafipoor, A. J.; Callegari, C.; Finetti, P.; Plekan, O.; Prince, K. C.; Demidovich, A.; Grazioli, C.; Avaldi, L.; Bolognesi, P.; Coreno, M.; Di Fraia, M.; Devetta, M.; Ovcharenko, Y.; Düsterer, S.; Ueda, K.; Bartschat, K.; Grum-Grzhimailo, A. N.; Bozhevolnov, A. V.; Kazansky, A. K.; Kabachnik, N. M.; Meyer, M.

    2017-01-01

    Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He+(3 p ) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.

  16. Neutrino-excitation of baryon resonances and single pion production

    SciTech Connect

    Rein, D.; Sehgal, L.M.

    1981-04-15

    This is an attempt to describe all existing data on neutrino production of single pions in the resonance region up to W = 2 GeV in terms of the relativistic quark model of Feynman, Kislinger and Ravndal (FKR). We considered single pion producation to be mediated by all interfering resonances below 2 GeV. A simple noninterfering, nonresonant background of isopin 1/2 was added. It improved agreement with experiment, particularly in the ratio of isospin amplitudes in charged current reactions, at the expense of one additional constant. All total cross sections, cross section ratios and W-distributions are well reporduced at low and high energies, with charged and neutral currents (supposing the Salam-Weinberg theroy with sin/sup 2/ theta/sub w/roughly-equal1/4 to be correct), and for neutrinos and antineutrinos, giving predictions where data are lacking. New predictions have been made for complex angular distributions in N..pi.. chanels exhibiting strong interference between neighbouring resonances. These are sensitive (for 1.1 GeV < or approx. =W< or approx. =1.5 GeV) to the sign of the Roper resonance P/sub 11/(1450) which is controversial in photoproducation experiments.

  17. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks

    NASA Astrophysics Data System (ADS)

    Shaaban, Mahmoud; Mohany, Atef

    2015-04-01

    A passive method for controlling the flow-excited acoustic resonance resulting from subsonic flows over rectangular cavities in channels is investigated. A cavity with length to depth ratio of is tested in air flow of Mach number up to 0.45. When the acoustic resonance is excited, the sound pressure level in the cavity reaches 162 dB. Square blocks are attached to the surface of the channel and centred upstream of the cavity leading edge to suppress the flow-excited acoustic resonance in the cavity. Six blocks of different widths are tested at three different upstream distances. The results show that significant attenuation of up to 30 dB of the excited sound pressure level is achieved using a block with a width to height ratio of 3, while blocks that fill the whole width of the channel amplify the pressure of the excited acoustic resonance. Moreover, it is found that placing the block upstream of the cavity causes the onset of the acoustic resonance to occur at higher flow velocities. In order to investigate the nature of the interactions that lead to suppression of the acoustic resonance and to identify the changes in flow patterns due to the placement of the block, 2D measurements of turbulence intensity in the shear layer and the block wake region are performed. The location of the flow reattachment point downstream of the block relative to the shear layer separation point has a major influence on the suppression level of the excited acoustic resonance. Furthermore, higher attenuation of noise is related to lower span-wise correlation of the shear-layer perturbation.

  18. Doubly Excited Resonances in the Positronium Negative Ion

    NASA Technical Reports Server (NTRS)

    Ho, Y.K.

    2007-01-01

    The recent theoretical studies on the doubly excited states of the Ps' ion are described. The results obtained by using the method of complex coordinate rotation show that the three-lepton system behaves very much like an XYX tri-atomic molecule. Furthermore, the recent investigation on the positronium negative ion embedded in Debye plasma environments is discussed. The problem is modeled by the use of a screened Coulomb potential to represent the interaction between the charge particles.

  19. Topical applications of resonance internal conversion in laser produced plasma

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2007-04-01

    Physical aspects of resonance effects arising in plasma due to interactions of nuclei with the electrons are considered. Among them are resonance conversion (TEEN) and the reverse process of NEET. These processes are of great importance for pumping the excited nuclear states (isomers) and for accelerating their decay. Experiment is discussed on studying the unique 3.5-eV 229m Th nuclide.

  20. Crossover of Feshbach Resonances to Shape-Type Resonances in Electron-Hydrogen Atom Excitation with a Screened Coulomb Interaction

    SciTech Connect

    Zhang Songbin; Wang Jianguo; Janev, R. K.

    2010-01-15

    The effects of Coulomb interaction screening on electron-hydrogen atom excitation in the n=2 threshold region are investigated by using the R-matrix method with pseudostates. The interaction screening lifts the l degeneracy of n=2 Coulomb energy level, producing two distinct thresholds for 2s and 2p states. The phenomenon of transformation of {sup 1,3}P and {sup 1}D Feshbach resonances into shape-type resonances is observed when they pass across the 2s and 2p threshold, respectively, as the interaction screening increases. It is shown that this resonance transformation leads to dramatic effects in the 1s->2s and 1s->2p excitation collision strengths in the n=2 threshold collision energy region.

  1. Resonant X-ray emission with a standing wave excitation

    PubMed Central

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  2. Collision broadened resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-08-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  3. Observational features of field line resonances excited by solar wind pressure variations on 4 September 1984

    NASA Technical Reports Server (NTRS)

    Warnecke, J.; Luehr, H.; Takahashi, K.

    1990-01-01

    The purpose of the study is to establish the most probable excitation mechanism of the magnetic storm occurred after an inverse sudden impulse on September 4, 1984. Geomagnetic pulsations in the Pc5-frequency range observed at magnetometer stations are evaluated. Attention is focused on two events of the enhanced activity: for the first one, conjugate observations on the ground are assessed and then compared with satellite-based observations on adjacent field lines; for the second event two hours later, data from an extended azimuthal range is employed. It is pointed out that the observations are consistent with the theory of filed-line resonance, and may be interpreted as excitations caused by pressure variations in the solar wind. Both magnetopause-surface waves and cavity resonances are excited; the cavity mode drives toroidal field-line oscillations at locations where its frequency matches the resonance frequency of the field lines.

  4. Asymmetric resonance response analysis of a thermally excited silicon microcantilever for mass-sensitive nanoparticle detection

    NASA Astrophysics Data System (ADS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Wasisto, Hutomo Suryo; Peiner, Erwin

    2017-06-01

    The asymmetric resonance responses of a thermally actuated silicon microcantilever of a portable, cantilever-based nanoparticle detector (Cantor) is analysed. For airborne nanoparticle concentration measurements, the cantilever is excited in its first in-plane bending mode by an integrated p-type heating actuator. The mass-sensitive nanoparticle (NP) detection is based on the resonance frequency (f0) shifting due to the deposition of NPs. A homemade phase-locked loop (PLL) circuit is developed for tracking of f0. For deflection sensing the cantilever contains an integrated piezo-resistive Wheatstone bridge (WB). A new fitting function based on the Fano resonance is proposed for analysing the asymmetric resonance curves including a method for calculating the quality factor Q from the fitting parameters. To obtain a better understanding, we introduce an electrical equivalent circuit diagram (ECD) comprising a series resonant circuit (SRC) for the cantilever resonator and voltage sources for the parasitics, which enables us to simulate the asymmetric resonance response and discuss the possible causes. Furthermore, we compare the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator revealing parasitic heating of the WB as the origin of the asymmetry. Moreover, we are able to model the phase component of the sensor output using the ECD. Knowing and understanding the phase response is crucial to the design of the PLL and thus the next generation of Cantor.

  5. Collective Nature of Spin Excitations in Superconducting Cuprates Probed by Resonant Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Minola, M.; Dellea, G.; Gretarsson, H.; Peng, Y. Y.; Lu, Y.; Porras, J.; Loew, T.; Yakhou, F.; Brookes, N. B.; Huang, Y. B.; Pelliciari, J.; Schmitt, T.; Ghiringhelli, G.; Keimer, B.; Braicovich, L.; Le Tacon, M.

    2015-05-01

    We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6 +x over a wide range of doping levels (0.1 ≤x ≤1 ). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x . These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002 (2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.

  6. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-12-31

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.

  7. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-01-01

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.

  8. Assessing the frost resistance of illite-based ceramics through the resonant frequency of free vibration and internal damping

    NASA Astrophysics Data System (ADS)

    Húlan, Tomáš; Knapek, Michal; Minárik, Peter; Csáki, Štefan; Kaljuvee, Tiit; Uibu, Mai

    2017-07-01

    Experimental samples with porosity ranging from 6 % to 50 % were prepared by sacrificing template method from illite-rich clay. The frost resistance was assessed by measuring the shift in resonant frequency of free flexural vibration of prismatic samples and by the change of internal damping due to freeze-thaw cycles. Resonant frequency was determined by the impulse excitation technique and internal damping of the material was evaluated from the width of resonant peak. Samples were saturated with water and subjected to freeze-thaw cycles in the temperature range from -22 to 20 °C. Resonant frequency and internal damping were measured after 50, 100, 200, and 300 freeze-thaw cycles. Resonant frequency drops with increasing number of freeze-thaw cycles, and the effect is more pronounced in the case of samples with higher porosity. Internal damping of material was not found to be a suitable quantity for assessing the frost damage.

  9. Transient radiation from a ring resonant medium excited by an ultrashort superluminal pulse

    SciTech Connect

    Arkhipov, R M; Arkhipov, M V; Tolmachev, Yu A; Babushkin, I V

    2015-06-30

    We report some specific features of transient radiation from a periodic spatially modulated one-dimensional medium with a resonant response upon excitation by an ultrashort pulse. The case of ring geometry (with particle density distributed along the ring according to the harmonic law) is considered. It is shown that the spectrum of scattered radiation contains (under both linear and nonlinear interaction), along with the frequency of intrinsic resonance of the medium, a new frequency, which depends on the pulse velocity and the spatial modulation period. The case of superluminal motion of excitation, when the Cherenkov effect manifests itself, is also analysed. (laser applications and other topics in quantum electronics)

  10. Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid

    SciTech Connect

    Pigeon, S.; Ciuti, C.; Carusotto, I.

    2011-04-01

    We present a theoretical study of the hydrodynamic properties of exciton-polaritons in a semiconductor microcavity under a resonant laser excitation. The effect of a spatially extended defect on the superfluid flow is investigated as a function of the flow speed. The processes that are responsible for the nucleation of vortices and solitons in the wake of the defect are characterized, as well as the regimes where the superfluid flow remains unperturbed. Specific features due to the nonequilibrium nature of the polariton fluid are pointed out. For the present case of a resonant polariton excitation, an effective way to create, trap, and control arrays of vortices is proposed.

  11. Comparative study of resonance Raman and surface-enhanced resonance Raman chlorophyll a spectra using soret and red excitation

    SciTech Connect

    Thomas, L.L.; Kim, Jaeho; Cotton, T.M. )

    1990-12-05

    Surface-enhanced resonance Raman scattering (SERRS) spectra are reported for chlorophyll a adsorbed on a silver electrode at 298 and 77 K with 406.7-, 457.9-, 514.5-, and 647.1-nm excitation. Submerging the electrode in degassed water at 298 K was found to improve the spectral quality by minimizing sample heating and photooxidation. Spectral intensities and peak resolutions were greater at all excitation wavelengths at liquid nitrogen temperature. Most significantly, roughened silver at the low temperature quenched the fluorescence accompanying red excitation and minimized sample photooxidation, resulting in richly detailed SERRS spectra of chlorophyll a. The close correspondence between chlorophyll a resonance Raman (RR) and SERRS spectra suggests that an electromagnetic mechanism is the major source of the surface enhancement, rather than a chemical mechanism (e.g. a charge-transfer complex between chlorophyll a and the metal). The spectral similarities, together with the presence of the MgN{sub 4} vibration band in the SERRS spectra, also provide evidence that structural alterations (e.g. cleavage of ring V or loss of Mg) do not occur in chlorophyll a after adsorption at the electrode surface. A distinctive SERRS spectrum was obtained for each excitation wavelength. Selective excitation within the various electronic transitions can thus be utilized to verify assignments of the vibrational modes of chlorophyll a and to monitor its interactions and photochemical behavior in biomimetic systems.

  12. Resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-06-01

    Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  13. Theory of double resonance parametric excitation in plasmas. II

    NASA Astrophysics Data System (ADS)

    Fried, B. D.; Adler, A.; Bingham, R.

    1980-10-01

    A simpler formalism than in the original paper on this subject is used to verify the earlier result that, for a pump frequency separation Delta approximately equal to twice the ion acoustic frequency Omega, the use of two long-wavelength pumps can reduce the threshold for parametric excitation of ion-acoustic waves when, and only when, the Langmuir wave damping rate gamma is much larger than Omega. The threshold is then reduced by a factor of order Omega/omega, the optimum value of Delta being 2 Omega-Gamma for equal pump amplitudes, where Gamma is the ion-acoustic wave damping rate and Gamma is much less than Omega. The analysis presented in a recent paper is shown to be valid only for gamma much less than Omega, where the threshold reduction is quite small, vanishing in the limit of weak ion-acoustic wave damping (Te/Ti much greater than 1).

  14. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Martin, Robert; Witt, Kenneth; McCormick, William; Wu, Hai-Shan; Sluch, Mikhail; Ice, Robert; Lemoff, Brian

    2017-05-01

    Deep-ultraviolet Raman spectroscopy is a very useful approach for standoff detection of explosive traces. Using two simultaneous excitation wavelengths improves the specificity and sensitivity to standoff explosive detection. The High Technology Foundation developed a highly compact prototype of resonance Raman explosives detector. In this work, we discuss the relative performance of a dual-excitation sensor compared to a single-excitation sensor. We present trade space analysis comparing three representative Raman systems with similar size, weight, and power. The analysis takes into account, cost, spectral resolution, detection/identification time and the overall system benefit.

  15. Enhanced charge excitations in electron-doped cuprates by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Tohyama, Takami; Tsutsui, Kenji; Mori, Michiyasu; Sota, Shigetoshi; Yunoki, Seiji

    2015-07-01

    Resonant inelastic x-ray scattering (RIXS) tuned for the Cu L edge is a possible tool to detect charge excitations in cuprate superconductors. We theoretically investigate the possibility for observing a collective charge excitation by the RIXS. The RIXS process via the intermediate state inevitably makes the spectral weight of charge excitation stronger in electron doping than in hole doping. Electron-hole asymmetry also appears in the dynamical charge structure factor, showing a new enhanced small-momentum low-energy mode in electron doping. These facts indicate a possibility of detecting the new charge mode by RIXS in electron-doped systems.

  16. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    PubMed

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-09

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.

  17. Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering

    NASA Astrophysics Data System (ADS)

    Jia, C. J.; Nowadnick, E. A.; Wohlfeld, K.; Kung, Y. F.; Chen, C.-C.; Johnston, S.; Tohyama, T.; Moritz, B.; Devereaux, T. P.

    2014-02-01

    How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) experiments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of Tc, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors.

  18. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    SciTech Connect

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  19. Double Photon Decay of the Electromagnetically Excited Double Giant Dipole Resonance in LEAD-208

    NASA Astrophysics Data System (ADS)

    Ritman, James Lambrecht

    In this work the electromagnetic excitation of high lying collective states has been studied in relativistic heavy ion collisions. The interaction in peripheral collisions is dominated by the exchange of high energy virtual photons. Heavy systems near 1cdotA GeV produce a virtual photon field that is highly luminous and of sufficiently short duration to enable the multiple excitation of Giant Resonances with high probability. In particular, the double excitation of the Giant Dipole Resonance (GDR) has been studied in this work by measuring the photons emitted in peripheral reactions with the system 1.A GeV ^ {209}Bi on ^{208} Pb. This study concentrated on the photon decay of Coulomb excited collective states. Despite the relatively small ground state gamma-decay branching ratio, investigation of this channel provides several advantages compared to measuring statistical particle decay. The most important advantage is the strong enhancement of E1 transitions with respect to higher multipolarities; therefore, study of gamma-decay provides a highly selective measurement of the GDR. Photons in the Giant Resonance region were measured both as singles and as gamma- gamma pairs. For symmetry reasons the target and projectile nuclei can be mutually Coulomb excited. In order to insure that both photons in the gamma -gamma pairs came from the same nucleus, the large Doppler shift of photons emitted from the moving projectile has been exploited. Appropriate placement of the gamma detectors permitted a complete separation of the GDR photons emitted by either the target or projectile nucleus. This work provides the first experimental evidence of the gamma-gamma decay of the Coulomb excited double GDR (GDR2). The position of the resonance indicates harmonicity of the T_{<} multi-GDR. However, the increase of the GDR2 width over the GDR's width by only about a factor of sqrt{2} is significantly less than expected. Finally, the GDR2 excitation cross section is compared with model

  20. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory

    PubMed Central

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-01-01

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and \\documentclass[12pt]{minimal}\\begin{document}$\\textrm {L}_{2,3}$\\end{document}L2,3 edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule. PMID:23181305

  1. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-11-01

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and {L}_{2,3} edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule.

  2. Interpretation of unusual absorption bandwidths and resonance Raman intensities in excited state mixed valence.

    PubMed

    Lockard, Jenny V; Valverde, Guadalupe; Neuhauser, Daniel; Zink, Jeffrey I; Luo, Yun; Weaver, Michael N; Nelsen, Stephen F

    2006-01-12

    Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, primarily because their spectroscopic features are usually overlapped or obscured by other transitions in the molecule. The mixed valence excited state absorption bands of 2,3-di-p-anisyl-2,3-diazabicyclo[2.2.2]octane radical cation are well-separated from others in the absorption spectrum and are particularly well-suited for detailed analysis using the ESMV model. Excited state coupling splits the absorption band into two components. The lower energy component is broader and more intense than the higher energy component. The absorption bandwidths are caused by progressions in totally symmetric modes, and the difference in bandwidths is caused by the coordinate dependence of the excited state coupling. The Raman intensities obtained in resonance with the high and low energy components differ significantly from those expected based on the oscillator strengths of the bands. This unexpected observation is a result of the excited state coupling and is explained by both the averaging of the transition dipole moment orientation over all angles for the two types of spectroscopies and the coordinate-dependent coupling. The absorption spectrum is fit using a coupled two-state model in which both symmetric and asymmetric coordinates are included. The physical meaning of the observed resonance Raman intensity trends is discussed along with the origin of the coordinate-dependent coupling. The well-separated mixed valence excited state spectroscopic components enable detailed electronic and resonance Raman data to be obtained from which the model can be more fully developed and tested.

  3. Electronic State Interferences in Resonant X-Ray Emission after K-Shell Excitation in HCl

    SciTech Connect

    Kavcic, M.; Zitnik, M.; Bucar, K.; Mihelic, A.; Carniato, S.; Journel, L.; Guillemin, R.; Simon, M.

    2010-09-10

    We have measured a series of high-resolution x-ray spectra emitted upon resonant photoexcitation of HCl. The photon energy was tuned across the dissociative 1s{yields}6{sigma}* resonance and the Rydberg states converging to the Cl 1s{sup -1} threshold, and inelastic photon scattering was observed in the region of KL emission lines. Excellent agreement is found between fully ab initio calculated and measured spectra if interferences between different excitation-emission paths are taken into account. The effect of electronic state interferences is enhanced due to dynamical broadening of the 6{sigma}* resonance in HCl.

  4. The role of the partner atom and resonant excitation energy in ICD in rare gas dimers

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Patrick; Ripani, Enrico; Bolognesi, Paola; Coreno, Marcello; Avaldi, Lorenzo; Devetta, Michele; Callegari, Carlo; Di Praia, Michele; Prince, Kevin; Richter, Robert; Alagial, Michele; Kivimäkil, Antti

    2014-04-01

    We show experimental evidence for Interatomic Coulombic Decay (ICD) in mixed rare gas dimers following resonant Auger decay. A velocity map imaging apparatus together with a cooled supersonic beam containing Ar2, ArNe and ArKr dimers was used to record electron VMI images in coincidence with two mass selected ions following excitation on five resonances converging to the Ar+ 2p-11/2 and 2p-13/2 thresholds using the synchrotron radiation. The results show that the kinetic energy distribution of the ICD electrons observed in coincidence with the ions from Coulomb explosion of the dimers depends on the partner ion and resonant photon energy.

  5. Detection of internal fields in double-metal terahertz resonators

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; Bozhevolnyi, Sergey I.; Brener, Igal; Reno, John L.

    2017-02-01

    Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.

  6. Influence of shape resonances on minima in cross sections for photoionization of excited atoms

    SciTech Connect

    Felfli, Z.; Manson, S.T. Department of Astronomy, Georgia State University, Atlanta, Georgia 30303 )

    1990-02-01

    A relationship between the location of Cooper minima and the difference between the quantum defect of the initial state and the threshold phase shift (in units of {pi}) of the final state in excited photoionization has been suggested earlier (Phys. Rev. Lett. 48, 473 (1982)). The existence of a shape resonance in the final state is shown to modify this relationship.

  7. Excitation of the lower oblique resonance by an artificial plasma jet in the ionosphere

    NASA Astrophysics Data System (ADS)

    Thiel, J.; Storey, L. R. O.; Bauer, O. H.; Jones, D.

    1984-04-01

    Aboard the Porcupine rockets, bursts of noise were detected in the electron whistler range during the operation of a xenon plasma gun on a package ejected from the main payload. These observations can be interpreted in terms of excitation of the lower oblique resonance by instabilities associated with the motion of the xenon ion beam through the ionospheric plasma.

  8. Resonant Transfer Excitation Followed by Auger-Electron Emission for Ne-like Ions

    SciTech Connect

    Omar, G.; Moussa, Ali H.; Ramadan, H.

    2005-03-17

    In ion-atom (I/A) collision, resonant transfer excitation followed by Auger emission (RTEA) is a complementary process to resonant transfer excitation followed by X-rays (RTEX). In both processes positive ions are assumed to collide with molecular H2-target or atomic He-targets. RTEA and RTEX are related to the resonance excitation (RE) and dielectronic recombination (DR) in electron-ion collisions. The cross sections of RTEA and RE are related under the validity of the conditions of impulse approximation, in which the ionic projectiles must move with very high velocity. RTEA are calculated for Ne-like ions with L-shell excitation. The database generated for Auger and radiative decay rates in LS coupling scheme. RTEA processes proceed through formation of resonance R states. These R-states have a general form 2p5n1 l 1n2 l 2 ; n1 = 3, 4 and n2 {>=} 4. It is found that RTEA cross sections exhibit a one-peak behavior with a peak value 1.6 x 10-18 cm2 when it collides with H2 as a target. This peak value decreases to 0.488x10-18 cm2 in case of Se24+.

  9. Transition paths to stochastic oscillations of a self-excited oscillator with a ferrite resonator

    SciTech Connect

    Aranson, I.S.; Pavlov, D.A.

    1986-01-01

    It is demonstrated experimentally that the transition to stochastic oscillations in a self-excited oscillator with ferrite resonator occurs through the complexification of the structure of self-modulation. All basic types of bifurcations are recorded: doubling, intermittency, hard onset of chaos, and critical behavior of strange attractors. Tripling of the self-modulation period was observed for special values of the parameters.

  10. Pulsed excitation system to measure the resonant frequency of magnetoelastic biosensors

    NASA Astrophysics Data System (ADS)

    Xie, Hong; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    An electrical circuit was designed and tested to measure the resonant frequency of micron-scale magnetoelastic (ME) biosensors using a pulsed wave excitation technique. In this circuit, a square pulse current is applied to an excitation coil to excite the vibration of ME biosensors and a pick-up coil is used to sense the ME biosensor's mechanical vibration and convert it to an electrical output signal. The output signal is filtered and amplified by a custom designed circuit to allow the measurement of the resonant frequency of the ME biosensor from which the detection of specific pathogens can be made. As a proof-in-concept experiment, JRB7 phage-coated ME biosensors were used to detect different concentrations of Bacillus anthracis Sterne strain spores. A statistically significant difference was observed for concentrations of 5 × 102 spore/ml and above.

  11. Nuclear Resonance Fluorescence Excitations Near 2 MeV in 235U and 239Pu

    SciTech Connect

    Bertozzi, W; Caggiano, J A; Hensley, W K; Johnson, M S; Korbly, S E; Ledoux, R J; McNabb, D P; Norman, E B; Park, W H; Warren, G A

    2006-12-27

    A search for nuclear resonance fluorescence excitations in {sup 235}U and {sup 239}Pu within the energy range of 1.0- to 2.5-MeV was performed using a 4-MeV continuous bremsstrahlung source at the High Voltage Research Laboratory at the Massachusetts Institute of Technology. Measurements utilizing high purity Ge detectors at backward angles identified 9 photopeaks in {sup 235}U and 12 photopeaks in {sup 239}Pu in this energy range. These resonances provide unique signatures that allow the materials to be non-intrusively detected in a variety of environments including fuel cells, waste drums, vehicles and containers. The presence and properties of these states may prove useful in understanding the mechanisms for mixing low-lying collective dipole excitations with other states at low excitations in heavy nuclei.

  12. Resonance-enhanced electron-impact excitation of Cu-like gold

    NASA Astrophysics Data System (ADS)

    Xia, L.; Zhang, C. Y.; Si, R.; Guo, X. L.; Chen, Z. B.; Yan, J.; Li, S.; Chen, C. Y.; Wang, K.

    2017-09-01

    Employing the independent-process and isolated-resonance approximations using distorted-waves (IPIRDW), we have performed a series of calculations of the resonance-enhanced electron-impact excitations (EIE) among 27 singly excited levels from the n ≤ 6 configurations of Cu-like gold (Au, Z = 79). Resonance excitation (RE) contributions from both the n = 4 → 4 - 7 and n = 3 → 4 core excitations have been considered. Our results demonstrate that RE contributions are significant and enhance the effective collision strengths (ϒ) of certain excitations by up to an order of magnitude at low temperature (106.1 K), and are still important at relatively high temperature (107.5 K). Results from test calculations of the resonance-enhanced EIE processes among 16 levels from the n ≤ 5 configurations using both the Dirac R-matrix (DRM) and IPIRDW approaches agree very well with each other. This means that the close-coupling effects are not important for this ion, and thus warrants the reliability of present resonance-enhanced EIE data among the 27 levels. The results from the collisional-radiative model (CRM) show that, at 3000 eV, near where Cu-like Au is most abundant, RE contributions have important effects (up to 25%) on the density diagnostic line intensity ratios, which are sensitive near 1020 cm-3. The present work is the first EIE research including RE contributions for Cu-like Au. Our EIE data are more accurate than previous results due to our consideration of RE contributions, and the data should be helpful for modeling and diagnosing a variety of plasmas.

  13. Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene

    NASA Astrophysics Data System (ADS)

    Sension, Roseanne J.; Hudson, Bruce S.

    1989-02-01

    A resonance Raman study of ethylene has been performed with the use of excitation wavelengths ranging from 200 to 141 nm. Excitation resonant with the V(pi pi -asterisk) state results in Raman spectra exhibiting intensity in the C = C stretching vibration, the CH2 symmetric scissors vibration, the CH2 torsional vibration and the CH2 out-of-plane wagging vibrations. These spectra confirm that the V state is strongly twisted about the C-C bond. They also indicate that the C = CH2 groups are no longer planar in the V state. The spectrum obtained in resonance with the (pi 3d) Rydberg transitions once again exhibits activity in the CH2 symmetric scissors mode.

  14. Numerical simulation of the excitation of a Helmholtz resonator by a grazing flow.

    PubMed

    Mallick, S; Shock, R; Yakhot, V

    2003-10-01

    The process of noise generation in a flow-excited Helmholtz resonator involves strong interaction between a time-dependent fluid flow and acoustic resonance. Quantitative prediction of this effect, requiring accurate prediction of time-dependent features of a flow over complex three-dimensional bodies, turbulence modeling, compressibility and Mach number effects, is one of the major challenges to computational fluid dynamics. In this paper a numerical procedure based on the lattice kinetic equation, combined with the RNG turbulence model, is applied to describe a well-controlled experiment on acoustic resonance excitation by a grazing flow [Nelson et al., J. Sound Vib. 78, 15-27 (1981)]. The achieved agreement between numerical and physical experiments is very good. The simulations reveal a universality transformation enabling comparison of the data for different inlet conditions.

  15. Exciting Molecules Close to the Rotational Quantum Resonance: Anderson Wall and Rotational Bloch Oscillations.

    PubMed

    Floß, Johannes; Averbukh, Ilya Sh

    2016-05-19

    We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under conditions close to the quantum resonance. The quantum resonance effect causes an unlimited ballistic growth of the angular momentum. We show that a disturbance of the quantum resonance, either by the centrifugal distortion of the rotating molecules or a controlled detuning of the pulse train period from the so-called rotational revival time, eventually halts the growth by causing Anderson localization beyond a critical value of the angular momentum, the Anderson wall. Below the wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.

  16. Inherently unstable internal gravity waves due to resonant harmonic generation

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Zareei, Ahmad; Alam, Mohammad-Reza

    2017-01-01

    Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain for a linearly-stratified fluid if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance presented here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing.

  17. Resonant Raman scattering in single crystal of congruent LiTaO 3 : Effect of excitation energy

    NASA Astrophysics Data System (ADS)

    Bhaumik, Indranil; Kumar, Shailendra; Ganesamoorthy, S.; Bhatt, R.; Karnal, A. K.; Raja Sekhar, B. N.

    2011-12-01

    Large dispersion in the peak position of the OH - stretching mode (˜687.9 and ˜2167.7 cm -1/eV for fundamental and 3rd harmonic, respectively) is observed by Resonance Raman studies in congruent lithium tantalate single crystal under varying excitation energies. This is explained by considering the involvement of multiple LO phonons in the interaction with OH - stretching vibration and the resonantly excited electrons. The intensity of the peaks is also found to vary with the excitation energy. FWHM increases with the increase in excitation energy because of individual contributions of the increasing number of resonance steps to the broadening.

  18. The structure of triply excited, negative-ion resonances in the autoionizing region of helium

    NASA Astrophysics Data System (ADS)

    Trantham, K. W.; Jacka, M.; Rau, A. R. P.; Buckman, S. J.

    1999-02-01

    The formation and decay of the two lowest-lying, triply excited 0953-4075/32/3/021/img7 resonances in the autoionizing region of the helium spectrum (57-60 eV) have been studied by measuring electron-impact excitation functions for the n = 2 singly excited states of helium as a function of electron scattering angle. These results offer unambiguous confirmation of the classification of these states as 0953-4075/32/3/021/img8 and 0953-4075/32/3/021/img9, respectively. Furthermore, the observation of the relative strengths of the decay of these features into the various final states enables some speculation as to the structure of the three excited electrons.

  19. Two-dimensional crystals of Rydberg excitations in a resonantly driven lattice gas

    NASA Astrophysics Data System (ADS)

    Petrosyan, David

    2013-10-01

    The competition between resonant optical excitation of Rydberg states of atoms and their strong, long-range van der Waals interaction results in spatial ordering of Rydberg excitations in a two-dimensional lattice gas, as observed in a recent experiment of Schauß [Nature (London)NATUAS0028-083610.1038/nature11596 491, 87 (2012)]. Here we use semiclassical Monte Carlo simulations to obtain stationary states for hundreds of atoms in finite-size lattices. We show the formation of regular spatial structures of Rydberg excitations in a system of increasing size, and find highly sub-Poissonian distribution of the number of Rydberg excitations characterized by a large negative value of the Mandel Q parameter which is nearly independent of the system size.

  20. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  1. Magnetic resonance imaging of the internal auditory canal

    SciTech Connect

    Daniels, D.L.; Herfkins, R.; Koehler, P.R.; Millen, S.J.; Shaffer, K.A.; Williams, A.L.; Haughton, V.M.

    1984-04-01

    Three patients with exclusively or predominantly intracanalicular neuromas and 5 with presumably normal internal auditory canals were examined with prototype 1.4- or 1.5-tesla magnetic resonance (MR) scanners. MR images showed the 7th and 8th cranial nerves in the internal auditory canal. The intracanalicular neuromas had larger diameter and slightly greater signal strength than the nerves. Early results suggest that minimal enlargement of the nerves can be detected even in the internal auditory canal.

  2. Trapping in high-order orbital resonances and inclination excitation in extrasolar systems

    NASA Astrophysics Data System (ADS)

    Libert, A.-S.; Tsiganis, K.

    2009-12-01

    Exoplanetary systems in mean motion resonance (MMR) are thought to have been captured as a result of gas-induced (Type II) orbital migration, during their early evolution phases. Using three-dimensional numerical simulations, Thommes & Lissauer showed that resonant inclination excitation can occur, for a system of two planets that evolves into a 2/1 MMR by Type II migration. In this paper, we examine whether capture in higher order resonances can also result in inclination excitation. We undertake a parametric study, varying the masses and orbital parameters of the planets, as well as the migration rate and eccentricity damping rate. We show that captures in high-order resonances (such as the 3/1, 4/1 and 5/1) are also able to produce inclination excitation. The maximal mutual inclination between the two orbital planes reaches values between 20° and 70° during a simulation, depending on the masses of the planets. Inclination excitation is observed for all configurations as long as (i) the inner planet is not very massive and (ii) at least one of the planets develops an eccentricity e > 0.4. Thus, our simulations imply that inclination excitation is a common outcome, as long as eccentricity damping is not too strong. On the other hand, our results suggest that planets in the exosystems HD 60532 (3/1 MMR), HD 108874 (4/1 MMR) and HD 102272 (4/1 MMR) are most probably in coplanar orbits, since they do not meet the above two constraints. Indeed, this result was verified by a series of dedicated numerical simulations.

  3. Overlapping photo-ionized doubly excited resonance series for Li+ ion

    NASA Astrophysics Data System (ADS)

    Fang, T. K.; Gao, X.; Chang, T. N.

    2017-06-01

    Based on two different approaches, the B-spline-based K-matrix method and the eigenchannel R-matrix method, we present a detailed theoretical study on the photoionization from the ground and bound excited 1s2s{}1S and 1s2p{}1P states of an Li+ ion to continua between the N = 2 and N = 3 thresholds, dominated by overlapping doubly excited resonance series embedded in multiple singly ionized channels. The nearly identical theoretical spectra from these two different calculations, together with the excellent agreement between the length and velocity results, suggests that our study has successfully led to a reliable estimate of the Li+ photoionization spectra. In addition to identifying all overlapping doubly excited autoionization series, our calculated spectrum is in good agreement with the only observed data for two broad resonances. Our study has also shown that the strong interaction between neighboring resonances from different resonance series, which is responsible for the level crossing for in the He atom, is substantially smaller due to a stronger nuclear attraction to atomic electrons for the two-electron ions.

  4. Selective excitation of high-Q resonant modes in a bottle/quasi-cylindrical microresonator

    NASA Astrophysics Data System (ADS)

    Dong, Yongchao; Jin, Xueying; Wang, Keyi

    2016-08-01

    We fabricate a bottle/quasi-cylindrical microresonator by using a fusion splicer. This method does not require a real-time control of the translation stages and can easily fabricate a resonator with expected size and shape. Selective excitation of whispering gallery modes (WGMs) in the resonator is realized with a fiber taper coupled at various positions of the resonator along the bottle axis. Most importantly, we obtain a clean and regular spectrum with very high quality factor (Q) modes up to 3.1×107 in the quasi-cylindrical region of the resonator. Moreover, we package the coupling system into a whole device that can be moved freely. The vibration performance tests of the packaged device show that the coupling system with the taper coupled at the quasi-cylindrical region has a remarkable anti-vibration ability. The portability and robustness of the device make it attractive in practical applications.

  5. Resonance in an ensemble of excitable reaction-diffusion systems under spatially periodic force

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Yao, Chenggui; Wang, Xiaofang; Zhao, Qi

    2017-02-01

    In this paper, we investigate the resonance collective behavior in an ensemble of excitable reaction-diffusion systems subjected to the weak signal and spatially periodic force. It is demonstrated that the resonance behavior is optimized by intermediate values of the spatial force's amplitude and frequency, which is termed spatially periodic-force-induced resonance. Moreover, we study that how the diffusion coefficient and modulation period influence the response of the system to the external weak signal, and present the mechanism of this resonance phenomenon. These findings show that spatially periodic force as intrinsic diversity might have a constructive role and shed light on our understanding of the collective behaviors of nonlinear systems driven by spatially periodic force in response to the weak signal.

  6. Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms

    SciTech Connect

    Eletskii, A.V.; Capitelli, M.; Celiberto, R.; Laricchiuta, A.

    2004-04-01

    Resonant charge-exchange cross sections and the relevant transport (diffusion) cross sections for excited states of nitrogen and oxygen atoms have been calculated. The calculation is performed using the asymptotic approach, based on the single-electron asymptotic representation of the electron wave function. The ground-state cross sections are in a good agreement with those calculated via comprehensive quantum chemical approach. The results of calculations demonstrate a reasonable accuracy and a high convenience of this approach in determination of cross sections for the manifold of excited states of atoms.

  7. Second stable regime of internal kink modes excited by barely passing energetic ions in tokamak plasmas

    SciTech Connect

    He, H. D.; Zheng, G. Y.; Long, Y. X.; He, Z. X.; Jiang, H. B.; Shen, Y.; Wang, L. F.; Dong, J. Q.; Fu, G. Y.; Sheng, Z. M.

    2010-08-15

    The internal kink (fishbone) modes, driven by barely passing energetic ions (EIs), are numerically studied with the spatial distribution of the EIs taking into account. It is found that the modes with frequencies comparable to the toroidal precession frequencies are excited by resonant interaction with the EIs. Positive and negative density gradient dominating cases, corresponding to off- and near-axis depositions of neutral beam injection (NBI), respectively, are analyzed in detail. The most interesting and important feature of the modes is that there exists a second stable regime in higher {beta}{sub h} (=pressure of EIs/toroidal magnetic pressure) range, and the modes may only be excited by the barely passing EIs in a region of {beta}{sub th1}<{beta}{sub h}<{beta}{sub th2} ({beta}{sub th} is threshold or critical beta of EIs). Besides, the unstable modes require minimum density gradients and minimum radial positions of NBI deposition. The physics mechanism for the existence of the second stable regime is discussed. The results may provide a means of reducing or even preventing the loss of NBI energetic ions and increasing the heating efficiency by adjusting the pitch angle and driving the system into the second stable regime fast enough.

  8. Spectroscopy of resonant excitation of exciton luminescence of GaSe-GaTe solid solutions

    NASA Astrophysics Data System (ADS)

    Starukhin, A. N.; Nelson, D. K.; Fedorov, D. L.; Syunyaev, D. K.

    2017-02-01

    The luminescence excitation spectra of localized excitons in GaSe0.85Te0.15 solid solutions have been investigated at the temperature T = 2 K. It has been shown that the excitation spectra of excitons with the localization energy ɛ > 10 mV exhibit an additional maximum M E located on the low-energy side of the maximum corresponding to the free exciton absorption band with n = 1. It has been found that the shift in the position of the maximum M E in the excitation spectrum with respect to the energy of detected photons increases as the energy of detected photons decreases, i.e., with an increase in the localization energy of excitons. Under the resonant excitation of localized excitons by a monochromatic light from the region of the exciton emission band, in the exciton luminescence spectrum on the low-energy side from the excitation line, there is also a maximum of the luminescence ( M L ). The energy distance between the position of the excitation line and the position of the maximum in the luminescence spectrum increases with a decrease in the frequency of the excitation light. The possible mechanisms of the formation of the described structure of the luminescence excitation and exciton luminescence spectra of GaSe0.85Te0.15 have been considered. It has been concluded that the maximum M E in the excitation spectrum and the maximum M L in the luminescence spectrum are attributed to electronic-vibrational transitions with the creation and annihilation of localized excitons, respectively.

  9. Carrier concentration dependence of the tunability of the dipole resonance peak in optically excited metamaterials

    NASA Astrophysics Data System (ADS)

    Chatzakis, Ioannis; Luo, Liang; Wang, Jigang; Shen, Nian Hai; Koschny, Thomas; Soukoulis, Costas

    2011-03-01

    Currently, there is strong interest to explore the dynamic control of the electromagnetic properties of metamaterials, which have important implications on their optoelectronic applications. While the design, fabrication and photo-doping of metamaterial/semiconductor structures have been actively pursued, some fundamental issues related to highly photo-excited states, their dynamic tuning and temporal evolution remain open. Using optical-pump terahertz probe spectroscopy, we report on the pump fluence dependence of the electric dipole resonance tunability in metamaterials. We find a previously undiscovered large non-monotonic variation on the strength of the dipole resonance peak with the photo-injected carrier concentration.

  10. Controlling of explicit internal signal stochastic resonance by external signal

    NASA Astrophysics Data System (ADS)

    Li, Ya Ping; Wang, Pin; Li, Qian Shu

    2004-09-01

    Explicit internal signal stochastic resonance (EISSR) is investigated in a model of energy transduction of molecular machinery when noise is added to the region of oscillation in the presence of external signal (ES). It is found that EISSR could be controlled, i.e., enhanced or suppressed by adjusting frequency (ωe) and amplitude (A) of ES, and that there exits an optimal frequency for ES, which makes EISSR strength reach the maximum. Meanwhile, a critical amplitude (Ac) is found, which is a threshold of occurrence of EISSR. Finally, the difference and similarity between EISSR and IISSR (implicit internal signal stochastic resonance) are discussed.

  11. Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind

    SciTech Connect

    Mazur, V. A.

    2010-11-15

    The eigenfrequencies and eigenmodes of an MHD cavity in the front part of the magnetosphere and its excitation by monochromatic hydromagnetic waves incident onto the magnetosphere from solar wind are studied theoretically in the model of a plane-stratified plasma. The eigenmodes are damped due to both their absorption at the Alfven resonance points and their emission into solar wind through the magnetopause, which is partially transparent for the excited waves. It is shown that, due to the influence of the magnetospheric cavity, the pumping of the magnetosphere by the incident waves is resonance in character. The waves penetrate into the magnetosphere only if their frequencies lie in narrow spectral ranges near the eigenfrequencies of the cavity, the width of these ranges being on the order of the damping rate of the eigenmodes. Waves with other frequencies are almost completely reflected from the magnetopause.

  12. The Giant Dipole Resonance built on highly excited states — results of the MEDEA experiment

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1994-03-01

    Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei formed in the 36Ar + 90Zr reaction at 27 MeV/u have been measured with a nearly 4π barium fluoride multidetector. It is shown that hot Sn-like nuclei with a range of excitation energies between 300 and 600 MeV are produced. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei is shown to remain constant over this excitation energy range. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures.

  13. Excited atoms in the free-burning Ar arc: treatment of the resonance radiation

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu; Kalanov, D.; Gortschakow, S.; Baeva, M.; Uhrlandt, D.

    2016-11-01

    The collisional-radiative model with an emphasis on the accurate treatment of the resonance radiation transport is developed and applied to the free-burning Ar arc plasma. This model allows for analysis of the influence of resonance radiation on the spatial density profiles of the atoms in different excited states. The comparison of the radial density profiles obtained using an effective transition probability approximation with the results of the accurate solution demonstrates the distinct impact of transport on the profiles and absolute densities of the excited atoms, especially in the arc fringes. The departures from the Saha-Boltzmann equilibrium distributions, caused by different radiative transitions, are analyzed. For the case of the DC arc, the local thermodynamic equilibrium (LTE) state holds close to the arc axis, while strong deviations from the equilibrium state on the periphery occur. In the intermediate radial positions the conditions of partial LTE are fulfilled.

  14. Resonant excitations of single and two-qubit systems coupled to a tank circuit

    NASA Astrophysics Data System (ADS)

    Shevchenko, S. N.; van der Ploeg, S. H. W.; Grajcar, M.; Il'Ichev, E.; Omelyanchouk, A. N.; Meyer, H.-G.

    2008-11-01

    The interaction of flux qubits with a low-frequency tank circuit is studied. It is shown that changes in the state of the interacting qubits influence the effective inductance and resistance of the circuit, which is the essence of the so-called impedance measurement technique. The multiphoton resonant excitations in both single flux qubits and pairs of coupled flux qubits are investigated. In particular, we compare our theoretical results with recent spectroscopy measurements, Landau-Zener interferometry, and the multiphoton fringes.

  15. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  16. Measurement of collective excitations in VO2 by resonant inelastic x-ray scattering

    DOE PAGES

    He, Haowei; Gray, A. X.; Granitzka, P.; ...

    2016-10-15

    Vanadium dioxide is of broad interest as a spin-1/2 electron system that realizes a metal-insulator transition near room temperature, due to a combination of strongly correlated and itinerant electron physics. Here, resonant inelastic x-ray scattering is used to measure the excitation spectrum of charge and spin degrees of freedom at the vanadium L edge under different polarization and temperature conditions, revealing excitations that differ greatly from those seen in optical measurements. Furthermore, these spectra encode the evolution of short-range energetics across the metal-insulator transition, including the low-temperature appearance of a strong candidate for the singlet-triplet excitation of a vanadium dimer.

  17. Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules

    PubMed Central

    Xie, Zhi Qiang; Bai, Jaeil; Zhou, Yun Shen; Gao, Yi; Park, Jongbok; Guillemet, Thomas; Jiang, Lan; Zeng, Xiao Cheng; Lu, Yong Feng

    2014-01-01

    Crystallographic orientations determine the optical, electrical, mechanical, and thermal properties of crystals. Control of crystallographic orientations has been studied by changing the growth parameters, including temperature, pressure, proportion of precursors, and surface conditions. However, molecular dynamic mechanisms underlying these controls remain largely unknown. Here we achieved control of crystallographic orientations in diamond growth through a joint experimental and theoretical study of laser resonant vibrational excitation of precursor molecules (ethylene). Resonant vibrational excitation of the ethylene molecules using a wavelength-tunable CO2 laser steers the chemical reactions and promotes proportion of intermediate oxide species, which results in preferential growth of {100}-oriented diamond films and diamond single crystals in open air. Quantum molecular dynamic simulations and calculations of chemisorption energies of radicals detected from our mass-spectroscopy experiment provide an in-depth understanding of molecular reaction mechanisms in the steering of chemical reactions and control of crystallographic orientations. This finding opens up a new avenue for controlled chemical vapor deposition of crystals through resonant vibrational excitations to steer surface chemistry. PMID:24694918

  18. Transient Exciton Spin Splitting in GaAs Quantum Wells under Near-Resonant Excitation

    NASA Astrophysics Data System (ADS)

    Zin Latt, Kyaw; Lai, Chih-Wei

    2010-03-01

    We investigated spin dependent exciton-exciton interaction and energy relaxation under near-resonant circularly polarized ps pulsed excitation in single, multiple, or double coupled GaAs/AlGaAs quantum wells. Transient exciton spin splitting and relaxation were determined from time-resolved photoluminescence (TRPL) spectroscopy and polarimetry with a streak camera system. In contrast to standard TRPL measurements based on up-conversion and pump-probe techniques, the streak-camera setup allows for speedy spectroscopy and Stokes polarimetry measurements as a function of the exciton density and magnetic/electric field under near -resonant excitation (˜3 to 10 meV from the exciton resonance). For 6-nm and 14-nm GaAs/AlGaAs quantum wells at intermediate density (a few 10^10 cm-2), a spin splitting of 2 and 1 meV appeared instantly within 10 ps after excitation and exhibited a decay time constant of ˜100 and 500 ps, respectively. In the presence of magnetic fields, the spin splitting and relaxation dynamics became non-exponential and exhibited asymmetric and nonlinear dependence on the direction and magnitude of the field up to 10 Tesla. We analyzed the spin splitting and relaxation dynamics in terms of inter-exciton and intra-exciton exchange interaction and exciton-carrier interaction.

  19. Implementation of Dipolar Resonant Excitation Collision Induced Dissociation with Ion Mobility/Time-of-Flight MS

    SciTech Connect

    Webb, Ian K.; Chen, Tsung-Chi; Danielson, William F.; Ibrahim, Yehia M.; Tang, Keqi; Anderson, Gordon A.; Smith, Richard D.

    2014-01-28

    Under and overfragmentation are significant hurdles to the data independent “bottom-up” approach to proteomics. Another challenge to the data independent approach is the convolution of fragments from different peptides that coelute in reverse-phase liquid chromatography/mass spectrometry (RPLC/MS). The ion mobility/collision induced dissociation/time-of flight mass spectrometry (IMS/CID/TOF MS) approach gives drift-time aligned fragment ions that have the same arrival time distributions as precursor ions, greatly aiding in fragment and peptide ion identification. We have modified an IMS/TOF MS platform to allow for resonant excitation CID experiments. Resonant excitation CID leads to highly efficient, mass-resolved fragmentation without additional excitation of product ions, alleviating the overfragmentation problem. The ability to apply resonant waveforms in mobility-resolved windows has been demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS separation experiment.

  20. Microwave-Excited Microplasma Thrusters Using Surface Wave and Electron Cyclotron Resonance Discharges

    NASA Astrophysics Data System (ADS)

    Mori, Daisuke; Kawanabe, Tetsuo; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2012-10-01

    Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have studied two types of microwave-excited microplasma thrusters, using surface wave-excited and electron cyclotron resonance-excited discharges. Microwaves of S-band (4 GHz) and X-band (11 GHz) were employed to excite the plasma in these experiments, with the feed or propellant gases of Ar and He. A microplasma thruster of electrothermal type consisted of a surface wave-excited microplasma source, and a converging-diverging micronozzle to obtain the thrust. For 11-GHz microwaves at a power of 6 W, a thrust of 1.1 mN and a specific impulse of 90 s were obtained at an Ar gas flow rate of 40 sccm, where the plasma electron density was 1.2x10^20 m-3, and the gas temperature was 1.5x10^3 K; under the same conditions for 4-GHz microwaves, the thrust, specific impulse, electron density, and gas temperature were 0.93 mN, 80 s, 7.0x10^19 m-3, and 8.0x10^2 K, respectively. A microplasma thruster of electromagnetic type had a microplasma source excited by electron cyclotron resonance with external magnetic fields, to obtain the thrust through accelerating ions by ambipolar electric fields. Optical emission spectrum was dominated by Ar^+ ion lines in the microplasma thruster of electromagnetic type, owing to higher electron temperatures at lower feed-gas pressures.

  1. Internal resonance and low frequency vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Towfighian, Shahrzad

    2017-09-01

    A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.

  2. Acoustic resonance excitation of turbulent heat transfer and flow reattachment downstream of a fence

    NASA Astrophysics Data System (ADS)

    Selcan, Claudio; Cukurel, Beni; Shashank, Judah

    2016-10-01

    The current work investigates the aero-thermal impact of standing sound waves, excited in a straight channel geometry, on turbulent, separating and reattaching flow over a fence. Effects of distinct frequency resonant forcing (ReH = 10,050 and f = 122 Hz) are quantified by wall static pressure measurements and detailed convective heat transfer distributions via liquid crystal thermometry. Acoustic boundary conditions are numerically predicted and the computed longitudinal resonance mode shapes are experimentally verified by surface microphone measurements. Findings indicate the presence of a resonant sound field to exert strong influence on local heat transfer downstream of the fence, whereas the boundary layer upstream of the obstacle remains notable unaffected. Upstream shift of the maximum heat transfer location and an earlier pressure recovery indicate a reduction in time averaged flow reattachment length of up to 37 %. Although the streamwise peak Nusselt increased by only 5 %, the heat transfer level in the vicinity of the unexcited reattachment zone was locally enhanced up to 25 %. Despite prominent impact of resonant forcing on the fence wake flow, the total pressure drop penalty remained invariant. Observations demonstrate the significant aero-thermal implications of shear layer excitation by standing sound waves superimposed on the channel flow field.

  3. Ab initio calculation of resonance Raman cross sections based on excited state geometry optimization.

    PubMed

    Gaff, J F; Franzen, S; Delley, B

    2010-11-04

    A method for the calculation of resonance Raman cross sections is presented on the basis of calculation of structural differences between optimized ground and excited state geometries using density functional theory. A vibrational frequency calculation of the molecule is employed to obtain normal coordinate displacements for the modes of vibration. The excited state displacement relative to the ground state can be calculated in the normal coordinate basis by means of a linear transformation from a Cartesian basis to a normal coordinate one. The displacements in normal coordinates are then scaled by root-mean-square displacement of zero point motion to calculate dimensionless displacements for use in the two-time-correlator formalism for the calculation of resonance Raman spectra at an arbitrary temperature. The method is valid for Franck-Condon active modes within the harmonic approximation. The method was validated by calculation of resonance Raman cross sections and absorption spectra for chlorine dioxide, nitrate ion, trans-stilbene, 1,3,5-cycloheptatriene, and the aromatic amino acids. This method permits significant gains in the efficiency of calculating resonance Raman cross sections from first principles and, consequently, permits extension to large systems (>50 atoms).

  4. Microscopic description of charge-exchange nuclear resonances excited in ( p,n) reactions

    SciTech Connect

    Gareev, F.A.; Ershov, S.N.; Pyatov, N.I.; Fayans, S.A.

    1984-06-01

    The charge-exchange excitations for the /sup 48/Ca..-->../sup 48/Sc, /sup 90/Zr..-->../sup 90/Nb, and /sup 208/Pb..-->../sup 208/Bi isobar pairs are calculated using the methods of the theory of finite Fermi systems with the single-particle continuum taken into account exactly. Transition densities for the isobar-analog states, Gamow-Teller resonances, dipole (L = 1, S = 0) resonances, and spin-dipole (L = 1, S = 1) resonances are calculated. Differential cross sections for the ( p,n) reactions which excite these resonances are calculated in the distorted-wave impulse approximation for proton energies E/sub p/ in the 100--200 MeV range. A detailed comparison with experimental data is performed in order to determine the nucleon-nucleon effective interaction in the charge-exchange channel as well as the local quasiparticle charge e/sub q/(sigmatau) that characterizes the quenching of low-energy spin-flip transitions. It is shown, in particular, that the theory gives a good description of experiment for the value g' = 1.1 (G/sup prime//sub 0/ = 330 MeVxfm/sup 3/) of the Landau-Migdal strength parameter and for e/sub q/(sigmatau)roughly-equal0.8.

  5. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation

    NASA Astrophysics Data System (ADS)

    Bourgeois, E.; Londero, E.; Buczak, K.; Hruby, J.; Gulka, M.; Balasubramaniam, Y.; Wachter, G.; Stursa, J.; Dobes, K.; Aumayr, F.; Trupke, M.; Gali, A.; Nesladek, M.

    2017-01-01

    The core issue for the implementation of NV center qubit technology is a sensitive readout of the NV spin state. We present here a detailed theoretical and experimental study of NV center photoionization processes, used as a basis for the design of a dual-beam photoelectric method for the detection of NV magnetic resonances (PDMR). This scheme, based on NV one-photon ionization, is significantly more efficient than the previously reported single-beam excitation scheme. We demonstrate this technique on small ensembles of ˜10 shallow NVs implanted in electronic grade diamond (a relevant material for quantum technology), on which we achieve a cw magnetic resonance contrast of 9%—three times enhanced compared to previous work. The dual-beam PDMR scheme allows independent control of the photoionization rate and spin magnetic resonance contrast. Under a similar excitation, we obtain a significantly higher photocurrent, and thus an improved signal-to-noise ratio, compared to single-beam PDMR. Finally, this scheme is predicted to enhance magnetic resonance contrast in the case of samples with a high proportion of substitutional nitrogen defects, and could therefore enable the photoelectric readout of single NV spins.

  6. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  7. Resonance Raman enhancement optimization in the visible range by selecting different excitation wavelengths.

    PubMed

    Wang, Zhong; Li, Yuee

    2015-09-01

    Resonance enhancement of Raman spectroscopy (RS) has been used to significantly improve the sensitivity and selectivity of detection for specific components in complicated environments. Resonance RS gives more insight into the biochemical structure and reactivity. In this field, selecting a proper excitation wavelength to achieve optimal resonance enhancement is vital for the study of an individual chemical/biological ingredient with a particular absorption characteristic. Raman spectra of three azo derivatives with absorption spectra in the visible range are studied under the same experimental conditions at 488, 532, and 633 nm excitations. Universal laws in the visible range have been concluded by analyzing resonance Raman (RR) spectra of samples. The long wavelength edge of the absorption spectrum is a better choice for intense enhancement and the integrity of a Raman signal. The obtained results are valuable for applying RR for the selective detection of biochemical constituents whose electronic transitions take place at energies corresponding to the visible spectra, which is much friendlier to biologial samples compared to ultraviolet.

  8. Dissociation of chloromethanes upon resonant σ{sup *} excitation studied by x-ray scattering

    SciTech Connect

    Bohinc, R.; Bučar, K.; Kavčič, M.; Žitnik, M.; Journel, L.; Guillemin, R.; Marchenko, T.; Simon, M.; Cao, W.

    2013-10-07

    The dissociation process following the Cl K-shell excitation to σ{sup *} resonances is studied by high resolution spectroscopy of resonant elastic and inelastic x-ray scattering on CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and CCl{sub 4} molecules. Calculations employing the transition potential and Delta-Kohn-Sham DFT approach are in good agreement with the measured total fluorescence yield and show the presence of a second quasidegenerate group of states with σ{sup *} character above the lowest σ{sup *} unoccupied molecular orbital for molecules with more than one Cl atom. A bandwidth narrowing and a nonlinear dispersion behavior is extracted from the Kα spectral maps for both σ{sup *} resonances. The fitted data indicate that the widths of the Franck-Condon distributions for the first and second σ{sup *} resonances are comparable for all the molecules under study. In addition, an asymmetric broadening of the emission peaks is observed for resonant elastic x-ray scattering with zero detuning on both σ{sup *} resonances. This is attributed to the fast dissociation, transferring about 0.15 of the scattering probability into higher vibrational modes.

  9. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    NASA Astrophysics Data System (ADS)

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  10. Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei

    NASA Astrophysics Data System (ADS)

    Boretzky, Konstanze

    2006-04-01

    The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").

  11. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    NASA Astrophysics Data System (ADS)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be

  12. Quenching of the Giant Dipole Resonance Strength at High Excitation Energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.

    2007-05-01

    The evolution with excitation energy of the Giant Dipole Resonance features in nuclei of mass A≈108-136 is reviewed. We first discuss the results of the experiments performed with MEDEA studying the GDR gamma decay from hot nuclei populated at excitation energies above 300 MeV. The focus of the paper is on the excitation energy region between 160 and 290 MeV. This region has been investigated through the study of the reactions 116Sn + 12C at 17 and 23 A MeV, and 116Sn + 24Mg at 17 A MeV. Gamma-rays were detected using MEDEA in coincidence with evaporation residues detected in MACISTE. The analysis of the gamma-ray spectra and their comparison with statistical calculations are presented. The comparison with γ-ray spectra from the reaction 36Ar + 98Mo at higher excitation energies shows a coherent scenario where a progressive reduction of γ multiplicity relative to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy. Finally, the existence of a link between disappearance of collective motion and the liquid-gas phase transitions is discussed.

  13. Ramsey interferometry for resonant Auger decay through core-excited states

    NASA Astrophysics Data System (ADS)

    Chatterjee, Souvik; Nakajima, Takashi

    2016-08-01

    We theoretically investigate the electron dynamics in Ne atoms involving core-excited states through the Ramsey scheme with a pair of time-delayed x-ray pulses. Irradiation of Ne atoms by the ˜1 femtosecond x-ray pulse simultaneously populates two core-excited states, and an identical but time-delayed x-ray pulse probes the dynamics of the core-excited electron wave packet which is subject to the resonant Auger decay. The energy-integrated total Auger electron yield and energy-resolved Auger electron spectra in the time domain show periodic structures due to the temporal evolution of the wave packet, from which we can obtain the counterpart in the frequency domain through the Fourier transformation. The Auger electron energy spectra in the time as well as frequency domains show the interference patterns between the two Auger electron wave packets released into the continuum from the superposition of two core-excited states at different times. These spectra are important to clarify the individual contribution of the different Auger decay channels upon core excitation by the x-ray pulse.

  14. Resonant plasmon-axion excitations induced by charge density wave order in a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Redell, Matthew D.; Mukherjee, Shantanu; Lee, Wei-Cheng

    2016-06-01

    We investigate the charge excitations of a Weyl semimetal in the axionic charge density wave (axionic CDW) state. While it has been shown that the topological response (anomalous Hall conductivity) is protected against the CDW state, we find that the long-wavelength plasmon excitation is radically influenced by the dynamics of the CDW order parameter. In the normal state, we show that an undamped collective mode should exist at q ⃗≈Q⃗CDW if there is an attractive interaction favoring the formation of the CDW state. The undamped nature of this collective mode is attributed to a gaplike feature in the particle-hole continuum at q ⃗≈Q⃗CDW due to the chirality of the Weyl nodes, which is not seen in other materials with CDW instability. In the CDW state, the long-wavelength plasmon excitations become more dispersive due to the additional interband scattering not allowed in the normal state. Moreover, because the translational symmetry is spontaneously broken, umklapp scattering, the process conserving the total momentum only up to n Q⃗CDW , with n an integer and Q⃗CDW the ordering wave vector, emerges in the CDW state. We find that the plasmon excitation couples to the phonon mode of the CDW order via the umklapp scattering, leading to two branches of resonant collective modes observable in the density-density correlation function at q ⃗≈0 and q ⃗≈Q⃗CDW . Based on our analysis, we propose that measuring these resonant plasmon-axion excitations around q ⃗≈0 and q ⃗≈Q⃗CDW by momentum-resolved electron energy loss spectroscopy could serve as a reliable way to detect the axionic CDW state in Weyl semimetals.

  15. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: resonance Raman and complete active space self-consistent field calculation study.

    PubMed

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S2(A'), S6(A'), and S7(A') excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S2(A'), S6(A'), and S7(A') excited states were very different. The conical intersection point CI(S2/S1) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S2(A') state: the radiative S(2,min) → S0 transition and the nonradiative S2 → S1 internal conversion via CI(S2/S1). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S1/T1) in the excited state decay dynamics of PITC is evaluated.

  16. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  17. A Study on the Excitation and Resonant Absorption of Coronal Loop Kink Oscillations

    NASA Astrophysics Data System (ADS)

    Yu, Dae Jung; Van Doorsselaere, Tom

    2016-11-01

    We study theoretically the issue of externally driven excitations of standing kink waves and their resonant absorption into torsionally polarized m = 1 waves in the coronal loops in pressureless plasmas. We use the ideal MHD equations, for which we develop an invariant imbedding method available in cylindrical geometry. We assume a sinusoidal density profile at the loop boundary where the density inside the loop is lower than the outside and vice versa. We present field distributions for these two cases and find that they have similar behaviors. We compare the results for the overdense loops, which describe the usual coronal loops, with the analytical solutions of Soler et al. obtained using the Frobenius method. Our results show some similarity for thin nonuniform layers but deviate a lot for thick nonuniform layers. For the first case, which describes the wave train propagation in funnels, we find that resonant absorption depends crucially on the thickness of the nonuniform boundary, loop length, and density contrast. The resonant absorption of the kink mode is dominant when the loop length is sufficiently larger compared with its radius (thin loop). The behavior of the far-field pattern of the scattered wave by the coronal loop is closely related to that of the resonant absorption. For the mode conversion phenomena in inhomogeneous plasmas, a certain universal behavior of the resonant absorption is found for the first time. We expect that the main feature may also apply to the overdense loops and discuss its relation to the damping rate.

  18. Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials

    PubMed Central

    Fedotov, V. A.; Rogacheva, A. V.; Savinov, V.; Tsai, D. P.; Zheludev, N. I.

    2013-01-01

    Engaging strongly resonant interactions allows dramatic enhancement of functionalities of many electromagnetic devices. However, resonances can be dampened by Joule and radiation losses. While in many cases Joule losses may be minimized by the choice of constituting materials, controlling radiation losses is often a bigger problem. Recent solutions include the use of coupled radiant and sub-radiant modes yielding narrow asymmetric Fano resonances in a wide range of systems, from defect states in photonic crystals and optical waveguides with mesoscopic ring resonators to nanoscale plasmonic and metamaterial systems exhibiting interference effects akin to electromagnetically-induced transparency. Here we demonstrate theoretically and confirm experimentally a new mechanism of resonant electromagnetic transparency, which yields very narrow isolated symmetric Lorentzian transmission lines in toroidal metamaterials. It exploits the long sought non-trivial non-radiating charge-current excitation based on interfering electric and toroidal dipoles that was first proposed by Afanasiev and Stepanovsky in [J. Phys. A Math. Gen. 28, 4565 (1995)]. PMID:24132231

  19. Multichannel calculation of excited vector ϕ resonances and the ϕ(2170)

    NASA Astrophysics Data System (ADS)

    Coito, Susana; Rupp, George; van Beveren, Eef

    2009-11-01

    A multichannel calculation of excited JPC=1--ϕ states is carried out within a generalization of the resonance-spectrum expansion, which may shed light on the classification of the ϕ(2170) resonance, discovered by BABAR and originally denoted X(2175). In this framework, a complete spectrum of bare ss¯ states is coupled to those Okubo-Zweig-Iizuka-allowed decay channels that should be most relevant for the considered energy range. The included S- and P-wave two-meson channels comprise the lowest pseudoscalar, vector, scalar, and axial-vector mesons, while in the qq¯ sector both the S13 and D13 states are coupled. The only two free parameters are tuned so as to reproduce mass and width of the ϕ(1020), but come out reasonably close to previously used values. Among the model’s T-matrix poles, there are good candidates for observed resonances, as well as other ones that should exist according to the quark model. Besides the expected resonances as unitarized confinement states, a dynamical resonance pole is found at (2186-i246)MeV. The huge width makes its interpretation as the ϕ(2170) somewhat dubious, but further improvements of the model may change this conclusion.

  20. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  1. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  2. A smart pinless ejection mechanism using dual-resonance excitation Langevin piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jen; Fu, Kuo-Chieh; Wang, Chun-Chieh

    2016-01-01

    This study investigated a smart pinless ejection mechanism comprising two dual-resonance excitation Langevin piezoelectric transducers (DRELPTs) for keeping the injection parts intact and protecting their top and bottom surfaces from scarring during plastic injection molding. The dimensions of each DRELPT were determined using longitudinal vibration models, and an optimization method was used to set the frequency ratio of the first to the second longitudinal mode to 1:2. This concept enables the driving of DRELPT in its two longitudinal modes consistent with the ejection direction in resonant-type smooth impact drive mechanisms. During the ejection process, DRELPT provides an ejection force, which is applied on the sidewalls of the injection parts to protect their top and bottom surfaces from scarring. Considering individual differences in the resonance frequencies of DRELPTs, a resonance frequency tracking circuit based on a phase-locked loop was designed to keep DRELPT actuating in resonance. The ejection velocity of the injection part was estimated using the kinetic models derived from the dynamic behavior of the mold cavity and injection parameters. A characteristic number S was defined to evaluate the average velocity of the injection part during ejection. Proof-of-concept experimental results of the pinless ejection mechanism are presented. The ejection time, that is, the time from triggering the composite wave to the full departure of the injection part from the mold cavity, was 72 ms.

  3. Resonant excitation of black holes by massive bosonic fields and giant ringings

    NASA Astrophysics Data System (ADS)

    Décanini, Yves; Folacci, Antoine; Ould El Hadj, Mohamed

    2014-04-01

    We consider the massive scalar field, the Proca field, and the Fierz-Pauli field in the Schwarzschild spacetime and we focus more particularly on their long-lived quasinormal modes. We show numerically that the associated excitation factors have a strong resonant behavior and we confirm this result analytically from semiclassical considerations based on the properties of the unstable circular geodesics on which a massive particle can orbit the black hole. The conspiracy of (i) the long-lived behavior of the quasinormal modes and (ii) the resonant behavior of their excitation factors induces intrinsic giant ringings, i.e., ringings of a huge amplitude. Such ringings, which are moreover slowly decaying, are directly constructed from the retarded Green function. If we describe the source of the black hole perturbation by an initial value problem with Gaussian initial data, i.e., if we consider the excitation of the black hole from an extrinsic point of view, we can show that these extraordinary ringings are still present. This suggests that physically realistic sources of perturbations should generate giant and slowly decaying ringings and that their existence could be used to constrain ultralight bosonic field theory interacting with black holes.

  4. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.

    PubMed

    Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2014-12-01

    High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.

  5. Three-mode resonant coupling of collective excitations in a Bose-Einstein condensate

    SciTech Connect

    Ma Yongli; Huang, Guoxiang; Hu Bambi

    2005-04-01

    We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature in a Bose-Einstein condensate (BEC). (i) Based on the Gross-Pitaevskii equation we derive a set of nonlinearly coupled envelope equations for a three-mode resonant interaction (TMRI) by means of a method of multiple scales. (ii) We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-state wave function of the condensate. (iii) We provide the selection rules in mode-mode interaction processes [including TMRI and second-harmonic generation (SHG)] according to the symmetry of the excitations. (iv) By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the present study on the TMRI of collective excitations in a BEC.

  6. Detection of elliptical polarization and mode splitting in discrete Schumann resonance excitations

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1989-01-01

    Elliptical polarization and mode splitting have been detected in the magnetic component of discrete, well defined Schumann resonance excitations. These ELF excitations, which are large electromagnetic transients of approximately 1 s duration, are called Q-bursts and typically occur every few minutes. They are believed to be the signature of the impulsive excitation of the earth-ionosphere cavity by ultra-large lightning currents. In this paper the magnetic polarization and spectral characteristics of four large Q-bursts are examined in detail using a new analysis technique. Two events display right-hand polarization and two display left-hand polarization. The theoretical polarization properties of the central and side multiplets of the Schumann resonances are used to define a local orthogonal coordinate system in the measurement frame in which these components may be separated. Maximum entropy spectrums computed separately for what are identified to be the central and side multiplets in this coordinate system show distinctly different eigenfrequencies for the lowest mode near 7.5 Hz. For the limited number of cases examined the magnitude of the line splitting detected using this technique is roughly 1.4-1.8 Hz, larger by nearly a factor of two than theoretical or observed values of the splitting previously reported. The frequencies of the side multiplets may lie either above or below the frequency of the central multiplet.

  7. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation

    PubMed Central

    Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.

    2014-01-01

    High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188

  8. Shifted excitation resonance Raman difference spectroscopy using a microsystem light source at 488 nm

    NASA Astrophysics Data System (ADS)

    Maiwald, M.; Sowoidnich, K.; Schmidt, H.; Sumpf, B.; Erbert, G.; Kronfeldt, H.-D.

    2010-04-01

    Experimental results in shifted excitation resonance Raman difference spectroscopy (SERRDS) at 488 nm will be presented. A novel compact diode laser system was used as excitation light source. The device is based on a distributed feedback (DFB) diode laser as a pump light source and a nonlinear frequency doubling using a periodically poled lithium niobate (PPLN) waveguide crystal. All elements including micro-optics are fixed on a micro-optical bench with a footprint of 25 mm × 5 mm. An easy temperature management of the DFB laser and the crystal was used for wavelength tuning. The second harmonic generation (SHG) provides an additional suppression of the spontaneous emission. Raman spectra of polystyrene demonstrate that no laser bandpass filter is needed for the Raman experiments. Resonance-Raman spectra of the restricted food colorant Tartrazine (FD&C Yellow 5, E 102) in distilled water excited at 488 nm demonstrate the suitability of this light source for SERRDS. A limit of detection (LOD) of 0.4 μmol.l-1 of E102 enables SERRDS at 488 nm for trace detection in e.g. food safety control as an appropriate contactless spectroscopic technique.

  9. Detection of elliptical polarization and mode splitting in discrete Schumann resonance excitations

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1989-01-01

    Elliptical polarization and mode splitting have been detected in the magnetic component of discrete, well defined Schumann resonance excitations. These ELF excitations, which are large electromagnetic transients of approximately 1 s duration, are called Q-bursts and typically occur every few minutes. They are believed to be the signature of the impulsive excitation of the earth-ionosphere cavity by ultra-large lightning currents. In this paper the magnetic polarization and spectral characteristics of four large Q-bursts are examined in detail using a new analysis technique. Two events display right-hand polarization and two display left-hand polarization. The theoretical polarization properties of the central and side multiplets of the Schumann resonances are used to define a local orthogonal coordinate system in the measurement frame in which these components may be separated. Maximum entropy spectrums computed separately for what are identified to be the central and side multiplets in this coordinate system show distinctly different eigenfrequencies for the lowest mode near 7.5 Hz. For the limited number of cases examined the magnitude of the line splitting detected using this technique is roughly 1.4-1.8 Hz, larger by nearly a factor of two than theoretical or observed values of the splitting previously reported. The frequencies of the side multiplets may lie either above or below the frequency of the central multiplet.

  10. Nonlinear Breathing Vibrations and Chaos of a Circular Truss Antenna with 1:2 Internal Resonance

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Chen, J.; Sun, Y.

    This paper investigates the nonlinear breathing vibrations and chaos of a circular truss antenna under changing thermal environment with 1:2 internal resonance for the first time. A continuum circular cylindrical shell clamped by one beam along its axial direction on one side is proposed to replace the circular truss antenna composed of the repetitive beam-like lattice by the principle of equivalent effect. The effective stiffness coefficients of the equivalent circular cylindrical shell are obtained. Based on the first-order shear deformation shell theory and the Hamilton’s principle, the nonlinear governing equations of motion are derived for the equivalent circular cylindrical shell. The Galerkin approach is utilized to discretize the nonlinear partial governing differential equation of motion to the ordinary differential equation for the equivalent circular cylindrical shell. The case of the 1:2 internal resonance, primary parametric resonance and 1/2 subharmonic resonance is taken into account. The method of multiple scales is used to obtain the four-dimensional averaged equation. The frequency-response curves and force-response curves are obtained when considering the strongly coupled of two modes. The numerical results indicate that there are the hardening type and softening type nonlinearities for the circular truss antenna. Numerical simulation is used to investigate the influences of the thermal excitation on the nonlinear breathing vibrations of the circular truss antenna. It is demonstrated from the numerical results that there exist the bifurcation and chaotic motions of the circular truss antenna.

  11. Resonantly excited precession motion of three-dimensional vortex core in magnetic nanospheres [corrected].

    PubMed

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Ha-Youn; Lee, Jae-Hyeok; Gaididei, Yuri; Kravchuk, Volodymyr P; Sheka, Denis D

    2015-06-16

    We found resonantly excited precession motions of a three-dimensional vortex core in soft magnetic nanospheres and controllable precession frequency with the sphere diameter 2R, as studied by micromagnetic numerical and analytical calculations. The precession angular frequency for an applied static field HDC is given as ωMV = γeffHDC, where γeff = γ〈mΓ〉 is the effective gyromagnetic ratio in collective vortex dynamics, with the gyromagnetic ratio γ and the average magnetization component 〈mΓ〉 of the ground-state vortex in the core direction. Fitting to the micromagnetic simulation data for 〈mΓ〉 yields a simple explicit form of 〈mΓ〉 ≈ (73.6 ± 3.4)(lex/2R)(2.20±0.14), where lex is the exchange length of a given material. This dynamic behavior might serve as a foundation for potential bio-applications of size-specific resonant excitation of magnetic vortex-state nanoparticles, for example, magnetic particle resonance imaging.

  12. Pressure Dependence of Excitation Cross Sections for Resonant Levels of Rare Gases

    NASA Astrophysics Data System (ADS)

    Stewart, Michael D.; Chilton, J. Ethan; Lin, Chun C.

    2000-06-01

    In the rare gases, the excited n'p^5ns and n'p^5nd levels with J = 1 are optically coupled to ground as well as lower lying p levels. Resonant photons emitted when the atom decays to ground can be reabsorbed by another ground-state atom. At low gas pressures this reabsorption occurs infrequently, but at higher pressures becomes increasingly likely until the resonant transition is completely suppressed. This enhances the cascade transitions into lower p levels, resulting in pressure dependent optical emission cross sections. This reabsorption process can be understood quantitatively with a model developed by Heddle et al(D. W. O. Heddle and N. J. Samuel, J. Phys. B 3), 1593 (1970).. The radiation from transitions into the nonresonant levels often lie in the ir, while the resonant radiation is always in the uv spectral region. Using a Fourier-transform spectrometer, one can measure the cross sections for the ir transitions as a function of pressure. The Heddle model can be fit to these data with the use of theoretical values for the Einstein A coefficients. This provides a test of the accuracy of calculated A values. Discussion will include cross section measurements for Ne, Ar, and Kr excited by electron impact over a range of gas pressures.

  13. Single Analyzer Precursor Ion Scans in a Linear Quadrupole Ion Trap Using Orthogonal Double Resonance Excitation

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2017-09-01

    Reported herein is a simple method of performing single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation. A first supplementary AC signal applied to the y electrodes is scanned through ion secular frequencies in order to mass-selectively excite precursor ions while, simultaneously, a second fixed-frequency AC signal is applied orthogonally on the x electrodes in order to eject product ions of selected mass-to-charge ratios towards the detector. The two AC signals are applied orthogonally so as to preclude the possibility of (1) inadvertently ejecting precursor ions into the detector, which results in artifact peaks, and (2) prevent beat frequencies on the x electrodes from ejecting ions off-resonance. Precursor ion scans are implemented while using the inverse Mathieu q scan for easier mass calibration. The orthogonal double resonance experiment results in single ion trap precursor scans with far less intense artifact peaks than when both AC signals are applied to the same electrodes, paving the way for implementation of neutral loss scanning in single ion trap mass spectrometers. [Figure not available: see fulltext.

  14. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  15. Nonordinary excitation of hydroacoustic resonance in the hydroturbine circuit of the sayano-shushenskaya hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Karavosov, R. K.; Prozorov, A. G.

    2011-05-01

    Three cases of excitation of resonance oscillations in a circuit with an incompressible medium and a hydrodynamic source of narrow-band acoustic radiation are compared. It is asserted that the Francis turbine can transmit and reflect infrasonic disturbances. It is supposed that an array of immobile coaxial cylinders below the impeller will prevent hydroacoustic self-excitation in flow inside the water conduit.

  16. Onset of quenching of the giant dipole resonance at high excitation energies

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.; Wieland, O.

    2014-11-01

    The evolution of the giant dipole resonance (GDR) properties in nuclei of mass A =120 to 132 has been investigated in an excitation energy range between 150 and 270 MeV through the study of complete and nearly complete fusion reactions using 116Sn beams at 17 A and 23 A MeV from the cyclotron of the Laboratorio Nazionale del Sud impinging on 12C and 24Mg targets. γ rays and light charged particles were detected using the multi-element detector array MEDEA in coincidence with evaporation residues detected by using mass and charge identification spectrometry with telescope (MACISTE). Light-charged-particle energy spectra were analyzed within the framework of a multiple-source-emission scenario by using a fitting procedure to determine the amount of pre-equilibrium emission and deduce the excitation energies reached in the compound nuclei. A detailed analysis of the γ -ray spectra and their comparison with statistical model calculations is presented. Evidence of a quenching of the GDR gamma yield was found at 270 MeV excitation energy. The quenching effect becomes progressively more important with increasing excitation energy, as observed when the comparison is extended to data from the reaction 36Ar+96Mo at 37 A MeV where hot nuclei were populated up to 430 MeV excitation energy. A coherent scenario emerges indicating the existence of a limiting excitation energy for the collective motion of about E*/A =2.1 MeV for systems of mass A =105 to 111 while a slightly lower value was observed for nuclei of mass A ˜132 . The existence of a possible link between GDR disappearance and the liquid-gas phase transition is discussed.

  17. Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance

    NASA Astrophysics Data System (ADS)

    Chen, Huajin; Ye, Qian; Zhang, Yiwen; Shi, Lei; Liu, Shiyang; Jian, Zi; Lin, Zhifang

    2017-08-01

    We demonstrate a reconfigurable lateral optical force (OF) on a plasmonic nanoparticle immersed in a simple optical field invariant along the lateral direction and formed by two interfering plane waves. This lateral OF is shown, from the multipolar expansion technique, attributed to several coupling channels established between multiple multipoles excited on a plasmonic nanoparticle, in particular, the adjacent electric multipole modes that bring about the Fano interferences, which can substantially enhance the lateral scattering asymmetry, leading to an augmented lateral OF comparable to the longitudinal OF. More importantly, by engineering Fano interference either intrinsically through particle size or extrinsically through selectively exciting narrow plasmonic dark modes the direction of the lateral OF is reversibly switchable. The lateral OF can even be modulated continuously from positive to negative by controlling the incident angle of the interfering plane waves due to the variation of relative phase of the excited plasmonic dark modes near Fano resonance, facilitating the plasmonic nanoparticle as a controllable conveyor as well as the optical selection and separation. Besides, a fundamental and counterintuitive physical consequence emerges in that the simple proportional relation between the lateral OF and the Belinfante spin momentum derived in the small particle limit breaks down when the Fano interference comes into play, in particular, a negative lateral OF opposite the Belinfante spin momentum can be induced by properly controlling the selective excitation.

  18. Infrared/ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states

    SciTech Connect

    Weiler, M.; Bartl, K.; Gerhards, M.

    2012-03-21

    Molecular beam investigations in combination with IR/UV spectroscopy offer the possibility to obtain structural information on isolated molecules and clusters. One of the demanding tasks is the discrimination of different isomers, e.g., by the use of isomer specific UV excitations. If this discrimination fails due to overlaying UV spectra of different isomers, IR/IR methods offer another possibility. Here, we present a new IR/UV/IR/UV quadruple resonance technique to distinguish between different isomers especially in the electronically excited state. Due to the IR spectra, structural changes and photochemical pathways in excited states can be assigned and identified. The method is applied to the dihydrated cluster of 3-hydroxyflavone which has been investigated as photochemically relevant system and proton wire model in the S{sub 1} state. By applying the new IR/UV/IR/UV technique, we are able to show experimentally that both in the electronic ground (S{sub 0}) and the electronically excited state (S{sub 1}) two isomers have to be assigned.

  19. Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy.

    PubMed

    Jeong, Bongwon; Pettit, Chris; Dharmasena, Sajith; Keum, Hohyun; Lee, Joohyung; Kim, Jungkyu; Kim, Seok; McFarland, D Michael; Bergman, Lawrence A; Vakakis, Alexander F; Cho, Hanna

    2016-03-29

    During dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip-sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio. Here, we introduce a new design concept for multi-harmonic AFM, exploiting intentional nonlinear internal resonance for the enhancement of higher harmonics. The nonlinear internal resonance, triggered by the non-smooth tip-sample dynamic interactions, results in nonlinear energy transfers from the directly excited fundamental bending mode to the higher-frequency mode and, hence, enhancement of the higher harmonic of the measured response. It is verified through detailed theoretical and experimental study that this AFM design can robustly incorporate the required internal resonance and enable high-frequency AFM measurements. Measurements on an inhomogeneous polymer specimen demonstrate the efficacy of the proposed design, namely that the higher harmonic of the measured response is capable of enhanced simultaneous topography imaging and compositional mapping, exhibiting less crosstalk with an abrupt height change.

  20. Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jeong, Bongwon; Pettit, Chris; Dharmasena, Sajith; Keum, Hohyun; Lee, Joohyung; Kim, Jungkyu; Kim, Seok; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.; Cho, Hanna

    2016-03-01

    During dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip-sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio. Here, we introduce a new design concept for multi-harmonic AFM, exploiting intentional nonlinear internal resonance for the enhancement of higher harmonics. The nonlinear internal resonance, triggered by the non-smooth tip-sample dynamic interactions, results in nonlinear energy transfers from the directly excited fundamental bending mode to the higher-frequency mode and, hence, enhancement of the higher harmonic of the measured response. It is verified through detailed theoretical and experimental study that this AFM design can robustly incorporate the required internal resonance and enable high-frequency AFM measurements. Measurements on an inhomogeneous polymer specimen demonstrate the efficacy of the proposed design, namely that the higher harmonic of the measured response is capable of enhanced simultaneous topography imaging and compositional mapping, exhibiting less crosstalk with an abrupt height change.

  1. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    SciTech Connect

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  2. Far-infrared laser magnetic resonance of vibrationally excited CD2

    NASA Technical Reports Server (NTRS)

    Evenson, K. M.; Sears, T. J.; Mckellar, A. R. W.

    1984-01-01

    The detection of 13 rotational transitions in the first excited bending state (010) of CD2 using the technique of far-infrared laser magnetic resonance spectroscopy is reported. Molecular parameters for this state are determined from these new data together with existing infrared observations of the v(2) band. Additional information on the ground vibrational state (000) is also provided by the observation of a new rotational transition, and this is combined with existing data to provide a refined set of molecular parameters for the CD2 ground state. One spectrum has been observed that is assigned as a rotational transition within the first excited symmetric stretching state (100) of CD2. These data will be of use in refining the structure and the potential function of the methylene radical.

  3. Evidence of strong dynamic core excitation in 19C resonant break-up

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; de Diego, R.; Crespo, R.; Moro, A. M.; Arias, J. M.; Johnson, R. C.

    2016-08-01

    The resonant breakup of 19C on protons measured at RIKEN [Y. Satou et al., Phys. Lett. B 660, 320 (2008), 10.1016/j.physletb.2008.01.022] is analyzed in terms of a valence-core model for 19C that includes possible core excitations. The analysis of the angular distribution of a prominent peak appearing in the relative-energy spectrum could be well described with this model and is consistent with the previous assignment of 5 /2+ for this state. Inclusion of core-excitation effects are found to be essential to giving the correct magnitude of the cross section for this state. By contrast, the calculation assuming an inert 18C core is found to largely underestimate the data.

  4. Resonant excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves

    SciTech Connect

    Mazur, V. A.

    2011-05-15

    The effect of the magnetospheric MHD cavity on the excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves incident from the solar wind is investigated theoretically by using a one-dimensional nonuniform model of the medium. It is shown that most of the energy of stochastic waves is reflected from the magnetopause and that the only waves that penetrate into the magnetosphere are those with frequencies in narrow spectral ranges near the eigenfrequencies of the cavity. These waves lead to steadystate excitation of the eigenmodes of the cavity, the energy of which is determined by the spectral density of the energy flux of the incident waves at the corresponding eigenfrequencies. The energy of the eigenmodes penetrates through the opacity barrier in the vicinity of the Alfven resonance points (each corresponding to a particular mode), where the perturbation amplitude is sharply amplified, so the total energy localized close to the Alfven resonance point is much higher than the total energy of the corresponding eigenmode. In the vicinities, the perturbation energy is dissipated by the finite conductivity of the ionosphere, the dissipation power being equal to the energy flux of the incident waves that penetrates into the magnetosphere. The case of unsteady waves is analyzed by considering a wave pulse as an example. It is shown that most of the energy of the wave pulse is reflected from the magnetopause. The portion of the incident perturbation that penetrates into the magnetosphere leads to unsteady excitation of the eigenmodes of the magnetospheric cavity, which are then slowly damped because part of the energy of the cavity is emitted through the magnetopause back to the solar wind while the other part penetrates into the vicinities of the Alfven resonance points. In the vicinities, the perturbation is an Alfven wave standing between magnetically conjugate ionospheres and its energy is dissipated by the finite conductivity of the ionosphere at

  5. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".

    PubMed

    Oshokoya, Olayinka O; JiJi, Renee D

    2015-09-10

    Protein secondary structural analysis is important for understanding the relationship between protein structure and function, or more importantly how changes in structure relate to loss of function. The structurally sensitive protein vibrational modes (amide I, II, III and S) in deep-ultraviolet resonance Raman (DUVRR) spectra resulting from the backbone C-O and N-H vibrations make DUVRR a potentially powerful tool for studying secondary structure changes. Experimental studies reveal that the position and intensity of the four amide modes in DUVRR spectra of proteins are largely correlated with the varying fractions of α-helix, β-sheet and disordered structural content of proteins. Employing multivariate calibration methods and DUVRR spectra of globular proteins with varying structural compositions, the secondary structure of a protein with unknown structure can be predicted. A disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles. Second-order curve resolution methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the "second-order advantage." An exceptional feature of DUVRR spectroscopy is that DUVRR spectra are linearly dependent on both excitation wavelength and secondary structure composition. Thus, higher order data can be created by combining protein DUVRR spectra of several proteins collected at multiple excitation wavelengths to give multi-excitation ultraviolet resonance Raman data (ME-UVRR). PARAFAC has been used to analyze ME-UVRR data of nine proteins to resolve the pure spectral, excitation and compositional profiles. A three factor model with non-negativity constraints produced three unique factors that were correlated with the relative abundance of helical, β-sheet and poly-proline II dihedral angles. This is the first empirical evidence that the typically resolved "disordered" spectrum represents the better defined poly-proline II type structure.

  6. Paramagnon excitations' theory for resonant inelastic X-ray scattering in doped plane copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Larionov, I. A.

    2015-04-01

    A relaxation function theory with paramagnon excitations for doped S = 1 / 2 two-dimensional Heisenberg antiferromagnetic system in the paramagnetic state is given in view of magnetic response of high-Tc copper oxide superconductors as obtained by resonant inelastic X-ray scattering (RIXS). The results of the theory on Nd(La)-Ba(Sr)-Cu-O and Y-Ba-Cu-O family compounds give fair agreement without especially adjusted parameters to RIXS data. It is shown that RIXS data analysis depends on paramagnon damping and thus affected by approximations made for dynamic spin susceptibility.

  7. Two-Photon Excitation and Relaxation of the 3d-4d Resonance in Atomic Kr

    SciTech Connect

    Meyer, M.; Cubaynes, D.; Richardson, V.; Costello, J. T.; Radcliffe, P.; Li, W. B.; Duesterer, S.; Fritzsche, S.; Mihelic, A.; Papamihail, K. G.; Lambropoulos, P.

    2010-05-28

    Two-photon excitation of a single-photon forbidden Auger resonance has been observed and investigated using the intense extreme ultraviolet radiation from the free electron laser in Hamburg. At the wavelength 26.9 nm (46 eV) two photons promoted a 3d core electron to the outer 4d shell. The subsequent Auger decay, as well as several nonlinear above threshold ionization processes, were studied by electron spectroscopy. The experimental data are in excellent agreement with theoretical predictions and analysis of the underlying multiphoton processes.

  8. Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface

    SciTech Connect

    Auth, C.; Mertens, A.; Winter, H.; Borisov, A.G.; Garcia de Abajo, F.J.

    1997-12-01

    We have scattered protons and hydrogen atoms with energies of some keV from a LiF(001) surface under a grazing angle of incidence. From the intensity of Lyman-{alpha} radiation (transition from n=2 to n=1, {lambda}=121.6 nm ) as a function of projectile energy for different azimuthal orientations of the crystal surface, we find clear evidence for a resonant coherent excitation of n=2 states of hydrogen atoms in the oscillating electric field in front of the insulator surface. {copyright} {ital 1997} {ital The American Physical Society}

  9. Excitation of silicon microspheres resonances with femtosecond laser fabricated glass waveguides

    NASA Astrophysics Data System (ADS)

    Ćirkinoǧlu, Hüseyin Ozan; Gökay, Ulaş Sabahattin; Serpengüzel, Ali; Sotillo, Belén.; Bharadwaj, Vibhav; Eaton, Shane M.; Ramponi, Roberta

    2016-09-01

    Optical waveguides were fabricated with femtosecond pulsed lasers on glass and characterized by transmission measurements. Glass waveguides were later used for excitation of the whispering gallery modes in a silicon microsphere. The coupling between the silicon microsphere and the femtosecond laser inscribed optical waveguide was simulated in both 90° elastic scattering and 0° transmission spectra. The silicon microsphere whispering gallery modes are available for both in the transverse electric and transverse magnetic polarizations with a spectral mode spacing of 0.25 nm. Optical resonances on silicon microsphere integrated with femtosecond laser written optical waveguides may lead to future quantum optical communication devices.

  10. Resonant generation of internal waves on a model continental slope.

    PubMed

    Zhang, H P; King, B; Swinney, Harry L

    2008-06-20

    We study internal wave generation in a laboratory model of oscillating tidal flow on a continental margin. Waves are found to be generated only in a near-critical region where the slope of the bottom topography matches that of internal waves. Fluid motion with a velocity an order of magnitude larger than that of the forcing occurs within a thin boundary layer above the bottom surface. The resonant wave is unstable because of strong shear; Kelvin-Helmholtz billows precede wave breaking. This work provides a new explanation for the intense boundary flows on continental slopes.

  11. Microsystem light source at 488 nm for shifted excitation resonance Raman difference spectroscopy.

    PubMed

    Maiwald, Martin; Schmidt, Heinar; Sumpf, Bernd; Güther, Reiner; Erbert, Götz; Kronfeldt, Heinz-Detlef; Tränkle, Günther

    2009-11-01

    A microsystem light source emitting at 488 nm was tested and applied as a light source for shifted excitation resonance Raman difference spectroscopy (SERRDS). A nonlinear frequency conversion using a distributed feedback (DFB) diode laser emission at 976 nm and a periodically poled lithium niobate (PPLN) waveguide crystal was realized on a micro-optical bench with a footprint of 25 mm x 5 mm. Joint temperature management via the microbench is used for wavelength tuning. Two emission lines at 487.61 nm and 487.91 nm are used for the SERRDS experiments. The Raman spectra of the test sample polystyrene demonstrate that a laser bandpass filter did not need to be implemented. Resonance Raman spectra of Tartrazine (FD&C Yellow 5, E 102) in distilled water are presented to demonstrate the suitability of this light source for SERRDS in, e.g., food safety control.

  12. Ferrimagnetic resonance excitation by light-wave mixing in a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Gutjahr-Löser, Th.; Krieger, W.; Walther, H.; Kirschner, J.

    1999-12-01

    Ferrimagnetic resonance is measured in a scanning tunneling microscope. The infrared light of two lasers is focused into the tunneling junction and a difference-frequency signal in the microwave region is generated. This microwave signal is used to excite spin waves in an yttrium-iron-garnet film with a thin Au capping. The coupling of the light to the tunneling junction is explained by an antenna mechanism. Characteristic antenna patterns of the angle-dependent receiving efficiency are obtained. The mixing of the two laser frequencies is due to the nonlinearity of the tunneling junction. The microwave signal obtained is absorbed in the ferromagnetic sample if the resonance condition is fulfilled. This method might allow the measurement of magnetic properties with a lateral resolution down to the nm scale.

  13. Intermediate resonance excitation in the γp→pππ reaction

    NASA Astrophysics Data System (ADS)

    Gdh Collaboration; Ahrens, J.; Altieri, S.; Annand, J. R. M.; Anton, G.; Arends, H.-J.; Aulenbacher, K.; Beck, R.; Bradtke, C.; Braghieri, A.; Degrande, N.; D'Hose, N.; Dutz, H.; Goertz, S.; Grabmayr, P.; Hansen, K.; Harmsen, J.; von Harrach, D.; Hasegawa, S.; Hasegawa, T.; Heid, E.; Helbing, K.; Holvoet, H.; van Hoorebeke, L.; Horikawa, N.; Iwata, T.; Jahn, O.; Jennewein, P.; Kageya, T.; Kiel, B.; Klein, F.; Kondratiev, R.; Kossert, K.; Krimmer, J.; Lang, M.; Lannoy, B.; Leukel, R.; Lisin, V.; Matsuda, T.; McGeorge, J. C.; Meier, A.; Menze, D.; Meyer, W.; Michel, T.; Naumann, J.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Preobrajenski, I.; Radtke, E.; Reichert, E.; Reicherz, G.; Rohlof, Ch.; Rosner, G.; Rostomyan, T.; Ryckbosch, D.; Sauer, M.; Schoch, B.; Schumacher, M.; Seitz, B.; Speckner, T.; Takabayashi, N.; Tamas, G.; Thomas, A.; van de Vyver, R.; Wakai, A.; Weihofen, W.; Wissmann, F.; Zapadtka, F.; Zeitler, G.

    2005-09-01

    The helicity dependence of the total cross section for the γ→p→→pππ reaction has been measured for the first time at incident photon energies from 400 to 800 MeV. The measurement, performed at the tagged photon beam facility of the MAMI accelerator in Mainz, used the large acceptance detector DAPHNE and a longitudinally polarized frozen-spin target. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, most likely due to the intermediate production of the D(1520) resonance. However, the contribution of the antiparallel spin configuration, arising from other reaction mechanisms, is also not negligible. This result gives important new information to resolve the existing model discrepancies in the identification of the nucleon resonances contributing to this channel.

  14. Biological sensor based on a lateral electric field-excited resonator.

    PubMed

    Zaitsev, Boris D; Kuznetsova, Iren E; Shikhabudinov, Alexander M; Ignatov, Oleg V; Guliy, Olga I

    2012-05-01

    This paper describes a biological sensor based on a lateral electric field-excited resonator using an X-cut lithium niobate plate. Its potential was shown through the example of biological interaction between bacterial cells and specific bacteriophages. The detection was based on the analysis of the measured real and imaginary parts of electrical impedance for a resonator loaded by the biological suspension under study. It has been shown that the sensor is sensitive to specific interactions between bacterial cells and specific bacteriophages in a pure state as well as in the presence of extraneous microflora. The degree of electrical impedance variation resulting from the biological interaction depends on the numbers of phage particles and bacteria cells. The sensor may be used not only for the qualitative analysis of bacteria but also for their quantitative detection.

  15. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks

    PubMed Central

    Mangussi, Franco

    2016-01-01

    In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined. PMID:27648829

  16. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks.

    PubMed

    Mangussi, Franco; Zanette, Damián H

    2016-01-01

    In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined.

  17. Intramolecular vibrational redistribution in Ne-Br2: the signature of intermediate resonances in the excitation spectrum.

    PubMed

    García-Vela, A

    2007-03-28

    Quantum-mechanical simulations of the Ne-Br(2)(B,v') excitation spectra produced after vibrational predissociation in the v'=20-35 range are reported. The aim is to investigate the signature in the excitation spectra of intermediate resonances lying in the lower vresonances, from the continuum resonance states above the Ne+Br(2)(B,v'-1) dissociation threshold to the resonances below that threshold. In general, the results show that the Ne-Br(2)(B,v') initial state couples more strongly to the energetically nearby v'-1 resonances, although coupling to farther away resonances also occurs with appreciable intensity. The excitation spectra reveal a strong overlapping between spectral features, indicating that the intermediate resonances are coupled and interfere between themselves. This coupling generates an interconnected network of intermediate resonances, through which an efficient flow of the initial population leading to IVR takes place. It is found that the density of continuum resonances reaches a maximum in the region just above the Ne+Br(2)(B,v'-1) threshold, and it decreases gradually with increasing energy above this threshold, as suggested in a previous work. An upper energy limit for the spectrum of v'-1 continuum resonances has been estimated to be about 23-29 cm(-1) above the v'-1 dissociation threshold. The excitation spectra reflect that coupling of the initial state with intermediate resonances lying below the Ne+Br(2)(B,v'-1) threshold can occur in a remarkably wide range of the resonance spectrum.

  18. Resonant Excitation of White Dwarf Oscillations in Compact Object Binaries: 1. The No Back Reaction Approximation

    SciTech Connect

    Rathore, Y.

    2004-06-14

    We consider the evolution of white dwarfs with compact object companions (specifically black holes with masses up to {approx} 10{sup 6} M{sub {circle_dot}}, neutron stars, and other white dwarfs). We suppose that the orbits are initially quite elliptical and then shrink and circularize under the action of gravitational radiation. During this evolution, the white dwarfs will pass through resonances when harmonics of the orbital frequency match the stellar oscillation eigenfrequencies. As a star passes through these resonances, the associated modes will be excited and can be driven to amplitudes that are so large that there is a back reaction on the orbit which, in turn, limits the growth of the modes. A formalism is presented for describing this dynamical interaction for a non-rotating star in the linear approximation when the orbit can be treated as non-relativistic. A semi-analytical expression is found for computing the resonant energy transfer as a function of stellar and orbital parameters for the regime where back reaction may be neglected. This is used to calculate the results of passage through a sequence of resonances for several hypothetical systems. It is found that the amplitude of the {ell} = m = 2 f-mode can be driven into the non-linear regime for appropriate initial conditions. We also discuss where the no back reaction approximation is expected to fail, and the qualitative effects of back reaction.

  19. Phase-noise-induced resonance in arrays of coupled excitable neural models.

    PubMed

    Xiaoming Liang; Liang Zhao

    2013-08-01

    Recently, it is observed that, in a single neural model, phase noise (time-varying signal phase) arising from an external stimulating signal can induce regular spiking activities even if the signal is subthreshold. In addition, it is also uncovered that there exists an optimal phase noise intensity at which the spiking rhythm coincides with the frequency of the subthreshold signal, resulting in a phase-noise-induced resonance phenomenon. However, neurons usually do not work alone, but are connected in the form of arrays or blocks. Therefore, we study the spiking activity induced by phase noise in arrays of globally and locally coupled excitable neural models. We find that there also exists an optimal phase noise intensity for generating large neural response and such an optimal value is significantly decreased compared to an isolated single neuron case, which means the detectability in response to the subthreshold signal of neurons is sharply improved because of the coupling. In addition, we reveal two new resonance behaviors in the neuron ensemble with the presence of phase noise: there exist optimal values of both coupling strength and system size, where the coupled neurons generate regular spikes under subthreshold stimulations, which are called as coupling strength and system size resonance, respectively. Finally, the dependence of phase-noise-induced resonance on signal frequency is also examined.

  20. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  1. Spatial structure of the electromagnetic field inside the ionospheric Alfvén resonator excited by atmospheric lightning activity

    NASA Astrophysics Data System (ADS)

    Plyasov, A. A.; Surkov, V. V.; Pilipenko, V. A.; Fedorov, E. N.; Ignatov, V. N.

    2012-09-01

    We have theoretically estimated ULF spectra on the ground and at ionospheric altitudes in the frequency range of the ionospheric Alfvén resonator (IAR). The IAR has been considered to be excited either by a separate lightning stroke or stochastic global thunderstorm activity. The spectra of both horizontal magnetic and electric components are shown to reveal the spectral resonant structure in the upper ionosphere. The IAR excitation for different ionospheric conditions has been compared. The IAR eigenfrequencies latitudinal inhomogeneity results in the smoothing and shift of the spectral resonance structure. The feasibility of the IAR signature detection by low-orbiting satellites with magnetic or electric sensors is discussed.

  2. Dissociation of internally excited UF 6- ions in collision with argon atoms

    NASA Astrophysics Data System (ADS)

    Stockdale, J. A. D.

    1987-06-01

    Uranium hexafluoride negative ions (UF 6-) of controlled average internal and kinetic energy were collided with argon. A qualitative change was observed in the dependence of ionic fragmentation on internal excitation prior to collision, as the laboratory collision energy was increased above 150 eV.

  3. Isoscalar monopole and dipole excitations of cluster states and giant resonances in 12C

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-05-01

    The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the shifted antisymmetrized molecular dynamics (AMD) plus 3 α -cluster generator coordinate method (GCM). The small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude cluster modes are incorporated by superposing 3 α -cluster wave functions in the GCM. The coupling of the excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters, and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(02+; 7.65 MeV) and 12C(03+; 10.3 MeV) measured by (e ,e') ,(α ,α') , and (6Li,6Li' ) scatterings. In the calculated low-energy ISD strengths, two 1- states (the 11- and 12- states) with the significant strengths are obtained over E =10 -15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for new cluster states such as the 12C(12-) obtained in the present calculation.

  4. Low-energy electron scattering by N2 molecules physisorbed on Ag: Study of the resonant vibrational excitation process

    NASA Astrophysics Data System (ADS)

    Djamo, V.; Teillet-Billy, D.; Gauyacq, J. P.

    1995-02-01

    Molecules adsorbed on a metal surface can be excited by low-energy electron impact. Resonant processes in which an intermediate negative ion is formed during the collision are very efficient. The resonant vibrational excitation of N2 molecules physisorbed on Ag by low-energy electrons is studied theoretically with the coupled-angular-mode method. The influence of the neighboring surface on the excitation process (including the excitation of overtones) is analyzed. The results are compared with the experimental results of Demuth, Schmeisser, and Avouris. It is found that in a scattering experiment, most of the vibrational excitation concerns electrons that are inelastically scattered into the metal and are thus not observed experimentally.

  5. Wave-mixing interference in three-photon resonant atomic excitation with cross-polarized angled beams

    SciTech Connect

    Peet, V.

    2006-09-15

    Three-photon excitation and associated wave mixing near the 6s and 6s{sup '} resonances of xenon have been studied utilizing resonance-enhanced multiphoton ionization in angled beams with different polarizations. It has been shown that a complete cancellation of three-photon resonant atomic excitation caused by the well-known destructive wave-mixing interference occurs in s and p polarization of angled beams but distinct resonance ionization enhancement is observed when pump beams have orthogonal polarization planes. Pressure-induced evolution of the resonance ionization peak in cross-polarized beams is identical to that observed with counterpropagating beams. The reason for such resonance ionization enhancement is unknown and cannot be explained within the frame work of existing theory. The effect may result from some peculiarities of wave-mixing interference in a multilevel atomic system, where different degenerate magnetic sublevels of the upper atomic state and multiple interfering excitation processes are involved. Another possibility is that the resonance ionization enhancement results from a process where weak counterpropagating light is generated within the excitation region of cross-polarized angled beams.

  6. Excitation of internal kink modes by trapped energetic beam ions

    SciTech Connect

    Chen, L.; White, R.B.; Rosenbluth, M.N.

    1983-10-01

    Energetic trapped particles are shown to have a destabilizing effect on the internal kink mode in tokamaks. The plasma pressure threshold for the mode is lowered by the particles. The growth rate is near the ideal magnetohydrodynamic value, but the frequency is comparable to the trapped particle precission frequency. A model for the instability cycle gives stability properties, associated particle losses, and neutron emissivity consistent with the fishbone events observed in PDX.

  7. Internal Energy Excitation and Chemical Reaction Models for Rarefied Gases

    DTIC Science & Technology

    2011-01-01

    INTRODUCTION DSMC [1, 2] is a standard tool for the simulation of rarefied gas flows . It has, therefore found widespread application in the aerospace...the Direct Simulation of Gas Flows , Clarendon Press, Oxford, 1994. [2] M.S. Ivanov, S.F. Gimelshein, Computational Hypersonic Rarefied Flows , Annu...Reentry Flows , 27th International Symposium on Rarefied Gas Dynamics, July 10-15 2010, Asilomar Conference Grounds, Pacific Grove, California. [34] M

  8. Nonlinear SU(2,1) Model of Multiple Giant Dipole Resonance Coulomb Excitation

    NASA Astrophysics Data System (ADS)

    Hussein, Mahir; de Toledo Piza, Antonio; Vorov, Oleg

    2000-10-01

    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra^1. Analytical expressions for the multi-phonon transition probabilities are derived. For reasonably small magnitude of nonlinearity x~= 0.15-0.3, the enhancement factor for the Double Giant Resonance excitation probabilities and the cross sections reaches values 1.3-2 compatible^1,2 with experimental data from relativistic ion collision experiments^3. The full 3-dimensional model predicts enhancement of the multiple GDR cross sections at low and high bombarding energies (with the minimum at ~= 1.3 GeV for the Pb+Pb colliding system). Enhancement factors for Double GDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of ^136Xe which requires a larger value. The work has been supported by the FAPESP and by the CNPq. References ^1 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Ann. Phys. (N.Y.), 2000, to appear. ^2 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Phys. Rev. C59,R1242 (1999). ^3 T. Aumann, P.F. Bortignon, and H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).

  9. Resonance magnetoelectric effects in a layered composite under magnetic and electrical excitations

    NASA Astrophysics Data System (ADS)

    Fetisov, L. Y.; Chashin, D. V.; Fetisov, Y. K.; Segalla, A. G.; Srinivasan, G.

    2012-07-01

    A novel three-layer composite consisting of a lead zirconate titanate (PZT) substrate, a PZT film on one side, and a film of ferromagnetic alloy on the other side is fabricated and used for studies on the nature of magneto-electric (ME) interactions. The strain mediated ME voltage under an ac magnetic excitation is compared with the voltage produced by pure piezoelectric response of the sample to an ac electric field. The ME voltage response measured across PZT substrate or PZT film under an ac magnetic field shows peaks at bending modes and longitudinal acoustic modes, with a higher voltage at bending mode than for the longitudinal acoustic mode. A variation in the bending mode frequency with bias magnetic field or electric field is observed and is attributed to variation in the Young's modulus of the magnetic or piezoelectric layers. Estimates of resonance frequencies and ME coefficients are in agreement with the data. Under an ac electric excitation, piezoelectric effects result in a resonance in the voltage measured across the PZT substrate and film. A quantitative agreement is inferred between the measured ME voltage and the voltage produced under an ac electric field.

  10. Excitation of solitons by an external resonant wave with a slowly varying phase velocity

    SciTech Connect

    Aranson, I.; Meerson, B. . Racah Inst. of Physics); Tajima, Toshiki )

    1992-02-01

    A novel mechanism is proposed for the excitation of solitons in nonlinear dispersive media. The mechanism employs an external pumping wave with a varying phase velocity, which provides a continuous resonant excitation of a nonlinear wave in the medium. Two different schemes of a continuous resonant growth (continuous phase-locking) of the induced nonlinear wave are suggested. The first of them requires a definite time dependence of the pumping wave phase velocity and is relatively sensitive to the initial wave phase. The second employs the dynamic autoresonance effect and is insensitive to the exact time dependence of the pumping wave phase velocity. It is demonstrated analytically and numerically, for a particular example of a driven Korteweg-de Vries (KdV) equation with periodic boundary conditions, that as the nonlinear wave grows, it transforms into a soliton, which continues growing and accelerating adiabatically. A fully nonlinear perturbation theory is developed for the driven KdV equation to follow the growing wave into the strongly nonlinear regime and describe the soliton formation.

  11. Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.

    PubMed

    Gómez-Díaz, J S; Esquius-Morote, M; Perruisseau-Carrier, J

    2013-10-21

    An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.

  12. AlN-based piezoelectric bimorph microgenerator utilizing low-level non-resonant excitation

    NASA Astrophysics Data System (ADS)

    Hampl, Stefan; Cimalla, Volker; Polster, Tobias; Hoffmann, Martin

    2011-06-01

    This work aims for utilizing human ocular motion for the self-sufficient power supply of a minimally invasive implantable monitoring system for intraocular pressure (IOP). With a proven piezoelectric functionality (d33>5 pm/V), nanocrystalline thin films of aluminum nitride (AlN) provide a good capability for micromechanical energy harvesting (EH) in medical applications. Many d31-mode microcantilever architectures are poorly suited for human-induced EH: Resonant mass-spring-damper systems are tested under high, narrow-band excitation frequencies. However, human motions, e.g. vibrations of eyeballs are marked by their low frequency, unpredictable, mainly aperiodic and time-varying signature. Different vibration types and directions are 3-dimensionally superimposed. Saccadic eye movements are favorable for inertial microgenerators because of their high dynamic loading (ω<=1000°/s). Our generator concept (symmetric active/active-parallel-bimorph cantilever) enables a high structural compliance by maximizing the piezoactive volume at very low cantilever thicknesses (<1 μm). An increased length and seismic mass enable an effective excitation by low-level aperiodic vibrations such as saccadic acceleration impulses. Analytic calculations and FEA-simulations investigate the potential distribution and transient response of different bimorph structures (length 200- 1000 μm, width 20-200 μm) on broadband vibrations. First released monomorph and bimorph structures show very low resonant frequencies and an adequate robustness.

  13. Excitation of solitons by an external resonant wave with a slowly varying phase velocity

    SciTech Connect

    Aranson, I.; Meerson, B.; Tajima, Toshiki

    1992-02-01

    A novel mechanism is proposed for the excitation of solitons in nonlinear dispersive media. The mechanism employs an external pumping wave with a varying phase velocity, which provides a continuous resonant excitation of a nonlinear wave in the medium. Two different schemes of a continuous resonant growth (continuous phase-locking) of the induced nonlinear wave are suggested. The first of them requires a definite time dependence of the pumping wave phase velocity and is relatively sensitive to the initial wave phase. The second employs the dynamic autoresonance effect and is insensitive to the exact time dependence of the pumping wave phase velocity. It is demonstrated analytically and numerically, for a particular example of a driven Korteweg-de Vries (KdV) equation with periodic boundary conditions, that as the nonlinear wave grows, it transforms into a soliton, which continues growing and accelerating adiabatically. A fully nonlinear perturbation theory is developed for the driven KdV equation to follow the growing wave into the strongly nonlinear regime and describe the soliton formation.

  14. Internal resonances for heave, roll and pitch modes of a spar platform considering wave and vortex-induced loads in the main roll resonance

    NASA Astrophysics Data System (ADS)

    Li, Wei; Tang, You-gang; Liu, Li-qin; Li, Yan; Wang, Bin

    2017-08-01

    We present a study of the nonlinear coupling internal resonance for the heave roll and pitch performance of a spar platform under the wave and vortex-induced loads when the ratio of the frequencies of heave, roll and pitch are approximately 2:1:1. In consideration of varying wet surface, the three DOFs nonlinear coupled equations are established for the spar platform under the effect of the first-order wave loads in the heave and pitch, and vortexinduced loads in the roll. By utilizing the method of multi-scales when the vortex-induced frequency is close to the natural roll frequency, the first-order perturbation solution is obtained analytically and further validated by the numerical integration. Sensitivity analysis is performed to understand the influence of the damping and the internal detuning parameter. Two cases with internal resonance are shown. The first case is that no saturation phenomenon exists under small vortex-induced loads. The first order perturbation solution illustrates that only the vortex-induced frequency motion in roll and the super-harmonic frequency motion in heave are excited. The second case is that the vortex-induced loads are large enough to excite the pitch and a saturation phenomenon in the heave mode follows. The results show that there is no steady response occurrence for some cases. For these cases chaos occurs and large amplitudes response can be induced by the vortex-induced excitation.

  15. Ionospheric Alfvén resonator excitation due to nearby thunderstorms

    NASA Astrophysics Data System (ADS)

    Surkov, V. V.; Hayakawa, M.; Schekotov, A. Y.; Fedorov, E. N.; Molchanov, O. A.

    2006-01-01

    A theory of midlatitude Ionospheric Alfvén Resonator (IAR) excitation due to random cloud-to-ground lightning discharges is developed. Electromagnetic wave radiated from the lightning discharges penetrates into the ionosphere, thereby exciting the shear Alfvén and magnetosonic waves in the F region of ionosphere. The IAR arises due to wave reflection from the Alfvén velocity gradients in the topside ionosphere. Typically, the ionospheric resonance cavity accumulates the shear Alfvén wave energy with periods from 1 s to a few tenths of seconds. To proceed analytically, a suitably idealized plane-stratified model of the medium was used that ignores the magnetic field line curvature and dip angle but includes plasma conductivity variations with altitude. The thunderstorm centers distributed around a ground-recording station is assumed to be statistically independent sources of the lightning activity, which is a stochastic Poisson process. The lightning onset time and the current moment is supposed to be a random value, while the shape and duration of return strokes are deterministic. Model calculations of the IAR spectrum due to nearby thunderstorm activity were applied to interpret ULF observation made at Karimshino station (52.94°N, 158.25°E) in Kamchatka peninsula. It is shown that the sharp impulses which are in one-to-one correspondence with the appearance of the spectral resonance structure (SRS) in dynamic spectrograms can be the result from nearby lightning discharges followed by impulse IAR excitation. The correlation functions and power spectra of the IAR due to random lightning discharge process is studied both analytically and numerically. We found that the nearby thunderstorms in the range of 1000-2000 km make a main contribution to the SRS signature of the midlatitude IAR, whereas the remote/tropic thunderstorm activity is of minor importance. It is not inconceivable that there may exist other permanent mechanisms of the midlatitude IAR excitation

  16. Dissociation dynamics of simple chlorine containing molecules upon resonant Cl K-σ{sup *} excitation

    SciTech Connect

    Bohinc, R. Bučar, K.; Kavčič, M.; Žitnik, M.

    2014-04-28

    A theoretical analysis of dissociation dynamics of chlorine K-σ{sup *} core-excited molecules is performed. The potential energy surfaces of HCl, Cl{sub 2}, CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, and CF{sub 3}Cl are calculated along the normal vibrational modes of the ground electronic state yielding the widths of the corresponding Franck-Condon distributions. An insight into the potential energy surface of 1st σ{sup *} resonances shows that the initial dissociation dynamics of chloro(fluoro)methanes mainly involves the distancing of the carbon and the core-excited chlorine atom and is practically independent of other atoms in the molecule, which is in agreement with the recent experimental findings. The carbon atom pulls out the remaining three atoms shortly after piercing the three-atom plane resulting in a high vibrationally excited state of the fragment if the reconnection time is smaller than the lifetime of the L shell.

  17. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation.

    PubMed

    Wood, Bayden R; Caspers, Peter; Puppels, Gerwin J; Pandiancherri, Shveta; McNaughton, Don

    2007-03-01

    Resonance Raman spectra of oxygenated and deoxygenated functional erythrocytes recorded using 785 nm laser excitation are presented. The high-quality spectra show a mixture of enhanced A(1g), A(2g), B(1g), B(2g), E(u) and vinyl modes. The high sensitivity of the Raman system enabled spectra from four oxygenation and deoxygenation cycles to be recorded with only 18 mW of power at the sample over a 60-minute period. This low power prevented photo-/thermal degradation and negated protein denaturation leading to heme aggregation. The large database consisting of 210 spectra from the four cycles was analyzed with principal components analysis (PCA). The PC1 loadings plot provided exquisite detail on bands associated with the oxygenated and deoxygenated states. The enhancement of a band at 567 cm(-1), observed in the spectra of oxygenated cells and the corresponding PC1 loadings plot, was assigned to the Fe-O(2) stretching mode, while a band appearing at 419 cm(-1) was assigned to the Fe-O-O bending mode based on previous studies. For deoxygenated cells, the enhancement of B(1g) modes at 785 nm excitation is consistent with vibronic coupling between band III and the Soret transition. In the case of oxygenated cells, the enhancement of iron-axial out-of-plane modes and non-totally symmetric modes is consistent with enhancement into the y,z-polarized transition a(iu)(pi)-->d(xz)+O(2)(pi(g)) centered at 785 nm. The enhancement of non-totally symmetric B(1g) modes in oxygenated cells suggests vibronic coupling between band IV and the Soret band. This study provides new insights into the vibrational dynamics, electronic structure and resonant enhancement of heme moieties within functional erythrocytes at near-IR excitation wavelengths.

  18. A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II

    SciTech Connect

    Bane, Karl

    2015-09-23

    The Linac Coherent Light Source (LCLS) at SLAC, the world’s first hard X-ray FEL, is being upgraded to the LCLS-II. The major new feature will be the installation of 35 cryomodules (CMs) of TESLA-type, superconducting accelerating structures, to allow for high rep-rate operation. It is envisioned that eventually the LCLS-II will be able to deliver 300 pC, 1 kA pulses of beam at a rate of 1 MHz. At a cavity temperature of 2 K, any heat generated (even on the level of a few watts) is expensive to remove. In the last linac of LCLS-II, L3—where the peak current is highest—the power radiated by the bunches in the CMs is estimated at 13.8 W (charge 300 pC option, rep rate 1 MHz). But this calculation ignores resonances that can be excited between the bunch frequency and higher order mode (HOM) frequencies in the CMs, which in principle can greatly increase this number. In the present work we calculate the multi-bunch wakefields excited in a CM of LCLS-II, in order to estimate the probability of the beam losing a given amount of power. Along theway, we find some interesting properties of the resonant interaction. In detail, we begin this report by finding the wakes experienced by bunches far back in the bunch train. Then we present a complementary approach that calculates the field amplitude excited in steady-state by a train of bunches, and show that the two approaches agree. Next we obtain the properties of the 450 longitudinal HOMs that cover the range 3–5 GHz in the CMs of LCLS-II, where we include the effects of the inter-CM ceramic dampers. At the end we apply our method using these modes.

  19. Coherent population trapping resonances in the presence of the frequency-phase noises of an exciting field

    SciTech Connect

    Sokolov, A V; Matveev, A N; Samokotin, A Yu; Akimov, A V; Sorokin, Vadim N; Kolachevsky, Nikolai N

    2009-05-31

    The influence of noises of the frequency and phase difference of an exciting bichromatic field on the parameters of coherent population trapping resonances is studied experimentally. When the phase difference fluctuates within a limited interval near its average value with a short correlation time, the resonance contrast decreases proportionally to exp({phi}{sup 2}{sub rms}), where {phi}{sup 2}{sub rms} is the phase dispersion (in rad{sup 2}). In this case, the spectral width of the resonance remains constant. In another limiting case, when the phase noise has a long correlation time, the resonance contour broadens, the area under the contour being invariable. Experiments were performed with the Zeeman sublevels of the ground state of {sup 87}Rb by exciting rubidium vapour in a glass cell at the resonance wavelength of 795 nm. (interaction of laser radiation with matter)

  20. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    PubMed

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  1. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    NASA Astrophysics Data System (ADS)

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-03-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  2. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    PubMed Central

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  3. Excitation of the ionospheric Alfvén resonator from the ground: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.-L.; Labenski, J.; Milikh, G.; Vartanyan, A.; Snyder, A. L.

    2011-10-01

    We report results from numerical and experimental studies of the excitation of ULF shear Alfvén waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during the October-November 2010 experimental campaign reveal that the IAR quality is higher during nighttime conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low Earth orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, (1) observations from the ground-based magnetometer at the HAARP site demonstrate no significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and (2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  4. Circular periodic orbits, resonance capture and inclination excitation during type II migration

    NASA Astrophysics Data System (ADS)

    Antoniadou, K. I.; Voyatzis, G.

    2017-03-01

    We consider planetary systems evolving under the effect of a Stokes-type dissipative force mimicking the outcome of a type II migration process. As inward migration proceeds and the planets follow the circular family (they start on circular orbits) and even though they are initially almost coplanar, resonance capture can be realized. Then, at the vertical critical orbits (VCOs), that the circular family possesses, the inclination excitation can abruptly take place. The planets are now guided by the spatial elliptic families, which bifurcate from those critical orbits. We herein, perform a direct link of mutually inclined stable planetary systems on circular orbits trapped in mean-motion resonance (MMR) with the existence of VCOs of high values of multiplicity. It is shown that the more the multiplicity of the periodic orbits of the circular family increases, the more VCOs (corresponding to more MMRs) appear. In this way, we can provide a justification for the existence of resonant planets on circular orbits, which could, even further to that, evolve stably if they were mutually inclined.

  5. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    SciTech Connect

    Frederick, Blaise deBonneval

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of 23Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na+ ions in biological tissues. However, due to NMR relaxation properties of 23Na in vivo, a large fraction of Na+ is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T2. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo 23Na T2 values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic 1H and 23Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25μs, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  6. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation

    PubMed Central

    Huang, Jingyu; Wang, Wei; Murphy, Catherine J.; Cahill, David G.

    2014-01-01

    Plasmonic nanostructures are of great current interest as chemical sensors, in vivo imaging agents, and for photothermal therapeutics. We study continuous-wave (cw) and pulsed-laser excitation of aqueous suspensions of Au nanorods as a model system for secondary light emission from plasmonic nanostructures. Resonant secondary emission contributes significantly to the background commonly observed in surface-enhanced Raman scattering and to the light emission generated by pulsed-laser excitation of metallic nanostructures that is often attributed to two-photon luminescence. Spectra collected using cw laser excitation at 488 nm show an enhancement of the broad spectrum of emission at the electromagnetic plasmon resonance of the nanorods. The intensity of anti-Stokes emission collected using cw laser excitation at 785 nm is described by a 300 K thermal distribution of excitations. Excitation by subpicosecond laser pulses at 785 nm broadens and increases the intensity of the anti-Stokes emission in a manner that is consistent with electronic Raman scattering by a high-temperature distribution of electronic excitations predicted by a two-temperature model. Broadening of the pulse duration using an etalon reduces the intensity of anti-Stokes emission in quantitative agreement with the model. Experiments using a pair of subpicosecond optical pulses separated by a variable delay show that the timescale of resonant secondary emission is comparable to the timescale for equilibration of electrons and phonons. PMID:24395798

  7. Excitation of Josephson Plasma Resonance in BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) OXYGEN(8+DELTA)

    NASA Astrophysics Data System (ADS)

    Tsui, Ophelia Kwan Chui

    A novel magnetic resonance is observed in Bi_2Sr_2CaCu_2O_{8+ delta} single crystals exposed to microwave radiation (26 to 95 GHz) in the presence of a magnetic field. The resonance exhibits unconventional field and temperature dependence. At a fixed temperature below the melting transition of the vortex solid, T_ {m}(B), the resonance frequency decreases with the applied field and displays a power-law dependence, viz. omega~ B^{-mu }. The exponent was found to be 0.8 within 10% across all samples and temperatures studied. However, when the temperature is increased above T_ {m}(B), mu becomes sample dependent and is equal to 0.64 and 1.08 for the two samples studied. At fixed microwave frequencies, the resonance field, B_0 increases exponentially with temperature to a maximum at T_{m }(B) and decreases slowly with temperature above. We attribute the resonance to Josephson plasma oscillations excited along the sample c-axis. The model explains many features of the experiment. Recently, Bulaevskii et al. proposed an explanation for the field dependence of the Josephson plasma frequency. By assuming that disorder in vortex pancakes is caused by strong pinning at low temperatures, the authors obtained the power-law dependence of omega on B, which agrees with the experiment. Rotating the microwave E-field, { bf E}_{rf} relatively to the sample, we find maximum resonance absorption when {bf E}_{rf} has the maximum projection along the sample c-axis, and minimum when there is none. This identification of {bf E}_{rf} parallel to the sample c-axis as the one responsible for the resonance, supports the Josephson plasma hypothesis. The strongest evidence for the Josephson plasma model is obtained by tilting the magnetic field close to alignment with the ab-plane of the crystal. In that case, an unusual re-entrant cusp in B_0 is observed when the tilt angle is in the range -5.5^circ to 5.5^circ. This is consistent with Bulaevskii et al.'s calculation. They propose that pancake

  8. The Excitation and Fano Resonance Spectra of Some Acceptors in Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Piao, Gejin

    Rich and well resolved p_{3/2 } and p_{1/2} optical absorption spectra have been observed for indium in silicon and p_{3/2}^ectra for singly ionised zinc, Zn^-, in germanium, revealing some new transitions and permitting re-examination in detail of the transition energies, level schemes and deformation potential constants. Ratios of about 4.2 and 4.1 for the binding energies of Zn ^- in germanium to those of group III impurities and neutral zinc in germanium, respectively, were determined. A comparison with theoretical energies was made, showing excellent agreement. A set of asymmetric and broad excitation features was observed in the spectra of Zn^- in germanium; these have a one-to-one correspondence with the p_{3/2} transitions and are separated from them by the zone centre optical phonon energy of bulk germanium. These new features have been identified as Fano resonances. The Fano resonance of the G line was found to be well defined, while the G line in the p_{3/2}^ectrum is almost undetectable. This is the first observation of Fano resonances associated with bound holes in germanium. A simple and accurate method has been developed to deduce the parameters q, Gamma and f of the resonances. The stress behaviour of the rm p _{3/2}, p_{1/2} and Fano series of indium in silicon for F| <111>, <100> and <110> and of the p_{3/2} and Fano series of Zn^- in germanium for F|<111> and <100> have been observed with linearly polarised radiation. The Fano resonances experience splitting under stress in a way similar to their counterparts in the p_{3/2} series. Their strengths, however, do not follow those of their p_{3/2} counterparts. The piezo-Fano selection rules have been derived using group theory. A striking phenomenon for Zn^- in germanium is the appearance of the some stress components of the Fano resonances for which their parents in the p_{3/2} series are strictly forbidden. This is consistent with the selection rules which show how the rules for the p_ {3

  9. Resonant photoelectron imaging of deprotonated uracil anion via vibrational levels of a dipole-bound excited state

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Dau, Phuong Diem; Wang, Lai-Sheng

    2017-01-01

    We report both non-resonant and resonant high-resolution photoelectron imaging of cryogenically-cooled deprotonated uracil anions, N1[U-H]-, via vibrational levels of a dipole-bound excited state. Photodetachment spectroscopy of N1[U-H]- was reported previously (Liu et al., 2014), in which forty-six vibrational autodetachment resonances due to the excited dipole-bound state were observed. By tuning the detachment laser to the vibrational levels of the dipole-bound state, we obtained high-resolution resonant photoelectron spectra, which are highly non-Franck-Condon. The resonant photoelectron spectra reveal many Franck-Condon inactive vibrational modes, significantly expanding the capability of photoelectron spectroscopy. A total of twenty one fundamental vibrational frequencies for the N1[U-H]rad radical are obtained, including all eight low-frequency out-of-plane modes, which are forbidden in non-resonant photoelectron spectroscopy. Furthermore, the breakdown of the Δv = -1 propensity rule is observed for autodetachment from many vibrational levels of the dipole-bound state, due to anharmonic effects. In particular, we have observed intramolecular electron rescattering in a number of resonant photoelectron spectra, leading to excitations of low-frequency vibrational modes. Further theoretical study may be warranted, in light of the extensive experimental data and new observations, to provide further insight into the autodetachment dynamics and vibronic coupling in dipole-bound states, as well as electron molecule interactions.

  10. Modular system for studying tonal sound excitation in resonators with heat addition and mean flow.

    PubMed

    Matveev, Konstantin I; Hernandez, Rafael

    2012-03-01

    An educational experimental system has been developed for studying tonal sound generation in acoustic resonators. Tones are excited by either heat addition or vortex shedding in the presence of mean flow. The system construction is straightforward and inexpensive. Several test arrangements and experimental data are described in this paper. The experimental setups include a modified Rijke tube, a standing-wave thermoacoustic engine, a baffled tube with mean flow, and an acoustic energy harvester with a piezoelement. Simplified mathematical models for interpreting data are discussed, and references are provided to literature with more advanced analyses. The developed system can assist both graduate and undergraduate students in understanding acoustic instabilities via conducting and analyzing interesting experiments. © 2012 Acoustical Society of America

  11. Theoretical analysis of resonant raman scattering: Simulations of lineshapes and excitation profiles

    NASA Astrophysics Data System (ADS)

    Angeloni, Leonardo; Fracassi, Pier Francesco; Della Valle, Raffaele Guido

    1985-04-01

    The steady-state response of a three-level system in the presence of a strong laser field is described with the density operator formalism, in order to derive an analytical expression for the intensity of resonance Raman scattering. The Liouville equation for the density operator is written in quantum form for both the molecular system and the radiation field, making use of the dipole and rotating-wave approximations for the matter-radiation interaction, and of the Markov approximation for the molecular decays. The equation is solved exactly for the laser field, and in perturbative way for the generated field. The results account for power broadening of the generated line. Rabi intensity-dip of the generated signal, and for the excitation profiles in the Franck-Condom approximation.

  12. Effect of Fermi surface nesting on resonant spin excitations in Ba(1-x)K(x)Fe2As2.

    PubMed

    Castellan, J-P; Rosenkranz, S; Goremychkin, E A; Chung, D Y; Todorov, I S; Kanatzidis, M G; Eremin, I; Knolle, J; Chubukov, A V; Maiti, S; Norman, M R; Weber, F; Claus, H; Guidi, T; Bewley, R I; Osborn, R

    2011-10-21

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  13. A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-12-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.

  14. Ultrasonic resonant modes of piezoelectric balloons under internal pressure.

    PubMed

    Denham, Lori Vidal; Rice, David A

    2012-09-01

    Properties of a piezoelectric polymeric angioplasty balloon that may decrease the problems of acute closure and restenosis are evaluated in this study. Polyvinylidene difluoride (PVDF), a piezoelectric and pyroelectric polymer, has sufficient strength to serve as a standard angioplasty balloon as well as functioning as an ultrasonic transmitter and/or receiver. These properties enable potential therapeutic applications using ultrasound such as plaque ablation and sonotherapy as well as vulnerable plaque diagnosis using thermography. This study investigates the resonant structure of the PVDF balloon catheter in the frequency range 5-100 kHz. Vibrations of the piezoelectric balloon are modeled using cylindrical shell theory and compared with the observed modal frequencies of PVDF cylinders with and without internal pressure. Modal frequencies are determined by measuring the near-field pressure response of the PVDF cylinders using a high frequency microphone. A rich nodal structure is observed between 5 and 100 kHz with peak relative amplitudes measured between 42 and 45 kHz. Higher order modes for cylinders with 9 μm and 28 μm wall thickness increase in frequency as the internal pressure is increased. Experimental measurements confirm theoretical models that predict both pressure-dependent and pressure-independent resonant frequencies. Frequencies of pressure-dependent modes are calculated within 2.2% of measured values at high pressure.

  15. Determination of a three-step excitation and ionization scheme for resonance ionization and ultratrace analysis of Np-237

    NASA Astrophysics Data System (ADS)

    Raeder, S.; Stöbener, N.; Gottwald, T.; Passler, G.; Reich, T.; Trautmann, N.; Wendt, K.

    2011-03-01

    The long-lived radio isotope 237Np is generated within the nuclear fuel cycle and represents a major hazard in the final disposal of nuclear waste. Related geochemical research requires sensitive methods for the detection of ultratrace amounts of neptunium in environmental samples. Resonance ionization mass spectrometry (RIMS) has proven to be one of the most sensitive methods for the detection of plutonium. A precondition for the application of RIMS to ultratrace analysis of neptunium is the knowledge of an efficient and selective scheme for optical excitation and ionization. Therefore, a multitude of medium to high-lying atomic levels in neptunium was located by applying in-source resonance ionization spectroscopy. By using excitation via six previously known first excited, intermediate levels of odd parity, a set of twelve so far unknown high-lying levels of even parity were identified and studied further for their suitability in resonant excitation/ionization schemes. Autoionizing resonances for efficient ionization of neptunium atoms were subsequently accessed spectroscopically. Altogether five resonance ionization schemes were investigated and characterized concerning their saturation behavior and relative efficiency. Applying a calibrated sample, an overall efficiency of 0.3 % was determined.

  16. Plasmon-Based Optical Trapping of Polymer Nano-Spheres as Explored by Confocal Fluorescence Microspectroscopy: A Possible Mechanism of a Resonant Excitation Effect

    NASA Astrophysics Data System (ADS)

    Shoji, Tatsuya; Mizumoto, Yoshihiko; Ishihara, Hajime; Kitamura, Noboru; Takase, Mai; Murakoshi, Kei; Tsuboi, Yasuyuki

    2012-09-01

    In optical trapping using photon force much enhanced by localized surface plasmon (LSP) in solution, we found that a resonant excitation effect can further enhance photon force. In this LSP-based optical trapping under a resonant excitation condition, an incident laser beam excites both LSP and electronic resonant transition of a target object simultaneously. Fluorescence microspectroscopy clearly showed that nanospheres under the resonant condition were much more efficiently trapped as compared to that under a non-resonant condition. The resonant LSP-based trapping mechanism was further reinforced by theoretical calculations taking the resonant excitation effect into account. Such resonant LSP-based trapping methodology will provide a novel approach for efficient trapping of small molecules.

  17. Green laser excited surface plasmon resonance biosensor utilizing highly sensitive phase interrogation detection

    NASA Astrophysics Data System (ADS)

    Chen, How-Foo; Hsu, Wei-Chen; Wang, Ya-Jung; Yen, Ta-Jen

    2010-04-01

    Surface plasmon resonance (SPR) biosensors have been widely used for dynamical analysis of molecular affinity, bacterium screening, and drug discovery due to its advantages of label-free detection, dynamic interaction analysis, small sample volume, and ultra sensitivity (feasibility of single molecular detection). Recently, SPR biosensing for cell imaging known as SPR microscopy (SPRM) has attracted great attention due to the characteristics of SPR biosensors. However, it is well known that the trends of sensitivity and spatial resolution are opposite to each other: Surface plasmon waves (SPWs) with shorter wavelength which provides higher spatial resolution has less sensitivity. It is known that the spatial resolution of SPRM is limited by the propagation length of surface plasmon wave (SPW) along the metaldielectric interface. SPW excited by 632.8 nm light has the propagation length of 3 um. This length becomes longer when a longer wavelength is selected. While most of SPR biosensors are built with 632.8 nm or longer wavelength for high sensitivity, using 532nm light to excite SPWs is desired for submicron resolution since the propagation length is around 150 nm. Different from current phase interrogation methods, the proposed phase interrogation method is highly sensitive and suitable for CCD imaging. Although it is generally believed that SPWs with wavelength 532nm has poor sensitivity, the experimental result showed that the setup can reach the sensitivity lower than 2×10-6 RIU when sucrose is used as the test sample.

  18. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    PubMed

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  19. Excitation of the {sup 229m}Th nuclear isomer via resonance conversion in ionized atoms

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-09-15

    Pressing problems concerning the optical pumping of the 7.6-eV {sup 229m}Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8s–7s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at an energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.

  20. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    SciTech Connect

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham; Yunes, Nicolas

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.

  1. Resonant transfer of one- and two-photon excitations in quantum dot-bacteriorhodopsin complexes

    NASA Astrophysics Data System (ADS)

    Krivenkov, V. A.; Samokhvalov, P. S.; Bilan, R. S.; Chistyakov, A. A.; Nabiev, I. R.

    2017-01-01

    Light-sensitive protein bacteriorhodopsin (BR), which is capable of electrical response upon exposure to light, is a promising material for photovoltaics and optoelectronics. However, the rather narrow absorption spectrum of BR does not allow achieving efficient conversion of the light energy in the blue and infrared spectral regions. This paper summarizes the results of studies showing the possibility of extending the spectral region of the BR function by means of the Förster resonance energy transfer (FRET) from CdSe/ZnS quantum dots (QDs), which have a broad spectrum of one-photon absorption and a large twophoton absorption cross section (TPACS), to BR upon one- and two-photon excitation. In particular, it is shown that, on the basis of QDs and BR-containing purple membranes, it is possible to create electrostatically associated bio-nano hybrid systems in which FRET is implemented. In addition, the large TPACS of QDs, which is two orders of magnitude larger than those of BR and organic dyes, opens up a means for selective two-photon excitation of synthesized bio-nano hybrid complexes. On the basis of the results of this work, the spectral region in which BR converts the light energy into electrical energy can be extended from the UV to near-IR region, creating new opportunities for the use of this material in photovoltaics and optoelectronics.

  2. Resonantly excited exciton dynamics in two-dimensional MoSe2 monolayers

    NASA Astrophysics Data System (ADS)

    Scarpelli, L.; Masia, F.; Alexeev, E. M.; Withers, F.; Tartakovskii, A. I.; Novoselov, K. S.; Langbein, W.

    2017-07-01

    We report on the exciton and trion density dynamics in a single layer of MoSe2, resonantly excited and probed using three-pulse four-wave mixing (FWM), at temperatures from 300 K to 77 K. A multiexponential third-order response function for amplitude and phase of the heterodyne-detected FWM signal including four decay processes is used to model the data. We provide a consistent interpretation within the intrinsic band structure, not requiring the inclusion of extrinsic effects. We find an exciton radiative lifetime in the subpicosecond range consistent to what has been recently reported by Jakubczyk et al. [Nano Lett. 16, 5333 (2016), 10.1021/acs.nanolett.6b01060]. After the dominating radiative decay, the remaining exciton density, which has been scattered from the initially excited direct spin-allowed radiative state into dark states of different nature by exciton-phonon scattering or disorder scattering, shows a slower dynamics, covering 10-ps to 10-ns time scales. This includes direct spin-allowed transitions with larger in-plane momentum, as well as indirect and spin-forbidden exciton states. We find that exciton-exciton annihilation is not relevant in the observed dynamics, in variance from previous finding under nonresonant excitation. The trion density at 77 K reveals a decay of the order of 1 ps, similar to what is observed for the exciton. After few tens of picoseconds, the trion dynamics resembles the one of the exciton, indicating that trion ionization occurs on this time scale.

  3. Ultrafast internal conversion dynamics of highly excited pyrrole studied with VUV/UV pump probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Horton, Spencer L.; Liu, Yusong; Chakraborty, Pratip; Matsika, Spiridoula; Weinacht, Thomas

    2017-02-01

    We study the relaxation dynamics of pyrrole after excitation with an 8 eV pump pulse to a state just 0.2 eV below the ionization potential using vacuum ultraviolet/ultraviolet pump probe spectroscopy. Our measurements in conjunction with electronic structure calculations indicate that pyrrole undergoes rapid internal conversion to the ground state in less than 300 fs. We find that internal conversion to the ground state dominates over dissociation.

  4. Generation of highly vibrationally excited H2 and detection by 2+1 resonantly enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Robie, Daniel C.; Jusinski, Leonard E.; Bischel, William K.

    1990-02-01

    We report the first detection by optical means of highly vibrationally excited H2 X1Σ+g(vx=6-11). Vibrationally excited H2 was generated using a recently discovered hot-wire effect in H2 gas, and was detected in 40 bands with 2+1 resonantly enhanced multiphoton ionization via the EF state (vEF=0-14). Rotational temperatures are in the range 200-650 K, well below that required for thermal excitation of the observed vibrational levels.

  5. Space-charge effects in the excitation of a cavity resonator by steady flow of excited classical oscillators

    SciTech Connect

    Petelin, M.I.

    1985-09-01

    This paper studies the conditions for self-excitation of oscillations in microwave autogenerators, based on the induced bremsstrahlung radiation of classical electron oscillators by an analytical method (a variant of the Laplace transform) with allowance for Coulomb interaction between particles. The method described here for taking into account the proper (Coulomb) field of the electron beam can be generalized also to more complex theoretical models of high-frequency generators based on the induced emission of excited classical electron oscillators.

  6. Resonant electron emission of silver spheroids induced by laser surface plasmon excitation

    NASA Astrophysics Data System (ADS)

    Monchicourt, P.; Raynaud, M.; Saringar, H.; Kupersztych, J.

    1997-07-01

    Laser excitation of surface plasmons on a silver granular surface has been studied as a function of light frequency. Both light absorption and electron emission have been measured by varying continuously the wavelength between 275 and 700 nm. Resonance effects at the Fröhlich frequencies of the silver spheroids are displayed and a correlation between absorption and emission is clearly exhibited. The lux - ampere characteristics performed at selected increasing wavelengths display slopes with integer orders, indicating that the emission process remains a photoeffect even in the presence of a surface-plasmon resonance. The photoemission process shows net switches of these slopes that turn from linear into quadratic and then cubic integer values. The position of the first switch yields 0953-8984/9/27/008/img1 eV for the work function of the granular surface. The position of the second switch defines the threshold energy for the two-photon emission process, which is found to differ significantly from the expected photon minimum energy 0953-8984/9/27/008/img2.

  7. Elementary excitations in hole- and electron-doped cuprates: kink and resonance peak

    NASA Astrophysics Data System (ADS)

    Manske, Dirk; Eremin, Ilya; Bennemann, Karl

    2004-03-01

    Elementary excitations in high-Tc cuprates are of central interest in order to learn more about the electronic correlations and the pairing mechanism for superconductivity. In this talk we focus on recent experimental and theoretical work on the kink feature and resonance peak and their possible interpretations due to phonons and spin fluctuations (1-3). Although the phase diagram of hole- and electron-doped cuprates reveal some similarities (4), both effects seem to be present only in hole-doped cuprates, but not in electron-doped ones. The kink feature and resonance peak are also related to tunneling experiments and measurements of the optical conductivity and shed important light on the essential ingredients a theory for Cooper-pairing in the cuprates must contain (5). (1) A. Lanzara et al., Nature 412, 510 (2001) (2) Ph. Bourges et al., Science 288, 1234 (2000) (3) D. Manske et al., PRB 63, 054517 (2001); D. Manske et al., PRL 87, 177005 (2001) (4) D. Manske et al., PRB 64, 144520 (2001); D. Manske et al., PRB 63, 13922 (2000) (5) D. Manske et al., PRB 67, 134520 (2003)

  8. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    SciTech Connect

    Tamaru, S. Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S.; Suzuki, Y.

    2014-05-07

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  9. Double resonant excitation of the second harmonic of terahertz raditation in dielectric-graphene layered metamaterials

    NASA Astrophysics Data System (ADS)

    Rapoport, Yu; Grimalsky, V.; Lavrinenko, A. V.; Boardman, A.

    2017-09-01

    Excitation of the second harmonic of THz radiation is investigated theoretically in the planar multilayered structure dielectric-graphene-dielectric-graphene-…. It is studied the case of the oblique incidence of the s-polarized fundamental wave, where the electric field is parallel to the interfaces, and generation of the p-type second harmonic wave occurs. The original concept is proposed to employ the double resonance arrangement for the effective generation of the second harmonic. The double resonant case can be realized when a high-permittivity dielectric is at the input of the structure and the vacuum is at the output. The high efficiency is demonstrated; the second harmonic reflectance coefficient is ≥0.01 under realistic values of the collision frequency in graphene >1012 s-1. Such a great efficiency, which is four-five orders of magnitude higher than reported for the graphene-dielectric structures previously, is proposed for the first time. To compute the nonlinear surface currents, two approaches were used, the kinetic and the hydrodynamic. A qualitative agreement between two approaches, proven in the present modeling, ensures an applicability of the results.

  10. Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Jingjng; Wang, Peng; Guo, Qiuquan; Zhang, Zhen; Ma, Jilong

    2017-04-01

    Frequent assay of hemostatic status is an essential issue for the millions of patients using anticoagulant drugs. In this paper, we presented a micro-fabricated film bulk acoustic sensor for the real-time monitoring of blood clotting and the measurement of hemostatic parameters. The device was made of an Au/ZnO/Si3N4 film stack and excited by a lateral electric field. It operated under a shear mode resonance with the frequency of 1.42 GHz and had a quality factor of 342 in human blood. During the clotting process of blood, the resonant frequency decreased along with the change of blood viscosity and showed an apparent step-ladder curve, revealing the sequential clotting stages. An important hemostatic parameter, prothrombin time, was quantitatively determined from the frequency response for different dilutions of the blood samples. The effect of a typical anticoagulant drug (heparin) on the prothrombin time was exemplarily shown. The proposed sensor displayed a good consistency and clinical comparability with the standard coagulometric methods. Thanks to the availability of direct digital signals, excellent potentials of miniaturization and integration, the proposed sensor has promising application for point-of-care coagulation technologies.

  11. Family of graphene-assisted resonant surface optical excitations for terahertz devices

    PubMed Central

    Lin, I-Tan; Liu, Jia-Ming; Tsai, Hsin-Cheng; Wu, Kaung-Hsiung; Syu, Jheng-Yuan; Su, Ching-Yuan

    2016-01-01

    The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region. PMID:27739504

  12. Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation

    PubMed Central

    Mock, Jack J.; Hill, Ryan T.; Tsai, Yu-Ju; Chilkoti, Ashutosh; Smith, David R.

    2012-01-01

    The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nano-gap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer, and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with Angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity. PMID:22429053

  13. Ultraviolet high-excitation Fe II fluorescence lines excited by O VI, C IV, and H I resonance emission as seen in IUE spectra

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.; Johansson, Sveneric

    1991-01-01

    Archival high-dispersion spectra from the IUE are used in a search for Bowen emission lines of Fe II excited by the stronger transition of the O VI resonance doublet. The possibility of using these Fe II emission lines as a diagnostic of the strength of the far-ultraviolet emission of O VI at 1032 A is explored. It is found that the Fe II emission lines are quite common and strong in symbiotic stars, particularly those of the type known as 'symbiotic novae', as well as in normal novae. The lines are observed in central stars of some planetary nebulae of the O VI sequence besides a few central stars of type WR. High density, high excitation, and high temperature are suggested to be requirements for the excitation of the Fe II fluorescence lines. It is pointed out that while these lines were observed in PG 1159-035 and K1-16, they were not observed in AGNs.

  14. Application of the Non-Adiabatic Phase Matrix Method to Vibrational Excitation Near a Short-lived Resonance

    NASA Astrophysics Data System (ADS)

    Morrison, Michael A.; Mazevet, S.; Nesbet, R. K.

    1998-05-01

    Non-adiabatic effects arising from energy exchange between the kinetic energy of the projectile and the nuclear degrees of freedom play a vital role in resonance vibrational excitation of molecules for sufficiently long-lived resonances. The importance of these effects for short-lived resonances is less clear, and the suitability of approximate theories for incorporating these effects to such resonances has been heretofore unknown. We have applied one such approach, the non-adiabatic phase (NADP) matrix method,(R. K. Nesbet, Phys. Rev. A 54), 2899 (1996) to the very short-lived resonance in e--H2 vibrational excitation. Even in this problematic case, the NADP method provides a systematic treatment of the (fixed-nuclei) ^2Σ_u^+ resonance that is consistent for all internuclear separations. We shall compare NADP scattering quantities for excitation of low-lying vibrational states of H2 to benchmark results from body-fixed vibrational close-coupling calculations.(S. J. Buckman, M. J. Brunger, D. S. Newman, G. Snitchler, S. Alston, D. W. Norcross, M. A. Morrison, B. C. Saha, G. Danby, and W. K. Trail, Phys. Rev. Lett. 65), 3253 (1990)

  15. Accurate Cross Sections for Excitation of Resonance Transitions in Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Electron collision excitation cross sections for the resonance 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0), 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3s (sup 3)P(sup 0) and 2p(sup 4) (sup 3)P-2s2p(sup 5) (sup 3)P(sup 0) transitions have been calculated by using the R matrix with a pseudostates approach for incident electron energies from near threshold to 100 eV. The excitation of these transition sgives rise to strong atomic oxygen emission features at 1304, 1027, 989, 878, and 792 Angstrom in the spectra of several planetary atmospheres. We included 22 spectroscopic bound and autoionizing states and 30 pseudostates in the close-coupling expansion. The target wave functions are chosen to properly account for the important correlation and relaxation effects. The effect of coupling to the continuum is included through the use of pseudostates. The contribution of the ionization continuum is significant for resonance transitions. Measured absolute direct excitation cross sections of 0 I are reported by experimental groups from the Jet Propulsion Laboratory and Johns Hopkins University. Good agreement is noted for the 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0) transition (lambda 1304 Ang) with measured cross sections from both groups that agree well with each other. There is disagreement between experiments for other transitions. Our results support the measured cross sections from the Johns Hopkins University for the 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0) and 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transitions, while for the 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transition the agreement is switched to the measured cross sections from the Jet Propulsion Laboratory.

  16. Bifurcations of parametrically excited gyroscopic systems near a 0 : 1 resonance

    NASA Astrophysics Data System (ADS)

    McDonald, Robert Joseph

    2000-10-01

    We study the local and global bifurcation behavior of parametrically excited gyroscopic systems near a 0:1 resonance. A major goal of the analysis is to understand how energy may be transferred from the high frequency mode to the low frequency mode in these gyroscopic systems. The first part of this research involves the derivation and simplification of the equations of motion for two parametrically excited gyroscopic systems: a pipe conveying fluid and a rotating shaft. The simplification of these equations involves deriving the normal form near a critical point at which the system possesses a non-semisimple double zero eigenvalue. To aid in this procedure, an algorithm is developed for calculating normal forms for non-autonomous Hamiltonian systems. The forms of the equations derived for the two gyroscopic systems are identical, allowing us to study the two systems simultaneously. The second part of this research involves examination of the local dynamics of the two gyroscopic systems. First, using a previously obtained model for a rotating shaft with small symmetry-breaking, it is shown that the presence of combination resonance forcing can extend the stability boundaries of the system from those of the unforced case. Next, we study the local bifurcations of the gyroscopic models derived in this work, focusing on the subharmonic resonance case. We calculate the stability of the trivial solution, the bifurcating single mode branches and their stability, and the existence of multi-mode or periodic solutions. Regions where energy transfer may occur from high to low frequency modes are identified. The numerical bifurcation analysis software AUTO is used to support the analytical results. The final part of this research involves study of the global bifurcations of the two gyroscopic systems. Using recently developed bifurcation methods, we detect the presence of multi-pulse orbits homoclinic to a slow manifold. In certain parameter regions, we can prove that multi

  17. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    PubMed

    Yang, Jing; Zhang, Jiasen

    2013-04-08

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  18. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators

    NASA Astrophysics Data System (ADS)

    Sun, Chengliang; Soon, Bo Woon; Zhu, Yao; Wang, Nan; Loke, Samuel Pei Hao; Mu, Xiaojing; Tao, Jifang; Gu, Alex Yuandong

    2015-06-01

    An AlN piezoelectric Lamb-wave resonator, which is excited by two dimensional electric field, is reported in this paper. Rhombus-shape electrodes are arranged on AlN thin film in a checkered formation. When out-of-phase alternating currents are applied to adjacent checkers, two dimensional acoustic Lamb waves are excited in the piezoelectric layer along orthogonal directions, achieving high electromechanical coupling coefficient, which is comparable to film bulk acoustic resonators. The electromechanical coupling coefficient of the 285.3 MHz resonator presented in this paper is 5.33%, which is the highest among AlN based Lamb-wave resonators reported in literature. Moreover, the spurious signal within a wide frequency range is significantly suppressed to be 90% lower than that of the resonance mode. By varying the electrode dimension and inter-electrode distance, resonators having different resonant frequencies can be fabricated on a single wafer, making single-chip broadband filters, duplexers, and multiplexers possible.

  19. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.

    PubMed

    Yu, Ganghua; Li, Deyu; Cheng, Li

    2008-12-01

    The effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in an enclosure and the multimodal coupling-based Helmholtz resonator design are investigated. Using the analytical solution of a resonator-enclosure interaction model, an energy reduction index is defined in a frequency band to optimize the resonator resistance. The dual process of energy dissipation and radiation of the resonator is quantified. Optimal resistance of the resonator and its physical effect on the resonator-enclosure interaction are numerically evaluated and categorized in terms of frequency bandwidths. Predictions on the resonator performance are confirmed by experiments. Comparisons with existing models based on different optimization criteria are also performed. It is shown that the proposed model serves as an effective design tool to determine the internal resistance of the resonator in order to achieve sound reduction in the frequency band enclosing acoustic resonances.

  20. Internal energy distributions from nitrogen dioxide fluorescence. 2. Collisional energy transfer from excited nitrogen dioxide

    SciTech Connect

    Patten, K.O. Jr.; Johnston, H.S. Lawrence Berkeley Lab., CA )

    1993-09-30

    We follow the collisional deactivation of laser-excited nitrogen dioxide through its dispersed fluorescence. The energy acceptor gases are NO[sub 2] at four excitation energies ranging from 18828 to 24989 cm[sup [minus]1] and five monatomic gases, four diatomic gases, and three polyatomic gases with 18828-cm[sup [minus]1] excitation energy. The nominal products are the shapes of the internal energy distributions, which are obtained and plotted for several representative cases. From these distributions, the first three moments of the internal energy distributions are derived as a function of molecular collisions and tabulated as (i) the average internal energy, (ii) energy spread, and (iii) skewness. These quantities are plotted against c(M)t, the product of buffer gas concentration c(M) and delay time after laser excitation t(0.5-2 [mu]s), which is a quantity proportional to number of collisions. The negative slope of average energy vs c(M)t is the macroscopic energy-transfer rate constant, k[sub [epsilon

  1. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    SciTech Connect

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-12-16

    Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.

  2. Doubly excited {sup 3}P{sup e} resonance states of two-electron positive ions in Debye plasmas

    SciTech Connect

    Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi E-mail: karsabyasachi@yahoo.com; Jiang, Zishi; Jiang, Pinghui

    2015-11-15

    We investigate the doubly excited {sup 3}P{sup e} resonance states of two-electron positive ions Li{sup +}, Be{sup 2+}, B{sup 3+}, and C{sup 4+} by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of {sup 3}P{sup e} resonances below the N = 3 threshold. The {sup 3}P{sup e} resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time.

  3. Nuclear resonance fluorescence excitations near 2 MeV in {sup 235}U and {sup 239}Pu

    SciTech Connect

    Bertozzi, W.; Korbly, S. E.; Ledoux, R. J.; Park, W. H.; Caggiano, J. A.; Hensley, W. K.; Warren, G. A.; Johnson, M. S.; McNabb, D. P.; Norman, E. B.

    2008-10-15

    A search for nuclear resonance fluorescence excitations in {sup 235}U and {sup 239}Pu within the energy range of 1.0- to 2.5-MeV was performed using a 4-MeV continuous bremsstrahlung source at the High Voltage Research Laboratory at the Massachusetts Institute of Technology. Measurements utilizing high purity Ge detectors at backward angles identified nine photopeaks in {sup 235}U and 12 photopeaks in {sup 239}Pu in this energy range. These resonances provide unique signatures that allow the materials to be nonintrusively detected in a variety of environments including fuel cells, waste drums, vehicles, and containers. The presence and properties of these states may prove useful in understanding the mechanisms for mixing low-lying collective dipole excitations with other states at low excitations in heavy nuclei.

  4. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.

    PubMed

    Chen, Yi; Ban, Yue; Zhu, Qi-Biao; Chen, Xi

    2016-10-01

    Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift are investigated in a two-prism frustrated total internal reflection configuration. Due to the excitation of surface plasmons induced by graphene in a low terahertz frequency range, there exist the resonant transmission and anomalous Goos-Hänchen shifts in such an optical tunneling configuration. As compared to the case of the quantum well, a graphene sheet with unique optical properties can enhance the resonant transmission with a relatively low loss and modulate the large negative and positive Goos-Hänchen shifts by adjusting the chemical potential or electron relaxation time. These intriguing phenomena may lead to some potential applications in graphene-based electro-optic devices.

  5. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption.

    PubMed

    Wolf, T J A; Myhre, R H; Cryan, J P; Coriani, S; Squibb, R J; Battistoni, A; Berrah, N; Bostedt, C; Bucksbaum, P; Coslovich, G; Feifel, R; Gaffney, K J; Grilj, J; Martinez, T J; Miyabe, S; Moeller, S P; Mucke, M; Natan, A; Obaid, R; Osipov, T; Plekan, O; Wang, S; Koch, H; Gühr, M

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method's impressive electronic structure sensitivity for excited-state investigations.Many photo-induced processes such as photosynthesis occur in organic molecules, but their femtosecond excited-state dynamics are difficult to track. Here, the authors exploit the element and site selectivity of soft X-ray absorption to sensitively follow the ultrafast ππ*/nπ* electronic relaxation of hetero-organic molecules.

  6. Global Average Upper Ocean Temperature Response To Changing Solar Irradiance: Exciting The Internal Decadal Mode

    NASA Astrophysics Data System (ADS)

    White, W. B.; Dettinger, M. D.; Cayan, D. R.; White, Warren B.; Dettinger, Michael D.; Cayan, Daniel R.

    Global average upper ocean temperatures anomalies of +/-0.05°K fluctuate in fixed phase with decadal signals in the Sun's irradiance of +/-0.5 Watts m-2 over the past 100 years (White et al., 1997), but its amplitude is 2 to 3 times that expected from the transient Stefan-Boltzmann radiation balance (White et al., 1988). Examining global patterns of upper ocean temperature and lower troposphere winds, we find the internal interannual mode of variability in Earth's ocean-atmosphere-terrestrial system with global-average upper ocean temperature anomalies of +/-0.05°K occurring naturally, independent of changing solar irradiance (White et al., 2000). Yet coherence and phase statistics indicate that the observed internal decadal mode in Earth's ocean -atmosphere terrestrial system is excited by the decadal signal in the Sun's irradiance. To understand the thermodynamics of this association we conduct a global-average upper ocean heat budget utilizing upper ocean temperatures from the SIO reanalysis and air-sea heat and momentum fluxes from the COADS reanalysis, finding the source of decadal global warming to be the reduction in trade wind intensity across the tropics, decreasing global average latent heat flux out of the ocean. We demonstrate that this reduction in trade wind intensity in the Pacific Ocean is governed by a delayed action oscillator mechanism in the ocean-atmosphere system differing little from that used to explain the El Niño-Southern Oscillation (Graham and White, 1988). We operate an intermediate coupled model of this delayed action oscillator, normally driven by white noise, by superimposing the Stefan-Boltzmann upper ocean temperature response to decadal changes in the Sun's irradiance. We find the latter, with weak amplitude of +/-0.02°K and non-random phase, is able to excite a decadal signal in this delayed action oscillator, yielding a damped resonance response of +/-0.1°K in the equatorial Pacific Ocean, with dissipation provided by

  7. Homogeneous competitive hybridization assay based on two-photon excitation fluorescence resonance energy transfer.

    PubMed

    Liu, Lingzhi; Dong, Xiaohu; Lian, Wenlong; Peng, Xiaoniu; Liu, Zhihong; He, Zhike; Wang, Ququan

    2010-02-15

    Recently, we have successfully developed a two-photon excitation fluorescence resonance energy transfer (TPE-FRET)-based homogeneous immunoassay using two-photon excitable small organic molecule as the energy donor. In the present work, the newly emerging TPE-FRET technique was extended to the determination of oligonucleotide. A new TPE molecule with favorable two-photon action cross section was synthesized [2-(2,5-bis(4-(dimethylamino)styryl)-1H-pyrrol-1-yl)acetic acid, abbreviated as TP-COOH], with the tagged reactive carboxyl group allowing facile conjugation with streptavidin (SA). Employing the TP-COOH molecule as energy donor and black hole quencher 1 (BHQ-1) as acceptor, a TPE-FRET-based homogeneous competitive hybridization model was constructed via a biotin-streptavidin bridge. Through the hybridization between a biotinylated single-stranded DNA (ssDNA) and a BHQ-1-linked ssDNA, and the subsequent capture of the as-formed hybrid by TP-COOH labeled SA, the donor fluorescence was quenched due to the FRET between TP-COOH and BHQ-1. Upon the competition between a target ssDNA and the quencher-linked ssDNA toward the biotinylated oligonucleotide, the donor fluorescence was recovered in a target-dependent manner. Good linearity was obtained with the target oligonucleotide ranging from 0.08 to 1.52 microM. The method was applied to spiked serum and urine samples with satisfying recoveries obtained. The results of this work verified the applicability of TPE-FRET technique in hybridization assay and confirmed the advantages of TPE-FRET in complicated matrix.

  8. Plasmon-resonant Raman spectroscopy in metallic nanoparticles: Surface-enhanced scattering by electronic excitations

    NASA Astrophysics Data System (ADS)

    Carles, R.; Bayle, M.; Benzo, P.; Benassayag, G.; Bonafos, C.; Cacciato, G.; Privitera, V.

    2015-11-01

    Since the discovery of surface-enhanced Raman scattering (SERS) 40 years ago, the origin of the "background" that is systematically observed in SERS spectra has remained questionable. To deeply analyze this phenomenon, plasmon-resonant Raman scattering was recorded under specific experimental conditions on a panel of composite multilayer samples containing noble metal (Ag and Au) nanoparticles. Stokes, anti-Stokes, and wide, including very low, frequency ranges have been explored. The effects of temperature, size (in the nm range), embedding medium (SiO2, Si3N4, or TiO2) or ligands have been successively analyzed. Both lattice (Lamb modes and bulk phonons) and electron (plasmon mode and electron-hole excitations) dynamics have been investigated. This work confirms that in Ag-based nanoplasmonics composite layers, only Raman scattering by single-particle electronic excitations accounts for the background. This latter appears as an intrinsic phenomenon independently of the presence of molecules on the metallic surface. Its spectral shape is well described by revisiting a model developed in the 1990s for analyzing electron scattering in dirty metals, and used later in superconductors. The gs factor, that determines the effective mean-free path of free carriers, is evaluated, gsexpt=0.33 ±0.04 , in good agreement with a recent evaluation based on time-dependent local density approximation gstheor=0.32 . Confinement and interface roughness effects at the nanometer range thus appear crucial to understand and control SERS enhancement and more generally plasmon-enhanced processes on metallic surfaces.

  9. Conversion of bright magneto-optical resonances into dark resonances at fixed laser frequency for D2 excitation of atomic rubidium

    NASA Astrophysics Data System (ADS)

    Auzinsh, M.; Berzins, A.; Ferber, R.; Gahbauer, F.; Kalvans, L.; Mozers, A.; Opalevs, D.

    2012-03-01

    Nonlinear magneto-optical resonances on the hyperfine transitions belonging to the D2 line of rubidium were changed from bright to dark resonances by changing the laser power density of the single exciting laser field or by changing the vapor temperature in the cell. In one set of experiments atoms were excited by linearly polarized light from an extended cavity diode laser with polarization vector perpendicular to the light's propagation direction and magnetic field, and laser-induced fluorescence was observed along the direction of the magnetic field, which was scanned. A low-contrast bright resonance was observed at low laser power densities when the laser was tuned to the Fg=2→Fe=3 transition of 87Rb and near to the Fg=3→Fe=4 transition of 85Rb. The bright resonance became dark as the laser power density was increased above 0.6 mW/cm2 or 0.8 mW/cm2, respectively. When the Fg=2→Fe=3 transition of 87Rb was excited with circularly polarized light in a second set of experiments, a bright resonance was observed, which became dark when the temperature was increased to around 50∘C. The experimental observations at room temperature could be reproduced with good agreement by calculations based on a theoretical model, although the theoretical model was not able to describe measurements at elevated temperatures, where reabsorption was thought to play a decisive role. The model was derived from the optical Bloch equations and included all nearby hyperfine components, averaging over the Doppler profile, mixing of magnetic sublevels in the external magnetic field, and a treatment of the coherence properties of the exciting radiation field.

  10. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae

    PubMed Central

    Aller, L. H.; Keyes, C. D.

    1980-01-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation. PMID:16592781

  11. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip Thomas

    2005-07-01

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necess-itating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent frac-tion of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  12. Resonant excitation of waves by a spiraling ion beam on the large plasma device

    NASA Astrophysics Data System (ADS)

    Tripathi, Shreekrishna

    2015-11-01

    The resonant interaction between energetic-ions and plasma waves is a fundamental topic of importance in the space, controlled magnetic-fusion, and laboratory plasma physics. We report new results on the spontaneous generation of traveling shear Alfvén waves and high-harmonic beam-modes in the lower-hybrid range of frequencies by an intense ion beam. In particular, the role of Landau and Doppler-shifted ion-cyclotron resonances (DICR) in extracting the free-energy from the ion-beam and destabilizing Alfvén waves was explored on the Large Plasma Device (LAPD). In these experiments, single and dual-species magnetized plasmas (n ~1010 -1012 cm-3, Te ~ 5.0-10.0 eV, B = 0.6-1.8 kG, He+ and H+ ions, 19.0 m long, 0.6 m diameter) were produced and a spiraling hydrogen ion beam (5-15 keV, 2-10 A, beam-speed/Alfvén-speed = 0.2-1.5, J ~ 50-150 mA/cm2, pitch-angle ~53°) was injected into the plasma. The interaction of the beam with the plasma was diagnosed using a retarding-field energy analyzer, three-axis magnetic-loop, and Langmuir probes. The resonance conditions for the growth of shear Alfvén waves were examined by varying the parameters of the ion-beam and ambient plasma. The experimental results demonstrate that the DICR process is particularly effective in exciting left-handed polarized shear Alfvén waves that propagate in the direction opposite to the ion beam. The high-harmonic beam modes were detected in the vicinity of the spiraling ion beam and contained more than 80 harmonics of Doppler-shifted gyro-frequency of the beam. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  13. Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons

    SciTech Connect

    Aaltonen, : T.

    2008-09-01

    The authors report a measurement of resonance parameters of the orbitally excited (L = 1) narrow B{sup 0} mesons in decays to B{sup (*)+}{pi}{sup -} using 1.7 fb{sup -1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B*{sub 2}{sup 0} state are measured to be m(B*{sub 2}{sup 0}) = 5740.2{sub -1.8}{sup +1.7}(stat.){sub -0.8}{sup +0.9}(syst.) MeV/c{sup 2} and {Lambda}(B*{sub 2}{sup 0}) = 22.7{sub -3.2}{sup +3.8}(stat.){sub -10.2}{sup +3.2}(syst.) MeV/c{sub 2}. The mass difference between the B*{sub 2}{sup 0} and B{sub 1}{sup 0} states is measured to be 14.9{sub -2.5}{sup +2.2}(stat.){sub -1.4}{sup +1.2}(syst.) MeV/c{sup 2}, resulting in a B{sub 1}{sup 0} mass of 5725.3{sub -2.2}{sup +1.6}(stat.){sub -1.5}{sup +1.4}(syst.) MeV/c{sup 2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B*{sub 2}{sup 0} width.

  14. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.

    PubMed

    Qiao, Yan; Polzer, Frank; Kirmse, Holm; Steeg, Egon; Kühn, Sergei; Friede, Sebastian; Kirstein, Stefan; Rabe, Jürgen P

    2015-02-24

    Resonant coupling between distinct excitons in organic supramolecular assemblies and inorganic semiconductors is supposed to offer an approach to optoelectronic devices. Here, we report on colloidal nanohybrids consisting of self-assembled tubular J-aggregates decorated with semiconductor quantum dots (QDs) via electrostatic self-assembly. The role of QDs in the energy transfer process can be switched from a donor to an acceptor by tuning its size and thereby the excitonic transition energy while keeping the chemistry unaltered. QDs are located within a close distance (<4 nm) to the J-aggregate surface, without harming the tubular structures and optical properties of J-aggregates. The close proximity of J-aggregates and QDs allows the strong excitation energy transfer coupling, which is around 92% in the case of energy transfer from the QD donor to the J-aggregate acceptor and approximately 20% in the reverse case. This system provides a model of an organic-inorganic light-harvesting complex using methods of self-assembly in aqueous solution, and it highlights a route toward hierarchical synthesis of structurally well-defined supramolecular objects with advanced functionality.

  15. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  16. Thermal Excitation of Gadolinium-Based Contrast Agents Using Spin Resonance

    PubMed Central

    Fridjhon, Peter; Rubin, David M.

    2016-01-01

    Theoretical and experimental investigations into the thermal excitation of liquid paramagnetic contrast agents using the spin resonance relaxation mechanism are presented. The electronic spin-lattice relaxation time τ1e of gadolinium-based contrast agents, which is estimated at 0.1 ns, is ten orders of magnitude faster than the relaxation time of protons in water. The shorter relaxation time is found to significantly increase the rate of thermal energy deposition. To the authors’ knowledge this is the first study of gadolinium based contrast agents in a liquid state used as thermal agents. Analysis shows that when τ1e and other experimental parameters are optimally selected, a maximum theoretical heating rate of 29.4 °C.s−1 could be achieved which would suffice for clinical thermal ablation of neoplasms. The experimental results show a statistically significant thermal response for two out of the four contrast agents tested. The results are compared to the simulated estimates via analysis of a detailed model of the system. While these experimentally determined temperature rises are small and thus of no clinical utility, their presence supports the theoretical analysis and strongly suggests that the chemical structure of the selected compounds plays an important role in this mechanism of heat deposition. There exists an opportunity for the development of alternative gadolinium-based compounds with an order of magnitude longer τ1e in a diluted form to be used as an efficient hyperthermia agent for clinical use. PMID:27341338

  17. Measurement of Resonance Parameters of Orbitally Excited Narrow B0 Mesons

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzurri, P.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Almenar, C. Cuenca; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlok, J.; Fernandez, P. Movilla; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Griso, S. Pagan; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Rekovic, V.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Wynne, S. M.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-03-01

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B(*)+π- using 1.7fb-1 of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B2*0 state are measured to be m(B2*0)=5740.2-1.8+1.7(stat)-0.8+0.9(syst)MeV/c2 and Γ(B2*0)=22.7-3.2+3.8(stat)-10.2+3.2(syst)MeV/c2. The mass difference between the B2*0 and B10 states is measured to be 14.9-2.5+2.2(stat)-1.4+1.2(syst)MeV/c2, resulting in a B10 mass of 5725.3-2.2+1.6(stat)-1.5+1.4(syst)MeV/c2. This is currently the most precise measurement of the masses of these states and the first measurement of the B2*0 width.

  18. Ultrasonic sound velocity measurement in samples of soft materials through under-resonance excitation.

    PubMed

    Ammann, Jean-Jacques; Apablaza, Victor; Galaz, Belfor; Flores, Carolina

    2005-04-01

    Ultrasound (US) velocity determination is a valuable characterization technique, providing important information on elastic properties of materials. Sound velocity can be obtained accurately in the pulsed method if the thickness of the specimen is precisely known. This is clearly not easily achievable for soft materials, such as biologic soft tissues or tissue-mimicking phantoms. From this consideration, previous works have established that sound velocity can be determined in through-transmission configuration without thickness measurement through the time-of-flight determination of specimen-reflected echoes in plane parallel-surfaced specimens. It is shown here that the amplitude and shape of these specimen echoes can be significantly improved by working in the tone-burst mode at an excitation frequency below the transducer resonance. This is particularly valuable for materials presenting a low acoustic contrast with the surrounding medium, usually water, such as tissue-mimicking materials and water-based phantoms, making the specimen echo time-of-flights and, consequently, the sound velocity determination, more reliable.

  19. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators

    NASA Astrophysics Data System (ADS)

    Gu, Ping; Wan, Mingjie; Wu, Wenyang; Chen, Zhuo; Wang, Zhenlin

    2016-05-01

    Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a nearly perfect metal shell layer around a dielectric sphere. We demonstrate that these Fano resonances originate from the interference between the Mie cavity and sphere plasmon resonances. Moreover, we present that the variation on either the dielectric core size or core refractive index allows for easily tuning the observed Fano resonances over a wide spectral range. Our findings are supported by excellent agreement with analytical calculations, and offer unprecedented opportunities for realizing ultrasensitive bio-sensors, lasing and nonlinear optical devices.Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a

  20. Resonant excitation of ethylene molecules in the combustion flame CVD of diamond using a wavelength tunable CO2 laser

    NASA Astrophysics Data System (ADS)

    Xie, Z. Q.; Park, J. B.; He, X. N.; Gao, Y.; Zhou, Y. S.; Lu, Y. F.

    2010-02-01

    CO2 laser resonant excitations of precursor molecules were applied in combustion flame synthesis of diamond films. The combustion flame was produced from a mixture of ethylene (C2H4), acetylene (C2H2) and oxygen (O2). A wavelength-tunable CO2 laser with wavelength range from 9.2 to 10.9 μm was used for wavelength-matched excitation of the ethylene molecules. By irradiating the flame using CO2 laser at 10.532 μm, the ethylene molecules were resonantly excited through the CH2 wagging vibrational mode (ν7, 949.3 cm-1). Irradiation of the flame using the common CO2 laser wavelength at 10.591 μm was also carried out for comparison. It was found that diamond synthesis was more obviously enhanced by the CO2 laser resonant excitation at 10.532 μm as compared to that at 10.591 μm. Firstly, the flame was shortened by 50%, indicating a promoted reaction in the process. Secondly, the diamond grain sizes as well as the diamond film thicknesses were increased by 200~300% and 160% respectively, indicating a higher growth rate of diamond films. Finally, Raman spectra of the diamond sample showed a sharp diamond peak at 1334 cm-1 and a suppressed G-band, indicating higher diamond quality.

  1. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    SciTech Connect

    Li, Qian; Jesse, Stephen; Tselev, Alexander; Collins, Liam; Yu, Pu; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical and electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.

  2. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    DOE PAGES

    Li, Qian; Jesse, Stephen; Tselev, Alexander; ...

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less

  3. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra.

    PubMed

    Mustafa, Sanam; Hannagan, John; Rigby, Paul; Pfleger, Kevin; Corry, Ben

    2013-02-01

    Accurate quantification of Förster resonance energy transfer (FRET) using intensity-based methods is difficult due to the overlap of fluorophore excitation and emission spectra. Consequently, mechanisms are required to remove bleedthrough of the donor emission into the acceptor channel and direct excitation of the acceptor when aiming to excite only the donor fluorophores. Methods to circumvent donor bleedthrough using the unmixing of emission spectra have been reported, but these require additional corrections to account for direct excitation of the acceptor. Here we present an alternative method for robust quantification of FRET efficiencies based upon the simultaneous spectral unmixing of both excitation and emission spectra. This has the benefit over existing methodologies in circumventing the issue of donor bleedthrough and acceptor cross excitation without the need for additional corrections. Furthermore, we show that it is applicable with as few as two excitation wavelengths and so can be used for quantifying FRET efficiency in microscope images as easily as for data collected on a spectrofluorometer. We demonstrate the accuracy of the approach by reproducing efficiency values in well characterized FRET standards: HEK cells expressing a variety of linked cerulean and venus fluorescent proteins. Finally we describe simple ImageJ plugins that can be used to calculate and create images of FRET efficiencies from microscope images.

  4. Ultrafast dynamics in C 1s core-excited CF4 revealed by two-dimensional resonant Auger spectroscopy.

    PubMed

    Piancastelli, M N; Guillemin, R; Simon, M; Iwayama, H; Shigemasa, E

    2013-06-21

    Following core excitation in an isolated molecule, ultrafast dissociation of one particular chemical bond can occur, where "ultrafast" is defined as taking place during the lifetime of the core hole, of the order of few femtoseconds. The signature of such phenomenon can be observed in resonant Auger spectra following core excitation. We present here an investigation of ultrafast dissociation following C 1s-to-σ* core excitation in CF4, with high-resolution resonant Auger spectroscopy. We are able to characterize final states of both the molecular ion and the CF3 (+) fragment. We use two-dimensional (2D) maps to record resonant Auger spectra across the resonance as a function of photon energy and to characterize ultrafast dynamics. This method provides immediate visual evidence of one of the important characteristics of the study of spectral features related to molecular versus fragment ionic final states, and namely their dispersion law. In the 2D maps we are also able to identify the dissociation limit for one of the molecular final states.

  5. Synchronized excitability in a network enables generation of internal neuronal sequences

    PubMed Central

    Wang, Yingxue; Roth, Zachary; Pastalkova, Eva

    2016-01-01

    Hippocampal place field sequences are supported by sensory cues and network internal mechanisms. In contrast, sharp-wave (SPW) sequences, theta sequences, and episode field sequences are internally generated. The relationship of these sequences to memory is unclear. SPW sequences have been shown to support learning and have been assumed to also support episodic memory. Conversely, we demonstrate these SPW sequences were present in trained rats even after episodic memory was impaired and after other internal sequences – episode field and theta sequences – were eliminated. SPW sequences did not support memory despite continuing to ‘replay’ all task-related sequences – place- field and episode field sequences. Sequence replay occurred selectively during synchronous increases of population excitability -- SPWs. Similarly, theta sequences depended on the presence of repeated synchronized waves of excitability – theta oscillations. Thus, we suggest that either intermittent or rhythmic synchronized changes of excitability trigger sequential firing of neurons, which in turn supports learning and/or memory. DOI: http://dx.doi.org/10.7554/eLife.20697.001 PMID:27677848

  6. Photochemical fractionation of O-16 in the space medium modeled by resonance excitation of CO by H-Lyman alpha

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Corrigan, M. J.; Fitzgerald, R. W.

    1988-01-01

    Analyses of meteorite matter, the present structure of the solar system, and the evolution of matter in stellar systems are used to provide inferences concerning the formation of primordial matter in the solar system. Results indicate that molecular excitation processes similar to those observed today in circumstellar regions and dark interstellar clouds were operating in the early solar nebula. It is suggested that resonance excitation of broad isotopic bands by strong UV line sources may have resulted in the anomalous isotopic compositions noted in meteorites.

  7. Photochemical fractionation of O-16 in the space medium modeled by resonance excitation of CO by H-Lyman alpha

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Corrigan, M. J.; Fitzgerald, R. W.

    1988-01-01

    Analyses of meteorite matter, the present structure of the solar system, and the evolution of matter in stellar systems are used to provide inferences concerning the formation of primordial matter in the solar system. Results indicate that molecular excitation processes similar to those observed today in circumstellar regions and dark interstellar clouds were operating in the early solar nebula. It is suggested that resonance excitation of broad isotopic bands by strong UV line sources may have resulted in the anomalous isotopic compositions noted in meteorites.

  8. Cooling a Mechanical Resonator with Nitrogen-Vacancy Centres Using a Room Temperature Excited State Spin-Strain Interaction

    DOE PAGES

    MacQuarrie, E. R.; Otten, M.; Gray, S. K.; ...

    2017-02-06

    Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain couplingmore » in the excited state is 13.5 ± 0.5 times stronger than the ground state spin-strain coupling. Lastly, we then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.« less

  9. Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction

    PubMed Central

    MacQuarrie, E. R.; Otten, M.; Gray, S. K.; Fuchs, G. D.

    2017-01-01

    Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin–strain interaction that has not been previously studied. We experimentally demonstrate that the spin–strain coupling in the excited state is 13.5±0.5 times stronger than the ground state spin–strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy. PMID:28165477

  10. Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction

    NASA Astrophysics Data System (ADS)

    Macquarrie, E. R.; Otten, M.; Gray, S. K.; Fuchs, G. D.

    2017-02-01

    Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain coupling in the excited state is 13.5+/-0.5 times stronger than the ground state spin-strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.

  11. Complex-Scaling Treatment for Doubly Excited Inter-Shell Resonances in H- Interacting with Screened Coulomb (Yukawa) Potentials

    NASA Astrophysics Data System (ADS)

    Ho, Y. K.; Kar, S.

    2012-10-01

    The doubly-excited inter-shell resonance states of the hydrogen negative ion with screened Coulomb potentials are investigated in the framework of complex-scaling method. Highly correlated wave functions with terms up to 1078 in Hylleraas coordinates are used. The resonance parameters for the 2 s3 s 1 S e associated with the H ( N = 2) threshold and the 3 s4 s 1 S e state associated with the H ( N = 3) threshold for various screening strengths are reported. Comparisons are made with other available data in the literature.

  12. Steep gravity-capillary waves within the internal resonance regime

    NASA Astrophysics Data System (ADS)

    Perlin, Marc; Ting, Chao-lung

    1992-11-01

    Steep gravity-capillary waves are studied experimentally in a channel. The range of cyclic frequencies investigated is 6.94-9.80 Hz; namely, the high-frequency portion of the regime of internal resonances according to the weakly nonlinear theory (Wilton's ripples). These wave trains are stable according to the nonlinear Schrödinger equation. The experimental wave trains are generated by large, sinusoidal oscillations of the wavemaker. A comparison is made between the measured wave fields and the (symmetric) numerical solutions of Schwartz and Vanden-Broeck [J. Fluid Mech. 95, 119 (1979)], Chen and Saffman [Stud. Appl. Math. 60, 183 (1979); 62, 95 (1980)], and Huh (Ph.D. dissertation, University of Michigan, 1991). The waves are shown to be of slightly varying asymmetry as they propagate downstream. Their symmetric parts, isolated by determining the phase which provides the smallest mean-square antisymmetric part, compare favorably with the ``gravity-type'' wave solutions determined by numerical computations. The antisymmetric part of the wave profile is always less than 30% of the peak-to-peak height of the symmetric part. As nonlinearity is increased, the amplitudes of the short-wave undulations in the trough of the primary wave increase; however, there are no significant changes in these short-wave frequencies. The lowest frequency primary-wave experiments, which generate the highest frequency short-wave undulations, exhibit more rapid viscous decay of these high-frequency waves than do the higher-frequency primary wave experiments.

  13. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    SciTech Connect

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; Sanchez-Dehesa, Jose

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.

  14. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    DOE PAGES

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; ...

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in amore » channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.« less

  15. Nature of low-lying electric dipole resonance excitations in 74Ge

    NASA Astrophysics Data System (ADS)

    Negi, D.; Wiedeking, M.; Lanza, E. G.; Litvinova, E.; Vitturi, A.; Bark, R. A.; Bernstein, L. A.; Bleuel, D. L.; Bvumbi, S.; Bucher, T. D.; Daub, B. H.; Dinoko, T. S.; Easton, J. L.; Görgen, A.; Guttormsen, M.; Jones, P.; Kheswa, B. V.; Khumalo, N. A.; Larsen, A. C.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Masiteng, L. P.; Nchodu, M. R.; Ndayishimye, J.; Newman, R. T.; Noncolela, S. P.; Orce, J. N.; Papka, P.; Pellegri, L.; Renstrøm, T.; Roux, D. G.; Schwengner, R.; Shirinda, O.; Siem, S.

    2016-08-01

    Isospin properties of dipole excitations in 74Ge are investigated using the (α ,α'γ ) reaction and compared to (γ ,γ' ) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E 1 strength with an increase in excitation energy, which is consistent with the measurement.

  16. Projection of excited orbitals into kinetic energies of emitted electrons in resonant Si KLL Auger decays of SiF{sub 4}

    SciTech Connect

    Suzuki, I. H.; Kono, Y.; Ikeda, A.; Nagaoka, S.; Ouchi, T.; Ueda, K.; Takahashi, O.; Higuchi, I.; Tamenori, Y.

    2010-10-15

    Spectator resonant Auger-electron spectra have been measured in the Si 1s photoexcitation region of SiF{sub 4} using an electron spectroscopic technique combined with undulator radiation. A transition with the highest intensity in the total ion yield spectrum, which comes from excitation of a 1s electron into the 6t{sub 2} valence orbital, generates resonant Auger decays in which the excited electron remains predominantly in the valence orbital or is partly shaken up into a high-lying Rydberg orbital. The higher-lying peak generated through excitation into Rydberg orbitals induces resonant Auger decays in which the excited Rydberg electron is partly shaken up to a higher-lying Rydberg orbital or shaken down to a lower-lying valence molecular orbital. These findings exhibit a clear disentanglement effect among excited orbitals which are smeared out in the 1s electron excitation spectrum.

  17. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    PubMed

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  18. Double Resonance Excitation of the Rubidium Dimer : the 2 ^{1}Π_g State

    NASA Astrophysics Data System (ADS)

    Drozdova, Anastasia; Allouche, Abdul-Rahman; Wannous, Ghassan; Crozet, Patrick; Ross, Amanda J.

    2013-06-01

    We have performed a series of optical-optical double resonance experiments with one or two cw Ti:sapphire lasers, to excite the 2 ^{1}Π_g state of Rb_2, recording infrared fluorescence from 2 ^{1}Π_g on a Fourier transform spectrometer. Fluorescence from the lower vibrational levels of 2 ^{1}Π_g (T_e = 22069.56 cm^{-1}) is dominated by transitions to the B ^{1}Π_u state studied by Amiot and Vergès. Vibrational and rotational relaxation from laser-pumped levels v' < 15 now give a rather complete description around the potential minimum of the 2 ^{1}Π_g state, completing the observations for 6 ≤ v ≤ 50 reported by Han et al last year. Fluorescence from v' > 35, occurs also to the 0^+ components of the A ^{1}Σ_u^+ ˜ b ^{3}Π_u complex. Fitting all available 2 ^{1}Π_g → B ^{1}Π_u data for ^{85}Rb_2 and ^{85}Rb^{87}Rb (several thousand transitions) has also given an improved description of the bottom of the B ^{1}Π_u state potential well. The 2 ^{1}Π_g state correlates at long-range with Rb 5s + Rb 4d ^2D_{3/2} atoms, giving a dissociation energy of 1279.6 cm^{-1}. Most new data lie below v = 45, 250 cm^{-1} below this dissociation threshold. Amiot and Vergès, {Chem. Phys. Lett.} {294} 91-98 (1997) X. Han et al, Chem. Phys. Lett. {538} 1-4 (2011) A.-R.Allouche, M. Aubert-Frécon, {J. Chem. Phys} {136} 37-41 (2012)

  19. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE PAGES

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  20. Angular distribution of hypersatellite and satellite radiation emitted after resonant transfer and excitation into U{sup 91+} ions

    SciTech Connect

    Zakowicz, S.; Harman, Z.; Gruen, N.; Scheid, W.

    2003-10-01

    In collisions of heavy few-electron projectile ions with light targets, an electron can be transferred from the target with the simultaneous excitation of a projectile electron. We study the angular distribution of deexcitation x rays following the resonant capture process. Our results are compared to experimental values of Ma et al. [Phys. Rev. A 68, 042712 (2003)] for collisions of U{sup 91+} ions with a hydrogen gas target.

  1. Polarization-Dependent Interference of Coherent Scattering from Orthogonal Dipole Moments of a Resonantly Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Chen, Disheng; Lander, Gary R.; Solomon, Glenn S.; Flagg, Edward B.

    2017-01-01

    Resonant photoluminescence excitation (RPLE) spectra of a neutral InGaAs quantum dot show unconventional line shapes that depend on the detection polarization. We characterize this phenomenon by performing polarization-dependent RPLE measurements and simulating the measured spectra with a three-level quantum model. The spectra are explained by interference between fields coherently scattered from the two fine structure split exciton states, and the measurements enable extraction of the steady-state coherence between the two exciton states.

  2. Search for {Delta}(1232)-resonance excitation in heavy-ion collisions around 100 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Bonasera, A.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Russo, G.; Turrisi, R. ||

    1996-11-01

    Correlations among protons and neutral pions emitted in the reaction {sup 36}Ar+{sup 27}Al at 95 MeV/nucleon have been studied. The analysis of the ({pi}{sup 0}{minus}{ital p}) invariant-mass and relative-angle distributions shows evidences of {Delta}(1232)-resonance excitation. The experimental data are in agreement with the predictions of microscopic theoretical calculations. {copyright} {ital 1996 The American Physical Society.}

  3. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    DOE PAGES

    Liu, X.; Dean, M. P. M.; Liu, J.; ...

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less

  4. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    SciTech Connect

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; Hill, J. P.

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  5. Study of the dissociation of nitrous oxide following resonant excitation of the nitrogen and oxygen K-shells

    SciTech Connect

    Ceolin, D.; Travnikova, O.; Bao, Z.; Piancastelli, M. N.; Tanaka, T.; Hoshino, M.; Kato, H.; Tanaka, H.; Harries, J. R.; Tamenori, Y.; Pruemper, C.; Lischke, T.; Liu, X.-J.; Ueda, K.

    2008-01-14

    A photochemistry study on nitrous oxide making use of site-selective excitation of terminal nitrogen, central nitrogen, and oxygen 1s{yields}3{pi} excitations is presented. The resonant Auger decay which takes place following excitation can lead to dissociation of the N{sub 2}O{sup +} ion. To elucidate the nuclear dynamics, energy-resolved Auger electrons were detected in coincidence with the ionic dissociation products, and a strong dependence of the fragmentation pathways on the core-hole site was observed in the binding energy region of the first satellite states. A description based on the molecular orbitals as well as the correlation between the thermodynamical thresholds of ion formation and the first electronic states of N{sub 2}O{sup +} has been used to qualitatively explain the observed fragmentation patterns.

  6. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator.

    PubMed

    Ibrahim, T S; Lee, R; Baertlein, B A; Abduljalil, A M; Zhu, H; Robitaille, P M

    2001-12-01

    In this work, computational methods were utilized to optimize the field produced by the transverse electromagnetic (TEM) resonator in the presence of the human head at 8 Tesla. Optimization was achieved through the use of the classical finite difference time domain (FDTD) method and a TEM resonator loaded with an anatomically detailed human head model with a resolution of 2 mm x 2 mm x 2 mm. The head model was developed from 3D MR images. To account for the electromagnetic interactions between the coil and the tissue, the coil and the head were treated as a single system at all the steps of the model including, numerical tuning and excitation. In addition to 2, 3, 4, 6, and 10-port excitations, an antenna array concept was utilized by driving all the possible ports (24) of a 24-strut TEM resonator. The results show that significant improvement in the circularly polarized component of the transverse magnetic field could be obtained when using multiple ports and variable phase and fixed magnitude, or variable phase and variable magnitude excitations.

  7. On the self-excitation mechanisms of plasma series resonance oscillations in single- and multi-frequency capacitive discharges

    SciTech Connect

    Schüngel, Edmund; Brandt, Steven; Schulze, Julian; Korolov, Ihor; Derzsi, Aranka; Donkó, Zoltán

    2015-04-15

    The self-excitation of plasma series resonance (PSR) oscillations is a prominent feature in the current of low pressure capacitive radio frequency discharges. This resonance leads to high frequency oscillations of the charge in the sheaths and enhances electron heating. Up to now, the phenomenon has only been observed in asymmetric discharges. There, the nonlinearity in the voltage balance, which is necessary for the self-excitation of resonance oscillations with frequencies above the applied frequencies, is caused predominantly by the quadratic contribution to the charge-voltage relation of the plasma sheaths. Using Particle In Cell/Monte Carlo collision simulations of single- and multi-frequency capacitive discharges and an equivalent circuit model, we demonstrate that other mechanisms, such as a cubic contribution to the charge-voltage relation of the plasma sheaths and the time dependent bulk electron plasma frequency, can cause the self-excitation of PSR oscillations, as well. These mechanisms have been neglected in previous models, but are important for the theoretical description of the current in symmetric or weakly asymmetric discharges.

  8. Dynamic responses of a riser under combined excitation of internal waves and background currents

    NASA Astrophysics Data System (ADS)

    Lou, Min; Yu, Chenglong

    2014-09-01

    In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-β method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode

  9. Reflection of a TE-polarised Gaussian beam from a layered structure under conditions of resonance excitation of waveguide modes

    SciTech Connect

    Sokolov, V I; Marusin, N V; Molchanova, S I; Savelyev, A G; Khaydukov, E V; Panchenko, V Ya

    2014-11-30

    The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depth of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)

  10. Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection

    NASA Astrophysics Data System (ADS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Suryo Wasisto, Hutomo; Uhde, Erik; Peiner, Erwin

    2017-06-01

    In this paper, the asymmetric resonance frequency (f 0) responses of thermally in-plane excited silicon cantilevers for a pocket-sized, cantilever-based airborne nanoparticle detector (Cantor) are analysed. By measuring the shift of f 0 caused by the deposition of nanoparticles (NPs), the cantilevers are used as a microbalance. The cantilever sensors are low cost manufactured from silicon by bulk-micromachining techniques and contain an integrated p-type heating actuator and a sensing piezoresistive Wheatstone bridge. f 0 is tracked by a homemade phase-locked loop (PPL) for real-time measurements. To optimize the sensor performance, a new cantilever geometry was designed, fabricated and characterized by its frequency responses. The most significant characterisation parameters of our application are f 0 and the quality factor (Q), which have high influences on sensitivity and efficiency of the NP detector. Regarding the asymmetric resonance signal, a novel fitting function based on the Fano resonance replacing the conventionally used function of the simple harmonic oscillator and a method to calculate Q by its fitting parameters were developed for a quantitative evaluation. To obtain a better understanding of the resonance behaviours, we analysed the origin of the asymmetric line shapes. Therefore, we compared the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator. In correspondence to the Fano effect, we could reconstruct the measured resonance curves by coupling two signals with constant amplitude and the expected signal of the cantilever, respectively. Moreover, the phase of the measurement signal can be analysed by this method, which is important to understand the locking process of the PLL circuit. Besides the frequency analysis, experimental results and calibration measurements with different particle types are presented. Using the described analysis method, decent results to optimize a next

  11. Elementary excitations in charge-tunable InGaAs quantum dots studied by resonant Raman and resonant photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Köppen, Tim; Franz, Dennis; Schramm, Andreas; Heyn, Christian; Gutjahr, Johann; Pfannkuche, Daniela; Heitmann, Detlef; Kipp, Tobias

    2011-04-01

    We report on resonant optical spectroscopy of self-assembled InGaAs quantum dots in which the number of electrons can accurately be tuned to N=0,1,2 by an external gate voltage. Polarization, wave vector, and magnetic field dependent measurements enable us to clearly distinguish between resonant Raman and resonant photoluminescence processes. The Raman spectra for N=1 and 2 electrons considerably differ from each other. In particular, for N=2, the quantum-dot He, the spectra exhibit both singlet and triplet transitions reflecting the elementary many-particle interaction. Also the resonant photoluminescence spectra are significantly changed by varying the number of electrons in the QDs. For N=1 we observe complex spectra possibly induced by strong polaronic effects that are suppressed for N=2.

  12. Internal Stark effect mediates intramolecular excited-state proton transfer in 3-hydroxyflavone derivatives

    NASA Astrophysics Data System (ADS)

    Klymchenko, Andriy S.; Demchenko, Alexander P.

    2002-12-01

    Internal Stark effect in electronic spectra is the effect that is observed when the electronic bands shift udner the influence of promixal charges. In order to study the possible involvement of this effect in modulating the intramolecular proton transfer reactions in the excited state, we designed and studied several derivatives of 3-hydroxyflavone. They include the species containing neutral and positively charged substituents in 6 position of chromone ring. These compounds were studied in solvents of different polarities. In these experiments the shifts of both normal and tautomer flurosence bands are clearly observed in a manner predicted by Stark effect theory. In addition, a dramatic effect of suppression by introduced charge of intramolecular excited-state proton transfer was observed.

  13. Excited states with internally contracted multireference coupled-cluster linear response theory

    NASA Astrophysics Data System (ADS)

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-01

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  14. Excited states with internally contracted multireference coupled-cluster linear response theory.

    PubMed

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-07

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  15. The effect of the reactant internal excitation on the dynamics of the C(+) + H2 reaction.

    PubMed

    Herráez-Aguilar, D; Jambrina, P G; Menéndez, M; Aldegunde, J; Warmbier, R; Aoiz, F J

    2014-12-07

    We have performed a dynamical study of the endothermic and barrierless C(+) + H2((1)Σg(+)) → CH(+)((1)Σg(+)) + H reaction for different initial rotational states of the H2(v = 0) and H2(v = 1) manifolds. The calculations have been carried out using quasiclassical trajectories and the Gaussian binning methodology on a recent potential energy surface [R. Warmbier and R. Schneider, Phys. Chem. Chem. Phys., 2011, 13, 10285]. Both state-selected integral cross sections as a function of the collision energy and rate coefficients, kv,j(T), have been determined. We show that rotational excitation of the reactants is as effective as vibrational excitation when it comes to increasing the reactivity, and that both types of excitation could contribute to explain the unexpectedly high abundance of CH(+) in the interstellar media. Such an increase in reactivity takes place by suppressing the reaction threshold when the internal energy is sufficient to overcome the endothermicity. Whenever this is the case, the excitation functions at collision energies Ecoll ≤ 0.1 eV display a ∝E(-1/2)coll dependence. However, the absolute values of the state selected kv=1(T) are one order of magnitude below the Langevin model predictions. The disagreement between the approximately derived experimental rate coefficients for v = 1 and those calculated by this and previous theoretical treatments is due to the neglect of the effect of the rotational excitation in the derivation of the former. In spite of the deep well present in the potential energy surface, the reaction does not show a statistical behaviour.

  16. Communication: X-ray excited optical luminescence from TbCl3 at the giant resonance of terbium.

    PubMed

    Heigl, F; Jürgensen, A; Zhou, X-T; Hu, Y-F; Zuin, L; Sham, T K

    2013-02-14

    We have studied the optical recombination channels of TbCl(3) using x-ray excited optical luminescence at the N(4,5) absorption edge of Tb (giant resonance) in both the energy and time domain. The luminescence exhibits a relatively fast (5)D(3), and a slow (5)D(4) decay channel in the blue and green, respectively. The rather short lifetime of the (5)D(3) state indicates that the decay is mainly driven by Tb-Tb ion interaction via non-radiative energy transfer (cross-relaxation). At the giant resonance the X-ray Absorption Near Edge Structure (XANES) recorded using partial photoluminescence yield is inverted. In the pre-edge region the contrast of the spectral feature is significantly better in optical XANES than in total electron yield. Changes in the intensity of (5)D(3)-(7)F(5) (544 nm) and (5)D(4)-(7)F(6) (382 nm) optical transitions as the excitation energy is tuned across the giant resonance are also noted. The results provide detailed insight into the dynamics of the optical recombination channels and an alternative method to obtain high sensitivity, high energy resolution XANES at the giant resonance of light emitting rare-earth materials.

  17. Resonant Auger decay of the core-excited C{sup *}O molecule in intense x-ray laser fields

    SciTech Connect

    Demekhin, Philipp V.; Chiang, Ying-Chih; Cederbaum, Lorenz S.

    2011-09-15

    The dynamics of the resonant Auger (RA) process of the core-excited C*O(1s{sup -1}{pi}*,v{sub r}=0) molecule in an intense x-ray laser field is studied theoretically. The theoretical approach includes the analog of the conical intersections of the complex potential energy surfaces of the ground and 'dressed' resonant states due to intense x-ray pulses, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the same final ionic states coherently, as well as the direct photoionization of the resonance state itself. The light-induced nonadiabatic effect of the analog of the conical intersections of the resulting complex potential energy surfaces gives rise to strong coupling between the electronic, vibrational, and rotational degrees of freedom of the diatomic CO molecule. The interplay of the direct photoionization of the ground state and of the decay of the resonance increases dramatically with the field intensity. The coherent population of a final ionic state via both the direct photoionization and the resonant Auger decay channels induces strong interference effects with distinct patterns in the RA electron spectra. The individual impact of these physical processes on the total electron yield and on the CO{sup +}(A {sup 2}{Pi}) electron spectrum are demonstrated.

  18. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  19. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks.

    PubMed

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  20. Macroscopic mechanism of the excitation of M{lambda}, T=O resonances in inelastic electron scattering

    SciTech Connect

    Bastrukov, S.I.; Molodtsova, I.V.; Shilov, V.M.

    1995-06-01

    A macroscopic mechanism of the excitation of magnetic isoscalar resonances by inelastically scattered electrons is studied in the framework of nuclear fluid dynamics. In this model, a spherical nucleus is considered as a macroparticle of Fermi matter degenerate in spin and isospin. Such matter is described by the equations of a continuous elastic medium. Resonances with M{lambda}, T=O are considered as manifestations of shear torsional vibrations of the nucleus. Collective transition current densities and magnetic form factors are calculated analytically in the plane-wave Born approximation. Cross sections are calculated numerically in the distorted-wave approximation. Theoretical predictions are compared with the characteristic integral parameters of magnetic quadrupole resonances measured in experiments on the inelastic scattering of electrons by spherical nuclei. 25 refs., 6 figs., 1 tab.

  1. Alpha Resonances in {sup 13}C Excited by the {sup 9}Be ({sup 6}Li,d) Reaction

    SciTech Connect

    Rodrigues, M. R. D.; Borello-Lewin, T.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Souza, M. A.; Miyake, H.; Cunsolo, A.; Cappuzzello, F.; Ukita, G. M.

    2010-05-21

    The {sup 9}Be({sup 6}Li,d){sup 13}C reaction was used to investigate alpha resonant states in {sup 13}C up to 13 MeV of excitation. The reaction was measured at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. The resolution of 50 keV allowed for the separation of the resonant contributions to the known 7/2{sup -} at 10.753 MeV and (5/2{sup -}) at 10.818 MeV {sup 13}C states. The alpha resonance seen at the (3alpha+n) threshold was not previously reported. The experimental angular distributions are presented in comparison with DWBA predictions.

  2. Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals.

    PubMed

    Long, Yongbing; Shen, Liang; Xu, Haitao; Deng, Haidong; Li, Yuanxing

    2016-08-31

    Graphene perfect absorbers with ultranarrow bandwidth are numerically proposed by employing a subwavelength dielectric grating to excite the guided-mode resonance of one-dimensional photonic crystals (1DPCs). Critical coupling of the guided-mode resonance of 1DPCs to graphene can produce perfect absorption with a ultranarrow bandwidth of 0.03 nm. The quality factor of the absorption peak reaches a ultrahigh value of 20000. It is also found that the resonant absorption peaks can be tuned by controlling the dispersion line of the guided mode and the period of the grating. When the parameters of the grating and the 1DPCs are suitably set, the perfect absorption peaks can be tuned to any randomly chosen wavelength in the visible wavelength range.

  3. Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals

    PubMed Central

    Long, Yongbing; Shen, Liang; Xu, Haitao; Deng, Haidong; Li, Yuanxing

    2016-01-01

    Graphene perfect absorbers with ultranarrow bandwidth are numerically proposed by employing a subwavelength dielectric grating to excite the guided-mode resonance of one-dimensional photonic crystals (1DPCs). Critical coupling of the guided-mode resonance of 1DPCs to graphene can produce perfect absorption with a ultranarrow bandwidth of 0.03 nm. The quality factor of the absorption peak reaches a ultrahigh value of 20000. It is also found that the resonant absorption peaks can be tuned by controlling the dispersion line of the guided mode and the period of the grating. When the parameters of the grating and the 1DPCs are suitably set, the perfect absorption peaks can be tuned to any randomly chosen wavelength in the visible wavelength range. PMID:27577721

  4. Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Golgir, Hossein Rabiee; Zhou, Yun Shen; Li, Dawei; Keramatnejad, Kamran; Xiong, Wei; Wang, Mengmeng; Jiang, Li Jia; Huang, Xi; Jiang, Lan; Silvain, Jean Francois; Lu, Yong Feng

    2016-09-01

    The influence of exciting ammonia (NH3) molecular vibration in the growth of gallium nitride (GaN) was investigated by using an infrared laser-assisted metal organic chemical vapor deposition method. A wavelength tunable CO2 laser was used to selectively excite the individual vibrational modes. Resonantly exciting the NH-wagging mode (v2) of NH3 molecules at 9.219 μm led to a GaN growth rate of 84 μm/h, which is much higher than the reported results. The difference between the resonantly excited and conventional thermally populated vibrational states was studied via resonant and nonresonant vibrational excitations of NH3 molecules. Resonant excitation of various vibrational modes was achieved at 9.219, 10.35, and 10.719 μm, respectively. Nonresonant excitation was conducted at 9.201 and 10.591 μm, similar to conventional thermal heating. Compared to nonresonant excitation, resonant excitation noticeably promotes the GaN growth rate and crystalline quality. The full width at half maximum value of the XRD rocking curves of the GaN (0002) and GaN (10-12) diffraction peaks decreased at resonant depositions and reached its minimum value of 45 and 53 arcmin, respectively, at the laser wavelength of 9.219 μm. According to the optical emission spectroscopic studies, resonantly exciting the NH3 v2 mode leads to NH3 decomposition at room temperature, reduces the formation of the TMGa:NH3 adduct, promotes the supply of active species in GaN formation, and, therefore, results in the increased GaN growth rate.

  5. A total internal reflection-fluorescence correlation spectroscopy setup with pulsed diode laser excitation

    NASA Astrophysics Data System (ADS)

    Weger, Lukas; Hoffmann-Jacobsen, Kerstin

    2017-09-01

    Fluorescence correlation spectroscopy (FCS) measures fluctuations in a (sub-)femtoliter volume to analyze the diffusive behavior of fluorescent particles. This highly sensitive method has proven to be useful for the analysis of dynamic biological systems as well as in chemistry, physics, and material sciences. It is routinely performed with commercial fluorescence microscopes, which provide a confined observation volume by the confocal technique. The evanescent wave of total internal reflectance (TIR) is used in home-built systems to permit a surface sensitive FCS analysis. We present a combined confocal and TIR-FCS setup which uses economic low-power pulsed diode lasers for excitation. Excitation and detection are coupled to time-correlated photon counting hardware. This allows simultaneous fluorescence lifetime and FCS measurements in a surface-sensitive mode. Moreover, the setup supports fluorescence lifetime correlation spectroscopy at surfaces. The excitation can be easily switched between TIR and epi-illumination to compare the surface properties with those in liquid bulk. The capabilities of the presented setup are demonstrated by measuring the diffusion coefficients of a free dye molecule, a labeled polyethylene glycol, and a fluorescent nanoparticle in confocal as well as in TIR-FCS.

  6. Direction of wave propagation in the cochlea for internally excited basilar membrane

    PubMed Central

    Li, Yizeng; Grosh, Karl

    2012-01-01

    Otoacoustic emissions are an indicator of a normally functioning cochlea and as such are a useful tool for non-invasive diagnosis as well as for understanding cochlear function. While these emitted waves are hypothesized to arise from active processes and exit through the cochlear fluids, neither the precise mechanism by which these emissions are generated nor the transmission pathway is completely known. With regard to the acoustic pathway, two competing hypotheses exist to explain the dominant mode of emission. One hypothesis, the backward-traveling wave hypothesis, posits that the emitted wave propagates as a coupled fluid-structure wave while the alternate hypothesis implicates a fast, compressional wave in the fluid as the main mechanism of energy transfer. In this paper, we study the acoustic pathway for transmission of energy from the inside of the cochlea to the outside through a physiologically-based theoretical model. Using a well-defined, compact source of internal excitation, we predict that the emission is dominated by a backward traveling fluid-structure wave. However, in an active model of the cochlea, a forward traveling wave basal to the location of the force is possible in a limited region around the best place. Finally, the model does predict the dominance of compressional waves under a different excitation, such as an apical excitation. PMID:22712944

  7. Formation of H{sub 2} from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence

    SciTech Connect

    Chen, T. E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Zettergren, H. E-mail: henning@fysik.su.se; Delaunay, R.; Rousseau, P.; Adoui, L.; Domaracka, A.; Huber, B. A.; Tielens, A. G. G. M.

    2015-04-14

    We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.

  8. Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions.

    PubMed

    Konrad, Alexander; Trost, Anna-Lisa; Skandary, Sepideh; Hussels, Martin; Meixner, Alfred J; Karapetyan, Navasard V; Brecht, Marc

    2014-04-07

    We demonstrate controlled modification of the fluorescence and energy transfer properties of Photosystem I (PSI) - one of the most important light harvesting systems - by using a newly developed approach to produce optical subwavelength microcavities for cryogenic temperature issues. The experiments were carried out on PSI from the cyanobacterium Arthrospira platensis as it shows a broad and structured fluorescence emission. By changing the distance between the cavity forming mirrors, the electromagnetic field mode structure around PSI is varied affecting the emission and energy transfer properties, which allows us to selectively enhance signals of resonant emitters and suppress off-resonant emission. By comparing the experimental data with simulations, we are able to show how excitation transfer within PSI is affected by the microcavity. The ability to control the energy transfer within such efficient energy converters as photosynthetic proteins can establish the opportunity for enhancing the efficiencies of bio-solar applications. The defined control of the resonance conditions by microcavities makes them a preferable tool to study the effects of additional electromagnetic modes on the energy transfer in any coupled multi-chromophore system. The resonator geometry excludes the direct contact of the proteins with any surface. Possible quenching or denaturation of the complexes close to metal surfaces is still an insuperable obstacle for studies with proteins and nanostructures, which can be avoided by resonators.

  9. Excited state structures and decay dynamics of 1,3-dimethyluracils in solutions: resonance Raman and quantum mechanical calculation study.

    PubMed

    Li, Ming-Juan; Liu, Ming-Xia; Zhao, Yan-Ying; Pei, Ke-Mei; Wang, Hui-Gang; Zheng, Xuming; Fang, Wei Hai

    2013-10-03

    The resonance Raman spectroscopic study of the excited state structural dynamics of 1,3-dimethyluracil (DMU), 5-bromo-1,3-dimethyluracil (5BrDMU), uracil, and thymine in water and acetonitrile were reported. Density functional theory calculations were carried out to help elucidate the ultraviolet electronic transitions associated with the A-, and B-band absorptions and the vibrational assignments of the resonance Raman spectra. The effect of the methylation at N1, N3 and C5 sites of pyrimidine ring on the structural dynamics of uracils in different solvents were explored on the basis of the resonance Raman intensity patterns. The relative resonance Raman intensities of DMU and 5BrDMU are computed at the B3LYP-TD level. Huge discrepancies between the experimental resonance Raman intensities and the B3LYP-TD predicted ones were observed. The underlying mechanism was briefly discussed. The decay channel through the S1((1)nπ*)/S2((1)ππ*) conical intersection and the S1((1)nπ*)/T1((3)ππ*) intersystem crossing were revealed by using the CASSCF(8,7)/6-31G(d) level of theory calculations.

  10. Vibrational structure and partial rates of resonant Auger decay ofthe N 1s ->2pi core excitations in nitric oxide

    SciTech Connect

    Kukk, Edwin; Snell, Gyorgy; Bozek, John D.; Cheng, Wei-T.; Berrah, N.

    2000-07-06

    High-resolution resonant Auger electron spectra of NO measured in the vicinity of the N 1s {yields} 2{pi} core excitations are presented. The open shell electronic configuration of the molecule results in four excited electronic states, three of which are populated in the photoabsorption spectrum, {sup 2}{Delta}, {sup 2}{Sigma}{sup -} and {sup 2}{Sigma}{sup +}. Electron emission spectra obtained at different vibrational levels of the three N 1s core-excited states of NO are reported. Recently reported ab initio calculations [J. Chem. Phys. 106, 4038(1997)] are used to generate theoretical spectra for comparison with the experimental results taking lifetime vibration interference and Auger resonant Raman effects into account. Very good agreement is found for the lowest energy X {sup 1}{Sigma}{sup +} final ionic state. Spectra of the higher energy final ionic states are decomposed into contributions from the different 5{sigma}{sup -1}2{pi}{sup 1} and 1{pi}{sup -1}2{pi}{sup 1} configurations for comparison of the calculated and experimental partial Auger decay rates. A revised value for the adiabatic ionization energy of the {sup 1}{Delta} ionic state results from the deconvolution.

  11. Emergent Weyl Fermion Excitations in TaP Explored by Ta 181 Quadrupole Resonance

    NASA Astrophysics Data System (ADS)

    Yasuoka, H.; Kubo, T.; Kishimoto, Y.; Kasinathan, D.; Schmidt, M.; Yan, B.; Zhang, Y.; Tou, H.; Felser, C.; Mackenzie, A. P.; Baenitz, M.

    2017-06-01

    The Ta 181 quadrupole resonance [nuclear quadrupole resonance (NQR)] technique is utilized to investigate the microscopic magnetic properties of the Weyl semimetal TaP. We find three zero-field NQR signals associated with the transition between the quadrupole split levels for Ta with I =7 /2 nuclear spin. A quadrupole coupling constant, νQ=19.250 MHz , and an asymmetric parameter of the electric field gradient, η =0.423 , are extracted, in good agreement with band structure calculations. In order to examine the magnetic excitations, the temperature dependence of the spin-lattice relaxation rate (1 /T1T ) is measured for the f2 line (±5 /2 ↔±3 /2 transition). We find that there exist two regimes with quite different relaxation processes. Above T*≈30 K , a pronounced (1 /T1T )∝T2 behavior is found, which is attributed to the magnetic excitations at the Weyl nodes with temperature-dependent orbital hyperfine coupling. Below T*, the relaxation is mainly governed by a Korringa process with 1 /T1T =const , accompanied by an additional T-1 /2-type dependence to fit our experimental data. We show that Ta NQR is a novel probe for the bulk Weyl fermions and their excitations.

  12. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  13. Interplay between relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics of Xe atoms

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Son, Sang-Kil; Santra, Robin

    2017-04-01

    In this paper, we theoretically study x-ray multiphoton ionization dynamics of heavy atoms taking into account relativistic and resonance effects. When an atom is exposed to an intense x-ray pulse generated by an x-ray free-electron laser (XFEL), it is ionized to a highly charged ion via a sequence of single-photon ionization and accompanying relaxation processes, and its final charge state is limited by the last ionic state that can be ionized by a single-photon ionization. If x-ray multiphoton ionization involves deep inner-shell electrons in heavy atoms, energy shifts by relativistic effects play an important role in ionization dynamics, as pointed out in Phys. Rev. Lett. 110, 173005 (2013), 10.1103/PhysRevLett.110.173005. On the other hand, if the x-ray beam has a broad energy bandwidth, the high-intensity x-ray pulse can drive resonant photoexcitations for a broad range of ionic states and ionize even beyond the direct one-photon ionization limit, as first proposed in Nat. Photon. 6, 858 (2012), 10.1038/nphoton.2012.261. To investigate both relativistic and resonance effects, we extend the xatom toolkit to incorporate relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics calculations. Charge-state distributions are calculated for Xe atoms interacting with intense XFEL pulses at a photon energy of 1.5 keV and 5.5 keV, respectively. For both photon energies, we demonstrate that the role of resonant excitations in ionization dynamics is altered due to significant shifts of orbital energy levels by relativistic effects. Therefore, it is necessary to take into account both effects to accurately simulate multiphoton multiple ionization dynamics at high x-ray intensity.

  14. Excitation of Na D-line radiation in collisions of sodium atoms with internally excited H2, D2, and N2

    NASA Technical Reports Server (NTRS)

    Krause, H. F.; Fricke, J.; Fite, W. L.

    1972-01-01

    Excitation of D-line radiation in collisions of Na atoms with vibrationally excited N2, H2 and D2 was studied in two modulated crossed beam experiments. In both experiments, the vibrational excitation of the molecules was provided by heating the molecular beam source to temperatures in the range of 2000 to 3000 K, which was assumed to give populations according to the Boltzmann expression. In the first experiment, a total rate coefficient was measured as a function of molecular beam temperature, with absolute calibration of the photon detector being made using the black body radiation from the heated molecular beam source. Since heating affects both the internal energy and the collisional kinetic energy, the first experiment could not determine the relative contributions of internal energy transfer versus collisional excitation. The second experiment achieved partial separation of internal versus kinetic energy transfer effects by using a velocity-selected molecular beam. Using two simple models for the kinetic energy dependence of the transfer cross section for a given change in vibrational quantum number, the data from both experiments were used to determine parameters in the models.

  15. Investigation of excited states in Mg22 via resonant elastic scattering of Na21+p and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Hu, J.; Notani, M.; Baba, H.; Nishimura, S.; Moon, J. Y.; Nishimura, M.; Iwasaki, H.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Lee, J. H.; Kato, S.; Gono, Y.; Lee, C. S.

    2009-07-01

    The excited states in Mg22 have been investigated by the resonant elastic scattering of Na21+p. A 4.0 MeV/nucleon Na21 beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m.≈172∘,146∘, and 134∘, respectively. A wide energy-range of excitation function in Mg22 (up to Ex~8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the Ne18(α,p)Na21 reaction was recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.

  16. Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

    NASA Astrophysics Data System (ADS)

    Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik

    2015-12-01

    Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO2 microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO2 microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.

  17. Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

    SciTech Connect

    Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik

    2015-12-07

    Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO{sub 2} microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO{sub 2} microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.

  18. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    NASA Astrophysics Data System (ADS)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-01

    Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  19. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE PAGES

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; ...

    2016-10-07

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  20. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    SciTech Connect

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-07

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  1. Dynamics of biexciton localization in AlxGa1-xN mixed crystals under exciton resonant excitation

    NASA Astrophysics Data System (ADS)

    Hirano, Daisuke; Tayagaki, Takeshi; Yamada, Yoichi; Kanemitsu, Yoshihiko

    2008-05-01

    We report the localization dynamics of biexcitons in AlxGa1-xN mixed crystals under exciton resonant excitation at low temperatures. During a few tens of picoseconds just after intense laser excitation, the photoluminescence (PL) spectral shape obeys an inverse Maxwell Boltzmann distribution and free biexcitons dominate the PL spectrum. With a further increase in the delay time, the biexciton PL peak energy and edge energy shift to lower energies. These redshift behaviors in AlxGa1-xN mixed crystals are completely different from the behaviors of free biexcitons in GaN crystals. Our observations reveal the rapid transformation dynamics from free to localized biexcitons in band-tail states in AlxGa1-xN mixed crystals.

  2. Multiple low-energy excitation states in FeNi disks observed by broadband ferromagnetic resonance measurement

    NASA Astrophysics Data System (ADS)

    Huo, Y.; Zhou, C.; Sun, L.; Chui, S. T.; Wu, Y. Z.

    2016-11-01

    Magnetization excitation in micron sized FeNi disks with different diameters is studied by broadband ferromagnetic resonance (FMR) measurement. Except the main FMR peak, additional adsorption peaks with lower energies are observed. Both micromagnetic simulation and quantum spin wave calculation confirm that the low-energy excitation states are attributed to backward volume magnetostatic (BVM) spin waves. The size dependence of the low-energy states is systematically studied in 50-nm-thick Py disks with diameters larger than 500 nm, and the linewidth of the first BVM state is found to be obviously smaller than that of the FMR absorption peak. Through a quantitative comparison with experimental results, the quantum spin wave calculation is proven to be a reliable method to get the susceptibility and is much faster than the classical micromagnetic simulations.

  3. Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging.

    PubMed

    Erni, Daniel; Liebig, Thorsten; Rennings, Andreas; Koster, Norbert H L; Fröhlich, Jürg

    2011-01-01

    We propose an adaptive RF antenna system for the excitation (and manipulation) of the fundamental circular waveguide mode (TE(11)) in the context of high-field (7T) traveling-wave magnetic resonance imaging (MRI). The system consists of composite right-/left-handed (CRLH) meta-material ring antennas that fully conforms to the inner surface of the MRI bore. The specific use of CRLH metamaterials is motivated by its inherent dispersion engineering capabilities, which is needed when designing resonant ring structures for virtually any predefined diameter operating at the given Larmor frequency (i.e. 298 MHz). Each functional group of the RF antenna system consists of a pair of subsequently spaced and correspondingly fed CRLH ring antennas, allowing for the unidirectional excitation of propagating, circularly polarized B(1) mode fields. The same functional group is also capable to simultaneously mold an incoming, counter-propagating mode. Given these functionalities we are proposing now a compound scheme (i.e. periodically arranged multiple antenna pairs)--termed as "MetaBore"--that is apt to provide a tailored RF power distribution as well as full wave reflection compensation virtually at any desired location along the bore.

  4. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds.

  5. Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer

    NASA Astrophysics Data System (ADS)

    Carey, John J.; Bailey, Ray T.; Pugh, D.; Sherwood, J. N.; Cruickshank, F. R.; Wynne, Klaas

    2002-12-01

    Organic molecular crystals that are extremely efficient at terahertz-pulse generation are in- vestigated. Terahertz pulses produced by optical rectification at 800 nm in (-)2-(α-methylbenzyl-amino)-5-nitropyridine have an order of magnitude higher power than those generated in the commonly used inorganic crystal ZnTe. The organic molecular crystals were also found to generate terahertz pulses when excited on resonance at 400 nm. This may pave the way for studying ultrafast charge-transport dynamics in three dimensions.

  6. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  7. Classification of the nonlinear dynamics and bifurcation structure of ultrasound contrast agents excited at higher multiples of their resonance frequency

    NASA Astrophysics Data System (ADS)

    Sojahrood, Amin Jafari; Kolios, Michael C.

    2012-07-01

    Through numerical simulation of the Hoff model we show that when ultrasound contrast agents (UCAs) are excited at frequencies which are close to integer (m>2) multiples of their natural resonance frequency, the bifurcation structure of the UCA oscillations as a function of pressure may be characterized by 3 general distinct regions. The UCA behavior starts with initial period one oscillations which undergoes a saddle node bifurcation to m coexisting attractors for an acoustic pressure above a threshold, P. Further increasing the pressure above a second threshold P, is followed by a sudden transition to period 1 oscillations.

  8. Desorption of Hydrogen from Si(111) by Resonant Excitation of the Si-H Vibrational Stretch Mode

    SciTech Connect

    Liu, Zhiheng; Feldman, Leonard C.; Tolk, Norman; Zhang, Zhenyu; Cohen, Philip I

    2006-01-01

    Past efforts to achieve selective bond scission by vibrational excitation have been thwarted by energy thermalization. Here we report resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation. The wavelength dependence of the desorption yield peaks at 0.26 electron volt: the energy of the Si-H vibrational stretch mode. The desorption yield is quadratic in the infrared intensity. A strong H/D isotope effect rules out thermal desorption mechanisms, and electronic effects are not applicable in this low-energy regime. A molecular mechanism accounting for the desorption event remains elusive.

  9. Change in the observed half-life of an excited nuclear state under conditions of a resonance environment

    SciTech Connect

    Loginov, Yu. E.

    2010-01-15

    A model description of the increase in the observed value of the half-life of isomeric nuclei {sup 119m1}Sn (E = 23.8 keV, T{sub 1/2} {approx} 18 ns) in a resonance environment created by stable nuclei of {sup 119}Sn is proposed. According to the model used, the observed effect is due to gamma radiation from isomeric nuclei {sup 119m1}Sn newly produced upon the resonance capture of gamma rays emitted in {sup 119m1}Sn decay by stable nuclei of {sup 119}Sn. On the basis of T{sub 1/2} values that were measured previously, the radiative shift of the position of an excited nuclear state (nuclear analog of the Lamb shift in an atom), {Delta}{omega}{sub 0}, was estimated at 1.5(2) x 10{sup 11} s{sup -1} for the isomer {sup 119m1}Sn.

  10. Neutral resonant ionization in a H{sup −} plasma source: Potential of doubly excited **H{sup −}

    SciTech Connect

    Vogel, J. S.

    2016-02-15

    Hydrogen plasmas are optically dense to Lyman-α radiation, maintaining *H(n = 2) neutral atoms that may undergo neutral resonant ionization to **H{sup −}. One state, **H{sup −}(2p{sup 2} {sup 3}P{sup e}), is thought bound at 9.7 meV with a several nanosecond lifetime while all others are unbound resonances. Collision dynamics of two *H(2s) shows that an ionic pair of (p, **H{sup −}) resolves at least three long-standing collision experiments. The doubly excited anion also has a path to the unexcited ion pair whose only physical distinction is that both (p, H{sup −}) have energy of 3.7 eV.

  11. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  12. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  13. Electronic Relaxation after Resonant Laser Excitation of Cr in Superfluid Helium Nanodroplets

    PubMed Central

    2013-01-01

    Chromium (Cr) atoms embedded into helium nanodroplets (HeN) are ejected from the droplets upon photoexcitation. During ejection they undergo electronic relaxation resulting in bare Cr atoms in various excited states. In a study of the relaxation process we present absorption spectra observed via laser induced fluorescence and beam depletion as well as dispersed fluorescence spectra and time-resolved fluorescence measurements. Broad and shifted absorption structures were found for the strong z7P° ← a7S3 and y7P° ← a7S3 excitations from the ground state. Emission lines are, in contrast, very narrow, which indicates that fluorescence is obtained from bare excited Cr atoms after ejection. Upon excitation into the y7P2,3,4° states we observed fluorescence from y7P2°, z5P1,2,3°, and z7P2,3,4°, indicating that these states are populated by electronic relaxation during the ejection processes. Relative population ratios are obtained from the intensities of individual spectral lines. Excitation into the z7P2,3,4° states resulted in fluorescence only from z7P2°. Estimates of the time duration of the ejection process are obtained from time-resolved measurements. PMID:23410146

  14. Orbit-based analysis of resonant excitations of Alfvén waves in tokamaks

    SciTech Connect

    Bierwage, Andreas; Shinohara, Kouji

    2014-11-15

    The exponential growth phase of fast-ion-driven Alfvénic instabilities is simulated and the resonant wave-particle interactions are analyzed numerically. The simulations are carried out in realistic magnetic geometry and with a realistic particle distribution for a JT-60U plasma driven by negative-ion-based neutral beams. In order to deal with the large magnetic drifts of the fast ions, two new mapping methods are developed and applied. The first mapping yields the radii and pitch angles at the points, where the unperturbed orbit of a particle intersects the mid-plane. These canonical coordinates allow to express analysis results (e.g., drive profiles and resonance widths) in a form that is easy to understand and directly comparable to the radial mode structure. The second mapping yields the structure of the wave field along the particle trajectory. This allows us to unify resonance conditions for trapped and passing particles, determine which harmonics are driven, and which orders of the resonance are involved. This orbit-based resonance analysis (ORA) method is applied to fast-ion-driven instabilities with toroidal mode numbers n = 1-3. After determining the order and width of each resonance, the kinetic compression of resonant particles and the effect of linear resonance overlap are examined. On the basis of the ORA results, implications for the fully nonlinear regime, for the long-time evolution of the system in the presence of a fast ion source, and for the interpretation of experimental observations are discussed.

  15. Transverse excitation of plasmonic slot nano-resonators embedded in metal-coated plasmonic microfiber tips

    NASA Astrophysics Data System (ADS)

    Ding, M.; Zervas, M. N.; Brambilla, G.

    2013-04-01

    A plasmonic slot rectangular nano-resonator embedded in a metal-coated optical microfiber tip is theoretically and experimentally demonstrated. In this device, light is transversely coupled from the optical microfiber tip into the plasmonic slot nano-resonator, showing strong localization in three dimensions and strong enhancement factor (7.24 × 103). This device can find wide range of applications such as surface enhanced Raman scattering, optical filtering, spectroscopy, and bio-sensing.

  16. High-Speed Rotor Analytical Dynamics on Flexible Foundation Subjected to Internal and External Excitation

    NASA Astrophysics Data System (ADS)

    Jivkov, Venelin S.; Zahariev, Evtim V.

    2016-12-01

    The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.

  17. Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Verlinde, M.; Sonnenschein, V.; Flanagan, K. T.; Moore, I.; Neyens, G.

    2017-03-01

    Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nuclear structure information. Here we demonstrate that by using weak atomic transitions, resonance laser ionization spectroscopy is achieved with the required high efficiency (1%-10%) and precision (linewidths of tens of MHz). We illustrate experimentally and through the use of simulations how the narrow experimental linewidths are achieved and how distorted resonance ionization spectroscopy line shapes can be avoided. The role of the delay of the ionization laser pulse with respect to the excitation laser pulse is crucial: the use of a delayed ionization step permits the best resolving powers and line shapes. A high efficiency is maintained if the intermediate level has a lifetime that is at least of the order of the excitation laser pulse width. A model that describes this process reproduces well the observed features and will help to optimize the conditions for future experiments. The simulation code is available upon request to the authors.

  18. L-shell Resonant Transfer Excitation Followed by X-rays for N-like P8+ and Ca13+

    NASA Astrophysics Data System (ADS)

    Omar, G.; Ramadan, H.; El-Kafrawy, T.

    2005-03-01

    The present work deals with the calculations of the cross sections of resonant transfer excitation followed by X-rays (RTEX) in the collisions of N-like P8+ and Ca13+ with He and H2 targets. The ab initio calculations are carried out using the adapted AMA scheme in the isolated resonance approximation (IRA). The adapted method was previously used in the calculations of RTEX cross sections for Be-like Ca16+, where such preceding data were available. The results of Ca16+ were found in a good agreement with both experimental and theoretical works, in other coupling schemes, at low and high-energy regions. However, only slight deviation was found at the middle energy region. Thus, this method is then applied in the calculations of RTEX cross sections for P8+ and Ca13+ ions with L-shell excitations. The present calculations may be considered as a database for future comparison with experimental and theoretical data in other coupling schemes. The isoelectronic trends of RTEX cross sections with some atomic parameters, for P8+ and Ca13+, are discussed.

  19. L-shell Resonant Transfer Excitation Followed by X-rays for N-like P8+ and Ca13+

    SciTech Connect

    Omar, G.; El-Kafrawy, T.; Ramadan, H.

    2005-03-17

    The present work deals with the calculations of the cross sections of resonant transfer excitation followed by X-rays (RTEX) in the collisions of N-like P8+ and Ca13+ with He and H2 targets. The ab initio calculations are carried out using the adapted AMA scheme in the isolated resonance approximation (IRA). The adapted method was previously used in the calculations of RTEX cross sections for Be-like Ca16+, where such preceding data were available. The results of Ca16+ were found in a good agreement with both experimental and theoretical works, in other coupling schemes, at low and high-energy regions. However, only slight deviation was found at the middle energy region. Thus, this method is then applied in the calculations of RTEX cross sections for P8+ and Ca13+ ions with L-shell excitations. The present calculations may be considered as a database for future comparison with experimental and theoretical data in other coupling schemes. The isoelectronic trends of RTEX cross sections with some atomic parameters, for P8+ and Ca13+, are discussed.

  20. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  1. Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Takahashi, Kazue; Wygant, John R.; Chen, Liu; Bonnell, John; Cattell, Cynthia A.; Thaller, Scott; Kletzing, Craig; Smith, Charles W.; MacDowall, Robert J.; Baker, Daniel N.; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Funsten, Herbert O.; Reeves, Geoffrey D.; Spence, Harlan E.

    2013-08-01

    Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L˜5. The observed wave period, Eφ/Br ratio and the 90° phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with ˜90 keV ring current ions. The estimated earthward gradient of ion phase space density provides a free energy source for wave generation through the drift-resonance instability. A similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One specific example is the "fishbone" instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations.

  2. Central ring electrode for trapping and excitation/detection in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ostrander, C M; Arkin, C R; Laude, D

    2001-01-01

    The use of a central trapping ring electrode for Fourier transform ion cyclotron resonance (FTICR) mass spectrometry is demonstrated. Ions are trapped with an oppositely biased static potential superimposed on both the excite and detect electrodes and maintained throughout the experiment, including the application of a dipolar rf excite waveform and the image current ion detection event. The use of a central trapping electrode for FTICR coupled with an open cell design retains the advantages of high ion throughput and gas conductance, while simplifying the electrode geometry and reducing the overall dimensions of the cell. This allows the central trapping electrode to be of utility in volume-limited vacuum chambers including FTICR instrument miniaturization. Presented here are the preliminary experimental results using the central trapping electrode as an FTICR cell in which the excitation and detection electrodes also create a trapping depression to constrain the z-axis motion of the ions. The cell overcomes the principle limitation of an earlier single trapping electrode design by producing a 91% effective potential well depth compared to 19% for the single trapping electrode and 33% for standard open cells. This allows the central trapping electrode configuration to achieve an order of magnitude improvement in ion capacity compared to more conventional open cell designs.

  3. Excitation of Poloidal standing Alfven waves through drift resonance wave-particle interaction (Invited)

    NASA Astrophysics Data System (ADS)

    Dai, L.; Takahashi, K.; Wygant, J. R.; Chen, L.; Bonnell, J. W.; Cattell, C. A.; Thaller, S. A.; Kletzing, C.; Smith, C. W.; MacDowall, R. J.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Funsten, H. O.; Reeves, G. D.; Spence, H.

    2013-12-01

    Charged particles trapped in the magnetosphere undergo a longitudinal drift motion around the Earth induced by the magnetic field curvature and gradient. The resonant wave-particle interaction associated with the drift motion is important for understanding the dynamics of the ring current and radiation belt particles. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (RBSP) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (E φ ) oscillations as large as 10mV/m are observed associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L~5. The observed wave period, Eφ/Br, and the 90 degrees phase lag between Br and Eφ are all consistent with fundamental mode standing poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with ~90 keV ring current ions. The estimated earthward gradient of ion phase space density provides free energy source for wave generation through the drift-resonance instability. To our knowledge, this is the first unambiguous observation of drift-resonance wave-particle interaction driving poloidal wave oscillations in the magnetosphere. Similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One example is the ';fishbone' instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations detected on the ground.

  4. Resonant generation of an electron–positron pair by two photons to excited Landau levels

    SciTech Connect

    Diachenko, M. M. Novak, O. P.; Kholodov, R. I.

    2015-11-15

    We consider the resonant generation of an electron–positron pair by two polarized photons to arbitrarily low Landau levels. The resonance occurs when the energy of one photon exceeds the one-photon generation threshold, and the energy of the other photon is multiple to the spacing between the levels. The cross section of the process is determined taking into account the spins of particles. The order of magnitude of the cross section is the highest when the magnetic moments of the particles are oriented along the magnetic field.

  5. Tunable repetition rate VECSEL for resonant acoustic-excitation of nanostructures

    NASA Astrophysics Data System (ADS)

    Chen Sverre, T.; Head, C. R.; Turnbull, A. P.; Shaw, E. A.; Tropper, A. C.; Muskens, O. L.

    2016-03-01

    We report a passively mode-locked InGaAs-quantum well VECSEL, emitting a constant pulse train at an average output power of 18 mW and emission wavelength of 1035 nm, with a continuously tunable pulse repetitionfrequency (PRF) between 0.88 - 1.88 GHz. Pulse duration was 230 fs over 80% of that range. Here we propose a technique making use of the demonstrated VECSEL PRF tunability for a resonant frequency-domain pumpprobe spectroscopic technique for acoustic interrogation of nanostructures. Simulation of suitable GHz acoustic resonators to demonstrate this technique is described.

  6. Direct Observation of Thermal Equilibrium of Excited Triplet States of 9,10-Phenanthrenequinone. A Time-Resolved Resonance Raman Study.

    PubMed

    Kumar, Venkatraman Ravi; Rajkumar, Nagappan; Ariese, Freek; Umapathy, Siva

    2015-10-08

    The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR(3)) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (μs). Interestingly, TR(3) spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ, assigned to nπ* and ππ* of which the ππ* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (∼2 ns) between the T(2)(1(3)nπ*) and T(1)(1(3)ππ*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents [ J. Chem. Phys. 2015 , 142 , 24305 ] suggest that the lowest nπ* and ππ* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism.

  7. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    SciTech Connect

    Maurer, David A.; Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  8. Optimization of elastic nonlinear behavior measurements of ceramic piezoelectric resonators with burst excitation.

    PubMed

    Albareda, Alfons; Pérez, Rafel; Casals, Jorge A; García, Jose E; Ochoa, Diego A

    2007-10-01

    A system of nonlinear measurement and nonlinear elastic characterization of resonators is presented, which increases the possibilities and characteristics of the other classic nonlinear characterization methods. This characterization has been necessary due to the use of resonators in power devices, where their behavior departs from the linear characteristics. The use of burst signals and a system of acquisition and data processing is proposed instead of impedance analyzers, thus avoiding the thermal effects associated with the high-signal measures, which are necessary for this characterization. The measures are repeated for different amplitudes and at the same frequency near the resonance by a single amplitude sweep, which is simpler and faster to carry out than the multiple frequency sweepings used in other methods. As a last resort, a variation on the proposed method, closer to the classical measures, is put forward, in which the resonance is ensured in all the measures. Special emphasis is placed on obtaining nonlinear characterization of the piezoceramic material in order to increase its optimization in the transducers in terms of both its use and its composition and structure.

  9. Nucleon Resonances at Low |t| Excited With p(K,K^')N^*

    NASA Astrophysics Data System (ADS)

    Napolitano, J.; Witkowski, M.; Wright, A.; Cummings, J.; Weygand, D.; Aston, D.; Bienz, T.; Bird, F.; Dunwoodie, W.; Johnson, W.; Kunz, P.; Kwon, Y.; Leith, D.; Levinson, L.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Sinervo, P.; Tarnopolsky, G.; Toge, N.; Waite, A.; Williams, S.; Awaji, N.; Fujii, K.; Hayashi, H.; Iwata, S.; Kajikawa, R.; Matsui, T.; Miyamoto, A.; Ozaki, H.; Pak, C.; Shimomura, T.; Sugiyama, A.; Suzuki, S.; Tauchi, T.; D'Amore, J.; Endorf, R.; Martinez, J.; Meadows, B.; Nussbaum, M.; Ukai, K.

    1996-10-01

    We have examined the production of nucleon states which decay to nπ^+ or pπ^+π^- in K^-p interactions at an incident beam momentum of 11 GeV/c. The data were obtained using the LASS facility at SLAC, and the exposure corresponds to 4 events/nb. In addition, the event trigger yielded very uniform acceptance over a solid angle ≈4π. Partial wave analyses of the nπ^+ and pπ^+π^- systems recoiling against a K^- are in progress. Preliminary results suggest the presence at low momentum transfer squared (|t|<=0.1 (GeV/c)^2) of an excited nucleon state with decay angular distribution consistent with quantum numbers P_11 and mass ≈1400 MeV. This state, which exhibits an extremely steep production angular distribution, would be most naturally interpreted as the first radial excitation of the nucleon.

  10. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

    PubMed

    Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca

    2010-01-01

    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.

  11. Resonant Spin Excitation in the High Temperature Superconductor Ba0.6K0.4Fe2As2

    SciTech Connect

    Christianson, Andrew D; Goremychkin, E. A.; Osborn, R.; Rosenkranz, Stephen; Lumsden, Mark D; Malliakas, C.; Todorov, L.; Claus, H.; Chung, D.Y.; Kanatzidis, M.; Bewley, Robert I.; Guidi, T.

    2008-12-18

    A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T{sub c}), some of which are >50 K, and because of similarities with the high-{sub c} copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T{sub c} in Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

  12. Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, W.F.

    1982-03-09

    Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.

  13. Strongly Enhanced Laser Absorption and Electron Acceleration via Resonant Excitation of Surface Plasma Waves

    NASA Astrophysics Data System (ADS)

    Raynaud, M.; Riconda, C.; Adam, J. C.; Heron, A.

    2010-02-01

    The possibility of creating enhanced fast electron bunches via the excitation of surface plasma waves (SPW) in laser overdense plasma interaction has been investigated by mean of relativistic one dimension motion of a test electron in the field of the surface plasma wave study and with two-dimensional (2D) Particle-In-Cell (PIC) numerical simulations. Strong electron acceleration together with a dramatic increase, up to 70%, of light absorption by the plasma is observed.

  14. Influence of spin-transfer torque on thermally activated ferromagnetic resonance excitations in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Petit, S.; de Mestier, N.; Baraduc, C.; Thirion, C.; Liu, Y.; Li, M.; Wang, P.; Dieny, B.

    2008-11-01

    Voltage noise measurements on magnetic tunnel junctions show that thermal fluctuations of the magnetization are either amplified or quenched by subcritical spin-transfer torque depending on the current direction. We present an analytical model that describes the dependence of thermally activated ferromagnetic resonance on bias current. The evolution of the peak amplitude and linewidth with the applied current is directly related to the longitudinal torque, whereas the shift of the resonance frequency is sensitive to the transverse torque. Both spin torque terms are independently extracted from the measured noise spectra. Our results support the general idea that it is more pertinent to describe spin torque in terms of voltage rather than current in magnetic tunnel junctions.

  15. Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation.

    PubMed

    Guan, Huan; Yao, Peijun; Yu, Wenhai; Wang, Pei; Ming, Hai

    2012-12-17

    Single quantum dot laser has earned extensive interest due to its peculiar properties, however, most of works are focused on the resonant case. In this paper, the lasing oscillation based on off-resonant quantum dot (QD)-cavity system is investigated detailedly through two-electrons QD model. By gradually increasing the pump rate, the typical lasing signatures are shown with and without detuning, include the spectral transition from multiple peaks to single peak, and antibunching to Poissonian distribution. It is also demonstrated how detuning factor strongly influence photon statistics and emission properties, specially, the side peak of spectra induced by the exchange energy (named "sub-peak") will go across the main peak from left to right when the detuning is gradually increased, and, furthermore, we find the "sub-peak cross of spectra" will facilitate the lasing oscillation because of the existence of exchange energy.

  16. Nonlinear dynamic analysis of coupled gear-rotor-bearing system with the effect of internal and external excitations

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Ren, Zhaohui; Wen, Bangchun

    2016-03-01

    Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can be used for diagnosis of faults and vibration control of practical SGRBS.

  17. Excitation of the surface flute waves in electron cyclotron frequency range by internal rotating electron beam in a coaxial waveguide

    NASA Astrophysics Data System (ADS)

    Blednov, O.; Girka, I.; Girka, V.; Pavlenko, I.; Sydora, R.

    2014-12-01

    The initial stage of interaction between a gyrating beam of electrons, which move along Larmor orbits in a narrow gap between a cylindrical plasma layer and an internal screen of a metal coaxial waveguide and electromagnetic eigen waves, is studied theoretically. These waves are extraordinary polarized ones; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that the excitation process is stable enough in respect to changing plasma waveguide parameters. The wider the plasma layer, the broader the range of plasma waveguide parameters within which effective wave excitation takes place. The main influence on the excitation of these modes is performed by the applied axial magnetic field, namely: its increase leads to an increase of growth rate and a broadening of the range of the waveguide parameters within which wave excitation is effective.

  18. Excited State Dynamics of Cold Protonated Cytosine Tautomers: Characterization of Charge Transfer, Intersystem Crossing, and Internal Conversion Processes.

    PubMed

    Broquier, Michel; Soorkia, Satchin; Pino, Gustavo; Dedonder-Lardeux, Claude; Jouvet, Christophe; Grégoire, Gilles

    2017-08-31

    Charge transfer reactions are ubiquitous in chemical reactivity and often viewed as ultrafast processes. For DNA, femtochemistry has undeniably revealed the primary stage of the deactivation dynamics of the locally excited state following electronic excitation. We here demonstrate that the full time scale excited state dynamics can be followed up to milliseconds through an original pump-probe photodissociation scheme applied to cryogenic ion spectroscopy. Protonated cytosine is chosen as a benchmark system in which the locally excited (1)ππ* state decays in the femtosecond range toward long-lived charge transfer and triplet states with lifetimes ranging from microseconds to milliseconds, respectively. A three-step mechanism ((1)ππ* → (1)CT → (3)ππ*) is proposed where internal conversion from each state can occur leading ultimately to fragmentation in the ground electronic state.

  19. Coherent phonon spectroscopy of non-fully symmetric modes using resonant terahertz excitation

    SciTech Connect

    Huber, T. Huber, L.; Johnson, S. L.; Ranke, M.; Ferrer, A.

    2015-08-31

    We use intense terahertz (THz) frequency electromagnetic pulses generated via optical rectification in an organic crystal to drive vibrational lattice modes in single crystal Tellurium. The coherent modes are detected by measuring the polarization changes of femtosecond laser pulses reflecting from the sample surface, resulting in a phase-resolved detection of the coherent lattice motion. We compare the data to a model of Lorentz oscillators driven by the near-single-cycle broadband THz pulse. The demonstrated technique of optically probed coherent phonon spectroscopy with THz frequency excitation could prove to be a viable alternative to other time-resolved spectroscopic methods like standard THz time domain spectroscopy.

  20. Efficient Cycloreversion Reaction of a Diarylethene Derivative in Higher Excited States Attained by Off-Resonant Simultaneous Two-Photon Absorption.

    PubMed

    Sotome, Hikaru; Nagasaka, Tatsuhiro; Une, Kanako; Okui, Chiaki; Ishibashi, Yukihide; Kamada, Kenji; Kobatake, Seiya; Irie, Masahiro; Miyasaka, Hiroshi

    2017-07-20

    Off-resonant excitation of the closed-ring isomer of a photochromic diarylethene derivative at 730 nm induced the efficient cycloreversion reaction with a yield of ∼20%, while the reaction yield was only 2% under one-photon excitation at 365 nm. Excitation wavelength dependence of the one-photon cycloreversion reaction yield under steady-state irradiation in a wide wavelength range showed that the specific electronic state leading to the large cycloreversion reaction yield, which is originally forbidden in the optical transition but partially allowed owing to the low symmetry of the molecule, is spectrally overlapped with the electronic state accessible by the allowed one-photon optical transition in the UV region. Femtosecond transient absorption spectroscopy also revealed that the off-resonant two-photon excitation preferentially pumped the molecule into the specific state, leading to the 10-fold enhancement of the cycloreversion reaction.

  1. Analysis of internal resonance in a two-degree-of-freedom nonlinear dynamical system

    NASA Astrophysics Data System (ADS)

    Dai, Honghua; Wang, Xuechuan; Schnoor, Matt; Atluri, Satya N.

    2017-08-01

    This study is devoted to the analysis of the three-to-one internal resonance in a two degree-of-freedom system with cubic nonlinearity. Quasi-periodic motion is found to appear in the present system with internal resonance, while it does not show up in the case without internal resonance. Both the time domain collocation method and the harmonic balance method are applied to obtain the periodic solutions, and are compared with the benchmark solution of the numerical integration method. In contrast, the quasi-periodic solutions can only be captured via the numerical integration method. A combination of the phase plane portrait, Poincare map, and the frequency spectrum are employed to identify the quasi-periodic motions. A peculiar bifurcation-of-attraction-basin phenomenon is found and demonstrated. Moreover, for strongly nonlinear system subject to high external force, a long-lived chaotic transient is observed.

  2. Extreme secular excitation of eccentricity inside mean motion resonance. Small bodies driven into star-grazing orbits by planetary perturbations

    NASA Astrophysics Data System (ADS)

    Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong

    2017-09-01

    Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star

  3. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  4. The first detection of the 3A g- state in carotenoids using resonance-Raman excitation profiles

    NASA Astrophysics Data System (ADS)

    Furuichi, Kentaro; Sashima, Tokutake; Koyama, Yasushi

    2002-04-01

    The singlet 3A g- state that had been theoretically predicted in shorter polyenes [P. Tavan and K. Schulten J. Chem. Phys. 85 (1986) 6602; Phys. Rev. B 36 (1987) 4337] was first identified in bacterial carotenoids by measurements of resonance-Raman excitation profiles. It is almost overlapped with the 1B u+ state in spheroidene (the number of conjugated double bonds, n=10), and located in-between the 1B u+ and 1B u- states in lycopene, anhydrorhodovibrin and spirilloxanthin ( n=11-13). The slopes when the 2A g--, 1B u-- and 3A g--state energies were expressed as linear functions of 1/(2 n+1) exhibited the ratio of 2:3.1:3.8 in excellent agreement with that theoretically predicted, 2:3.1:3.7.

  5. Single-excitation dual-color coherent lasing by tuning resonance energy transfer processes in porous structured nanowires.

    PubMed

    Wang, Zhaona; Shi, Xiaoyu; Yu, Ruomeng; Wei, Sujun; Chang, Qing; Wang, Yanrong; Liu, Dahe; Wang, Zhong Lin

    2015-10-07

    Single-excitation dual-color coherent lasing was achieved in a mixed random system of a binary dye and the suspension of gold-silver porous nanowires with plenty of nanogaps. This greatly enhanced the local electromagnetic field in the visible range and guaranteed a low threshold and high Q factor (>10 000) operator for simultaneous dual-color lasing. By tuning the resonance energy transfer process in the stimulated emission, triple output modes (single chartreuse lasing, chartreuse and red dual-color lasing, and single red coherent lasing) were easily obtained. This triple-mode coherent random lasing introduces a new approach to designing multi-functional micro-optoelectronic devices for multi-color speckle-free imaging and interference.

  6. Excited-state charge transfer dynamics in systems of aromatic adsorbates on TiO2 studied with resonant core techniques

    NASA Astrophysics Data System (ADS)

    Schnadt, J.; O'Shea, J. N.; Patthey, L.; Kjeldgaard, L.; Åhlund, J.; Nilson, K.; Schiessling, J.; Krempaský, J.; Shi, M.; Karis, O.; Glover, C.; Siegbahn, H.; Mârtensson, N.; Brühwiler, P. A.

    2003-12-01

    Resonant core spectroscopies are applied to a study of the excited electron transfer dynamics on a low-femtosecond time scale in systems of aromatic molecules (isonicotinic acid and bi-isonicotinic acid) adsorbed on a rutile TiO2(110) semiconductor surface. Depending on which adsorbate state is excited, the electron is either localized on the adsorbate in an excitonic effect, or delocalizes rapidly into the substrate in less than 5 fs (3 fs) for isonicotinic acid (bi-isonicotinic acid). The results are obtained by the application of a variant of resonant photoemission spectroscopy.

  7. Total internal reflection resonance light scattering at solid/liquid interfaces.

    PubMed

    Tang, Yao-Ji; Chen, Ying; Yao, Min-Na; Li, Yao-Qun

    2008-08-05

    Total internal reflection (TIR) technique is an interface-specific tool and resonance light scattering (RLS) is of high sensitivity. The combination of both approaches is introduced into the solid/liquid interface for the first time. The behaviors of mixture of TPPS and BSA at the interface have been studied with total internal reflection resonance light scattering (TIR-RLS). The preliminary experimental results indicate that TIR-RLS is a good approach to study the interaction and distinguish the states of macromolecules at the solid/liquid interface.

  8. Characterization of a microwave-excited atmospheric-pressure argon plasma jet using two-parallel-wires transmission line resonator

    NASA Astrophysics Data System (ADS)

    Choi, J.; Eom, I. S.; Kim, S. J.; Kwon, Y. W.; Joh, H. M.; Jeong, B. S.; Chung, T. H.

    2017-09-01

    This paper presents a method to produce a microwave-excited atmospheric-pressure plasma jet (ME-APPJ) with argon. The plasma was generated by a microwave-driven micro-plasma source that uses a two-parallel-wire transmission line resonator (TPWR) operating at around 900 MHz. The TPWR has a simple structure and is easier to fabricate than coaxial transmission line resonator (CTLR) devices. In particular, the TPWR can sustain more stable ME-APPJ than the CTLR can because the gap between the electrodes is narrower than that in the CTLR. In experiments performed with an Ar flow rate from 0.5 to 8.0 L.min-1 and an input power from 1 to 6 W, the rotational temperature was determined by comparing the measured and simulated spectra of rotational lines of the OH band and the electron excitation temperature determined by the Boltzmann plot method. The rotational temperature obtained from OH(A-X) spectra was 700 K to 800 K, whereas the apparent gas temperature of the plasma jet remains lower than ˜325 K, which is compatible with biomedical applications. The electron number density was determined using the method based on the Stark broadening of the hydrogen Hβ line, and the measured electron density ranged from 6.5 × 1014 to 7.6 × 1014 cm-3. TPWR ME-APPJ can be operated at low flows of the working gas and at low power and is very stable and effective for interactions of the plasma with cells.

  9. Resonant charge exchange involving electronically excited states of nitrogen atoms and ions

    SciTech Connect

    Kosarim, A. V.; Smirnov, B. M.; Laricchiuta, A.

    2006-12-15

    Within the framework of the asymptotic theory the matrices for the exchange interaction potentials of the nitrogen ion, with electron shell p{sup 2}, and nitrogen atom, with electron shell p{sup 3}, are constructed. The hierarchy of interactions in the nitrogen molecular ion at large internuclear distances is constructed for different electronic states. On the basis of these interaction potentials, the cross sections of resonant charge exchange in slow collisions are evaluated for different values of electron momentum projections and then averaged over these momentum projections. The mobilities of nitrogen ions in atomic nitrogen are also derived.

  10. Lamb and Creeping Waves Around Submerged Spherical Shells Resonantly Excited by Sound Scattering. 2: Further Applications

    DTIC Science & Technology

    1991-04-01

    sound speed in water John L. Spiesberger , Kurt Metzger 1697 STRUCTURAL ACOUSTICS AND VIBRATION [40] __ Reverberant phase in a room and zeros in the...display calcula-6 X 6 determinants B , and D, viz., tions versus the modal index n, for fixed values of and/orx. A,, (x) = B ,, (x)/D,, (x), (2) A number of...and 6. The outer (or inner) radius of the shell is a (or b ). resonances obtained after the subtraction of the appropriate There are many ways to

  11. Crossover from Collective to Incoherent Spin Excitations in Superconducting Cuprates Probed by Detuned Resonant Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Minola, M.; Lu, Y.; Peng, Y. Y.; Dellea, G.; Gretarsson, H.; Haverkort, M. W.; Ding, Y.; Sun, X.; Zhou, X. J.; Peets, D. C.; Chauviere, L.; Dosanjh, P.; Bonn, D. A.; Liang, R.; Damascelli, A.; Dantz, M.; Lu, X.; Schmitt, T.; Braicovich, L.; Ghiringhelli, G.; Keimer, B.; Le Tacon, M.

    2017-09-01

    Spin excitations in the overdoped high temperature superconductors Tl2 Ba2 CuO6 +δ and (Bi ,Pb )2(Sr ,La )2CuO6 +δ were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu -L3 absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.

  12. Photostability studies of {pi}-conjugated chromophores with resonant and nonresonant light excitation for long-life polymeric telecommunication devices

    SciTech Connect

    Rezzonico, Daniele; Jazbinsek, Mojca; Guenter, Peter; Bosshard, Christian; Bale, Denise H.; Liao Yi; Dalton, Larry R.; Reid, Philip J.

    2007-09-15

    Theoretical and experimental studies of molecular photodegradation in {pi}-conjugated chromophores with resonant and nonresonant excitation relative to the lowest-energy electronic transition of the chromophore are performed. The limitations of previous photodegradation models are discussed, and new models that overcome these limitations and provide more accurate estimates of chromophore photostability are presented. In particular, the necessity of considering multiple degradation pathways in the analysis of photobleaching studies is shown. Photostability studies of a dihydrofuran thiophene-bridged dicyanomethylene based chromophore (FTC) employing 1.55-{mu}m excitation reveal that the photoinitiated decay kinetics are biphasic. We present what we believe to be a new, double-pathway photodegradation model capable of describing this behavior. Through investigations employing the singlet-oxygen quencher bis(dithiobenzil)nickel, photooxidation is shown to be one of the photodegradation pathways, and the ability of a quencher to inhibit chromophore photooxidation is quantified. The studies presented here provide insight into the mechanism of photochemical degradation of {pi}-conjugated chromophores for devices operating in the visible and at telecommunication wavelengths.

  13. Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing

    SciTech Connect

    You, H.-J.

    2013-07-15

    We present a SLot-excited ANtenna (SLAN) long racetrack ECR plasma source that is utilized for roll-to-roll plasma processing such as thin film encapsulation of large-area OLED (organic light emitting diode) panel or modification of fabric surfaces. This source is designed to be long, and to operate under high density uniform plasma with sub-milli-torr pressures. The above features are accomplished by a slot-excited long racetrack resonator with a toroidal geometry of magnetic field ECR configuration, and reinforced microwave electric distributions along the central region of plasma chamber. Also, a new feature has been added to the source. This is to employ a tail plunger, which allows the microwave electric field and the uniformity of the plasma profile to be easily adjustable. We have successfully generated Ar plasmas operating with the microwave power of 0.5–3 kW in the pressure range of 0.2–10 mTorr. The plasma is uniform (<10%) in the direction of the straight track and has a Gaussian profile in the roll-to-roll (scanning) direction. In addition, it is shown that the tail plunger could adjust the plasma profile in order to obtain plasma uniformity. Furthermore, based on the results, we suggest a newly designed up-scaled racetrack-SLAN source.

  14. Tidal interactions of a Maclaurin spheroid - II. Resonant excitation of modes by a close, misaligned orbit

    NASA Astrophysics Data System (ADS)

    Braviner, Harry J.; Ogilvie, Gordon I.

    2015-02-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ≤ 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ≈ 3) and rotational deformations that are typical of giant planets (e ≈ 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ≈ 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.

  15. Observation of structural relaxation during exciton self-trapping via excited-state resonant impulsive stimulated Raman spectroscopy

    SciTech Connect

    Mance, J. G.; Felver, J. J.; Dexheimer, S. L.

    2015-02-28

    We detect the change in vibrational frequency associated with the transition from a delocalized to a localized electronic state using femtosecond vibrational wavepacket techniques. The experiments are carried out in the mixed-valence linear chain material [Pt(en){sub 2}][Pt(en){sub 2}Cl{sub 2}]⋅(ClO{sub 4}){sub 4} (en = ethylenediamine, C{sub 2}H{sub 8}N{sub 2}), a quasi-one-dimensional system with strong electron-phonon coupling. Vibrational spectroscopy of the equilibrated self-trapped exciton is carried out using a multiple pulse excitation technique: an initial pump pulse creates a population of delocalized excitons that self-trap and equilibrate, and a time-delayed second pump pulse tuned to the red-shifted absorption band of the self-trapped exciton impulsively excites vibrational wavepacket oscillations at the characteristic vibrational frequencies of the equilibrated self-trapped exciton state by the resonant impulsive stimulated Raman mechanism, acting on the excited state. The measurements yield oscillations at a frequency of 160 cm{sup −1} corresponding to a Raman-active mode of the equilibrated self-trapped exciton with Pt-Cl stretching character. The 160 cm{sup −1} frequency is shifted from the previously observed wavepacket frequency of 185 cm{sup −1} associated with the initially generated exciton and from the 312 cm{sup −1} Raman-active symmetric stretching mode of the ground electronic state. We relate the frequency shifts to the changes in charge distribution and local structure that create the potential that stabilizes the self-trapped state.

  16. Preferential Excitation of the Hybrid Magnetic-Electric Mode as a Limiting Mechanism for Achievable Fundamental Magnetic Resonance in Planar Aluminum Nanostructures.

    PubMed

    Tobing, Landobasa Y M; Zhang, Dao-Hua

    2016-02-03

    Aluminum is a promising candidate for light at the nanoscale in the ultraviolet (UV); however, the realization of magnetic resonance in the UV range remains challenging due to stringent dimensional requirements arising from the intrinsic loss caused by the interband transition. Here, the mode interaction with the aluminum interband transition and preferential excitation of the hybrid magnetic-electric mode, as discovered in ultrasmall Al resonators, are reported.

  17. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  18. Internal additive noise effects in stochastic resonance using organic field effect transistor

    SciTech Connect

    Suzuki, Yoshiharu; Asakawa, Naoki; Matsubara, Kiyohiko

    2016-08-29

    Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said “homeostatic” behavior or “noise robustness” against external noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.

  19. Etats excites en couche interne de haut spin de neon hautement ionise

    NASA Astrophysics Data System (ADS)

    Lapierre, Alain

    En plus d'être observés lors de plusieurs phénomènes d'interactions multi- électroniques et multi-atomiques, la description des états excités en couche interne est un test sensible à celle de la corrélation électronique. Suivant une spectroscopie faisceau- lame effectuée antérieurement des régions spectrales de l'ultraviolet et du visible (1800-5300 Å) de néon à 10 MeV, des raies spectrales (d'émission) satellites de celles des transitions hydrogéniques (l = n - 1) et l < n - 1, n = 6 - n' = 7, n = 7 - n' = 8 et n = 8 - n' = 9 du néon lithiumoïde (Ne VIII) sont assignées à l'aide de calculs Hartree-Fock, à des transitions de mêmes nombres quantiques principaux entre des états quadruplet dont le cœur est excité en 1s2s 3S. Quelques raies sont assignées à des transitions entre des niveaux n = 3 pour le Ne VI, VII et IX. Par la suite, les transitions quadruplet, quintuplet et sextuplet n = 2 - n' = 3 et n = 2 - n' = 4 du néon lithiumoïde, bérylliumoïde (Ne VII) et boroïde (Ne VI), respectivement, ont été investiguées par spectroscopie faisceau-lame dans la région spectrale des XUV (60-125 Å). Ces investigations sont supportées par des calculs Hartree-Fock et des régressions linéaires sur les séquences isoélectroniques, effectués en parallèle. Des mesures de la durée de vie moyenne de termes n = 3 ont été réalisées et plusieurs raies sont nouvellement identifiées à des transitions de Ne VI à IX.

  20. Resonant magnetization switching conditions of an exchange-coupled bilayer under spin wave excitation

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Yamaji, T.; Seki, T.; Imamura, H.; Takanashi, K.

    2017-02-01

    We systematically investigated spin wave-assisted magnetization switching (SWAS) of a L10-FePt/Ni81Fe19 (permalloy; Py) exchange-coupled bilayer by using a pulse-like rf field (hrf) and mapped the switching events in the magnetic field (H)-hrf frequency (f) plane in order to reveal the switching conditions. Switching occurred only in a limited region followed by the dispersion relationship of the perpendicular standing spin wave modes in the Py. The results indicate that SWAS is a resonant magnetization switching process, which is different from the conventional microwave assisted switching and has the potential to be used for selective switching in multilevel recording media.

  1. The resonant excitation of a wineglass using positive feedback with optical sensing

    NASA Astrophysics Data System (ADS)

    Skeldon, Kenneth D.; Nadeau, Valerie J.; Adams, Christopher

    1998-10-01

    We describe an apparatus that will sense the vibration of a wineglass through the jitter induced on a laser beam reflected from the glass wall. A positive feedback system provides a high level sound-wave-train that maintains the vibration of the glass, while a light-emitting diode lighting panel, also deriving its signal from the feedback system, allows the motion of the glass to be clearly observed in a user-controllable way. The positive feedback signal, along with observations from some additional experiments, can be used to highlight some of the nonlinear aspects of the resonance. Although the apparatus is primarily intended as a demonstration exhibit, we have found it useful also as a physics teaching aid.

  2. Coherent control of atomic excitation using off-resonant strong few-cycle pulses

    SciTech Connect

    Jha, Pankaj K.; Eleuch, Hichem; Rostovtsev, Yuri V.

    2010-10-15

    We study the dynamics of a two-level system driven by an off-resonance few-cycle pulse which has a phase jump {phi} at t=t{sub 0}, in contrast to many-cycle pulses, under the nonrotating-wave approximation (NRWA). We give a closed form analytical solution for the evolution of the probability amplitude |C{sub a}(t)| for the upper level. Using the appropriate pulse parameters like the phase jump {phi}, jump time t{sub 0}, pulse width {tau}, frequency {nu}, and Rabi frequency {Omega}{sub 0} the population transfer after the pulse is gone can be optimized and, for the pulse considered here, an enhancement factor of 10{sup 6}-10{sup 8} was obtained.

  3. Continuum visible spectra from InBr discharge excited in a microwave resonant cavity

    NASA Astrophysics Data System (ADS)

    Chen, Yuming; Chen, Dahua

    2007-10-01

    Emissions from InBr radiation have been investigated in a microwave resonant cavity system. We demonstrate that with proper operation the emission spectra of InBr can be a continuum in the visible range and can be suitable for lighting applications. The continuum spectra are stronger with an increase in input microwave power. In our system, a high color rendering index of 97 can be obtained from the bulb with 25mg InBr and 800W input microwave power. The spectral lines 410.1 and 451.1nm from In >I play an important role to balance the spectral distribution for lighting requirements. The continuum spectra may be due to the transition of Rydberg states to the C state of InBr molecules.

  4. How does stochastic resonance work within the human brain? - Psychophysics of internal and external noise

    NASA Astrophysics Data System (ADS)

    Aihara, Takatsugu; Kitajo, Keiichi; Nozaki, Daichi; Yamamoto, Yoshiharu

    2010-10-01

    We review how research on stochastic resonance (SR) in neuroscience has evolved and point out that the previous studies have overlooked the interaction between internal and external noise. We propose a new psychometric function incorporating SR effects, and show that a Bayesian adaptive method applied to the function efficiently estimates the parameters of the function. Using this procedure in visual detection experiments, we provide significant insight into the relationship between internal and external noise in SR within the human brain.

  5. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.

    PubMed

    Van de Broek, Bieke; Grandjean, Didier; Trekker, Jesse; Ye, Jian; Verstreken, Kris; Maes, Guido; Borghs, Gustaaf; Nikitenko, Sergey; Lagae, Liesbet; Bartic, Carmen; Temst, Kristiaan; Van Bael, Margriet J

    2011-09-05

    The fields of bioscience and nanomedicine demand precise thermometry for nanoparticle heat characterization down to the nanoscale regime. Since current methods often use indirect and less accurate techniques to determine the nanoparticle temperature, there is a pressing need for a direct and reliable element-specific method. In-situ extended X-ray absorption fine structure (EXAFS) spectroscopy is used to determine the thermo-optical properties of plasmonic branched gold nanoparticles upon resonant laser illumination. With EXAFS, the direct determination of the nanoparticle temperature increase upon laser illumination is possible via the thermal influence on the gold lattice parameters. More specifically, using the change of the Debye-Waller term representing the lattice disorder, the temperature increase is selectively measured within the plasmonic branched nanoparticles upon resonant laser illumination. In addition, the signal intensity shows that the nanoparticle concentration in the beam more than doubles during laser illumination, thereby demonstrating that photothermal heating is a dynamic process. A comparable temperature increase is measured in the nanoparticle suspension using a thermocouple. This good correspondence between the temperature at the level of the nanoparticle and at the level of the suspension points to an efficient heat transfer between the nanoparticle and the surrounding medium, thus confirming the potential of branched gold nanoparticles for hyperthermia applications. This work demonstrates that X-ray absorption spectroscopy-based nanothermometry could be a valuable tool in the fast-growing number of applications of plasmonic nanoparticles, particularly in life sciences and medicine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inactive excitations in Mukherjee's state-specific multireference coupled cluster theory treated with internal contraction: Development and applications

    NASA Astrophysics Data System (ADS)

    Das, Sanghamitra; Pathak, Shubhrodeep; Datta, Dipayan; Mukherjee, Debashis

    2012-04-01

    One generic difficulty of most state-specific many-body formalisms using the Jeziorski-Monkhorst ansatz: ψ = ∑μexp (Tμ)|ϕμ⟩cμ for the wave-operators is the large number of redundant cluster amplitudes. The number of cluster amplitudes up to a given rank is many more in number compared to the dimension of the Hilbert Space spanned by the virtual functions of up to the same rank of excitations. At the same time, all inactive excitations - though linearly independent - are far too numerous. It is well known from the success of the contracted multi-reference configuration interaction (MRCI(SD)) that, at least for the inactive double excitations, their model space dependence (μ-dependence) is weak. Considerable simplifications can thus be obtained by using a partially internally contracted description, which uses the physically appealing approximation of taking the inactive excitations Ti to be independent of the model space labels (μ-independent). We propose and implement in this paper such a formalism with internal contractions for inactive excitations (ICI) within Mukherjee's state-specific multi-reference coupled cluster theory (SS-MRCC) framework (referred to from now on as the ICI-SS-MRCC). To the extent the μ-independence of Ti is valid, we expect the ICI-SS-MRCC to retain the conceptual advantages of size-extensivity yet using a drastically reduced number of cluster amplitudes without sacrificing accuracy. Moreover, greater coupling is achieved between the virtual functions reached by inactive excitations as a result of the internal contraction while retaining the original coupling term for the μ-dependent excitations akin to the parent theory. Another major advantage of the ICI-SS-MRCC, unlike the other analogous internally contracted theories, such as IC-MRCISD, CASPT2, or MRMP2, is that it can use relaxed coefficients for the model functions. However, at the same time it employs projection manifolds for the virtuals obtained from inactive n hole

  7. The internal magnetic field distribution, and single exponential magnetic resonance free induction decay, in rocks.

    PubMed

    Chen, Quan; Marble, Andrew E; Colpitts, Bruce G; Balcom, Bruce J

    2005-08-01

    When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.

  8. Fine structure of a resonantly excited p -shell exciton in a CdTe quantum dot

    NASA Astrophysics Data System (ADS)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Wojnar, P.; Kossacki, P.

    2016-05-01

    We present a polarization-resolved photoluminescence excitation study of the absorption spectrum of a p -shell neutral exciton in a single CdTe/ZnTe quantum dot. We find that the fine structure of the p -shell exciton is completely analogous to the fine structure of the s -shell exciton, including the selection rules and the effects of a magnetic field applied in Faraday and Voigt configurations. The energy spectrum of the p -shell exciton is found to be well described by introducing respective isotropic and anisotropic constants of the exchange interaction between a p -shell electron and a p -shell hole. The typical values of these exchange constants averaged over several randomly selected quantum dots yield δ0p p=(0.92 ±0.16 ) meV and δ1p p=(0.58 ±0.25 ) meV. Additionally, we demonstrate that the nonresonant relaxation of the p -shell exciton conserves the exciton spin to a very high degree for both bright and dark exciton configurations.

  9. Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods

    PubMed Central

    Liu, Xin; Yuan Lei, Dang

    2015-01-01

    The geometry and dimension of a gold nanorod (GNR) are optimally designed to enhance the fluorescence intensity of a lanthanide-doped upconversion nanocrystal placed in close proximity to the GNR. A systematic study of the electromagnetic interaction between the upconversion emitter of three energy levels and the GNR shows that the enhancement effect arising from localized electric field-induced absorption can be balanced by the negative effect of electronic transition from an intermediate state to the ground state of the emitter. The dependence of fluorescence enhancement on the emitter-GNR separation is investigated, and the results demonstrate a maximum enhancement factor of 120 folds and 160 folds at emission wavelengths 650 and 540 nm, respectively. This is achieved at the emitter-GNR separation ranging from 5 to 15 nm, depending on the initial quantum efficiency of the emitter. The modified upconversion luminescence behavior by adjusting the aspect ratio of the GNR and the relative position of the emitter indicates the dominate role of excitation process in the total fluorescence enhancement. These findings are of great importance for rationally designing composite nanostructures of metal nanoparticles and upconversion nanocrystals with maximized plasmonic enhancement for bioimaging and sensing applications. PMID:26468686

  10. Energy efficiency increase of NQR spectrometer transmitter at pulse resonance excitation with noise signals.

    PubMed

    Samila, A; Khandozhko, V; Politansky, L

    2017-06-08

    The specific feature of NQR is expansion of spectral lines which is caused not only by dipole-dipole interaction of nuclei, but also by local field nonuniformity caused by the defects and deformation in crystal matrix. Considerable line expansion, which is typical of crystals, requires in pulsed NQR method the optimization of pulse shape and the reserve of transmitter power output. Parametric computer identification was used to study a dependence of parameters of the energy spectra of the output signal of pulsed NQR spectrometer transmitter on the duration of excitation pulses with sine and noise occupation. The energy efficiency of a linear amplifier was calculated and experimental investigations of its temperature conditions were carried out. The energy-efficient broadband transmitter was proposed that can be used in portable setups for the pursuance of research in the field of pulsed NQR spectroscopy, for instance when studying isotopes with quadrupole moments (14)N, (35)Cl, (63)Cu, (69)Ga, (71)Ga, (113)In, (115)In and others. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    SciTech Connect

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  12. Manipulating internal energy of protonated biomolecules in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Guo, Xinghua; Duursma, Marc C; Kistemaker, Piet G; Nibbering, Nico M M; Vekey, Karoly; Drahos, Laszlo; Heeren, Ron M A

    2003-06-01

    The internal energy of protonated leucine enkephalin has been manipulated in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with two newly designed pump-probe experiments. Blackbody infrared radiation was applied to pump an ion population into a well-defined internal energy distribution below the dissociation threshold. Following this pumping stage, the internal energy distribution was probed using on-resonance collisional activation to dissociate the ions. These pump-probe experiments were carried out in two different ways: (a) using on-resonance collisional activation with variable kinetic energies to dissociate the ions at a constant initial ion temperature (determining the precursor ion survival percentage as a function of kinetic energy) and (b) using on-resonance collisional activation with a constant kinetic energy to dissociate the ions at variable initial ion temperatures (to investigate the ion survival yield-initial ion temperature dependence). Using this approach, a detailed study of the effects of the initial ion temperature, the probing kinetic energy and the internal energy loss rate on the effective conversion efficiency of (laboratory-frame) kinetic energy to internal energy was conducted. This conversion efficiency was found to be dependent on the initial ion temperature. Depending on the experimental conditions the conversion efficiency (for collisions with argon) was estimated to be about 4.0 +/- 1.7%, which agrees with that obtained from a theoretical modeling. Finally, the reconstructed curves of the ion survival yield versus the mode of the (final) total internal energy distribution of the activated ion population (after pump and probe events) at different pump-probe conditions reveal the internal energy content of the activated ions. Copyright 2003 John Wiley & Sons, Ltd.

  13. Approximate analytical solution for waveguide excitation of a plane dielectric layer by a Gaussian beam at frustrated total internal reflection.

    PubMed

    Serdyuk, Vladimir; Rudnitsky, Anton

    2015-05-01

    We present an approximate 2D asymptotic analytic theory of light field excitation in a plane thin dielectric layer under conditions of frustrated total internal reflection, when an inclined Gaussian beam, falling from a triangular prism, excites a decaying field in air spacing between a prism and a plane dielectric. Ignoring the radiation scattering on the sharp edges of a prism, we have obtained the formulas that allow us to compute spatial structures of an electromagnetic field in every point of space and to estimate the integral efficiency of waveguide mode excitation in a plane dielectric layer and the total energy of a reflected beam. It is shown that the width of an initial Gaussian beam has an effect on waveguide mode intensity.

  14. Resonant excitation of precursor molecules in improving the particle crystallinity, growth rate and optical limiting performance of carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Zhou, Y. S.; Park, J. B.; Wang, H.; He, X. N.; Luo, H. F.; Jiang, L.; Lu, Y. F.

    2011-04-01

    A catalyst-free and highly efficient synthetic method for growing carbon nano-onions (CNOs) in open air has been developed through the laser resonant excitation of a precursor molecule, ethylene, in a combustion process. Highly concentric CNO particles with improved crystallinity were obtained at a laser wavelength of 10.532 µm through the resonant excitation of the CH2 wagging mode of the ethylene molecules. A higher growth rate up to 2.1 g h - 1 was obtained, compared with that without a laser (1.3 g h - 1). Formation of the CNOs with ordered graphitic shells is ascribed to the decomposition of polycyclic aromatic hydrocarbons (PAHs) into C2 species. The optical limiting performances of the CNOs grown by the combustion processes were investigated. CNOs grown at 10.532 µm laser excitation demonstrated improved optical limiting properties due to the improved crystallinity.

  15. Ultrafast internal conversion of excited cytosine via the lowest pipi electronic singlet state.

    PubMed

    Merchán, Manuela; Serrano-Andrés, Luis

    2003-07-09

    Computational evidence at the CASPT2 level supports that the lowest excited state pipi* contributes to the S1/S0 crossing responsible for the ultrafast decay of singlet excited cytosine. The computed radiative lifetime, 33 ns, is consistent with the experimentally derived value, 40 ns. The nOpi* state does not play a direct role in the rapid repopulation of the ground state; it is involved in a S2/S1 crossing. Alternative mechanisms through excited states pisigma* or nNpi* are not competitive in cytosine.

  16. Design of a nonlinear vibration absorber using three-to-one internal resonances

    NASA Astrophysics Data System (ADS)

    Ji, J. C.

    2014-01-01

    A weakly nonlinear vibration absorber is designed to attenuate the primary resonance vibrations of a single-degree-of-freedom weakly nonlinear oscillator having cubic nonlinearity. The linearised natural frequency of the nonlinear absorber is tuned to be approximately one-third the linearised natural frequency of the primary nonlinear oscillator. The low frequency mode for the absorber is favourably considered based on the fact that the nonlinear absorber can be easily realised in practice by using a light-weight mass attachment with small values of linear and nonlinear stiffness of coupling. For a given primary nonlinear oscillator and absorber mass, implementation of three-to-one internal resonances requires the smallest value of the absorber linear stiffness among three options for utilising internal resonances to design nonlinear absorber. The method of multiple scales is used to obtain the averaged equations that determine the amplitudes and phases of the first-order approximate solutions to the vibrations of the primary nonlinear oscillator and nonlinear absorber. It is found that the absorber response may admit either forced vibration having the forcing frequency or a combination of forced vibration and free-oscillation term having one third the forcing frequency. The nonlinear absorber can effectively suppress the amplitude of primary resonance response and eliminate saddle-node bifurcations occurring in the frequency-response curves of the primary nonlinear oscillator. Numerical results are given to show the effectiveness of the nonlinear absorber for suppressing nonlinear vibrations of the primary nonlinear oscillator under primary resonance conditions.

  17. Advanced new relaxation filter-selective signal excitation methods for (13)C solid-state nuclear magnetic resonance.

    PubMed

    Asada, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2014-10-21

    We have developed new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state NMR, which enable extraction of the spectrum of a target component from a mixture of several components. These methods are based on the equalization of proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton relaxation time of individual components in the mixture. We recently reported two types of RFS methods using proton spin-lattice relaxation time in the rotating frame ((1)H T1rho) in (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, to increase the availability of RFS methods, we focus on proton spin-lattice relaxation time ((1)H T1). Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility, and led to the development of two new types of RFS methods using (1)H T1. We then demonstrated these methods by selectively exciting the (13)C signals of target components in a commercially available drug and a number of physical mixtures, and we showed them to be applicable to the quantitative analysis of individual components in these solid mixtures with an experimental duration of 1.5 to about 10 h. The practicality and versatility of these four RFS methods were increased by combining two or more of them, or by using a flip-back pulse, which is an effective means of shortening experimental duration. These RFS methods are suitable for use in a broad range of fields.

  18. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the

  19. Resonant excitation of the quasi-decadal oscillation by the 11-year signal in the Sun's irradiance

    NASA Astrophysics Data System (ADS)

    White, Warren B.; Liu, Zengyu

    2008-01-01

    The quasidecadal oscillation (QDO) of 9- to 13-year period in the Earth's climate system has been found governed by a delayed action oscillator (DAO) mechanism in the tropical Pacific Ocean similar to that governing the El Niño-Southern Oscillation (ENSO) of 3- to 5-year period. It also fluctuated in phase with the ˜11-year-period signal in the Sun's total irradiance throughout the twentieth century. In earlier attempts to explain this association, a conceptual ocean-atmosphere coupled model of the DAO mechanism in the tropical Pacific Basin was driven by 11-year-period solar forcing, producing a QDO that was in damped resonance with the solar forcing. In the present study, we likewise force a fully coupled ocean-atmosphere general circulation model (i.e., Fast Ocean-Atmosphere Model (FOAM)) of Jacob et al. (2001), adding an 11-year-period cosine signal of amplitude ˜2.0 W m-2 to the solar constant in the model. In the presence of this 11-year-period solar forcing the FOAM simulates both the ENSO and the QDO, while in its absence the FOAM simulates only the ENSO. We find the model QDO governed by a tropical DAO mechanism with patterns and evolution similar to those observed. We find its warm phase lagging peak solar forcing by ˜1-3 years, as observed and consistent with damped-resonant excitation of the tropical DAO of the QDO by the 11-year-period solar forcing in the earlier conceptual model.

  20. Infrared-Laser Excitation of the Internal Vibrational Mode of a Diatomic Molecule Adsorbed on a Metal Surface.

    DTIC Science & Technology

    1986-11-01

    Excitation of the Internal Vibrational Mode of a Diatomic Molecule Adsorbed on a Metal Surface m by ’ Andre Peremans, Jacques Darville , Jean-Marie...Andre Peremans, Jacques Darville , Jean-Marie Gilles and Thomas F. George 13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Dayl As...ON A METAL SURFACE h Andr& Peremans , Jacques Darville and Jean-Marie Gilles _ _ _ _ Laboratoire de Spectroscopie Mol6culaire de Surface Accesnion

  1. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    SciTech Connect

    Xu, J.; Tang, J.

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  2. Energy dissipation channels affecting photoluminescence from resonantly excited Er3+ ions doped in epitaxial ZnO host films

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Shinojima, Hiroyuki

    2015-04-01

    We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er3+ ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er3+ ions were resonantly excited at a wavelength of 532 nm between energy levels of 4I15/2 and 2H11/2. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er3+ ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity was correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er3+ ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er3+ ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er2O3 crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to emissions from Er3+ ions.

  3. Observation of momentum-dependent charge excitations in hole-doped cuprates using resonant inelastic x-ray scattering at the oxygen K edge

    NASA Astrophysics Data System (ADS)

    Ishii, Kenji; Tohyama, Takami; Asano, Shun; Sato, Kentaro; Fujita, Masaki; Wakimoto, Shuichi; Tustsui, Kenji; Sota, Shigetoshi; Miyawaki, Jun; Niwa, Hideharu; Harada, Yoshihisa; Pelliciari, Jonathan; Huang, Yaobo; Schmitt, Thorsten; Yamamoto, Yoshiya; Mizuki, Jun'ichiro

    2017-09-01

    We investigate electronic excitations in La2 -x(Br,Sr ) xCuO4 using resonant inelastic x-ray scattering (RIXS) at the oxygen K edge. RIXS spectra of the hole-doped cuprates show clear momentum dependence below 1 eV. The broad spectral weight exhibits positive dispersion and shifts to higher energy with increasing hole concentration. Theoretical calculation of the dynamical charge structure factor on oxygen orbitals in a three-band Hubbard model is consistent with the experimental observation of the momentum and doping dependence, and therefore the momentum-dependent spectral weight is ascribed to intraband charge excitations which have been observed in electron-doped cuprates. Our results confirm that the momentum-dependent charge excitations exist on the order of the transfer energy (t ), and the broad spectral line shape indicates damped and incoherent character of the charge excitations at the energy range in the doped Mott insulators.

  4. Analysis of bistability in molecular J aggregates under their resonant optical excitation taking into account multiparticle effects

    NASA Astrophysics Data System (ADS)

    Nesterov, L. A.; Fedorov, S. V.; Rosanov, N. N.; Levinsky, B. N.; Fainberg, B. D.

    2013-10-01

    Using a model of a homogeneous chain of molecules, we have analyzed bistability in resonantly excited J aggregates taking into account three-particle contributions to the exciton-exciton annihilation. These contributions, which have an interference nature, have previously been calculated in a work by B.N. Levinsky, L.A. Nesterov, B.D. Fainberg, and N.N. Rosanov (Opt. Spectrosc. 115 (3), 406 (2013)) in the course of derivation of equations of motion for J aggregates from first principles. Factorization of expectation values that correspond to these contributions leads to a closed system of equations in which not only pair, but also triple, interactions between molecules of the chain are taken into account. Numerical calculations have been performed, and their results have been compared with those obtained in calculations without taking into account three-particle contributions. We have shown that, on the whole, the inclusion of three-particle interference contributions in equations of motion leads to a restriction of the domain of existence of hysteresis. This, in turn, makes it possible to more reliably single out a real range of parameters in which nonlinear optical effects can considerably manifest themselves.

  5. A grouping strategy for autoconvolution summation in the stochastic theory for energy straggling and narrow resonance excitation curve calculations

    NASA Astrophysics Data System (ADS)

    Vickridge, Ian; Amsel, Georges

    1992-02-01

    The direct construction of solutions to the stochastic equations for energy loss straggling and narrow resonance excitation curve calculations requires the weighted summing of the autoconvolutions of a probability density f( u) corresponding to the energy loss u in a single atomic encounter. Whilst conceptually simple, this involves considerable computational overhead since a new f( u) and numerically calculated autoconvolutions are required for each particle/energy/substrate combination. We deem it desirable to maintain the conceptual simplicity of the direct construction of solutions, and so have sought ways of reducing the computational overhead whilst retaining the essential features of the method. We have found that it is not necessary to include all of the autoconvolutions in the weighted summing and have devised an algorithm for deciding, on the basis of an acceptable level of approximation, which autoconvolutions are really necessary, and a method for calculating the corresponding weights. Since we can decide in advance which autoconvolutions are necessary, we can calculate, store and sum only those that we need, and it is this that is the basis for the improvement in computational efficiency. We demonstrate by comparison of complete calculations, in which all the autoconvolutions are included, with calculations employing our grouping strategy, that for a negligibly small sacrifice in accuracy a large gain in computational power is possible.

  6. Spin observables for the isovector spin-dipole giant resonance excited in (p,n) reactions at medium energies.

    NASA Astrophysics Data System (ADS)

    Watson, J. W.

    1996-10-01

    For charge-exchange reactions at medium energies, one of the dominant features of small-angle spectra is the excitation of the ΔT = 1, ΔL = 1, ΔS = 1 isovector "spin-dipole" resonance (SDR). We describe how polarization-transfer measurements can be used to identify the overlapping J^π = 0^-, 1^-, and 2^- components of the SDR. Results for ^16O(p,n) and ^40Ca(p,n) using data (J. W. Watson et al.), Nucl. Phys. A577, 79c (1994). (J. W. Watson et al.), Nucl. Phys. A599, 211c (1996). for the transverse polarization-transfer coefficient D_NN' are presented and compared with distorted-wave impulse approximation (DWIA) calculations with theory of finite Fermi systems (TFFS) wavefunctions. (F. A. Gareev et al.), Sov. J. Part. Nucl. 19, 373 (1988). Future experiments will utilize complete sets of polarization-transfer data to extract the longitudinal and transverse spin responses,(M. Ichimura and K. Kawahigashi, Phys. Rev. C45), 1822 (1992). which will provide a more definitive separation of the different J^πs in the SDR. footnote Supported by NSF PHY 94-09265

  7. Axially uniform magnetic field-modulation excitation for electron paramagnetic resonance in rectangular and cylindrical cavities by slot cutting

    NASA Astrophysics Data System (ADS)

    Sidabras, Jason W.; Richie, James E.; Hyde, James S.

    2017-01-01

    In continuous-wave (CW) Electron Paramagnetic Resonance (EPR) a low-frequency time-harmonic magnetic field, called field modulation, is applied parallel to the static magnetic field and incident on the sample. Varying amplitude of the field modulation incident on the sample has consequences on spectral line-shape and line-height over the axis of the sample. Here we present a method of coupling magnetic field into the cavity using slots perpendicular to the sample axis where the slot depths are designed in such a way to produce an axially uniform magnetic field along the sample. Previous literature typically assumes a uniform cross-section and axial excitation due to the wavelength of the field modulation being much larger than the cavity. Through numerical analysis and insights obtained from the eigenfunction expansion of dyadic Green's functions, it is shown that evanescent standing-wave modes with complex cross-sections are formed within the cavity. From this analysis, a W-band (94 GHz) cylindrical cavity is designed where modulation slots are optimized to present a uniform 100 kHz field modulation over the length of the sample.

  8. Axially uniform magnetic field-modulation excitation for electron paramagnetic resonance in rectangular and cylindrical cavities by slot cutting.

    PubMed

    Sidabras, Jason W; Richie, James E; Hyde, James S

    2017-01-01

    In continuous-wave (CW) Electron Paramagnetic Resonance (EPR) a low-frequency time-harmonic magnetic field, called field modulation, is applied parallel to the static magnetic field and incident on the sample. Varying amplitude of the field modulation incident on the sample has consequences on spectral line-shape and line-height over the axis of the sample. Here we present a method of coupling magnetic field into the cavity using slots perpendicular to the sample axis where the slot depths are designed in such a way to produce an axially uniform magnetic field along the sample. Previous literature typically assumes a uniform cross-section and axial excitation due to the wavelength of the field modulation being much larger than the cavity. Through numerical analysis and insights obtained from the eigenfunction expansion of dyadic Green's functions, it is shown that evanescent standing-wave modes with complex cross-sections are formed within the cavity. From this analysis, a W-band (94GHz) cylindrical cavity is designed where modulation slots are optimized to present a uniform 100kHz field modulation over the length of the sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion

    SciTech Connect

    Noguchi, Yoshifumi Hiyama, Miyabi; Akiyama, Hidefumi; Koga, Nobuaki

    2014-07-28

    The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment. We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.

  10. Angular distribution of different vibrational components of the X and B states reached after resonant Auger decay of core-excited H2O: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Hjelte, I.; Karlsson, L.; Svensson, S.; De Fanis, A.; Carravetta, V.; Saito, N.; Kitajima, M.; Tanaka, H.; Yoshida, H.; Hiraya, A.; Koyano, I.; Ueda, K.; Piancastelli, M. N.

    2005-02-01

    Vibrationally resolved spectra have been obtained for the lowest-lying cationic states XB12,AA12, and BB22 of the water molecule reached after participator resonant Auger decay of core-excited states. The angular distribution has been measured of the first four vibrational components of the X state in the photon energy regions including the O 1s →4a1 and the O 1s→2b2 core excitations, and for different portions of the vibrational envelope of the B state in the photon energy region including the O 1s→2b2 core excitation. For the X state, a large relative spread in β values of the different vibrational components is observed across both resonances. For the B state, a very different trend is observed for the high binding energy side and the low binding energy side of the related spectral feature as a function of photon energy. A theoretical method based on the scattering K matrix has been used to calculate both the photoabsorption spectrum and the β values, by taking both interference between direct and resonant photoemission and vibrational/lifetime interference into account. The numerical results show qualitative agreement with the trends detected in the experimental values and explain the conspicuous variations of the β values primarily in terms of coupling between direct and resonant photoemission by interaction terms of different sign for different final vibrational states.

  11. Internal quantum efficiency analysis of plasmonic textured silicon solar cells: surface plasmon resonance and off-resonance effects

    NASA Astrophysics Data System (ADS)

    Thouti, Eshwar; Sharma, Ashok K.; Sardana, Sanjay K.; Komarala, Vamsi K.

    2014-10-01

    Silver nanoparticles (Ag NPs) of various sizes and concentration were integrated on textured silicon solar cells for further confinement of incident light, generated photocurrent modifications were investigated using spectrally resolved short-circuit current measurements. Internal quantum efficiency (IQE) spectra were used for quantifying the effective minority carrier diffusion lengths (Leff) of plasmonic cells in the long wavelength region (850 < λ < 1020 nm). The Leff of an optimized plasmonic solar cell enhanced to 431 µm compared to 338 µm of the bare cell, which is due to interacting Ag NPs' scattered fields, leading to enhanced light absorption in the plasmonic cell. Despite the enhanced Leff values, the overall generated photocurrent reduced with Ag NPs which is due to the significant losses near the surface plasmon resonant region. Reduced IQE of plasmonic cells near and below the surface plasmon resonant region is due to size-dependent parasitic absorption and enhanced back scattering of Ag NPs, and a modified surface recombination process due to Ag NPs' strong near-fields.

  12. Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance

    NASA Astrophysics Data System (ADS)

    Abe, Akira; Kobayashi, Yukinori; Yamada, Gen

    2007-07-01

    This paper investigates one-to-one internal resonance of laminated shallow shells with rigidly clamped edges. It is assumed that the natural frequencies ω2 and ω3 of two asymmetric (second and third) vibration modes have the relationship ω2≈ ω3. The displacements are expressed by using eigenvectors for linear vibration modes calculated by the Ritz method. Applying Galerkin's procedure to the equation of motion, nonlinear differential equations are derived. By considering the first vibration mode in addition to the two asymmetric vibration modes, quadratic nonlinear terms expressing the interaction between the asymmetric and the first modes appear in the differential equations. Shooting method is used to obtain the steady-state response when the driving frequency Ω is near ω2. The dynamic characteristics of the shells with the internal resonance are discussed.

  13. Effects of Internal and External Ionic Environment on Excitability of Squid Giant Axon

    PubMed Central

    Tasaki, Ichiji; Singer, Irwin; Takenaka, Toshifumi

    1965-01-01

    The effects of ten cations and fifteen anions on the excitability of the squid giant axon were studied. The method of intracellular perfusion used in these investigations is described in detail. Empirical criteria were established for evaluating the relative favorability of any salt solution for maintaining the normal excitability of the membrane of the axon. It was found that both cations and anions could be ordered in sequences of relative favorability, which are directly related to the classic lyotropic sequences found for protein macromolecules and in colloid chemistry in general. The effects of concentration, salt mixtures, non-electrolyte carriers, enzymes, metabolic inhibitors, pH, and external media were also studied. The results are interpreted in terms of current concepts of the interactions between water structure, charged macromolecules, and their ionic environments. A macromolecular approach is given to the physicochemical nature of the "two stable states" of the excitable membrane, to describe the time-dependent potential changes observed. PMID:5855510

  14. Chirp excitation

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2017-09-01

    The paper describes the design of broadband chirp excitation pulses. We first develop a three stage model for understanding chirp excitation in NMR. We then show how a chirp π pulse can be used to refocus the phase of the chirp excitation pulse. The resulting magnetization still has some phase dispersion in it. We show how a combination of two chirp π pulses instead of one can be used to eliminate this dispersion, leaving behind a small residual phase dispersion. The excitation pulse sequence presented here allows exciting arbitrary large bandwidths without increasing the peak rf-amplitude. Experimental excitation profiles for the residual HDO signal in a sample of 99.5 % D2O are displayed as a function of resonance offset. Although methods presented in this paper have appeared elsewhere, we present complete analytical treatment that elucidates the working of these methods.

  15. Electronic excitations in the correlated metal BaV(0.98)Ti(0.02)S(3) studied using resonant inelastic soft x-ray scattering.

    PubMed

    Learmonth, T; Glans, P-A; Guo, J-H; Greenblatt, M; Smith, K E

    2010-01-20

    Electronic excitations in the correlated metal BaTi(0.02)V(0.98)S(3) have been studied using resonant inelastic soft x-ray scattering at the V L edge. The intensities of the intra-atomic d-d(*) excitations and the elastic x-ray scattering feature are found to be temperature dependent, with the intensity increasing with decreasing temperature until saturation is reached near 100 K. The behavior of the spectral features is interpreted as evidence of a shift in the 3d electrons from more band-like states at higher temperature to more localized states at low temperature.

  16. Electronic excitations in the correlated metal BaV0.98Ti0.02S3 studied using resonant inelastic soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Learmonth, T.; Glans, P.-A.; Guo, J.-H.; Greenblatt, M.; Smith, K. E.

    2010-01-01

    Electronic excitations in the correlated metal BaTi0.02V0.98S3 have been studied using resonant inelastic soft x-ray scattering at the V L edge. The intensities of the intra-atomic d-d* excitations and the elastic x-ray scattering feature are found to be temperature dependent, with the intensity increasing with decreasing temperature until saturation is reached near 100 K. The behavior of the spectral features is interpreted as evidence of a shift in the 3d electrons from more band-like states at higher temperature to more localized states at low temperature.

  17. A frequency up-converting harvester based on internal resonance in 2-DOF nonlinear systems

    NASA Astrophysics Data System (ADS)

    Wu, Yipeng; Qiu, Jinhao; Ji, Hongli

    2016-11-01

    This paper reports the design and experimental testing of a novel frequency up- converting piezoelectric energy harvester. The harvester is firstly approximated as a 2-degree- of-freedom cubic nonlinear system instead of the general Duffing systems. A 1:3 internal resonance innovatively applied in the frequency up-conversion approach is thoroughly investigated. Finally, the theoretical dynamic model confirmed by the experimental results clearly shows the effect of the frequency up-conversion.

  18. Recent research directions in Fribourg: nuclear dynamics in resonances revealed by 2-dimensional EEL spectra, electron collisions with ionic liquids and electronic excitation of pyrimidine

    NASA Astrophysics Data System (ADS)

    Allan, Michael; Regeta, Khrystyna; Gorfinkiel, Jimena D.; Mašín, Zdeněk; Grimme, Stefan; Bannwarth, Christoph

    2016-05-01

    The article briefly reviews three subjects recently investigated in Fribourg: (i) electron collisions with surfaces of ionic liquids, (ii) two-dimensional (2D) electron energy loss spectra and (iii) resonances in absolute cross sections for electronic excitation of unsaturated compounds. Electron energy loss spectra of four ionic liquids revealed a number of excited states, including triplet states. A solution of a dye in an ionic liquid showed an energy-loss band of the solute, but not in all ionic liquids. 2D spectra reveal state-to-state information (given resonance to given final state) and are shown to be an interesting means to gain insight into dynamics of nuclear motion in resonances. Absolute cross sections for pyrimidine are reported as a function of scattering angle and as a function of electron energy. They reveal resonant structure which was reproduced very nicely by R-matrix calculations. The calculation provided an assignment of the resonances which reveals common patterns in compounds containing double bonds.

  19. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation

    NASA Astrophysics Data System (ADS)

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng

    2017-08-01

    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.

  20. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation.

    PubMed

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng

    2017-08-01

    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.