Science.gov

Sample records for resonantly excited internal

  1. Triadic Resonance of Tidally Excited Internal Gravity Waves

    NASA Astrophysics Data System (ADS)

    Lecoanet, D.; Quataert, E.

    2013-12-01

    Tides can excite internal gravity waves in many different ways including, e.g., inducing flow over topography, linear resonance, and nonlinear coupling. These waves can then be unstable to triadic resonance instabilities, which can influence the rate of dissipation of the tidal energy. In this work, we simulate the full nonlinear interaction of many internal gravity waves in a 3D, triply periodic, Boussinesq box. To model the wave excitation due to the tide, we linearly force a specific mode. Diffusivity and the quantization of modes in the box determine which modes couple to the forced mode. For low forcing rates and high diffusivity, only a few modes interact, and we are able to predict the equilibrium amplitudes of the modes and dissipation rates. However, for higher forcing rates or low diffusivity, many modes interact with one another and the system becomes turbulent.

  2. Internal resonance of nonlinear sloshing in rectangular liquid tanks subjected to obliquely horizontal excitation

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi; Harata, Yuji; Osasa, Takefumi

    2016-01-01

    Nonlinear sloshing in rectangular tanks subjected to obliquely horizontal, harmonic excitation is investigated when the internal resonance condition 1:1 is satisfied between the natural frequencies of predominate modes (1, 0) and (0, 2). Galerkin's method is employed to derive the nonlinear modal equations of motion for sloshing, considering nine sloshing modes. Then, van der Pol's method is applied in order to obtain the expressions of the frequency response curves for amplitudes and phase angles of the predominate modes. The frequency response curves are calculated and reveal that (0, 2) mode may occur even though it is not directly excited because it is nonlinearly coupled with (1, 0) mode due to the autoparametric terms. In the numerical simulations, it is found that planar motions of (1, 0) mode, clockwise and counter-clockwise swirl motions, and translational motions may appear. Furthermore, Hopf bifurcation occurs, and amplitude modulated motions (AMMs), including chaotic motions, may appear depending on the value of the excitation frequency. Three-dimensional distribution charts of the maximum liquid surface elevation are calculated to show the risk of liquid overspill. The influence of the difference between the horizontal excitation direction and the tank side on the frequency response curves is also examined. Bifurcation sets are calculated to clarify this influence. Experimental data confirmed the validity of the theoretical results.

  3. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  4. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  5. Resonance Radiation and Excited Atoms

    NASA Astrophysics Data System (ADS)

    Mitchell, Allan C. G.; Zemansky, Mark W.

    2009-06-01

    1. Introduction; 2. Physical and chemical effects connected with resonance radiation; 3. Absorption lines and measurements of the lifetime of the resonance state; 4. Collision processes involving excited atoms; 5. The polarization of resonance radiation; Appendix; Index.

  6. Internal intensity standards for heme protein UV resonance Raman studies: excitation profiles of cacodylic acid and sodium selenate.

    PubMed

    Song, S H; Asher, S A

    1991-02-01

    We examine the utility of SO4(2-), ClO4-, cacodylic acid, and SeO4(2-) as internal intensity standards for Raman spectral measurements of protein structure. We find that 0.1 M SO4(2-) and ClO4- perturb the protein tertiary structure of aquomethemoglobin (met-Hb) and its fluoride (met-HbF) and azide (met-HbN3) complexes. Changes occur for the tryptophan near-UV absorption bands, the iron spin state is altered, and the fluoride ligand affinity decreases. Concentrations of ClO4- and SO4(2-) as low as 0.1 M suppress the met-HbF quaternary R----T transition induced by the allosteric effector inositol hexaphosphate (IHP). In contrast, similar concentrations of cacodylic acid and SeO4(2-) show little effect on the hemoglobin tertiary or quaternary protein structures or upon the R----T transition induced by IHP. We measure the Raman cross sections of cacodylic acid and SeO4(2-) between 218 and 514.5 nm and find that for UV excitation they are ca. 5-fold larger than ClO4- or SO4(2-). Thus, cacodylic acid and selenate can be used at lower concentrations. Cacodylic acid and SeO4(2-) are superior Raman internal intensity standards for protein structural studies.

  7. Efficient primary and parametric resonance excitation of bistable resonators

    NASA Astrophysics Data System (ADS)

    Ramini, A.; Alcheikh, N.; Ilyas, S.; Younis, M. I.

    2016-09-01

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices.

  8. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  9. Convective Excitation of Internal Waves

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton; Vasil, Geoffrey; Quataert, Eliot; Brown, Benjamin; Oishi, Jeffrey

    2015-11-01

    We will present a joint experimental & computational study of internal wave generation by convection. First we describe an experiment using the peculiar property of water that its density maximum is at 4° C . A tank of water cooled from below and heated from above develops a cold, convective layer near 4° C at the bottom of the tank, adjacent to a hot stably stratified layer at the top of the tank. We simulate this setup in 2D using the open-source Dedalus code (dedalus-project.org). Our simulations show that waves are excited from within the convection zone, opposed to at the interface between the convective and stably stratified regions. Finally, we will present 3D simulations of internal wave excitation by convection in a fully compressible atmosphere with multiple density scaleheights. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number. The simulated waves are then compared to analytic predictions of the bulk excitation model.

  10. Tilted excitation implies odd periodic resonances

    NASA Astrophysics Data System (ADS)

    Depetri, G. I.; Sartorelli, J. C.; Marin, B.; Baptista, M. S.

    2016-07-01

    Our aim is to unveil how resonances of parametric systems are affected when symmetry is broken. We showed numerically and experimentally that odd resonances indeed come about when the pendulum is excited along a tilted direction. Applying the Melnikov subharmonic function, we not only determined analytically the loci of saddle-node bifurcations delimiting resonance regions in parameter space but also explained these observations by demonstrating that, under the Melnikov method point of view, odd resonances arise due to an extra torque that appears in the asymmetric case.

  11. Tilted excitation implies odd periodic resonances.

    PubMed

    Depetri, G I; Sartorelli, J C; Marin, B; Baptista, M S

    2016-07-01

    Our aim is to unveil how resonances of parametric systems are affected when symmetry is broken. We showed numerically and experimentally that odd resonances indeed come about when the pendulum is excited along a tilted direction. Applying the Melnikov subharmonic function, we not only determined analytically the loci of saddle-node bifurcations delimiting resonance regions in parameter space but also explained these observations by demonstrating that, under the Melnikov method point of view, odd resonances arise due to an extra torque that appears in the asymmetric case. PMID:27575118

  12. Nucleon resonance excitation with CLAS

    SciTech Connect

    R. De Vita; CLAS Collaboration

    2004-09-01

    The study of the baryon spectrum is a fundamental part of the scientific program in Hall B at Jefferson Laboratory. The so called N* program indeed concerns the measurement of the electromagnetic production of exclusive hadronic final states, with the purpose of extracting information on baryon excited states. CLAS, the CEBAF Large Acceptance Spectrometer, is explicitly designed for conducting a broad experimental program in hadronic physics, using the continuous electron beam provided by the laboratory. An overview of the most recent results is presented.

  13. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  14. Unstable resonators with excited converging wave

    SciTech Connect

    Hodgson, N. ); Weber, H. )

    1990-04-01

    This paper reports the properties of unstable resonators with an additional mirror inside or outside the resonator investigated, both experimentally and theoretically. The additional mirror excites the converging wave, and by this, output coupling is decreased without affecting beam quality. Experiments were performed with a pulsed Nd:YAG system. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically. Agreement between theory and experiments indicates that this kind of resonator provides high focusability and maximum extraction efficiency simultaneously, even with low-gain media. This enables one to apply unstable resonators to solid-state lasers with low small-signal gain, like alexandrite or CW-pumped Nd:YAG.

  15. The resonance Raman excitation profile of fucoxanthin

    NASA Astrophysics Data System (ADS)

    Ballard, L. J.; Glasgow, L. A.; Hoskins, L. C.; Krohe, T.

    1989-01-01

    The resonance Raman excitation profiles (RREPs) of the ν 1 and ν 2 vibrations of fucoxanthin in acetone and toluene solvents have been studied. Fucoxanthin, which is a predominant pigment in marine seaweed and phytoplankton, has several structural differences from carotenoids for which excitation profiles have been determined. The RREPs for fucoxanthin are interpreted in terms of a two-mode model and show a B2 value which is approximately 20% lower than for carotenoids like β-carotene and lutein which occur in higher plants. Excellent fits between experimental data and the theoretical model were observed in both solvents.

  16. Rabi resonances in the {lambda} excitation scheme

    SciTech Connect

    Godone, Aldo; Micalizio, Salvatore; Levi, Filippo

    2002-12-01

    We consider the interaction of a three-level system with phase-modulated resonant fields in the {lambda} excitation scheme. We treat theoretically the case of a sinusoidal phase modulation, a phase step perturbation, and a stochastic phase modulation. The appearance of a Rabi resonance both in the spectrum of the optical transmitted signal (electromagnetically induced transparency) and in the spectrum of the microwave emission (coherent population trapping maser) is considered in detail. All the theoretical results are compared with the analogous ones reported for the two-level system and with our experimental observations obtained for the case of rubidium in a buffer gas.

  17. Coulomb and nuclear excitations of narrow resonances in 17Ne

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2016-08-01

    New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  18. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  19. Electromagnetic excitation of the Delta(1232) resonance

    SciTech Connect

    V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang

    2006-09-05

    We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.

  20. Vibrational resonance in excitable neuronal systems.

    PubMed

    Yu, Haitao; Wang, Jiang; Liu, Chen; Deng, Bin; Wei, Xile

    2011-12-01

    In this paper, we investigate the effect of a high-frequency driving on the dynamical response of excitable neuronal systems to a subthreshold low-frequency signal by numerical simulation. We demonstrate the occurrence of vibrational resonance in spatially extended neuronal networks. Different network topologies from single small-world networks to modular networks of small-world subnetworks are considered. It is shown that an optimal amplitude of high-frequency driving enhances the response of neuron populations to a low-frequency signal. This effect of vibrational resonance of neuronal systems depends extensively on the network structure and parameters, such as the coupling strength between neurons, network size, and rewiring probability of single small-world networks, as well as the number of links between different subnetworks and the number of subnetworks in the modular networks. All these parameters play a key role in determining the ability of the network to enhance the outreach of the localized subthreshold low-frequency signal. Considering that two-frequency signals are ubiquity in brain dynamics, we expect the presented results could have important implications for the weak signal detection and information propagation across neuronal systems. PMID:22225338

  1. Seeded excitation avalanches in off-resonantly driven Rydberg gases

    NASA Astrophysics Data System (ADS)

    Simonelli, C.; Valado, M. M.; Masella, G.; Asteria, L.; Arimondo, E.; Ciampini, D.; Morsch, O.

    2016-08-01

    We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.

  2. Internal waves excited by the marangoni effect

    PubMed

    Wierschem; Linde; Velarde

    2000-11-01

    Traveling periodic internal wave trains are generated in liquid layers during the absorption process of a miscible surface-active substance out of the vapor phase. In our nonstationary experimental runs, internal waves are excited by surface waves, which had been previously generated by a surface-tension-gradient-driven instability. The internal wave trains adjust their wave number by an Eckhaus instability. Close to the instability threshold narrow and extended pulses are observed. Furthermore, the wave trains can alter their traveling direction, i.e., one wave train traveling in one direction yields to another train, in general of different wave number, traveling in the opposite direction. PMID:11101989

  3. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  4. Shape and core excited resonances in electron collisions with diazines.

    PubMed

    Mašín, Zdeněk; Gorfinkiel, Jimena D

    2012-11-28

    We present a comprehensive ab-initio study of electron collisions with pyrazine, pyrimidine, and pyridazine. The emphasis is placed on the identification and characterization of electron resonances in these systems. We use the R-matrix method and show that analysing the time-delay reveals resonances whose signature is not visible in the eigenphase sums. In addition to the well known π∗ resonances below 5 eV, we find three core-excited shape resonances in the energy range 5.5-8.5 eV and a few Feshbach resonances in the dipolar molecules. Additionally, 11 resonances with little effect on the elastic scattering from ground state diazines (but significant effect in elastic collisions with the molecules in an excited state) are found and characterized. We correlate these resonances across the three molecules and discuss their possible correspondence to resonances described in earlier studies on uracil.

  5. Excitation of dark multipolar plasmonic resonances at terahertz frequencies

    PubMed Central

    Chen, Lin; Wei, YuMing; Zang, XiaoFei; Zhu, YiMing; Zhuang, SongLin

    2016-01-01

    We experimentally observe the excitation of dark multipolar spoof localized surface plasmon resonances in a hybrid structure consisting of a corrugated metallic disk coupled with a C-shaped dipole resonator. The uncoupled corrugated metallic disk only supports a dipolar resonance in the transmission spectrum due to perfect symmetry of the structure. However, the dark multipolar spoof localized surface plasmon resonances emerge when coupled with a bright C-shaped resonator which is placed in the vicinity of the corrugated metallic disk. These excited multipolar resonances show minimum influence on the coupling distance between the C-shaped resonator and corrugated metallic disk. The resonance frequencies of the radiative modes are controlled by varying the angle of the C-shaped resonator and the inner disk radius, both of which play dominant roles in the excitation of the spoof localized surface plasmons. Observation of such a transition from the dark to radiative nature of multipolar spoof localized plasmon resonances would find potential applications in terahertz based resonant plasmonic and metamaterial devices. PMID:26903382

  6. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam

    SciTech Connect

    Lan, Chunbo; Qin, Weiyang Deng, Wangzheng

    2015-08-31

    We investigated the energy harvesting of a vertical beam with tip mass under vertical excitations. We applied dynamic unstability and internal resonance to improve the efficiency of harvesting. The experiments of harmonic excitation were carried out. Results show that for the beam there exist internal resonances in the dynamically unstable and the buckling bistable cases. The dynamic unstability is a determinant for strong internal resonance or mode coupling, which can be used to create a large output from piezoelectric patches. Then, the experiments of stochastic excitation were carried out. Results prove that the internal resonance or mode coupling can transfer the excitation energy to the low order modes, mainly the first and the second one. This can bring about a large output voltage. For a stochastic excitation, it is proved that there is an optimal weight of tip mass for realizing internal resonance and producing large outputs.

  7. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    SciTech Connect

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki; Okano, Tatsuo; Kishimoto, Shunji; Zhang, Xiaowei; Yoda, Yoshitaka

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  8. Excitation of lunar eccentricity by planetary resonances.

    PubMed

    Cuk, Matija

    2007-10-12

    The origin of the Moon's nonnegligible orbital eccentricity of 0.053 has no theoretical explanation. Lunar laser ranging indicates that tides on Earth are currently increasing the Moon's eccentricity. However, ocean tides were likely much weaker during the first billion years, allowing lunar tides to damp any primordial lunar eccentricity very early on. During the tidally driven expansion of its orbit, the Moon must have been affected by two substantial resonances related to Jupiter and Venus, passage through which may have generated today's lunar eccentricity.

  9. Excitation of lunar eccentricity by planetary resonances.

    PubMed

    Cuk, Matija

    2007-10-12

    The origin of the Moon's nonnegligible orbital eccentricity of 0.053 has no theoretical explanation. Lunar laser ranging indicates that tides on Earth are currently increasing the Moon's eccentricity. However, ocean tides were likely much weaker during the first billion years, allowing lunar tides to damp any primordial lunar eccentricity very early on. During the tidally driven expansion of its orbit, the Moon must have been affected by two substantial resonances related to Jupiter and Venus, passage through which may have generated today's lunar eccentricity. PMID:17932291

  10. Doubly Excited Resonance States of Helium Atom: Complex Entropies

    NASA Astrophysics Data System (ADS)

    Kuroś, Arkadiusz; Kościk, Przemysław; Saha, Jayanta K.

    2016-09-01

    We provide a diagonal form of a reduced density matrix of S-symmetry resonance states of two electron systems determined under the framework of the complex scaling method. We have employed the variational Hylleraas type wavefunction to estimate the complex entropies in doubly excited resonance states of helium atom. Our results are in good agreement with the corresponding ones determined under the framework of the stabilization method (Lin and Ho in Few-Body Syst 56:157, 2015).

  11. Excitation of Resonant Helioseimic Modes by Solar Flares.

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares,, Maria Cristina

    2015-08-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by:-applying the same analysis to other locations on the Sun at the time of the Halloween flare-analyzing other events also showing a signature of p-mode excitation-looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  12. Excitation of Resonant Helioseimic Modes by Solar Flares

    NASA Astrophysics Data System (ADS)

    Leibacher, John William; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2015-04-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by: applying the same analysis to other locations on the Sun at the time of the Halloween flare, analyzing other events also showing a signature of p-mode excitation, looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  13. Resonating cantilever mass sensor with mechanical on-plane excitation

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Abadal, Gabriel; Jordà, Xavier; Borrise, Xavier; Davis, Zachary; Barniol, Nuria

    2003-04-01

    The aim of this paper is to report the experimental setup designed, developed and tested in order to achieve the first vibrating mode of a lateral cantilever with mechanical excitation. The on-plane oscillating cantilever is the basis of a proposed mass sensor with an expected resolution in the atto-gram scale. In a first system design, the cantilever is driven electrostatically by an electrode, which is placed parallel to the cantilever. The cantilever is driven to its first resonant mode applying an AC voltage between the cantilever and a driver. Also, a DC voltage is applied to increase the system response. The signal read-out of the transducer is the capacitive current of the cantilever-driver system. The mass sensor proposed, based on this cantilever-driver structure (CDS), is integrated with a CMOS circuitry in order to minimize the parasitic capacitances, that in this case take special relevance because of the low level output current coming from the transducer. Moreover, the electrostatic excitation introduces a parasitic current that overlaps the current due to the resonance. The mechanical excitation is an alternative excitation method which aim is to eliminate the excitation current. Here we describe the experimental facilities developed to achieve mechanical excitation and report preliminary results obtained by this excitation technique. The results are complemented with dynamic simulations of an equivalent system model that are in accordance with the experimental values.

  14. Dynamic formation of Rydberg aggregates at off-resonant excitation

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Heeg, Kilian P.; Gasenzer, Thomas; Evers, Jörg

    2013-10-01

    The dynamics of a cloud of ultracold two-level atoms is studied at off-resonant laser driving to a Rydberg state. We find that resonant excitation channels lead to strongly peaked spatial correlations associated with the buildup of asymmetric excitation structures. These aggregates can extend over the entire ensemble volume, but are in general not localized relative to the system boundaries. The characteristic distances between neighboring excitations depend on the laser detuning and on the interaction potential. These properties lead to characteristic features in the spatial excitation density, the Mandel Q parameter, and the total number of excitations. As an application an implementation of the three-atom cswap or Fredkin gate with Rydberg atoms is discussed. The gate not only exploits the Rydberg blockade, but also utilizes the special features of an asymmetric geometric arrangement of the three atoms. We show that continuous-wave off-resonant laser driving is sufficient to create the required spatial arrangement of atoms out of a homogeneous cloud.

  15. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    NASA Astrophysics Data System (ADS)

    Heyden, S.; Ortiz, M.

    2016-07-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  16. Rotational excitation of physisorbed molecules by resonant electron scattering

    NASA Astrophysics Data System (ADS)

    Teillet-Billy, D.; Gauyacq, J. P.

    2002-04-01

    The resonant rotational excitation of physisorbed H 2 molecules by low energy electron impact is studied using the rotational sudden approximation. The rotational excitation efficiency is analysed as a function of the constraint imposed on the molecular rotation by the adsorption. This allows the description of the variation of the energy loss spectrum corresponding to rovibrational excitation as a function of the constraint on molecular rotation. This model study is then used to discuss the recent results by Svensson et al. [Phys. Rev. Lett. 83 (1999) 124] on the rovibrational excitation of H 2 molecules adsorbed at steps on Cu(5 1 0), in terms of quasi-2D rotor and of constrained 3D rotors.

  17. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling

    NASA Astrophysics Data System (ADS)

    Uskov, Alexander V.; Khurgin, Jacob B.; Protsenko, Igor E.; Smetanin, Igor V.; Bouhelier, Alexandre

    2016-07-01

    A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits.A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits. Electronic supplementary information (ESI) available: Plasmonic mode in nanowires, the probability of stimulated emission in tunnelling through the Fermi's Golden Rule and electron wave functions in tunnelling structures with nonresonant and resonant tunnelling. See DOI: 10.1039/c6nr01931e

  18. Coherence-Resonance Chimeras in a Network of Excitable Elements

    NASA Astrophysics Data System (ADS)

    Semenova, Nadezhda; Zakharova, Anna; Anishchenko, Vadim; Schöll, Eckehard

    2016-07-01

    We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., the coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks.

  19. Coherence-Resonance Chimeras in a Network of Excitable Elements.

    PubMed

    Semenova, Nadezhda; Zakharova, Anna; Anishchenko, Vadim; Schöll, Eckehard

    2016-07-01

    We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., the coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks. PMID:27419572

  20. Enhancement of resonant absorption through excitation of SPR

    NASA Astrophysics Data System (ADS)

    Giulietti, Danilo; Calcagno, L.; Curcio, Alessandro; Cutroneo, M.; Galletti, Mario; Skala, J.; Torrisi, L.; Zimbone, M.

    2016-09-01

    In this experiment the absorption of the laser radiation impinging on polymeric films with Au nanoparticles implanted in surface was studied. By varying the polarization and the incidence angle of the laser radiation on target, the role in the laser absorption of both excitation of surface plasmons and excitation of electronic plasma waves at critical density through resonant absorption was highlighted. In conditions of p-polarized laser irradiations at 1015 W /cm2 intensity, resonant absorption can be induced in films enhancing proton and ion acceleration. Plasma on-line diagnostics is based on SiC detectors. Measurements of kinetic energy of accelerated ions indicate a significant increment using p-polarized laser light with respect to no-polarized light irradiation.

  1. Excitation of field line resonances by sources outside the magnetosphere

    NASA Astrophysics Data System (ADS)

    Walker, A. D. M.

    2005-11-01

    Field line resonances are thought to be excited by sources either at the magnetopause or outside it. Recent observations suggest that they may be associated with coherent oscillations or pressure pulses in the solar wind. In either case the excitation mechanism can be understood by considering the incidence of a harmonic wave on the magnetopause from outside the magnetosphere. Calculations are performed in a plane stratified model that consists of (i) a magnetosheath region streaming tailward at uniform velocity (ii) a sharp boundary representing the magnetopause, (iii) a magnetosphere region in which the Alfvén speed increases monotonically with distance from the magnetopause. The structure implies the existence of a propagating region within the magnetopause bounded by a reflection level or turning point. Beyond this is a region in which waves are evanescent and a resonance level. The reflection and transmission of harmonic waves incident from the magnetosheath is considered in this model. It is shown that, in most cases, because of the mismatch between the magnetosphere and the magnetopause, the wave is reflected from the magnetopause with little penetration. At critical frequencies corresponding to the natural frequencies of the cavity formed between the magnetopause and turning point the signal excites the cavity and may leak evanescently to the resonance. The calculation includes the effect of the counter-streaming magnetosheath and magnetosphere plasmas on the wave. This can lead to amplification or attenuation. The nature of the processes that lead to transmission of the wave from magnetosheath to resonance are considered by synthesising the signal from plane wave spectra. A number of mechanisms for exciting cavity modes are reviewed and the relationship of the calculations to these mechanisms are discussed. Observations needed to discriminate between the mechanisms are specified.

  2. Are Resonant Helioseimic Modes Excited by Solar Flares?

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2016-05-01

    We critically examine reports that flares have been observed to excite resonant p-modes by:-looking in detail at the results of the ring-diagram analysis in terms of duty cycle and center-to-limb variation of ring-diagram power.-applying the same analysis to the Halloween flare using GONG and MDI data.-assessing the stability in terms of oscillation power of both instruments.

  3. Artificial excitation of ELF waves with frequency of Schumann resonance

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  4. Interplay of Collective Excitations in Quantum Well Intersubband Resonances

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2003-01-01

    Intersubband resonances in a semiconductor quantum well (QW) display some of the most fascinating features involving various collective excitations such as Fermi-edge singularity (FES) and intersubband plasmon (ISP). Using a density matrix approach, we treated many-body effects such as depolarization, vertex correction, and self-energy consistently for a two-subband system. We found a systematic change in resonance spectra from FES-dominated to ISP-dominated features, as QW- width or electron density is varied. Such an interplay between FES and ISP significantly changes both line shape and peak position of the absorption spectrum. In particular, we found that a cancellation of FES and ISP undresses the resonant responses and recovers the single-particle features of absorption for semiconductors with a strong nonparabolicity such as InAs, leading to a dramatic broadening of the absorption spectrum.

  5. EXCITATION OF STRUCTURAL RESONANCE DUE TO A BEARING FAILURE

    SciTech Connect

    Leishear, R; David Stefanko, D

    2007-04-30

    Vibration due to a bearing failure in a pump created significant vibrations in a fifteen foot by fifteen foot by eight feet tall mounting platform due to excitation of resonant frequencies. In this particular application, an 18,000 pound pump was mounted to a structural steel platform. When bearing damage commenced, the platform vibrated with sufficient magnitude that conversations could not be heard within forty feet of the pump. Vibration analysis determined that the frequency of the bearing was coincident to one of the natural frequencies of the pump, which was, in turn, coincident to one of the natural frequencies of the mounting platform. This coincidence of frequencies defines resonance. Resonance creates excessive vibrations when the natural frequency of a structure is coincident to an excitation frequency. In this well documented case, the excitation frequency was related to ball bearing failures. The pump is a forty foot long vertical pump used to mix nuclear waste in 1,300,000 gallon tanks. A 300 horsepower drive motor is mounted to a structural steel platform on top of the tank. The pump hangs down into the tank from above to mix the waste and is inaccessible after installation. Initial awareness of the problem was due to increased noise from the pump. Initial vibration analysis indicated that the vibration levels of the bearing were within the expected range for this type of bearing, and the resonant condition was not obvious. Further analysis consisted of disassembly of the motor to inspect the bearings and extensive vibration monitoring. Vibration data for the bearings was obtained from the manufacturer and compared to measured vibration plots for the pump and mounting platform. Vibration data measured along the length of the pump was available from full scale testing, and vibrations were also measured at the installed pump. One of the axial frequencies of the pump, the platform frequency in the vertical direction, and the ball spin frequency for the

  6. An Absolute Measurement of Resonance-Resolved Electron Impact Excitation

    NASA Astrophysics Data System (ADS)

    Reisenfeld, Daniel Brett

    1998-11-01

    An experiment to measure electron-impact excitation (EIE) of multiply-charged ions is described. An absolute measurement has been carried out of the cross section for EIE of Si2+(3s2/ 1S/to3s3p/ 1P) from energies below threshold to 11 eV above. A beams modulation technique with inclined electron and ion beams was used. Radiation at 120.7 nm from the excited ions was detected using an absolutely calibrated optical system. The analysis of the experimental data requires a determination of the population fraction of the Si2+ (3s3p/ 3Po) metastable state in the incident ion beam, which was measured to be 0.210 ± 0.018. The data have been corrected for contributions to the signal from radiative decay following excitation from the metastable state to 3s3p1P and 3p2/ 3P, and excitation of the ground state to levels above 3s3p/ 1P. The experimental 0.56 ± 0.08 eV energy spread has allowed us to resolve complex resonance structure throughout the studied energy range. At the reported ±14% uncertainty level (90% confidence limit), the measured structure and absolute scale of the cross section are in good agreement with 12-state close-coupling R-matrix calculations.

  7. Compilation of giant electric dipole resonances built on excited states

    SciTech Connect

    Schiller, A. . E-mail: schiller@nscl.msu.edu; Thoennessen, M.

    2007-07-15

    Giant Electric Dipole Resonance (GDR) parameters for {gamma} decay to excited states with finite spin and temperature are compiled. Over 100 original works have been reviewed and from some 70 of them, about 350 sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. The current compilation is complementary to an earlier compilation by Samuel S. Dietrich and Barry L. Berman (At. Data Nucl. Data Tables 38 (1988) 199-338) on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters. A comparison of the two may help shed light on the evolution of GDR parameters with temperature and spin. The present compilation is current as of July 2006.

  8. Excitation-energy dependence of the giant dipole resonance width

    NASA Astrophysics Data System (ADS)

    Enders, G.; Berg, F. D.; Hagel, K.; Kühn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O.; Charity, R. J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K. D.; Holzmann, R.; Mayer, R. S.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.

    1992-07-01

    High-energy γ rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of 136Xe+48Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width Γ is studied as a function of the fragment excitation energy E*. A saturation at about Γ=10 MeV is observed for E*/A>=1.0 MeV/nucleon.

  9. Resonant Excitations of the 'tHooft Polyakov Monopole

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Volkov, Mikhail S.

    2004-04-01

    The spherically symmetric magnetic monopole in an SU(2) gauge theory coupled to a massless Higgs field is shown to possess an infinite number of resonances or quasinormal modes. These modes are eigenfunctions of the isospin1 perturbation equations with complex eigenvalues, En=ωn-iγn, satisfying the outgoing radiation condition. For n→∞, their frequencies ωn approach the mass of the vector boson, MW, while their lifetimes 1/γn tend to infinity. The response of the monopole to an arbitrary initial perturbation is largely determined by these resonant modes, whose collective effect leads to the formation of a long living breatherlike excitation with an amplitude decaying at late times as t-5/6.

  10. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    PubMed Central

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  11. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    DOE PAGES

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O’Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; et al

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less

  12. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  13. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    SciTech Connect

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O’Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  14. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation.

    PubMed

    Mazza, T; Karamatskou, A; Ilchen, M; Bakhtiarzadeh, S; Rafipoor, A J; O'Keeffe, P; Kelly, T J; Walsh, N; Costello, J T; Meyer, M; Santra, R

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  15. Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel

    NASA Astrophysics Data System (ADS)

    Farid, M.; Gendelman, O. V.

    2016-09-01

    The paper treats dynamical responses in an equivalent mechanical model for oscillations of a liquid in partially filled vessel under horizontal harmonic ground excitation. Such excitation may lead to hydraulic impacts. The liquid sloshing mass is modeled by equivalent pendulum, which can impact the vessel walls. Parameters of the equivalent pendulum for well-explored case of cylindrical vessels are used. The hydraulic impacts are modeled by high-power potential function. Conditions for internal resonances are formulated. A non-resonant behavior and dynamic response related to 3:1 internal resonance are explored. When the excitation amplitude exceeds certain critical value, the system exhibits multiple steady state solutions. Quasi-periodic solutions appear in relatively narrow range of parameters. Numerical continuation links between resonant regimes found asymptotically for small excitation amplitude, and high-amplitude responses with intensive impacts.

  16. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    SciTech Connect

    Banihashemi, Mehdi; Ahmadi, Vahid; Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.

  17. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin N.

    2016-10-01

    We study the resonant tidal excitation of g-modes in coalescing superfluid neutron star binaries and investigate how such tidal driving impacts the gravitational-wave signal of the inspiral. Previous studies of this type treated the neutron star core as a normal fluid and thus did not account for its expected superfluidity. The source of buoyancy that supports the g-modes is fundamentally different in the two cases: in a normal fluid core the buoyancy is due to gradients in the proton-to-neutron fraction whereas in a superfluid core it is due to gradients in the muon-to-electron fraction. The latter yields a stronger stratification and a superfluid neutron star therefore has a denser spectrum of g-modes with frequencies above 10Hz. As a result, many more g-modes undergo resonant tidal excitation as the binary sweeps through the bandwidth of gravitational-wave detectors such as LIGO. We find that ≃ 10 times more orbital energy is transferred into g-mode oscillations if the neutron star has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and normal fluid neutron star (˜10-3 - 10-2radians). A phase error of this magnitude is too small to be measured from a single event with the current generation of gravitational wave detectors.

  18. Resonance excitation of ions stored in a quadrupole ion trap. Part IV. Theory of quadrupolar excitation

    NASA Astrophysics Data System (ADS)

    Alfred, Roland L.; Londry, Frank A.; March, Raymond E.

    1993-06-01

    A new theoretical treatment is presented for quadrupolar resonance excitation of ions stored in a quadrupole ion trap. When the ratio of the tickle voltage amplitude to that of the drive potential is small, the equation of ion motion can be expressed in the form of a perturbation series. Exact and approximate solutions to the first-order perturbation eqations are presented. Ion trajectories calculated from these solutions are compared with those calculated by numerical integration. The resonance conditions were found to correspond to a series of angular frequencies given by [omega]u,n = n + [beta]u - [infinity] < n < [infinity]. Some of these, [beta]z[Omega], (1 + [beta]z)[Omega](1 - [beta]z)[Omega] [beta],[Omega], had been observed previously in simulation studies.

  19. Parametric excitation of multiple resonant radiations from localized wavepackets

    NASA Astrophysics Data System (ADS)

    Conforti, Matteo; Trillo, Stefano; Mussot, Arnaud; Kudlinski, Alexandre

    2015-03-01

    Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics ``time''. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front.

  20. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  1. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    NASA Astrophysics Data System (ADS)

    Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng

    2015-05-01

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  2. Internal resonance for nonlinear vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Cao, D. X.; Leadenham, S.; Erturk, A.

    2015-11-01

    The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.

  3. Numerical simulation of the resonantly excited capillary-gravity waves

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya

    2015-11-01

    Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.

  4. Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites

    NASA Astrophysics Data System (ADS)

    Vittoria, Carmine

    2015-08-01

    Static field properties of magnetoelectric hexaferrites have been explored extensively in the past five years. In this paper, dynamic properties of magnetoelectric hexaferrites are being explored. In particular, effects of the linear magnetoelectric coupling (α ) on ferrimagnetic resonance (FMR) and magnetoelastic excitations are being investigated. A magnetoelastic free energy which includes Landau-Lifshitz mathematical description of a spin spiral configuration is proposed to calculate FMR and magnetoelastic excitations in magnetoelectric hexaferrites. It is predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts that are proportional to magnetoelectric static and dynamic fields. The calculated FMR fields are in agreement with experiments. Furthermore, it is predicted at low frequencies (approximately megahertz ranges), near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode besides the ordinary FMR mode which can only be accounted by dynamic magnetoelectric fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale as α , the shifts in the new discovered FMR mode scale as α2. Also, magnetoelastic dispersions were calculated, and it is predicted that the effect of the α coupling are the following: (1) The strength of admixture of modes and splitting in energy between spin waves and transverse acoustic waves is proportional to α . (2) The degeneracy of the two transverse acoustic wave modes is lifted even for relatively low values of α . Interestingly, at low frequencies near zero field FMR frequencies, the surface spin wave mode branch flip-flops with the volume spin wave branch whereby one branch assumes real values of the propagation constant and the other purely imaginary upon the application of a static electric field.

  5. L -shell resonant transfer and excitation in niobium ions

    SciTech Connect

    Badnell, N.R. )

    1990-07-01

    We have calculated {ital L}-shell cross sections for the process of resonant transfer excitation followed by x-ray stabilization (RTEX) in collisions of Nb{sup {ital q}+} ions ({ital q}=28--32) with H{sub 2}. The {ital LMn} plateau cross section is nearly constant ((4.5--5.2){times}10{sup {minus}20} cm{sup 2}) for {ital q}=29--32 and is consistent with the results of the recent experiment by Bernstein {ital et} {ital al}. (Phys. Rev. A 40, 4085 (1989)) for {ital q}=31 and 32, but our results for {ital q}=28--30 are substantially larger than experiment. For Ne-like niobium ({ital q}=31), the inclusion of RTEX contributions from higher transitions ({ital LNn}, {ital LOn}, etc.) leads to good agreement with the experiment by Bernstein {ital et} {ital al}. in the high-energy tail. This implies that only a small contribution is possible from the uncorrelated transfer excitation process.

  6. Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition

    NASA Astrophysics Data System (ADS)

    Fan, L. S.; Zhou, Y. S.; Wang, M. X.; Gao, Y.; Liu, L.; Silvain, J. F.; Lu, Y. F.

    2014-07-01

    The influence of resonant vibrational excitation of ethylene molecules in combustion chemical vapor deposition of diamond was investigated. Resonant vibrational excitation of the CH2-wagging mode (a type c fundamental band, υ7, at 949.3 cm-1) in ethylene molecules was achieved by using a wavelength-tunable CO2 laser with a matching wavelength at 10.532 µm. By comparing to laser irradiation at off-resonance wavelengths, an on-resonance vibrational excitation is more efficient in energy coupling, increasing flame temperatures, accelerating the combustion reactions, and promoting diamond deposition. An enhanced rate of 5.7 was achieved in terms of the diamond growth rate with an improved diamond quality index at a high flame temperature under a resonant excitation of the CH2-wagging mode. This study demonstrates that a resonant vibrational excitation is an effective route for coupling energy into the gas phase reactions and promoting the diamond synthesis process.

  7. Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures

    NASA Astrophysics Data System (ADS)

    Ji, Boyu; Qin, Jiang; Tao, Haiyan; Hao, Zuoqiang; Lin, Jingquan

    2016-09-01

    We demonstrate subwavelength imaging and control of localized near-field distribution under resonant and off-resonant excitation of identical gold bowtie nanostructures through photoemission electron microscopy. Control of the near-field distribution was realized by polarization rotation of single femtosecond laser pulse and variation of the phase delay of two orthogonally polarized femtosecond laser pulses. We show that the localized optical near-field distribution can be well controlled either among the corners of the nano-prisms in the bowtie for resonant excitation or the edges for off-resonant excitation. A better visualization of the PEEM image is achieved for resonant excitation than in the case of off-resonant excitation. The experimental results of the optical near-field distribution control are well reproduced by finite-difference time-domain simulations and understood by linear combination of electric charge distribution of the bowtie by s- and p- polarized light illumination. In addition, a shift of the near-field excitation position with inverted or unchanged phase, alternatively an un-shift of the excitation position but only with inverted phase of the near-field, can be realized by rotating the polarization angle of a single pulse and coherent control of two orthogonally polarized fs laser pulses.

  8. Internal resonance of axially moving laminated circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Wang, Yan Qing; Liang, Li; Guo, Xing Hui

    2013-11-01

    The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.

  9. Broadband performance of a piezoelectric energy harvester based on the internal resonance of buckled beam

    NASA Astrophysics Data System (ADS)

    Xiong, Liuyang; Tang, Lihua; Ding, Hu; Chen, Liqun; Mace, Brian

    2016-04-01

    Nonlinear internal resonance mechanism is exploited in piezoelectric vibration energy harvesting (PVEH) for the purpose of broadening the resonance band. Conventional linear energy harvester has narrow operating bandwidth. In this research, a buckled piezoelectric beam structure with preload under transverse excitation is investigated to demonstrate the superiority of internal resonance. The condition for 2:1 internal resonance could be established by truncating the continuum beam with geometrical nonlinearity. Integro-partial-differential equations are derived for governing transverse motion measured from a stable equilibrium position. At specific initial axial compressive force, two modes are coupled through the internal resonance interaction. For weak nonlinear perturbations, multiple scales method is used to explore the amplitude-frequency responses of the buckled beam system under primary resonance with 2:1 internal resonance. Numerical examples demonstrate that the resonance bandwidth is broadened thanks to the coexistence of softening and hardening nonlinear characteristics. Moreover, validity of the approximate analytical method is demonstrated by comparing with simulation. Furthermore, the optimal resistance is discussed with a pure resistive load. This research on the internal resonance of buckled beam provides a basis for structure design and optimization in broadband PVEH.

  10. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji

    2016-10-01

    We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions.

  11. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams

    PubMed Central

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji

    2016-01-01

    We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions. PMID:27734923

  12. Acoustic Resonances in Helium Fluids Excited by Quartz Tuning Forks

    NASA Astrophysics Data System (ADS)

    Salmela, A.; Tuoriniemi, J.; Rysti, J.

    2011-03-01

    Ordinary quartz tuning fork resonators, operated at about 30 or 200 kHz frequency, couple to acoustic first and second sound resonances in helium fluids under certain conditions. We have studied acoustic resonances in supercritical 4He, normal and superfluid 4He, and in isotopic mixtures of helium. Suggestive temperature, pressure, and concentration dependences are given. Furthermore, we propose a thermometric reference point device based on second sound resonances in helium mixtures, and indicate possible differences in the nature of second sound resonances in superfluid 4He and helium mixtures.

  13. Transient processes under dynamic excitation of a coherent population trapping resonance

    NASA Astrophysics Data System (ADS)

    Khripunov, S. A.; Radnatarov, D. A.; Kobtsev, S. M.; Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu; Balabas, M. V.; Andryushkov, V. A.; Popkov, I. D.

    2016-07-01

    It is shown for the first time that under dynamic excitation of a coherent population trapping resonance in Rb vapours at different bichromatic pump modulation frequencies from a few tens of hertz and higher, the resonance is dramatically deformed as a result of emerging intensity oscillations of radiation transmitted through an Rb vapour cell. A significant change in the shape of the resonance under its dynamic excitation is confirmed experimentally and theoretically. A possible impact of the identified changes in the shape of the coherent population trapping resonance on the stability of an atomic clock is qualitatively discussed.

  14. Thermooptical excitation of sound by Bessel light beams in crystalline media with internal stress

    SciTech Connect

    Mityurich, G. S. Serdyukov, A. N.

    2011-05-15

    The thermooptical excitation of sound by Bessel light beams in crystalline media with internal stress has been studied. The dependence of the thermoelastic coupling coefficient, which is due to the modulated absorption of laser radiation, on the initial strain in a crystalline sample is taken into account. The expression for the photoacoustic signal amplitude is obtained, and it is shown that, in the range of high modulation frequencies of TE modes of Bessel light beams, resonant phenomena occur which can be used to increase the resolution of laser photoacoustic diagnostics of elastically strained crystals.

  15. Coherent quantum control of internal conversion: {S}_{2}\\;\\leftrightarrow \\;{S}_{1} in pyrazine via {S}_{0}\\;\\to \\;{S}_{2}/{S}_{1} weak field excitation

    NASA Astrophysics Data System (ADS)

    Grinev, Timur; Shapiro, Moshe; Brumer, Paul

    2015-09-01

    Coherent control of internal conversion (IC) between the first (S1) and second (S2) singlet excited electronic states in pyrazine, where the S2 state is populated from the ground singlet electronic state S0 by weak field excitation, is examined. Control is implemented by shaping the laser which excites S2. Excitation and IC are considered simultaneously, using the recently introduced resonance-based control approach. Highly successful control is achieved by optimizing both the amplitude and phase profiles of the laser spectrum. The dependence of control on the properties of resonances in S2 is demonstrated.

  16. Resonance parametric excitation of temperature oscillations in levitating aerosol droplets

    NASA Astrophysics Data System (ADS)

    Zhuravlev, M. V.

    2008-02-01

    The threshold conditions of excitation of temperature oscillations in high- Q water aerosol droplets have been studied under the conditions of slow evaporation. Selection rules have been obtained for interacting modes in a droplet. The threshold intensity of excitation of temperature oscillations has been analyzed in comparison with the threshold intensity of stimulated Brillouin and stimulated Raman scattering in a droplet. It is shown that, in the three-mode regime, the temperature oscillations can be excited at a rather low pumping level (about 10 W/cm2). A method is proposed for the remote measurement of the microphysical parameters of a droplet from the periodic temperature shift of eigenfrequencies of a droplet, the threshold intensity of excitation of temperature oscillations, and the thermal Raman frequency.

  17. Angular dependent study on ferromagnetic resonance and spin excitations by spin rectification

    SciTech Connect

    Zhang, Yichao; Fan, Xiaolong Zhao, Xiaobing; Rao, Jinwei; Zhou, Hengan; Guo, Dangwei; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2015-01-14

    We report angular dependent spin rectification spectra which are applied to studying spin excitations in single permalloy stripe. Based on planar Hall effect, those spin excitations generate special resonant dc Hall voltages, which have been characterized as functions of the amplitude and direction of applied magnetic field. Through high angular resolution 2D mappings, the evolutions of different spin excitation can be directly presented, and the dynamic magnetic parameters such as the gyromagnetic ratio, effective exchange field, as well as the quantized numbers of standing spin waves can be accurately determined through fitting the angular evolution of each resonance.

  18. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-06-01

    We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.

  19. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    SciTech Connect

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  20. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.

    2016-11-01

    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  1. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  2. Doubly Excited Resonances in the Positronium Negative Ion

    NASA Technical Reports Server (NTRS)

    Ho, Y.K.

    2007-01-01

    The recent theoretical studies on the doubly excited states of the Ps' ion are described. The results obtained by using the method of complex coordinate rotation show that the three-lepton system behaves very much like an XYX tri-atomic molecule. Furthermore, the recent investigation on the positronium negative ion embedded in Debye plasma environments is discussed. The problem is modeled by the use of a screened Coulomb potential to represent the interaction between the charge particles.

  3. Resonant X-ray emission with a standing wave excitation

    PubMed Central

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  4. Resonant X-ray emission with a standing wave excitation.

    PubMed

    Ruotsalainen, Kari O; Honkanen, Ari-Pekka; Collins, Stephen P; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems.

  5. Topical applications of resonance internal conversion in laser produced plasma

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2007-04-01

    Physical aspects of resonance effects arising in plasma due to interactions of nuclei with the electrons are considered. Among them are resonance conversion (TEEN) and the reverse process of NEET. These processes are of great importance for pumping the excited nuclear states (isomers) and for accelerating their decay. Experiment is discussed on studying the unique 3.5-eV 229m Th nuclide.

  6. Selective excitation of eigenmodes in a multilayer thin film resonator on bulk acoustic waves

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. K.; Ptashnik, S. V.; Kozyrev, A. B.

    2016-08-01

    We consider a method of control over the operating frequency of a resonator on bulk acoustic waves, which is based on the selective excitation of eigenmodes. The frequency switching is achieved by using several layers of a ferroelectric in the paraelectric state and applying a control voltage of appropriate magnitude and polarity to each layer. The principle of selectivity is formulated and the criterion function is defined, which ensure the most effective excitation of a selected eigenmode with the possible suppression of parasitic modes. An example of using this function for a resonator switched between four eigenmodes is presented.

  7. Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid

    SciTech Connect

    Pigeon, S.; Ciuti, C.; Carusotto, I.

    2011-04-01

    We present a theoretical study of the hydrodynamic properties of exciton-polaritons in a semiconductor microcavity under a resonant laser excitation. The effect of a spatially extended defect on the superfluid flow is investigated as a function of the flow speed. The processes that are responsible for the nucleation of vortices and solitons in the wake of the defect are characterized, as well as the regimes where the superfluid flow remains unperturbed. Specific features due to the nonequilibrium nature of the polariton fluid are pointed out. For the present case of a resonant polariton excitation, an effective way to create, trap, and control arrays of vortices is proposed.

  8. Modeling noise-induced resonance in an excitable system: an alternative approach.

    PubMed

    Nurujjaman, Md

    2010-03-01

    Recently, it has been observed [Md. Nurujjaman, Phy. Rev. E 80, 015201(R) (2009)] that in an excitable system, one can maintain noise-induced coherency in the coherence resonance by blocking the destructive effect of the noise on the system at higher noise level. This phenomenon of constant coherence resonance (CCR) cannot be explained by the existing way of simulation of the model equations of an excitable system with added noise. In this paper, we have proposed a general model which explains the noise-induced resonance phenomenon CCR as well as coherence resonance (CR) and stochastic resonance (SR). The simulation has been carried out considering the basic mechanism of noise-induced resonance phenomena: noise only perturbs the system control parameter to excite coherent oscillations, taking proper precautions so that the destructive effect of noise does not affect the system. In this approach, the CR has been obtained from the interference between the system output and noise and the SR has been obtained by adding noise and a subthreshold signal. This also explains the observation of the frequency shift of coherent oscillations in the CCR with noise level.

  9. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory

    PubMed Central

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-01-01

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and \\documentclass[12pt]{minimal}\\begin{document}$\\textrm {L}_{2,3}$\\end{document}L2,3 edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule. PMID:23181305

  10. Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory

    SciTech Connect

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-11-21

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

  11. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    SciTech Connect

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  12. The role of the partner atom and resonant excitation energy in ICD in rare gas dimers

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Patrick; Ripani, Enrico; Bolognesi, Paola; Coreno, Marcello; Avaldi, Lorenzo; Devetta, Michele; Callegari, Carlo; Di Praia, Michele; Prince, Kevin; Richter, Robert; Alagial, Michele; Kivimäkil, Antti

    2014-04-01

    We show experimental evidence for Interatomic Coulombic Decay (ICD) in mixed rare gas dimers following resonant Auger decay. A velocity map imaging apparatus together with a cooled supersonic beam containing Ar2, ArNe and ArKr dimers was used to record electron VMI images in coincidence with two mass selected ions following excitation on five resonances converging to the Ar+ 2p-11/2 and 2p-13/2 thresholds using the synchrotron radiation. The results show that the kinetic energy distribution of the ICD electrons observed in coincidence with the ions from Coulomb explosion of the dimers depends on the partner ion and resonant photon energy.

  13. Electronic State Interferences in Resonant X-Ray Emission after K-Shell Excitation in HCl

    SciTech Connect

    Kavcic, M.; Zitnik, M.; Bucar, K.; Mihelic, A.; Carniato, S.; Journel, L.; Guillemin, R.; Simon, M.

    2010-09-10

    We have measured a series of high-resolution x-ray spectra emitted upon resonant photoexcitation of HCl. The photon energy was tuned across the dissociative 1s{yields}6{sigma}* resonance and the Rydberg states converging to the Cl 1s{sup -1} threshold, and inelastic photon scattering was observed in the region of KL emission lines. Excellent agreement is found between fully ab initio calculated and measured spectra if interferences between different excitation-emission paths are taken into account. The effect of electronic state interferences is enhanced due to dynamical broadening of the 6{sigma}* resonance in HCl.

  14. Influence of shape resonances on minima in cross sections for photoionization of excited atoms

    SciTech Connect

    Felfli, Z.; Manson, S.T. Department of Astronomy, Georgia State University, Atlanta, Georgia 30303 )

    1990-02-01

    A relationship between the location of Cooper minima and the difference between the quantum defect of the initial state and the threshold phase shift (in units of {pi}) of the final state in excited photoionization has been suggested earlier (Phys. Rev. Lett. 48, 473 (1982)). The existence of a shape resonance in the final state is shown to modify this relationship.

  15. Excitation of the lower oblique resonance by an artificial plasma jet in the ionosphere

    NASA Astrophysics Data System (ADS)

    Thiel, J.; Storey, L. R. O.; Bauer, O. H.; Jones, D.

    1984-04-01

    Aboard the Porcupine rockets, bursts of noise were detected in the electron whistler range during the operation of a xenon plasma gun on a package ejected from the main payload. These observations can be interpreted in terms of excitation of the lower oblique resonance by instabilities associated with the motion of the xenon ion beam through the ionospheric plasma.

  16. Study of orbitally excited B mesons and evidence for a new Bπ resonance

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; D'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Feindt, M.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucà, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2014-07-01

    Using the full CDF Run II data sample, we report evidence for a new resonance, which we refer to as B(5970), found simultaneously in the B0π+ and B+π- mass distributions with a significance of 4.4 standard deviations. We further report the first study of resonances consistent with orbitally excited B+ mesons and an updated measurement of the properties of orbitally excited B0 and Bs0 mesons. We measure the masses and widths of all states, as well as the relative production rates of the B1, B2*, and B(5970) states and the branching fraction of the Bs2*0 state to either B*+K- and B+K-. Furthermore, we measure the production rates of the orbitally excited B0,+ states relative to the B0,+ ground state. The masses of the new B(5970) resonances are 5978±5(stat)±12(syst) MeV/c2 for the neutral state and 5961±5(stat)±12(syst) MeV /c2 for the charged state, assuming that the resonance decays into Bπ final states. The properties of the orbitally excited and the new B(59700,+) states are compatible with isospin symmetry.

  17. Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials

    NASA Astrophysics Data System (ADS)

    Fedotov, V. A.; Rogacheva, A. V.; Savinov, V.; Tsai, D. P.; Zheludev, N. I.

    2013-10-01

    Engaging strongly resonant interactions allows dramatic enhancement of functionalities of many electromagnetic devices. However, resonances can be dampened by Joule and radiation losses. While in many cases Joule losses may be minimized by the choice of constituting materials, controlling radiation losses is often a bigger problem. Recent solutions include the use of coupled radiant and sub-radiant modes yielding narrow asymmetric Fano resonances in a wide range of systems, from defect states in photonic crystals and optical waveguides with mesoscopic ring resonators to nanoscale plasmonic and metamaterial systems exhibiting interference effects akin to electromagnetically-induced transparency. Here we demonstrate theoretically and confirm experimentally a new mechanism of resonant electromagnetic transparency, which yields very narrow isolated symmetric Lorentzian transmission lines in toroidal metamaterials. It exploits the long sought non-trivial non-radiating charge-current excitation based on interfering electric and toroidal dipoles that was first proposed by Afanasiev and Stepanovsky in [J. Phys. A Math. Gen. 28, 4565 (1995)].

  18. Vibronic resonances facilitate excited-state coherence in light-harvesting proteins at room temperature.

    PubMed

    Novelli, Fabio; Nazir, Ahsan; Richards, Gethin H; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-11-19

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semiclassical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we unambiguously identify excited state coherent superpositions in photosynthetic light-harvesting complexes using a new experimental approach. Decoherence on the time scale of the excited state lifetime allows low energy (56 cm(-1)) oscillations on the signal intensity to be observed. In conjunction with an appropriate model, these oscillations provide clear and direct experimental evidence that the persistent coherences observed originate from quantum superpositions among vibronic excited states. PMID:26528956

  19. Exciting Molecules Close to the Rotational Quantum Resonance: Anderson Wall and Rotational Bloch Oscillations.

    PubMed

    Floß, Johannes; Averbukh, Ilya Sh

    2016-05-19

    We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under conditions close to the quantum resonance. The quantum resonance effect causes an unlimited ballistic growth of the angular momentum. We show that a disturbance of the quantum resonance, either by the centrifugal distortion of the rotating molecules or a controlled detuning of the pulse train period from the so-called rotational revival time, eventually halts the growth by causing Anderson localization beyond a critical value of the angular momentum, the Anderson wall. Below the wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.

  20. Strouhal numbers of flow-excited resonance of closed side branches

    SciTech Connect

    Ziada, S.; Shine, S.

    1995-12-01

    Flow-excited acoustic resonances of piping systems containing closed side-branches are often encountered in engineering applications. They are excited by the unstable shear layer which separates the mean flow in the main pipe from the stagnant fluid in the branch. The object of this paper is to provide design charts which can be used to predict the critical velocity at which an acoustic resonance may be initiated. Model tests were carried out on three different configurations of side-branches (single, tandem and coaxial branches). For each of these pipe configurations, the effects of the diameter ratio (d/D), the distance from an upstream elbow (L) and the acoustic damping are investigated in some detail. The test results are embodied into a design chart to predict the flow velocity at the onset of resonance as a function of the system operational and geometric parameters.

  1. Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates.

    PubMed

    Guo, Nan; Hu, Wei-Da; Chen, Xiao-Shuang; Wang, Lin; Lu, Wei

    2013-01-28

    An alternative-grating gated AlGaN/GaN field-effect transistor (FET) is proposed by considering the slit regions to be covered by a highly doped semiconductor acting as supplemental gates. The plasmonic resonant absorption spectra are studied at THz frequencies using the FDTD method. The 2DEGs, under supplemental gates, modulated by a positive voltage, can make the excitation of the higher order plasmon modes under metallic fingers more efficient in comparison to ungated regions in common slit-grating gate transistors. Moreover, the supplemental gates can confine the electric field of dipole oscillation between metallic gate fingers under THz radiation. The competition of the near-field enhancement and screening effect of the supplemental gate fingers results in the intensity of the higher order plasmon resonances being maximized at increased doping concentration. Our results demonstrate the possibility of significant improvement in the excitation of plasmon resonances in FETs for THz detection.

  2. Numerical simulation of the excitation of a Helmholtz resonator by a grazing flow

    NASA Astrophysics Data System (ADS)

    Mallick, S.; Shock, R.; Yakhot, V.

    2003-10-01

    The process of noise generation in a flow-excited Helmholtz resonator involves strong interaction between a time-dependent fluid flow and acoustic resonance. Quantitative prediction of this effect, requiring accurate prediction of time-dependent features of a flow over complex three-dimensional bodies, turbulence modeling, compressibility and Mach number effects, is one of the major challenges to computational fluid dynamics. In this paper a numerical procedure based on the lattice kinetic equation, combined with the RNG turbulence model, is applied to describe a well-controlled experiment on acoustic resonance excitation by a grazing flow [Nelson et al., J. Sound Vib. 78, 15-27 (1981)]. The achieved agreement between numerical and physical experiments is very good. The simulations reveal a universality transformation enabling comparison of the data for different inlet conditions.

  3. On selection of primary modes for generation of strong internally resonant second harmonics in plate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chillara, Vamshi Krishna; Lissenden, Cliff J.

    2013-09-01

    The selection of primary shear-horizontal (SH) and Rayleigh-Lamb (RL) ultrasonic wave modes that generate cumulative second harmonics in homogeneous isotropic plates is analyzed by theoretical modeling. Selection criteria include: internal resonance (synchronism and nonzero power flux), group velocity matching, and excitability/receivability. The power flux, group velocity matching, and excitability are tabulated for the SH and RL internal resonance points. The analysis indicates that SH waves can generate cumulative symmetric RL secondary wave fields. Laboratory experiments on aluminum plates demonstrate that excitation of the SH3 primary mode generates the s4 secondary RL mode and that the secondary wave field amplitude increases linearly with propagation distance. Simple magnetostrictive transducers were used to excite the primary SH wave and to receive the SH and RL wave signals. Reception of these wave modes having orthogonal polarizations was achieved by simply reorienting the electrical coil. The experiment was complicated by the presence of a nonplanar primary wavefront, however finite element simulations were able to clarify the experimental results.

  4. Magnetic resonance imaging of the internal auditory canal

    SciTech Connect

    Daniels, D.L.; Herfkins, R.; Koehler, P.R.; Millen, S.J.; Shaffer, K.A.; Williams, A.L.; Haughton, V.M.

    1984-04-01

    Three patients with exclusively or predominantly intracanalicular neuromas and 5 with presumably normal internal auditory canals were examined with prototype 1.4- or 1.5-tesla magnetic resonance (MR) scanners. MR images showed the 7th and 8th cranial nerves in the internal auditory canal. The intracanalicular neuromas had larger diameter and slightly greater signal strength than the nerves. Early results suggest that minimal enlargement of the nerves can be detected even in the internal auditory canal.

  5. Nitration of internal tyrosine of cytochrome c probed by resonance Raman scattering.

    PubMed

    Quaroni, L; Smith, W E

    1999-01-01

    Tyrosines can be selectively nitrated in a protein and the resultant chromophore can be used as an in situ probe of the tyrosine environment. Resonance Raman scattering could have specific advantages as a detection method because of the inherent selectivity of the technique and because shifts in the intensity and frequency of the nitro stretch can be detected and related to the form and environment of the nitrotyrosine. To evaluate this possibility the internal residue Tyr67 of cytochrome c was nitrated and resonance Raman scattering was recorded. With 413.1-nm excitation the resonance scattering from the heme protein dominates, but with 457.9-nm excitation intense bands due to nitrostretching vibrations are readily observed. The frequency of the internal Tyr67 indicates an aqueous environment that suggests that on nitration this residue becomes exposed on the protein surface or that water enters the active pocket. pH dependent measurements can be used to follow the protonation of the residue. A pK(a) of approximately 7 also indicates an aqueous environment. This initial study indicates that resonance Raman scattering does have unique advantages as an in situ probe of the local structure of nitrated tyrosine residues.

  6. Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves.

    PubMed

    Fan, Ying; Honarvar, Farhang; Sinclair, Anthony N; Jafari, Mohammad-Reza

    2003-01-01

    When an immersed solid elastic cylinder is insonified by an obliquely incident plane acoustic wave, some of the resonance modes of the cylinder are excited. These modes are directly related to the incidence angle of the insonifying wave. In this paper, the circumferential resonance modes of such immersed elastic cylinders are studied over a large range of incidence angles and frequencies and physical explanations are presented for singular features of the frequency-incidence angle plots. These features include the pairing of one axially guided mode with each transverse whispering gallery mode, the appearance of an anomalous pseudo-Rayleigh in the cylinder at incidence angles greater than the Rayleigh angle, and distortional effects of the longitudinal whispering gallery modes on the entire resonance spectrum of the cylinder. The physical explanations are derived from Resonance Scattering Theory (RST), which is employed to determine the interior displacement field of the cylinder and its dependence on insonification angle.

  7. Selective excitation of high-Q resonant modes in a bottle/quasi-cylindrical microresonator

    NASA Astrophysics Data System (ADS)

    Dong, Yongchao; Jin, Xueying; Wang, Keyi

    2016-08-01

    We fabricate a bottle/quasi-cylindrical microresonator by using a fusion splicer. This method does not require a real-time control of the translation stages and can easily fabricate a resonator with expected size and shape. Selective excitation of whispering gallery modes (WGMs) in the resonator is realized with a fiber taper coupled at various positions of the resonator along the bottle axis. Most importantly, we obtain a clean and regular spectrum with very high quality factor (Q) modes up to 3.1×107 in the quasi-cylindrical region of the resonator. Moreover, we package the coupling system into a whole device that can be moved freely. The vibration performance tests of the packaged device show that the coupling system with the taper coupled at the quasi-cylindrical region has a remarkable anti-vibration ability. The portability and robustness of the device make it attractive in practical applications.

  8. Integrated in-fiber coupler for microsphere whispering-gallery modes resonator excitation.

    PubMed

    Wang, Ruohui; Fraser, Michael; Li, Jiacheng; Qiao, Xueguang; Wang, Anbo

    2015-02-01

    We present an integrated in-fiber coupler for excitation of whispering-gallery modes of a microsphere resonator. The coupler is simply fabricated by chemical etching away the holey area of a photonic crystal fiber, leaving a freestanding solid core enclosed in a silica housing. Light is coupled into a microsphere through the suspended core with a diameter of 2.1 μm. Since the coupler itself performs as a Fabry-Perot interferometer, asymmetric Fano resonances can be observed in the mixed reflection spectrum. The silica housing of the coupler provides a robust mechanical support to the microsphere resonator. The new Fano resonance coupler shows great potential in biochemical sensing and optical switching applications. PMID:25680034

  9. Second stable regime of internal kink modes excited by barely passing energetic ions in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    He, H. D.; Dong, J. Q.; Fu, G. Y.; Zheng, G. Y.; Sheng, Z. M.; Long, Y. X.; He, Z. X.; Jiang, H. B.; Shen, Y.; Wang, L. F.

    2010-08-01

    The internal kink (fishbone) modes, driven by barely passing energetic ions (EIs), are numerically studied with the spatial distribution of the EIs taking into account. It is found that the modes with frequencies comparable to the toroidal precession frequencies are excited by resonant interaction with the EIs. Positive and negative density gradient dominating cases, corresponding to off- and near-axis depositions of neutral beam injection (NBI), respectively, are analyzed in detail. The most interesting and important feature of the modes is that there exists a second stable regime in higher βh (=pressure of EIs/toroidal magnetic pressure) range, and the modes may only be excited by the barely passing EIs in a region of βth1<βh<βth2 (βth is threshold or critical beta of EIs). Besides, the unstable modes require minimum density gradients and minimum radial positions of NBI deposition. The physics mechanism for the existence of the second stable regime is discussed. The results may provide a means of reducing or even preventing the loss of NBI energetic ions and increasing the heating efficiency by adjusting the pitch angle and driving the system into the second stable regime fast enough.

  10. Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.

    PubMed

    Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia

    2016-03-01

    We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules.

  11. Elasticity, internal excitation, and charge transfer during grazing scattering of keV fullerenes from a LiF(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Wethekam, S.; Winter, H.

    2011-06-01

    C60+ molecular ions with energies of 5-45 keV are scattered under grazing angles of incidence of 1-3° from a LiF(1 0 0) surface. From the analysis of polar angular distributions, fragment size distributions, and ion fractions for scattered projectiles, information on elastic, internal excitation, and charge transfer processes are derived. The results are compared to classical molecular dynamics simulations, which reproduce the angular distributions on a quantitative level, but the internal excitation only in part. In addition to the transfer of the normal energy loss to internal degrees of freedom of the molecule, an excitation is identified and interpreted as resonant coherent excitation in the oscillating electric field in front of the surface experienced by the moving projectile. The ion fractions are in accord with a complete suppression of charge transfer between fullerene ion and surface.

  12. Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind

    SciTech Connect

    Mazur, V. A.

    2010-11-15

    The eigenfrequencies and eigenmodes of an MHD cavity in the front part of the magnetosphere and its excitation by monochromatic hydromagnetic waves incident onto the magnetosphere from solar wind are studied theoretically in the model of a plane-stratified plasma. The eigenmodes are damped due to both their absorption at the Alfven resonance points and their emission into solar wind through the magnetopause, which is partially transparent for the excited waves. It is shown that, due to the influence of the magnetospheric cavity, the pumping of the magnetosphere by the incident waves is resonance in character. The waves penetrate into the magnetosphere only if their frequencies lie in narrow spectral ranges near the eigenfrequencies of the cavity, the width of these ranges being on the order of the damping rate of the eigenmodes. Waves with other frequencies are almost completely reflected from the magnetopause.

  13. Breathing Mode Excitation in Near Harmonic Systems: Simple Analytic Theory for Femtosecond Resonant Desorption

    NASA Astrophysics Data System (ADS)

    Gadzuk, J. W.

    1998-03-01

    The phenomenon of breathing mode excitation (BME) or bound state wave packet squeezing and spreading driven by a time-dependent oscillator frequency (due to either a transient force constant or mass) will be considered. A theory of stimulated wave packet dynamics for near-harmonic systems is presented which describes a variety of generic time-dependences such as single sudden excitation, double switching (excitation/time-delay/ de-excitation), and decaying initially excited states which characterize many processes in spectroscopy, pump-probe control in intra-molecular dynamics, and femtochemistry. The model can be used to describe such diverse phenomena as quantum excitation due to temporary neutron capture (=``mass enhancement"), BME of ultra-cold atoms trapped in optical lattices as observed by the NIST Laser Cooling Group, and stimulated bond-breaking resulting in delocalization, desorption, or dissociation. Particular attention will here be focused on the implications of BME to resonant desorption processes possible within the domain of both laser and hot-electron femtochemistry at surfaces.

  14. Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. Simple piezoelectric cantilever for energy harvesting is uni-directional and has bandwidth limitation. In this research we explore utilizing internal resonances to harvest vibratory energy due to excitations from an arbitrary direction with the usage of a single piezoelectric cantilever. Specifically, it is identified that by attaching a pendulum to the piezoelectric cantilever, 1:2 internal resonances can be induced based on the nonlinear coupling. The nonlinear effect induces modal energy exchange between beam bending motion and pendulum motions in 3-dimensional space, which ultimately yield multidirectional energy harvesting by a single cantilever. Systematic analysis and experimental investigation are carried out to demonstrate this new concept.

  15. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  16. Implementation of Dipolar Resonant Excitation Collision Induced Dissociation with Ion Mobility/Time-of-Flight MS

    SciTech Connect

    Webb, Ian K.; Chen, Tsung-Chi; Danielson, William F.; Ibrahim, Yehia M.; Tang, Keqi; Anderson, Gordon A.; Smith, Richard D.

    2014-01-28

    Under and overfragmentation are significant hurdles to the data independent “bottom-up” approach to proteomics. Another challenge to the data independent approach is the convolution of fragments from different peptides that coelute in reverse-phase liquid chromatography/mass spectrometry (RPLC/MS). The ion mobility/collision induced dissociation/time-of flight mass spectrometry (IMS/CID/TOF MS) approach gives drift-time aligned fragment ions that have the same arrival time distributions as precursor ions, greatly aiding in fragment and peptide ion identification. We have modified an IMS/TOF MS platform to allow for resonant excitation CID experiments. Resonant excitation CID leads to highly efficient, mass-resolved fragmentation without additional excitation of product ions, alleviating the overfragmentation problem. The ability to apply resonant waveforms in mobility-resolved windows has been demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS separation experiment.

  17. Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules

    PubMed Central

    Xie, Zhi Qiang; Bai, Jaeil; Zhou, Yun Shen; Gao, Yi; Park, Jongbok; Guillemet, Thomas; Jiang, Lan; Zeng, Xiao Cheng; Lu, Yong Feng

    2014-01-01

    Crystallographic orientations determine the optical, electrical, mechanical, and thermal properties of crystals. Control of crystallographic orientations has been studied by changing the growth parameters, including temperature, pressure, proportion of precursors, and surface conditions. However, molecular dynamic mechanisms underlying these controls remain largely unknown. Here we achieved control of crystallographic orientations in diamond growth through a joint experimental and theoretical study of laser resonant vibrational excitation of precursor molecules (ethylene). Resonant vibrational excitation of the ethylene molecules using a wavelength-tunable CO2 laser steers the chemical reactions and promotes proportion of intermediate oxide species, which results in preferential growth of {100}-oriented diamond films and diamond single crystals in open air. Quantum molecular dynamic simulations and calculations of chemisorption energies of radicals detected from our mass-spectroscopy experiment provide an in-depth understanding of molecular reaction mechanisms in the steering of chemical reactions and control of crystallographic orientations. This finding opens up a new avenue for controlled chemical vapor deposition of crystals through resonant vibrational excitations to steer surface chemistry. PMID:24694918

  18. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    PubMed

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-01

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics. PMID:24103966

  19. Extracting paramagnon excitations from resonant inelastic x-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Lamsal, Jagat; Montfrooij, Wouter

    2016-06-01

    Resonant x-ray scattering experiments on high-temperature superconductors and related cuprates have revealed the presence of intense paramagnon scattering at high excitation energies, of the order of several hundred meV. The excitation energies appear to show very similar behavior across all compounds, ranging from magnetically ordered, via superconductors, to heavy fermion systems. However, we argue that this apparent behavior has been inferred from the data through model fitting which implicitly imposes such similarities. Using model fitting that is free from such restrictions, we show that the paramagnons are not nearly as well defined as has been asserted previously, and that some paramagnons might not represent propagating excitations at all. Our work indicates that the data published previously in the literature will need to be reanalyzed with proper models.

  20. Suppression of off-resonant carrier excitations via a standing wave gate beam

    NASA Astrophysics Data System (ADS)

    Delaubenfels, Thomas; Burkhardt, Karl; Vittorini, Grahame; Brown, Kenneth; Brown, Kenton; Merrill, J. True; Amini, Jason; Volin, Curtis; Harter, Alexa

    2015-05-01

    The motional dynamics of ions in rf traps lead to secular sidebands in their excitation spectra. The relative coupling strengths of the carrier and the sidebands are usually fixed by the Lamb-Dicke factor and ion temperature. We show that the strengths of the carrier resonance and the first order sidebands may be selectively emphasized or suppressed relative to one another. Using 40Ca+ ions trapped in a surface electrode trap, we excite the | S1 / 2 > --> | D5 / 2 > electric quadrupole (E2) transition with laser light that is normally incident to the trap's surface. Retroreflection off the trap surface produces a standing wave. For an E2 transition, the carrier couples to the gradient of the electric field and the sidebands to the magnitude. By moving the ion through the standing wave we alternatively suppress and excite the carrier and sideband transitions with the two sets of fringes 180 degrees out of phase. This technique could be used to suppress off-resonant carrier excitations in two qubit gates, and the fringes themselves provide a measure of the ion displacement that can be used to map out the trapping potentials. This work has been funded by the Georgia Tech Research Institute.

  1. Microwave-Excited Microplasma Thrusters Using Surface Wave and Electron Cyclotron Resonance Discharges

    NASA Astrophysics Data System (ADS)

    Mori, Daisuke; Kawanabe, Tetsuo; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2012-10-01

    Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have studied two types of microwave-excited microplasma thrusters, using surface wave-excited and electron cyclotron resonance-excited discharges. Microwaves of S-band (4 GHz) and X-band (11 GHz) were employed to excite the plasma in these experiments, with the feed or propellant gases of Ar and He. A microplasma thruster of electrothermal type consisted of a surface wave-excited microplasma source, and a converging-diverging micronozzle to obtain the thrust. For 11-GHz microwaves at a power of 6 W, a thrust of 1.1 mN and a specific impulse of 90 s were obtained at an Ar gas flow rate of 40 sccm, where the plasma electron density was 1.2x10^20 m-3, and the gas temperature was 1.5x10^3 K; under the same conditions for 4-GHz microwaves, the thrust, specific impulse, electron density, and gas temperature were 0.93 mN, 80 s, 7.0x10^19 m-3, and 8.0x10^2 K, respectively. A microplasma thruster of electromagnetic type had a microplasma source excited by electron cyclotron resonance with external magnetic fields, to obtain the thrust through accelerating ions by ambipolar electric fields. Optical emission spectrum was dominated by Ar^+ ion lines in the microplasma thruster of electromagnetic type, owing to higher electron temperatures at lower feed-gas pressures.

  2. Acoustic resonance excitation of turbulent heat transfer and flow reattachment downstream of a fence

    NASA Astrophysics Data System (ADS)

    Selcan, Claudio; Cukurel, Beni; Shashank, Judah

    2015-12-01

    The current work investigates the aero-thermal impact of standing sound waves, excited in a straight channel geometry, on turbulent, separating and reattaching flow over a fence. Effects of distinct frequency resonant forcing (ReH = 10,050 and f = 122 Hz) are quantified by wall static pressure measurements and detailed convective heat transfer distributions via liquid crystal thermometry. Acoustic boundary conditions are numerically predicted and the computed longitudinal resonance mode shapes are experimentally verified by surface microphone measurements. Findings indicate the presence of a resonant sound field to exert strong influence on local heat transfer downstream of the fence, whereas the boundary layer upstream of the obstacle remains notable unaffected. Upstream shift of the maximum heat transfer location and an earlier pressure recovery indicate a reduction in time averaged flow reattachment length of up to 37 %. Although the streamwise peak Nusselt increased by only 5 %, the heat transfer level in the vicinity of the unexcited reattachment zone was locally enhanced up to 25 %. Despite prominent impact of resonant forcing on the fence wake flow, the total pressure drop penalty remained invariant. Observations demonstrate the significant aero-thermal implications of shear layer excitation by standing sound waves superimposed on the channel flow field.

  3. Resonance Raman enhancement optimization in the visible range by selecting different excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Li, Yuee

    2015-09-01

    Resonance enhancement of Raman spectroscopy (RS) has been used to significantly improve the sensitivity and selectivity of detection for specific components in complicated environments. Resonance RS gives more insight into the biochemical structure and reactivity. In this field, selecting a proper excitation wavelength to achieve optimal resonance enhancement is vital for the study of an individual chemical/biological ingredient with a particular absorption characteristic. Raman spectra of three azo derivatives with absorption spectra in the visible range are studied under the same experimental conditions at 488, 532, and 633 nm excitations. Universal laws in the visible range have been concluded by analyzing resonance Raman (RR) spectra of samples. The long wavelength edge of the absorption spectrum is a better choice for intense enhancement and the integrity of a Raman signal. The obtained results are valuable for applying RR for the selective detection of biochemical constituents whose electronic transitions take place at energies corresponding to the visible spectra, which is much friendlier to biologial samples compared to ultraviolet.

  4. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  5. Acoustic resonance excitation of turbulent heat transfer and flow reattachment downstream of a fence

    NASA Astrophysics Data System (ADS)

    Selcan, Claudio; Cukurel, Beni; Shashank, Judah

    2016-10-01

    The current work investigates the aero-thermal impact of standing sound waves, excited in a straight channel geometry, on turbulent, separating and reattaching flow over a fence. Effects of distinct frequency resonant forcing (ReH = 10,050 and f = 122 Hz) are quantified by wall static pressure measurements and detailed convective heat transfer distributions via liquid crystal thermometry. Acoustic boundary conditions are numerically predicted and the computed longitudinal resonance mode shapes are experimentally verified by surface microphone measurements. Findings indicate the presence of a resonant sound field to exert strong influence on local heat transfer downstream of the fence, whereas the boundary layer upstream of the obstacle remains notable unaffected. Upstream shift of the maximum heat transfer location and an earlier pressure recovery indicate a reduction in time averaged flow reattachment length of up to 37 %. Although the streamwise peak Nusselt increased by only 5 %, the heat transfer level in the vicinity of the unexcited reattachment zone was locally enhanced up to 25 %. Despite prominent impact of resonant forcing on the fence wake flow, the total pressure drop penalty remained invariant. Observations demonstrate the significant aero-thermal implications of shear layer excitation by standing sound waves superimposed on the channel flow field.

  6. Dissociation of chloromethanes upon resonant σ{sup *} excitation studied by x-ray scattering

    SciTech Connect

    Bohinc, R.; Bučar, K.; Kavčič, M.; Žitnik, M.; Journel, L.; Guillemin, R.; Marchenko, T.; Simon, M.; Cao, W.

    2013-10-07

    The dissociation process following the Cl K-shell excitation to σ{sup *} resonances is studied by high resolution spectroscopy of resonant elastic and inelastic x-ray scattering on CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and CCl{sub 4} molecules. Calculations employing the transition potential and Delta-Kohn-Sham DFT approach are in good agreement with the measured total fluorescence yield and show the presence of a second quasidegenerate group of states with σ{sup *} character above the lowest σ{sup *} unoccupied molecular orbital for molecules with more than one Cl atom. A bandwidth narrowing and a nonlinear dispersion behavior is extracted from the Kα spectral maps for both σ{sup *} resonances. The fitted data indicate that the widths of the Franck-Condon distributions for the first and second σ{sup *} resonances are comparable for all the molecules under study. In addition, an asymmetric broadening of the emission peaks is observed for resonant elastic x-ray scattering with zero detuning on both σ{sup *} resonances. This is attributed to the fast dissociation, transferring about 0.15 of the scattering probability into higher vibrational modes.

  7. Interferometric control of plasmonic resonator based on polarization-sensitive excitation of surface plasmon polaritons.

    PubMed

    Lee, Kyookeun; Kim, Joonsoo; Yun, Hansik; Lee, Gun-Yeal; Lee, Byoungho

    2016-09-19

    A plasmonic resonator is proposed whose electromagnetic energy density can be tuned by the polarization state of the incident light. Counter-propagating surface plasmon polaritons, which are excited by polarization-sensitive subwavelength apertures, give tunability. Stored energy density in the resonator varies from the minimum to the maximum when the orientation angle of the incoming electric field rotates by 90 degrees. After optimizing a rectangular cavity and periodic gratings, the on/off ratio is calculated as 430 and measured as 1.55. Based on our scheme, interferometric control is executed simply by rotation of a polarizer. The proposed plasmonic resonator can be utilized in all-optically controlled active plasmonic devices, coherent network elements, particle trapping systems, and polarimeters. PMID:27661921

  8. Resonant excitation of Rayleigh waves in a narrow fluid channel clad between two metal plates

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nagaraj; Krokhin, Arkadii; Sánchez-Dehesa, José.; Garcia-Chocano, Victor M.

    2012-02-01

    We study extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two unidentical metal plates with Brass plate on one side of the channel and Aluminium plate on the other. The extraordinary absorption is observed at discrete resonant frequencies. From the elastic properties of the metal plates we derive a dispersion equation for coupled Rayleigh waves. Two different types of resonances, corresponding to different polarizations of the coupled waves, are studied for different channel widths and are experimentally confirmed. We also present the experimental confirmation of coupling through measurements of change in transmission minima with channel aperture. Experimental, theoretical, and numerical results are in a good agreement.

  9. Interferometric control of plasmonic resonator based on polarization-sensitive excitation of surface plasmon polaritons.

    PubMed

    Lee, Kyookeun; Kim, Joonsoo; Yun, Hansik; Lee, Gun-Yeal; Lee, Byoungho

    2016-09-19

    A plasmonic resonator is proposed whose electromagnetic energy density can be tuned by the polarization state of the incident light. Counter-propagating surface plasmon polaritons, which are excited by polarization-sensitive subwavelength apertures, give tunability. Stored energy density in the resonator varies from the minimum to the maximum when the orientation angle of the incoming electric field rotates by 90 degrees. After optimizing a rectangular cavity and periodic gratings, the on/off ratio is calculated as 430 and measured as 1.55. Based on our scheme, interferometric control is executed simply by rotation of a polarizer. The proposed plasmonic resonator can be utilized in all-optically controlled active plasmonic devices, coherent network elements, particle trapping systems, and polarimeters.

  10. Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings

    NASA Astrophysics Data System (ADS)

    Skigin, Diana C.; Depine, Ricardo A.

    2001-04-01

    We study surface plasmon polariton excitations and surface shape resonances in a lossy metallic grating with bivalued cavities. The modal formalism is used to solve the diffraction problem for the infinite grating and the homogeneous problem for a single cavity in a plane surface. Both polarization modes are considered. We provide curves of reflected efficiency versus wavelength as well as near-field plots. The resonances are identified as dips in the reflected efficiency, which imply significant power absorptions. Results for various depths of the cavities and for several angles of incidence are shown, where the different types of resonant behavior can be appreciated. Particular attention is paid to the changes introduced by the finite conductivity of the metal in relation to the results obtained for a perfect conductor.

  11. Ramsey interferometry for resonant Auger decay through core-excited states

    NASA Astrophysics Data System (ADS)

    Chatterjee, Souvik; Nakajima, Takashi

    2016-08-01

    We theoretically investigate the electron dynamics in Ne atoms involving core-excited states through the Ramsey scheme with a pair of time-delayed x-ray pulses. Irradiation of Ne atoms by the ˜1 femtosecond x-ray pulse simultaneously populates two core-excited states, and an identical but time-delayed x-ray pulse probes the dynamics of the core-excited electron wave packet which is subject to the resonant Auger decay. The energy-integrated total Auger electron yield and energy-resolved Auger electron spectra in the time domain show periodic structures due to the temporal evolution of the wave packet, from which we can obtain the counterpart in the frequency domain through the Fourier transformation. The Auger electron energy spectra in the time as well as frequency domains show the interference patterns between the two Auger electron wave packets released into the continuum from the superposition of two core-excited states at different times. These spectra are important to clarify the individual contribution of the different Auger decay channels upon core excitation by the x-ray pulse.

  12. Ultrafast internal conversion in ethylene. I. The excited state lifetime

    NASA Astrophysics Data System (ADS)

    Tao, H.; Allison, T. K.; Wright, T. W.; Stooke, A. M.; Khurmi, C.; van Tilborg, J.; Liu, Y.; Falcone, R. W.; Belkacem, A.; Martinez, T. J.

    2011-06-01

    Using a combined theoretical and experimental approach, we investigate the non-adiabatic dynamics of the prototypical ethylene (C2H4) molecule upon π → π* excitation. In this first part of a two part series, we focus on the lifetime of the excited electronic state. The femtosecond time-resolved photoelectron spectrum (TRPES) of ethylene is simulated based on our recent molecular dynamics simulation using the ab initio multiple spawning method with multi-state second order perturbation theory [H. Tao, B. G. Levine, and T. J. Martinez, J. Phys. Chem. A 113, 13656 (2009)], 10.1021/jp9063565. We find excellent agreement between the TRPES calculation and the photoion signal observed in a pump-probe experiment using femtosecond vacuum ultraviolet (hν = 7.7 eV) pulses for both pump and probe. These results explain the apparent discrepancy over the excited state lifetime between theory and experiment that has existed for ten years, with experiments [e.g., P. Farmanara, V. Stert, and W. Radloff, Chem. Phys. Lett. 288, 518 (1998), 10.1016/S0009-2614(98)00312-1 and K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008)], 10.1021/jp803548c reporting much shorter lifetimes than predicted by theory. Investigation of the TRPES indicates that the fast decay of the photoion yield originates from both energetic and electronic factors, with the energetic factor playing a larger role in shaping the signal.

  13. Resonant plasmon-axion excitations induced by charge density wave order in a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Redell, Matthew D.; Mukherjee, Shantanu; Lee, Wei-Cheng

    2016-06-01

    We investigate the charge excitations of a Weyl semimetal in the axionic charge density wave (axionic CDW) state. While it has been shown that the topological response (anomalous Hall conductivity) is protected against the CDW state, we find that the long-wavelength plasmon excitation is radically influenced by the dynamics of the CDW order parameter. In the normal state, we show that an undamped collective mode should exist at q ⃗≈Q⃗CDW if there is an attractive interaction favoring the formation of the CDW state. The undamped nature of this collective mode is attributed to a gaplike feature in the particle-hole continuum at q ⃗≈Q⃗CDW due to the chirality of the Weyl nodes, which is not seen in other materials with CDW instability. In the CDW state, the long-wavelength plasmon excitations become more dispersive due to the additional interband scattering not allowed in the normal state. Moreover, because the translational symmetry is spontaneously broken, umklapp scattering, the process conserving the total momentum only up to n Q⃗CDW , with n an integer and Q⃗CDW the ordering wave vector, emerges in the CDW state. We find that the plasmon excitation couples to the phonon mode of the CDW order via the umklapp scattering, leading to two branches of resonant collective modes observable in the density-density correlation function at q ⃗≈0 and q ⃗≈Q⃗CDW . Based on our analysis, we propose that measuring these resonant plasmon-axion excitations around q ⃗≈0 and q ⃗≈Q⃗CDW by momentum-resolved electron energy loss spectroscopy could serve as a reliable way to detect the axionic CDW state in Weyl semimetals.

  14. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-05-01

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S2(A'), S6(A'), and S7(A') excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S2(A'), S6(A'), and S7(A') excited states were very different. The conical intersection point CI(S2/S1) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S2(A') state: the radiative S2,min → S0 transition and the nonradiative S2 → S1 internal conversion via CI(S2/S1). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S1/T1) in the excited state decay dynamics of PITC is evaluated.

  15. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  16. Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials

    PubMed Central

    Fedotov, V. A.; Rogacheva, A. V.; Savinov, V.; Tsai, D. P.; Zheludev, N. I.

    2013-01-01

    Engaging strongly resonant interactions allows dramatic enhancement of functionalities of many electromagnetic devices. However, resonances can be dampened by Joule and radiation losses. While in many cases Joule losses may be minimized by the choice of constituting materials, controlling radiation losses is often a bigger problem. Recent solutions include the use of coupled radiant and sub-radiant modes yielding narrow asymmetric Fano resonances in a wide range of systems, from defect states in photonic crystals and optical waveguides with mesoscopic ring resonators to nanoscale plasmonic and metamaterial systems exhibiting interference effects akin to electromagnetically-induced transparency. Here we demonstrate theoretically and confirm experimentally a new mechanism of resonant electromagnetic transparency, which yields very narrow isolated symmetric Lorentzian transmission lines in toroidal metamaterials. It exploits the long sought non-trivial non-radiating charge-current excitation based on interfering electric and toroidal dipoles that was first proposed by Afanasiev and Stepanovsky in [J. Phys. A Math. Gen. 28, 4565 (1995)]. PMID:24132231

  17. A Study on the Excitation and Resonant Absorption of Coronal Loop Kink Oscillations

    NASA Astrophysics Data System (ADS)

    Yu, Dae Jung; Van Doorsselaere, Tom

    2016-11-01

    We study theoretically the issue of externally driven excitations of standing kink waves and their resonant absorption into torsionally polarized m = 1 waves in the coronal loops in pressureless plasmas. We use the ideal MHD equations, for which we develop an invariant imbedding method available in cylindrical geometry. We assume a sinusoidal density profile at the loop boundary where the density inside the loop is lower than the outside and vice versa. We present field distributions for these two cases and find that they have similar behaviors. We compare the results for the overdense loops, which describe the usual coronal loops, with the analytical solutions of Soler et al. obtained using the Frobenius method. Our results show some similarity for thin nonuniform layers but deviate a lot for thick nonuniform layers. For the first case, which describes the wave train propagation in funnels, we find that resonant absorption depends crucially on the thickness of the nonuniform boundary, loop length, and density contrast. The resonant absorption of the kink mode is dominant when the loop length is sufficiently larger compared with its radius (thin loop). The behavior of the far-field pattern of the scattered wave by the coronal loop is closely related to that of the resonant absorption. For the mode conversion phenomena in inhomogeneous plasmas, a certain universal behavior of the resonant absorption is found for the first time. We expect that the main feature may also apply to the overdense loops and discuss its relation to the damping rate.

  18. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  19. A smart pinless ejection mechanism using dual-resonance excitation Langevin piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jen; Fu, Kuo-Chieh; Wang, Chun-Chieh

    2016-01-01

    This study investigated a smart pinless ejection mechanism comprising two dual-resonance excitation Langevin piezoelectric transducers (DRELPTs) for keeping the injection parts intact and protecting their top and bottom surfaces from scarring during plastic injection molding. The dimensions of each DRELPT were determined using longitudinal vibration models, and an optimization method was used to set the frequency ratio of the first to the second longitudinal mode to 1:2. This concept enables the driving of DRELPT in its two longitudinal modes consistent with the ejection direction in resonant-type smooth impact drive mechanisms. During the ejection process, DRELPT provides an ejection force, which is applied on the sidewalls of the injection parts to protect their top and bottom surfaces from scarring. Considering individual differences in the resonance frequencies of DRELPTs, a resonance frequency tracking circuit based on a phase-locked loop was designed to keep DRELPT actuating in resonance. The ejection velocity of the injection part was estimated using the kinetic models derived from the dynamic behavior of the mold cavity and injection parameters. A characteristic number S was defined to evaluate the average velocity of the injection part during ejection. Proof-of-concept experimental results of the pinless ejection mechanism are presented. The ejection time, that is, the time from triggering the composite wave to the full departure of the injection part from the mold cavity, was 72 ms.

  20. Resonant excitation of black holes by massive bosonic fields and giant ringings

    NASA Astrophysics Data System (ADS)

    Décanini, Yves; Folacci, Antoine; Ould El Hadj, Mohamed

    2014-04-01

    We consider the massive scalar field, the Proca field, and the Fierz-Pauli field in the Schwarzschild spacetime and we focus more particularly on their long-lived quasinormal modes. We show numerically that the associated excitation factors have a strong resonant behavior and we confirm this result analytically from semiclassical considerations based on the properties of the unstable circular geodesics on which a massive particle can orbit the black hole. The conspiracy of (i) the long-lived behavior of the quasinormal modes and (ii) the resonant behavior of their excitation factors induces intrinsic giant ringings, i.e., ringings of a huge amplitude. Such ringings, which are moreover slowly decaying, are directly constructed from the retarded Green function. If we describe the source of the black hole perturbation by an initial value problem with Gaussian initial data, i.e., if we consider the excitation of the black hole from an extrinsic point of view, we can show that these extraordinary ringings are still present. This suggests that physically realistic sources of perturbations should generate giant and slowly decaying ringings and that their existence could be used to constrain ultralight bosonic field theory interacting with black holes.

  1. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation

    PubMed Central

    Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.

    2014-01-01

    High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188

  2. Shifted excitation resonance Raman difference spectroscopy using a microsystem light source at 488 nm

    NASA Astrophysics Data System (ADS)

    Maiwald, M.; Sowoidnich, K.; Schmidt, H.; Sumpf, B.; Erbert, G.; Kronfeldt, H.-D.

    2010-04-01

    Experimental results in shifted excitation resonance Raman difference spectroscopy (SERRDS) at 488 nm will be presented. A novel compact diode laser system was used as excitation light source. The device is based on a distributed feedback (DFB) diode laser as a pump light source and a nonlinear frequency doubling using a periodically poled lithium niobate (PPLN) waveguide crystal. All elements including micro-optics are fixed on a micro-optical bench with a footprint of 25 mm × 5 mm. An easy temperature management of the DFB laser and the crystal was used for wavelength tuning. The second harmonic generation (SHG) provides an additional suppression of the spontaneous emission. Raman spectra of polystyrene demonstrate that no laser bandpass filter is needed for the Raman experiments. Resonance-Raman spectra of the restricted food colorant Tartrazine (FD&C Yellow 5, E 102) in distilled water excited at 488 nm demonstrate the suitability of this light source for SERRDS. A limit of detection (LOD) of 0.4 μmol.l-1 of E102 enables SERRDS at 488 nm for trace detection in e.g. food safety control as an appropriate contactless spectroscopic technique.

  3. Resonantly excited precession motion of three-dimensional vortex core in magnetic nanospheres [corrected].

    PubMed

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Ha-Youn; Lee, Jae-Hyeok; Gaididei, Yuri; Kravchuk, Volodymyr P; Sheka, Denis D

    2015-01-01

    We found resonantly excited precession motions of a three-dimensional vortex core in soft magnetic nanospheres and controllable precession frequency with the sphere diameter 2R, as studied by micromagnetic numerical and analytical calculations. The precession angular frequency for an applied static field HDC is given as ωMV = γeffHDC, where γeff = γ〈mΓ〉 is the effective gyromagnetic ratio in collective vortex dynamics, with the gyromagnetic ratio γ and the average magnetization component 〈mΓ〉 of the ground-state vortex in the core direction. Fitting to the micromagnetic simulation data for 〈mΓ〉 yields a simple explicit form of 〈mΓ〉 ≈ (73.6 ± 3.4)(lex/2R)(2.20±0.14), where lex is the exchange length of a given material. This dynamic behavior might serve as a foundation for potential bio-applications of size-specific resonant excitation of magnetic vortex-state nanoparticles, for example, magnetic particle resonance imaging. PMID:26079895

  4. Resonantly excited precession motion of three-dimensional vortex core in magnetic nanospheres [corrected].

    PubMed

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Ha-Youn; Lee, Jae-Hyeok; Gaididei, Yuri; Kravchuk, Volodymyr P; Sheka, Denis D

    2015-06-16

    We found resonantly excited precession motions of a three-dimensional vortex core in soft magnetic nanospheres and controllable precession frequency with the sphere diameter 2R, as studied by micromagnetic numerical and analytical calculations. The precession angular frequency for an applied static field HDC is given as ωMV = γeffHDC, where γeff = γ〈mΓ〉 is the effective gyromagnetic ratio in collective vortex dynamics, with the gyromagnetic ratio γ and the average magnetization component 〈mΓ〉 of the ground-state vortex in the core direction. Fitting to the micromagnetic simulation data for 〈mΓ〉 yields a simple explicit form of 〈mΓ〉 ≈ (73.6 ± 3.4)(lex/2R)(2.20±0.14), where lex is the exchange length of a given material. This dynamic behavior might serve as a foundation for potential bio-applications of size-specific resonant excitation of magnetic vortex-state nanoparticles, for example, magnetic particle resonance imaging.

  5. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    SciTech Connect

    Ye, ChuanXiang; Zhao, Yi E-mail: liangwz@xmu.edu.cn; Liang, WanZhen E-mail: liangwz@xmu.edu.cn

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  6. Double resonance spectroscopy of several highly excited rovibronic states of H2

    NASA Astrophysics Data System (ADS)

    Ekey, R. C., Jr.; McCormack, E. F.

    2005-04-01

    The energies of several highly excited levels of the B1Σ+u, B'1Σ+u and C 1Πu states of molecular hydrogen, located several hundred wave numbers below the second dissociation limit, have been measured using two-colour, resonantly enhanced multi-photon ionization. The states were probed by excitation from the double-well E, F 1Σ+u state, populated by two-photon excitation from the ground state. Ion production was detected as a function of wavelength using a time-of-flight mass spectrometer. Non-adiabatic couplings extensively mix the configurations of the B 1Σ+u, B'1Σ+u and C 1Πu states leading to perturbations that are predicted to vary considerably as a function of rotational and vibrational excitation. Term energies are compared to previous measurements and to ab initio theoretical calculations which include non-adiabatic effects. Several observed discrepancies with the calculations and previously reported energies are discussed. Term energies for two rovibronic levels are reported for the first time.

  7. Infrared/ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states

    SciTech Connect

    Weiler, M.; Bartl, K.; Gerhards, M.

    2012-03-21

    Molecular beam investigations in combination with IR/UV spectroscopy offer the possibility to obtain structural information on isolated molecules and clusters. One of the demanding tasks is the discrimination of different isomers, e.g., by the use of isomer specific UV excitations. If this discrimination fails due to overlaying UV spectra of different isomers, IR/IR methods offer another possibility. Here, we present a new IR/UV/IR/UV quadruple resonance technique to distinguish between different isomers especially in the electronically excited state. Due to the IR spectra, structural changes and photochemical pathways in excited states can be assigned and identified. The method is applied to the dihydrated cluster of 3-hydroxyflavone which has been investigated as photochemically relevant system and proton wire model in the S{sub 1} state. By applying the new IR/UV/IR/UV technique, we are able to show experimentally that both in the electronic ground (S{sub 0}) and the electronically excited state (S{sub 1}) two isomers have to be assigned.

  8. Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance

    PubMed Central

    Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong

    2013-01-01

    We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023

  9. Evidence of strong dynamic core excitation in 19C resonant break-up

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; de Diego, R.; Crespo, R.; Moro, A. M.; Arias, J. M.; Johnson, R. C.

    2016-08-01

    The resonant breakup of 19C on protons measured at RIKEN [Y. Satou et al., Phys. Lett. B 660, 320 (2008), 10.1016/j.physletb.2008.01.022] is analyzed in terms of a valence-core model for 19C that includes possible core excitations. The analysis of the angular distribution of a prominent peak appearing in the relative-energy spectrum could be well described with this model and is consistent with the previous assignment of 5 /2+ for this state. Inclusion of core-excitation effects are found to be essential to giving the correct magnitude of the cross section for this state. By contrast, the calculation assuming an inert 18C core is found to largely underestimate the data.

  10. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    SciTech Connect

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  11. Far-infrared laser magnetic resonance of vibrationally excited CD2

    NASA Technical Reports Server (NTRS)

    Evenson, K. M.; Sears, T. J.; Mckellar, A. R. W.

    1984-01-01

    The detection of 13 rotational transitions in the first excited bending state (010) of CD2 using the technique of far-infrared laser magnetic resonance spectroscopy is reported. Molecular parameters for this state are determined from these new data together with existing infrared observations of the v(2) band. Additional information on the ground vibrational state (000) is also provided by the observation of a new rotational transition, and this is combined with existing data to provide a refined set of molecular parameters for the CD2 ground state. One spectrum has been observed that is assigned as a rotational transition within the first excited symmetric stretching state (100) of CD2. These data will be of use in refining the structure and the potential function of the methylene radical.

  12. Resonant excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves

    SciTech Connect

    Mazur, V. A.

    2011-05-15

    The effect of the magnetospheric MHD cavity on the excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves incident from the solar wind is investigated theoretically by using a one-dimensional nonuniform model of the medium. It is shown that most of the energy of stochastic waves is reflected from the magnetopause and that the only waves that penetrate into the magnetosphere are those with frequencies in narrow spectral ranges near the eigenfrequencies of the cavity. These waves lead to steadystate excitation of the eigenmodes of the cavity, the energy of which is determined by the spectral density of the energy flux of the incident waves at the corresponding eigenfrequencies. The energy of the eigenmodes penetrates through the opacity barrier in the vicinity of the Alfven resonance points (each corresponding to a particular mode), where the perturbation amplitude is sharply amplified, so the total energy localized close to the Alfven resonance point is much higher than the total energy of the corresponding eigenmode. In the vicinities, the perturbation energy is dissipated by the finite conductivity of the ionosphere, the dissipation power being equal to the energy flux of the incident waves that penetrates into the magnetosphere. The case of unsteady waves is analyzed by considering a wave pulse as an example. It is shown that most of the energy of the wave pulse is reflected from the magnetopause. The portion of the incident perturbation that penetrates into the magnetosphere leads to unsteady excitation of the eigenmodes of the magnetospheric cavity, which are then slowly damped because part of the energy of the cavity is emitted through the magnetopause back to the solar wind while the other part penetrates into the vicinities of the Alfven resonance points. In the vicinities, the perturbation is an Alfven wave standing between magnetically conjugate ionospheres and its energy is dissipated by the finite conductivity of the ionosphere at

  13. Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jeong, Bongwon; Pettit, Chris; Dharmasena, Sajith; Keum, Hohyun; Lee, Joohyung; Kim, Jungkyu; Kim, Seok; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.; Cho, Hanna

    2016-03-01

    During dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip–sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio. Here, we introduce a new design concept for multi-harmonic AFM, exploiting intentional nonlinear internal resonance for the enhancement of higher harmonics. The nonlinear internal resonance, triggered by the non-smooth tip–sample dynamic interactions, results in nonlinear energy transfers from the directly excited fundamental bending mode to the higher-frequency mode and, hence, enhancement of the higher harmonic of the measured response. It is verified through detailed theoretical and experimental study that this AFM design can robustly incorporate the required internal resonance and enable high-frequency AFM measurements. Measurements on an inhomogeneous polymer specimen demonstrate the efficacy of the proposed design, namely that the higher harmonic of the measured response is capable of enhanced simultaneous topography imaging and compositional mapping, exhibiting less crosstalk with an abrupt height change.

  14. Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface

    SciTech Connect

    Auth, C.; Mertens, A.; Winter, H.; Borisov, A.G.; Garcia de Abajo, F.J.

    1997-12-01

    We have scattered protons and hydrogen atoms with energies of some keV from a LiF(001) surface under a grazing angle of incidence. From the intensity of Lyman-{alpha} radiation (transition from n=2 to n=1, {lambda}=121.6 nm ) as a function of projectile energy for different azimuthal orientations of the crystal surface, we find clear evidence for a resonant coherent excitation of n=2 states of hydrogen atoms in the oscillating electric field in front of the insulator surface. {copyright} {ital 1997} {ital The American Physical Society}

  15. Excitation of the copper resonance lines by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Flynn, Connor; Wei, Zuyi; Stumpf, Bernhard

    1993-08-01

    The optical-excitation-function method has been used in a crossed-atom and electron-beam arrangement to measure the electron-impact cross section of the copper 4 2P-->4 2S resonance lines (324.8, 327.4 nm) from threshold (3.8 eV) to 8 eV. Relative experimental cross-section data are normalized at an energy of 1000 eV with respect to first Born theory that includes the 4 2S-->4 2P resonance transition with an oscillator strength of 0.652 and cascading from the (3d10nd)2D states with n=4,...,10. The measured Cu 4 2S-->4 2P cross section is compared with recent theoretical calculations in close-coupling approximation. Very good agreement is found with the ten-state close-coupling theory of Scheibner and Hazi (private communication).

  16. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry.

    PubMed

    Jiang, Naibo; Halls, Benjamin R; Stauffer, Hans U; Danehy, Paul M; Gord, James R; Roy, Sukesh

    2016-05-15

    Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET), a nonseeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and nonreactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25 nm 100 fs light. STARFLEET greatly reduces the per-pulse energy required (30 μJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and nonreactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities, and further demonstrate the significantly less intrusive nature of STARFLEET. PMID:27176968

  17. Excitation of plasmonic waves in graphene by guided-mode resonances.

    PubMed

    Gao, Weilu; Shu, Jie; Qiu, Ciyuan; Xu, Qianfan

    2012-09-25

    We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations. PMID:22862147

  18. Simplest photonuclear reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances: Semimicroscopic description

    SciTech Connect

    Tulupov, B. A.; Urin, M. H.

    2012-09-15

    A semimicroscopic approach based on the continuum version of the random-phase approximation (CRPA) and on a semiphenomenological inclusion of the fragmentation effect is applied to describing cross sections for photoabsorption and direct plus semidirect and inverse reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances. In addition to the spinless part of the Landau-Migdal interaction and a partly self-consistent phenomenological mean field of the nucleus, that version of the approach which is used here takes into account isovector separable velocity-dependent forces, as well as the effect of the fragmentation shift of the giant-resonance energy. The results obtained by calculating various features of the aforementioned cross sections for a number of magic and semimagic medium-mass nuclei are compared with respective experimental data.

  19. Biological sensor based on a lateral electric field-excited resonator.

    PubMed

    Zaitsev, Boris D; Kuznetsova, Iren E; Shikhabudinov, Alexander M; Ignatov, Oleg V; Guliy, Olga I

    2012-05-01

    This paper describes a biological sensor based on a lateral electric field-excited resonator using an X-cut lithium niobate plate. Its potential was shown through the example of biological interaction between bacterial cells and specific bacteriophages. The detection was based on the analysis of the measured real and imaginary parts of electrical impedance for a resonator loaded by the biological suspension under study. It has been shown that the sensor is sensitive to specific interactions between bacterial cells and specific bacteriophages in a pure state as well as in the presence of extraneous microflora. The degree of electrical impedance variation resulting from the biological interaction depends on the numbers of phage particles and bacteria cells. The sensor may be used not only for the qualitative analysis of bacteria but also for their quantitative detection.

  20. Resonance Raman Intensities Demonstrate that C5 Substituents Affect the Initial Excited-State Structural Dynamics of Uracil More than C6 Substituents.

    PubMed

    Teimoory, Faranak; Loppnow, Glen R

    2016-05-01

    Resonance Raman derived initial excited-state structural dynamics provide insight into the photochemical mechanisms of pyrimidine nucleobases, in which the photochemistry appears to be dictated by the C5 and C6 substituents. The absorption and resonance Raman spectra and excitation profiles of 5,6-dideuterouracil were measured to further test this photochemical dependence on the C5 and C6 substituents. The resulting set of excited-state reorganization energies of the observed internal coordinates were calculated and compared to those of other 5- and 6-substituted uracils. The results show that the initial excited-state dynamics along the C5C6 stretch responds to changes in mass at C5 and C6 in the same manner but that the in-plane bends at C5 and C6 are more sensitive to substituents at the C5 position than at the C6 position. In addition, the presence of two deuterium substituents at C5 and C6 decreases the initial excited-state structural dynamics along these in-plane bends, in contrast to what is observed in the presence of two CH3 groups on C5 and C6. The results are discussed in the context of DNA nucleobase photochemistry.

  1. Resonant generation of internal waves on a model continental slope.

    PubMed

    Zhang, H P; King, B; Swinney, Harry L

    2008-06-20

    We study internal wave generation in a laboratory model of oscillating tidal flow on a continental margin. Waves are found to be generated only in a near-critical region where the slope of the bottom topography matches that of internal waves. Fluid motion with a velocity an order of magnitude larger than that of the forcing occurs within a thin boundary layer above the bottom surface. The resonant wave is unstable because of strong shear; Kelvin-Helmholtz billows precede wave breaking. This work provides a new explanation for the intense boundary flows on continental slopes. PMID:18643589

  2. Resonant generation of internal waves on a model continental slope.

    PubMed

    Zhang, H P; King, B; Swinney, Harry L

    2008-06-20

    We study internal wave generation in a laboratory model of oscillating tidal flow on a continental margin. Waves are found to be generated only in a near-critical region where the slope of the bottom topography matches that of internal waves. Fluid motion with a velocity an order of magnitude larger than that of the forcing occurs within a thin boundary layer above the bottom surface. The resonant wave is unstable because of strong shear; Kelvin-Helmholtz billows precede wave breaking. This work provides a new explanation for the intense boundary flows on continental slopes.

  3. Nonlinear standing wave excitation by series resonance-enhanced harmonics in low pressure capacitive discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.; Lichtenberg, A. J.; Kawamura, Emi; Marakhtanov, A. M.

    2015-09-01

    It is well known that standing waves having radially center-high rf voltage profiles exist in high frequency capacitive discharges. It is also known that in radially uniform discharges, the capacitive sheath nonlinearities excite strong nonlinear series resonance harmonics that enhance the electron power deposition. In this work, we consider the coupling of the series resonance-enhanced harmonics to the standing waves. A one-dimensional, asymmetric radial transmission line model is developed incorporating the wave and nonlinear sheath physics and a self-consistent dc potential. The resulting coupled pde equation set is solved numerically to determine the discharge voltages and currents. A 10 mT argon base case is chosen with plasma density 2 ×1016 m-3, gap width 2 cm and conducting electrode radius 15 cm, driven by a high frequency 500 V source with source resistance 0.5 ohms. We find that nearby resonances lead to an enhanced ratio of 4.5 of the electron power per unit area on axis, compared to the average. The radial dependence of electron power with frequency shows significant variations, with the central enhancement and sharpness of the spatial resonances depending in a complicated way on the harmonic structure. Work supported by DOE Fusion Energy Science Contract DE-SC000193 and by a gift from the Lam Research Corporation.

  4. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-06-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed.

  5. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  6. Excitation of internal kink modes by trapped energetic beam ions

    SciTech Connect

    Chen, L.; White, R.B.; Rosenbluth, M.N.

    1983-10-01

    Energetic trapped particles are shown to have a destabilizing effect on the internal kink mode in tokamaks. The plasma pressure threshold for the mode is lowered by the particles. The growth rate is near the ideal magnetohydrodynamic value, but the frequency is comparable to the trapped particle precission frequency. A model for the instability cycle gives stability properties, associated particle losses, and neutron emissivity consistent with the fishbone events observed in PDX.

  7. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks.

    PubMed

    Mangussi, Franco; Zanette, Damián H

    2016-01-01

    In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined.

  8. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks

    PubMed Central

    Mangussi, Franco

    2016-01-01

    In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined. PMID:27648829

  9. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks.

    PubMed

    Mangussi, Franco; Zanette, Damián H

    2016-01-01

    In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined. PMID:27648829

  10. Isoscalar monopole and dipole excitations of cluster states and giant resonances in 12C

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-05-01

    The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the shifted antisymmetrized molecular dynamics (AMD) plus 3 α -cluster generator coordinate method (GCM). The small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude cluster modes are incorporated by superposing 3 α -cluster wave functions in the GCM. The coupling of the excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters, and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(02+; 7.65 MeV) and 12C(03+; 10.3 MeV) measured by (e ,e') ,(α ,α') , and (6Li,6Li' ) scatterings. In the calculated low-energy ISD strengths, two 1- states (the 11- and 12- states) with the significant strengths are obtained over E =10 -15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for new cluster states such as the 12C(12-) obtained in the present calculation.

  11. Homodyne-detected ferromagnetic resonance of in-plane magnetized nanocontacts: Composite spin-wave resonances and their excitation mechanism

    NASA Astrophysics Data System (ADS)

    Fazlali, Masoumeh; Dvornik, Mykola; Iacocca, Ezio; Dürrenfeld, Philipp; Haidar, Mohammad; Åkerman, Johan; Dumas, Randy K.

    2016-04-01

    This work provides a detailed investigation of the measured in-plane field-swept homodyne-detected ferromagnetic resonance (FMR) spectra of an extended Co/Cu/NiFe pseudo-spin-valve stack using a nanocontact (NC) geometry. The magnetodynamics are generated by a pulse-modulated microwave current, and the resulting rectified dc mixing voltage, which appears across the NC at resonance, is detected using a lock-in amplifier. Most notably, we find that the measured spectra of the NiFe layer are composite in nature and highly asymmetric, consistent with the broadband excitation of multiple modes. Additionally, the data must be fit with two Lorentzian functions in order to extract a reasonable value for the Gilbert damping of the NiFe. Aided by micromagnetic simulations, we conclude that (i) for in-plane fields the rf Oersted field in the vicinity of the NC plays the dominant role in generating the observed spectra, (ii) in addition to the FMR mode, exchange-dominated spin waves are also generated, and (iii) the NC diameter sets the mean wave vector of the exchange-dominated spin wave, in good agreement with the dispersion relation.

  12. AlN-based piezoelectric bimorph microgenerator utilizing low-level non-resonant excitation

    NASA Astrophysics Data System (ADS)

    Hampl, Stefan; Cimalla, Volker; Polster, Tobias; Hoffmann, Martin

    2011-06-01

    This work aims for utilizing human ocular motion for the self-sufficient power supply of a minimally invasive implantable monitoring system for intraocular pressure (IOP). With a proven piezoelectric functionality (d33>5 pm/V), nanocrystalline thin films of aluminum nitride (AlN) provide a good capability for micromechanical energy harvesting (EH) in medical applications. Many d31-mode microcantilever architectures are poorly suited for human-induced EH: Resonant mass-spring-damper systems are tested under high, narrow-band excitation frequencies. However, human motions, e.g. vibrations of eyeballs are marked by their low frequency, unpredictable, mainly aperiodic and time-varying signature. Different vibration types and directions are 3-dimensionally superimposed. Saccadic eye movements are favorable for inertial microgenerators because of their high dynamic loading (ω<=1000°/s). Our generator concept (symmetric active/active-parallel-bimorph cantilever) enables a high structural compliance by maximizing the piezoactive volume at very low cantilever thicknesses (<1 μm). An increased length and seismic mass enable an effective excitation by low-level aperiodic vibrations such as saccadic acceleration impulses. Analytic calculations and FEA-simulations investigate the potential distribution and transient response of different bimorph structures (length 200- 1000 μm, width 20-200 μm) on broadband vibrations. First released monomorph and bimorph structures show very low resonant frequencies and an adequate robustness.

  13. Excitation of solitons by an external resonant wave with a slowly varying phase velocity

    SciTech Connect

    Aranson, I.; Meerson, B. . Racah Inst. of Physics); Tajima, Toshiki )

    1992-02-01

    A novel mechanism is proposed for the excitation of solitons in nonlinear dispersive media. The mechanism employs an external pumping wave with a varying phase velocity, which provides a continuous resonant excitation of a nonlinear wave in the medium. Two different schemes of a continuous resonant growth (continuous phase-locking) of the induced nonlinear wave are suggested. The first of them requires a definite time dependence of the pumping wave phase velocity and is relatively sensitive to the initial wave phase. The second employs the dynamic autoresonance effect and is insensitive to the exact time dependence of the pumping wave phase velocity. It is demonstrated analytically and numerically, for a particular example of a driven Korteweg-de Vries (KdV) equation with periodic boundary conditions, that as the nonlinear wave grows, it transforms into a soliton, which continues growing and accelerating adiabatically. A fully nonlinear perturbation theory is developed for the driven KdV equation to follow the growing wave into the strongly nonlinear regime and describe the soliton formation.

  14. Interatomic Coulombic decay following resonant core excitation of Ar in argon dimer

    SciTech Connect

    Miteva, T.; Chiang, Y.-C.; Kuleff, A. I.; Gokhberg, K. Cederbaum, L. S.; Kolorenč, P.

    2014-08-14

    A scheme utilizing excitation of core electrons followed by the resonant-Auger – interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p{sub 3/2} → 4s, 2p{sub 1/2} → 4s, and 2p{sub 3/2} → 3d core excitations of Ar in Ar{sub 2}. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.

  15. Resonant indirect excitation of Gd{sup 3+} in AlN thin films

    SciTech Connect

    Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro; Kita, Takashi; Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro; Ishihara, Tsuguo; Izumi, Hirokazu

    2014-05-07

    We studied the efficient indirect excitation of Gd{sup 3+} ions in AlN thin films. C-axis oriented polycrystalline thin films of Al{sub 0.997}Gd{sub 0.003}N/AlN were grown on fused silica substrates using a reactive radio-frequency magnetron sputtering technique. The intra-orbital electron transition in Gd{sup 3+} showed a narrow luminescence line at 3.9 eV. The photoluminescence (PL) excitation (PLE) spectrum exhibited a peak originating from efficient indirect energy transfer from the band edge of AlN to Gd{sup 3+} ions. The PLE peak shifted and the PL intensity showed a dramatic change when the AlN band gap was varied by changing the temperature. Energy scanning performed by changing the band-gap energy of AlN with temperature revealed several resonant channels of energy transfer into the higher excited states of Gd{sup 3+}.

  16. Dissociation dynamics of simple chlorine containing molecules upon resonant Cl K-σ{sup *} excitation

    SciTech Connect

    Bohinc, R. Bučar, K.; Kavčič, M.; Žitnik, M.

    2014-04-28

    A theoretical analysis of dissociation dynamics of chlorine K-σ{sup *} core-excited molecules is performed. The potential energy surfaces of HCl, Cl{sub 2}, CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, and CF{sub 3}Cl are calculated along the normal vibrational modes of the ground electronic state yielding the widths of the corresponding Franck-Condon distributions. An insight into the potential energy surface of 1st σ{sup *} resonances shows that the initial dissociation dynamics of chloro(fluoro)methanes mainly involves the distancing of the carbon and the core-excited chlorine atom and is practically independent of other atoms in the molecule, which is in agreement with the recent experimental findings. The carbon atom pulls out the remaining three atoms shortly after piercing the three-atom plane resulting in a high vibrationally excited state of the fragment if the reconnection time is smaller than the lifetime of the L shell.

  17. A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II

    SciTech Connect

    Bane, Karl

    2015-09-23

    The Linac Coherent Light Source (LCLS) at SLAC, the world’s first hard X-ray FEL, is being upgraded to the LCLS-II. The major new feature will be the installation of 35 cryomodules (CMs) of TESLA-type, superconducting accelerating structures, to allow for high rep-rate operation. It is envisioned that eventually the LCLS-II will be able to deliver 300 pC, 1 kA pulses of beam at a rate of 1 MHz. At a cavity temperature of 2 K, any heat generated (even on the level of a few watts) is expensive to remove. In the last linac of LCLS-II, L3—where the peak current is highest—the power radiated by the bunches in the CMs is estimated at 13.8 W (charge 300 pC option, rep rate 1 MHz). But this calculation ignores resonances that can be excited between the bunch frequency and higher order mode (HOM) frequencies in the CMs, which in principle can greatly increase this number. In the present work we calculate the multi-bunch wakefields excited in a CM of LCLS-II, in order to estimate the probability of the beam losing a given amount of power. Along theway, we find some interesting properties of the resonant interaction. In detail, we begin this report by finding the wakes experienced by bunches far back in the bunch train. Then we present a complementary approach that calculates the field amplitude excited in steady-state by a train of bunches, and show that the two approaches agree. Next we obtain the properties of the 450 longitudinal HOMs that cover the range 3–5 GHz in the CMs of LCLS-II, where we include the effects of the inter-CM ceramic dampers. At the end we apply our method using these modes.

  18. Coherent population trapping resonances in the presence of the frequency-phase noises of an exciting field

    SciTech Connect

    Sokolov, A V; Matveev, A N; Samokotin, A Yu; Akimov, A V; Sorokin, Vadim N; Kolachevsky, Nikolai N

    2009-05-31

    The influence of noises of the frequency and phase difference of an exciting bichromatic field on the parameters of coherent population trapping resonances is studied experimentally. When the phase difference fluctuates within a limited interval near its average value with a short correlation time, the resonance contrast decreases proportionally to exp({phi}{sup 2}{sub rms}), where {phi}{sup 2}{sub rms} is the phase dispersion (in rad{sup 2}). In this case, the spectral width of the resonance remains constant. In another limiting case, when the phase noise has a long correlation time, the resonance contour broadens, the area under the contour being invariable. Experiments were performed with the Zeeman sublevels of the ground state of {sup 87}Rb by exciting rubidium vapour in a glass cell at the resonance wavelength of 795 nm. (interaction of laser radiation with matter)

  19. Nonlinear standing wave excitation by series resonance-enhanced harmonics in low pressure capacitive discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.; Lichtenberg, A. J.; Kawamura, E.; Marakhtanov, A. M.

    2015-10-01

    It is well-known that standing waves having radially center-high rf voltage profiles exist in high frequency capacitive discharges. It is also known that in radially uniform discharges, the capacitive sheath nonlinearities excite strong nonlinear series resonance harmonics that enhance the electron power deposition. In this work, we consider the coupling of the series resonance-enhanced harmonics to the standing waves. A one-dimensional, asymmetric radial transmission line model is developed incorporating the wave and nonlinear sheath physics and a self-consistent dc potential, for both conducting and insulating electrode surfaces. The resulting coupled pde equation set is solved numerically to determine the discharge voltages and currents. A 10 mTorr argon plasma is chosen with density 2× {{10}16} m-3, gap width 2 cm and conducting electrode radius 15 cm, driven by a 500 V rf source with resistance 0.5 Ω . We examine a set of frequencies from near 30 MHz up to frequencies more than three times as high. For most frequencies, no harmonics correspond exactly with the series or spatial resonances, which is the generic situation. Nevertheless, nearby resonances lead to a significantly enhanced ratio of the electron power per unit area on axis, compared to the average. Nearly similar results are found for insulating electrodes. Strong effects are seen for varying source resistance: high (50 Ω ) resistance damps out most of the harmonic activity, while zero source resistance leads to a non-steady discharge with bias voltage relaxation oscillations. Stronger harmonic effects are seen for an increased radius of 30 cm, as lower harmonics become spatially resonant at lower frequencies. The radial dependence of electron power with frequency showed significant variations, with the central enhancement and sharpness of the spatial resonances depending in a complicated way on the amplitudes of the nearby series resonance current harmonics and the phase relations among

  20. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    SciTech Connect

    Frederick, B.deB. |

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of {sup 23}Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na{sup +} ions in biological tissues. However, due to NMR relaxation properties of {sup 23}Na in vivo, a large fraction of Na{sup +} is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T{sub 2}. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo {sup 23}Na T{sub 2} values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic {sup 1}H and {sup 23}Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25{mu}s, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  1. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation

    PubMed Central

    Huang, Jingyu; Wang, Wei; Murphy, Catherine J.; Cahill, David G.

    2014-01-01

    Plasmonic nanostructures are of great current interest as chemical sensors, in vivo imaging agents, and for photothermal therapeutics. We study continuous-wave (cw) and pulsed-laser excitation of aqueous suspensions of Au nanorods as a model system for secondary light emission from plasmonic nanostructures. Resonant secondary emission contributes significantly to the background commonly observed in surface-enhanced Raman scattering and to the light emission generated by pulsed-laser excitation of metallic nanostructures that is often attributed to two-photon luminescence. Spectra collected using cw laser excitation at 488 nm show an enhancement of the broad spectrum of emission at the electromagnetic plasmon resonance of the nanorods. The intensity of anti-Stokes emission collected using cw laser excitation at 785 nm is described by a 300 K thermal distribution of excitations. Excitation by subpicosecond laser pulses at 785 nm broadens and increases the intensity of the anti-Stokes emission in a manner that is consistent with electronic Raman scattering by a high-temperature distribution of electronic excitations predicted by a two-temperature model. Broadening of the pulse duration using an etalon reduces the intensity of anti-Stokes emission in quantitative agreement with the model. Experiments using a pair of subpicosecond optical pulses separated by a variable delay show that the timescale of resonant secondary emission is comparable to the timescale for equilibration of electrons and phonons. PMID:24395798

  2. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes.

    PubMed

    Kirkendall, Christopher R; Kwon, Jae W

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  3. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes.

    PubMed

    Kirkendall, Christopher R; Kwon, Jae W

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  4. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    NASA Astrophysics Data System (ADS)

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-03-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  5. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    PubMed Central

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  6. Dielectronic recombination and resonant transfer excitation processes for helium-like krypton

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Li; Qu, Yi-Zhi; Zhang, Song-Bin; Zhang, Yu

    2012-10-01

    The relativistic configuration interaction method is employed to calculate the dielectronic recombination (DR) cross sections of helium-like krypton via the 1s2lnl' (n = 2, 3, ..., 15) resonances. Then, the resonant transfer excitation (RTE) processes of Kr34+ colliding with H, He, H2, and CHx (x = 0-4) targets are investigated under the impulse approximation. The needed Compton profiles of targets are obtained from the Hartree—Fock wave functions. The RTE cross sections are strongly dependent on DR resonant energies and strengths, and the electron momentum distributions of the target. For H2 and H targets, the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l' to 1.88 for other resonances, which demonstrates the weak molecular effects on the Compton profiles of H2. For CHx (x = 0-4) targets, the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons; as the number of hydrogen increases in CHx, the RTE cross section almost increases by the same value, displaying the strong separate atom character for the hydrogen. However, further comparison of the individual orbital contributions of C(2p, 2s, 1s) and CH4(1t2, 2a1, 1a1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%, 19.9%, and 0.2% between 2p-1t2, 2s-2a1, and 1s-1a1 orbitals, respectively.

  7. Resonance raman spectroscopic study of alumina-supported vanadium oxide catalysts with 220 and 287 nm excitation.

    SciTech Connect

    Kim, H. S.; Stair, P. C.; Chemical Sciences and Engineering Division; Northwestern Univ.

    2009-01-01

    We present detailed resonance Raman spectroscopic results excited at 220 and 287 nm for alumina-supported VO{sub x} catalysts. The anharmonic constant, harmonic wavenumber, anharmonic force constant, bond dissociation energy, and bond length change in the excited state for double bonded V{double_bond}O and single bonded V-O were obtained from fundamental and overtone frequencies. Totally symmetric and nontotally symmetric modes could be discerned and assigned on the basis of the overtone and combination progressions found in the resonance Raman spectra. Selective resonance enhancement of two different vibrational modes with two different excitation wavelengths was observed. This allowed us to establish a linear relationship between charge transfer energy and VO bond length and, consequently, to assign the higher-energy charge transfer band centered around 210?250 nm in the UV?vis spectra to the V{double_bond}O transition.

  8. Search for resonant electron transfer and double excitation in Kr{sup 34+} + H{sub 2} collisions

    SciTech Connect

    Zaharakis, K.E.; Haar, R.R.; Tanis, J.A.; Clark, M.W.; Plano, V.L.

    1992-12-31

    Resonant electron transfer and double excitation (RME) is a correlated electron process which is expected to occur in an ion-atom collision when electron capture is accompanied by the simultaneous excitation of two inner-shell electrons. RT2 is similar to resonant transfer excitation (RTE) in which only a single electron is excited. RT2E was investigated experimentally for 38--42 MeV/u Kr{sup 34} + H{sub 2} collisions by observing x-ray emission associated with single-electron capture. No events associated with Kr K x rays (near 13 keV were observed; however, events do occur at about twice (> 22 keV) the Kr K x-ray energy. Several possible sources of these latter x rays have been considered.

  9. Vibrational higher-order resonances in an overdamped bistable system with biharmonic excitation

    NASA Astrophysics Data System (ADS)

    Chizhevsky, V. N.

    2014-10-01

    Experimental evidence of vibrational higher-order resonances in a bistable vertical-cavity surface-emitting laser driven by two harmonic signals with very different frequencies is reported. The phenomenon shows up in a parameter space (the dc current, the amplitude of the high-frequency signal) as well-defined structures with multiple local maxima at higher harmonics of the low-frequency signal. Such structures appear due to a strong suppression of higher harmonics for certain values of the high-frequency amplitude and the dc current. Complexity of the structures and the total number of the local maxima depend on the harmonic order k . The behavior of nonlinear distortion factor is also studied. The experimental results are in a good agreement with the numerical results which were obtained in the model of the bistable overdamped oscillator with biharmonic excitation.

  10. Influence of oxygen on the resonant photoacoustic signal from methane excited at the ν 3 mode

    NASA Astrophysics Data System (ADS)

    Barreiro, N.; Vallespi, A.; Santiago, G.; Slezak, V.; Peuriot, A.

    2011-09-01

    This paper shows that, when samples of methane in dry air are irradiated with an OPO tuned at the ν 3 mode at 3019 cm-1, the photoacoustic signal is lower than in mixtures in pure nitrogen. In order to explain this change, we developed a rate-equation-based model which describes the methane excitation and relaxation to heat by collisions with the buffer. In particular, we reduced the problem to a system of six energy levels taking into account the fast energy exchange between methane and oxygen resonant states and the slow relaxation rate of oxygen. Thus, the photoacoustic signal is calculated for methane-nitrogen and methane-air systems and a very good agreement is found with the experimental results.

  11. Autoionization Resonances in Orientation and Alignment Parameters for Excited Ions after Electron Impact Ionization.

    NASA Astrophysics Data System (ADS)

    Balashov, Vselovod; Bartschat, Klaus; Marchalant, Pascale

    1997-04-01

    We have extended previous work for alignment and orientation parameters in simultaneous ionization-excitation [1] to include the effect of autoionizing resonances. The expected effect is similar to that suggested for photoionization via autoionizing states [2]. Special emphasis is given to the process e + He --> e_scattered+e_ejected +He^+(2p), followed by He^+(2p) --> He^+(1s) + γ where the scattered electron and the emitted photon are detected in coincidence. 1. R. Schwienhorst, A. Raeker, K. Bartschat and K. Blum (1996), 1. J. Phys. B 29, 2305 2. V.V. Balashov, N.M. Kabachnik and V.S. Senashenko (1983), 2. Book of Abstracts ICPEAC XIII, 23 permanent address: Moscow State University

  12. Computer Simulations of Resonant Coherent Excitation of Heavy Hydrogen-Like Ions Under Planar Channeling

    NASA Astrophysics Data System (ADS)

    Babaev, A. A.; Pivovarov, Yu L.

    2010-04-01

    Resonant coherent excitation (RCE) of relativistic hydrogen-like ions is investigated by computer simulations methods. The suggested theoretical model is applied to the simulations of recent experiments on RCE of 390 MeV/u Ar17+ ions under (220) planar channeling in a Si crystal performed by T.Azuma et al at HIMAC (Tokyo). Theoretical results are in a good agreement with these experimental data and clearly show the appearance of the doublet structure of RCE peaks. The simulations are also extended to greater ion energies in order to predict the new RCE features at the future accelerator facility FAIR OSI and as an example, RCE of II GeV/u U91+ ions is considered in detail.

  13. Validation of PEP-II Resonantly Excited Turn-by-Turn BPM Data

    SciTech Connect

    Yan, Yiton T.; Cai, Yunhai; Colocho, William.; Decker, Franz-Josef; /SLAC

    2007-06-28

    For optics measurement and modeling of the PEP-II electron (HER) and position (LER) storage rings, we have been doing well with MIA [1] which requires analyzing turn-by-turn Beam Position Monitor (BPM) data that are resonantly excited at the horizontal, vertical, and longitudinal tunes. However, in anticipation that certain BPM buttons and even pins in the PEP-II IR region would be missing for the run starting in January 2007, we had been developing a data validation process to reduce the effect due to the reduced BPM data accuracy on PEP-II optics measurement and modeling. Besides the routine process for ranking BPM noise level through data correlation among BPMs with a singular-value decomposition (SVD), we could also check BPM data symplecticity by comparing the invariant ratios. Results from PEP-II measurement will be presented.

  14. Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.

    SciTech Connect

    Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.; Chung, D.Y.; Todorov, I.S.; Kanatzidis, M.G.; Eremin, I.; Knolle, J.; Chubukov, A.V.; Maiti, s.; Norman, M.R.; Weber, F.; Claus, H.; Guidi, T.; Bewley, R.I.; Osborn, R.

    2011-01-01

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  15. Determination of a three-step excitation and ionization scheme for resonance ionization and ultratrace analysis of Np-237

    NASA Astrophysics Data System (ADS)

    Raeder, S.; Stöbener, N.; Gottwald, T.; Passler, G.; Reich, T.; Trautmann, N.; Wendt, K.

    2011-03-01

    The long-lived radio isotope 237Np is generated within the nuclear fuel cycle and represents a major hazard in the final disposal of nuclear waste. Related geochemical research requires sensitive methods for the detection of ultratrace amounts of neptunium in environmental samples. Resonance ionization mass spectrometry (RIMS) has proven to be one of the most sensitive methods for the detection of plutonium. A precondition for the application of RIMS to ultratrace analysis of neptunium is the knowledge of an efficient and selective scheme for optical excitation and ionization. Therefore, a multitude of medium to high-lying atomic levels in neptunium was located by applying in-source resonance ionization spectroscopy. By using excitation via six previously known first excited, intermediate levels of odd parity, a set of twelve so far unknown high-lying levels of even parity were identified and studied further for their suitability in resonant excitation/ionization schemes. Autoionizing resonances for efficient ionization of neptunium atoms were subsequently accessed spectroscopically. Altogether five resonance ionization schemes were investigated and characterized concerning their saturation behavior and relative efficiency. Applying a calibrated sample, an overall efficiency of 0.3 % was determined.

  16. Theoretical investigation of nonlinear resonances in a carbon nanotube cantilever with a tip-mass under electrostatic excitation

    NASA Astrophysics Data System (ADS)

    Kim, I. K.; Lee, S. I.

    2013-09-01

    The nonlinear dynamics of a resonating carbon nanotube (CNT) cantilever having an attached mass at the tip ("tip mass") were investigated by incorporating electrostatic forces and intermolecular interactions between the CNT and a conducting plane surface. This work enables applications of CNT resonating sensors for tiny mass detection and provides a better understanding of the dynamics of CNT cantilevers. The effect of tip mass on a resonating CNT cantilever is normally characterized by the fundamental frequency shift in the linear resonance regime. However, there are more complex dynamics in the nonlinear resonance regime, such as secondary resonances with parametric excitation. The latter have been limited to nano-cantilevers without tip mass or to axially excited micro-beams. To analyze the nonlinear dynamics, we developed a differential equation model that includes both geometric and inertial nonlinear terms for the large vibration amplitudes at increasing drive forces. In our approach, we used Galerkin discretization techniques and numerical integration methods. The CNT cantilever exhibited complex nonlinear responses due to the applied AC and DC voltages and various tip masses. The nonlinear model had a softer response for increasing tip mass than those of the linear model with the same driving conditions. At low applied voltages, the cantilever had linear amplitude and phase responses at primary and secondary superharmonic resonance frequencies. The response branches were softened at the primary resonance through saddle-node (SN) bifurcation from harmonic electrostatic excitation at higher applied voltages. After SN bifurcation, the lower branch of the solution near resonance became unstable. In addition, theoretical analyses were performed on more complex nonlinear responses and stability changes with tip mass variations, such as period-doubling (PD) bifurcation at subharmonic resonance frequencies.

  17. Resonance Raman spectrum and excitation profile of mass-selected zirconium trimers

    NASA Astrophysics Data System (ADS)

    Haouari, Hanae; Wang, Huaiming; Craig, Robert; Lombardi, John R.; Lindsay, D. M.

    1995-12-01

    We present the resonance Raman and Raman excitation profile of mass-selected zirconium trimers in argon matrices. In the Raman spectra, two fundamentals and one overtone are observed. Average Raman shifts, along with standard deviations (in parentheses) are 176.7 (13) cm-1 (ν2), 258.0 (12) cm-1 (ν1), and 516.1 (8) cm-1 (2ν1). The ratio of the frequencies of the two lowest lines (ν1/ν2) is 1.46, which is very close to √2. This is indicative of a symmetrical equilateral geometry (D3h). In such a case we expect two normal frequencies, one for a totally symmetric stretch of symmetry a'1 (ν1) and a doubly degenerate bend of symmetry e'(ν2). The Raman excitation profiles of the ν1(a'1) line shows two broad maxima: one near 491 nm and the other near 614 nm. The ν2 (e') profile shows a broad region of intensity only near 614 nm. With the aid of theory we assign the 614 nm band to be 1A'1-1E' (x,y polarized) while the 491 nm band must be 1A'1-1A″2 (z polarized).

  18. Green laser excited surface plasmon resonance biosensor utilizing highly sensitive phase interrogation detection

    NASA Astrophysics Data System (ADS)

    Chen, How-Foo; Hsu, Wei-Chen; Wang, Ya-Jung; Yen, Ta-Jen

    2010-04-01

    Surface plasmon resonance (SPR) biosensors have been widely used for dynamical analysis of molecular affinity, bacterium screening, and drug discovery due to its advantages of label-free detection, dynamic interaction analysis, small sample volume, and ultra sensitivity (feasibility of single molecular detection). Recently, SPR biosensing for cell imaging known as SPR microscopy (SPRM) has attracted great attention due to the characteristics of SPR biosensors. However, it is well known that the trends of sensitivity and spatial resolution are opposite to each other: Surface plasmon waves (SPWs) with shorter wavelength which provides higher spatial resolution has less sensitivity. It is known that the spatial resolution of SPRM is limited by the propagation length of surface plasmon wave (SPW) along the metaldielectric interface. SPW excited by 632.8 nm light has the propagation length of 3 um. This length becomes longer when a longer wavelength is selected. While most of SPR biosensors are built with 632.8 nm or longer wavelength for high sensitivity, using 532nm light to excite SPWs is desired for submicron resolution since the propagation length is around 150 nm. Different from current phase interrogation methods, the proposed phase interrogation method is highly sensitive and suitable for CCD imaging. Although it is generally believed that SPWs with wavelength 532nm has poor sensitivity, the experimental result showed that the setup can reach the sensitivity lower than 2×10-6 RIU when sucrose is used as the test sample.

  19. Excitation of the {sup 229m}Th nuclear isomer via resonance conversion in ionized atoms

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-09-15

    Pressing problems concerning the optical pumping of the 7.6-eV {sup 229m}Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8s–7s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at an energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.

  20. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    SciTech Connect

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham; Yunes, Nicolas

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.

  1. Ultrasonic resonant modes of piezoelectric balloons under internal pressure.

    PubMed

    Denham, Lori Vidal; Rice, David A

    2012-09-01

    Properties of a piezoelectric polymeric angioplasty balloon that may decrease the problems of acute closure and restenosis are evaluated in this study. Polyvinylidene difluoride (PVDF), a piezoelectric and pyroelectric polymer, has sufficient strength to serve as a standard angioplasty balloon as well as functioning as an ultrasonic transmitter and/or receiver. These properties enable potential therapeutic applications using ultrasound such as plaque ablation and sonotherapy as well as vulnerable plaque diagnosis using thermography. This study investigates the resonant structure of the PVDF balloon catheter in the frequency range 5-100 kHz. Vibrations of the piezoelectric balloon are modeled using cylindrical shell theory and compared with the observed modal frequencies of PVDF cylinders with and without internal pressure. Modal frequencies are determined by measuring the near-field pressure response of the PVDF cylinders using a high frequency microphone. A rich nodal structure is observed between 5 and 100 kHz with peak relative amplitudes measured between 42 and 45 kHz. Higher order modes for cylinders with 9 μm and 28 μm wall thickness increase in frequency as the internal pressure is increased. Experimental measurements confirm theoretical models that predict both pressure-dependent and pressure-independent resonant frequencies. Frequencies of pressure-dependent modes are calculated within 2.2% of measured values at high pressure.

  2. Ultraviolet high-excitation Fe II fluorescence lines excited by O VI, C IV, and H I resonance emission as seen in IUE spectra

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.; Johansson, Sveneric

    1991-01-01

    Archival high-dispersion spectra from the IUE are used in a search for Bowen emission lines of Fe II excited by the stronger transition of the O VI resonance doublet. The possibility of using these Fe II emission lines as a diagnostic of the strength of the far-ultraviolet emission of O VI at 1032 A is explored. It is found that the Fe II emission lines are quite common and strong in symbiotic stars, particularly those of the type known as 'symbiotic novae', as well as in normal novae. The lines are observed in central stars of some planetary nebulae of the O VI sequence besides a few central stars of type WR. High density, high excitation, and high temperature are suggested to be requirements for the excitation of the Fe II fluorescence lines. It is pointed out that while these lines were observed in PG 1159-035 and K1-16, they were not observed in AGNs.

  3. Family of graphene-assisted resonant surface optical excitations for terahertz devices

    NASA Astrophysics Data System (ADS)

    Lin, I.-Tan; Liu, Jia-Ming; Tsai, Hsin-Cheng; Wu, Kaung-Hsiung; Syu, Jheng-Yuan; Su, Ching-Yuan

    2016-10-01

    The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region.

  4. Family of graphene-assisted resonant surface optical excitations for terahertz devices

    PubMed Central

    Lin, I-Tan; Liu, Jia-Ming; Tsai, Hsin-Cheng; Wu, Kaung-Hsiung; Syu, Jheng-Yuan; Su, Ching-Yuan

    2016-01-01

    The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region. PMID:27739504

  5. New Feature Observed in the Raman Resonance Excitation Profiles of (6 , 5) -Enriched, Selectively Bundled SWCNTs

    NASA Astrophysics Data System (ADS)

    Hight Walker, A. R.; Simpson, J. R.; Roslyak, O.; Haroz, E.; Telg, H.; Duque, J. G.; Crochet, J. J.; Piryatinski, A.; Doorn, S. K.

    Understanding the photophysics of exciton behavior in single wall carbon nanotube (SWCNT) bundles remains important for opto-electronic device applications. We report resonance Raman spectroscopy (RRS) measurements on (6 , 5) -enriched SWCNTs, dispersed in aqueous solutions and separated using density gradient ultracentrifugation into fractions of increasing bundling. Near-IR to UV absorption spectroscopy shows a redshift and broadening of the main excitonic transitions with increasing bundling. A continuously tunable dye laser coupled to a triple-grating spectrometer affords measurement of Raman resonance excitation profiles (REPs) over a range of wavelengths covering the (6 , 5) -E22 range (505 to 585) nm. REPs of both the radial breathing mode (RBM) and G-band reveal a redshifting and broadening of the (6 , 5) E22 transition energy with increasing bundling. Additionally, we observe an unexpected peak in the REP of bundled SWCNTs, which is shifted lower in energy than the main E22 and is anomalously narrow. We compare these observations to a theoretical model that examines the origin of this peak in relation to bundle polarization-enhanced exciton response.

  6. Flow-excited acoustic resonances of coaxial side-branches in an annular duct

    NASA Astrophysics Data System (ADS)

    Arthurs, D.; Ziada, S.

    2009-01-01

    This paper investigates the aeroacoustic response of an annular duct with closed coaxial side-branches, and examines the effect of several passive countermeasures on the resonance intensity. The investigated geometry is inspired by the design of the Roll-Posts in the Rolls-Royce LiftSystem® engine, which is currently being developed for the Lockheed Martin Joint Strike Fighter (JSF®) aircraft. The effects of design parameters, such as diameter ratio, branch length ratio and thickness of the annular flow on the frequency and resonance intensity of the first acoustic mode are studied experimentally. Numerical simulations of the acoustic mode shapes and frequencies are also performed. The annular flow has been found to excite several acoustic modes, the strongest in all cases being the first acoustic mode, which consists of a quarter wavelength along the length of each branch. The ratios of the branch length and diameter, with respect to the main duct diameter, have been found to have strong effects on the frequency of the acoustic modes.

  7. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    SciTech Connect

    Tamaru, S. Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S.; Suzuki, Y.

    2014-05-07

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  8. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    PubMed

    Yang, Jing; Zhang, Jiasen

    2013-04-01

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  9. Implementation of Dipolar Resonant Excitation for Collision Induced Dissociation with Ion Mobility/Time-of-Flight MS

    PubMed Central

    Webb, Ian K.; Chen, Tsung-Chi; Danielson, William F.; Ibrahim, Yehia M.; Tang, Keqi; Anderson, Gordon A.; Smith, Richard D.

    2014-01-01

    An ion mobility/time-of-flight mass spectrometer (IMS/TOF MS) platform that allows for resonant excitation collision induced dissociation (CID) is presented. Highly efficient, mass-resolved fragmentation without additional excitation of product ions was accomplished and over-fragmentation common in beam-type CID experiments was alleviated. A quadrupole ion guide was modified to apply a dipolar AC signal across a pair of rods for resonant excitation. The method was characterized with singly protonated methionine enkephalin and triply protonated peptide angiotensin I, yielding maximum CID efficiencies of 44% and 84%, respectively. The Mathieu qx,y parameter was set at 0.707 for these experiments to maximize pseudopotential well depths and CID efficiencies. Resonant excitation CID was compared to beam-type CID for the peptide mixture. The ability to apply resonant waveforms in mobility-resolved windows is demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS-MS analysis. PMID:24470195

  10. Implementation of Dipolar Resonant Excitation for Collision Induced Dissociation with Ion Mobility/Time-of-Flight MS

    NASA Astrophysics Data System (ADS)

    Webb, Ian K.; Chen, Tsung-Chi; Danielson, William F.; Ibrahim, Yehia M.; Tang, Keqi; Anderson, Gordon A.; Smith, Richard D.

    2014-04-01

    An ion mobility/time-of-flight mass spectrometer (IMS/TOF MS) platform that allows for resonant excitation collision induced dissociation (CID) is presented. Highly efficient, mass-resolved fragmentation without additional excitation of product ions was accomplished and over-fragmentation common in beam-type CID experiments was alleviated. A quadrupole ion guide was modified to apply a dipolar AC signal across a pair of rods for resonant excitation. The method was characterized with singly protonated methionine enkephalin and triply protonated peptide angiotensin I, yielding maximum CID efficiencies of 44 % and 84 %, respectively. The Mathieu qx,y parameter was set at 0.707 for these experiments to maximize pseudopotential well depths and CID efficiencies. Resonant excitation CID was compared with beam-type CID for the peptide mixture. The ability to apply resonant waveforms in mobility-resolved windows is demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge ( m/ z) ratios within a single IMS-MS analysis.

  11. Doubly excited {sup 3}P{sup e} resonance states of two-electron positive ions in Debye plasmas

    SciTech Connect

    Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi E-mail: karsabyasachi@yahoo.com; Jiang, Zishi; Jiang, Pinghui

    2015-11-15

    We investigate the doubly excited {sup 3}P{sup e} resonance states of two-electron positive ions Li{sup +}, Be{sup 2+}, B{sup 3+}, and C{sup 4+} by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of {sup 3}P{sup e} resonances below the N = 3 threshold. The {sup 3}P{sup e} resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time.

  12. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.

    PubMed

    Yu, Ganghua; Li, Deyu; Cheng, Li

    2008-12-01

    The effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in an enclosure and the multimodal coupling-based Helmholtz resonator design are investigated. Using the analytical solution of a resonator-enclosure interaction model, an energy reduction index is defined in a frequency band to optimize the resonator resistance. The dual process of energy dissipation and radiation of the resonator is quantified. Optimal resistance of the resonator and its physical effect on the resonator-enclosure interaction are numerically evaluated and categorized in terms of frequency bandwidths. Predictions on the resonator performance are confirmed by experiments. Comparisons with existing models based on different optimization criteria are also performed. It is shown that the proposed model serves as an effective design tool to determine the internal resistance of the resonator in order to achieve sound reduction in the frequency band enclosing acoustic resonances.

  13. Plasmon-resonant Raman spectroscopy in metallic nanoparticles: Surface-enhanced scattering by electronic excitations

    NASA Astrophysics Data System (ADS)

    Carles, R.; Bayle, M.; Benzo, P.; Benassayag, G.; Bonafos, C.; Cacciato, G.; Privitera, V.

    2015-11-01

    Since the discovery of surface-enhanced Raman scattering (SERS) 40 years ago, the origin of the "background" that is systematically observed in SERS spectra has remained questionable. To deeply analyze this phenomenon, plasmon-resonant Raman scattering was recorded under specific experimental conditions on a panel of composite multilayer samples containing noble metal (Ag and Au) nanoparticles. Stokes, anti-Stokes, and wide, including very low, frequency ranges have been explored. The effects of temperature, size (in the nm range), embedding medium (SiO2, Si3N4, or TiO2) or ligands have been successively analyzed. Both lattice (Lamb modes and bulk phonons) and electron (plasmon mode and electron-hole excitations) dynamics have been investigated. This work confirms that in Ag-based nanoplasmonics composite layers, only Raman scattering by single-particle electronic excitations accounts for the background. This latter appears as an intrinsic phenomenon independently of the presence of molecules on the metallic surface. Its spectral shape is well described by revisiting a model developed in the 1990s for analyzing electron scattering in dirty metals, and used later in superconductors. The gs factor, that determines the effective mean-free path of free carriers, is evaluated, gsexpt=0.33 ±0.04 , in good agreement with a recent evaluation based on time-dependent local density approximation gstheor=0.32 . Confinement and interface roughness effects at the nanometer range thus appear crucial to understand and control SERS enhancement and more generally plasmon-enhanced processes on metallic surfaces.

  14. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    PubMed

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation. PMID:16592781

  15. Low energy excitations in iridates studied with Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Liu, Xuerong

    2013-03-01

    In the iridium oxides, the strong spin-orbit coupling (SOC) of the 5d iridium electrons entangles the orbital and spin degrees of freedom, providing opportunities for exotic magnetic states with highly anisotropic exchange interactions. At the same time, the spatially extended 5d electrons are expected to have much stronger hybridization with the oxygen 2p orbitals, comparing with that in 3d transition element compounds. Both factors make crystal symmetry and local environment crucial in determining the electronic and magnetic properties of the iridates. We present here our resonant inelastic X-ray scattering (RIXS) studies of a number of octahedrally coordinated iridates with special structures, exploring these effects. In particular, for the 1-D spin 1/2 chain compound, Sr3CuIrO6, the wavefunction of the hole in the t2g manifold was reconstructed based on the RIXS spectra. Our results show that it is significantly modified from the isotropic shape expected for Jeff = 1 / 2 states in the strong SOC limit, due to the distortion of the oxygen octahedral cage. This distortion is comparable to, or smaller than, that present in most iridates and thus this work emphasizes the importance of local symmetry for the iridate families. Further, the magnetic excitations of this material were also measured. A large gap of ~30 meV, was found, comparable to the magnetic dispersion bandwidth. This is in contrast to the gapless dispersion expected for linear chain with isotropic Heisenberg exchange interaction. We also studied Na4Ir3O8 which has a hyperkagome lattice, and is a candidate quantum spin liquid. Here, a low energy continuum is observed below the d-d excitations. Optical conductivity measurements performed on the same sample and polarization dependence of the RIXS signal suggest that these excitations are magnetic in origin, agreeing with the spin-liquid state prediction. The work at Brookhaven was supported by the U.S. Department of Energy, Division of Materials Science

  16. Theoretical vibrational-excitation cross sections and rate coefficients for electron-impact resonant collisions involving rovibrationally excited N2 and NO molecules

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Celiberto, R.; Wadehra, J. M.

    2012-10-01

    Electron-impact vibrational-excitation cross sections, involving rovibrationally excited N2 and NO molecules, are calculated for collisions occurring through the nitrogen resonant electronic state N_2^-(X\\,^2\\!\\Pi_g) , and the three resonant states of nitric oxide NO-(3Σ-, 1Δ, 1Σ+). Complete sets of cross sections have been obtained for all possible transitions involving 68 vibrational levels of N_2(X\\,{}^1\\!\\Sigma_g^+) and 55 levels of NO(X 2Π), for incident electron energy between 0.1 and 10 eV. In order to study the rotational motion in the resonant processes, cross sections have also been computed for rotationally elastic transitions characterized by the rotational quantum number J running from 0 to 150. The calculations are performed within the framework of the local complex potential model, using potential energies and widths optimized to reproduce the experimental cross sections available in the literature. Rate coefficients are calculated for transitions between all vibrational levels by assuming a Maxwellian electron energy distribution function in the temperature range from 0.1 to 100 eV. All numerical data are available at http://users.ba.cnr.it/imip/cscpal38/phys4entry/database.html

  17. Highly excited core resonances in photoionization of Fe xvii: Implications for plasma opacities

    SciTech Connect

    Nahar, Sultana N.; Pradhan, Anil K.; Chen Guoxin; Eissner, Werner

    2011-05-15

    examine PEC and non-PEC resonance strengths and emphasize their expanded role to incorporate inner-shell excitations for improved opacities, as shown by the computed monochromatic opacity of Fe xvii.

  18. Resonant excitation of waves by a spiraling ion beam on the large plasma device

    NASA Astrophysics Data System (ADS)

    Tripathi, Shreekrishna

    2015-11-01

    The resonant interaction between energetic-ions and plasma waves is a fundamental topic of importance in the space, controlled magnetic-fusion, and laboratory plasma physics. We report new results on the spontaneous generation of traveling shear Alfvén waves and high-harmonic beam-modes in the lower-hybrid range of frequencies by an intense ion beam. In particular, the role of Landau and Doppler-shifted ion-cyclotron resonances (DICR) in extracting the free-energy from the ion-beam and destabilizing Alfvén waves was explored on the Large Plasma Device (LAPD). In these experiments, single and dual-species magnetized plasmas (n ~1010 -1012 cm-3, Te ~ 5.0-10.0 eV, B = 0.6-1.8 kG, He+ and H+ ions, 19.0 m long, 0.6 m diameter) were produced and a spiraling hydrogen ion beam (5-15 keV, 2-10 A, beam-speed/Alfvén-speed = 0.2-1.5, J ~ 50-150 mA/cm2, pitch-angle ~53°) was injected into the plasma. The interaction of the beam with the plasma was diagnosed using a retarding-field energy analyzer, three-axis magnetic-loop, and Langmuir probes. The resonance conditions for the growth of shear Alfvén waves were examined by varying the parameters of the ion-beam and ambient plasma. The experimental results demonstrate that the DICR process is particularly effective in exciting left-handed polarized shear Alfvén waves that propagate in the direction opposite to the ion beam. The high-harmonic beam modes were detected in the vicinity of the spiraling ion beam and contained more than 80 harmonics of Doppler-shifted gyro-frequency of the beam. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  19. Thermal Excitation of Gadolinium-Based Contrast Agents Using Spin Resonance

    PubMed Central

    Fridjhon, Peter; Rubin, David M.

    2016-01-01

    Theoretical and experimental investigations into the thermal excitation of liquid paramagnetic contrast agents using the spin resonance relaxation mechanism are presented. The electronic spin-lattice relaxation time τ1e of gadolinium-based contrast agents, which is estimated at 0.1 ns, is ten orders of magnitude faster than the relaxation time of protons in water. The shorter relaxation time is found to significantly increase the rate of thermal energy deposition. To the authors’ knowledge this is the first study of gadolinium based contrast agents in a liquid state used as thermal agents. Analysis shows that when τ1e and other experimental parameters are optimally selected, a maximum theoretical heating rate of 29.4 °C.s−1 could be achieved which would suffice for clinical thermal ablation of neoplasms. The experimental results show a statistically significant thermal response for two out of the four contrast agents tested. The results are compared to the simulated estimates via analysis of a detailed model of the system. While these experimentally determined temperature rises are small and thus of no clinical utility, their presence supports the theoretical analysis and strongly suggests that the chemical structure of the selected compounds plays an important role in this mechanism of heat deposition. There exists an opportunity for the development of alternative gadolinium-based compounds with an order of magnitude longer τ1e in a diluted form to be used as an efficient hyperthermia agent for clinical use. PMID:27341338

  20. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy.

    PubMed

    Elangovan, Masilamani; Wallrabe, Horst; Chen, Ye; Day, Richard N; Barroso, Margarida; Periasamy, Ammasi

    2003-01-01

    Advances in molecular biology provide various methods to define the structure and function of the individual proteins that form the component parts of subcellular structures. The ability to see the dynamic behavior of a specific protein inside the living cell became possible through the application of advanced fluorescence resonance energy transfer (FRET) microscope techniques. The fluorophore molecule used for FRET imaging has a characteristic absorption and emission spectrum that should be considered for characterizing the FRET signal. In this article we describe the system development for the image acquisition for one- and two-photon excitation FRET microscopy. We also describe the precision FRET (PFRET) data analysis algorithm that we developed to remove spectral bleed-through and variation in the fluorophore expression level (or concentration) for the donor and acceptor molecules. The acquired images have been processed using a PFRET algorithm to calculate the energy transfer efficiency and the distance between donor and acceptor molecules. We implemented the software correction to study the organization of the apical endosome in epithelial polarized MDCK cells and dimerization of the CAATT/enhancer binding protein alpha (C/EBPalpha). For these proteins, the results revealed that the extent of correction affects the conventionally calculated energy transfer efficiency (E) and the distance (r) between donor and acceptor molecules by 38 and 9%, respectively. PMID:12543072

  1. Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons

    SciTech Connect

    Aaltonen, : T.

    2008-09-01

    The authors report a measurement of resonance parameters of the orbitally excited (L = 1) narrow B{sup 0} mesons in decays to B{sup (*)+}{pi}{sup -} using 1.7 fb{sup -1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B*{sub 2}{sup 0} state are measured to be m(B*{sub 2}{sup 0}) = 5740.2{sub -1.8}{sup +1.7}(stat.){sub -0.8}{sup +0.9}(syst.) MeV/c{sup 2} and {Lambda}(B*{sub 2}{sup 0}) = 22.7{sub -3.2}{sup +3.8}(stat.){sub -10.2}{sup +3.2}(syst.) MeV/c{sub 2}. The mass difference between the B*{sub 2}{sup 0} and B{sub 1}{sup 0} states is measured to be 14.9{sub -2.5}{sup +2.2}(stat.){sub -1.4}{sup +1.2}(syst.) MeV/c{sup 2}, resulting in a B{sub 1}{sup 0} mass of 5725.3{sub -2.2}{sup +1.6}(stat.){sub -1.5}{sup +1.4}(syst.) MeV/c{sup 2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B*{sub 2}{sup 0} width.

  2. Thermal Excitation of Gadolinium-Based Contrast Agents Using Spin Resonance.

    PubMed

    Dinger, Steven C; Fridjhon, Peter; Rubin, David M

    2016-01-01

    Theoretical and experimental investigations into the thermal excitation of liquid paramagnetic contrast agents using the spin resonance relaxation mechanism are presented. The electronic spin-lattice relaxation time τ1e of gadolinium-based contrast agents, which is estimated at 0.1 ns, is ten orders of magnitude faster than the relaxation time of protons in water. The shorter relaxation time is found to significantly increase the rate of thermal energy deposition. To the authors' knowledge this is the first study of gadolinium based contrast agents in a liquid state used as thermal agents. Analysis shows that when τ1e and other experimental parameters are optimally selected, a maximum theoretical heating rate of 29.4 °C.s-1 could be achieved which would suffice for clinical thermal ablation of neoplasms. The experimental results show a statistically significant thermal response for two out of the four contrast agents tested. The results are compared to the simulated estimates via analysis of a detailed model of the system. While these experimentally determined temperature rises are small and thus of no clinical utility, their presence supports the theoretical analysis and strongly suggests that the chemical structure of the selected compounds plays an important role in this mechanism of heat deposition. There exists an opportunity for the development of alternative gadolinium-based compounds with an order of magnitude longer τ1e in a diluted form to be used as an efficient hyperthermia agent for clinical use. PMID:27341338

  3. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  4. Synchronized excitability in a network enables generation of internal neuronal sequences

    PubMed Central

    Wang, Yingxue; Roth, Zachary; Pastakova, Eva

    2016-01-01

    Hippocampal place field sequences are supported by sensory cues and network internal mechanisms. In contrast, sharp-wave (SPW) sequences, theta sequences, and episode field sequences are internally generated. The relationship of these sequences to memory is unclear. SPW sequences have been shown to support learning and have been assumed to also support episodic memory. Conversely, we demonstrate these SPW sequences were present in trained rats even after episodic memory was impaired and after other internal sequences – episode field and theta sequences – were eliminated. SPW sequences did not support memory despite continuing to ‘replay’ all task-related sequences – place- field and episode field sequences. Sequence replay occurred selectively during synchronous increases of population excitability -- SPWs. Similarly, theta sequences depended on the presence of repeated synchronized waves of excitability – theta oscillations. Thus, we suggest that either intermittent or rhythmic synchronized changes of excitability trigger sequential firing of neurons, which in turn supports learning and/or memory. DOI: http://dx.doi.org/10.7554/eLife.20697.001 PMID:27677848

  5. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    DOE PAGES

    Li, Qian; Jesse, Stephen; Tselev, Alexander; Collins, Liam; Yu, Pu; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less

  6. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    SciTech Connect

    Li, Qian; Jesse, Stephen; Tselev, Alexander; Collins, Liam; Yu, Pu; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical and electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.

  7. Excitation of sodium D-line radiation in collisions of sodium atoms with internally excited H2, D2 and N2.

    NASA Technical Reports Server (NTRS)

    Krause, H. F.; Fricke, J.; Fite, W. L.

    1972-01-01

    Excitation of D-line radiation in collisions of Na atoms with vibrationally excited N2, H2, and D2 was studied in two modulated crossed-beam experiments. In both experiments, the molecular excitation was provided by heating the molecular beam to temperatures which were assumed to give populations corresponding to the Boltzmann distribution. In the first experiment, a total rate coefficient was measured as a function of molecular beam temperature. The second experiment achieved partial separation of internal vs kinetic energy transfer effects by using a velocity-selected molecular beam. The data from both experiments were used to determine parameters for the dependence of the transfer cross section upon the kinetic energy for a given change in the vibrational quantum number. Results indicate that most of the Na excitation energy comes from internal vibrational energy, with the remainder coming from kinetic energy.

  8. Resonant excited state absorption and relaxation mechanisms in Tb3+-doped calcium aluminosilicate glasses: an investigation by thermal mirror spectroscopy.

    PubMed

    Bianchi, G S; Zanuto, V S; Astrath, F B G; Malacarne, L C; Terra, I A A; Catunda, T; Nunes, L A O; Jacinto, C; Andrade, L H C; Lima, S M; Baesso, M L; Astrath, N G C

    2013-11-15

    Resonant excited state absorption (ESA) and relaxation processes in Tb(3+)-doped aluminosilicate glasses are quantitatively evaluated. A model describing the excitation steps and upconversion emission is developed and applied to interpret the results from laser-induced surface deformation using thermal mirror spectroscopy. The fluorescence quantum efficiency of level (5)D(4) was found to be close to unity and concentration independent while, for the level (5)D(3), it decreases with Tb(3+) concentration. Emission spectroscopy measurements supported these results. ESA cross sections are found to be more than three orders of magnitude higher than the ground state absorption cross section. PMID:24322101

  9. Complex-Scaling Treatment for Doubly Excited Inter-Shell Resonances in H- Interacting with Screened Coulomb (Yukawa) Potentials

    NASA Astrophysics Data System (ADS)

    Ho, Y. K.; Kar, S.

    2012-10-01

    The doubly-excited inter-shell resonance states of the hydrogen negative ion with screened Coulomb potentials are investigated in the framework of complex-scaling method. Highly correlated wave functions with terms up to 1078 in Hylleraas coordinates are used. The resonance parameters for the 2 s3 s 1 S e associated with the H ( N = 2) threshold and the 3 s4 s 1 S e state associated with the H ( N = 3) threshold for various screening strengths are reported. Comparisons are made with other available data in the literature.

  10. Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Racine, Étienne

    2007-02-01

    In coalescing neutron star binaries, r-modes in one of the stars can be resonantly excited by the gravitomagnetic tidal field of its companion. This post-Newtonian gravitomagnetic driving of these modes dominates over the Newtonian tidal driving previously computed by Ho and Lai. To leading order in the tidal expansion parameter R/r (where R is the radius of the neutron star and r is the orbital separation), only the l=2, |m|=1, and |m|=2 r-modes are excited. The tidal work done on the star through this driving has an effect on the evolution of the inspiral and on the phasing of the emitted gravitational wave signal. For a neutron star of mass M, radius R, spin frequency fspin, modeled as a Γ=2 polytrope, with a companion also of mass M, the gravitational wave phase shift for the m=2 mode is ˜0.1radians(R/10km)4(M/1.4M⊙)-10/3(fspin/100Hz)2/3 for optimal spin orientation. For canonical neutron star parameters this phase shift will likely not be detectable by gravitational wave detectors such as LIGO, but if the neutron star radius is larger it may be detectable if the signal-to-noise ratio is moderately large. The energy transfer is large enough to drive the mode into the nonlinear regime if fspin≳100Hz. For neutron star—black hole binaries, the effect is smaller; the phase shift scales as companion mass to the -4/3 power for large companion masses. The net energy transfer from the orbit into the star is negative corresponding to a slowing down of the inspiral. This occurs because the interaction reduces the spin of the star, and occurs only for modes which satisfy the Chandrasekhar-Friedman-Schutz instability criterion. A large portion of the paper is devoted to developing a general formalism to treat mode driving in rotating stars to post-Newtonian order, which may be useful for other applications. We also correct some conceptual errors in the literature on the use of energy conservation to deduce the effect of the mode driving on the gravitational wave

  11. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    SciTech Connect

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; Sanchez-Dehesa, Jose

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.

  12. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    DOE PAGES

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; Sanchez-Dehesa, Jose

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in amore » channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.« less

  13. Nature of low-lying electric dipole resonance excitations in 74Ge

    NASA Astrophysics Data System (ADS)

    Negi, D.; Wiedeking, M.; Lanza, E. G.; Litvinova, E.; Vitturi, A.; Bark, R. A.; Bernstein, L. A.; Bleuel, D. L.; Bvumbi, S.; Bucher, T. D.; Daub, B. H.; Dinoko, T. S.; Easton, J. L.; Görgen, A.; Guttormsen, M.; Jones, P.; Kheswa, B. V.; Khumalo, N. A.; Larsen, A. C.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Masiteng, L. P.; Nchodu, M. R.; Ndayishimye, J.; Newman, R. T.; Noncolela, S. P.; Orce, J. N.; Papka, P.; Pellegri, L.; Renstrøm, T.; Roux, D. G.; Schwengner, R.; Shirinda, O.; Siem, S.

    2016-08-01

    Isospin properties of dipole excitations in 74Ge are investigated using the (α ,α'γ ) reaction and compared to (γ ,γ' ) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E 1 strength with an increase in excitation energy, which is consistent with the measurement.

  14. Angular distribution of hypersatellite and satellite radiation emitted after resonant transfer and excitation into U{sup 91+} ions

    SciTech Connect

    Zakowicz, S.; Harman, Z.; Gruen, N.; Scheid, W.

    2003-10-01

    In collisions of heavy few-electron projectile ions with light targets, an electron can be transferred from the target with the simultaneous excitation of a projectile electron. We study the angular distribution of deexcitation x rays following the resonant capture process. Our results are compared to experimental values of Ma et al. [Phys. Rev. A 68, 042712 (2003)] for collisions of U{sup 91+} ions with a hydrogen gas target.

  15. Laser-excited fluorescence and electron-spin resonance of Er3+ in polycrystalline AlCl3

    NASA Astrophysics Data System (ADS)

    Ceotto, G.; Pires, M. A.; Sanjurjo, J. A.; Rettori, C.; Barberis, G. E.

    1990-07-01

    The green fluorescence transitions among the levels corresponding to the 4S3/2 and 4I15/2 configurations of Er3+ diluted in AlCl3 have been measured using laser excitation. The data allow us to determine the crystalline-field splittings of these levels and, in turn, the spin-Hamiltonian parameters. The electron-paramagnetic-resonance spectrum observed at low temperatures is in good agreement with that expected from these parameters.

  16. Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

    SciTech Connect

    Kaprálová-Žďánská, Petra Ruth; Šmydke, Jan; Civiš, Svatopluk

    2013-09-14

    Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm{sup 2} are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.

  17. On the self-excitation mechanisms of plasma series resonance oscillations in single- and multi-frequency capacitive discharges

    SciTech Connect

    Schüngel, Edmund; Brandt, Steven; Schulze, Julian; Korolov, Ihor; Derzsi, Aranka; Donkó, Zoltán

    2015-04-15

    The self-excitation of plasma series resonance (PSR) oscillations is a prominent feature in the current of low pressure capacitive radio frequency discharges. This resonance leads to high frequency oscillations of the charge in the sheaths and enhances electron heating. Up to now, the phenomenon has only been observed in asymmetric discharges. There, the nonlinearity in the voltage balance, which is necessary for the self-excitation of resonance oscillations with frequencies above the applied frequencies, is caused predominantly by the quadratic contribution to the charge-voltage relation of the plasma sheaths. Using Particle In Cell/Monte Carlo collision simulations of single- and multi-frequency capacitive discharges and an equivalent circuit model, we demonstrate that other mechanisms, such as a cubic contribution to the charge-voltage relation of the plasma sheaths and the time dependent bulk electron plasma frequency, can cause the self-excitation of PSR oscillations, as well. These mechanisms have been neglected in previous models, but are important for the theoretical description of the current in symmetric or weakly asymmetric discharges.

  18. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    DOE PAGES

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; et al

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less

  19. Study of the dissociation of nitrous oxide following resonant excitation of the nitrogen and oxygen K-shells

    SciTech Connect

    Ceolin, D.; Travnikova, O.; Bao, Z.; Piancastelli, M. N.; Tanaka, T.; Hoshino, M.; Kato, H.; Tanaka, H.; Harries, J. R.; Tamenori, Y.; Pruemper, C.; Lischke, T.; Liu, X.-J.; Ueda, K.

    2008-01-14

    A photochemistry study on nitrous oxide making use of site-selective excitation of terminal nitrogen, central nitrogen, and oxygen 1s{yields}3{pi} excitations is presented. The resonant Auger decay which takes place following excitation can lead to dissociation of the N{sub 2}O{sup +} ion. To elucidate the nuclear dynamics, energy-resolved Auger electrons were detected in coincidence with the ionic dissociation products, and a strong dependence of the fragmentation pathways on the core-hole site was observed in the binding energy region of the first satellite states. A description based on the molecular orbitals as well as the correlation between the thermodynamical thresholds of ion formation and the first electronic states of N{sub 2}O{sup +} has been used to qualitatively explain the observed fragmentation patterns.

  20. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    SciTech Connect

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; Hill, J. P.

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  1. Reflection of a TE-polarised Gaussian beam from a layered structure under conditions of resonance excitation of waveguide modes

    SciTech Connect

    Sokolov, V I; Marusin, N V; Molchanova, S I; Savelyev, A G; Khaydukov, E V; Panchenko, V Ya

    2014-11-30

    The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depth of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)

  2. Excited states with internally contracted multireference coupled-cluster linear response theory

    NASA Astrophysics Data System (ADS)

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-01

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  3. The effect of the reactant internal excitation on the dynamics of the C(+) + H2 reaction.

    PubMed

    Herráez-Aguilar, D; Jambrina, P G; Menéndez, M; Aldegunde, J; Warmbier, R; Aoiz, F J

    2014-12-01

    We have performed a dynamical study of the endothermic and barrierless C(+) + H2((1)Σg(+)) → CH(+)((1)Σg(+)) + H reaction for different initial rotational states of the H2(v = 0) and H2(v = 1) manifolds. The calculations have been carried out using quasiclassical trajectories and the Gaussian binning methodology on a recent potential energy surface [R. Warmbier and R. Schneider, Phys. Chem. Chem. Phys., 2011, 13, 10285]. Both state-selected integral cross sections as a function of the collision energy and rate coefficients, kv,j(T), have been determined. We show that rotational excitation of the reactants is as effective as vibrational excitation when it comes to increasing the reactivity, and that both types of excitation could contribute to explain the unexpectedly high abundance of CH(+) in the interstellar media. Such an increase in reactivity takes place by suppressing the reaction threshold when the internal energy is sufficient to overcome the endothermicity. Whenever this is the case, the excitation functions at collision energies Ecoll ≤ 0.1 eV display a ∝E(-1/2)coll dependence. However, the absolute values of the state selected kv=1(T) are one order of magnitude below the Langevin model predictions. The disagreement between the approximately derived experimental rate coefficients for v = 1 and those calculated by this and previous theoretical treatments is due to the neglect of the effect of the rotational excitation in the derivation of the former. In spite of the deep well present in the potential energy surface, the reaction does not show a statistical behaviour.

  4. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  5. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks.

    PubMed

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  6. Alpha Resonances in {sup 13}C Excited by the {sup 9}Be ({sup 6}Li,d) Reaction

    SciTech Connect

    Rodrigues, M. R. D.; Borello-Lewin, T.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Souza, M. A.; Miyake, H.; Cunsolo, A.; Cappuzzello, F.; Ukita, G. M.

    2010-05-21

    The {sup 9}Be({sup 6}Li,d){sup 13}C reaction was used to investigate alpha resonant states in {sup 13}C up to 13 MeV of excitation. The reaction was measured at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. The resolution of 50 keV allowed for the separation of the resonant contributions to the known 7/2{sup -} at 10.753 MeV and (5/2{sup -}) at 10.818 MeV {sup 13}C states. The alpha resonance seen at the (3alpha+n) threshold was not previously reported. The experimental angular distributions are presented in comparison with DWBA predictions.

  7. Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals

    PubMed Central

    Long, Yongbing; Shen, Liang; Xu, Haitao; Deng, Haidong; Li, Yuanxing

    2016-01-01

    Graphene perfect absorbers with ultranarrow bandwidth are numerically proposed by employing a subwavelength dielectric grating to excite the guided-mode resonance of one-dimensional photonic crystals (1DPCs). Critical coupling of the guided-mode resonance of 1DPCs to graphene can produce perfect absorption with a ultranarrow bandwidth of 0.03 nm. The quality factor of the absorption peak reaches a ultrahigh value of 20000. It is also found that the resonant absorption peaks can be tuned by controlling the dispersion line of the guided mode and the period of the grating. When the parameters of the grating and the 1DPCs are suitably set, the perfect absorption peaks can be tuned to any randomly chosen wavelength in the visible wavelength range. PMID:27577721

  8. Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals.

    PubMed

    Long, Yongbing; Shen, Liang; Xu, Haitao; Deng, Haidong; Li, Yuanxing

    2016-01-01

    Graphene perfect absorbers with ultranarrow bandwidth are numerically proposed by employing a subwavelength dielectric grating to excite the guided-mode resonance of one-dimensional photonic crystals (1DPCs). Critical coupling of the guided-mode resonance of 1DPCs to graphene can produce perfect absorption with a ultranarrow bandwidth of 0.03 nm. The quality factor of the absorption peak reaches a ultrahigh value of 20000. It is also found that the resonant absorption peaks can be tuned by controlling the dispersion line of the guided mode and the period of the grating. When the parameters of the grating and the 1DPCs are suitably set, the perfect absorption peaks can be tuned to any randomly chosen wavelength in the visible wavelength range. PMID:27577721

  9. Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Golgir, Hossein Rabiee; Zhou, Yun Shen; Li, Dawei; Keramatnejad, Kamran; Xiong, Wei; Wang, Mengmeng; Jiang, Li Jia; Huang, Xi; Jiang, Lan; Silvain, Jean Francois; Lu, Yong Feng

    2016-09-01

    The influence of exciting ammonia (NH3) molecular vibration in the growth of gallium nitride (GaN) was investigated by using an infrared laser-assisted metal organic chemical vapor deposition method. A wavelength tunable CO2 laser was used to selectively excite the individual vibrational modes. Resonantly exciting the NH-wagging mode (v2) of NH3 molecules at 9.219 μm led to a GaN growth rate of 84 μm/h, which is much higher than the reported results. The difference between the resonantly excited and conventional thermally populated vibrational states was studied via resonant and nonresonant vibrational excitations of NH3 molecules. Resonant excitation of various vibrational modes was achieved at 9.219, 10.35, and 10.719 μm, respectively. Nonresonant excitation was conducted at 9.201 and 10.591 μm, similar to conventional thermal heating. Compared to nonresonant excitation, resonant excitation noticeably promotes the GaN growth rate and crystalline quality. The full width at half maximum value of the XRD rocking curves of the GaN (0002) and GaN (10-12) diffraction peaks decreased at resonant depositions and reached its minimum value of 45 and 53 arcmin, respectively, at the laser wavelength of 9.219 μm. According to the optical emission spectroscopic studies, resonantly exciting the NH3 v2 mode leads to NH3 decomposition at room temperature, reduces the formation of the TMGa:NH3 adduct, promotes the supply of active species in GaN formation, and, therefore, results in the increased GaN growth rate.

  10. Formation of H{sub 2} from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence

    SciTech Connect

    Chen, T. E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Zettergren, H. E-mail: henning@fysik.su.se; Delaunay, R.; Rousseau, P.; Adoui, L.; Domaracka, A.; Huber, B. A.; Tielens, A. G. G. M.

    2015-04-14

    We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.

  11. Formation of H2 from internally heated polycyclic aromatic hydrocarbons: excitation energy dependence.

    PubMed

    Chen, T; Gatchell, M; Stockett, M H; Delaunay, R; Domaracka, A; Micelotta, E R; Tielens, A G G M; Rousseau, P; Adoui, L; Huber, B A; Schmidt, H T; Cederquist, H; Zettergren, H

    2015-04-14

    We have investigated the effectiveness of molecular hydrogen (H2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H2-formation rates.

  12. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  13. Investigation of excited states in Mg22 via resonant elastic scattering of Na21+p and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Hu, J.; Notani, M.; Baba, H.; Nishimura, S.; Moon, J. Y.; Nishimura, M.; Iwasaki, H.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Lee, J. H.; Kato, S.; Gono, Y.; Lee, C. S.

    2009-07-01

    The excited states in Mg22 have been investigated by the resonant elastic scattering of Na21+p. A 4.0 MeV/nucleon Na21 beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m.≈172∘,146∘, and 134∘, respectively. A wide energy-range of excitation function in Mg22 (up to Ex~8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the Ne18(α,p)Na21 reaction was recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.

  14. Rate expressions for excitation transfer. II. Electronic considerations of direct and through-configuration exciton resonance interactions

    NASA Astrophysics Data System (ADS)

    Harcourt, Richard D.; Scholes, Gregory D.; Ghiggino, Kenneth P.

    1994-12-01

    The electronic interactions which promote singlet-singlet and triplet-triplet electronic excitation (energy) transfer (EET) are investigated in detail. Donor and acceptor locally excited configurations, ψ1(A*B) and ψ4(AB*), respectively, are each allowed to mix with bridging ionic configurations, ψ2(A+B-) and ψ3(A-B+) to form the new donor and acceptor wave functions ΨR=ψ1+λψ2+μψ3 and ΨP=ψ4+μψ2+λψ3. Use of the latter wave functions leads to the establishment of the matrix element TRP= <ΨR‖H-E1‖ΨP>≊T14-(T12T24+T 13T34)/A, with Tij=<ψi‖H-E1‖ψj> and A=E2-E1, as the exciton resonance interaction term for EET. Introduction of the Mulliken approximation shows that the ``direct'' exciton resonance interaction term (T14) contributes primarily a Coulombic interaction, for singlet-singlet EET, while the ``through-configuration'' exciton resonance interaction term [-(T12T24+T13T34)/A] replaces the Dexter exchange integral (which is a component of H14) as the primary source of short-range orbital overlap-dependent EET. The origins of ``Dexter-type'' energy transfer are thus shown to be quite different from that originally outlined.

  15. Amplitude and polarization instability of picosecond light pulses exciting a semiconductor optical resonator.

    PubMed

    Markarov, V A; Pershin, S M; Podshivalov, A A; Zadoian, R S; Zheludev, N I

    1983-11-01

    The first results of our study of nonlinear shift, distortion of form, and destruction of picosecond light pulses interacting with a nonlinear Fabry-Perot resonator in a strongly nonstationary regime are reported. Polarization instability of the light pulse transmitted through a nonlinear resonator has been observed. PMID:19718182

  16. Microwave radiation force and torque on a disk resonator excited by a circularly polarized plane wave

    NASA Astrophysics Data System (ADS)

    Makarov, S.; Kulkarni, S.

    2004-05-01

    A numerical simulation method [S. Makarov and S. Kulkarni, Appl. Phys. Lett. 84, 1600 (2004)] is used in order to determine the radiation force and radiation torque on a parallel-plate disk resonator, whose size is comparable to wavelength. The method is based on the MOM solution of the electric-field integral equation, accurate calculation of the near field, and removal of the self-interaction terms responsible for the pinch effect. The local force/torque distribution at the normal incidence of a circularly polarized plane wave is found. It is observed that, at the resonance, the individual disks are subject to unexpectedly large local force densities, despite the fact that the net radiation force on the resonator remains very small. On the other hand, the total axial torque on the disk resonator also increases at the resonance.

  17. Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

    SciTech Connect

    Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik

    2015-12-07

    Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO{sub 2} microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO{sub 2} microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.

  18. Enhanced photoelectron emission from aluminum thin film by surface plasmon resonance under deep-ultraviolet excitation

    NASA Astrophysics Data System (ADS)

    Ono, A.; Shiroshita, N.; Kikawada, M.; Inami, W.; Kawata, Y.

    2015-05-01

    We report photoelectron emission enhancement of aluminum thin films by surface plasmon excitation in the deep-ultraviolet region. Deep-ultraviolet light with a wavelength of 266 nm has enough energy to cause electron emission from aluminum and excite surface plasmons on aluminum. We applied the Kretschmann configuration to excite surface plasmons. The enhancement factor of the emission current is found to depend on the enhanced electric field intensity excited by surface plasmons. The maximum emission efficiency of photoelectrons is 2.9 nA mW-1 for an aluminum thickness of 19 nm with an alumina thickness of 4 nm. The characteristics of the dependence of the photoelectron emission efficiency on the applied bias between the anode and cathode are investigated.

  19. Time-Resolved Resonance Raman Spectroscopy of Vibrational Populations Monitored after Electronic and Infrared Excitation

    SciTech Connect

    Werncke, W.; Kozich, V.; Dreyer, J.

    2008-11-14

    Pathways of vibrational energy flow in molecules with an intramolecular hydrogen bond are studied after intramolecular proton transfer reactions as well as after infrared excitation of the O-H stretching vibration which is coupled to this hydrogen bond.

  20. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    NASA Astrophysics Data System (ADS)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-01

    Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  1. Resonant inelastic x-ray scattering study of charge excitations in La(2)CuO(4).

    PubMed

    Kim, Y J; Hill, J P; Burns, C A; Wakimoto, S; Birgeneau, R J; Casa, D; Gog, T; Venkataraman, C T

    2002-10-21

    We report a resonant inelastic x-ray scattering study of the dispersion relations of charge-transfer excitations in insulating La(2)CuO(4).. These data reveal two peaks, both of which show two-dimensional characteristics. The lowest energy excitation has a gap energy of approximately 2.2 eV at the zone enter, and a dispersion of approximately 1 eV. The spectral weight of this mode becomes dramatically smaller around (pi, pi). The second peak shows a smaller dispersion ( approximately 0.5 eV) with a zone-center energy of approximately 3.9 eV. We argue that these are both highly dispersive exciton modes damped by the presence of the electron-hole continuum.

  2. Photochemical fractionation of 16O in the space medium modeled by resonance excitation of CO by H-Lyman alpha.

    PubMed

    Arrhenius, G; Corrigan, M J; Fitzgerald, R W

    1988-01-01

    Inferences about the formation of primordial matter in our solar system rest on analysis of the earliest preserved materials in meteorites, of the structure of the solar system today, and of matter in evolving stellar systems elsewhere. The isotope distribution in meteorites suggests that molecular excitation processes similar to those observed today in circumstellar regions and dark interstellar clouds were operating in the early solar nebula. Laboratory model experiments together with these observations give evidence on the thermal state of the source medium from which refractory meteoritic dust formed. They indicate that resonance excitation of the broad isotopic bands of molecules such as 12C16O, MgO, O2, AlO, and OH by strong UV line sources such as H-L alpha, Mg II, H beta, and Ca II may induce selective reactions resulting in the anomalous isotopic composition of oxygen and possibly other elements in refractory oxide condensates in meteorites.

  3. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  4. Desorption of Hydrogen from Si(111) by Resonant Excitation of the Si-H Vibrational Stretch Mode

    SciTech Connect

    Liu, Zhiheng; Feldman, Leonard C.; Tolk, Norman; Zhang, Zhenyu; Cohen, Philip I

    2006-01-01

    Past efforts to achieve selective bond scission by vibrational excitation have been thwarted by energy thermalization. Here we report resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation. The wavelength dependence of the desorption yield peaks at 0.26 electron volt: the energy of the Si-H vibrational stretch mode. The desorption yield is quadratic in the infrared intensity. A strong H/D isotope effect rules out thermal desorption mechanisms, and electronic effects are not applicable in this low-energy regime. A molecular mechanism accounting for the desorption event remains elusive.

  5. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds. PMID:21141866

  6. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds.

  7. Change in the observed half-life of an excited nuclear state under conditions of a resonance environment

    SciTech Connect

    Loginov, Yu. E.

    2010-01-15

    A model description of the increase in the observed value of the half-life of isomeric nuclei {sup 119m1}Sn (E = 23.8 keV, T{sub 1/2} {approx} 18 ns) in a resonance environment created by stable nuclei of {sup 119}Sn is proposed. According to the model used, the observed effect is due to gamma radiation from isomeric nuclei {sup 119m1}Sn newly produced upon the resonance capture of gamma rays emitted in {sup 119m1}Sn decay by stable nuclei of {sup 119}Sn. On the basis of T{sub 1/2} values that were measured previously, the radiative shift of the position of an excited nuclear state (nuclear analog of the Lamb shift in an atom), {Delta}{omega}{sub 0}, was estimated at 1.5(2) x 10{sup 11} s{sup -1} for the isomer {sup 119m1}Sn.

  8. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  9. Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging.

    PubMed

    Erni, Daniel; Liebig, Thorsten; Rennings, Andreas; Koster, Norbert H L; Fröhlich, Jürg

    2011-01-01

    We propose an adaptive RF antenna system for the excitation (and manipulation) of the fundamental circular waveguide mode (TE(11)) in the context of high-field (7T) traveling-wave magnetic resonance imaging (MRI). The system consists of composite right-/left-handed (CRLH) meta-material ring antennas that fully conforms to the inner surface of the MRI bore. The specific use of CRLH metamaterials is motivated by its inherent dispersion engineering capabilities, which is needed when designing resonant ring structures for virtually any predefined diameter operating at the given Larmor frequency (i.e. 298 MHz). Each functional group of the RF antenna system consists of a pair of subsequently spaced and correspondingly fed CRLH ring antennas, allowing for the unidirectional excitation of propagating, circularly polarized B(1) mode fields. The same functional group is also capable to simultaneously mold an incoming, counter-propagating mode. Given these functionalities we are proposing now a compound scheme (i.e. periodically arranged multiple antenna pairs)--termed as "MetaBore"--that is apt to provide a tailored RF power distribution as well as full wave reflection compensation virtually at any desired location along the bore.

  10. RF-excited unstable-resonator planar CO{sub 2} laser on all-metal electrode-waveguide structure

    SciTech Connect

    Mineev, A P; Nefedov, S M; Pashinin, Pavel P E-mail: nefedov@kapella.gpi.r

    2006-07-31

    The radiation characteristics of a planar CO{sub 2} laser excited by a diffusion-cooled rf discharge at a frequency of 40 MHz are studied. A single-mode cw lasing power of {approx}50 W is achieved with an efficiency of {approx}10% for a nearly diffraction-limited radiation divergence of 4-7 mrad. The spatial structure, output power, stability and laser radiation quality are studied as functions of longitudinal and angular alignments of the resonator mirror for two types of hybrid unstable-waveguide resonators of the laser. It is shown that for the resonator corresponding to the negative branch of the stability diagram, a misalignment of 0.02 rad of the mirrors leads to a 50% decrease in the output laser power, while its value for the positive branch resonator is about 100 times smaller. It is found that for the resonator corresponding to the negative branch, the sensitivity to the violation of confocal arrangement of the mirrors upon an increase in the resonator length is an order of magnitude higher. The dependence of the density of input rf power on the working gas pressure is studied experimentally in the interval 50-110 Torr. Power density values of 1-4 W cm{sup -2} are obtained for normal discharge current density. These values are important for optimisation and scaling of the lasing characteristics of high-power planar CO{sub 2} lasers. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  11. Orbit-based analysis of resonant excitations of Alfvén waves in tokamaks

    SciTech Connect

    Bierwage, Andreas; Shinohara, Kouji

    2014-11-15

    The exponential growth phase of fast-ion-driven Alfvénic instabilities is simulated and the resonant wave-particle interactions are analyzed numerically. The simulations are carried out in realistic magnetic geometry and with a realistic particle distribution for a JT-60U plasma driven by negative-ion-based neutral beams. In order to deal with the large magnetic drifts of the fast ions, two new mapping methods are developed and applied. The first mapping yields the radii and pitch angles at the points, where the unperturbed orbit of a particle intersects the mid-plane. These canonical coordinates allow to express analysis results (e.g., drive profiles and resonance widths) in a form that is easy to understand and directly comparable to the radial mode structure. The second mapping yields the structure of the wave field along the particle trajectory. This allows us to unify resonance conditions for trapped and passing particles, determine which harmonics are driven, and which orders of the resonance are involved. This orbit-based resonance analysis (ORA) method is applied to fast-ion-driven instabilities with toroidal mode numbers n = 1-3. After determining the order and width of each resonance, the kinetic compression of resonant particles and the effect of linear resonance overlap are examined. On the basis of the ORA results, implications for the fully nonlinear regime, for the long-time evolution of the system in the presence of a fast ion source, and for the interpretation of experimental observations are discussed.

  12. Off-Resonant Optical Excitation of Gold Nanorods: Nanoscale Imprint of Polarization Surface Charge Distribution.

    PubMed

    Deeb, Claire; Zhou, Xuan; Gérard, Davy; Bouhelier, Alexandre; Jain, Prashant K; Plain, Jérôme; Soppera, Olivier; Royer, Pascal; Bachelot, Renaud

    2011-01-01

    We report on the nanoscale optical characterization of gold nanorods irradiated out of their plasmonic resonance. Our approach is based on the reticulation of a photopolymerizable formulation locally triggered by enhanced electromagnetic fields. The tiny local field enhancement stems from the surface polarization charges associated with the electric field discontinuity at the metal/dielectric interface. This allows us to get a nanoscale signature of the spatial distribution of the surface charge density in metallic nanoparticles irradiated off-resonance.

  13. Electronic Relaxation after Resonant Laser Excitation of Cr in Superfluid Helium Nanodroplets

    PubMed Central

    2013-01-01

    Chromium (Cr) atoms embedded into helium nanodroplets (HeN) are ejected from the droplets upon photoexcitation. During ejection they undergo electronic relaxation resulting in bare Cr atoms in various excited states. In a study of the relaxation process we present absorption spectra observed via laser induced fluorescence and beam depletion as well as dispersed fluorescence spectra and time-resolved fluorescence measurements. Broad and shifted absorption structures were found for the strong z7P° ← a7S3 and y7P° ← a7S3 excitations from the ground state. Emission lines are, in contrast, very narrow, which indicates that fluorescence is obtained from bare excited Cr atoms after ejection. Upon excitation into the y7P2,3,4° states we observed fluorescence from y7P2°, z5P1,2,3°, and z7P2,3,4°, indicating that these states are populated by electronic relaxation during the ejection processes. Relative population ratios are obtained from the intensities of individual spectral lines. Excitation into the z7P2,3,4° states resulted in fluorescence only from z7P2°. Estimates of the time duration of the ejection process are obtained from time-resolved measurements. PMID:23410146

  14. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  15. Study on hairpin-shaped argon plasma jets resonantly excited by microwave pulses at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Xia, Guangqing; Zou, Changlin; Li, Ping; Hu, Yelin; Ye, Qiubo; Eliseev, S.; Stepanova, O.; Saifutdinov, A. I.; Kudryavtsev, A. A.; Liu, Minghai

    2015-07-01

    In the present study, atmospheric pressure argon plasma jets driven by lower-power pulsed microwaves have been proposed with a type of hairpin resonator. The plasma jet plume demonstrates distinctive characteristics, like arched plasma pattern and local plasma bullets. In order to understand how the hairpin resonator works, electromagnetic simulation of the electric field distribution and self-consistent fluid simulation of the interaction between the enhanced electric field and the pulse plasma plume are studied. Simulated spatio-temporal distributions of the electric field, the electron temperature, the electron density, and the absorbed power density have been sampled, respectively. The experimental and simulated results together suggest that the driving mechanism of the hairpin resonator works in the multiple electromagnetic modes of transmission line and microwave resonator, while the local plasma bullets are resonantly generated by local enhanced electric field of surface plasmon polaritons. Moreover, it should be noticed that the radian of the arched plasma plume is mainly affected by the input power and gas flow rate, respectively.

  16. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity

    NASA Astrophysics Data System (ADS)

    Yan, Zhimiao; Yan, Zhitao; Li, Zhengliang; Tan, Ting

    2012-07-01

    Based on the curved-beam theory, a nonlinear galloping model considering three displacement (normal, bi-normal and tangential) components and twist is formulated. According to the property of transmission line, one reduced (normal and bi-normal) galloping model, with regard of bending, rotation and eccentricity of cross section, is obtained. Moreover, the initial rotation angle is also introduced in galloping and aerodynamic models. Additionally, based on the reduced model, the bifurcation and stability of the two cases (1:1 resonance and 2:1 resonance) are analyzed. The results turn out that the importance of ice eccentricity needs to be highlighted. Finally, multiple stabilities are found through the analyses of bifurcation and stability and proved by the reduced model and Reduced Amplitude Modulation Equations (RAME) numerically integrated in time history.

  17. Tunable repetition rate VECSEL for resonant acoustic-excitation of nanostructures

    NASA Astrophysics Data System (ADS)

    Chen Sverre, T.; Head, C. R.; Turnbull, A. P.; Shaw, E. A.; Tropper, A. C.; Muskens, O. L.

    2016-03-01

    We report a passively mode-locked InGaAs-quantum well VECSEL, emitting a constant pulse train at an average output power of 18 mW and emission wavelength of 1035 nm, with a continuously tunable pulse repetitionfrequency (PRF) between 0.88 - 1.88 GHz. Pulse duration was 230 fs over 80% of that range. Here we propose a technique making use of the demonstrated VECSEL PRF tunability for a resonant frequency-domain pumpprobe spectroscopic technique for acoustic interrogation of nanostructures. Simulation of suitable GHz acoustic resonators to demonstrate this technique is described.

  18. Resonant generation of an electron–positron pair by two photons to excited Landau levels

    SciTech Connect

    Diachenko, M. M. Novak, O. P.; Kholodov, R. I.

    2015-11-15

    We consider the resonant generation of an electron–positron pair by two polarized photons to arbitrarily low Landau levels. The resonance occurs when the energy of one photon exceeds the one-photon generation threshold, and the energy of the other photon is multiple to the spacing between the levels. The cross section of the process is determined taking into account the spins of particles. The order of magnitude of the cross section is the highest when the magnetic moments of the particles are oriented along the magnetic field.

  19. Sensitivity enhancement through overlapping simultaneously excited Fano resonance modes of metallic-photonic-crystal sensors.

    PubMed

    Zhang, Jian; Zhang, Xinping; Su, Xueqiong; Lu, Yi; Feng, Shengfei; Wang, Li

    2014-02-10

    We investigated enhancement of sensitivity of sensors based on metallic photonic crystals through tuning the thickness of the waveguide layer by pulsed laser deposition. Thicker waveguides made of InGaZnO allow double resonance of Fano coupling modes due to plasmonic-photonic interactions. Tuning the angle of incidence enables overlap between these doubly resonant modes, which induces much enlarged and spectrally narrowed sensor signals, leading to significantly enhanced sensitivity of the sensor device. The thickness of the waveguide layer is found to be a crucial structural parameter to improve sensitivity of the MPC sensors. PMID:24663620

  20. An Alternative View of the Dynamical Origin of the P11 Nucleon Resonances: Results from the Excited Baryon Analysis Center

    SciTech Connect

    Hiroyuki Kamano

    2012-04-01

    We present an alternative interpretation for the dynamical origin of the P{sub 11} nucleon resonances, which results from the dynamical coupled-channels analysis at Excited Baryon Analysis Center of Jefferson Lab. The results indicate the crucial role of the multichannel reaction dynamics in determining the N* spectrum. An understanding of the spectrum and structure of the excited nucleon (N*) states is a fundamental challenge in the hadron physics. The N* states, however, couple strongly to the meson-baryon continuum states and appear only as resonance states in the {gamma}N and {pi}N reactions. One can expect from such strong couplings that the (multichannel) reaction dynamics will affect significantly the N* states and cannot be neglected in extracting the N* parameters from the data and giving physical interpretations. It is thus well recognized nowadays that a comprehensive study of all relevant meson production reactions with {pi}N,{eta}N,{pi}{pi}N,KY, {hor_ellipsis} final states is necessary for a reliable extraction of the N* parameters. To address this challenging issue, the Excited Baryon Analysis Center (EBAC) of Jefferson Lab has been conducting the comprehensive analysis of the world data of {gamma}N,{pi}N {yields} {pi}N,{eta}N,{pi}{pi}N,KY, {hor_ellipsis} reactions systematically, covering the wide energy and kinematic regions. The analysis is pursued with a dynamical coupled-channels (DCC) model, the EBAC-DCC model, within which the unitarity among relevant meson-baryon channels, including the three-body {pi}{pi}N channel, is fully taken into account.

  1. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    SciTech Connect

    Maurer, David A.; Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  2. Resonant Spin Excitation in the High Temperature Superconductor Ba0.6K0.4Fe2As2

    SciTech Connect

    Christianson, Andrew D; Goremychkin, E. A.; Osborn, R.; Rosenkranz, Stephen; Lumsden, Mark D; Malliakas, C.; Todorov, L.; Claus, H.; Chung, D.Y.; Kanatzidis, M.; Bewley, Robert I.; Guidi, T.

    2008-12-18

    A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T{sub c}), some of which are >50 K, and because of similarities with the high-{sub c} copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T{sub c} in Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

  3. Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, W.F.

    1982-03-09

    Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.

  4. Laser double-resonance studies of electronic spectroscopy and state-resolved collisional relaxation in highly vibrationally excited acetylene

    SciTech Connect

    Tobiason, J.D.

    1992-01-01

    Vibrational overtone excitation combined with laser-induced fluorescence detection of acetylene molecules permits rotation-selected spectroscopy of the ([tilde A][sup 1]A[sub u]) electronic state and direct, state-resolved measurements of collisional energy transfer in the highly vibrationally excited ground electronic state. The author assigns energies of 1,045 transitions to previously unobserved ungerade vibrational states 2800-4500 cm[sup [minus]1] above the [tilde A] state origin. An analysis yields frequencies of 2856.4 and 3894.3 cm[sup [minus]1] for [nu][sub v][prime] and [nu][sub 3][prime] + [nu][sub 5][prime]. The author performs the first normal coordinate analysis of [tilde A] state acetylene based only on directly observed fundamentals. The spectroscopy measurements enable double-resonance experiments on the collisional dynamics of highly vibrationally excited acetylene. The quenching rate for single rotational states is twice the Lennard-Jones gas kinetic rate and fairly independent of vibrational energy level. Collision-induced detection of vibrational overtone excitation under single collision conditions allows direct measurements of state-of-state rotational and vibrational energy transfer. A collision-induced spectrum obtained by this new technique immediately identifies transfer channels and the [Delta]J and [Delta]E dependence of the transfer rates. The author observes changes of [vert bar][Delta]J[vert bar] and [Delta]E [approx] 3kT in a single collision. Directly measured rates for one set of vibrational relaxation pathways account for [approximately]3% of the total relaxation rate. The author also observes other vibrational relaxation pathways. The available pathways suggest that vibrational relaxation accounts for the rest of the total relaxation. Changes of [vert bar]J[vert bar] = 18 and [vert bar][Delta]E[vert bar] [approximately] 500 cm[sup [minus]1] in a single collision are observed.

  5. Nonlinear dynamic analysis of coupled gear-rotor-bearing system with the effect of internal and external excitations

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Ren, Zhaohui; Wen, Bangchun

    2016-03-01

    Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can be used for diagnosis of faults and vibration control of practical SGRBS.

  6. Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s14p6np1(n=7,8) and doubly excited 4s24p45s16p1 resonances in atomic krypton

    NASA Astrophysics Data System (ADS)

    Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.

    2011-10-01

    Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s14p6np1 (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be β2 = 1.61 ± 0.06 and β4 = 1.54 ± 0.16 while the 8p configuration gives β2 = 1.23 ± 0.19 and β4 = 0.60 ± 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s24p45s16p1 configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.

  7. Excitation of the surface flute waves in electron cyclotron frequency range by internal rotating electron beam in a coaxial waveguide

    NASA Astrophysics Data System (ADS)

    Blednov, O.; Girka, I.; Girka, V.; Pavlenko, I.; Sydora, R.

    2014-12-01

    The initial stage of interaction between a gyrating beam of electrons, which move along Larmor orbits in a narrow gap between a cylindrical plasma layer and an internal screen of a metal coaxial waveguide and electromagnetic eigen waves, is studied theoretically. These waves are extraordinary polarized ones; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that the excitation process is stable enough in respect to changing plasma waveguide parameters. The wider the plasma layer, the broader the range of plasma waveguide parameters within which effective wave excitation takes place. The main influence on the excitation of these modes is performed by the applied axial magnetic field, namely: its increase leads to an increase of growth rate and a broadening of the range of the waveguide parameters within which wave excitation is effective.

  8. Coherent phonon spectroscopy of non-fully symmetric modes using resonant terahertz excitation

    SciTech Connect

    Huber, T. Huber, L.; Johnson, S. L.; Ranke, M.; Ferrer, A.

    2015-08-31

    We use intense terahertz (THz) frequency electromagnetic pulses generated via optical rectification in an organic crystal to drive vibrational lattice modes in single crystal Tellurium. The coherent modes are detected by measuring the polarization changes of femtosecond laser pulses reflecting from the sample surface, resulting in a phase-resolved detection of the coherent lattice motion. We compare the data to a model of Lorentz oscillators driven by the near-single-cycle broadband THz pulse. The demonstrated technique of optically probed coherent phonon spectroscopy with THz frequency excitation could prove to be a viable alternative to other time-resolved spectroscopic methods like standard THz time domain spectroscopy.

  9. "Fast excitation" CID in a quadrupole ion trap mass spectrometer.

    PubMed

    Murrell, J; Despeyroux, D; Lammert, S A; Stephenson, J L; Goeringer, D E

    2003-07-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. "Fast excitation" CID deposits (as determined by the intensity ratio of the a(4)/b(4) ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with "fast excitation" CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for "fast excitation" CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H)(17+) of horse heart myoglobin is also shown to illustrate the application of "fast excitation" CID to proteins.

  10. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  11. Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Hanauer, Matthias; Köhn, Andreas

    2012-05-01

    Internally contracted multireference coupled cluster (ic-MRCC) methods with perturbative treatment of triple excitations are formulated based on Dyall's definition of a zeroth-order Hamiltonian. The iterative models ic-MRCCSDT-1, ic-MRCC3, and their variants ic-MRCCSD(T), ic-MRCC(3) which determine the energy correction from triples by a non-iterative step are consistent in the single-reference limit with CCSDT-1a, CC3, CCSD(T), and CC(3), respectively. Numerical tests on the potential energy surfaces of BeH2, H2O, and N2 as well as on the structure and harmonic vibrational frequencies of the ozone molecule show that these methods account very well for higher order correlation effects. The ic-MRCCSD(T) method is further applied to the geometry optimization and harmonic frequencies of the symmetric vibrational modes of the binuclear transition metal oxide Ni2O2, to the singlet-triplet splittings of o-, m-, and p-benzyne and to a ring-opening reaction of an azirine compound with the molecular formula C6H7NO. The size of the active spaces used in this study ranges from CAS(2,2) to CAS(8,8). Comparisons of results based on differently sized active spaces indicate that the ic-MRCCSD(T) method provides a highly accurate and efficient treatment of both static and dynamic electron correlation in connection with minimal active spaces.

  12. Nonlinear Resonant Excitation of Fast Sausage Waves in Current-Carrying Coronal Loops

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.; Bembitov, D. B.

    2014-11-01

    We consider a model of a coronal loop that is a cylindrical magnetic tube with two surface electric currents. Its principal sausage mode has no cut-off in the long-wavelength limit. For typical coronal conditions, the period of the mode is between one and a few minutes. The sausage mode of flaring loops could cause long-period pulsations observed in microwave and hard X-ray ranges. There are other examples of coronal oscillations: long-period pulsations of active-region quiet loops in the soft X-ray emission are observed. We assume that these can also be caused by sausage waves. The question arises of how the sausage waves are generated in quiet loops. We assume that they can be generated by torsional oscillations. This process can be described in the framework of the nonlinear three-wave interaction formalism. The periods of interacting torsional waves are similar to the periods of torsional oscillations observed in the solar atmosphere. The timescale of the sausage-wave excitation is not much longer than the periods of interacting waves, so that the sausage wave is excited before torsional waves are damped.

  13. Entanglement on macroscopic scales in a resonant-laser-field-excited atomic ensemble

    NASA Astrophysics Data System (ADS)

    Camalet, S.

    2015-03-01

    We show that two groups of slow two-level atoms in a weak resonant laser field are entangled. The considered groups can be separated by a macroscopic distance, and be parts of a larger atomic ensemble. In a dilute regime, for two very distant groups of atoms, in a plane-wave laser beam, we determine the maximum attainable entanglement negativity, and a laser intensity below which they are certainly entangled. They both decrease with increasing distance between the two groups, but increase with enlarging groups sizes. As a consequence, for given laser intensity, far separated groups of atoms are necessarily entangled if they are big enough.

  14. Evidence for nucleon-resonance excitation in omega-meson photoproduction.

    PubMed

    Ajaka, J; Assafiri, Y; Bouchigny, S; Didelez, J P; Fichen, L; Guidal, M; Hourany, E; Kouznetsov, V; Kunne, R; Mushkarenkov, A N; Nedorezov, V; Rudnev, N; Turinge, A; Zhao, Q

    2006-04-01

    The photoproduction of the omega meson has been studied at GRAAL from threshold up to a photon energy of 1.5 GeV. The differential cross sections and beam asymmetries have been measured precisely at all angles. The total cross section is also obtained. Systematic enhancements of the differential cross section at large angles and nonzero beam asymmetries at intermediate angles provide clear evidence for s- and u-channel resonant processes. The data are compared to the results of hadron and quark models.

  15. Amplitude-dependent internal friction, hysteretic nonlinearity, and nonlinear oscillations in a magnesite resonator.

    PubMed

    Nazarov, V E; Kolpakov, A B; Radostin, A V

    2012-07-01

    The results of experimental and theoretical studies of low-frequency nonlinear acoustics phenomena (amplitude-dependent loss, resonance frequency shifts, and a generation of second and third harmonics) in a magnesite rod resonator are presented. Acceleration and velocity oscillograms of vibrations of the free boundary of the resonator caused by harmonic excitations were measured and analyzed. A theoretical description of the observed amplitude dependences was carried out within the framework of the phenomenological state equations that contain either of the two types of hysteretic nonlinearity (elastic and inelastic). The type of hysteresis and parameters of acoustic nonlinearity of magnesite were established from comparing the experimental measurements with the theoretical dependences. The values of the parameters were anomalously high even when compared to those of other strongly nonlinear polycrystalline materials such as granite, marble, limestone, sandstone, etc.

  16. Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing

    SciTech Connect

    You, H.-J.

    2013-07-15

    We present a SLot-excited ANtenna (SLAN) long racetrack ECR plasma source that is utilized for roll-to-roll plasma processing such as thin film encapsulation of large-area OLED (organic light emitting diode) panel or modification of fabric surfaces. This source is designed to be long, and to operate under high density uniform plasma with sub-milli-torr pressures. The above features are accomplished by a slot-excited long racetrack resonator with a toroidal geometry of magnetic field ECR configuration, and reinforced microwave electric distributions along the central region of plasma chamber. Also, a new feature has been added to the source. This is to employ a tail plunger, which allows the microwave electric field and the uniformity of the plasma profile to be easily adjustable. We have successfully generated Ar plasmas operating with the microwave power of 0.5–3 kW in the pressure range of 0.2–10 mTorr. The plasma is uniform (<10%) in the direction of the straight track and has a Gaussian profile in the roll-to-roll (scanning) direction. In addition, it is shown that the tail plunger could adjust the plasma profile in order to obtain plasma uniformity. Furthermore, based on the results, we suggest a newly designed up-scaled racetrack-SLAN source.

  17. Polarization correlations for electron-impact excitation of the resonant transitions of Ne and Ar at low incident energies

    NASA Astrophysics Data System (ADS)

    Hargreaves, L. R.; Campbell, C.; Khakoo, M. A.; McConkey, J. W.; Zatsarinny, O.; Bartschat, K.; Stauffer, A. D.; McEachran, R. P.

    2013-02-01

    The electron-polarized-photon coincidence method is used to determine linear and circular polarization correlations in vacuum ultraviolet (VUV) for the differential electron-impact excitation of neon and argon resonance transitions at impact energies of 25 and 30 eV at small scattering angles up to 40°. The circular polarization correlation is found to be positive in the case of Ne at 25 eV and supports the prediction of the present B-spline R-matrix theory concerning the violation of a long-established propensity rule regarding angular momentum transfer in electron-impact excitation of S→P transitions. Comparisons with the results from the present relativistic distorted-wave approximation and an earlier semirelativistic distorted-wave Born model are also made. For the case of Ar, at 25 and 30 eV, the circular polarization measurements remain in agreement with theory, but provide limited evidence as to whether or not the circular polarization at small scattering angles is also positive. For the linear polarizations, much better agreement with theory is obtained than in earlier measurements carried out by S. H. Zheng and K. Becker [Z. Phys. DZDACE20178-768310.1007/BF01436735 23, 137 (1992); J. Phys. BJPAMA40022-370010.1088/0953-4075/26/3/022 26, 517 (1993)].

  18. Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing.

    PubMed

    You, H-J

    2013-07-01

    We present a SLot-excited ANtenna (SLAN) long racetrack ECR plasma source that is utilized for roll-to-roll plasma processing such as thin film encapsulation of large-area OLED (organic light emitting diode) panel or modification of fabric surfaces. This source is designed to be long, and to operate under high density uniform plasma with sub-milli-torr pressures. The above features are accomplished by a slot-excited long racetrack resonator with a toroidal geometry of magnetic field ECR configuration, and reinforced microwave electric distributions along the central region of plasma chamber. Also, a new feature has been added to the source. This is to employ a tail plunger, which allows the microwave electric field and the uniformity of the plasma profile to be easily adjustable. We have successfully generated Ar plasmas operating with the microwave power of 0.5-3 kW in the pressure range of 0.2-10 mTorr. The plasma is uniform (<10%) in the direction of the straight track and has a Gaussian profile in the roll-to-roll (scanning) direction. In addition, it is shown that the tail plunger could adjust the plasma profile in order to obtain plasma uniformity. Furthermore, based on the results, we suggest a newly designed up-scaled racetrack-SLAN source.

  19. Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing

    NASA Astrophysics Data System (ADS)

    You, H.-J.

    2013-07-01

    We present a SLot-excited ANtenna (SLAN) long racetrack ECR plasma source that is utilized for roll-to-roll plasma processing such as thin film encapsulation of large-area OLED (organic light emitting diode) panel or modification of fabric surfaces. This source is designed to be long, and to operate under high density uniform plasma with sub-milli-torr pressures. The above features are accomplished by a slot-excited long racetrack resonator with a toroidal geometry of magnetic field ECR configuration, and reinforced microwave electric distributions along the central region of plasma chamber. Also, a new feature has been added to the source. This is to employ a tail plunger, which allows the microwave electric field and the uniformity of the plasma profile to be easily adjustable. We have successfully generated Ar plasmas operating with the microwave power of 0.5-3 kW in the pressure range of 0.2-10 mTorr. The plasma is uniform (<10%) in the direction of the straight track and has a Gaussian profile in the roll-to-roll (scanning) direction. In addition, it is shown that the tail plunger could adjust the plasma profile in order to obtain plasma uniformity. Furthermore, based on the results, we suggest a newly designed up-scaled racetrack-SLAN source.

  20. Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing.

    PubMed

    You, H-J

    2013-07-01

    We present a SLot-excited ANtenna (SLAN) long racetrack ECR plasma source that is utilized for roll-to-roll plasma processing such as thin film encapsulation of large-area OLED (organic light emitting diode) panel or modification of fabric surfaces. This source is designed to be long, and to operate under high density uniform plasma with sub-milli-torr pressures. The above features are accomplished by a slot-excited long racetrack resonator with a toroidal geometry of magnetic field ECR configuration, and reinforced microwave electric distributions along the central region of plasma chamber. Also, a new feature has been added to the source. This is to employ a tail plunger, which allows the microwave electric field and the uniformity of the plasma profile to be easily adjustable. We have successfully generated Ar plasmas operating with the microwave power of 0.5-3 kW in the pressure range of 0.2-10 mTorr. The plasma is uniform (<10%) in the direction of the straight track and has a Gaussian profile in the roll-to-roll (scanning) direction. In addition, it is shown that the tail plunger could adjust the plasma profile in order to obtain plasma uniformity. Furthermore, based on the results, we suggest a newly designed up-scaled racetrack-SLAN source. PMID:23902069

  1. Preferential Excitation of the Hybrid Magnetic-Electric Mode as a Limiting Mechanism for Achievable Fundamental Magnetic Resonance in Planar Aluminum Nanostructures.

    PubMed

    Tobing, Landobasa Y M; Zhang, Dao-Hua

    2016-02-01

    Aluminum is a promising candidate for light at the nanoscale in the ultraviolet (UV); however, the realization of magnetic resonance in the UV range remains challenging due to stringent dimensional requirements arising from the intrinsic loss caused by the interband transition. Here, the mode interaction with the aluminum interband transition and preferential excitation of the hybrid magnetic-electric mode, as discovered in ultrasmall Al resonators, are reported.

  2. Observation of structural relaxation during exciton self-trapping via excited-state resonant impulsive stimulated Raman spectroscopy

    SciTech Connect

    Mance, J. G.; Felver, J. J.; Dexheimer, S. L.

    2015-02-28

    We detect the change in vibrational frequency associated with the transition from a delocalized to a localized electronic state using femtosecond vibrational wavepacket techniques. The experiments are carried out in the mixed-valence linear chain material [Pt(en){sub 2}][Pt(en){sub 2}Cl{sub 2}]⋅(ClO{sub 4}){sub 4} (en = ethylenediamine, C{sub 2}H{sub 8}N{sub 2}), a quasi-one-dimensional system with strong electron-phonon coupling. Vibrational spectroscopy of the equilibrated self-trapped exciton is carried out using a multiple pulse excitation technique: an initial pump pulse creates a population of delocalized excitons that self-trap and equilibrate, and a time-delayed second pump pulse tuned to the red-shifted absorption band of the self-trapped exciton impulsively excites vibrational wavepacket oscillations at the characteristic vibrational frequencies of the equilibrated self-trapped exciton state by the resonant impulsive stimulated Raman mechanism, acting on the excited state. The measurements yield oscillations at a frequency of 160 cm{sup −1} corresponding to a Raman-active mode of the equilibrated self-trapped exciton with Pt-Cl stretching character. The 160 cm{sup −1} frequency is shifted from the previously observed wavepacket frequency of 185 cm{sup −1} associated with the initially generated exciton and from the 312 cm{sup −1} Raman-active symmetric stretching mode of the ground electronic state. We relate the frequency shifts to the changes in charge distribution and local structure that create the potential that stabilizes the self-trapped state.

  3. Resonant optical control of the electrically induced spin polarization by periodic excitation

    NASA Astrophysics Data System (ADS)

    Hernandez, F. G. G.; Gusev, G. M.; Bakarov, A. K.

    2014-07-01

    We show that the electron spin polarization generated by an electrical current may have its direction controlled and magnitude amplified by periodic optical excitation. The electrical and optical spin control methods were combined and implemented in a two-dimensional electron gas. By Kerr rotation in an external transverse magnetic field, we demonstrate unexpected long-lived coherent spin oscillations of the current-induced signal in a system with large spin-orbit interaction. Using a single linearly polarized pulse for spin manipulation and detection, we found a strong dependence on the pulse optical power and sample temperature indicating the relevance of the hole spin in the electron spin initialization. The signal was mapped in a Hall bar as function of the position relative to the injection contact. Finally, the presence of an in-plane spin polarization was directly verified by rotating the experimental geometry.

  4. Pulsed Excitation Dynamics of an Optomechanical Crystal Resonator near Its Quantum Ground State of Motion

    NASA Astrophysics Data System (ADS)

    Meenehan, Seán M.; Cohen, Justin D.; MacCabe, Gregory S.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-10-01

    Using pulsed optical excitation and read-out along with single-phonon-counting techniques, we measure the transient backaction, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of Tf≈11 mK . In addition to observing a slow (approximately 740-ns) turn-on time for the optical-absorption-induced hot-phonon bath, we measure for the 5.6-GHz "breathing" acoustic mode of the cavity an initial phonon occupancy as low as ⟨n ⟩=0.021 ±0.007 (mode temperature Tmin≈70 mK ) and an intrinsic mechanical decay rate of γ0=328 ±14 Hz (Qm≈1.7 ×107). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.

  5. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  6. Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns.

    PubMed

    Zhang, Xin; Liu, Haitao; Zhong, Ying

    2013-10-01

    We theoretically investigate the electromagnetic enhancement on a metallic surface patterned with periodic subwavelength structures. Fully-vectorial calculations show a large-area electromagnetic enhancement (LAEE) on the surface, which strongly contrasts with the previously reported "hot spots" that occur in specific tiny regions and which relieves the rigorous requirement of the nano-scale location of sample molecules. The LAEE allows for designing more practicable substrates for many enhanced-spectra applications. By building up microscopic models, the LAEE is shown due to a resonant excitation of surface waves that include both the surface plasmon polariton (SPP) and a quasi-cylindrical wave (QCW). The surface waves propagate on the substrate over a long distance and thus greatly enlarge the area of electromagnetic enhancement compared to the nano-sized hot spots caused by localized modes. Gain medium is introduced to further strengthen the large-area surface-wave resonance, with which an enhancement factor (EF) of electric-field intensity up to a few thousands is achieved.

  7. Internal consistency in the determination of the Boltzmann constant using a quasispherical resonator

    NASA Astrophysics Data System (ADS)

    de Podesta, M.; Underwood, R.; Sutton, G.; Morantz, P.; Harris, P.

    2013-09-01

    The use of a combined microwave and acoustic resonator to determine the Boltzmann constant, kB, permits several checks on the internal consistency of the data. Using measurements in argon gas in the NPL-Cranfield quasispherical copper resonator (NPLC-2), we describe four distinct types of internal consistency check. Firstly, we estimate kB using six distinct acoustic resonances varying in frequency from 3.55 kHz to 21.77 kHz. We thus span a wide range of systematic corrections, most notably in the effect of the thermal boundary layer (TBL), which varies strongly with mode. Secondly, the same theory which predicts the TBL corrections to the acoustic resonance frequencies also predicts the widths of the resonances. By comparing the measured and theoretically-expected widths we can place limits on the effect of any un-modeled physics. Thirdly, the equivalent radius of the resonator (˜62.03 mm) is inferred from analysis of 8 TM microwave resonances and the spread of the radius values inferred from each mode is a measure of how well the resonator has been modeled. Finally, the microwave data can be used to check the inferred density of gas within the resonator. Based on measurements of the dielectric permittivity of the argon gas, pressure discrepancies greater than ±6 Pa can be detected at all pressures up to 700 kPa. Taken together, these four checks improve confidence in the final estimate for kB and restrict the types of systematic error which may affect the result.

  8. Internal additive noise effects in stochastic resonance using organic field effect transistor

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiharu; Matsubara, Kiyohiko; Asakawa, Naoki

    2016-08-01

    Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said "homeostatic" behavior or "noise robustness" against external noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.

  9. Coherent control of atomic excitation using off-resonant strong few-cycle pulses

    SciTech Connect

    Jha, Pankaj K.; Eleuch, Hichem; Rostovtsev, Yuri V.

    2010-10-15

    We study the dynamics of a two-level system driven by an off-resonance few-cycle pulse which has a phase jump {phi} at t=t{sub 0}, in contrast to many-cycle pulses, under the nonrotating-wave approximation (NRWA). We give a closed form analytical solution for the evolution of the probability amplitude |C{sub a}(t)| for the upper level. Using the appropriate pulse parameters like the phase jump {phi}, jump time t{sub 0}, pulse width {tau}, frequency {nu}, and Rabi frequency {Omega}{sub 0} the population transfer after the pulse is gone can be optimized and, for the pulse considered here, an enhancement factor of 10{sup 6}-10{sup 8} was obtained.

  10. The internal magnetic field distribution, and single exponential magnetic resonance free induction decay, in rocks.

    PubMed

    Chen, Quan; Marble, Andrew E; Colpitts, Bruce G; Balcom, Bruce J

    2005-08-01

    When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.

  11. Fine structure of a resonantly excited p -shell exciton in a CdTe quantum dot

    NASA Astrophysics Data System (ADS)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Wojnar, P.; Kossacki, P.

    2016-05-01

    We present a polarization-resolved photoluminescence excitation study of the absorption spectrum of a p -shell neutral exciton in a single CdTe/ZnTe quantum dot. We find that the fine structure of the p -shell exciton is completely analogous to the fine structure of the s -shell exciton, including the selection rules and the effects of a magnetic field applied in Faraday and Voigt configurations. The energy spectrum of the p -shell exciton is found to be well described by introducing respective isotropic and anisotropic constants of the exchange interaction between a p -shell electron and a p -shell hole. The typical values of these exchange constants averaged over several randomly selected quantum dots yield δ0p p=(0.92 ±0.16 ) meV and δ1p p=(0.58 ±0.25 ) meV. Additionally, we demonstrate that the nonresonant relaxation of the p -shell exciton conserves the exciton spin to a very high degree for both bright and dark exciton configurations.

  12. Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods

    PubMed Central

    Liu, Xin; Yuan Lei, Dang

    2015-01-01

    The geometry and dimension of a gold nanorod (GNR) are optimally designed to enhance the fluorescence intensity of a lanthanide-doped upconversion nanocrystal placed in close proximity to the GNR. A systematic study of the electromagnetic interaction between the upconversion emitter of three energy levels and the GNR shows that the enhancement effect arising from localized electric field-induced absorption can be balanced by the negative effect of electronic transition from an intermediate state to the ground state of the emitter. The dependence of fluorescence enhancement on the emitter-GNR separation is investigated, and the results demonstrate a maximum enhancement factor of 120 folds and 160 folds at emission wavelengths 650 and 540 nm, respectively. This is achieved at the emitter-GNR separation ranging from 5 to 15 nm, depending on the initial quantum efficiency of the emitter. The modified upconversion luminescence behavior by adjusting the aspect ratio of the GNR and the relative position of the emitter indicates the dominate role of excitation process in the total fluorescence enhancement. These findings are of great importance for rationally designing composite nanostructures of metal nanoparticles and upconversion nanocrystals with maximized plasmonic enhancement for bioimaging and sensing applications. PMID:26468686

  13. Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities

    NASA Astrophysics Data System (ADS)

    Moradi, Hamed; Movahhedy, Mohammad R.; Vossoughi, Gholamreza

    2012-07-01

    In this paper, internal resonance and nonlinear dynamics of regenerative chatter in milling process is investigated. An extended dynamic model of the peripheral milling process including both structural and cutting force nonlinearities is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. In the presence of the large vibration amplitudes, the loss of contact effect is included in this model. Using the multiple-scales approach, analytical approximate response of the delayed nonlinear system is obtained. Considering the internal resonance dynamics (i.e. mode coupling), the energy transfer between the coupled x-y modes is studied. The results show that during regenerative chatter under specific cutting conditions, one mode can decay. Furthermore, it is possible to adjust the rate at which the x-mode (or y-mode) decays by implementation of the internal resonance. Therefore, under both internal resonance and regenerative chatter conditions, it is possible to suppress the undesirable vibration of one mode (direction) in which accurate surface finish is required. Under the steady-state motion, jump phenomenon is investigated for the process with regenerative chatter under various cutting conditions. Moreover, the effects of structural and cutting force nonlinearities on the stability lobes diagram of the process are investigated.

  14. Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing.

    PubMed

    Lu, Qijing; Liao, Jie; Liu, Sheng; Wu, Xiang; Liu, Liying; Xu, Lei

    2016-09-01

    We develop a new, simple and non-destructive method to precisely measure the thickness of thin wall micro bubble resonators (MBRs) by using internal aerostatic pressure sensing. Measurement error of 1% at a bubble wall thickness of 2 μm is achieved. This method is applicable to both thin wall and thick wall MBR with high measurement accuracy. PMID:27607689

  15. Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing.

    PubMed

    Lu, Qijing; Liao, Jie; Liu, Sheng; Wu, Xiang; Liu, Liying; Xu, Lei

    2016-09-01

    We develop a new, simple and non-destructive method to precisely measure the thickness of thin wall micro bubble resonators (MBRs) by using internal aerostatic pressure sensing. Measurement error of 1% at a bubble wall thickness of 2 μm is achieved. This method is applicable to both thin wall and thick wall MBR with high measurement accuracy.

  16. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    SciTech Connect

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  17. Approximate analytical solution for waveguide excitation of a plane dielectric layer by a Gaussian beam at frustrated total internal reflection.

    PubMed

    Serdyuk, Vladimir; Rudnitsky, Anton

    2015-05-01

    We present an approximate 2D asymptotic analytic theory of light field excitation in a plane thin dielectric layer under conditions of frustrated total internal reflection, when an inclined Gaussian beam, falling from a triangular prism, excites a decaying field in air spacing between a prism and a plane dielectric. Ignoring the radiation scattering on the sharp edges of a prism, we have obtained the formulas that allow us to compute spatial structures of an electromagnetic field in every point of space and to estimate the integral efficiency of waveguide mode excitation in a plane dielectric layer and the total energy of a reflected beam. It is shown that the width of an initial Gaussian beam has an effect on waveguide mode intensity. PMID:26366908

  18. Approximate analytical solution for waveguide excitation of a plane dielectric layer by a Gaussian beam at frustrated total internal reflection.

    PubMed

    Serdyuk, Vladimir; Rudnitsky, Anton

    2015-05-01

    We present an approximate 2D asymptotic analytic theory of light field excitation in a plane thin dielectric layer under conditions of frustrated total internal reflection, when an inclined Gaussian beam, falling from a triangular prism, excites a decaying field in air spacing between a prism and a plane dielectric. Ignoring the radiation scattering on the sharp edges of a prism, we have obtained the formulas that allow us to compute spatial structures of an electromagnetic field in every point of space and to estimate the integral efficiency of waveguide mode excitation in a plane dielectric layer and the total energy of a reflected beam. It is shown that the width of an initial Gaussian beam has an effect on waveguide mode intensity.

  19. Capture of a neutron to excited states of a {sup 9}Be nucleus taking into account resonance at 622 keV

    SciTech Connect

    Dubovichenko, S. B.

    2013-10-15

    Radiative capture of a neutron to the ground and excited states of the 9Be nucleus is considered using the potential cluster model with forbidden states and with classification of cluster states by the Young schemes taking into account resonance at 622 keV for thermal and astrophysical energies.

  20. Theory of low energy excitations in resonant inelastic x-ray scattering for rare-earth systems: Yb compounds as typical examples

    NASA Astrophysics Data System (ADS)

    Kotani, A.

    2011-04-01

    Theoretical predictions are given for low energy excitations, such as crystal field excitations and Kondo resonance excitations, to be detected by high-resolution measurements of resonant inelastic x-ray scattering (RIXS) of rare-earth materials with Yb compounds as typical examples. Crystal field excitations in the Yb 3d RIXS of a Yb3+ ion in the cubic crystal field are formulated, and the calculation of RIXS spectra for YbN is done. Kondo resonance excitations revealed in the Yb 3d RIXS spectra are calculated for mixed-valence Yb compounds, Yb1-xLuxAl3, in the leading term approximation of the 1/Nf expansion method with a single impurity Anderson model. It is emphasized that the high-resolution RIXS with polarization dependence is a powerful tool to study the crystal field levels together with their symmetry and also the Kondo bound state in rare-earth compounds. Some in-depth discussions are given on the polarization effects of RIXS, including 4d and 2p RIXS spectra, the coherence effect of the Kondo bound states, and the importance of the high-resolution RIXS spectra for condensed matter physics under extreme conditions.

  1. Four-photon-excited fluorescence resonance energy transfer in an aqueous system from ZnSe:Mn/ZnS quantum dots to hypocrellin A.

    PubMed

    Feng, Yueshu; Liu, Liwei; Hu, Siyi; Ren, Yu; Liu, Yingyi; Xiu, Jingrui; Zhang, Xihe

    2016-08-22

    In this work, we established a fluorescence resonance energy transfer (FRET) system between ZnSe:Mn/ZnS quantum dots and Hypocrellin A (HA, a photosensitizer used for photodynamic therapy of cancer) in aqueous solution, excited by four-photon. Here, the QDs are the donors and the HA are the acceptors. The four-photon-excited fluorescence resonance energy transfer spectrum was obtained under 1300nm femtosecond laser pluses. The experimental results indicated that the highest efficiency of FRET can reach up to 61.3%. Furthermore, the viability test in cancer cells was further demonstrated for biological applications of FRET system. When FRET occurs the cell killing rate of the cancer cells will reach to 84.8% with the 1mM concentration of HA. Our work demonstrates that while the four-photon excited FRET system is promising in both optics and biological applications, is also needs further investigation. PMID:27557241

  2. Resonant-transfer-and-excitation for highly charged ions (16 less than or equal to Z less than or equal to 23) in collisions with helium

    SciTech Connect

    Tanis, J.A.; Bernstein, E.M.; Oglesby, C.S.; Graham, W.G.; Clark, M.; McFarland, R.H.; Morgan, T.J.; Stockli, M.P.; Berkner, K.H.; Johnson, B.M.

    1984-01-01

    Significant new evidence is presented for resonant-transfer-and-excitation (RTE) in ion-atom collisions. This process occurs when a target electron is captured simultaneously with the excitation of the projectile followed by deexcitation via photon emission. RTE, which is analogous to dielectronic recombination (DR), proceeds via the inverse of an Auger transition, and is expected to be resonant for projectile velocities corresponding to the energy of the ejected electron in the Auger process. RTE was investigated by measuring cross sections for projectile K x-ray emission coincident with single electron capture for 15 to 200 MeV /sub 16/S/sup 13 +/, 100 to 360 MeV /sub 20/Ca/sup 16 +/ /sup 17 +/ /sup 18 +/ and 180 to 460 MeV /sub 23/V/sup 19 +/ /sup 20 +/ /sup 21 +/ ions colliding with helium. Strong resonant behavior, in agreement with theoretical calculations of RTE, was observed in the coincidence cross sections.

  3. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the

  4. On the effect of broadband, multi-angular excitation and detection in guided-mode resonance biosensors

    NASA Astrophysics Data System (ADS)

    Threm, Daniela; Jahns, Sabrina; Nazirizadeh, Yousef; Ziegler, Martin; Hansen, Mirko; Kohlstedt, Hermann; Adam, Jost; Gerken, Martina

    2013-05-01

    Guided mode resonance biosensors are of emerging interest as they allow integration on chip with fabrication on mass scale. The guided mode resonances (GMRs), observed in the transmission or reflection spectrum, are sensitive to refractive index changes in the vicinity of the photonic crystal (PhC) surface. Standard measurement setups utilize a collecting lens, focusing the extracted light intensity onto a single-point photo detector. In order to achieve highly miniaturized devices, we consider the integration of planar emitting and detector structures, such as organic light emitting diodes (OLEDs) and organic photo detectors (OPDs), together with the PhC based biosensors, on a single chip. This approach, however, consequently leads to a broadband, multi-angular light excitation as well as to a broadband and multi-angular contribution to the OPD photon count. While GMR effects in PhC slabs with directional light sources have been widely studied, this lens-less scenario requires a deep understanding regarding the broadband and the angular influence of both incident and reflected or transmitted light. We performed finite-difference time-domain (FDTD) calculations for GMR effects in two-dimensional (2D) PhC slabs. We study the effects for broadband emission in the visible spectrum, together with an angular incident beam divergence of up to 80°. We verified the simulated results by performing angle-resolved spectral measurements with a light emitting diode (LED) in a macroscopic, lens-less setup. We further utilize this numerical setup to provide a deeper understanding of the modal behaviour of our proposed OLED and OPD-based integrated biosensor concept.

  5. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    SciTech Connect

    Xu, J.; Tang, J.

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  6. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    PubMed

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation. PMID:25668059

  7. First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion.

    PubMed

    Noguchi, Yoshifumi; Hiyama, Miyabi; Akiyama, Hidefumi; Koga, Nobuaki

    2014-07-28

    The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment. We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required. PMID:25084912

  8. First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion

    SciTech Connect

    Noguchi, Yoshifumi Hiyama, Miyabi; Akiyama, Hidefumi; Koga, Nobuaki

    2014-07-28

    The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment. We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.

  9. First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion

    NASA Astrophysics Data System (ADS)

    Noguchi, Yoshifumi; Hiyama, Miyabi; Akiyama, Hidefumi; Koga, Nobuaki

    2014-07-01

    The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment. We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.

  10. Angular distribution of different vibrational components of the X and B states reached after resonant Auger decay of core-excited H2O: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Hjelte, I.; Karlsson, L.; Svensson, S.; De Fanis, A.; Carravetta, V.; Saito, N.; Kitajima, M.; Tanaka, H.; Yoshida, H.; Hiraya, A.; Koyano, I.; Ueda, K.; Piancastelli, M. N.

    2005-02-01

    Vibrationally resolved spectra have been obtained for the lowest-lying cationic states XB12,AA12, and BB22 of the water molecule reached after participator resonant Auger decay of core-excited states. The angular distribution has been measured of the first four vibrational components of the X state in the photon energy regions including the O 1s →4a1 and the O 1s→2b2 core excitations, and for different portions of the vibrational envelope of the B state in the photon energy region including the O 1s→2b2 core excitation. For the X state, a large relative spread in β values of the different vibrational components is observed across both resonances. For the B state, a very different trend is observed for the high binding energy side and the low binding energy side of the related spectral feature as a function of photon energy. A theoretical method based on the scattering K matrix has been used to calculate both the photoabsorption spectrum and the β values, by taking both interference between direct and resonant photoemission and vibrational/lifetime interference into account. The numerical results show qualitative agreement with the trends detected in the experimental values and explain the conspicuous variations of the β values primarily in terms of coupling between direct and resonant photoemission by interaction terms of different sign for different final vibrational states.

  11. Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance

    NASA Astrophysics Data System (ADS)

    Abe, Akira; Kobayashi, Yukinori; Yamada, Gen

    2007-07-01

    This paper investigates one-to-one internal resonance of laminated shallow shells with rigidly clamped edges. It is assumed that the natural frequencies ω2 and ω3 of two asymmetric (second and third) vibration modes have the relationship ω2≈ ω3. The displacements are expressed by using eigenvectors for linear vibration modes calculated by the Ritz method. Applying Galerkin's procedure to the equation of motion, nonlinear differential equations are derived. By considering the first vibration mode in addition to the two asymmetric vibration modes, quadratic nonlinear terms expressing the interaction between the asymmetric and the first modes appear in the differential equations. Shooting method is used to obtain the steady-state response when the driving frequency Ω is near ω2. The dynamic characteristics of the shells with the internal resonance are discussed.

  12. Resonance excitation of spiral density waves in a gaseous disk. II - A nonlinear theory and application to the 3 kiloparsec arm

    SciTech Connect

    Yuan, Chi; Cheng, Ye National Tsing Hua University, Hsinchu STX Corp., New York )

    1991-07-01

    The present nonlinear theory of spiral density waves in a thin, viscous, self-gravitating gaseous disk views the waves as generated near the Lindblad resonance by periodic disturbances through an excitation mechanism. The suggestion of Yuan (1984), that either a minor oval distortion or an uneven distribution of mass in the center can excite a spiral density wave whose radial velocity and mass concentration are in excellent agreement with observations of the 3 kpc arm of the Galaxy, is confirmed. Reliable results are obtained for nonlinear density waves either in a gaseous disk or in the gas components of a galactic disk. 17 refs.

  13. Internal noise induced pattern formation and spatial coherence resonance for calcium signals of diffusively coupled cells

    NASA Astrophysics Data System (ADS)

    Wang, Maosheng; Sun, Runzhi; Huang, Wanxia; Tu, Yubing

    2014-01-01

    The effects of internal noise in a square-lattice Höfer calcium oscillation system have been studied numerically in the context of chemical Langevin equations. It was found that spatial pattern can be induced by internal noise and, interestingly, an optimal internal noise strength (or optimal cell size) exists which maximizes the spatial coherence of pattern, indicating the occurrence of spatial coherence resonance. The effects of control parameter and coupling strength on system’s spatial coherence have also been investigated. We found that larger internal noise strength is needed to induce spatial pattern for a small control parameter or a stronger coupling strength, and spatial coherence can be enhanced by coupling.

  14. Optical properties of pulsed generation in capillary gas lasers with internal-mirror waveguide resonators

    SciTech Connect

    Kukhlevsky, S.V.; Kozma, L.; Negrea, K.

    1996-03-01

    The angular distribution and coherence of pulsed capillary lasers with the optical feedback implemented by the waveguide Fabry-Perott resonators with internal mirrors have been theoretically studied. The authors have shown that spatially-coherent, low divergence radiation can be generated even for short pulse duration if the cavity parameters (the refractive index of the capillary wall and the waveguide dimensions) are properly chosen.

  15. Recent research directions in Fribourg: nuclear dynamics in resonances revealed by 2-dimensional EEL spectra, electron collisions with ionic liquids and electronic excitation of pyrimidine

    NASA Astrophysics Data System (ADS)

    Allan, Michael; Regeta, Khrystyna; Gorfinkiel, Jimena D.; Mašín, Zdeněk; Grimme, Stefan; Bannwarth, Christoph

    2016-05-01

    The article briefly reviews three subjects recently investigated in Fribourg: (i) electron collisions with surfaces of ionic liquids, (ii) two-dimensional (2D) electron energy loss spectra and (iii) resonances in absolute cross sections for electronic excitation of unsaturated compounds. Electron energy loss spectra of four ionic liquids revealed a number of excited states, including triplet states. A solution of a dye in an ionic liquid showed an energy-loss band of the solute, but not in all ionic liquids. 2D spectra reveal state-to-state information (given resonance to given final state) and are shown to be an interesting means to gain insight into dynamics of nuclear motion in resonances. Absolute cross sections for pyrimidine are reported as a function of scattering angle and as a function of electron energy. They reveal resonant structure which was reproduced very nicely by R-matrix calculations. The calculation provided an assignment of the resonances which reveals common patterns in compounds containing double bonds.

  16. Realistic vs sudden turn-on of natural incoherent light: Coherences and dynamics in molecular excitation and internal conversion

    SciTech Connect

    Grinev, Timur; Brumer, Paul

    2015-12-28

    Molecular excitation with incoherent light is examined using realistic turn-on time scales, and results are compared to those obtained via commonly used sudden turn-on, or pulses. Two significant results are obtained. First, in contrast to prior studies involving sudden turn-on, realistic turn-on is shown to lead to stationary coherences for natural turn-on time scales. Second, the time to reach the final stationary mixed state, known to result from incoherent excitation, is shown to depend directly on the inverse of the molecular energy level spacings, in both sudden and realistic turn-on cases. The S{sub 0} → S{sub 2}/S{sub 1} internal conversion process in pyrazine is used as an example throughout. Implications for studies of natural light harvesting systems are noted.

  17. Combined excitation of an optically detected magnetic resonance in nitrogen-vacancy centers in diamond for precision measurement of the components of a magnetic field vector

    NASA Astrophysics Data System (ADS)

    Vershovskii, A. K.; Dmitriev, A. K.

    2015-11-01

    We used synchronous radio-frequency excitation of three components of a hyperfine resonance line in the scheme of the vector sensor of a magnetic field based on optically detected magnetic resonance in the nitrogen-vacancy centers in diamond crystal. As a result, for the first time, the sensitivity of order 1.5 nT Hz-1/2 in the frequency range of 0-100 Hz was reached in the crystal with a volume of 0.01 mm3 glued to the end of an optical fiber.

  18. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  19. Unraveling the nature of charge excitations in La2CuO4 with momentum-resolved Cu K-edge resonant inelastic X-ray scattering

    SciTech Connect

    Chen, Cheng-Chien

    2011-03-01

    Results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu K-edge resonant inelastic X-ray scattering (RIXS) from La{sub 2}CuO{sub 4}. The model includes electronic orbitals necessary to highlight non-local Zhang-Rice singlet, charge transfer and d-d excitations, as well as states with apical oxygen 2p{sub z} character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multi-orbital character of RIXS profiles in the energy transfer range 1-6 eV.

  20. Resonant inelastic x-ray scattering study of entangled spin-orbital excitations in superconducting PrFeAsO0.7

    NASA Astrophysics Data System (ADS)

    Nomura, T.; Harada, Y.; Niwa, H.; Ishii, K.; Ishikado, M.; Shamoto, S.; Jarrige, I.

    2016-07-01

    Low-energy electron excitation spectra were measured on a single crystal of a typical iron-based superconductor PrFeAsO0.7 using resonant inelastic x-ray scattering (RIXS) at the Fe -L3 edge. Characteristic RIXS features are clearly observed around 0.5, 1-1.5, and 2-3 eV energy losses. These excitations are analyzed microscopically with theoretical calculations using a 22-orbital model derived from first-principles electronic structure calculation. Based on the agreement with the experiment, the RIXS features are assigned to Fe-d orbital excitations which, at low energies, are accompanied by spin flipping and dominated by Fe dy z and dx z orbital characters. Furthermore, our calculations suggest dispersive momentum dependence of the RIXS excitations below 0.5 eV, and predict remarkable splitting and merging of the lower-energy excitations in momentum space. Those excitations, which were not observed in the present experiment, highlight the potential of RIXS with an improved energy resolution to unravel new details of the electronic structure of the iron-based superconductors.

  1. Transient resonance Raman spectra of benzophenone and its four isotopic analogues in the lowest excited triplet state

    SciTech Connect

    Tahara, T.; Hamaguchi, H.; Tasumi, M.

    1987-11-05

    Transient resonance Raman spectra of T/sub 1/ benzophenone (T/sub 1/BP) and its four isotopic analogues in carbon tetrachloride solutions were measured. Vibrational assignments of eight T/sub 1/ bands have been made on the basis of the observed isotopic frequency shifts. The assignments clarified the following three points concerning the structure of T/sub 1/ BP in solution. (1) The CO bond order in T/sub 1/ BP is much lower than that in the ground-state benzophenone (S/sub 0/ BP). The CO stretching frequency in T/sub 1/ is found to be 1222 cm/sup -1/, whereas the corresponding value in S/sub 0/ is 1665 cm/sup -1/. The former frequency indicates a single-bond-like character of the CO bonding in the T/sub 1/ state. (2) Vibrational frequencies of several ring modes show marked downshifts in going from S/sub 0/ to T/sub 1/. This suggests the delocalization of the ..pi..* electron into the ring part. (3) The assignment (1302 cm/sup -1/) of the symmetric C-phenyl stretch mode in the T/sub 1/ withdraws S/sub 0/ absorption spectrum is questioned. According to the present assignment, the frequency of this mode (approx. 1100 cm/sup -1/) is slightly lower than that in the ground state (1150 cm/sup -1/). The simple quantum chemical picture of T/sub 1/ BP, which predicted the increase of the C-phenyl bond order with the ..pi..* withdraws n excitation, should therefore be reconsidered.

  2. Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes.

    PubMed

    Ichou, Farid; Schwarzenberg, Adrian; Lesage, Denis; Alves, Sandra; Junot, Christophe; Machuron-Mandard, Xavier; Tabet, Jean-Claude

    2014-06-01

    Reproducibility among different types of excitation modes is a major bottleneck in the field of tandem mass spectrometry library development in metabolomics. In this study, we specifically evaluated the influence of collision voltage and activation time parameters on tandem mass spectrometry spectra for various excitation modes [collision-induced dissociation (CID), pulsed Q dissociation (PQD) and higher-energy collision dissociation (HCD)] of Orbitrap-based instruments. For this purpose, internal energy deposition was probed using an approach based on Rice-Rampserger-Kassel-Marcus modeling with three thermometer compounds of different degree of freedom (69, 228 and 420) and a thermal model. This model treats consecutively the activation and decomposition steps, and the survival precursor ion populations are characterized by truncated Maxwell-Boltzmann internal energy distributions. This study demonstrates that the activation time has a significant impact on MS/MS spectra using the CID and PQD modes. The proposed model seems suitable to describe the multiple collision regime in the PQD and HCD modes. Linear relationships between mean internal energy and collision voltage are shown for the latter modes and the three thermometer molecules. These results suggest that a calibration based on the collision voltage should provide reproducible for PQD, HCD to be compared with CID in tandem in space instruments. However, an important signal loss is observed in PQD excitation mode whatever the mass of the studied compounds, which may affect not only parent ions but also fragment ions depending on the fragmentation parameters. A calibration approach for the CID mode based on the variation of activation time parameter is more appropriate than one based on collision voltage. In fact, the activation time parameter in CID induces a modification of the collisional regime and thus helps control the orientation of the fragmentation pathways (competitive or consecutive dissociations).

  3. Excitation of High-Frequency Internal Kink Mode by Deeply-Trapped Energetic Ions

    NASA Astrophysics Data System (ADS)

    Li, Wen; Wang, Shaojie

    2010-08-01

    Deeply trapped energetic ions can destabilize the internal kink mode with both high and low frequencies with a potato-orbit limit in the EAST-like tokamaks. The threshold beta value of the deeply trapped energetic ions, the real frequency, and the growth rate of the internal kink mode are predicted in this paper.

  4. PREFACE: XVI International Youth Scientific School 'Actual Problems of Magnetic Resonance and its Applications'

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Tagirov, M. S.; Dooglav, A. V.

    2013-12-01

    In 1997, A S Borovik-Romanov, the Academician of RAS, and A V Aganov, the head of the Physics Department of Kazan State University, suggested that the 'School of Magnetic Resonance', well known in the Soviet Union, should recommence and be regularly held in Kazan. This school was created in 1968 by G V Scrotskii, the prominent scientist in the field of magnetic resonance and the editor of many famous books on magnetic resonance (authored by A Abragam, B. Bleaney, C. Slichter, and many others) translated and edited in the Soviet Union. In 1991 the last, the 12th School, was held under the supervision of G V Scrotskii. Since 1997, more than 600 young scientists, 'schoolboys', have taken part in the School meetings, made their oral reports and participated in heated discussions. Every year a competition among the young scientist takes place and the Program Committee members name the best reports, the authors of which are invited to prepare full-scale scientific papers. The XVI International Youth Scientific School 'Actual problems of the magnetic resonance and its application' in its themes is slightly different from previous ones. A new section has been opened this year: Coherent Optics and Optical Spectroscopy. Many young people have submitted interesting reports on optical research, many of the reports are devoted to the implementation of nanotechnology in optical studies. The XVI International Youth Scientific School has been supported by the Program of development of Kazan Federal University. It is a pleasure to thank the sponsors (BRUKER Ltd, Moscow, the Russian Academy of Science, the Dynasty foundation of Dmitrii Zimin, Russia, Russian Foundation for Basic Research) and all the participants and contributors for making the International School meeting possible and interesting. A V Dooglav, M Kh Salakhov and M S Tagirov The Editors

  5. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides

    SciTech Connect

    Rengstl, U.; Schwartz, M.; Herzog, T.; Hargart, F.; Paul, M.; Portalupi, S. L.; Jetter, M.; Michler, P.

    2015-07-13

    We present an on-chip beamsplitter operating on a single-photon level by means of a quasi-resonantly driven InGaAs/GaAs quantum dot. The single photons are guided by rib waveguides and split into two arms by an evanescent field coupler. Although the waveguides themselves support the fundamental TE and TM modes, the measured degree of polarization (∼90%) reveals the main excitation and propagation of the TE mode. We observe the preserved single-photon nature of a quasi-resonantly excited quantum dot by performing a cross-correlation measurement on the two output arms of the beamsplitter. Additionally, the same quantum dot is investigated under resonant excitation, where the same splitting ratio is observed. An autocorrelation measurement with an off-chip beamsplitter on a single output arm reveal the single-photon nature after evanescent coupling inside the on-chip splitter. Due to their robustness, adjustable splitting ratio, and their easy implementation, rib waveguide beamsplitters with embedded quantum dots provide a promising step towards fully integrated quantum circuits.

  6. Study of electron impact excitation of argon in the extreme ultraviolet - Emission cross section of resonance lines of Ar I, Ar II

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; James, Geoffrey K.; Franklin, Brian; Howell, Simon

    1990-01-01

    In a crossed-beam experiment under optically thin conditions the EUV spectrum of argon produced by electron impact excitation is studied. The cross sections of the resonance lines of Ar I and II are measured. The resonance lines of Ar I at 104.8 nm and 106.7 nm, and of Ar II at 91.96 nm and 93.21 nm are the most prominent features of the EUV spectrum between 40 and 110 nm. The relative-flow technique is used to measure the absolute cross sections of these lines at 200 eV. The measurements are compared with previous estimates. The measured emission cross section values at 200 eV for the Ar I lines at 104.8 nm and 106.7 nm, when compared to the electron energy loss estimates of the direct excitation cross sections, establish that cascading is larger for the Ar I resonance lines than previous emission experiments have indicated. In addition, all the emission cross sections for the Ar I and II Rydberg series in the EUV are measured at 0.5 nm resolution. The FUV spectrum is also surveyed and found to consist of Ar II multiplets from simultaneous ionization-excitation.

  7. Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO₁₋y

    SciTech Connect

    Jarrige, I.; Nomura, T.; Ishii, K.; Gretarsson, H.; Kim, Y.-J.; Kim, J.; Upton, M.; Casa, D.; Gog, T.; Ishikado, M.; Fukuda, T.; Yoshida, M.; Hill, J. P.; Liu, X.; Hiraoka, N.; Tsuei, K. D.; Shamoto, S.

    2012-09-05

    We report the first observation by momentum-resolved resonant inelastic x-ray scattering of charge excitations in an iron-based superconductor and its parent compound, PrFeAsO₀.₇ and PrFeAsO, respectively, with two main results. First, using calculations based on a 16-band dp model, we show that the energy of the lowest-lying excitations, identified as dd interband transitions of dominant xz,yz orbital character, exhibits a dramatic dependence on electron correlation. This enables us to estimate the Coulomb repulsion U and Hund's coupling J, and to highlight the role played by J in these peculiar orbital-dependent electron correlation effects. Second, we show that short-range antiferromagnetic correlations, which are a prerequisite to the occurrence of these excitations at the Γ point, are still present in the superconducting state.

  8. Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO₁₋y

    DOE PAGES

    Jarrige, I.; Nomura, T.; Ishii, K.; Gretarsson, H.; Kim, Y.-J.; Kim, J.; Upton, M.; Casa, D.; Gog, T.; Ishikado, M.; et al

    2012-09-05

    We report the first observation by momentum-resolved resonant inelastic x-ray scattering of charge excitations in an iron-based superconductor and its parent compound, PrFeAsO₀.₇ and PrFeAsO, respectively, with two main results. First, using calculations based on a 16-band dp model, we show that the energy of the lowest-lying excitations, identified as dd interband transitions of dominant xz,yz orbital character, exhibits a dramatic dependence on electron correlation. This enables us to estimate the Coulomb repulsion U and Hund's coupling J, and to highlight the role played by J in these peculiar orbital-dependent electron correlation effects. Second, we show that short-range antiferromagnetic correlations,more » which are a prerequisite to the occurrence of these excitations at the Γ point, are still present in the superconducting state.« less

  9. Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B

    SciTech Connect

    Li, Muye; Lu, Peixiang; Li, Fang He, Zhicong; Zhang, Junpei; Han, Junbo

    2014-12-21

    Two-photon excited fluorescence resonance energy transfer (FRET) between CdTe quantum dots with different emission peaks and Rhodamine B in aqueous solution are investigated both experimentally and theoretically. The photoluminescence and lifetime are measured using a time-resolved fluorescence test system. The two-photon excited FRET efficiency is found to increase as the degree of spectral overlap of the emission spectrum of CdTe and the absorption spectrum of Rhodamine B increases, which is due to the increase of Forster radius of the sample. Moreover, FRET efficiency increases when the ratio of acceptor/donor concentration increases. The two-photon excited FRET efficiency was found to reach 40%.

  10. Charge-transfer and Mott-Hubbard Excitations in FeBo{sub 3} : Fe K-edge resonant Inelastic x-ray scattering study.

    SciTech Connect

    Kim, J.; Shvydko, Y.

    2011-06-06

    Momentum-resolved resonant inelastic x-ray scattering (RIXS) spectroscopy has been carried out successfully at the Fe K-edge for the first time. The RIXS spectra of a FeBO{sub 3} single crystal reveal a wealth of information on {approx} 1-10 eV electronic excitations. The IXS signal resonates when the incident photon energy approaches the pre-edge (1s{sup -}-3d) and the main-edge (1s{sup -}-4p) of the Fe K-edge absorption spectrum. The RIXS spectra measured at the pre-edge and the main-edge show quantitatively different dependences on the incident photon energy, momentum transfer, photon polarization, and temperature. We present a multielectron analysis of the Mott-Hubbard (MH) and charge transfer (CT) excitations, and calculate their energies. Electronic excitations observed in the pre-edge and main-edge RIXS spectra are interpreted as MH and CT excitations, respectively. We propose the electronic structure around the chemical potential in FeBO{sub 3} based on the experimental data.

  11. PREFACE: XVII International Youth Scientific School on Actual Problems of Magnetic Resonance and its Applications

    NASA Astrophysics Data System (ADS)

    2014-11-01

    Editors: M.S.Tagirov, V.V.Semashko, A.S.Nizamutdinov Kazan is the motherland of Electronic Paramagnetic Resonance (EPR) which was discovered in Kazan State University in 1944 by prof. E.K.Zavojskii. Since the Young Scientist School of Magnetic Resonance run by professor G.V.Skrotskii from MIPT stopped its work, Kazan took up the activity under the initiative of academician A.S.Borovik-Romanov. Nowadays this school is rejuvenated and the International Youth Scientific School studying "Actual problems of the magnetic resonance and its application" is developing. Traditionally the main subjects of the School meetings are: Magnetic Resonance in Solids, Chemistry, Geology, Biology and Medicine. The unchallenged organizers of that school are Kazan Federal University and Kazan E. K. Zavoisky Physical-Technical Institute. The rector of the School is professor Murat Tagirov, vice-rector - professor Valentine Zhikharev. Since 1997 more than 100 famous scientists from Germany, France, Switzerland, USA, Japan, Russia, Ukraine, Moldavia, Georgia provided plenary lecture presentations. Almost 700 young scientists have had an opportunity to participate in discussions of the latest scientific developments, to make their oral reports and to improve their knowledge and skills. To enhance competition among the young scientists, reports take place every year and the Program Committee members name the best reports, the authors of which are invited to prepare full-scale scientific papers. Since 2013 the International Youth Scientific School "Actual problems of the magnetic resonance and its application", following the tendency for comprehensive studies of matter properties and its interaction with electromagnetic fields, expanded "the field of interest" and opened the new section: Coherent Optics and Optical Spectroscopy. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non

  12. Forward-to-backward differential-cross-section ratio in electron-impact vibrational excitation via the {sup 2}{pi} resonance of CO

    SciTech Connect

    Poparic, G.B.; Galijas, S.M.D.; Belic, D.S.

    2004-08-01

    Electron-impact excitation of the CO molecule has been investigated by use of a crossed beam double trochoidal electron spectrometer. Forward and backward scattered electrons from the {sup 2}{pi} resonance are analyzed. In order to separate these two contributions, electron beam modulation and time-of-flight detection of scattered electrons have been introduced. Backward electrons are additionally delayed in time by introduction of a decelerator device. The operation of this device is tested by a measurement performed on the {sup 2}{pi}{sub g} resonance in N{sub 2} molecule. The ratio of forward-to-backward scattered electrons from the {sup 2}{pi} resonance in CO is found to be equal to 1, and thus the angular distribution of scattered electrons to be symmetric relative to 90 deg. This conclusion is compared to existing angular distribution measurements and theoretical predictions.

  13. Accurate and highly efficient calculation of the highly excited pure OH stretching resonances of O(1D)HCl, using a combination of methods.

    PubMed

    Bian, Wensheng; Poirier, Bill

    2004-09-01

    Accurate calculation of the energies and widths of the resonances of HOCl--an important intermediate in the O(1D)HCl reactive system--poses a challenging benchmark for computational methods. The need for very large direct product basis sets, combined with an extremely high density of states, results in difficult convergence for iterative methods. A recent calculation of the highly excited OH stretch mode resonances using the filter diagonalization method, for example, required 462,000 basis functions, and 180,000 iterations. In contrast, using a combination of new methods, we are able to compute the same resonance states to higher accuracy with a basis less than half the size, using only a few hundred iterations-although the CPU cost per iteration is substantially greater. Similar performance enhancements are observed for calculations of the high-lying bound states, as reported in a previous paper [J. Theo. Comput. Chem. 2, 583 (2003)].

  14. TOPICAL REVIEW: Breathing mode excitation in near-harmonic systems: resonant mass capture, desorption and atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Gadzuk, J. W.

    1998-09-01

    The phenomenon of breathing mode excitation or bound-state wavepacket squeezing and spreading driven by a time-dependent oscillator frequency (due to either a transient force constant or mass) is considered here. An easily implemented theory of stimulated wavepacket dynamics for near-harmonic systems is presented which describes a variety of generic time dependences such as single sudden excitation, double switching (excitation/time delay/de-excitation) and decaying initially excited states which characterize many processes in spectroscopy, pump-probe control in intramolecular dynamics, and femtochemistry. The model is used as the theoretical basis for understanding such diverse phenomena as quantum excitation due to temporary neutron capture, stimulated bond-breaking resulting in delocalization, desorption, or dissociation, and breathing mode excitation of ultracold atoms trapped in optical lattices. Whilst the first two examples are speculative, results for transient wavepacket dynamics of the occupied excited optical lattice are in accord with recent experimental observations reported by the NIST Laser Cooling Group. Emphasis on the inherent theoretical simplicity and the multidisciplinary aspects of near-harmonic breathing mode excitation, as exemplified by the specific realizations considered here, has been a major intent of this topical review.

  15. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c.

    PubMed Central

    Angiolillo, P J; Vanderkooi, J M

    1995-01-01

    The photoactivated metastable triplate states of the porphyrin (free-base, i.e., metal-free) zinc and tin derivatives of horse cytochrome c were investigated using electron paramagnetic resonance. Zero-field splitting parameters, line shape, and Jahn-Teller distortion in the temperature range 3.8-150 K are discussed in terms of porphyrin-protein interactions. The zero-field splitting parameters D for the free-base, Zn and Sn derivatives are 465 x 10(-4), 342 x 10(-4) and 353 x 10(-4) cm-1, respectively, and are temperature invariant over the temperature ranges studied. AN E value at 4 K of 73 x 10(-4) cm-1 was obtained for Zn cytochrome c, larger than any previously found for Zn porphyrins derivatives of hemeproteins, showing that the heme site of cytochrome c imposes an asymmetric field. Though the E value for Zn cytochrome c is large, the geometry of the site appears quite constrained, as indicated by a spectral line shape showing a single species. Intersystem crossing occurred predominantly to the T2 > zero-field spin sublevel. EPR line shape changes with respect to temperature of Zn cyt c are interpreted in terms of vibronic coupling, and a maximum Jahn-Teller crystal-field splitting of approximately 180 cm-1 is obtained. Sn cytochrome c in comparison with the Zn protein exhibits a photoactivated triplet line shape that is less well resolved in the X-Y region. The magnitude of E value is approximately 60 x 10(-4) cm-1 at 4 K; its value rapidly tends toward zero with increasing temperature, from which a value for the Jahn-Teller crystal-field splitting of > or = 40 cm-1 is estimated. In contrast to those for the metal cytochromes, the magnitude of E value for the free-base derivative was essentially zero at all temperatures studied. This finding is discussed as a consequence of an excited-state tautomerization process that occurs even at 4 K. PMID:7647253

  16. Resonance Raman scattering of butadiene: Vibronic activity of a bu mode demonstrates the presence of a 1Ag symmetry excited electronic state at low energy

    NASA Astrophysics Data System (ADS)

    Chadwick, Richard R.; Zgierski, Marek Z.; Hudson, Bruce S.

    1991-11-01

    Resonance Raman spectra of buta-1,3-diene-d0 and buta-1,3-diene-1,1,4,4-d4 have been obtained with ultraviolet excitation from 239.5 to 199.9 nm. Activity of the first overtone of mode 24, the bu symmetry CCC chain deformation mode, is observed with excitation energy below the origin of the 1 1Bu state. This vibronic activity of a nontotally symmetric mode is shown to be evidence of resonance with the 2 1Ag state of butadiene. A quantitative analysis of the ratio of intensities of 2ν24 to ν9, the ag symmetry CCC chain deformation mode, demonstrates that enhancement of 2ν24 cannot be due to resonance with the 1 1Bu state. The resonance enhancement behavior of this overtone band also shows that it is of vibronic origin rather than Franck-Condon allowed. The intensity pattern seen for the modes of bu symmetry is fully consistent with the results of a quantitative calculation of vibronic activity for the eight bu symmetry modes. The 2 1Ag electronic state is estimated to be ca. 0.25 eV below the 1 1Bu electronic state. Overtones of out-of-plane C-H bending and CH2 twisting modes are seen with excitation radiation near the peak of the transition to the 2 1Ag state, indicating that the 2 1Ag state of butadiene has appreciably lower resistance to deformation along out-of-plane coordinates than does the ground electronic state. This is consistent with the expectations of semiempirical calculations.

  17. Construction of a molecular beacon based on two-photon excited fluorescence resonance energy transfer with quantum dot as donor.

    PubMed

    Liu, Lingzhi; Li, Hui; Qiu, Ting; Zhou, Guohua; Wong, Kwok-Yin; He, Zhike; Liu, Zhihong

    2011-03-01

    A new molecular beacon (MB) driven by two-photon excitation (TPE) using quantum dots as energy donor is constructed, which provides reduced direct excitation of acceptor and is free of interferences from autofluorescence or scattering light in a complicated biological matrix.

  18. Picosecond kinetics of excited state decay processes in internally hydrogen-bonded polymer photostabilizers

    NASA Technical Reports Server (NTRS)

    Huston, A. L.; Scott, G. W.

    1982-01-01

    A construction of economically practical solar energy conversion devices could be based on the employment of inexpensive, visible-radiation transparent, durable, light-fast materials. Difficulties arise in connection with the availability of such materials. Plastics which are not particularly susceptible to solar ultraviolet degradation are, in general, expensive, while less expensive optically transparent films are susceptible to deterioration when exposed to solar radiation. However, techniques are known for protecting polymers from photochemical degradation. According to these techniques, the composition or structure of polymeric material is modified by incorporation of photostabilizers. Two classes of ultraviolet absorbers are used as commercial photostabilizers. These classes include 2-hydroxybenzophenone (HB) and 2-(2-prime -hydroxyphenyl)benzotriazole (HPB). The present investigation is concerned with the results of spectroscopic and kinetics measurements related to the study of the mechanism of excited-state relaxation of polymer photostabilizers in the class HB and HPB.

  19. Measurement of the resonant polaron effect in the Reststrahlen band of GaAs:Si using far-infrared two-photon excitation

    SciTech Connect

    Wenckebach, W.Th.; Planken, P.C.M.; Son, P.C. van

    1995-12-31

    We present the results of photoconductivity measurements of the resonant electron-phonon interaction in the middle of the Reststrahlen band using two-photon excitation with intense picosecond pulses with frequency around 143 cm{sup -1} (70 {mu}m). We use two photons rather than a single photon for the excitation of the resonant-polaron to avoid the problems of strong reflection and dielectric artifacts encountered in direct single-photon excitation in the Reststrahlen band. The sample is a 10 {mu}m thick Si-doped GaAs epitaxial layer on a 400 {mu}m semi-insulating GaAs substrate. The electronic levels of the Si shallow donor can be tuned by the application of a magnetic field. Intense tunable picosecond pulses with a frequency of around 143 cm{sup -1} from the Dutch free-electron laser FELIX are weakly focussed onto the sample, which is kept at 8 K. Electrons excited to the 3d{sup +2} state via the electric-dipole allowed two-photon transition out of the 1s{sub 0-} ground state, decay to the conduction band and give rise to an increase in the photoconductivity. The figure shows the energy-peak position of the 3d{sup +2} transition thus obtained as a function of the magnetic-field strength. The figure clearly shows the avoided crossing around the LO-phonon energy where the coupling shows the avoided crossing around the LO-phonon energy where the coupling between the 3d{sup +2} state and the LO phonon is strongest. Note that the data between 267 cm{sup -1} and 296 cm{sup -1} are extremely difficult to obtain with single-photon excitation because of their position in the middle of the Reststrahlen band.

  20. Global bifurcations of a taut string with 1:2 internal resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Chen, Fangqi; Jing, Taiyan

    2014-04-01

    The global bifurcations of a taut string are investigated with the case of 1:2 internal resonance. The method of multiple scales is applied to obtain a system of autonomous ordinary differential equations. Based on the normal form theory, the desired form for the global perturbation method is obtained. Then the method developed by Kovacic and Wiggins is used to find explicit sufficient conditions for chaos to occur by identifying the existence of a Silnikov-type homoclinic orbit. Finally, numerical results obtained by using fourth-order Runge-Kutta method agree with the theoretical analysis at least qualitatively.

  1. Mechanism of the S1 excited state internal conversion in vitamin B12.

    PubMed

    Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Garabato, Brady D; Kozlowski, Pawel M

    2014-09-21

    To explain the photostability of vitamin B12, internal conversion of the S1 state was investigated using TD-DFT. The active coordinates for radiationless deactivation were determined to be elongated axial bonds, overcoming a 5.0 kcal mol(-1) energy barrier between the relaxed ligand-to-metal charge transfer (S1), and the ground (S0) states.

  2. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer.

    PubMed

    Zeng, Leyong; Pan, Yuanwei; Zou, Ruifen; Zhang, Jinchao; Tian, Ying; Teng, Zhaogang; Wang, Shouju; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2016-10-01

    To avoid the overheating effect of excitation light and improve the efficacy of photodynamic therapy (PDT) of upconversion nanoplatform, a novel nanoprobe based on 808 nm-excited upconversion nanocomposites (T-UCNPs@Ce6@mSiO2) with low heating effect and deep penetration has been successfully constructed for targeted upconversion luminescence, magnetic resonance imaging (MRI) and high-efficacy PDT in HER2-overexpressed breast cancer. In this nanocomposite, photosensitizers (Ce6) were covalently conjugated inside of mesoporous silica to enhance the PDT efficacy by shortening the distance of fluorescence resonance energy transfer and to decrease the cytotoxicity by preventing the undesired leakage of Ce6. Compared with UCNPs@mSiO2@Ce6, UCNPs@Ce6@mSiO2 greatly promoted the singlet oxygen generation and amplified the PDT efficacy under the excitation of 808 nm laser. Importantly, the designed nanoprobe can greatly improve the uptake of HER2-positive cells and tumors by modifying the site-specific peptide, and the in vivo experiments showed excellent MRI and PDT via intravenous injection by modeling MDA-MB-435 tumor-bearing nude mice. Our strategy may provide an effective solution for overcoming the heating effect and improving the PDT efficacy of upconversion nanoprobes, and has potential application in visualized theranostics of HER2-overexpressed breast cancer. PMID:27376560

  3. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer.

    PubMed

    Zeng, Leyong; Pan, Yuanwei; Zou, Ruifen; Zhang, Jinchao; Tian, Ying; Teng, Zhaogang; Wang, Shouju; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2016-10-01

    To avoid the overheating effect of excitation light and improve the efficacy of photodynamic therapy (PDT) of upconversion nanoplatform, a novel nanoprobe based on 808 nm-excited upconversion nanocomposites (T-UCNPs@Ce6@mSiO2) with low heating effect and deep penetration has been successfully constructed for targeted upconversion luminescence, magnetic resonance imaging (MRI) and high-efficacy PDT in HER2-overexpressed breast cancer. In this nanocomposite, photosensitizers (Ce6) were covalently conjugated inside of mesoporous silica to enhance the PDT efficacy by shortening the distance of fluorescence resonance energy transfer and to decrease the cytotoxicity by preventing the undesired leakage of Ce6. Compared with UCNPs@mSiO2@Ce6, UCNPs@Ce6@mSiO2 greatly promoted the singlet oxygen generation and amplified the PDT efficacy under the excitation of 808 nm laser. Importantly, the designed nanoprobe can greatly improve the uptake of HER2-positive cells and tumors by modifying the site-specific peptide, and the in vivo experiments showed excellent MRI and PDT via intravenous injection by modeling MDA-MB-435 tumor-bearing nude mice. Our strategy may provide an effective solution for overcoming the heating effect and improving the PDT efficacy of upconversion nanoprobes, and has potential application in visualized theranostics of HER2-overexpressed breast cancer.

  4. Nonlinear magneto-optical resonances at D{sub 1} excitation of {sup 85}Rb and {sup 87}Rb for partially resolved hyperfine F levels

    SciTech Connect

    Auzinsh, M.; Ferber, R.; Gahbauer, F.; Jarmola, A.; Kalvans, L.

    2009-05-15

    Experimental signals of nonlinear magneto-optical resonances at D{sub 1} excitation of natural rubidium in a vapor cell have been obtained and described with experimental accuracy by a detailed theoretical model based on the optical Bloch equations. The D{sub 1} transition of rubidium is a challenging system to analyze theoretically because it contains transitions that are only partially resolved under Doppler broadening. The theoretical model took into account all nearby transitions, the coherence properties of the exciting laser radiation, and the mixing of magnetic sublevels in an external magnetic field and also included averaging over the Doppler profile. The experimental signals were reproduced very well at each hyperfine transition and over a wide range of laser power densities, beam diameters, and laser detunings from the exact transition frequency. The bright resonance expected at the F{sub g}=1{yields}F{sub e}=2 transition of {sup 87}Rb has been observed. A bright resonance was observed at the F{sub g}=2{yields}F{sub e}=3 transition of {sup 85}Rb, but displaced from the exact position of the transition due to the influence of the nearby F{sub g}=2{yields}F{sub e}=2 transition, which is a dark resonance whose contrast is almost 2 orders of magnitude larger than the contrast of the bright resonance at the F{sub g}=2{yields}F{sub e}=3 transition. Even in this very delicate situation, the theoretical model described in detail the experimental signals at different laser detunings.

  5. Excited state energies and internal conversion in diphenylpolyenes: from diphenylbutadiene to diphenyltetradecaheptaene

    NASA Astrophysics Data System (ADS)

    Bachilo, S. M.; Spangler, C. W.; Gillbro, T.

    1998-02-01

    Time-resolved and steady-state fluorescence investigations on a series of α,ω-diphenylpolyenes have been made. Dual S 1/S 2 fluorescence was observed for polyenes with more than three double bonds in the polyene chain and the intensity and lifetime of the S 1 fluorescence decreased with increasing chain length. The 1B u energy was almost inversely proportional to the square root of the total molecular length. A similar dependence was found for the energy of the 1A g level, but the length without the phenyl rings was used. The logarithm of the S 1→S 0 internal conversion rate in long-chain diphenylpolyenes exhibits a linear dependence on the S 1 energy. The rate in diphenylhexatriene is slightly higher than the value predicted from the linear dependence, while the internal conversion of diphenylbutadiene is much faster due to stronger S 1-S 2 interaction.

  6. Investigation of excited states in {sup 22}Mg via resonant elastic scattering of {sup 21}Na+p and its astrophysical implications

    SciTech Connect

    He, J. J.; Hu, J.; Kubono, S.; Notani, M.; Baba, H.; Teranishi, T.; Hokoiwa, N.; Kibe, M.; Gono, Y.; Nishimura, S.; Nishimura, M.; Iwasaki, H.; Yanagisawa, Y.; Moon, J. Y.; Lee, J. H.; Lee, C. S.; Kato, S.

    2009-07-15

    The excited states in {sup 22}Mg have been investigated by the resonant elastic scattering of {sup 21}Na+p. A 4.0 MeV/nucleon {sup 21}Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH{sub 2}){sub n} target. The energy spectra of recoiled protons were measured at scattering angles of {theta}{sub c.m.}{approx_equal}172 deg.,146 deg., and 134 deg., respectively. A wide energy-range of excitation function in {sup 22}Mg (up to E{sub x}{approx}8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the {sup 18}Ne({alpha},p){sup 21}Na reaction was recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.

  7. Initial Design Calculations for a Detection System that will Observe Resonant Excitation of the 680 keV state in 238U

    SciTech Connect

    Pruet, J; Hagmann, C

    2007-01-26

    We present calculations and design considerations for a detection system that could be used to observe nuclear resonance fluorescence in {sup 238}U. This is intended as part of an experiment in which a nearly monochromatic beam of light incident on a thin foil of natural uranium resonantly populates the state at 680 keV in {sup 238}U. The beam of light is generated via Compton upscattering of laser light incident on a beam of relativistic electrons. This light source has excellent energy and angular resolution. In the current design study we suppose photons emitted following de-excitation of excited nuclei to be observed by a segmented array of BGO crystals. Monte Carlo calculations are used to inform estimates for the design and performance of this detector system. We find that each detector in this array should be shielded by about 2 cm of lead. The signal to background ratio for each of the BGO crystals is larger than ten. The probability that a single detector observes a resonant photon during a single pulse of the light source is near unity.

  8. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  9. Nonlinear mode coupling and internal resonances in MoS{sub 2} nanoelectromechanical system

    SciTech Connect

    Samanta, C.; Yasasvi Gangavarapu, P. R.; Naik, A. K.

    2015-10-26

    Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS{sub 2} for the NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of the nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here, we report on all electrical actuation and detection of few-layer MoS{sub 2} resonator. The ability to electrically detect multiple modes and actuate the modes deep into the nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances.

  10. Duffing revisited: phase-shift control and internal resonance in self-sustained oscillators

    NASA Astrophysics Data System (ADS)

    Arroyo, Sebastián I.; Zanette, Damián H.

    2016-01-01

    We address two aspects of the dynamics of the forced Duffing oscillator which are relevant to the technology of micromechanical devices and, at the same time, have intrinsic significance to the field of nonlinear oscillating systems. First, we study the stability of periodic motion when the phase shift between the external force and the oscillation is controlled - contrary to the standard case, where the control parameter is the frequency of the force. Phase-shift control is the operational configuration under which self-sustained oscillators - and, in particular, micromechanical oscillators - provide a frequency reference useful for time keeping. We show that, contrary to the standard forced Duffing oscillator, under phase-shift control oscillations are stable over the whole resonance curve, and provide analytical approximate expressions for the time dependence of the oscillation amplitude and frequency during transients. Second, we analyze a model for the internal resonance between the main Duffing oscillation mode and a higher-harmonic mode of a vibrating solid bar clamped at its two ends. We focus on the stabilization of the oscillation frequency when the resonance takes place, and present preliminary experimental results that illustrate the phenomenon. This synchronization process has been proposed to counteract the undesirable frequency-amplitude interdependence in nonlinear time-keeping micromechanical devices. Supplementary material in the form of one pdf file and one gif file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2015-60517-3

  11. The influence of phase-locking on internal resonance from a nonlinear normal mode perspective

    NASA Astrophysics Data System (ADS)

    Hill, T. L.; Neild, S. A.; Cammarano, A.; Wagg, D. J.

    2016-09-01

    When a nonlinear system is expressed in terms of the modes of the equivalent linear system, the nonlinearity often leads to modal coupling terms between the linear modes. In this paper it is shown that, for a system to exhibit an internal resonance between modes, a particular type of nonlinear coupling term is required. Such terms impose a phase condition between linear modes, and hence are denoted phase-locking terms. The effect of additional modes that are not coupled via phase-locking terms is then investigated by considering the backbone curves of the system. Using the example of a two-mode model of a taut horizontal cable, the backbone curves are derived for both the case where phase-locked coupling terms exist, and where there are no phase-locked coupling terms. Following this, an analytical method for determining stability is used to show that phase-locking terms are required for internal resonance to occur. Finally, the effect of non-phase-locked modes is investigated and it is shown that they lead to a stiffening of the system. Using the cable example, a physical interpretation of this is provided.

  12. Simulation of Non-resonant Internal kink mode with Toroidal Rotation in NSTX

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Fu, Guoyong; Breslau, Josh

    2012-03-01

    Plasmas in spherical tokamak with a safety factor above unity and weakly reversed magnetic shear may be unstable to an ideal, non-resonant internal kink mode. This mode, termed the ''long-lived mode'' (LLM) in MAST [1], will saturate and persist, exhibiting a strong m/n=2/1 component in NSTX. The resulting magnetic islands are capable of seeding neoclassical tearing modes (NTMs) [2]. Experimental results show that coupled 1/1 and 2/1 kink/tearing modes can also limit the sustained plasma beta. In this work, we perform nonlinear MHD simulations of the behavior of the non-resonant internal kink using M3D code initialized with measured NSTX equilibrium profiles. In particular, the effects of toroidal rotation are investigated systematically. The results show that when the rotation velocity is near the experimental level, its effect of equilibrium and linear stability is small. The nonlinear saturation level of the 1/1 mode is also weakly affected. However, the rotation is observed to have significant effects on the 2/1 island even at small value. With finite rotation, the 2/1 island width exhibits oscillations in the initial evolution before final steady state saturation. The width of the saturated island is reduced greatly as compared to that of non-rotating case. [1] I. Chapman et al Nuclear Fusion 50 (2010) 045007 [2] J. Breslau et al Nuclear Fusion 51 (2011) 063027

  13. Raman Laser Spectrometer internal Optical Head current status: opto-mechanical redesign to minimize the excitation laser trace

    NASA Astrophysics Data System (ADS)

    Sanz, Miguel; Ramos, Gonzalo; Moral, Andoni; Pérez, Carlos; Belenguer, Tomás; del Rosario Canchal, María; Zuluaga, Pablo; Rodriguez, Jose Antonio; Santiago, Amaia; Rull, Fernando; Instituto Nacional de Técnica Aeroespacial (INTA), Universidad de Valladolid (UVa), Ingeniería de Sistemas para la Defesa de España S.A. (ISDEFE)

    2016-10-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instruments of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). The original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks.The investigation revealing that the laser trace was not properly filtered as well as the iOH opto-mechanical redesign are reported on. After the study of the Long Pass Filters Optical Density (OD) as a function of the filtering stage to the detector distance, a new set of filters (Notch filters) was decided to be evaluated. Finally, and in order to minimize the laser trace, a new collection path design (mainly consisting on that the collimation and filtering stages are now separated in two barrels, and on the kind of filters to be used) was required. Distance between filters and collimation stage first lens was increased, increasing the OD. With this new design and using two Notch filters, the laser trace was reduced to assumable values, as can be observed in the functional test comparison also reported on this paper.

  14. Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry.

    PubMed

    Yu, Hui; Sanchez-Rodriguez, Jose A; Pollum, Marvin; Crespo-Hernández, Carlos E; Mai, Sebastian; Marquetand, Philipp; González, Leticia; Ullrich, Susanne

    2016-07-27

    The photodynamic properties of molecules determine their ability to survive in harsh radiation environments. As such, the photostability of heterocyclic aromatic compounds to electromagnetic radiation is expected to have been one of the selection pressures influencing the prebiotic chemistry on early Earth. In the present study, the gas-phase photodynamics of uracil, 5-methyluracil (thymine) and 2-thiouracil-three heterocyclic compounds thought to be present during this era-are assessed in the context of their recently proposed intersystem crossing pathways that compete with internal conversion to the ground state. Specifically, time-resolved photoelectron spectroscopy measurements evidence femtosecond to picosecond timescales for relaxation of the singlet (1)ππ* and (1)nπ* states as well as for intersystem crossing to the triplet manifold. Trapping in the excited triplet state and intersystem crossing back to the ground state are investigated as potential factors contributing to the susceptibility of these molecules to ultraviolet photodamage.

  15. Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry.

    PubMed

    Yu, Hui; Sanchez-Rodriguez, Jose A; Pollum, Marvin; Crespo-Hernández, Carlos E; Mai, Sebastian; Marquetand, Philipp; González, Leticia; Ullrich, Susanne

    2016-07-27

    The photodynamic properties of molecules determine their ability to survive in harsh radiation environments. As such, the photostability of heterocyclic aromatic compounds to electromagnetic radiation is expected to have been one of the selection pressures influencing the prebiotic chemistry on early Earth. In the present study, the gas-phase photodynamics of uracil, 5-methyluracil (thymine) and 2-thiouracil-three heterocyclic compounds thought to be present during this era-are assessed in the context of their recently proposed intersystem crossing pathways that compete with internal conversion to the ground state. Specifically, time-resolved photoelectron spectroscopy measurements evidence femtosecond to picosecond timescales for relaxation of the singlet (1)ππ* and (1)nπ* states as well as for intersystem crossing to the triplet manifold. Trapping in the excited triplet state and intersystem crossing back to the ground state are investigated as potential factors contributing to the susceptibility of these molecules to ultraviolet photodamage. PMID:27189184

  16. Conversion of terahertz wave polarization at the boundary of a layered superconductor due to the resonance excitation of oblique surface waves.

    PubMed

    Averkov, Yu O; Yakovenko, V M; Yampol'skii, V A; Nori, Franco

    2012-07-13

    We predict a complete TM↔TE transformation of the polarization of terahertz electromagnetic waves reflected from a strongly anisotropic boundary of a layered superconductor. We consider the case when the wave is incident on the superconductor from a dielectric prism separated from the sample by a thin vacuum gap. The physical origin of the predicted phenomenon is similar to the Wood anomalies known in optics and is related to the resonance excitation of the oblique surface waves. We also discuss the dispersion relation for these waves, propagating along the boundary of the superconductor at some angle with respect to the anisotropy axis, as well as their excitation by the attenuated-total-reflection method.

  17. Complete dissociation branching fractions and Coulomb explosion dynamics of SO2 induced by excitation of O 1s pre-edge resonances.

    PubMed

    Salén, Peter; Yatsyna, Vasyl; Schio, Luca; Feifel, Raimund; Af Ugglas, Magnus; Richter, Robert; Alagia, Michele; Stranges, Stefano; Zhaunerchyk, Vitali

    2015-10-01

    Fragmentation processes of SO2 following excitation of the six main O 1s pre-edge resonances, as well as above the ionization threshold and below the resonances, are studied using a position-sensitive time-of-flight ion imaging detector, and the associated dissociation branching ratios and break-up dynamics are determined. In order to distinguish between the O(+) and S(2+) fragments of equal mass-to-charge ratio, the measurements have been performed with the isotopically enriched S(18)O2 sample. By analysis of the complete set of the fragment momentum vectors, the β values for the fragments originating from the SO(+) + O(+) break-up and the kinetic energy release for fragmentation channels of both SO2 (2+) and SO2 (3+) parent ions are determined. We also present results on the three-body break-up dynamics.

  18. Interference effect in the dipole and nondipole anisotropy parameters of the Kr 4p photoelectrons in the vicinity of the Kr (3d){sup -1{yields}}np resonant excitations

    SciTech Connect

    Ricz, S.; Ricsoka, T.; Holste, K.; Borovik, A. Jr.; Bernhardt, D.; Schippers, S.; Mueller, A.; Koever, A.; Varga, D.

    2010-04-15

    The angular distribution of the Kr 4p photoelectrons was investigated in the photon energy range of the (3d){sup -1{yields}}np resonant excitations. The experimental dipole ({beta}) and nondipole ({gamma} and {delta}) anisotropy parameters were determined for the spin-orbit components of the Kr 4p shell. A simple theoretical model was developed for the description of the photoionization and excitation processes. An interference effect was observed between the direct photoionization and the resonant excitation participator Auger decay processes in the photon energy dependence of the experimental anisotropy parameters.

  19. Accurate Simulation of Resonance-Raman Spectra of Flexible Molecules: An Internal Coordinates Approach.

    PubMed

    Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo

    2015-07-14

    The interpretation and analysis of experimental resonance-Raman (RR) spectra can be significantly facilitated by vibronic computations based on reliable quantum-mechanical (QM) methods. With the aim of improving the description of large and flexible molecules, our recent time-dependent formulation to compute vibrationally resolved electronic spectra, based on Cartesian coordinates, has been extended to support internal coordinates. A set of nonredundant delocalized coordinates is automatically generated from the molecular connectivity thanks to a new general and robust procedure. In order to validate our implementation, a series of molecules has been used as test cases. Among them, rigid systems show that normal modes based on Cartesian and delocalized internal coordinates provide equivalent results, but the latter set is much more convenient and reliable for systems characterized by strong geometric deformations associated with the electronic transition. The so-called Z-matrix internal coordinates, which perform well for chain molecules, are also shown to be poorly suited in the presence of cycles or nonstandard structures.

  20. Internal defect inspection in magnetic tile by using acoustic resonance technology

    NASA Astrophysics Data System (ADS)

    Xie, Luofeng; Yin, Ming; Huang, Qinyuan; Zhao, Yue; Deng, Zhenbo; Xiang, Zhaowei; Yin, Guofu

    2016-11-01

    This paper focuses on the validity of a nondestructive methodology for magnetic tile internal defect inspection based on acoustic resonance. The principle of this methodology is to analyze the acoustic signal collected from the collision of magnetic tile with a metal block. To accomplish the detection process, the separating part of the detection system is designed and discussed in detail in this paper. A simplified mathematical model is constructed to analyze the characteristics of the impact of magnetic tile with a metal block. The results demonstrate that calculating the power spectrum density (PSD) can diagnose the internal defect of magnetic tile. Two different data-driven multivariate algorithms are adopted to obtain the feature set, namely principal component analysis (PCA) and hierarchical nonlinear principal component analysis (h-NLPCA). Three different classifiers are then performed to deal with magnetic tile classification problem based on features extracted by PCA or h-NLPCA. The classifiers adopted in this paper are fuzzy neural networks (FNN), variable predictive model based class discrimination (VPMCD) method and support vector machine (SVM). Experimental results show that all six methods are successful in identifying the magnetic tile internal defect. In this paper, the effect of environmental noise is also considered, and the classification results show that all the methods have high immunity to background noise, especially PCA-SVM and h-NLPCA-SVM. Considering the accuracy rate, computation cost problem and the ease of implementation, PCA-SVM turns out to be the best method for this purpose.

  1. Resonant vibrational excitation of H{sub 2} by electron impact: Full-range differential cross sections

    SciTech Connect

    Poparic, G. B.; Belic, D. S.; Ristic, M. M.

    2010-07-15

    Electron-impact vibrational excitation of the hydrogen molecule has been revisited in the energy region from 1 to 5 eV. A crossed-beam double trochoidal electron spectrometer is used. Forward and backward scattered electrons from the v=0{yields}1 excitation channel are separated by electron-beam modulation and time-of-flight detection technique. Present results are normalized and absolute values of differential cross sections at critical border angles of 0 deg. and 180 deg. are determined. In this way the differential cross-section measurements are completed in the full angular range from 0 deg. to 180 deg.

  2. Effects of resonant phonon scattering from internal molecular modes on the thermal conductivity of molecular glasses

    NASA Astrophysics Data System (ADS)

    Krivchikov, A. I.; Yushchenko, A. N.; Korolyuk, O. A.; Bermejo, F. J.; Fernandez-Perea, R.; Bustinduy, I.; González, M. A.

    2008-01-01

    The thermal conductivity κ(T) of the crystalline and glassy phases of the two isomers of propyl alcohol has been measured. The two isomers differ by a minor chemical detail involving the position of the hydroxyl group with respect to the carbon backbone. Such a difference in molecular structure leads, however, to disparate behaviors for the temperature dependence of κ(T) , for both glass and crystal states. The κ(T) for the glass shows for 1-propanol an anomalously large plateau region comprising temperatures within 6-90K , while data for isomeric 2-propanol show only a small plateau up to 10K which is comparable to data on lower alcohols. The results emphasize the role played by internal molecular degrees of freedom as sources of strong resonant phonon scattering.

  3. Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics

    NASA Astrophysics Data System (ADS)

    Shaw, A. D.; Champneys, A. R.; Friswell, M. I.

    2016-08-01

    Sudden onset of violent chattering or whirling rotor-stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice.

  4. Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics

    PubMed Central

    Champneys, A. R.; Friswell, M. I.

    2016-01-01

    Sudden onset of violent chattering or whirling rotor–stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice. PMID:27616927

  5. Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics

    PubMed Central

    Champneys, A. R.; Friswell, M. I.

    2016-01-01

    Sudden onset of violent chattering or whirling rotor–stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice.

  6. Dorsoventral differences in Kv7/M-current and its impact on resonance, temporal summation and excitability in rat hippocampal pyramidal cells

    PubMed Central

    Hönigsperger, Christoph; Marosi, Máté; Murphy, Ricardo; Storm, Johan F

    2015-01-01

    Key points Kv7 (KCNQ/M) channels are known to control excitability and generate subthreshold M-resonance in CA1 hippocampal pyramidal cells, but their properties and functions have not previously been compared along the dorsoventral (septotemporal) axis We used whole-cell recordings to compare electrophysiological properties of dorsal and ventral CA1 pyramidal cells in hippocampal slices from 3- to 4-week-old rats Blockade of Kv7/M-channels with 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) had a stronger impact on electrical properties in dorsal than ventral pyramidal cells, including input resistance, temporal summation, M-resonance, spike threshold, medium after-hyperpolarization, excitability, and spike frequency adaptation. Voltage-clamp recordings revealed a larger amplitude and left-shifted voltage dependence of XE991-sensitive current (IM) in dorsal vs. ventral cells. IM-dependent differences in excitability and resonance may be important for rate and phase coding of CA1 place cells along the dorsoventral axis and may enhance epileptiform activity in ventral pyramidal cells. Abstract In rodent hippocampi, the connections, gene expression and functions differ along the dorsoventral (D–V) axis. CA1 pyramidal cells show increasing excitability along the D–V axis, although the underlying mechanism is not known. In the present study, we investigated how the M-current (IM), caused by Kv7/M (KCNQ) potassium channels, and known to often control neuronal excitability, contributes to D–V differences in intrinsic properties of CA1 pyramidal cells. Using whole-cell patch clamp recordings and the selective Kv7/M blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) in hippocampal slices from 3- to 4-week-old rats, we found that: (i) IM had a stronger impact on subthreshold electrical properties in dorsal than ventral CA1 pyramidal cells, including input resistance, temporal summation of artificial synaptic

  7. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGES

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  8. Resonant frequency of microstrip antennas calculated from TE-excitation of an infinite strip embedded in a grounded dielectric slab

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1979-01-01

    The calculation of currents induced by a plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer the resonant width (or frequency) of rectangular microstrip antennas. By placing the strip inside the dielectric, the effect of a dielectric cover of the same material as the substrate can be included in the calculation of resonant frequency. A comparison with measured results indicated agreement of 1 percent or better for rectangular microstrip antennas constructed on Teflon-fiberglass substrate.

  9. Optical and time-resolved electron paramagnetic resonance studies of the excited states of a UV-B absorber (4-methylbenzylidene)camphor.

    PubMed

    Kikuchi, Azusa; Shibata, Kenji; Kumasaka, Ryo; Yagi, Mikio

    2013-02-21

    The excited states of UV-B absorber (4-methylbenzylidene)camphor (MBC) have been studied through measurements of UV absorption, phosphorescence, triplet-triplet (T-T) absorption, and steady-state and time-resolved electron paramagnetic resonance spectra in ethanol. The energy level and lifetime of the lowest excited triplet (T(1)) state of MBC were determined. The energy level of the T(1) state of MBC is much lower than that of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The weak phosphorescence and strong time-resolved EPR signals, and T-T absorption band of MBC were observed. These facts suggest that the significant proportion of the lowest excited singlet (S(1)) molecules undergoes intersystem crossing to the T(1) state and the deactivation process from the T(1) state is predominantly radiationless. The quantum yields of singlet oxygen production by MBC determined by time-resolved near-IR luminescence measurements are 0.05 ± 0.01 and 0.06 ± 0.01 in ethanol and in acetonitrile, respectively. The photostability of MBC arises from the (3)ππ* character in the T(1) state. The zero-field splitting parameters in the T(1) state are D = 0.0901 cm(-1) and E = -0.0498 cm(-1). The sublevel preferentially populated by intersystem crossing is T(y) (y close to in-plane short axis and to the C═O direction). PMID:23320917

  10. GNSS-TEC observations of the atmospheric resonance excited by the 2015 April Plinian eruptions of the Calbuco volcano, Chile: Comparison with the 2014 Kelud eruption

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Heki, K.

    2015-12-01

    GNSS-Total Electron Content (TEC) method is a useful tool to observe the ionosphere. We observed ionospheric disturbances caused by the lower atmospheric resonance excited by two recent Plinian volcanic eruptions. In the case of the 2014 eruption of the Kelud volcano, Indonesia (Nakashima et al., submitted), the lower atmospheric resonance excited by the continuing eruption caused long-lasting harmonic oscillations not only in the ionosphere but also in the solid earth. This year, we add the new case of the 2015 eruption of the Calbuco volcano, Chile. Two large eruptions occurred at the Calbuco volcano over the days 22- 23 April 2015. The first sub-Plinian eruption started at ~16:04 UT, Apr. 22, and continued for about 1.5 hours. The second one started at ~4:00 UT, Apr. 23, and lasted for 6 hours. We detected continuous oscillations of ionospheric TEC corresponding to the two eruptions using GPS and GLONASS data from stations of the Argentine GNSS Array: RAMSAC. The waves propagated with a speed of ~1.0 km/s from the volcano. The frequency spectra of the TEC variation in the first eruption on Apr. 22 showed clear peaks at 3.7 and 4.4 mHz, the lower atmospheric resonance frequencies. The perturbation also showed overtone peaks and a 10 mHz pulse-like signal at the onset of the continuous oscillation. The results suggest that a Vulcanian explosion occurred prior to the Plinian eruption. On the other hand, the second eruption on Apr. 23 showed only a weaker peak at 4.4 mHz without overtones, suggesting that the second eruption was weaker but lasted longer than the first one. We are going to present detailed records of the 2015 Calbuco case, and compare it with past cases of ionospheric disturbances by volcanic eruptions, e.g. the 2014 Kelud volcano eruption.

  11. Suppression of decay instability of the non-resonant beat wave excited by two counter-propagating x-mode lasers in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Verma, Kanika; Sajal, Vivek; Kumar, Ravindra; Sharma, Navneet K.

    2016-01-01

    The decay instability of non-resonant beat mode is investigated in homogeneous, hot, and collision less plasma having transverse static magnetic field. Two counter-propagating X-mode lasers with frequency difference ω1˜ω2≥2 ωp and wave numbers k→ 1 and k→ 2 drive a non-resonant space charge beat wave at phase matching conditions of frequency ω0=ω1˜ω2 and wave numbers k→ 0=k→ 1+k→ 2 . The driven beat wave acts as a pump for decay instability and parametrically excites a pair of lower hybrid wave (ω,k → ) and sideband upper hybrid wave (ω3,k→ 3) propagating in sideward direction so that momentum remains conserved. The sideband wave couples with the driver beat wave to exert ponderomotive force on plasma electrons at frequency ω=ω0+ω3 . The oscillatory motion of plasma electrons due to ponderomotive force and lower hybrid wave causes density perturbation in plasma, which couples with oscillating beat mode by feedback mechanism and gives rise to a sideband wave at resonance. The maximum growth rate is achieved at scattering angels θs˜30 ° and θs˜150 ° . The growth rate becomes half by changing applied magnetic field from ˜90 T to ˜270 T . The suppression of decay instability can be beneficial for parametric excitation of fast plasma wave (coupled with slow plasma wave) by two counter-propagating lasers for electron acceleration.

  12. Temporomandibular joint internal derangement type III: relationship to magnetic resonance imaging findings of internal derangement and osteoarthrosis. An intraindividual approach.

    PubMed

    Emshoff, R; Rudisch, A; Innerhofer, K; Bösch, R; Bertram, S

    2001-10-01

    The purpose of this study was to investigate whether in patients with a clinical unilateral temporomandibular joint (TMJ)-related finding of internal derangement type (ID)-III (disk displacement without reduction) in combination with TMJ-related pain, the intraindividual variable of 'unilateral TMJ ID-III pain' may be linked to subject-related magnetic resonance (MR) imaging findings of TMJ ID, and TMJ osteoarthrosis (OA). The study comprised 48 consecutive TMJ pain patients, who were assigned a clinical unilateral TMJ pain side-related diagnosis of ID-III. Bilateral sagittal and coronal MR images were obtained to establish the presence or absence of TMJ ID and/or OA. Comparison of the TMJ side-related data showed a significant relationship between the clinical finding of TMJ ID-III pain and the MR imaging diagnoses of TMJ ID (P=0.000) and TMJ ID type (P=0.000). There was no correlation between the clinical finding of TMJ ID-III pain and the MR imaging diagnosis of TMJ OA (P=0.217), nor between the MR imaging diagnosis of TMJ OA and that of TMJ ID (P=0.350). Regarding the diagnostic subgroups of TMJ ID, a significant relationship was found between the presence of TMJ OA and the MR imaging diagnoses of TMJ ID type(P=0.002). Use of the Kappa statistical test indicated a fair diagnostic agreement between the presence of TMJ ID-III pain and the MR imaging diagnosis of disk displacement without reduction (DDNR) (K=0.42). The results suggest that TMJ ID-III pain is related to TMJ-related MR imaging diagnoses of ID. Further, the data confirm the biological concept of 'DDNR and OA' as an underlying mechanism in the etiology of TMJ-related pain and dysfunction. PMID:11720040

  13. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  14. Ab initio calculation of the cross sections for electron impact vibrational excitation of CO via the (2)Π shape resonance.

    PubMed

    Falcetta, Michael F; Fair, Mark C; Tharnish, Emily M; Williams, Lorna M; Hayes, Nathan J; Jordan, Kenneth D

    2016-03-14

    The stabilization method is used to calculate the complex potential energy curve of the (2)Π state of CO(-) as a function of bond length, with the refinement that separate potentials are determined for p-wave and d-wave attachment and detachment of the excess electron. Using the resulting complex potentials, absolute vibrational excitation cross sections are calculated as a function of electron energy and scattering angle. The calculated cross sections agree well with experiment.

  15. X-Ray Magnetic Resonance Fusion to Internal Markers and Utility in Congenital Heart Disease Catheterization

    PubMed Central

    Dori, Yoav; Sarmiento, Marily; Glatz, Andrew C.; Gillespie, Matthew J.; Jones, Virginia M.; Harris, Matthew A.; Whitehead, Kevin K.; Fogel, Mark A.; Rome, Jonathan J.

    2012-01-01

    Background X-ray magnetic resonance fusion (XMRF) allows for use of 3D data during cardiac catheterization. However, to date, technical requirements have limited the use of this modality in clinical practice. We report on a new internal-marker XMRF method that we have developed and describe how we used XMRF during cardiac catheterization in congenital heart disease. Methods and Results XMRF was performed in a phantom and in 23 patients presenting for cardiac catheterization who also needed cardiac MRI for clinical reasons. The registration process was performed in <5 minutes per patient, with minimal radiation (0.004 to 0.024 mSv) and without contrast. Registration error was calculated in a phantom and in 8 patients using the maximum distance between angiographic and 3D model boundaries. In the phantom, the measured error in the anteroposterior projection had a mean of 1.15 mm (standard deviation, 0.73). The measured error in patients had a median of 2.15 mm (interquartile range, 1.65 to 2.56 mm). Internal markers included bones, airway, image artifact, calcifications, and the heart and vessel borders. The MRI data were used for road mapping in 17 of 23 (74%) cases and camera angle selection in 11 of 23 (48%) cases. Conclusions Internal marker–based registration can be performed quickly, with minimal radiation, without the need for contrast, and with clinically acceptable accuracy using commercially available software. We have also demonstrated several potential uses for XMRF in routine clinical practice. This modality has the potential to reduce radiation exposure and improve catheterization outcomes. PMID:21536785

  16. Breast Magnetic Resonance Imaging for Assessment of Internal Mammary Lymph Node Status in Breast Cancer

    PubMed Central

    Lee, Hyung Won

    2016-01-01

    Purpose The purpose of this study was to assess magnetic resonance imaging (MRI) features of malignant internal mammary lymph nodes (IMLNs) and benign IMLNs in breast cancer patients. Methods From 2009 to 2014, the records of 85 patients with IMLNs were archived using MRI report data; 26 patients with small size (long axis diameter <5 mm) nodes were subsequently excluded. The current study evaluated internal mammary lymph nodes in 59 patients who underwent breast MRI for breast cancer staging and for posttherapy follow-up. All MRI findings were retrospectively evaluated. Malignancy was determined based on pathologic examination and positron emission tomography computed tomography findings. Independent t-tests, Mann-Whitney U tests, chi-square tests, and receiver operating characteristics (ROC) curve analysis were used. Results Among MRI features, there were statistically significant differences between benign and malignant IMLN groups, in short axis length (3.6±1.3 vs. 8.2±2.9 mm, respectively), long axis length (8.1±2.4 vs. 14.5±4.8 mm, respectively), short/long axis ratio (0.45±0.10 vs. 0.59±0.17, respectively), absent fatty hilum (mean, 0% vs. 95%, respectively), and restricted diffusion (15.8% vs. 85.0%, respectively) (p<0.050). Multiplicity and location of intercostal spaces was not different between the two groups. Short axis length was the most discriminative variable for predicting metastatic nodes (area under the ROC curve, 0.951; threshold, 4 mm; sensitivity, 92.5%; specificity, 84.2%). Conclusion Conventional MRI and diffusion-weighted MRI are helpful to detect metastasis of internal mammary lymph nodes in breast cancer. PMID:27382396

  17. Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratory

    SciTech Connect

    Dorfman, S.; Carter, T. A.

    2015-05-15

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. A simple damped, driven oscillator model making use of the MHD equations well-predicts most of the observations, but the width of the resonance curve is still under investigation.

  18. Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratorya)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Carter, T. A.

    2015-05-01

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. A simple damped, driven oscillator model making use of the MHD equations well-predicts most of the observations, but the width of the resonance curve is still under investigation.

  19. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet

    SciTech Connect

    Kimura, Daiju Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11–13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.

  20. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    NASA Astrophysics Data System (ADS)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  1. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE PAGES

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; et al

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm⁻¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  2. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    PubMed Central

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G. Ivan; Holmes, Michael

    2015-01-01

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm−1 electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed. PMID:25931077

  3. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source.

    PubMed

    Turner, Joshua J; Dakovski, Georgi L; Hoffmann, Matthias C; Hwang, Harold Y; Zarem, Alex; Schlotter, William F; Moeller, Stefan; Minitti, Michael P; Staub, Urs; Johnson, Steven; Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G Ivan; Holmes, Michael

    2015-05-01

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm(-1) electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  4. Do Not Resonate with Actions: Sentence Polarity Modulates Cortico-Spinal Excitability during Action-Related Sentence Reading

    PubMed Central

    Liuzza, Marco Tullio; Candidi, Matteo; Aglioti, Salvatore Maria

    2011-01-01

    Background Theories of embodied language suggest that the motor system is differentially called into action when processing motor-related versus abstract content words or sentences. It has been recently shown that processing negative polarity action-related sentences modulates neural activity of premotor and motor cortices. Methods and Findings We sought to determine whether reading negative polarity sentences brought about differential modulation of cortico-spinal motor excitability depending on processing hand-action related or abstract sentences. Facilitatory paired-pulses Transcranial Magnetic Stimulation (pp-TMS) was applied to the primary motor representation of the right-hand and the recorded amplitude of induced motor-evoked potentials (MEP) was used to index M1 activity during passive reading of either hand-action related or abstract content sentences presented in both negative and affirmative polarity. Results showed that the cortico-spinal excitability was affected by sentence polarity only in the hand-action related condition. Indeed, in keeping with previous TMS studies, reading positive polarity, hand action-related sentences suppressed cortico-spinal reactivity. This effect was absent when reading hand action-related negative polarity sentences. Moreover, no modulation of cortico-spinal reactivity was associated with either negative or positive polarity abstract sentences. Conclusions Our results indicate that grammatical cues prompting motor negation reduce the cortico-spinal suppression associated with affirmative action sentences reading and thus suggest that motor simulative processes underlying the embodiment may involve even syntactic features of language. PMID:21347305

  5. Light Charged Particles Emission and the Giant Dipole Resonance in Highly Excited Ce Nucleus Formed in Reactions with Different Mass Asymmetries

    NASA Astrophysics Data System (ADS)

    Barlini, S.; Kravchuk, V. L.; Wieland, O.; Bracco, A.; Gramegna, F.; Airoldi, A.; Benzoni, G.; Blasi, N.; Brambilla, S.; Brekiesz, M.; Bruno, M.; Camera, F.; Casini, G.; Chiari, M.; D'Agostino, M.; De Sanctis, J.; Geraci, E.; Kmiecik, M.; Lanchais, A.; Leoni, S.; Maj, A.; Mastinu, P. F.; Million, B.; Moroni, A.; Nannini, A.; Ordine, A.; Sacchi, R.; Vannini, G.

    2006-08-01

    Recent measurements have been performed at the National Laboratoty of Legnaro using mass-symmetric (400, 500 MeV 64Ni + 68Zn) and mass-asymmetric (250 MeV 16O + 116Sn) entrance channel reactions to form 132Ce compound nucleus at different excitation energies (E*=150, 200 and 200 MeV, respectively). The decay of the composite system has been followed studying the γ-rays and Light Charged Particles (LCP) spectra emitted in coincidence with the Evaporation Residues (ER). In this way the emission mechanism of the LCP, depending on the mass-asymmetry at the entrance channel and on the projectile energy, and the results of the Full Width Half-Maximum (FWHM) of the Giant Dipole Resonance as a function of the nuclear temperature have been studied.

  6. Self-diffraction of ultrashort laser pulses under resonant excitation of excitons in a colloidal solution of CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Dneprovskii, V. S.; Kozlova, M. V.; Smirnov, A. M.

    2013-10-01

    We report self-diffraction processes of two types under resonant excitation of the fundamental electron - hole (exciton) transition in a strongly absorbing colloidal solution of CdSe/ZnS quantum dots (QDs) by high-power picosecond laser pulses. In the first case the absorption saturation (bleaching) at the exciton transition frequency and the Stark shift of exciton absorption line lead to the formation of a transparency channel and self-diffraction of the laser beam from the thus induced round diaphragm. In the second case, self-diffraction of two laser beams, intersecting in a cell with a colloidal QD solution, occurs on the diffraction grating induced by these beams. The physical processes responsible for the nonlinear optical properties of CdSe/ZnS QDs and the found selfaction effects are analysed.

  7. Evidence for excitation of two resonance states in the isovector two-baryon system with a mass of 2.2 GeV/ c2

    NASA Astrophysics Data System (ADS)

    Komarov, V.; Tsirkov, D.; Azaryan, T.; Bagdasarian, Z.; Dymov, S.; Gebel, R.; Gou, B.; Kacharava, A.; Khoukaz, A.; Kulikov, A.; Kurbatov, V.; Lorentz, B.; Macharashvili, G.; Mchedlishvili, D.; Merzliakov, S.; Mikirtytchiants, S.; Ohm, H.; Papenbrock, M.; Rathmann, F.; Serdyuk, V.; Shmakova, V.; Ströher, H.; Trusov, S.; Uzikov, Yu.; Valdau, Yu.

    2016-06-01

    We report on measurements of the differential cross section d σ /d Ω and the first measurement of the analyzing power Ay in the Δ (1232 ) excitation energy region of the reaction p p →{pp } sπ0 where {pp } s is a S10 proton pair. The experiment has been performed with the ANKE spectrometer at COSY-Jülich. The data reveal a peak in the energy dependence of the forward {pp } s differential cross section, a minimum at zero degrees of its angular distribution, and a large analyzing power. The results present a direct manifestation of two two-baryon resonance-like states with JP=2- and 0- and an invariant mass of 2.2 GeV /c2.

  8. Self-diffraction of ultrashort laser pulses under resonant excitation of excitons in a colloidal solution of CdSe/ZnS quantum dots

    SciTech Connect

    Dneprovskii, V S; Kozlova, M V; Smirnov, A M

    2013-10-31

    We report self-diffraction processes of two types under resonant excitation of the fundamental electron – hole (exciton) transition in a strongly absorbing colloidal solution of CdSe/ZnS quantum dots (QDs) by high-power picosecond laser pulses. In the first case the absorption saturation (bleaching) at the exciton transition frequency and the Stark shift of exciton absorption line lead to the formation of a transparency channel and self-diffraction of the laser beam from the thus induced round diaphragm. In the second case, self-diffraction of two laser beams, intersecting in a cell with a colloidal QD solution, occurs on the diffraction grating induced by these beams. The physical processes responsible for the nonlinear optical properties of CdSe/ZnS QDs and the found selfaction effects are analysed. (nonlinear optical phenomena)

  9. Multiphoton processes at cyclotron resonance subharmonics in a two-dimensional electron system under dc and microwave excitation

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Hatke, A. T.; Engel, L. W.; Watson, J. D.; Manfra, M. J.

    2014-11-01

    We investigate a two-dimensional electron system (2DES) under microwave illumination at cyclotron resonance subharmonics. The 2DES carries sufficient direct current, I , that the differential resistivity oscillates as I is swept. At magnetic fields sufficient to resolve individual Landau levels, we find the number of oscillations within an I range systematically changes with increasing microwave power. Microwave absorption and emission of N photons, where N is controlled by the microwave power, describes our observations in the framework of the displacement mechanism of impurity scattering between Hall-field tilted Landau levels.

  10. Noise-induced suppression of nonlinear distortions in a bistable system with biharmonic excitation in vibrational resonance

    NASA Astrophysics Data System (ADS)

    Chizhevsky, V. N.

    2015-09-01

    This paper is a report of the experimental evidence of suppression of vibrational higher-order harmonics in a bistable vertical-cavity surface-emitting laser driven by two harmonic signals with very different frequencies in the phenomenon of vibrational resonance when an optimal amount of white, Gaussian noise is applied. A quantitative characterization of the suppression is given on the basis of the coefficient of nonlinear distortions. The behavior of the coefficient of nonlinear distortions is studied in wide ranges of the added noise intensity, the dc current, and the amplitude of the harmonic signals. The experimental results are compared with a numerical simulation of a Langevin model showing good agreement.

  11. Treatment of resonances in the scattering of a heavy positron by H2 that are due to interaction with vibrationally excited quasibound states

    NASA Astrophysics Data System (ADS)

    Armour, E. A. G.

    2010-10-01

    For a positron with wave number k, the rate of annihilation when scattered by an atom or molecule is proportional to Zeff(k), the effective number of electrons in the target that are available to the positron for annihilation. There is currently great interest in the very large positron annihilation rates, and hence values of Zeff(k), that have been observed in low-energy positron scattering by some molecules. These are observed experimentally to occur at energies just below the energies of excited vibrational states of the molecule concerned. This has been explained by Gribakin [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.61.022720 61, 022720 (2000)] and Gribakin and Lee [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.193201 97, 193201 (2006)] as being due to Feshbach resonances involving excited quasibound vibrational states. These treatments make skilful use of approximate methods. It is of interest to determine how the expression obtained for the resonant contribution to Zeff(k) from a quasibound state using a very accurate method is related to the expressions obtained in the previously mentioned articles. In view of this, in this article I carry out a detailed ab initio theoretical treatment of positron scattering by H2 using the Kohn variational method. H2 is the simplest molecule, which makes it easier to take into account all the interactions involved. However, a positron does not form a bound state with H2. To investigate resonant behavior in Zeff(k), I increase the mass mp of the positron so that it forms a weakly bound state with H2. This gives rise to excited quasibound vibrational states. The expression I obtain for the resonant contribution to Zeff(k) has some similarity with the expressions obtained by Gribakin and Lee. This gives some support to their explanation of the very large values of Zeff(k). However, they make no explicit mention of corrections to the Born-Oppenheimer (BO) approximation. These play a key role in my treatment as they

  12. X-ray excited photoluminescence near the giant resonance in solid-solution Gd(1-x)Tb(x)OCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd(1-x)Tb(x)F3.

    PubMed

    Waetzig, Gregory R; Horrocks, Gregory A; Jude, Joshua W; Zuin, Lucia; Banerjee, Sarbajit

    2016-01-14

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions.

  13. Investigation of the bistability in J aggregates upon resonant optical excitation with inclusion of pair correlations between molecules

    NASA Astrophysics Data System (ADS)

    Nesterov, L. A.; Rosanov, N. N.

    2016-09-01

    A theory of resonant interaction with radiation of J aggregates based on chains of two-level molecules coupled by the retarded dipole‒dipole interaction has been developed. The effect of pair correlations between the chain molecules on the bistable response of this system under the influence of external resonant radiation has been investigated within the homogeneous chain model. Traditionally, these systems have been described using single-particle density matrices corresponding to each molecule. In this description, twoparticle interactions are represented in the factorized form and do not include correlations between the interacting molecules. In this study, the correlation corrections have been estimated taking into account the influence of only the nearest neighbors, while their values have found to be of the same order of magnitude as the factorized two-particle expectation values for which these corrections have been calculated. As a result, the dipole‒dipole interaction of a particular molecule with the nearest neighbors is so strong that the description of this interaction in the factorized form becomes inappropriate and can be used only for a qualitative analysis of the response of the chain. In order to obtain correct quantitative characteristics, it is necessary to abandon the factorization of the two-particle expectation values, at least for nearest neighbors.

  14. Characteristic dynamic modes and domain-wall motion in magnetic nanotubes excited by resonant rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, Jaehak; Kim, Junhoe; Kim, Bosung; Cho, Young-Jun; Lee, Jae-Hyeok; Kim, Sang-Koog

    2016-07-01

    We performed micromagnetic numerical calculations to explore a cylindrical nanotube's magnetization dynamics and domain-wall (DW) motions driven by eigen-circular-rotating magnetic fields of different frequencies. We discovered the presence of two different localized DW oscillations as well as asymmetric ferromagnetic resonance precession and azimuthal spin-wave modes at the corresponding resonant frequencies of the circular-rotating fields. Associated with these intrinsic modes, there exist very contrasting DW motions of different speed and propagation direction for a given DW chirality. The direction and speed of the DW propagation were found to be controllable according to the rotation sense and frequency of noncontact circular-rotating fields. Furthermore, spin-wave emissions from the moving DW were observed at a specific field frequency along with their Doppler effect. This work furthers the fundamental understanding of soft magnetic nanotubes' intrinsic dynamic modes and spin-wave emissions and offers an efficient means of manipulating the speed and direction of their DW propagations.

  15. A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study.

    PubMed

    Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Kuchlyan, Jagannath; Banik, Debasis; Sarkar, Nilmoni

    2013-03-21

    In this work we have reported the formulation of a novel ionic liquid-in-oil (IL/O) microemulsion where the polar core of the ionic liquid, 1-ethyl-3-methylimidazolium n-butylsulfate ([C2mim][C4SO4]), is stabilized by a mixture of two nontoxic nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween-80) and sorbitan laurate (Span-20), in a biological oil phase of isopropyl myristate (IPM). The formation of the microemulsion droplets has been confirmed from the dynamic light scattering (DLS) and phase behavior study. To assess the dynamic heterogeneity of this tween-based IL/O microemulsion, we have performed an excitation wavelength dependent fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G). The multiple donor-acceptor (D-A) distances, ∼15, 30, and 45 Å, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C480, in the different regions of the microemulsion system. With increasing the excitation wavelength from 375 to 408 nm, the contribution of the rise component of ∼240 ps which results the D-A distance of ∼30 Å increases significantly due to the enhanced contribution of the C480 probe molecules closer to the acceptor in the ionic liquid pool of the microemulsion. PMID:23445434

  16. Simulation of Non-resonant Internal Kink Mode with Toroidal Rotation in NSTX

    SciTech Connect

    Fu, Guoyong

    2013-07-16

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q pro le and minimum q above but close to unity, are susceptible to an non-resonant (m, n ) = (1, 1) internal kink mode. This mode can saturate and persist and can induce a (2; 1) seed island for Neoclassical Tearing Mode (NTMs)1 . The mode can also lead to large energetic particle transport and signi cant broadening of beam-driven current. Motivated by these important e ects, we have carried out extensive nonlinear simulations of the mode with nite toroidal rotation using parameters and pro les of an NTSX plasma with a weakly reversed shear pro le. The numerical results show that, at the experimental level, plasma rotation has little e ect on either equilibrium or linear stability. However, rotation can signi cantly inuence the nonlinear dynamics of the (1, 1) mode and the the induced (2, 1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at nite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the e ects of rotation are found to greatly suppress the (2, 1) magnetic island even at a low level.

  17. Assessment of Internal Jugular Vein Size in Healthy Subjects with Magnetic Resonance and Semiautomatic Processing

    PubMed Central

    Pelizzari, L.; Scaccianoce, E.; Dipasquale, O.; Ricci, C.; Baglio, F.; Cecconi, P.; Baselli, G.

    2016-01-01

    Background and Objectives. The hypothesized link between extracranial venous abnormalities and some neurological disorders awoke interest in the investigation of the internal jugular veins (IJVs). However, different IJV cross-sectional area (CSA) values are currently reported in literature. In this study, we introduced a semiautomatic method to measure and normalize the CSA and the degree of circularity (Circ) of IJVs along their whole length. Methods. Thirty-six healthy subjects (31.22 ± 9.29 years) were recruited and the 2D time-of-flight magnetic resonance venography was acquired with a 1.5 T Siemens scanner. The IJV were segmented on an axial slice, the contours were propagated in 3D. Then, IJV CSA and Circ were computed between the first and the seventh cervical levels (C1–C7) and normalized among subjects. Inter- and intrarater repeatability were assessed. Results. IJV CSA and Circ were significantly different among cervical levels (p < 0.001). A trend for side difference was observed for CSA (larger right IJV, p = 0.06), but not for Circ (p = 0.5). Excellent inter- and intrarater repeatability was obtained for all the measures. Conclusion. This study proposed a reliable semiautomatic method able to measure the IJV area and shape along C1–C7, and suitable for defining the normality thresholds for future clinical studies. PMID:27034585

  18. Nonlinear free vibrations of beams in space due to internal resonance

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Ribeiro, P.

    2011-08-01

    The geometrically nonlinear free vibrations of beams with rectangular cross section are investigated using a p-version finite element method. The beams may vibrate in space, hence they may experience longitudinal, torsional and non-planar bending deformations. The model is based on Timoshenko's theory for bending and assumes that, under torsion, the cross section rotates as a rigid body and is free to warp in the longitudinal direction, as in Saint-Venant's theory. The geometrical nonlinearity is taken into account by considering Green's nonlinear strain tensor. Isotropic and elastic beams are investigated and generalised Hooke's law is used. The equation of motion is derived by the principle of virtual work. Mostly clamped-clamped beams are investigated, although other boundary conditions are considered for validation purposes. Employing the harmonic balance method, the differential equations of motion are converted into a nonlinear algebraic form and then solved by a continuation method. One constant term, odd and even harmonics are assumed in the Fourier series and convergence with the number of harmonics is analysed. The variation of the amplitude of vibration with the frequency of vibration is determined and presented in the form of backbone curves. Coupling between modes is investigated, internal resonances are found and the ensuing multimodal oscillations are described. Some of the couplings discovered lead from planar oscillations to oscillations in the three dimensional space.

  19. Dorsoventral differences in Kv7/M-current and its impact on resonance, temporal summation and excitability in rat hippocampal pyramidal cells.

    PubMed

    Hönigsperger, Christoph; Marosi, Máté; Murphy, Ricardo; Storm, Johan F

    2015-04-01

    In rodent hippocampi, the connections, gene expression and functions differ along the dorsoventral (D-V) axis. CA1 pyramidal cells show increasing excitability along the D-V axis, although the underlying mechanism is not known. In the present study, we investigated how the M-current (IM ), caused by Kv7/M (KCNQ) potassium channels, and known to often control neuronal excitability, contributes to D-V differences in intrinsic properties of CA1 pyramidal cells. Using whole-cell patch clamp recordings and the selective Kv7/M blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) in hippocampal slices from 3- to 4-week-old rats, we found that: (i) IM had a stronger impact on subthreshold electrical properties in dorsal than ventral CA1 pyramidal cells, including input resistance, temporal summation of artificial synaptic potentials, and M-resonance; (ii) IM activated at more negative potentials (left-shifted) and had larger peak amplitude in the dorsal than ventral CA1; and (iii) the initial spike threshold (during ramp depolarizations) was elevated, and the medium after-hyperpolarization and spike frequency adaptation were increased (i.e. excitability was lower) in the dorsal rather than ventral CA1. These differences were abolished or reduced by application of XE991, indicating that they were caused by IM . Thus, it appears that IM has stronger effects in dorsal than in ventral rat CA1 pyramidal cells because of a larger maximal M-conductance and left-shifted activation curve in the dorsal cells. These mechanisms may contribute to D-V differences in the rate and phase coding of position by CA1 place cells, and may also enhance epileptiform activity in ventral CA1.

  20. An instrument for fast acquisition of fluorescence decay curves at picosecond resolution designed for ``double kinetics'' experiments: Application to fluorescence resonance excitation energy transfer study of protein folding

    NASA Astrophysics Data System (ADS)

    Ishay, Eldad Ben; Hazan, Gershon; Rahamim, Gil; Amir, Dan; Haas, Elisha

    2012-08-01

    The information obtained by studying fluorescence decay of labeled biopolymers is a major resource for understanding the dynamics of their conformations and interactions. The lifetime of the excited states of probes attached to macromolecules is in the nanosecond time regime, and hence, a series of snapshot decay curves of such probes might - in principle - yield details of fast changes of ensembles of labeled molecules down to sub-microsecond time resolution. Hence, a major current challenge is the development of instruments for the low noise detection of fluorescence decay curves within the shortest possible time intervals. Here, we report the development of an instrument, picosecond double kinetics apparatus, that enables recording of multiple fluorescence decay curves with picosecond excitation pulses over wide spectral range during microsecond data collection for each curve. The design is based on recording and averaging multiphoton pulses of fluorescence decay using a fast 13 GHz oscilloscope during microsecond time intervals at selected time points over the course of a chemical reaction or conformational transition. We tested this instrument in a double kinetics experiment using reference probes (N-acetyl-tryptophanamide). Very low stochastic noise level was attained, and reliable multi-parameter analysis such as derivation of distance distributions from time resolved FRET (fluorescence resonance excitation energy transfer) measurements was achieved. The advantage of the pulse recording and averaging approach used here relative to double kinetics methods based on the established time correlated single photon counting method, is that in the pulse recording approach, averaging of substantially fewer kinetic experiments is sufficient for obtaining the data. This results in a major reduction in the consumption of labeled samples, which in many cases, enables the performance of important experiments that were not previously feasible.

  1. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study.

    PubMed

    Banerjee, Chiranjib; Kundu, Niloy; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-08-15

    In this article we have reported the fluorescence resonance energy transfer (FRET) study in our earlier characterized surface active ionic liquids (SAILs)-containing microemulsion, i.e., N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([P13][Tf2N])/[CTA][AOT]/isopropyl myristate ([IPM]) and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide ([N3111][Tf2N])/[CTA][AOT]/[IPM] microemulsions (Banerjee, C.; Mandal, S.; Ghosh, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. J. Phys. Chem. B 2013, 117, 3927-3934). The occurrence of effective FRET from the donor, coumarin-153 (C-153) to the acceptor rhodamine 6G (R6G) is evident from the decrease in the steady state fluorescence intensity of the donor with addition of acceptor and subsequent increase in the fluorescence intensity of the acceptor in the presence of donor. The excitation wavelength dependent FRET from C-153 to R6G has also been performed to assess the dynamic heterogeneity of these confined systems. In time-resolved experiments, the significant rise time of the acceptor in the presence of the donor further confirms the occurrence of FRET. The multiple donor-acceptor (D-A) distances, for various microemulsions, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C-153, in the different regions of the microemulsion. Time-resolved measurement reveals that with increasing excitation wavelength from 408 to 440 nm, the contribution of the faster rise component of FRET increases significantly due to the close proximity of the C-153 and R6G in the polar region of the microemulsion where occurrence of FRET is very high. Moreover, we have also studied the FRET with variation of R (R = [room temperature ionic liquids (RTILs)]/[surfactant]) and shown that the effect of excitation wavelength on FRET is similar irrespective of R values.

  2. Magnetic resonance imaging of the cerebral aqueduct. Signal intensity time curves demonstrated by fast acquisition with multiple excitation (FAME).

    PubMed

    van den Hout, J H; Bakker, C J; Mali, W P; van Dijk, P; Faber, J A; Feldberg, M A; Gooskens, R H; Witkamp, T D

    1989-11-01

    Using cardiac-gated fast acquisition with multiple excitation (FAME), time curves of the cerebral aqueduct signals were derived in 19 healthy volunteers and 14 patients. A mean curve of the normal subjects was determined during systole. A relatively stable point of time was found at 270 msec after the R-wave supposed to be the reversal of the flow of cerebral-spinal fluid in the aqueduct. Different curves were noticed in complete aqueductal obstruction (n = 2); in other pathologic states, such as cerebral tumor (n = 3), normal pressure hydrocephalus (n = 3), and brain atrophy (n = 1), no different signal time curves were observed. Parameters such as aqueduct diameter, cerebro-spinal fluid volume and brain compliance are probably other important factors in aqueduct liquor flow.

  3. Collective excitability, synchronization, and array-enhanced coherence resonance in a population of lasers with a saturable absorber

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Lamperti, M.

    2016-09-01

    In this article we present a numerical study of the collective dynamics in a population of coupled semiconductor lasers with a saturable absorber, operating in the excitable regime under the action of additive noise. We demonstrate that temporal and intensity synchronization takes place in a broad region of the parameter space and for various array sizes. The synchronization is robust and occurs even for a set of nonidentical coupled lasers. The cooperative nature of the system results in a self-organization process which enhances the coherence of the single element of the population too and can have broad impact for detection purposes, for building all-optical simulators of neural networks and in the field of photonics-based computation.

  4. Magnetic Resonant Mode in the Low-Energy Spin-Excitation Spectrum of Superconducting Rb2Fe4Se5 Single Crystals

    NASA Astrophysics Data System (ADS)

    Park, J. T.; Friemel, G.; Li, Yuan; Kim, J.-H.; Tsurkan, V.; Deisenhofer, J.; Krug von Nidda, H.-A.; Loidl, A.; Ivanov, A.; Keimer, B.; Inosov, D. S.

    2011-10-01

    We have studied the low-energy spin-excitation spectrum of the single-crystalline Rb2Fe4Se5 superconductor (Tc=32K) by means of inelastic neutron scattering. In the superconducting state, we observe a magnetic resonant mode centered at an energy of ℏωres=14meV and at the (0.5 0.25 0.5) wave vector (unfolded Fe-sublattice notation), which differs from the ones characterizing magnetic resonant modes in other iron-based superconductors. Our finding suggests that the 245-iron selenides are unconventional superconductors with a sign-changing order parameter, in which bulk superconductivity coexists with the 5×5 magnetic superstructure. The estimated ratios of ℏωres/kBTc≈5.1±0.4 and ℏωres/2Δ≈0.7±0.1, where Δ is the superconducting gap, indicate moderate pairing strength in this compound, similar to that in optimally doped 1111 and 122 pnictides.

  5. Simple systematization of vibrational excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models.

    PubMed

    Sarma, Manabendra; Adhikari, S; Mishra, Manoj K

    2007-01-28

    Vibrational excitation (nu(f)<--nu(i)) cross-sections sigma(nu(f)<--nu(i) )(E) in resonant e-N(2) and e-H(2) scattering are calculated from transition matrix elements T(nu(f),nu(i) )(E) obtained using Fourier transform of the cross correlation function , where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

  6. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    SciTech Connect

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  7. Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations.

    PubMed

    Sinha, Debalina; Maitra, Rahul; Mukherjee, Debashis

    2012-09-01

    Any multi-reference coupled cluster (MRCC) development based on the Jeziorski-Monkhorst (JM) multi-exponential ansatz for the wave-operator Ω suffers from spin-contamination problem for non-singlet states. We have very recently proposed a spin-free unitary group adapted (UGA) analogue of the JM ansatz, where the cluster operators are defined in terms of spin-free unitary generators and a normal ordered, rather than ordinary, exponential parametrization of Ω is used. A consequence of the latter choice is the emergence of the "direct term" of the MRCC equations that terminates at exactly the quartic power of the cluster amplitudes. Our UGA-MRCC ansatz has been utilized to generate both the spin-free state specific (SS) and the state universal MRCC formalisms. It is well-known that the SSMRCC theory requires suitable sufficiency conditions to resolve the redundancy of the cluster amplitudes. In this paper, we propose an alternative variant of the UGA-SSMRCC theory, where the sufficiency conditions are used for all cluster operators containing active orbitals and the single excitations with inactive orbitals, while the inactive double excitations are assumed to be independent of the model functions they act upon. The working equations for the inactive double excitations are thus derived in an internally contracted (IC) manner in the sense that the matrix elements entering the MRCC equations involve excitations from an entire combination of the model functions. We call this theory as UGA-ICID-MRCC, where ICID is the acronym for "Internally Contracted treatment of Inactive Double excitations." Since the number of such excitations are the most numerous, choosing them to be independent of the model functions will lead to very significant reduction in the number of cluster amplitudes for large active spaces, and is worth exploring. Moreover, unlike for the excitations involving active orbitals, where there is inadequate coupling between the model and the virtual functions

  8. Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations

    NASA Astrophysics Data System (ADS)

    Sinha, Debalina; Maitra, Rahul; Mukherjee, Debashis

    2012-09-01

    Any multi-reference coupled cluster (MRCC) development based on the Jeziorski-Monkhorst (JM) multi-exponential ansatz for the wave-operator Ω suffers from spin-contamination problem for non-singlet states. We have very recently proposed a spin-free unitary group adapted (UGA) analogue of the JM ansatz, where the cluster operators are defined in terms of spin-free unitary generators and a normal ordered, rather than ordinary, exponential parametrization of Ω is used. A consequence of the latter choice is the emergence of the "direct term" of the MRCC equations that terminates at exactly the quartic power of the cluster amplitudes. Our UGA-MRCC ansatz has been utilized to generate both the spin-free state specific (SS) and the state universal MRCC formalisms. It is well-known that the SSMRCC theory requires suitable sufficiency conditions to resolve the redundancy of the cluster amplitudes. In this paper, we propose an alternative variant of the UGA-SSMRCC theory, where the sufficiency conditions are used for all cluster operators containing active orbitals and the single excitations with inactive orbitals, while the inactive double excitations are assumed to be independent of the model functions they act upon. The working equations for the inactive double excitations are thus derived in an internally contracted (IC) manner in the sense that the matrix elements entering the MRCC equations involve excitations from an entire combination of the model functions. We call this theory as UGA-ICID-MRCC, where ICID is the acronym for "Internally Contracted treatment of Inactive Double excitations." Since the number of such excitations are the most numerous, choosing them to be independent of the model functions will lead to very significant reduction in the number of cluster amplitudes for large active spaces, and is worth exploring. Moreover, unlike for the excitations involving active orbitals, where there is inadequate coupling between the model and the virtual functions

  9. Relationship between temporomandibular joint pain and magnetic resonance imaging findings of internal derangement.

    PubMed

    Emshoff, R; Innerhofer, K; Rudisch, A; Bertram, S

    2001-04-01

    In terms of clinical decision-making in instances of temporomandibular disorders (TMD) and orofacial pain, there is controversy in the literature over the diagnostic significance of the temporomandibular joint (TMJ)-related variable disk-condyle relationship (DCR). The purpose of this study was to investigate whether in patients with TMJ-related pain, the variable of TMJ pain may be linked to magnetic resonance (MR) imaging findings of internal derangement (ID). The study comprised 163 consecutive TMJ pain patients. Criteria for including a patient were report of orofacial pain referred to the TMJ, and the presence of uni- or bilateral TMJ pain during palpation, during function, and/or during unassisted or assisted mandibular opening. Bilateral sagittal and coronal MR images were obtained to establish the prevalence of TMJ ID types. Analysis of the data revealed the presence of TMJ pain to be associated with significantly more MR imaging diagnoses of ID than an absence of ID (P<0.001), and disk displacement without reduction than disk displacement with reduction (P<0.001). Using chi-square analysis, the results showed a significant relationship between the presence of TMJ-related pain and the MR imaging diagnosis of TMJ ID (P=0.001), and TMJ ID type (P=0.000). Use of the Kappa statistical test indicated poor diagnostic agreement between the presence of TMJ pain and the MR imaging diagnosis of ID (K=0.16). The results suggest that the clinical variable of TMJ pain may have a significant effect on the prevalences of MR imaging diagnoses of TMJ ID. The data confirm the biological concept of DCR as a diagnostic approach in patients with signs and symptoms of TMJ-related pain.

  10. "Spot and hop": internal referencing for surface plasmon resonance imaging using a three-dimensional microfluidic flow cell array.

    PubMed

    Eddings, Mark A; Eckman, Josh W; Arana, Carlos A; Papalia, Giuseppe A; Connolly, John E; Gale, Bruce K; Myszka, David G

    2009-02-15

    We have developed a novel referencing technique for surface plasmon resonance imaging systems referred to as "spot and hop." The technique enables internal referencing for individual flow cells in a parallel processing microfluidic network. Internal referencing provides the ability to correct for nonspecific binding and instrument drift, significantly improving data quality at each region of interest. The performance of a 48-flow-cell device was demonstrated through a series of studies, including "rise and fall" time, ligand preconcentration, ligand immobilization, analyte binding, and regeneration tests. Interfacing parallel processing fluidics with imaging systems will significantly expand the throughput and applications of array-based optical biosensors while retaining high data quality.

  11. Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s{sup 1}4p{sup 6}np{sup 1}(n=7,8) and doubly excited 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} resonances in atomic krypton

    SciTech Connect

    Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.

    2011-10-15

    Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s{sup 1}4p{sup 6}np{sup 1} (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be {beta}{sub 2} = 1.61 {+-} 0.06 and {beta}{sub 4} = 1.54 {+-} 0.16 while the 8p configuration gives {beta}{sub 2} = 1.23 {+-} 0.19 and {beta}{sub 4} = 0.60 {+-} 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.

  12. Enhancement of 1.5 μm emission under 980 nm resonant excitation in Er and Yb co-doped GaN epilayers

    NASA Astrophysics Data System (ADS)

    Wang, Q. W.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-10-01

    The Erbium (Er) doped GaN is a promising gain medium for optical amplifiers and solid-state high energy lasers due to its high thermal conductivity, wide bandgap, mechanical hardness, and ability to emit in the highly useful 1.5 μm window. Finding the mechanisms to enhance the optical absorption efficiency at a resonant pump wavelength and emission efficiency at 1.5 μm is highly desirable. We report here the in-situ synthesis of the Er and Yb co-doped GaN epilayers (Er + Yb:GaN) by metal-organic chemical vapor deposition (MOCVD). It was observed that the 1.5 μm emission intensity of the Er doped GaN (Er:GaN) under 980 nm resonant pump can be boosted by a factor of 7 by co-doping the sample with Yb. The temperature dependent PL emission at 1.5 μm in the Er + Yb:GaN epilayers under an above bandgap excitation revealed a small thermal quenching of 12% from 10 to 300 K. From these results, it can be inferred that the process of energy transfer from Yb3+ to Er3+ ions is highly efficient, and non-radiative recombination channels are limited in the Er + Yb:GaN epilayers synthesized in-situ by MOCVD. Our results point to an effective way to improve the emission efficiency of the Er doped GaN for optical amplification and lasing applications.

  13. Parametric excitation of fast upper hybrid waves by non-resonant beating of counter-propagating X-mode lasers in a magnetized plasma

    SciTech Connect

    Verma, Kanika; Sajal, Vivek Varshney, Prateek; Kumar, Ravindra; Sharma, Navneet K.

    2014-12-15

    Generation of fast and slow upper hybrid waves by two plasmon decay of non-resonant beating mode of two counter-propagating X-mode lasers is modelled in magnetized plasma. Two counter-propagating lasers having frequencies and wave-vectors (ω{sub 1},k{sub 1}) and (ω{sub 2},k{sub 2}), respectively, generate a non resonant beat wave at frequency difference ω{sub 0}≈ω{sub 1}∼ω{sub 2} and wave number k{sup →}{sub 0}≈k{sup →}{sub 1}+k{sup →}{sub 2} which parametrically excites a pair of copropagating fast and slow upper hybrid waves at ω{sub 0}≈2ω{sub h}+(3k{sub 1}{sup 2}v{sub th}{sup 2}/ω{sub h})  (1−ω{sub h}/ω{sub 1}) where ω{sub h} and v{sub th} are the upper hybrid frequency and electron thermal speed, respectively. The fast upper hybrid wave can be utilized for electron acceleration because its phase velocity is close to c. The growth rate of decay process is Γ∼ω{sub p}/10 at scattering angle θ{sub s}∼5π/6 and magnetic field ∼90  T, which is one order higher as compared to the growth rate of Raman process. The growth rate can be further enhanced (∼20%) by increasing the magnetic field ∼450 T.

  14. Energy dissipation channels affecting photoluminescence from resonantly excited Er{sup 3+} ions doped in epitaxial ZnO host films

    SciTech Connect

    Akazawa, Housei; Shinojima, Hiroyuki

    2015-04-21

    We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er{sup 3+} ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er{sup 3+} ions were resonantly excited at a wavelength of 532 nm between energy levels of {sup 4}I{sub 15/2} and {sup 2}H{sub 11/2}. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er{sup 3+} ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity was correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er{sup 3+} ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er{sup 3+} ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er{sub 2}O{sub 3} crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to emissions from

  15. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  16. NUCLEAR PHYSICS Resonances-Excitation Calculation Studies Investigation of Δ(3, 3) in Ground State of 90Zr Cold Finite Heavy Nucleus at Equilibrium and Under Large Compression

    NASA Astrophysics Data System (ADS)

    Mohammed, H. E. Abu-Sei'leek

    2011-01-01

    A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenological shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.

  17. Water-based enhancement of the resonant photoacoustic signal from methane-air samples excited at 3.3 μm

    NASA Astrophysics Data System (ADS)

    Barreiro, N.; Peuriot, A.; Santiago, G.; Slezak, V.

    2012-08-01

    Photoacoustic spectroscopy is widely applied for trace-gas detection because of its sensitivity and low detection limit. In a previous work, where we studied the potential application to methane monitoring under a resonant excitation at 3.3 μm, we showed that the signal from methane-nitrogen mixtures decreases with the addition of oxygen. This effect is due to an energy exchange between the ν 4 asymmetric stretching mode of methane and the first metastable level of oxygen. This process makes oxygen accumulate energy, thus hindering the generation of the photoacoustic signal. In this work, we study the possible addition of water, as a good collisional partner of oxygen, in order to obtain a greater sensitivity. We develop a model based on rate equations and find good agreement between theory and measurements. The experiment is carried out with a novel cell of rectangular cross section and a Q factor of 165±1. We find that 0.7 % water content is large enough to obtain a signal as high as in the methane-nitrogen case at atmospheric pressure.

  18. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for ¹⁹F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.

    PubMed

    Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi

    2016-03-01

    We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences.

  19. Absolute Quantification of Lipophilic Shellfish Toxins by Quantitative Nuclear Magnetic Resonance Using Removable Internal Reference Substance with SI Traceability.

    PubMed

    Kato, Tsuyoshi; Saito, Maki; Nagae, Mika; Fujita, Kazuhiro; Watai, Masatoshi; Igarashi, Tomoji; Yasumoto, Takeshi; Inagaki, Minoru

    2016-01-01

    Okadaic acid (OA), a lipophilic shellfish toxin, was accurately quantified using quantitative nuclear magnetic resonance with internal standards for the development of an authentic reference standard. Pyridine and the residual proton in methanol-d4 were used as removable internal standards to limit any contamination. They were calibrated based on a maleic acid certified reference material. Thus, the concentration of OA was traceable to the SI units through accurate quantitative NMR with an internal reference substance. Signals from the protons on the oxygenated and unsaturated carbons of OA were used for quantification. A reasonable accuracy was obtained by integrating between the lower and upper (13)C satellite signal range when more than 4 mg of OA was used. The best-determined purity was 97.4% (0.16% RSD) when 20 mg of OA was used. Dinophysistoxin-1, a methylated analog of OA having an almost identical spectrum, was also quantified by using the same methodology. PMID:27396652

  20. X-ray excited photoluminescence near the giant resonance in solid-solution Gd1-xTbxOCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd1-xTbxF3

    NASA Astrophysics Data System (ADS)

    Waetzig, Gregory R.; Horrocks, Gregory A.; Jude, Joshua W.; Zuin, Lucia; Banerjee, Sarbajit

    2015-12-01

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb3+ centers upon X-ray excitation near the giant resonance of the host Gd3+ ions.Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism

  1. Efficient H{sub 2} production over Au/graphene/TiO{sub 2} induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2}

    SciTech Connect

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-11-15

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H{sub 2} production. • Au/Gr/TiO{sub 2} composite photocatalyst was synthesized. • Au/Gr/TiO{sub 2} exhibited enhancement of light absorption and charge separation. • H{sub 2} production rate of Au/Gr/TiO{sub 2} was about 2 times as high as that of Au/TiO{sub 2}. - Abstract: H{sub 2} production over Au/Gr/TiO{sub 2} composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2} using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO{sub 2} with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO{sub 2}, Au/Gr/TiO{sub 2} displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H{sub 2} production rate of Au/Gr/TiO{sub 2} composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO{sub 2}. This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy.

  2. Nucleon Resonance Physics

    NASA Astrophysics Data System (ADS)

    Burkert, Volker D.

    2016-10-01

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and Δ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of Q^2 > 1.5 GeV^2. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  3. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    PubMed

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements.

  4. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  5. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids. PMID:26203019

  6. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  7. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  8. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  9. Molecular spectroscopy of uranium(IV) bis(ketimido) complexes. rare observation of resonance-enhanced raman scattering from organoactinide complexes and evidence for broken-symmetry excited states.

    PubMed

    Da Re, Ryan E; Jantunen, Kimberly C; Golden, Jeffrey T; Kiplinger, Jaqueline L; Morris, David E

    2005-01-19

    Electronic absorption and resonance-enhanced Raman spectra for ketimido (azavinylidene) complexes of tetravalent uranium, (C(5)Me(5))(2)U[-N=C(Ph)(R)](2) (R = Ph, Me, and CH(2)Ph), have been recorded. The absorption spectra exhibit four broad bands between 13 000 and 24 000 cm(-1). The highest-energy band is assigned to the ketimido-localized p( perpendicular)(N)-->pi(N=C) transition based on comparison to the spectra of (C(5)H(5))(2)Zr[-N=CPh(2)](2) and (C(5)Me(5))(2)Th[-N=CPh(2)](2). Upon excitation into any of these four absorption bands, the (C(5)Me(5))(2)U[-N=C(Ph)(R)](2) complexes exhibit resonance enhancement for several Raman bands attributable to vibrations of the ketimido ligands. Raman bands for both the symmetric and nominally asymmetric N=C stretching bands are resonantly enhanced upon excitation into the p( perpendicular)(N)-->pi(N=C) absorption bands, indicating that the excited state is localized on a single ketimido ligand. Raman excitation profiles for (C(5)Me(5))(2)U[-N=CPh(2)](2) confirm that at least one of the lower-energy electronic absorption bands (E(max) approximately 16300 cm(-1)) is a charge-transfer transition between the U(IV) center and the ketimido ligand(s). The observations of both charge-transfer transitions and resonance enhancement of Raman vibrational bands are exceedingly rare for tetravalent actinide complexes and reflect the strong bonding interactions between the uranium 5f/6d orbitals and those on the ketimido ligands. PMID:15643893

  10. Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging

    PubMed Central

    Ziegler, Alexander; Faber, Cornelius; Mueller, Susanne; Bartolomaeus, Thomas

    2008-01-01

    Background Traditional comparative morphological analyses and subsequent three-dimensional reconstructions suffer from a number of drawbacks. This is particularly evident in the case of soft tissue studies that are technically demanding, time-consuming, and often prone to produce artefacts. These problems can partly be overcome by employing non-invasive, destruction-free imaging techniques, in particular micro-computed tomography or magnetic resonance imaging. Results Here, we employed high-field magnetic resonance imaging techniques to gather numerous data from members of a major marine invertebrate taxon, the sea urchins (Echinoidea). For this model study, 13 of the 14 currently recognized high-ranking subtaxa (orders) of this group of animals were analyzed. Based on the acquired datasets, interactive three-dimensional models were assembled. Our analyses reveal that selected soft tissue characters can even be used for phylogenetic inferences in sea urchins, as exemplified by differences in the size and shape of the gastric caecum found in the Irregularia. Conclusion The main focus of our investigation was to explore the possibility to systematically visualize the internal anatomy of echinoids obtained from various museum collections. We show that, in contrast to classical preparative procedures, magnetic resonance imaging can give rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology. PMID:18651948

  11. Non-resonant destabilization of (1/1) internal kink mode by suprathermal electron pressure

    SciTech Connect

    Delgado-Aparicio, L.; Gates, D. A.; Gorelenkov, N.; Scott, S.; Bertelli, N.; Wilson, R.; Sugiyama, L.; Shiraiwa, S.; Irby, J.; Granetz, R.; Parker, R.; Baek, S. G.; Faust, I.; Wallace, G.; Mumgaard, R.; Gao, C.; Greenwald, M.; Hubbard, A.; Hughes, J.; Marmar, E.; and others

    2015-05-15

    New experimental observations are reported on the structure and dynamics of short-lived periodic (1, 1) “fishbone”-like oscillations that appear during radio frequency heating and current-drive experiments in tokamak plasmas. For the first time, measurements can directly relate changes in the high energy electrons to the mode onset, saturation, and damping. In the relatively high collisionality of Alcator C-Mod with lower hybrid current drive, the instability appears to be destabilized by the non-resonant suprathermal electron pressure—rather than by wave-particle resonance, rotates toroidally with the plasma and grows independently of the (1, 1) sawtooth crash driven by the thermal plasma pressure.

  12. Internal Mode Structure of Resonant Field Amplification in DIII-D

    NASA Astrophysics Data System (ADS)

    Lanctot, M. J.; Navratil, G.; Reimerdes, H.; Bogatu, I. N.; in, Y.; Chu, M. S.; Garofalo, A. M.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.; Turnbull, A. D.; Liu, Y. Q.; Okabayashi, M.; Solomon, W. M.

    2008-11-01

    The sensitivity of high-β plasmas to error fields is caused by a paramagnetic plasma response to error fields with a topology that is resonant with the structure of weakly-damped resistive wall modes (RWM), a phenomenon referred to as resonant field amplification (RFA) [1]. The RFA has been driven in DIII-D H-mode plasmas by applying slowly-rotating, low-n magnetic fields with a set of 12 coils located inside the vacuum vessel. Measurements of the RFA mode structure have been obtained using a pair of soft x-ray photodiode cameras. A virtual diagnostic has been developed to compare the measurements to the eigenfunctions for the free boundary external kink and the RWM, which were calculated using the stability codes GATO and MARS-F. Details of the analysis will be presented. 6pt [1] A.H. Boozer, Phys. Rev. Lett. 86, 5059 (2001).

  13. Transonic Resonance Demonstrated To Be a Source of Internal Noise From Mixer-Ejector Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul B.

    2002-01-01

    During noise field studies with mixer-ejector nozzles in NASA's High-Speed Research program, tones were often encountered. The tones would persist in the simulated "cutback" condition (shortly after takeoff). Unfortunately, we did not understand their origin and, thus, could not develop a logical approach for suppressing them. We naturally questioned whether or not some of those tones were due to the transonic resonance. This was studied with a 1/13th scale model of the High-Speed Civil Transport nozzle. The first objective was to determine if indeed tones could be detected in the radiated noise. The next objective was to diagnose if those tones were due to the transonic resonance. Agreement of the frequencies with the correlation equation and the effect of boundary layer tripping were to be used in the diagnosis.

  14. Internal conversion outcompetes autodetachment from resonances in the deprotonated tetracene anion continuum.

    PubMed

    Bull, James N; West, Christopher W; Verlet, Jan R R

    2015-12-28

    Photoelectron velocity-map imaging and electronic structure calculations have been used to study the temporary anion (resonance) dynamics of the closed-shell site-specific deprotonated tetracene anion (C18H11(-)) in the hv = 3.26 eV (380 nm) to 4.13 eV (300 nm) range. In accord with a recent frequency-, angle-, and time-resolved photoelectron imaging study on a related but open-shell polyaromatic radical anion (Chem. Sci., 2015, 6, 1578-1589), population of π*-resonances situated in the detachment continuum efficiently recover the ground electronic state of the anion through ultrafast non-adiabatic dynamics, followed by characteristic statistical electron loss (thermionic emission). The combined electron yield of direct photodetachment and autodetachment from the optically-accessed resonances in C18H11(-) is several orders of magnitude smaller than thermionic emission from the ground electronic electronic state in the photon energy range studied. This result implies a resilience to prompt photoejection from UV radiation, and the ability of neutral PAH-like species to capture a free electron and form a long-lived molecular anion that ultimately decays by thermionic emission on a millisecond timescale. The attachment mechanism applies to polyaromatic species that cannot support dipole-bound states, and may provide an additional route to forming anions in astrochemical environments.

  15. Acoustic resonance for nonmetallic mine detection

    SciTech Connect

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  16. LETTER TO THE EDITOR: The terminating of doubly excited 1,3Po resonances in H- below the n = 2 H threshold

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Keh

    1999-09-01

    We examine the possibility of the resonances of an H- 1,3Po dipole series being formed below the n = 2 hydrogen threshold. Including the relativistic and QED corrections as first-order perturbations, the series will be terminated after the third resonance for 1Po symmetry and the fourth resonance for 3Po symmetry. The total angular momentum, J, is shown to be 0 for the fourth resonance of a 3Po series. This figure is in disagreement with that of Purr and Friedrich. The present resonant energies and widths were calculated by the saddle-point complex rotation method with B-spline functions.

  17. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect

    Short Jr., Billy Joe

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  18. Nuclear magnetic resonance pore size determination for unconsolidated sediments with strong internal gradients

    NASA Astrophysics Data System (ADS)

    Duschl, M.; Pohlmeier, A. J.; Galvosas, P.; Vereecken, H.

    2014-12-01

    Water distribution and flow within porous media are mainly controlled by the pore space structure. Well established methods for the determination of pore sizes like multistep outflow and gas adsorption isotherms (BET) are often time consuming, expensive, or produce toxic waste. As an alternative fast and non-destructive technique, nuclear magnetic resonance (NMR) is used because it probes hydrogen and therefore the dynamics and interactions of water. Pore space is most easily characterized by NMR relaxometry where the total relaxation rate is controlled by the surface relaxivity ρ of the porous medium in combination with the surface-to-volume ratio (S/V) [1]. Furthermore, there are contributions of molecular diffusion through local magnetic field gradients which are created by susceptibility differences between solid and liquid phases [2] as well as by paramagnetic impurities [3]. Hence, surface to volume ratios and surface relaxivities of porous media cannot be measured individually with NMR relaxometry. Therefore, NMR diffusion measurements are applied to probe the S/V of pores without other contributions. In this study, we demonstrate that NMR diffusion measurements are feasible to determine the S/V ratio of the pore space of quartz sand coated with goethite (α-FeOOH) as paramagnetic impurity. Our findings were compared to BET measurements and we found no dependence of the S/V on the coating density with NMR diffusion and a clear dependence between coating density and S/V with krypton BET measurements. Possible explanations are the different characteristic length scales on which the pore space is probed, and the intrinsic fractal nature of porous media [4] together with the roughness of the pore surface on a nm-scale due to the coating process. After isolating the additional contribution of the paramagnetic impurities to the NMR relaxation and the calibration of the NMR relaxation signal for each coating density it was possible to use fast relaxometry

  19. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.; Yeatman, E. M.; Holmes, A. S.

    2012-11-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s-2 a maximal power output of 2.1 mW was achieved.

  20. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  1. An electron spin resonance investigation of internal rust spot, a physiological disorder of the potato tuber.

    PubMed

    Monk, L S; McPhail, D B; Goodman, B A; Davies, H V

    1989-01-01

    ESR spectroscopy has been used to investigate the formation of paramagnetic species during the development of internal rust spot (IRS) in the potato tuber. Production of free radicals and oxidation of metal ions such as Fe(II) and Mn(II) occur when necrotic tissue is formed. However, since IRS develops in periods of calcium stress (low calcium supply), it is suggested that the principal cause of the disorder is a loss of cell membrane integrity which is brought about by a lack of calcium. Cell senescence and the formation of necrotic tissue may then result either from increased oxygen radical production within the cell or from oxidation of metal complexes in the extracellular regions of the tissue.

  2. Second order Coriolis resonance between the C-O stretch and the CH3 rock levels of methanol involving excited torsional state.

    PubMed

    Mukhopadhyay, I

    1997-12-01

    In this paper, it is shown that the interaction responsible for making the series of 'forbidden' transitions from the state (n tau K) = (110) in the ground vibrational (v = 0) state of the levels of (122+) in the CH3-rocking vibrational state (v = r) of methanol is 'Coriolis' resonance and not 'Fermi' resonance as proposed in a recent publication. This has been established from the J-dependence of the observed perturbed energy spacings between the two interacting pairs from high resolution spectroscopic analysis. The J-dependence clearly follows the classic 'Coriolis' interaction matrix elements for delta K = 2, which would not occur if the interaction were due to 'Fermi' resonance.

  3. Internal movement in myosin subfragment 1 detected by fluorescence resonance energy transfer.

    PubMed

    Xing, J; Cheung, H C

    1995-05-16

    We have determined intersite distances from Cys374 of actin to Cys707 (SH1) and Cys697 (SH2) of myosin subfragment 1 (S1) in actosubfragment 1 (A.S1) by fluorescence resonance energy transfer for rigor complex A.S1 and complexes containing bound ADP and ADP plus orthovanadate (Vi), A.S1.ADP, and A.S1.ADP.Vi. A single energy acceptor (4-dimethylaminophenylazophenyl-4'-maleimide, DABMI) was attached to Cys374, and two different energy donors [(5-(iodoacetamideothyl)aminonaphthalene-1-sulfonic acid (IAEDANS) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS)] were each attached to SH1 and SH2 for the distance determination. The two sites SH1 and SH2 of S1 were approximately equidistant (ca. 45 A) from actin Cys374 in rigor A.S1 when MIANS was the energy donor attached to the two thiols. The Cys374-SH1 distance decreased by 7-8 A in the presence of ADP plus Vi, but the distance Cys374-SH2 was essentially unaltered under identical conditions. Slightly different but similar distance results were obtained with AEDANS as energy donor. If the structure of actin monomer in A.S1 is assumed to be rigid [Miki, M. (1991) Biochemistry 30, 10878-10884], the present results indicate that MgADP plus Vi induced a movement of SH1 toward the actin site and that SH2 was insensitive to saturation of the active site pocket of S1 and relatively immobile. These results suggest that during the steady-state hydrolysis of ATP or in the weak-binding state of actomyosin, the short helical segment of S1 heavy chain containing SH1 moves closer to the COOH-terminal end of actin, while the adjacent helical segment containing SH2 remains stationary. The emission spectrum of MIANS attached to SH2 experienced a large red spectral shift (6-10 nm) in the presence of MgADP, MgADP + Vi, MgADP + beryllium fluoride, and ATP. A crude model of S1 based on the C alpha coordinates suggests that SH2 is located in a hydrophobic cage surrounded by three hydrophobic residues. Reorientation of one of

  4. Optical Haroche and Hanle resonances

    NASA Astrophysics Data System (ADS)

    Ruyten, Wilhelmus M.

    1990-07-01

    It is shown that Haroche and Hanle resonances, known from magnetic resonance, should be observable in an optical resonance experiment in which a narrowband, phase-modulated laser resonantly excites a two-level system. The narrow Haroche resonances should allow the first observation of an optical Bloch-Siegert shift, and may find applications in modulation spectroscopy.

  5. A direct transform for determining the trapped mass on an internal combustion engine based on the in-cylinder pressure resonance phenomenon

    NASA Astrophysics Data System (ADS)

    Broatch, Alberto; Guardiola, Carlos; Pla, Benjamín; Bares, Pau

    2015-10-01

    It has lately been demonstrated that the resonance of the in-cylinder pressure may be used for inferring the trapped mass in an internal combustion engine. The resonance frequency changes over time as the expansion stroke takes place, and hence time-frequency analysis techniques may be used for determining the instantaneous frequency. However, time-frequency analysis has different problems when obtaining the spectral content of the signal, e.g. Short-Time Fourier Transform dilutes the frequency spectrum, and the Wigner Distribution creates cross terms that difficult its interpretation. In addition, time-frequency analysis requires a significant computational burden. This paper presents a direct transform, based on the resonance phenomenon, which obtains the trapped mass by convolving the pressure trace with the theoretical resonance behaviour. The method permits avoiding the spectral problems of the time-frequency transformations by obtaining the trapped mass directly without the need of inferring the frequency content.

  6. Objective assessment of internal nasal dimensions and speech resonance in individuals with repaired unilateral cleft lip and palate after rhinoseptoplasty.

    PubMed

    Trindade, Inge Elly Kiemle; Bertier, Carlos Eduardo; Sampaio-Teixeira, Ana Claudia Martins

    2009-03-01

    The objective of the current study was to analyze the effects of rhinoseptoplasty on internal nasal dimensions and speech resonance of individuals with unilateral cleft lip and palate, estimated by acoustic rhinometry and nasometry, respectively. Twenty-one individuals (aged 15-46 years) with previously repaired unilateral cleft lip and palate were analyzed before (PRE), and 6 to 9 (POST1) and 12 to 18 months (POST2) after surgery. Acoustic rhinometry was used to measure the cross-sectional areas (CSAs) of segments corresponding to the nasal valve (CSA1), anterior portion (CSA2), and posterior portion (CSA3) of the lower turbinate, and the volumes at the nasal valve (V1) and turbinate (V2) regions at cleft and noncleft sides, before and after nasal decongestion with a topical vasoconstrictor. Nasometry was used to evaluate speech nasalance during the reading of a set of sentences containing nasal sounds and other devoid of nasal sounds. At the cleft side, before nasal decongestion, there was a significant increase (P < 0.05) in mean CSA1 and V1 values at POST1 and POST2 compared with PRE. After decongestion, increased values were also observed for CSA2 and V2 at POST2. No significant changes were observed at the noncleft side. Mean nasalance values at PRE, POST1, and POST2 were not different from each other in both oral and nasal sentences. The measurement of CSAs and volumes by acoustic rhinometry revealed that rhinoseptoplasty provided, in most cases analyzed, a significant increase in nasal patency, without concomitant changes in speech resonance, as estimated by nasalance assessment.

  7. Conversion acoustic resonances in orthorhombic crystals

    NASA Astrophysics Data System (ADS)

    Lyubimov, V. N.; Bessonov, D. A.; Alshits, V. I.

    2016-05-01

    A classification of acoustic-beam reflection resonances in orthorhombic crystals under conditions where a proximity to conversion is implemented in the vicinity of total internal reflection is proposed. In this case, the energy from the incident pump beam falls almost entirely into a narrow intense reflected beam propagating at a small angle with respect to the surface. The crystal boundary is parallel to one of the elastic symmetry planes, and the excited beam propagates near one of axes 2 in this plane. Depending on the relations between the elastic moduli and the chosen propagation geometry, 18 types of resonances may occur, but no more than three in each crystal. The developed theory combines an approximate analytical description and accurate computer analysis. The relations between the elastic moduli providing minimum energy loss over the parasite reflected wave are determined. Some crystals with resonant excitation very close to conversion are revealed.

  8. Excitation-energy dependence of the resonant Auger transitions to the 4p{sup 4}({sup 1}D)np (n=5,6) states across the 3d{sub 3/2}{sup -1}5p and 3d{sub 5/2}{sup -1}6p resonances in Kr

    SciTech Connect

    Sankari, A.; Alitalo, S.; Nikkinen, J.; Kivimaeki, A.; Aksela, S.; Aksela, H.; Fritzsche, S.

    2007-08-15

    The energy dependencies of the intensities and angular distribution parameters {beta} of the resonant Auger final states 4p{sup 4}({sup 1}D)np (n=5,6) of Kr were determined experimentally in the excitation-energy region of the overlapping 3d{sub 3/2}{sup -1}5p and 3d{sub 5/2}{sup -1}6p resonances. The experimental results were compared with the outcome of multiconfiguration Dirac-Fock calculations. Combining experimental and calculated results allowed us to study interference effects between the direct and several resonant channels that populate the 4p{sup 4}({sup 1}D)np states. The inclusion of the direct channel was crucial in order to reproduce the observed energy behavior of the angular distribution parameters. It was also important to take into account experimentally observed shake transitions.

  9. On the resonant generation of large-amplitude internal solitary and solitary-like waves

    NASA Astrophysics Data System (ADS)

    Stastna, M.; Peltier, W. R.

    2005-10-01

    In this paper we discuss numerical simulations of the generation of large-amplitude solitary waves in a continuously stratified fluid by flow over isolated topography. We employ the fully nonlinear theory for internal solitary waves to classify the numerical results for mode-1 waves and compare with two classes of approximate theories, weakly nonlinear theory leading to the Korteweg deVries and Gardner equations and conjugate flow theory which makes no approximation with respect to nonlinearity, but neglects dispersion entirely. We find that both weakly nonlinear theories have a limited range of applicability. In contrast, the conjugate flow theory predicts the nature of the limiting upstream propagating response (a dissipationless bore), successfully describes the bore's vertical structure, and gives a value of the inflow speed, c_j, above which no upstream propagating response is possible. The numerical experiments demonstrate the existence of a class of large-amplitude response structures that are generated and trapped over the topography when the inflow speed exceeds c_j. While similar in structure to fully nonlinear solitary waves, these trapped disturbances can induce isopycnal displacements more than 100% larger than those induced by the limiting solitary wave while remaining laminar. We develop a theory to describe the vertical structure at the crest of these trapped disturbances and describe its range of validity. Finally, we turn to the generation of mode-2 solitary-like waves. Mode-2 waves cannot be truly solitary owing to the existence of a small mode-1 tail that radiates energy downstream from the wave. We demonstrate that, for stratifications dominated by a single pycnocline, mode-2 wave dissipation is dominated by wave breaking as opposed to mode-1 wave radiation. We propose a phenomenological criterion based on weakly nonlinear theory to test whether mode-2 wave generation is to be expected for a given stratification.

  10. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    SciTech Connect

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.

  11. Observation of parametric nonadiabatic excitation of collective resonances under femtosecond optical pumping of a dense resonant extended medium without population inversion under the conditions of strong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Bagaev, S. N.; Egorov, V. S.; Pastor, A. A.; Preobrazhenskii, D. Yu.; Preobrazhenskaya, A. A.; Serdobintsev, P. Yu.; Chekhonin, I. A.; Chekhonin, M. A.

    2016-09-01

    We experimentally studied the superradiance of the resonant line of rubidium under femtosecond optical pumping of a dense extended medium without population inversion under conditions of strong lightmatter coupling. Substantial self-splitting of superradiance components is observed.

  12. Internal fixation of the spine using a braided titanium cable: clinical results and postoperative magnetic resonance imaging.

    PubMed

    Doran, S E; Papadopoulos, S M; Miller, L D

    1996-03-01

    Segmental spinal fixation using sublaminar or interspinous stainless steel wire has been successfully used for many years. Stainless steel cables have been developed that are stronger and more flexible, allowing for shorter operative time and decreased risk of neurological deficit. However, stainless steel implants create significant artifact on magnetic resonance imaging (MRI), reducing the postoperative usefulness of this imaging modality. Titanium instrumentation has the advantage of producing minimal MRI artifact. Recently, a braided titanium cable has been developed that has the advantages of strength and flexibility as well as minimal production of MRI artifact. We present a series of 50 patients who underwent internal fixation of the spine using a braided titanium cable either alone or in combination with supplementary titanium instrumentation. No instrument failures have occurred to date. Postoperative MRI scans have revealed minimal implant-related artifact, allowing for high-resolution, noninvasive postoperative imaging of the neuraxis. We conclude that braided titanium cable has significant advantages over stainless steel cable or monofilament wire and is a valuable instrument for segmental spine fixation.

  13. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ

    DOE PAGES

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; Amorese, A.; Brookes, N. B.; Dellea, G.; Lee, W. -S.; Minola, M.; Schmitt, T.; Yoshida, Y.; et al

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less

  14. Study of Orbitally Excited $B_{(s)}$ Mesons and Evidence for a New $B\\pi$ Resonance with the CDF II Detector

    SciTech Connect

    Kambeitz, Manuel

    2014-12-05

    This thesis presents an analysis of excited states of B0, B+ and B0 s mesons, decaying to B mesons while emitting a pion or kaon. They are reconstructed from their decay products and a selection is performed to discard wrongly reconstructed B(s) mesons with the multivariate analysis software NeuroBayes, as described in chapter 5. In the training process, the sPlot method and measured and simulated data are used. Chapter 6 describes how the properties of excited B(s) are determined by an unbinned maximum likelihood t to their mass spectra. The systematic uncertainties determined in this analysis are described in chapter 7. The results of this thesis are presented in chapter 8 and a conclusion is given in chapter 9. The results shown in this thesis have been published before in [1].

  15. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  16. Resonant Raman scattering in Nd{sub 2}O{sub 3} and the electronic structure of Sr{sub 2}RuO{sub 4} studied by synchrotron radiation excitation.

    SciTech Connect

    Ederer, D. L.

    1998-12-03

    This paper is intended to illustrate two points. The first being the extensive growth of resonant Raman soft x-ray scattering due to the emergence of third-generation x-ray sources. With these sources, the ubiquitous presence of Raman scattering near the 3d and 4d ionization thresholds has been used to elucidate the excitation process in a number of rare earth and transition metal compounds. Such scattering can produce dramatic changes in the emission spectrum, as we show in our example of inelastic scattering at the 3d threshold of Nd{sub 2}O{sub 3}. Photon-in photon-out soft x-ray spectroscopy is adding a new dimension to soft x-ray spectroscopy by providing many opportunities for exciting research, especially at third-generation synchrotrons light sources. Second, it is very effective to use theory and experiment to characterize the electronic properties of materials. In particular we confirmed in-plane oxygen-ruthenium bonding in Sr{sub 2}RuO{sub 4}, this first copperless perovskite superconductor, by analyses using calculations, soft x-ray emission spectroscopy (SXE) and photoelectron spectroscopy (PES). Measurements of this type illustrate the importance of combining SXE and PES measurements with theoretical calculations.

  17. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. PMID:23147444

  18. Following the molecular motion of near-resonant excited CO on Pt(111): A simulated x-ray photoelectron diffraction study based on molecular dynamics calculations

    PubMed Central

    Greif, Michael; Nagy, Tibor; Soloviov, Maksym; Castiglioni, Luca; Hengsberger, Matthias; Meuwly, Markus; Osterwalder, Jürg

    2015-01-01

    A THz-pump and x-ray-probe experiment is simulated where x-ray photoelectron diffraction (XPD) patterns record the coherent vibrational motion of carbon monoxide molecules adsorbed on a Pt(111) surface. Using molecular dynamics simulations, the excitation of frustrated wagging-type motion of the CO molecules by a few-cycle pulse of 2 THz radiation is calculated. From the atomic coordinates, the time-resolved XPD patterns of the C 1s core level photoelectrons are generated. Due to the direct structural information in these data provided by the forward scattering maximum along the carbon-oxygen direction, the sequence of these patterns represents the equivalent of a molecular movie. PMID:26798798

  19. Exciting Polaritons with Quantum Light.

    PubMed

    López Carreño, J C; Sánchez Muñoz, C; Sanvitto, D; del Valle, E; Laussy, F P

    2015-11-01

    We discuss the excitation of polaritons-strongly coupled states of light and matter-by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce "Mollow spectroscopy"-a theoretical concept for a spectroscopic technique that consists of scanning the output of resonance fluorescence onto an optical target-from which weak nonlinearities can be read with high precision even in strongly dissipative environments. PMID:26588401

  20. Decay dynamics of α,β-carboxylic methyl esters (CH3OCOCH:CHR) in the lower-lying excited states--resonance Raman and complete active space self-consistent field calculation study.

    PubMed

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Xie, Bin-Bin; Fang, Wei-Hai

    2014-10-01

    The photophysics of two α,β-carboxylic methyl esters after excitation to the light absorbing S2(ππ(*)) state were studied by using the resonance Raman spectroscopy and complete active space self-consistent field (CASSCF) method calculations. The vibrational spectra were assigned on the basis of the experimental measurements and the B3LYP/6-31G(d) computations, as well as the normal mode analysis. The A-band resonance Raman spectra of methyl 2,4-pentadienoate (M24PDA) and methyl trans cronoate (MTCA) were measured to probe the structural dynamics in Franck-Condon region. CASSCF calculations were done to obtain the minimal excitation energies and geometric structures of the lower-lying singlet and triplet excited states, and the curve-crossing points. It was revealed that the short-time structural dynamics of M24PDA was dominated by the Cα=Cβ-C4=C5 stretch coordinate, while that of MTCA was mostly along the Cα=Cβ and the C=O stretch motion. Comparison of the structural dynamics of M24PDA and MTCA with that of 3-methyl-3-pentene-2-one (3M3P2O) indicated that the structural dynamics of MTCA is similar to that of 3M3P2O but different than that of M24PDA in that the variation of the Raman intensity ratios for ν7/ν8, (ν7+ν8)/2ν8, (ν7+2ν8)/3ν8, (ν7+3ν8)/4ν8 of MTCA is similar to that of 3M3P2O but different from that of M24PDA. It is found that the substitution of methyl group in the α(')-position of α,β-enones by methoxyl group does not substantially affect the short-time structural dynamics, while the substitution of vinyl group in the β-position changes significantly the short-time structural dynamics and the subsequent decay processes. A detailed decay mechanism is proposed. Two sub-processes which consider the reconjugation and the subsequent charge-transfer reaction of O=C-Cα=Cβ chromophore were postulated to describe the variation of short-time structural dynamics with the different substitution.

  1. Spin-Sensitive and Angular Dependent Detection of Resonant Excitations at the K Absorption Pre-Edge of {alpha}-Fe2O3

    SciTech Connect

    Glatzel, Pieter; Mirone, Alessandro; Eeckhout, Sigrid G.; Sikora, Marcin; Giuli, Gabriele

    2007-02-02

    An experimental and theoretical study of the K absorption pre-edge in hematite ({alpha}-Fe2O3) is presented. Resonant inelastic X-ray scattering with a 3p hole in the final states was used to obtain spin-selective absorption spectra. Spectral variations with changing the orientation of the incident X-ray polarization vector with respect to the crystal c-axis in single crystalline hematite are discussed. The experimental results can be successfully modeled using a band-structure approach (WIEN2k with LDA+U). A pre-edge absorption feature is assigned to unoccupied p electronic states due to Fe-Fe interactions, i.e. they are due to non-local transitions.

  2. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  3. Spatial resonance in a small artery excited by vibration input as a possible mechanism to cause hand-arm vascular disorders

    NASA Astrophysics Data System (ADS)

    Pattnaik, Shrikant; Banerjee, Rupak; Kim, Jay

    2012-04-01

    Hand-arm vibration syndrome (HAVS) is collectively a vasospastic and neurodegenerative occupational disease. One of the major symptoms of HAVS is vibration white finger (VWF) caused by exaggerated vasoconstriction of the arteries and skin arterioles. While VWF is a very painful and costly occupational illness, its pathology has not been well understood. In this study a small artery is modeled as a fluid filled elastic tube whose diameter changes along the axial direction. Equations of motion are developed by considering interactions between the fluid, artery wall and soft-tissue bed. It is shown that the resulting wave equation is the same as that of the basilar membrane in the cochlea of mammals. Therefore, the artery system shows a spatial resonance as in the basilar membrane, which responds with the highest amplitude at the location determined by the vibration frequency. This implies that a long-term use of one type of tool will induce high-level stresses at a few identical locations of the artery that correspond to the major frequency components of the tool. Hardening and deterioration of the artery at these locations may be a possible cause of VWF.

  4. Combined electrical and resonant optical excitation characterization of multi-quantum well InGaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Presa, S.; Maaskant, P. P.; Kappers, M. J.; Humphreys, C. J.; Corbett, B.

    2016-07-01

    We present a comprehensive study of the emission spectra and electrical characteristics of InGaN/GaN multi-quantum well light-emitting diode (LED) structures under resonant optical pumping and varying electrical bias. A 5 quantum well LED with a thin well (1.5 nm) and a relatively thick barrier (6.6 nm) shows strong bias-dependent properties in the emission spectra, poor photovoltaic carrier escape under forward bias and an increase in effective resistance when compared with a 10 quantum well LED with a thin (4 nm) barrier. These properties are due to a strong piezoelectric field in the well and associated reduced field in the thicker barrier. We compare the voltage ideality factors for the LEDs under electrical injection, light emission with current, photovoltaic mode (PV) and photoluminescence (PL) emission. The PV and PL methods provide similar values for the ideality which are lower than for the resistance-limited electrical method. Under optical pumping the presence of an n-type InGaN underlayer in a commercial LED sample is shown to act as a second photovoltaic source reducing the photovoltage and the extracted ideality factor to less than 1. The use of photovoltaic measurements together with bias-dependent spectrally resolved luminescence is a powerful method to provide valuable insights into the dynamics of GaN LEDs.

  5. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  6. Direct observation of the excited-state proton transfer and decay kinetics of internally hydrogen-bonded photostabilizers in copolymer films

    NASA Technical Reports Server (NTRS)

    Oconnor, D. B.; Scott, G. W.; Coulter, D. R.; Gupta, A.; Webb, S. P.

    1985-01-01

    The excited-state dynamics of a 2-hydroxyphenylbenzotriazole (HPB) photostabilizer copolymerized with polystyrene are reported. HPB fluorescence from these copolymer films is observed at approximately 630 nm, characteristic of the proton-transferred excited state of HPB, and it has a risetime of less than 10 ps and a decay time of 28 + or - 4 ps at room temperature. Measurement of the relative fluorescence quantum yield as a function of temperature gives the activation energy for nonradiative decay of this state to be E/hc = 259 + or 25/cm.

  7. Initial velocity distribution of MALDI/LDI ions measured by internal MALDI source Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vitaliy; Frankevich, Vladimir; Zenobi, Renato

    2014-11-01

    A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode.

  8. Excited Delirium

    PubMed Central

    Takeuchi, Asia; Ahern, Terence L.; Henderson, Sean O.

    2011-01-01

    Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. PMID:21691475

  9. Experimental assessment of absorbed dose to mineralized bone tissue from internal emitters: An electron paramagnetic resonance study

    SciTech Connect

    Desrosiers, M.F.

    1994-12-31

    EPR resonances attributable to radiation-induced centers in hydroxyapatite were not detectable in bone samples supplied by the USTUR. These centers are the basis for imaging and dose assessment. Presumable, the short range of the alpha particles emitted precluded the formation of appreciable amounts of hydroxyapatite centers. However, one bone sample did offer a suggestion of hydroxyapatite centers and newly-developed methods to extract this information will be pursued.

  10. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  11. A Hamiltonian approach to the parametric excitation

    NASA Astrophysics Data System (ADS)

    Leroy, V.; Bacri, J.-C.; Hocquet, T.; Devaud, M.

    2006-05-01

    We propose a solution of the parametrically excited oscillator problem using the Hamiltonian formalism introduced by Glauber. The main advantage is that, within the framework of this formalism, the different possible approximations appear much more naturally than in the standard textbook presentation. Experiments on adiabatic and resonant parametric excitations of a pendulum are presented as an illustration, with particular attention being paid to the role played by the phase of the excitation.

  12. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  13. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior. PMID:949223

  14. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  15. Onset and Saturation of a Non-resonant Internal Mode in NSTX and Implications For AT Modes in ITER

    SciTech Connect

    J.A. Breslau, M.S. Chance, J. Chen, G.Y. Fu, S,. Gerhardt, N. Gorelenkov, S.C. Jardin and J. Manickam

    2011-08-01

    Motivated by experimental observations of apparently triggerless tearing modes, we have performed linear and nonlinear MHD analysis showing that a non-resonant mode with toroidal mode number n = 1 can develop in the National Spherical Torus eXperiment (NSTX) at moderate normalized βN when the shear is low and the central safety factor q0 is close to but greater than one. This mode, which is related to previously identified ‘infernal’ modes, will saturate and persist, and can develop poloidal mode number m = 2 magnetic islands in agreement with experiments. We have also extended this analysis by performing a free-boundary transport simulation of an entire discharge and showing that, with reasonable assumptions, we can predict the time of mode onset. __________________________________________________

  16. Consensus Report of the 4th International Forum for Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid Magnetic Resonance Imaging

    PubMed Central

    Zech, Christoph J; Bolondi, Luigi; Jonas, Eduard; Kim, Myeong-Jin; Matsui, Osamu; Merkle, Elmar M.; Sakamoto, Michiie; Choi, Byung Ihn

    2011-01-01

    This paper reports on issues relating to the optimal use of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging (Gd-EOB-DTPA MR imaging) together with the generation of consensus statements from a working group meeting, which was held in Seoul, Korea (2010). Gd-EOB-DTPA has been shown to improve the detection and characterization of liver lesions, and the information provided by the hepatobiliary phase is proving particularly useful in differential diagnoses and in the characterization of small lesions (around 1-1.5 cm). Discussion also focused on advances in the role of organic anion-transporting polypeptide 8 (OATP8) transporters. Gd-EOB-DTPA is also emerging as a promising tool for functional analysis, enabling the calculation of post-surgical liver function in the remaining segments. Updates to current algorithms were also discussed. PMID:21852900

  17. Dual-source parallel radiofrequency excitation ACR phantom magnetic resonance imaging at 3 T: Assessment of the effect of image quality on high-contrast spatial resolution, percent signal ghosting, and low-contrast object detectability in comparison with conventional single-source transmission

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Bae; Park, Yong-Sung; Choe, Bo-Young

    2013-10-01

    The purpose of the present study was to assess dual-source parallel radiofrequency (RF) excitation American College of Radiology (ACR) phantom magnetic resonance (MR) imaging at 3T compared with conventional single-source RF transmission and compared with the standard ACR MRI phantom test. We used a 3T MR scanner equipped with dual-source parallel RF excitation and an 8-channel head phased array coil. We employed T1- and T2-weighted fast spin echo (FSE) pulse sequences for an assessment of the impact of image quality on high-contrast spatial resolution, percent signal ghosting and low-contrast object detectability following the ACR MRI quality control (QC) manual. With geometric accuracy and identical slice locations, dual RFs using dual-source parallel RF excitation MR showed an advantage over single RF using dual-source parallel RF excitation MR and conventional MR in terms of high-contrast spatial resolution (p < 0.010), percent signal ghosting (p < 0.010), and low-contrast object detectability (p < 0.010). The quality of the image from the dual-source parallel RF excitation MR equipment was superior to that of the image from conventional MR equipment for the ACR phantom. We need to pursue dual-source parallel RF excitation MR studies involving various clinical cases.

  18. Carbon dioxide ion dissociations after inner shell excitation and ionization: The origin of site-specific effects

    SciTech Connect

    Eland, J. H. D.; Zagorodskikh, S.; Mucke, M.; Squibb, R. J.; Feifel, R.; Sorensen, S. L.

    2014-05-14

    Multi-coincidence experiments with detection of both electrons and ions from decay of core-excited and core-ionized states of CO{sub 2} confirm that O{sub 2}{sup +} is formed specifically in Auger decay from the C1s-π* and O1s-π* resonances. Molecular rearrangement occurs by bending in the resonant states, and O{sub 2}{sup +} is produced by both single and double Auger decay. It is suggested that electron capture by C{sup +} after partial dissociation in the doubly ionized core of excited CO{sub 2}{sup +}, formed by shake-up in spectator resonant Auger decay, accounts for high kinetic energy and high internal energy in some C + O{sub 2}{sup +} fragments.

  19. Estimation of Error in Maximal Intensity Projection-Based Internal Target Volume of Lung Tumors: A Simulation and Comparison Study Using Dynamic Magnetic Resonance Imaging

    SciTech Connect

    Cai Jing; Read, Paul W.; Baisden, Joseph M.; Larner, James M.; Benedict, Stanley H.; Sheng Ke

    2007-11-01

    Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  20. 0.2-Tesla magnetic resonance imaging of internal lesions of the knee joint: a prospective arthroscopically controlled clinical study.

    PubMed

    Riel, K A; Reinisch, M; Kersting-Sommerhoff, B; Hof, N; Merl, T

    1999-01-01

    The results of magnetic resonance imaging (MRI) were compared with those of arthroscopy in a prospective series of 244 patients. A dedicated system for MRI of limbs and peripheral joints--the 0.2-T Artoscan (Esaote, Italy)--was used for imaging knee joint lesions. T1-weighted spin-echo sagittal images, T2-weighted gradient-echo coronal images, and axial views for lesions of the femoropatellar joint were acquired. Paraxial sagittal and oblique coronal views were obtained for imaging of the cruciate ligaments. This protocol allowed excellent visualization of the cruciate ligaments and medial and lateral meniscus in almost all patients. Compared with arthroscopy performed within 48 h after imaging, the sensitivity, specificity, and accuracy were respectively 93%, 97%, and 95% for tears of the medial meniscus; 82%, 96%, and 93% for tears of the lateral meniscus; 100%, 100%, and 100% for tears of the posterior cruciate ligament; 98%, 98%, and 97% for tears of the anterior cruciate ligament; and 72%, 100%, and 92% for full-thickness articular cartilage lesions. The examination can be performed within 30-45 min at lower cost than diagnostic arthroscopy. MRI with a 0.2-T magnet is a safe and valuable adjunct to the clinical examination of the knee and an aid to efficient preoperative planning.