Knowledge-Driven Event Extraction in Russian: Corpus-Based Linguistic Resources
Solovyev, Valery; Ivanov, Vladimir
2016-01-01
Automatic event extraction form text is an important step in knowledge acquisition and knowledge base population. Manual work in development of extraction system is indispensable either in corpus annotation or in vocabularies and pattern creation for a knowledge-based system. Recent works have been focused on adaptation of existing system (for extraction from English texts) to new domains. Event extraction in other languages was not studied due to the lack of resources and algorithms necessary for natural language processing. In this paper we define a set of linguistic resources that are necessary in development of a knowledge-based event extraction system in Russian: a vocabulary of subordination models, a vocabulary of event triggers, and a vocabulary of Frame Elements that are basic building blocks for semantic patterns. We propose a set of methods for creation of such vocabularies in Russian and other languages using Google Books NGram Corpus. The methods are evaluated in development of event extraction system for Russian. PMID:26955386
NASA Technical Reports Server (NTRS)
1975-01-01
The use of information from space systems in the operation of extractive industries, particularly in exploration for mineral and fuel resources was reviewed. Conclusions and recommendations reported are based on the fundamental premise that survival of modern industrial society requires a continuing secure flow of resources for energy, construction and manufacturing, and for use as plant foods.
A prototype system to support evidence-based practice.
Demner-Fushman, Dina; Seckman, Charlotte; Fisher, Cheryl; Hauser, Susan E; Clayton, Jennifer; Thoma, George R
2008-11-06
Translating evidence into clinical practice is a complex process that depends on the availability of evidence, the environment into which the research evidence is translated, and the system that facilitates the translation. This paper presents InfoBot, a system designed for automatic delivery of patient-specific information from evidence-based resources. A prototype system has been implemented to support development of individualized patient care plans. The prototype explores possibilities to automatically extract patients problems from the interdisciplinary team notes and query evidence-based resources using the extracted terms. Using 4,335 de-identified interdisciplinary team notes for 525 patients, the system automatically extracted biomedical terminology from 4,219 notes and linked resources to 260 patient records. Sixty of those records (15 each for Pediatrics, Oncology & Hematology, Medical & Surgical, and Behavioral Health units) have been selected for an ongoing evaluation of the quality of automatically proactively delivered evidence and its usefulness in development of care plans.
A Prototype System to Support Evidence-based Practice
Demner-Fushman, Dina; Seckman, Charlotte; Fisher, Cheryl; Hauser, Susan E.; Clayton, Jennifer; Thoma, George R.
2008-01-01
Translating evidence into clinical practice is a complex process that depends on the availability of evidence, the environment into which the research evidence is translated, and the system that facilitates the translation. This paper presents InfoBot, a system designed for automatic delivery of patient-specific information from evidence-based resources. A prototype system has been implemented to support development of individualized patient care plans. The prototype explores possibilities to automatically extract patients’ problems from the interdisciplinary team notes and query evidence-based resources using the extracted terms. Using 4,335 de-identified interdisciplinary team notes for 525 patients, the system automatically extracted biomedical terminology from 4,219 notes and linked resources to 260 patient records. Sixty of those records (15 each for Pediatrics, Oncology & Hematology, Medical & Surgical, and Behavioral Health units) have been selected for an ongoing evaluation of the quality of automatically proactively delivered evidence and its usefulness in development of care plans. PMID:18998835
Low-Temperature Hydrothermal Resource Potential
Katherine Young
2016-06-30
Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.
NASA Earth Resources Survey Symposium. Volume 1-B: Geology, Information Systems and Services
NASA Technical Reports Server (NTRS)
1975-01-01
A symposium was conducted on the practical applications of earth resources survey technology including utilization and results of data from programs involving LANDSAT, the Skylab earth resources experiment package, and aircraft. Topics discussed include geological structure, landform surveys, energy and extractive resources, and information systems and services.
Low-Temperature Hydrothermal Resource Potential Estimate
Katherine Young
2016-06-30
Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.
Optimal Management of Geothermal Heat Extraction
NASA Astrophysics Data System (ADS)
Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.
2015-12-01
Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that maximize net present value given the performance of the geothermal resource.
American Indian Systems for Natural Resource Management.
ERIC Educational Resources Information Center
Quintana, Jorge O.
1992-01-01
Outlines the philosophy and general principles of "primitive" indigenous production technologies and natural resource management systems in North and South America. Discusses indigenous practices that promote sustainable production in gathering, hunting and fishing, minerals extraction, and agriculture. (SV)
The Basic Extractive Sludge Treatment (B.E.S.T.®) process is a solvent extraction system that separates organic contaminants from sludges, soils, and sediments. The primary distinguishing feature of the process is the extraction agent, triethylamine. The key to the success of tri...
Bejan, Cosmin Adrian; Wei, Wei-Qi; Denny, Joshua C
2015-01-01
Objective To evaluate the contribution of the MEDication Indication (MEDI) resource and SemRep for identifying treatment relations in clinical text. Materials and methods We first processed clinical documents with SemRep to extract the Unified Medical Language System (UMLS) concepts and the treatment relations between them. Then, we incorporated MEDI into a simple algorithm that identifies treatment relations between two concepts if they match a medication-indication pair in this resource. For a better coverage, we expanded MEDI using ontology relationships from RxNorm and UMLS Metathesaurus. We also developed two ensemble methods, which combined the predictions of SemRep and the MEDI algorithm. We evaluated our selected methods on two datasets, a Vanderbilt corpus of 6864 discharge summaries and the 2010 Informatics for Integrating Biology and the Bedside (i2b2)/Veteran's Affairs (VA) challenge dataset. Results The Vanderbilt dataset included 958 manually annotated treatment relations. A double annotation was performed on 25% of relations with high agreement (Cohen's κ = 0.86). The evaluation consisted of comparing the manual annotated relations with the relations identified by SemRep, the MEDI algorithm, and the two ensemble methods. On the first dataset, the best F1-measure results achieved by the MEDI algorithm and the union of the two resources (78.7 and 80, respectively) were significantly higher than the SemRep results (72.3). On the second dataset, the MEDI algorithm achieved better precision and significantly lower recall values than the best system in the i2b2 challenge. The two systems obtained comparable F1-measure values on the subset of i2b2 relations with both arguments in MEDI. Conclusions Both SemRep and MEDI can be used to extract treatment relations from clinical text. Knowledge-based extraction with MEDI outperformed use of SemRep alone, but superior performance was achieved by integrating both systems. The integration of knowledge-based resources such as MEDI into information extraction systems such as SemRep and the i2b2 relation extractors may improve treatment relation extraction from clinical text. PMID:25336593
Updated United Nations Framework Classification for reserves and resources of extractive industries
Ahlbrandt, T.S.; Blaise, J.R.; Blystad, P.; Kelter, D.; Gabrielyants, G.; Heiberg, S.; Martinez, A.; Ross, J.G.; Slavov, S.; Subelj, A.; Young, E.D.
2004-01-01
The United Nations have studied how the oil and gas resource classification developed jointly by the SPE, the World Petroleum Congress (WPC) and the American Association of Petroleum Geologists (AAPG) could be harmonized with the United Nations Framework Classification (UNFC) for Solid Fuel and Mineral Resources (1). The United Nations has continued to build on this and other works, with support from many relevant international organizations, with the objective of updating the UNFC to apply to the extractive industries. The result is the United Nations Framework Classification for Energy and Mineral Resources (2) that this paper will present. Reserves and resources are categorized with respect to three sets of criteria: ??? Economic and commercial viability ??? Field project status and feasibility ??? The level of geologic knowledge The field project status criteria are readily recognized as the ones highlighted in the SPE/WPC/AAPG classification system of 2000. The geologic criteria absorb the rich traditions that form the primary basis for the Russian classification system, and the ones used to delimit, in part, proved reserves. Economic and commercial criteria facilitate the use of the classification in general, and reflect the commercial considerations used to delimit proved reserves in particular. The classification system will help to develop a common understanding of reserves and resources for all the extractive industries and will assist: ??? International and national resources management to secure supplies; ??? Industries' management of business processes to achieve efficiency in exploration and production; and ??? An appropriate basis for documenting the value of reserves and resources in financial statements.
WRIS: a resource information system for wildland management
Robert M. Russell; David A. Sharpnack; Elliot Amidon
1975-01-01
WRIS (Wildland Resource Information System) is a computer system for processing, storing, retrieving, updating, and displaying geographic data. The polygon, representing a land area boundary, forms the building block of WRIS. Polygons form a map. Maps are digitized manually or by automatic scanning. Computer programs can extract and produce polygon maps and can overlay...
Geothermal systems: Principles and case histories
NASA Astrophysics Data System (ADS)
Rybach, L.; Muffler, L. J. P.
The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.
NASA Technical Reports Server (NTRS)
Lietzke, K. R.
1974-01-01
The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.
Energy, environmental and climate assessment with the EPA MARKAL energy system modeling framework
The energy system is comprised of the technologies and fuels that extend from the import or extraction of energy resources (e.g., mines and wells), through the conversion of these resources into useful forms (e.g., electricity and gasoline), to the technologies (e.g., cars, light...
NASA Technical Reports Server (NTRS)
1974-01-01
User models defined as any explicit process or procedure used to transform information extracted from remotely sensed data into a form useful as a resource management information input are discussed. The role of the user models as information, technological, and operations interfaces between the TERSSE and the resource managers is emphasized. It is recommended that guidelines and management strategies be developed for a systems approach to user model development.
Automated Extraction of Substance Use Information from Clinical Texts.
Wang, Yan; Chen, Elizabeth S; Pakhomov, Serguei; Arsoniadis, Elliot; Carter, Elizabeth W; Lindemann, Elizabeth; Sarkar, Indra Neil; Melton, Genevieve B
2015-01-01
Within clinical discourse, social history (SH) includes important information about substance use (alcohol, drug, and nicotine use) as key risk factors for disease, disability, and mortality. In this study, we developed and evaluated a natural language processing (NLP) system for automated detection of substance use statements and extraction of substance use attributes (e.g., temporal and status) based on Stanford Typed Dependencies. The developed NLP system leveraged linguistic resources and domain knowledge from a multi-site social history study, Propbank and the MiPACQ corpus. The system attained F-scores of 89.8, 84.6 and 89.4 respectively for alcohol, drug, and nicotine use statement detection, as well as average F-scores of 82.1, 90.3, 80.8, 88.7, 96.6, and 74.5 respectively for extraction of attributes. Our results suggest that NLP systems can achieve good performance when augmented with linguistic resources and domain knowledge when applied to a wide breadth of substance use free text clinical notes.
Airola, Antti; Pyysalo, Sampo; Björne, Jari; Pahikkala, Tapio; Ginter, Filip; Salakoski, Tapio
2008-11-19
Automated extraction of protein-protein interactions (PPI) is an important and widely studied task in biomedical text mining. We propose a graph kernel based approach for this task. In contrast to earlier approaches to PPI extraction, the introduced all-paths graph kernel has the capability to make use of full, general dependency graphs representing the sentence structure. We evaluate the proposed method on five publicly available PPI corpora, providing the most comprehensive evaluation done for a machine learning based PPI-extraction system. We additionally perform a detailed evaluation of the effects of training and testing on different resources, providing insight into the challenges involved in applying a system beyond the data it was trained on. Our method is shown to achieve state-of-the-art performance with respect to comparable evaluations, with 56.4 F-score and 84.8 AUC on the AImed corpus. We show that the graph kernel approach performs on state-of-the-art level in PPI extraction, and note the possible extension to the task of extracting complex interactions. Cross-corpus results provide further insight into how the learning generalizes beyond individual corpora. Further, we identify several pitfalls that can make evaluations of PPI-extraction systems incomparable, or even invalid. These include incorrect cross-validation strategies and problems related to comparing F-score results achieved on different evaluation resources. Recommendations for avoiding these pitfalls are provided.
Geologic considerations in underground coal mining system design
NASA Technical Reports Server (NTRS)
Camilli, F. A.; Maynard, D. P.; Mangolds, A.; Harris, J.
1981-01-01
Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.
Landsat surface reflectance quality assurance extraction (version 1.7)
Jones, J.W.; Starbuck, M.J.; Jenkerson, Calli B.
2013-01-01
The U.S. Geological Survey (USGS) Land Remote Sensing Program is developing an operational capability to produce Climate Data Records (CDRs) and Essential Climate Variables (ECVs) from the Landsat Archive to support a wide variety of science and resource management activities from regional to global scale. The USGS Earth Resources Observation and Science (EROS) Center is charged with prototyping systems and software to generate these high-level data products. Various USGS Geographic Science Centers are charged with particular ECV algorithm development and (or) selection as well as the evaluation and application demonstration of various USGS CDRs and ECVs. Because it is a foundation for many other ECVs, the first CDR in development is the Landsat Surface Reflectance Product (LSRP). The LSRP incorporates data quality information in a bit-packed structure that is not readily accessible without postprocessing services performed by the user. This document describes two general methods of LSRP quality-data extraction for use in image processing systems. Helpful hints for the installation and use of software originally developed for manipulation of Hierarchical Data Format (HDF) produced through the National Aeronautics and Space Administration (NASA) Earth Observing System are first provided for users who wish to extract quality data into separate HDF files. Next, steps follow to incorporate these extracted data into an image processing system. Finally, an alternative example is illustrated in which the data are extracted within a particular image processing system.
Earth resources data analysis program, phase 3
NASA Technical Reports Server (NTRS)
1975-01-01
Tasks were performed in two areas: (1) systems analysis and (2) algorithmic development. The major effort in the systems analysis task was the development of a recommended approach to the monitoring of resource utilization data for the Large Area Crop Inventory Experiment (LACIE). Other efforts included participation in various studies concerning the LACIE Project Plan, the utility of the GE Image 100, and the specifications for a special purpose processor to be used in the LACIE. In the second task, the major effort was the development of improved algorithms for estimating proportions of unclassified remotely sensed data. Also, work was performed on optimal feature extraction and optimal feature extraction for proportion estimation.
Autonomous In-Situ Resources Prospector
NASA Technical Reports Server (NTRS)
Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.
2004-01-01
This presentation will describe the concept of an autonomous, intelligent, rover-based rapid surveying system to identify and map several key lunar resources to optimize their ISRU (In Situ Resource Utilization) extraction potential. Prior to an extraction phase for any target resource, ground-based surveys are needed to provide confirmation of remote observation, to quantify and map their 3-D distribution, and to locate optimal extraction sites (e.g. ore bodies) with precision to maximize their economic benefit. The system will search for and quantify optimal minerals for oxygen production feedstock, water ice, and high glass-content regolith that can be used for building materials. These are targeted because of their utility and because they are, or are likely to be, variable in quantity over spatial scales accessible to a rover (i.e., few km). Oxygen has benefits for life support systems and as an oxidizer for propellants. Water is a key resource for sustainable exploration, with utility for life support, propellants, and other industrial processes. High glass-content regolith has utility as a feedstock for building materials as it readily sinters upon heating into a cohesive matrix more readily than other regolith materials or crystalline basalts. Lunar glasses are also a potential feedstock for oxygen production, as many are rich in iron and titanium oxides that are optimal for oxygen extraction. To accomplish this task, a system of sensors and decision-making algorithms for an autonomous prospecting rover is described. One set of sensors will be located in the wheel tread of the robotic search vehicle providing contact sensor data on regolith composition. Another set of instruments will be housed on the platform of the rover, including VIS-NIR imagers and spectrometers, both for far-field context and near-field characterization of the regolith in the immediate vicinity of the rover. Also included in the sensor suite are a neutron spectrometer, ground-penetrating radar, and an instrumented cone penetrometer for subsurface assessment. Output from these sensors will be evaluated autonomously in real-time by decision-making software to evaluate if any of the targeted resources has been detected, and if so, to quantify their abundance. Algorithms for optimizing the mapping strategy based on target resource abundance and distribution are also included in the autonomous software. This approach emphasizes on-the-fly survey measurements to enable efficient and rapid prospecting of large areas, which will improve the economics of ISRU system approaches. The mature technology will enable autonomous rovers to create in-situ resource maps of lunar or other planetary surfaces, which will facilitate human and robotic exploration.
Gaussian white noise as a resource for work extraction.
Dechant, Andreas; Baule, Adrian; Sasa, Shin-Ichi
2017-03-01
We show that uncorrelated Gaussian noise can drive a system out of equilibrium and can serve as a resource from which work can be extracted. We consider an overdamped particle in a periodic potential with an internal degree of freedom and a state-dependent friction, coupled to an equilibrium bath. Applying additional Gaussian white noise drives the system into a nonequilibrium steady state and causes a finite current if the potential is spatially asymmetric. The model thus operates as a Brownian ratchet, whose current we calculate explicitly in three complementary limits. Since the particle current is driven solely by additive Gaussian white noise, this shows that the latter can potentially perform work against an external load. By comparing the extracted power to the energy injection due to the noise, we discuss the efficiency of such a ratchet.
Development of Availability and Sustainability Spares Optimization Models for Aircraft Reparables
2013-09-01
the integrated SAP ® Enterprise Resource Planning ( ERP ) information system of the RSAF. A more in-depth review of OPUS10 capabilities will be provided...Dynamic Multi-Echelon Technique for Recoverable Item Control EBO: Expected Backorder EOQ: Economic Order Quantity ERP : Enterprise Resource...particular, the propulsion sub-system was expanded to include SSRUs. Spares information are extracted from the RSAF ERP system and include: 22
Nanotechnology, resources, and pollution control
NASA Astrophysics Data System (ADS)
Gillett, Stephen L.
1996-09-01
The separation of different kinds of atoms or molecules from each other is a fundamental technological problem. Current techniques of resource extraction, which use the ancient paradigm of the differential partitioning of elements into coexisting phases, are simple but extremely wasteful and require feedstocks (`ores') that are already anomalously enriched. This is impractical for pollution control and desalination, which require extraction of low concentrations; instead, atomistic separation, typically by differential motion through semipermeable membranes, is used. The present application of such membranes is seriously limited, however, mostly because of limitations in their fabrication by conventional bulk techniques. The capabilities of biological systems, such as vertebrate kidneys, are vastly better, largely because they are intrinsically structured at a molecular scale. Nanofabrication of semipermeable membranes promises capabilities on the order of those of biological systems, and this in turn could provide much financial incentive for the development of molecular assemblers, as well established markets exist already. Continued incentives would exist, moreover, as markets expanded with decreasing costs, leading to such further applications as remediation of polluted sites, cheap desalination, and resource extraction from very low-grade sources.
Microwave-Assisted Extraction of Fucoidan from Marine Algae.
Mussatto, Solange I
2015-01-01
Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass.
Li, Fenfang; Li, Qiao; Wu, Shuanggen; Tan, Zhijian
2017-02-15
Salting-out extraction (SOE) based on lower molecular organic solvent and inorganic salt was considered as a good substitute for conventional polymers aqueous two-phase extraction (ATPE) used for the extraction of some bioactive compounds from natural plants resources. In this study, the ethanol/ammonium sulfate was screened as the optimal SOE system for the extraction and preliminary purification of allicin from garlic. Response surface methodology (RSM) was developed to optimize the major conditions. The maximum extraction efficiency of 94.17% was obtained at the optimized conditions for routine use: 23% (w/w) ethanol concentration and 24% (w/w) salt concentration, 31g/L loaded sample at 25°C with pH being not adjusted. The extraction efficiency had no obvious decrease after amplification of the extraction. This ethanol/ammonium sulfate SOE is much simpler, cheaper, and effective, which has the potentiality of scale-up production for the extraction and purification of other compounds from plant resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
A moving baseline for evaluation of advanced coal extraction systems
NASA Technical Reports Server (NTRS)
Bickerton, C. R.; Westerfield, M. D.
1981-01-01
Results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000 are reported. Systems used were selected from contemporary coal mining technology and from conservation conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam extended to other seam thicknesses.
Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids
NASA Technical Reports Server (NTRS)
Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob
2017-01-01
NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.
2015-01-01
Background Modern methods for mining biomolecular interactions from literature typically make predictions based solely on the immediate textual context, in effect a single sentence. No prior work has been published on extending this context to the information automatically gathered from the whole biomedical literature. Thus, our motivation for this study is to explore whether mutually supporting evidence, aggregated across several documents can be utilized to improve the performance of the state-of-the-art event extraction systems. In this paper, we describe our participation in the latest BioNLP Shared Task using the large-scale text mining resource EVEX. We participated in the Genia Event Extraction (GE) and Gene Regulation Network (GRN) tasks with two separate systems. In the GE task, we implemented a re-ranking approach to improve the precision of an existing event extraction system, incorporating features from the EVEX resource. In the GRN task, our system relied solely on the EVEX resource and utilized a rule-based conversion algorithm between the EVEX and GRN formats. Results In the GE task, our re-ranking approach led to a modest performance increase and resulted in the first rank of the official Shared Task results with 50.97% F-score. Additionally, in this paper we explore and evaluate the usage of distributed vector representations for this challenge. In the GRN task, we ranked fifth in the official results with a strict/relaxed SER score of 0.92/0.81 respectively. To try and improve upon these results, we have implemented a novel machine learning based conversion system and benchmarked its performance against the original rule-based system. Conclusions For the GRN task, we were able to produce a gene regulatory network from the EVEX data, warranting the use of such generic large-scale text mining data in network biology settings. A detailed performance and error analysis provides more insight into the relatively low recall rates. In the GE task we demonstrate that both the re-ranking approach and the word vectors can provide slight performance improvement. A manual evaluation of the re-ranking results pinpoints some of the challenges faced in applying large-scale text mining knowledge to event extraction. PMID:26551766
An information extraction framework for cohort identification using electronic health records.
Liu, Hongfang; Bielinski, Suzette J; Sohn, Sunghwan; Murphy, Sean; Wagholikar, Kavishwar B; Jonnalagadda, Siddhartha R; Ravikumar, K E; Wu, Stephen T; Kullo, Iftikhar J; Chute, Christopher G
2013-01-01
Information extraction (IE), a natural language processing (NLP) task that automatically extracts structured or semi-structured information from free text, has become popular in the clinical domain for supporting automated systems at point-of-care and enabling secondary use of electronic health records (EHRs) for clinical and translational research. However, a high performance IE system can be very challenging to construct due to the complexity and dynamic nature of human language. In this paper, we report an IE framework for cohort identification using EHRs that is a knowledge-driven framework developed under the Unstructured Information Management Architecture (UIMA). A system to extract specific information can be developed by subject matter experts through expert knowledge engineering of the externalized knowledge resources used in the framework.
Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.
2014-01-01
Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.
RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization
NASA Technical Reports Server (NTRS)
2008-01-01
To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
A Risk Assessment System with Automatic Extraction of Event Types
NASA Astrophysics Data System (ADS)
Capet, Philippe; Delavallade, Thomas; Nakamura, Takuya; Sandor, Agnes; Tarsitano, Cedric; Voyatzi, Stavroula
In this article we describe the joint effort of experts in linguistics, information extraction and risk assessment to integrate EventSpotter, an automatic event extraction engine, into ADAC, an automated early warning system. By detecting as early as possible weak signals of emerging risks ADAC provides a dynamic synthetic picture of situations involving risk. The ADAC system calculates risk on the basis of fuzzy logic rules operated on a template graph whose leaves are event types. EventSpotter is based on a general purpose natural language dependency parser, XIP, enhanced with domain-specific lexical resources (Lexicon-Grammar). Its role is to automatically feed the leaves with input data.
Oil for health in sub-Saharan Africa: health systems in a 'resource curse' environment.
Calain, Philippe
2008-10-21
In a restricted sense, the resource curse is a theory that explains the inverse relationship classically seen between dependence on natural resources and economic growth. It defines a peculiar economic and political environment, epitomized by oil extraction in sub-Saharan Africa. Based on secondary research and illustrations from four oil-rich geographical areas (the Niger Delta region of Nigeria, Angola, southern Chad, Southern Sudan), I propose a framework for analysing the effects of the resource curse on the structure of health systems at sub-national levels. Qualitative attributes are emphasised. The role of the corporate sector, the influence of conflicts, and the value of classical mitigation measures (such as health impact assessments) are further examined. Health systems in a resource curse environment are classically fractured into tripartite components, including governmental health agencies, non-profit non-governmental organisations, and the corporate extractive sector. The three components entertain a range of contractual relationships generally based on operational considerations which are withdrawn from social or community values. Characterisation of agencies in this system should also include: values, operating principles, legitimacy and operational spaces. From this approach, it appears that community health is at the same time marginalized and instrumentalized toward economic and corporate interests in resource curse settings. From a public health point of view, the resource curse represents a fundamental failure of dominant development theories, rather than a delay in creating the proper economy and governance environment for social progress. The scope of research on the resource curse should be broadened to include more accurate or comprehensive indicators of destitution (including health components) and more open perspectives on causal mechanisms.
Oil for health in sub-Saharan Africa: health systems in a 'resource curse' environment
Calain, Philippe
2008-01-01
Background In a restricted sense, the resource curse is a theory that explains the inverse relationship classically seen between dependence on natural resources and economic growth. It defines a peculiar economic and political environment, epitomised by oil extraction in sub-Saharan Africa. Methods Based on secondary research and illustrations from four oil-rich geographical areas (the Niger Delta region of Nigeria, Angola, southern Chad, Southern Sudan), I propose a framework for analysing the effects of the resource curse on the structure of health systems at sub-national levels. Qualitative attributes are emphasised. The role of the corporate sector, the influence of conflicts, and the value of classical mitigation measures (such as health impact assessments) are further examined. Results Health systems in a resource curse environment are classically fractured into tripartite components, including governmental health agencies, non-profit non-governmental organisations, and the corporate extractive sector. The three components entertain a range of contractual relationships generally based on operational considerations which are withdrawn from social or community values. Characterisation of agencies in this system should also include: values, operating principles, legitimacy and operational spaces. From this approach, it appears that community health is at the same time marginalised and instrumentalised toward economic and corporate interests in resource curse settings. Conclusion From a public health point of view, the resource curse represents a fundamental failure of dominant development theories, rather than a delay in creating the proper economy and governance environment for social progress. The scope of research on the resource curse should be broadened to include more accurate or comprehensive indicators of destitution (including health components) and more open perspectives on causal mechanisms. PMID:18939986
OReFiL: an online resource finder for life sciences.
Yamamoto, Yasunori; Takagi, Toshihisa
2007-08-06
Many online resources for the life sciences have been developed and introduced in peer-reviewed papers recently, ranging from databases and web applications to data-analysis software. Some have been introduced in special journal issues or websites with a search function, but others remain scattered throughout the Internet and in the published literature. The searchable resources on these sites are collected and maintained manually and are therefore of higher quality than automatically updated sites, but also require more time and effort. We developed an online resource search system called OReFiL to address these issues. We developed a crawler to gather all of the web pages whose URLs appear in MEDLINE abstracts and full-text papers on the BioMed Central open-access journals. The URLs were extracted using regular expressions and rules based on our heuristic knowledge. We then indexed the online resources to facilitate their retrieval and comparison by researchers. Because every online resource has at least one PubMed ID, we can easily acquire its summary with Medical Subject Headings (MeSH) terms and confirm its credibility through reference to the corresponding PubMed entry. In addition, because OReFiL automatically extracts URLs and updates the index, minimal time and effort is needed to maintain the system. We developed OReFiL, a search system for online life science resources, which is freely available. The system's distinctive features include the ability to return up-to-date query-relevant online resources introduced in peer-reviewed papers; the ability to search using free words, MeSH terms, or author names; easy verification of each hit following links to the corresponding PubMed entry or to papers citing the URL through the search systems of BioMed Central, Scirus, HighWire Press, or Google Scholar; and quick confirmation of the existence of an online resource web page.
OReFiL: an online resource finder for life sciences
Yamamoto, Yasunori; Takagi, Toshihisa
2007-01-01
Background Many online resources for the life sciences have been developed and introduced in peer-reviewed papers recently, ranging from databases and web applications to data-analysis software. Some have been introduced in special journal issues or websites with a search function, but others remain scattered throughout the Internet and in the published literature. The searchable resources on these sites are collected and maintained manually and are therefore of higher quality than automatically updated sites, but also require more time and effort. Description We developed an online resource search system called OReFiL to address these issues. We developed a crawler to gather all of the web pages whose URLs appear in MEDLINE abstracts and full-text papers on the BioMed Central open-access journals. The URLs were extracted using regular expressions and rules based on our heuristic knowledge. We then indexed the online resources to facilitate their retrieval and comparison by researchers. Because every online resource has at least one PubMed ID, we can easily acquire its summary with Medical Subject Headings (MeSH) terms and confirm its credibility through reference to the corresponding PubMed entry. In addition, because OReFiL automatically extracts URLs and updates the index, minimal time and effort is needed to maintain the system. Conclusion We developed OReFiL, a search system for online life science resources, which is freely available. The system's distinctive features include the ability to return up-to-date query-relevant online resources introduced in peer-reviewed papers; the ability to search using free words, MeSH terms, or author names; easy verification of each hit following links to the corresponding PubMed entry or to papers citing the URL through the search systems of BioMed Central, Scirus, HighWire Press, or Google Scholar; and quick confirmation of the existence of an online resource web page. PMID:17683589
Procedure for extraction of disparate data from maps into computerized data bases
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1979-01-01
A procedure is presented for extracting disparate sources of data from geographic maps and for the conversion of these data into a suitable format for processing on a computer-oriented information system. Several graphic digitizing considerations are included and related to the NASA Earth Resources Laboratory's Digitizer System. Current operating procedures for the Digitizer System are given in a simplified and logical manner. The report serves as a guide to those organizations interested in converting map-based data by using a comparable map digitizing system.
NASA Space Engineering Research Center for utilization of local planetary resources
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Lewis, John S.
1990-01-01
The University of Arizona and NASA have joined to form the UA/NASA Space Engineering Research Center. The purpose of the Center is to discover, characterize, extract, process, and fabricate useful products from the extraterrestrial resources available in the inner solar system (the moon, Mars, and nearby asteroids). Individual progress reports covering the center's research projects are presented and emphasis is placed on the following topics: propellant production, oxygen production, ilmenite, lunar resources, asteroid resources, Mars resources, space-based materials processing, extraterrestrial construction materials processing, resource discovery and characterization, mission planning, and resource utilization.
Gandhi, S; Verma, S; Ethier, J-L; Simmons, C; Burnett, H; Alibhai, S M H
2015-08-01
The breast cancer incidence in low and middle income countries (LMCs) is increasing globally, and patient outcomes are generally worse in these nations compared to high income countries (HICs). This is partly due to resource constraints associated with implementing recommended breast cancer therapies. Clinical practice guideline (CPG) adherence can improve breast cancer outcomes, however, many CPGs are created in HICs, and include costly recommendations that may not be feasible in LMCs. In addition, the quality of CPGs can be variable. The aim of this study was to perform a systematic review of CPGs on early breast cancer systemic therapy with potential international impact, to evaluate their content, quality, and resource sensitivity. A MEDLINE and gray literature search was completed for English language CPGs published between 2005 and 2010, and then updated to July 2014. Extracted guidelines were evaluated using the AGREE 2 instrument. Guidelines were specifically analyzed for resource sensitivity. Most of the extracted CPGs had similar recommendations with regards to systemic therapy. However, only one, the Breast Health Global Initiative, made recommendations with consideration of different global resources. Overall, the CPGs were of variable quality, and most scored poorly in the quality domain evaluating implementation barriers such as resources. Published CPGs for early breast cancer are created in HICs, have similar recommendations, and are generally resource-insensitive. Given the visibility and influence of these CPGs on LMCs, efforts to create higher quality, resource-sensitive guidelines with less redundancy are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Values associated with management of Yellowstone cutthroat trout in Yellowstone National Park
Gresswell, Robert E.; Liss, W.J.
1995-01-01
Recent emphasis on a holistic view of natural systems and their management is associated with a growing appreciation of the role of human values in these systems. In the past, resource management has been perceived as a dichotomy between extraction (harvest) and nonconsumptive use, but this appears to be an oversimplified view of natural-cultural systems. The recreational fishery for Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) in Yellowstone National Park is an example of the effects of management on a natural-cultural system. Although angler harvest has been drastically reduced or prohibited, the recreational value of Yellowstone cutthroat trout estimated by angling factors (such as landing rate or size) ranks above that of all other sport species in Yellowstone National Park. To maintain an indigenous fishery resource of this quality with hatchery propagation is not economically or technically feasible. Nonconsumptive uses of the Yellowstone cutthroat trout including fish-watching and intangible values, such as existence demand, provide additional support for protection of wild Yellowstone cutthroat trout populations. A management strategy that reduces resource extraction has provided a means to sustain a quality recreational fishery while enhancing values associated with the protection of natural systems.
An Information Extraction Framework for Cohort Identification Using Electronic Health Records
Liu, Hongfang; Bielinski, Suzette J.; Sohn, Sunghwan; Murphy, Sean; Wagholikar, Kavishwar B.; Jonnalagadda, Siddhartha R.; Ravikumar, K.E.; Wu, Stephen T.; Kullo, Iftikhar J.; Chute, Christopher G
Information extraction (IE), a natural language processing (NLP) task that automatically extracts structured or semi-structured information from free text, has become popular in the clinical domain for supporting automated systems at point-of-care and enabling secondary use of electronic health records (EHRs) for clinical and translational research. However, a high performance IE system can be very challenging to construct due to the complexity and dynamic nature of human language. In this paper, we report an IE framework for cohort identification using EHRs that is a knowledge-driven framework developed under the Unstructured Information Management Architecture (UIMA). A system to extract specific information can be developed by subject matter experts through expert knowledge engineering of the externalized knowledge resources used in the framework. PMID:24303255
Representing Hydrologic Models as HydroShare Resources to Facilitate Model Sharing and Collaboration
NASA Astrophysics Data System (ADS)
Castronova, A. M.; Goodall, J. L.; Mbewe, P.
2013-12-01
The CUAHSI HydroShare project is a collaborative effort that aims to provide software for sharing data and models within the hydrologic science community. One of the early focuses of this work has been establishing metadata standards for describing models and model-related data as HydroShare resources. By leveraging this metadata definition, a prototype extension has been developed to create model resources that can be shared within the community using the HydroShare system. The extension uses a general model metadata definition to create resource objects, and was designed so that model-specific parsing routines can extract and populate metadata fields from model input and output files. The long term goal is to establish a library of supported models where, for each model, the system has the ability to extract key metadata fields automatically, thereby establishing standardized model metadata that will serve as the foundation for model sharing and collaboration within HydroShare. The Soil Water & Assessment Tool (SWAT) is used to demonstrate this concept through a case study application.
Water extraction on Mars for an expanding human colony
NASA Astrophysics Data System (ADS)
Ralphs, M.; Franz, B.; Baker, T.; Howe, S.
2015-11-01
In-situ water extraction is necessary for an extended human presence on Mars. This study looks at the water requirements of an expanding human colony on Mars and the general systems needed to supply that water from the martian atmosphere and regolith. The proposed combination of systems in order to supply the necessary water includes a system similar to Honeybee Robotics' Mobile In-Situ Water Extractor (MISWE) that uses convection, a system similar to MISWE but that directs microwave energy down a borehole, a greenhouse or hothouse type system, and a system similar to the Mars Atmospheric Resource Recovery System (MARRS). It is demonstrated that a large water extraction system that can take advantage of large deposits of water ice at site specific locations is necessary to keep up with the demands of a growing colony.
Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen
2014-01-01
Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.
NASA Technical Reports Server (NTRS)
Ignatiev, A.
2000-01-01
Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.
Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Paz, Aaron; Mueller, Robert
2016-01-01
ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system
Resource targets for advanced underground coal extraction systems
NASA Technical Reports Server (NTRS)
Hoag, J. H.; Whipple, D. W.; Habib-Agahi, H.; Lavin, M. L.
1982-01-01
Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance.
Water extraction on Mars for an expanding human colony.
Ralphs, M; Franz, B; Baker, T; Howe, S
2015-11-01
In-situ water extraction is necessary for an extended human presence on Mars. This study looks at the water requirements of an expanding human colony on Mars and the general systems needed to supply that water from the martian atmosphere and regolith. The proposed combination of systems in order to supply the necessary water includes a system similar to Honeybee Robotics' Mobile In-Situ Water Extractor (MISWE) that uses convection, a system similar to MISWE but that directs microwave energy down a borehole, a greenhouse or hothouse type system, and a system similar to the Mars Atmospheric Resource Recovery System (MARRS). It is demonstrated that a large water extraction system that can take advantage of large deposits of water ice at site specific locations is necessary to keep up with the demands of a growing colony. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Hameed; Malik, Saif Ur Rehman; Hameed, Abdul
An efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement ofmore » all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) cloud systems and define the characteristics of each class by extracting sets of common attributes. All of the aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.« less
Overview of the Cancer Genetics and Pathway Curation tasks of BioNLP Shared Task 2013
2015-01-01
Background Since their introduction in 2009, the BioNLP Shared Task events have been instrumental in advancing the development of methods and resources for the automatic extraction of information from the biomedical literature. In this paper, we present the Cancer Genetics (CG) and Pathway Curation (PC) tasks, two event extraction tasks introduced in the BioNLP Shared Task 2013. The CG task focuses on cancer, emphasizing the extraction of physiological and pathological processes at various levels of biological organization, and the PC task targets reactions relevant to the development of biomolecular pathway models, defining its extraction targets on the basis of established pathway representations and ontologies. Results Six groups participated in the CG task and two groups in the PC task, together applying a wide range of extraction approaches including both established state-of-the-art systems and newly introduced extraction methods. The best-performing systems achieved F-scores of 55% on the CG task and 53% on the PC task, demonstrating a level of performance comparable to the best results achieved in similar previously proposed tasks. Conclusions The results indicate that existing event extraction technology can generalize to meet the novel challenges represented by the CG and PC task settings, suggesting that extraction methods are capable of supporting the construction of knowledge bases on the molecular mechanisms of cancer and the curation of biomolecular pathway models. The CG and PC tasks continue as open challenges for all interested parties, with data, tools and resources available from the shared task homepage. PMID:26202570
Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011.
Pyysalo, Sampo; Ohta, Tomoko; Rak, Rafal; Sullivan, Dan; Mao, Chunhong; Wang, Chunxia; Sobral, Bruno; Tsujii, Jun'ichi; Ananiadou, Sophia
2012-06-26
We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties.
Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011
2012-01-01
We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties. PMID:22759456
Improving an Assessment of Tidal Stream Energy Resource for Anchorage, Alaska
NASA Astrophysics Data System (ADS)
Xu, T.; Haas, K. A.
2016-12-01
Increasing global energy demand is driving the pursuit of new and innovative energy sources leading to the need for assessing and utilizing alternative, productive and reliable energy resources. Tidal currents, characterized by periodicity and predictability, have long been explored and studied as a potential energy source, focusing on many different locations with significant tidal ranges. However, a proper resource assessment cannot be accomplished without accurate knowledge of the spatial-temporal distribution and availability of tidal currents. Known for possessing one of the top tidal energy sources along the U.S. coastline, Cook Inlet, Alaska is the area of interest for this project. A previous regional scaled resource assessment has been completed, however, the present study is to focus the assessment on the available power specifically near Anchorage while significantly improving the accuracy of the assessment following IEC guidelines. The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is configured to simulate the tidal flows with grid refinement techniques for a minimum of 32 days, encompassing an entire lunar cycle. Simulation results are validated by extracting tidal constituents with harmonic analysis and comparing tidal components with National Oceanic and Atmospheric Administration (NOAA) observations and predictions. Model calibration includes adjustments to bottom friction coefficients and the usage of different tidal database. Differences between NOAA observations and COAWST simulations after applying grid refinement decrease, compared with results from a former study without grid refinement. Also, energy extraction is simulated at potential sites to study the impact on the tidal resources. This study demonstrates the enhancement of the resource assessment using grid refinement to evaluate tidal energy near Anchorage within Cook Inlet, Alaska, the productivity that energy extraction can achieve and the change in tidal currents caused by energy extraction.
Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach
2012-01-01
Background Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. Methods We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. Results We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. Conclusions We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data. PMID:22759462
Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach.
Ratkovic, Zorana; Golik, Wiktoria; Warnier, Pierre
2012-06-26
Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data.
Alanya, Sevda; Dewulf, Jo; Duran, Metin
2015-08-18
This study focused on the evaluation of biosolids management systems (BMS) from a natural resource consumption point of view. Additionally, the environmental impact of the facilities was benchmarked using Life Cycle Assessment (LCA) to provide a comprehensive assessment. This is the first study to apply a Cumulative Exergy Extraction from the Natural Environment (CEENE) method for an in-depth resource use assessment of BMS where two full-scale BMS and seven system variations were analyzed. CEENE allows better system evaluation and understanding of how much benefit is achievable from the products generated by BMS, which have valorization potential. LCA results showed that environmental burden is mostly from the intense electricity consumption. The CEENE analysis further revealed that the environmental burden is due to the high consumption of fossil and nuclear-based natural resources. Using Cumulative Degree of Perfection, higher resource-use efficiency, 53%, was observed in the PTA-2 where alkaline stabilization rather than anaerobic digestion is employed. However, an anaerobic digestion process is favorable over alkaline stabilization, with 35% lower overall natural resource use. The most significant reduction of the resource footprint occurred when the output biogas was valorized in a combined heat and power system.
Progress and challenges to the global waste management system.
Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn
2014-09-01
Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.
Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Larson, William E.
2010-01-01
The NASA project to develop In-Situ Resource Utilization (ISRU) technologies, in partnership with commercial and international collaborators, has achieved full system demonstrations of oxygen production using native regolith simulants. These demonstrations included robotic extraction of material from the terrain, sealed encapsulation of material in a pressurized reactor; chemical extraction of oxygen from the material in the form of water, and the electrolysis of water into oxygen and hydrogen for storage and reuse. These successes have provided growing confidence in the prospects of ISRU oxygen production as a credible source for critical mission consumables in preparation for and during crewed missions to the moon and other destinations. Other ISRU processes, especially relevant to early lunar exploration scenarios, have also been shown to be practical, including the extraction of subsurface volatiles, especially water, and the thermal processing of surface materials for civil engineering uses and for thermal energy storage. This paper describes these recent achievements and current NASA ISRU development and demonstration activity. The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables; and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example. the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the results of four analog field tests (Moses Lake in 6/08, Mauna Kea in 11/08. Flagstaff in 9/09; and Mauna Kea in 1/10) that have begun the process of integrating ISRU into robotic and human exploration systems and missions, and propose future ISRU-related analog field test activities that can be performed in collaboration with international space agencies.
NASA Technical Reports Server (NTRS)
Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.
2010-01-01
Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, T.
1993-07-01
The report summarizes the findings of an evaluation of the Basic Extractive Sludge Treatment (B.E.S.T.) solvent extraction technology developed by Resources Conservation Company (RCC). During the demonstration test, the B.E.S.T. system was used to treat composited sediments from two areas of the Grand Calumet River. Contaminant concentration reductions of 96 percent for total polynuclear aromatic hydrocarbons (PAHs) and greater than 99 percent for total polychlorinated biphenyls (PCBs) were achieved for Sediment A. Contaminant concentration reductions of greater than 99 percent for total PAHs and greater than 99 percent for total PCBs were achieved for Sediment B. Removal efficiencies in excessmore » of 98 percent were realized for both sediments for oil and grease (O G).« less
The BioExtract Server: a web-based bioinformatic workflow platform
Lushbough, Carol M.; Jennewein, Douglas M.; Brendel, Volker P.
2011-01-01
The BioExtract Server (bioextract.org) is an open, web-based system designed to aid researchers in the analysis of genomic data by providing a platform for the creation of bioinformatic workflows. Scientific workflows are created within the system by recording tasks performed by the user. These tasks may include querying multiple, distributed data sources, saving query results as searchable data extracts, and executing local and web-accessible analytic tools. The series of recorded tasks can then be saved as a reproducible, sharable workflow available for subsequent execution with the original or modified inputs and parameter settings. Integrated data resources include interfaces to the National Center for Biotechnology Information (NCBI) nucleotide and protein databases, the European Molecular Biology Laboratory (EMBL-Bank) non-redundant nucleotide database, the Universal Protein Resource (UniProt), and the UniProt Reference Clusters (UniRef) database. The system offers access to numerous preinstalled, curated analytic tools and also provides researchers with the option of selecting computational tools from a large list of web services including the European Molecular Biology Open Software Suite (EMBOSS), BioMoby, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The system further allows users to integrate local command line tools residing on their own computers through a client-side Java applet. PMID:21546552
Incremental Ontology-Based Extraction and Alignment in Semi-structured Documents
NASA Astrophysics Data System (ADS)
Thiam, Mouhamadou; Bennacer, Nacéra; Pernelle, Nathalie; Lô, Moussa
SHIRIis an ontology-based system for integration of semi-structured documents related to a specific domain. The system’s purpose is to allow users to access to relevant parts of documents as answers to their queries. SHIRI uses RDF/OWL for representation of resources and SPARQL for their querying. It relies on an automatic, unsupervised and ontology-driven approach for extraction, alignment and semantic annotation of tagged elements of documents. In this paper, we focus on the Extract-Align algorithm which exploits a set of named entity and term patterns to extract term candidates to be aligned with the ontology. It proceeds in an incremental manner in order to populate the ontology with terms describing instances of the domain and to reduce the access to extern resources such as Web. We experiment it on a HTML corpus related to call for papers in computer science and the results that we obtain are very promising. These results show how the incremental behaviour of Extract-Align algorithm enriches the ontology and the number of terms (or named entities) aligned directly with the ontology increases.
30 CFR 937.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 937.702 Section 937.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...
30 CFR 922.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 922.702 Section 922.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...
30 CFR 903.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 903.702 Section 903.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...
30 CFR 921.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 921.702 Section 921.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of the chapter, Exemption for Coal Extraction Incidental to the Extraction of...
30 CFR 941.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 941.702 Section 941.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...
30 CFR 947.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 947.702 Section 947.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...
30 CFR 905.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 905.702 Section 905.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...
30 CFR 912.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 912.702 Section 912.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...
30 CFR 942.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 942.702 Section 942.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...
30 CFR 939.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 939.702 Section 939.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...
30 CFR 933.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 933.702 Section 933.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...
30 CFR 910.702 - Exemption for coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 910.702 Section 910.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...
NASA Technical Reports Server (NTRS)
2004-01-01
The topics addressed in the conference paper abstracts contained in this document include: extracting resources from the Moon and Mars, equipment for in situ resource utilization, mission planning for resource extraction, drilling on Mars, and simulants for lunar soil and minerals.
NASA Astrophysics Data System (ADS)
Cheng, Xi; He, Li; Lu, Hongwei; Chen, Yizhong; Ren, Lixia
2016-09-01
A major concern associated with current shale-gas extraction is high consumption of water resources. However, decision-making problems regarding water consumption and shale-gas extraction have not yet been solved through systematic approaches. This study develops a new bilevel optimization problem based on goals at two different levels: minimization of water demands at the lower level and maximization of system benefit at the upper level. The model is used to solve a real-world case across Pennsylvania and West Virginia. Results show that surface water would be the largest contributor to gas production (with over 80.00% from 2015 to 2030) and groundwater occupies for the least proportion (with less than 2.00% from 2015 to 2030) in both districts over the planning span. Comparative analysis between the proposed model and conventional single-level models indicates that the bilevel model could provide coordinated schemes to comprehensively attain the goals from both water resources authorities and energy sectors. Sensitivity analysis shows that the change of water use of per unit gas production (WU) has significant effects upon system benefit, gas production and pollutants (i.e., barium, chloride and bromide) discharge, but not significantly changes water demands.
NASA Astrophysics Data System (ADS)
Barfuss, Wolfram; Donges, Jonathan F.; Wiedermann, Marc; Lucht, Wolfgang
2017-04-01
Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social-ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models.
Dewulf, J; Bösch, M E; De Meester, B; Van der Vorst, G; Van Langenhove, H; Hellweg, S; Huijbregts, M A J
2007-12-15
The objective of the paper is to establish a comprehensive resource-based life cycle impact assessment (LCIA) method which is scientifically sound and that enables to assess all kinds of resources that are deprived from the natural ecosystem, all quantified on one single scale, free of weighting factors. The method is based on the exergy concept. Consistent exergy data on fossils, nuclear and metal ores, minerals, air, water, land occupation, and renewable energy sources were elaborated, with well defined system boundaries. Based on these data, the method quantifies the exergy "taken away" from natural ecosystems, and is thus called the cumulative exergy extraction from the natural environment (CEENE). The acquired data set was coupled with a state-of-the art life cycle inventory database, ecoinvent. In this way, the method is able to quantitatively distinguish eight categories of resources withdrawn from the natural environment: renewable resources, fossil fuels, nuclear energy, metal ores, minerals, water resources, land resources, and atmospheric resources. Third, the CEENE method is illustrated for a number of products that are available in ecoinvent, and results are compared with common resource oriented LCIA methods. The application to the materials in the ecoinvent database showed that fossil resources and land use are of particular importance with regard to the total CEENE score, although the other resource categories may also be significant.
Using decision-tree classifier systems to extract knowledge from databases
NASA Technical Reports Server (NTRS)
St.clair, D. C.; Sabharwal, C. L.; Hacke, Keith; Bond, W. E.
1990-01-01
One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described.
An integrated system for land resources supervision based on the IoT and cloud computing
NASA Astrophysics Data System (ADS)
Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie
2017-01-01
Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.
NASA Astrophysics Data System (ADS)
Iftekhar, Md Sayed; Fogarty, James
2017-05-01
In many parts of the world groundwater is being depleting at an alarming rate. Where groundwater extraction is licenced, regulators often respond to resource depletion by reducing all individual licences by a fixed proportion. This approach can be effective in achieving a reduction in the volume of water extracted, but the approach is not efficient. In water resource management the issue of the equity-efficiency trade-off has been explored in a number of contexts, but not in the context of allocation from a groundwater system. To contribute to this knowledge gap we conduct an empirical case study for Western Australia's most important groundwater system: the Gnangara Groundwater System (GGS). Resource depletion is a serious issue for the GGS, and substantial reductions in groundwater extraction are required to stabilise the system. Using an individual-based farm optimization model we study both the overall impact and the distributional impact of a fixed percentage water allocation cut to horticulture sector licence holders. The model is parameterised using water licence specific data on farm area and water allocation. The modelling shows that much of the impact of water allocation reductions can be mitigated through changing the cropping mix and the irrigation technology used. The modelling also shows that the scope for gains through the aggregation of holdings into larger farms is much greater than the potential losses due to water allocation reductions. The impact of water allocation cuts is also shown to impact large farms more than small farms. For example, the expected loss in net revenue per ha for a 10-ha farm is around three times the expected loss per ha for a 1-ha farm; and the expected loss per ha for a 25-ha farm is around five times the expected loss per ha for a 1-ha farm.
Kim, Tae-Goun
2009-10-01
This article develops a dynamic model of efficient use of exhaustible marine sand resources in the context of marine mining externalities. The classical Hotelling extraction model is applied to sand mining in Ongjin, Korea and extended to include the estimated marginal external costs that mining imposes on marine fisheries. The socially efficient sand extraction plan is compared with the extraction paths suggested by scientific research. If marginal environmental costs are correctly estimated, the developed efficient extraction plan considering the resource rent may increase the social welfare and reduce the conflicts among the marine sand resource users. The empirical results are interpreted with an emphasis on guidelines for coastal resource management policy.
2014-10-01
Resource JSF Joint Strike Fighter JPATS Joint Primary Aircraft Training System USMC United States Marine Corps USAF United States Air Force LIST...Surface Anthropometry Resource (CAESAR) was developed for the Joint Strike Fighter (JSF) program. The ACSS was intended to replace the JSF-CAESAR...an aircrew sample was made in 2003 by Hudson et al. They extracted a subset, named JSF CAESAR (Joint Strike Fighter), from the Civilian American and
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Niehoff, John
1989-01-01
The 'lunar oasis' emphasizes development toward self-sufficiency in order to reduce dependence on the earth for resupply, and to enable expansion utilizing indigeneous resources. The oasis phase includes: (1) habitation and work facilities for 10 people, (2) capability for extraction of volatile consumables (H2O, O2, N2, etc.) from indigenous resources for resupply of losses and filling of reservoirs, and (3) a highly closed life support system, including food production. In the consolidation phase, the base grows from 10 to 30 crewmembers. Lunar resources are used for expanding the lunar foothold, including construction of habitats, extraction of metals for the fabrication of products for maintenance and repair, and expansion of the power system. The strategy does not produce propellants for space transportation. A 10-year scenario is laid out, which contains all elements needed to allow the base to enter a self-expanding utilization phase. Three lunar missions yer year, two cargo missions and one crew flight, are required. At the end of a decade, the base is producing more than it requires for its continued support, although it is unlikely to be completely self-sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, T.
1993-07-01
The report summarizes the findings of an evaluation of the Basic Extractive Sludge Treatment (B.E.S.T.) solvent extraction technology developed by Resources Conservation Company (RCC). During the demonstration test, the B.E.S.T. system was used to treat composited sediments from two areas of the Grand Calumet River. Contaminant concentration reductions of 96 percent for total polynuclear aromatic hydrocarbons (PAHs) and greater than 99 percent for total polychlorinated biphenyls (PCBs) were achieved for Sediment A. Contaminant concentration reductions of greater than 99 percent for total PAHs and greater than 99 percent for total PCBs were achieved for Sediment B. Removal efficiencies in excessmore » of 98 percent were realized for both sediments for oil and grease (O G).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, T.
1993-07-01
The report summarizes the findings of an evaluation of the Basic Extractive Sludge Treatment (B.E.S.T.) solvent extraction technology developed by Resources Conservation Company (RCC). During the demonstration test, the B.E.S.T. system was used to treat composited sediments from two areas of the Grand Calumet River. Contaminant concentration reductions of 96 percent for total polynuclear aromatic hydrocarbons (PAHs) and greater than 99 percent for total polychlorinated biphenyls (PCBs) were achieved for Sediment A. Contaminant concentration reductions of greater than 99 percent for total PAHs and greater than 99 percent for total PCBs were achieved for Sediment B. Removal efficiencies in excessmore » of 98 percent were realized for both sediments for oil and grease (O G).« less
Pneumatic Regolith Transfer Systems for In-Situ Resource Utilization
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.
2010-01-01
One aspect of In-Situ Resource Utilization (lSRU) in a lunar environment is to extract oxygen and other elements from the minerals that make up the lunar regolith. Typical ISRU oxygen production processes include but are not limited to hydrogen reduction, carbothermal and molten oxide electrolysis. All of these processes require the transfer of regolith from a supply hopper into a reactor for chemical reaction processing, and the subsequent extraction of the reacted regolith from the reactor. This paper will discuss recent activities in the NASA ISRU project involved with developing pneumatic conveying methods to achieve lunar regolith simulant transfer under I-g and 1/6-g gravitational environments. Examples will be given of hardware that has been developed and tested by NASA on reduced gravity flights. Lessons learned and details of pneumatic regolith transfer systems will be examined as well as the relative performance in a 1/6th G environment
Design of the Resources and Environment Monitoring Website in Kashgar
NASA Astrophysics Data System (ADS)
Huang, Z.; Lin, Q. Z.; Wang, Q. J.
2014-03-01
Despite the development of the web geographical information system (web GIS), many useful spatial analysis functions are ignored in the system implementation. As Kashgar is rich in natural resources, it is of great significance to monitor the ample natural resource and environment situation in the region. Therefore, with multiple uses of spatial analysis, resources and environment monitoring website of Kashgar was built. Functions of water, vegetation, ice and snow extraction, task management, change assessment as well as thematic mapping and reports based on TM remote sensing images were implemented in the website. The design of the website was presented based on database management tier, the business logic tier and the top-level presentation tier. The vital operations of the website were introduced and the general performance was evaluated.
Report of activities of the advanced coal extraction systems definition project, 1979 - 1980
NASA Technical Reports Server (NTRS)
Lavin, M. L.; Isenberg, L.
1981-01-01
During this period effort was devoted to: formulation of system performance goals in the areas of production cost, miner safety, miner health, environmental impact, and coal conservation, survey and in depth assessment of promising technology, and characterization of potential resource targets. Primary system performance goals are to achieve a return on incremental investment of 150% of the value required for a low risk capital improvement project and to reduce deaths and disability injuries per million man-hour by 50%. Although these performance goals were developed to be immediately applicable to the Central Appalachian coal resources, they were also designed to be readily adaptable to other coals by appending a geological description of the new resource. The work done on technology assessment was concerned with the performance of the slurry haulage system.
The application of ERTS-1 data to the land use planning process. [Wisconsin
NASA Technical Reports Server (NTRS)
Clapp, J. L.; Kiefer, R. W.; Kuhlmey, E. L.; Niemann, B. J., Jr.
1974-01-01
Land resource data has been extracted on a percent of cell basis from ERTS imagery, RB-57 color infrared imagery and best available conventional sources for a 10,000 square kilometer test area in eastern Wisconsin. First, the data from the three sources is compared on a spatial basis for a 300 square kilometer portion of the test area. For those land resource variables associated with cover, ERTS derived resource data compared favorably with both the RB-57 and conventional data. Second, the effect of the data source on land use decisions is examined. Three interstate highway corridors are located through the same region based upon data extracted from each of the three sources. A policy of preserving natural environmental systems was used as a basis for the corridors selection in each case. The resulting three corridors compare favorably.
Multilingual event extraction for epidemic detection.
Lejeune, Gaël; Brixtel, Romain; Doucet, Antoine; Lucas, Nadine
2015-10-01
This paper presents a multilingual news surveillance system applied to tele-epidemiology. It has been shown that multilingual approaches improve timeliness in detection of epidemic events across the globe, eliminating the wait for local news to be translated into major languages. We present here a system to extract epidemic events in potentially any language, provided a Wikipedia seed for common disease names exists. The Daniel system presented herein relies on properties that are common to news writing (the journalistic genre), the most useful being repetition and saliency. Wikipedia is used to screen common disease names to be matched with repeated characters strings. Language variations, such as declensions, are handled by processing text at the character-level, rather than at the word level. This additionally makes it possible to handle various writing systems in a similar fashion. As no multilingual ground truth existed to evaluate the Daniel system, we built a multilingual corpus from the Web, and collected annotations from native speakers of Chinese, English, Greek, Polish and Russian, with no connection or interest in the Daniel system. This data set is available online freely, and can be used for the evaluation of other event extraction systems. Experiments for 5 languages out of 17 tested are detailed in this paper: Chinese, English, Greek, Polish and Russian. The Daniel system achieves an average F-measure of 82% in these 5 languages. It reaches 87% on BEcorpus, the state-of-the-art corpus in English, slightly below top-performing systems, which are tailored with numerous language-specific resources. The consistent performance of Daniel on multiple languages is an important contribution to the reactivity and the coverage of epidemiological event detection systems. Most event extraction systems rely on extensive resources that are language-specific. While their sophistication induces excellent results (over 90% precision and recall), it restricts their coverage in terms of languages and geographic areas. In contrast, in order to detect epidemic events in any language, the Daniel system only requires a list of a few hundreds of disease names and locations, which can actually be acquired automatically. The system can perform consistently well on any language, with precision and recall around 82% on average, according to this paper's evaluation. Daniel's character-based approach is especially interesting for morphologically-rich and low-resourced languages. The lack of resources to be exploited and the state of the art string matching algorithms imply that Daniel can process thousands of documents per minute on a simple laptop. In the context of epidemic surveillance, reactivity and geographic coverage are of primary importance, since no one knows where the next event will strike, and therefore in what vernacular language it will first be reported. By being able to process any language, the Daniel system offers unique coverage for poorly endowed languages, and can complete state of the art techniques for major languages. Copyright © 2015 Elsevier B.V. All rights reserved.
Practical Applications of Space Systems, Supporting Paper 6: Extractable Resources.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.
This report summarizes the findings of one of fourteen panels that studied progress in space science applications and defined user needs potentially capable of being met by space-system applications. The study was requested by the National Aeronautics and Space Administration (NASA) and was conducted by the Space Applications Board. The panels…
USDA-ARS?s Scientific Manuscript database
Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospe...
Geothermal resources and energy complex use in Russia
NASA Astrophysics Data System (ADS)
Svalova, V.
2009-04-01
Geothermal energy use is the perspective way to clean sustainable development of the world. Russia has rich high and low temperature geothermal resources and makes good steps in their use. In Russia the geothermal resources are used predominantly for heat supply both heating of several cities and settlements on Northern Caucasus and Kamchatka with a total number of the population 500000. Besides in some regions of country the deep heat is used for greenhouses of common area 465000 m2. Most active the hydrothermal resources are used in Krasnodar territory, Dagestan and on Kamchatka. The approximately half of extracted resources is applied for heat supply of habitation and industrial puttings, third - to a heating of greenhouses, and about 13 % - for industrial processes. Besides the thermal waters are used approximately on 150 health resorts and 40 factories on bottling mineral water. The most perspective direction of usage of low temperature geothermal resources is the use of heat pumps. This way is optimal for many regions of Russia - in its European part, on Ural and others. The electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands. At present three stations work in Kamchatka: Pauzhetka GeoPP (11MW e installed capacity) and two Severo-Mutnovka GeoPP ( 12 and 50 MWe). Moreover, another GeoPP of 100 MVe is now under preparation in the same place. Two small GeoPP are in operation in Kuril's Kunashir Isl, and Iturup Isl, with installed capacity of 2,б MWe and 6 MWe respectively. There are two possible uses of geothermal resources depending on structure and properties of thermal waters: heat/power and mineral extraction. The heat/power direction is preferable for low mineralized waters when valuable components in industrial concentration are absent, and the general mineralization does not interfere with normal operation of system. When high potential geothermal waters are characterized by the high mineralization and propensity for scaling, the extraction of mineral components should be considered. The mineral-extraction direction is basic for geothermal waters, containing valuable components in industrial quantities. Thus, the ability to extract minerals is dependent upon the use and maturity of recovery technologies. For such waters the heat is an added product, which use can raise efficiency of basic mineral production processes and even to save fuel. The process of extraction of valuable components should be dominant in such systems. The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. They are mineral raw materials for many chemical elements. Many brines can become deposits of valuable chemical elements: cesium, boron, strontium, tantalum, magnesium, calcium, tungsten, etc. Basically it is possible to recover iodine, bromine, boron, chloride salts of ammonium, potassium, sodium, calcium and magnesium from natural solutions using inexpensive technological solutions. Extraction of other chemical elements is complicated due to high cost of technology. There is a perspective method of ion-exchange pitches for selective extraction of certain components from natural waters. In a basis of the method there is the principle of selective sorption of ions of useful elements or their complexes in solutions with special compounds. Works of some scientific institutes in Russia strive to create the procedures of chemical processing of hydrothermal minerals to expand the spheres of its economic application. Many laboratory and natural tests on extraction of valuable components from thermal waters confirm the necessity and an opportunity of complex use of this nonconventional raw material. It is planned to recover I, Br, KCl, CaCl, NaCl from brines in Yaroslavl area. New methods of mineral and valuable elements extraction from industrial solutions are developed on the basis of biosorbent use.
Smart Extraction and Analysis System for Clinical Research.
Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung
2017-05-01
With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.
Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
Maes, Synthia; Zhuang, Wei-Qin; Rabaey, Korneel; Alvarez-Cohen, Lisa; Hennebel, Tom
2017-02-07
Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L -1 and 281 mg of La L -1 leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L -1 achieved within 4 days (at 40 A m -2 ). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.
Children and youth's biopsychosocial wellbeing in the context of energy resource activities.
Cox, Robin S; Irwin, Pamela; Scannell, Leila; Ungar, Michael; Bennett, Trevor Dixon
2017-10-01
Children and youth emerge as key populations that are impacted by energy resource activities, in part because of their developmental vulnerabilities, as well as the compounding effects of energy systems on their families, communities, and physical environments. While there is a larger literature focused on fossil fuel emissions and children, the impacts of many aspects of energy systems on children and youth remain under examined and scattered throughout the health, social science, and environmental science literatures. This systematic interdisciplinary review examines the biological, psychosocial, and economic impacts of energy systems identified through social science research - specifically focused on household and industrial extraction and emissions - on children and youth functioning. A critical interpretive search of interdisciplinary and international social sciences literature was conducted using an adaptive protocol focusing on the biopsychosocial and economic impacts of energy systems on children and youth. The initial results were complemented with a purposeful search to extend the breadth and depth of the final collection of articles. Although relatively few studies have specifically focused on children and youth in this context, the majority of this research uncovers a range of negative health impacts that are directly and indirectly related to the development and ongoing operations of natural resource production, particularly oil and gas, coal, and nuclear energy. Psychosocial and cultural effects, however, remain largely unexamined and provide a rich avenue for further research. This synthesis identifies an array of adverse biopsychosocial health outcomes on children and youth of energy resource extraction and emissions, and identifies gaps that will drive future research in this area. Copyright © 2017 Elsevier Inc. All rights reserved.
Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2013-01-01
A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU provides a near and early opportunity to perform the following that are applicable to other human exploration mission destinations: Identify and characterize resources, how they are distributed, and the material, location and environment in which they are found; Demonstrate concepts, technologies, and hardware that can reduce the cost and risk of human exploration beyond Earth orbit; Use the Moon for operation experience and mission validation for much longer missions that are farther from Earth Develop and evolve ISRU to support sustained, economical human presence beyond Earth's orbit, including promoting space commercialization As Table 1 depicts, the Moon provides environments and resources applicable to Mars and NEOs. Two lunar ISRU resource and product pathways that have notable synergism with NEO, Phobos/Demos, and Mars ISRU are oxygen/metal extraction from regolith, and water/volatile extraction from lunar polar materials. To minimize the risk of developing and incorporating ISRU into human missions, a phased implementation plan is recommended that starts with prospecting and demonstrating critical technologies on robotic and human missions, then performing pilot scale operations (in non-mission critical roles) to enhance exploration mission capabilities, leading to full utilization of space resources in mission critical roles. Which lunar ISRU pathway is followed will depend on the results of early resource prospecting/proof-ofconcept mission(s), and long-term human exploration plans.
Kirkwood, Jay S; Maier, Claudia; Stevens, Jan F
2013-05-01
At its most ambitious, untargeted metabolomics aims to characterize and quantify all of the metabolites in a given system. Metabolites are often present at a broad range of concentrations and possess diverse physical properties complicating this task. Performing multiple sample extractions, concentrating sample extracts, and using several separation and detection methods are common strategies to overcome these challenges but require a great amount of resources. This protocol describes the untargeted, metabolic profiling of polar and nonpolar metabolites with a single extraction and using a single analytical platform. © 2013 by John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Richard; Tyagi, Mayank; Radonjic, Mileva
This project is intended to demonstrate the technical and economic feasibility, and environmental and social attractiveness of a novel method of heat extraction from geothermal reservoirs. The emphasis is on assessing the potential for a heat extraction method that couples forced and free convection to maximize extraction efficiency. The heat extraction concept is enhanced by considering wellbore energy conversion, which may include only a boiler for a working fluid, or perhaps a complete boiler, turbine, and condenser cycle within the wellbore. The feasibility of this system depends on maintaining mechanical and hydraulic integrity of the wellbore, so the material propertiesmore » of the casing-cement system are examined both experimentally and with well design calculations. The attractiveness depends on mitigation of seismic and subsidence risks, economic performance, environmental impact, and social impact – all of which are assessed as components of this study.« less
Machine Reading for Extraction of Bacteria and Habitat Taxonomies
Kordjamshidi, Parisa; Massa, Wouter; Provoost, Thomas; Moens, Marie-Francine
2015-01-01
There is a vast amount of scientific literature available from various resources such as the internet. Automating the extraction of knowledge from these resources is very helpful for biologists to easily access this information. This paper presents a system to extract the bacteria and their habitats, as well as the relations between them. We investigate to what extent current techniques are suited for this task and test a variety of models in this regard. We detect entities in a biological text and map the habitats into a given taxonomy. Our model uses a linear chain Conditional Random Field (CRF). For the prediction of relations between the entities, a model based on logistic regression is built. Designing a system upon these techniques, we explore several improvements for both the generation and selection of good candidates. One contribution to this lies in the extended exibility of our ontology mapper that uses an advanced boundary detection and assigns the taxonomy elements to the detected habitats. Furthermore, we discover value in the combination of several distinct candidate generation rules. Using these techniques, we show results that are significantly improving upon the state of art for the BioNLP Bacteria Biotopes task. PMID:27077141
The goal of the project is to calculate the net social, environmental, and economic benefits of a systems approach to organic waste and resource management in Santa Barbara County. To calculate these benefits, a comparative method was chosen of the proposed desi...
Novel Strategies for the Removal of Toxic Metals from Soils and Waters
NASA Astrophysics Data System (ADS)
Roundhill, D. Max
2004-02-01
This article surveys the toxicities of mercury, cadmium, lead, copper, cadmium, and the actinides. Strategies for the removal of these metals include surfactants, aqueous biphasic systems, and liquid membranes. For soils, both in situ stabilization and detection are discussed. For extraction from soils, electrokinetic extraction, phytoremediation, and bioremediation methods are critically evaluated. This article provides an educator with the resources to set up a series of lectures on inorganic aspects of environmental chemistry.
Saltwater Intrusion: Climate change mitigation or just water resources management?
NASA Astrophysics Data System (ADS)
Ferguson, G. A.; Gleeson, T.
2011-12-01
Climate change and population growth are expected to substantially increase the vulnerability of global water resources throughout the 21st century. Coastal groundwater systems are a nexus of the world's changing oceanic and hydrologic systems and a critical resource for the over one billion people living in coastal areas as well as for terrestrial and offshore ecosystems. Synthesis studies and detailed simulations predict that rising sea levels could negatively impact coastal aquifers by causing saltwater to intrude landward within coastal aquifers or by saltwater inundation of coastal regions. Saltwater intrusion caused by excessive extraction is already impacting entire island nations and globally in diverse regions such as Nile River delta in Egypt, Queensland, Australia and Long Island, USA. However, the vulnerability of coastal aquifers to sea level rise and excessive extraction has not been systematically compared. Here we show that coastal aquifers are much more vulnerable to groundwater extraction than predicted sea level rise in wide-ranging hydrogeologic conditions and population densities. Low lying areas with small hydraulic gradients are more sensitive to climate change but a review of existing coastal aquifer indicates that saltwater intrusion problems are more likely to arise where water demand is high. No cases studies were found linking saltwater intrusion to sea level rise during the past century. Humans are a key driver in the hydrology of coastal aquifers and that adapting to sea level rise at the expense of better water management is misguided.
NASA Astrophysics Data System (ADS)
Wang, X.
2018-04-01
Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.
NEMO: Extraction and normalization of organization names from PubMed affiliations.
Jonnalagadda, Siddhartha Reddy; Topham, Philip
2010-10-04
Today, there are more than 18 million articles related to biomedical research indexed in MEDLINE, and information derived from them could be used effectively to save the great amount of time and resources spent by government agencies in understanding the scientific landscape, including key opinion leaders and centers of excellence. Associating biomedical articles with organization names could significantly benefit the pharmaceutical marketing industry, health care funding agencies and public health officials and be useful for other scientists in normalizing author names, automatically creating citations, indexing articles and identifying potential resources or collaborators. Large amount of extracted information helps in disambiguating organization names using machine-learning algorithms. We propose NEMO, a system for extracting organization names in the affiliation and normalizing them to a canonical organization name. Our parsing process involves multi-layered rule matching with multiple dictionaries. The system achieves more than 98% f-score in extracting organization names. Our process of normalization that involves clustering based on local sequence alignment metrics and local learning based on finding connected components. A high precision was also observed in normalization. NEMO is the missing link in associating each biomedical paper and its authors to an organization name in its canonical form and the Geopolitical location of the organization. This research could potentially help in analyzing large social networks of organizations for landscaping a particular topic, improving performance of author disambiguation, adding weak links in the co-author network of authors, augmenting NLM's MARS system for correcting errors in OCR output of affiliation field, and automatically indexing the PubMed citations with the normalized organization name and country. Our system is available as a graphical user interface available for download along with this paper.
2017-06-09
Africa, China was already firmly rooted with deep economic ties, and a plethora of trade deals to extract resources. Simultaneously, trans- national...In West Africa, China was already firmly rooted with deep economic ties, and a plethora of trade deals to extract resources. Simultaneously, trans...60 viii ACRONYMS CCDR Combatant Commander DoD Department of Defense ECOWAS Economic
Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.
2014-01-01
The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units. The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005. Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the Williston and Powder River control volumes, respectively. Most of the remaining discharge results from pumped and flowing wells. Groundwater flow in the Williston structural basin generally is from the west and southwest toward the east, where discharge to streams occurs. Locally, in the uppermost hydrogeologic units, groundwater generally is unconfined and flows from topographically high to low areas, where discharge to streams occurs. Groundwater flow in the Powder River structural basin generally is toward the north, with local variations, particularly in the upper Fort Union aquifer, where flow is toward streams.
This document is an evaluation of the performance of the Resources Conservation Company (RCC) Basic Extractive Sludge Treatment (B.E.S.T.®) solvent extraction technology and its applicability as a treatment technique for soils, sediments, and sludges contaminated with organics. B...
The design and implementation of image query system based on color feature
NASA Astrophysics Data System (ADS)
Yao, Xu-Dong; Jia, Da-Chun; Li, Lin
2013-07-01
ASP.NET technology was used to construct the B/S mode image query system. The theory and technology of database design, color feature extraction from image, index and retrieval in the construction of the image repository were researched. The campus LAN and WAN environment were used to test the system. From the test results, the needs of user queries about related resources were achieved by system architecture design.
Remote Sensing Assessment of Lunar Resources: We Know Where to Go to Find What We Need
NASA Technical Reports Server (NTRS)
Gillis, J. J.; Taylor, G. J.; Lucey, P. G.
2004-01-01
The utilization of space resources is necessary to not only foster the growth of human activities in space, but is essential to the President s vision of a "sustained and affordable human and robotic program to explore the solar system and beyond." The distribution of resources will shape planning permanent settlements by affecting decisions about where to locate a settlement. Mapping the location of such resources, however, is not the limiting factor in selecting a site for a lunar base. It is indecision about which resources to use that leaves the location uncertain. A wealth of remotely sensed data exists that can be used to identify targets for future detailed exploration. Thus, the future of space resource utilization pre-dominantly rests upon developing a strategy for resource exploration and efficient methods of extraction.
Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers
NASA Astrophysics Data System (ADS)
Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.
2013-12-01
Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their absence across the remaining segments of the NSAS and the APAS suggest the aquifers are at near-steady conditions except for the DAS and SAS that are witnessing unsteady transient conditions. Implications for applying the methodologies advocated for assessment and optimum management of a large suite of fossil aquifers worldwide are clear.
Yang, Zhi; Wu, Youqian; Wu, Shihua
2016-01-29
Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
2016-05-03
extraction trained on a large database corpus – English Fisher. Although the performance of ported monolingual system would be worse in comparison...Language TE LI HA LA ZU LLP hours 8.6 9.6 7.9 8.1 8.4 LM sentences 11935 10743 9861 11577 10644 LM words 68175 83157 93131 93328 60832 dictionary 14505
NASA Technical Reports Server (NTRS)
Bower, Hannah; Cryderman, Kate; Captain, Janine
2016-01-01
The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will prospect for water within the lunar regolith and provide a proof of concept for In-Situ Resource Utilization (ISRU) techniques, which could be used on future lunar and Martian missions. One system within the RESOLVE payload is the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a Fluid Sub System (FSS) that transports volatiles to the Gas Chromatograph-Mass Spectrometer (GC-MS) instrument. In order for the FSS to transport precise and accurate amounts of volatiles to the GC-MS instrumentation, high performance valves are used within the system. The focus of this investigation is to evaluate the redesigned Lee valve. Further work is needed to continue to evaluate the Lee valve. Initial data shows that the valve could meet our requirements however further work is required to raise the TRL to an acceptable level to be included in the flight design of the system. At this time the risk is too high to change our baseline design to include these non-latching Lee solenoid valves.
Bubenheim, D L; Wignarajah, K
1995-01-01
Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more difficult following pyrolysis and water extraction of biomass. In both cases, additional processors would be required to provide products equivalent to those resulting from incineration alone. The carbon, water, and inorganic resources of inedible biomass are effectively separated and output in usable forms through incineration.
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Wignarajah, Kanapathipillai
1995-01-01
Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more difficult following pyrolysis and water extraction of biomass. In both cases, additional processors would be required to provide products equivalent to those resulting from incineration alone. The carbon, water, and organic resources of inedible biomass are effectively separated and output in usable forms through incineration.
Antioxidant Effect of Extracts from the Coffee Residue in Raw and Cooked Meat
Kim, Ji-Hee; Ahn, Dong Uk; Eun, Jong Bang; Moon, Sun Hee
2016-01-01
The residue of ground coffee obtained after the brewing process (spent coffee) still contains various functional components with high antioxidant capacity and health benefits, but no attempts have been made to use it as a resource to produce value-added food ingredients. This study evaluates the antioxidant activity of ethanol or hot water extracts from the residues of coffee after brewing. An extraction experiment was carried out using the conventional solid–liquid methods, including ethanol and water as the extraction media at different temperatures and liquid/solid ratios. The antioxidant activity of extracts was tested for total phenolic compound (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2-thiobarbituric acid reactive substances (TBARS) using oil emulsion and raw/cooked meat systems. The DPPH radical scavenging activity of the ethanol extracts with heating (HEE) and without heating (CEE) were higher than that of the hot water extracts (WE). The highest DPPH value of HEE and CEE at 1000 ppm was 91.22% and 90.21%, respectively. In oil emulsion and raw/cooked systems, both the water and ethanol extracts had similar antioxidant effects to the positive control (BHA), but HEE and CEE extracts showed stronger antioxidant activities than WE extract. These results indicated that the ethanol extracts of coffee residue have a strong antioxidant activity and have the potential to be used as a natural antioxidant in meat. PMID:27384587
Optimizing Sustainable Geothermal Heat Extraction
NASA Astrophysics Data System (ADS)
Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas
2016-04-01
Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.
Information sciences experiment system
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.; Murray, Nicholas D.; Benz, Harry F.; Bowker, David E.; Hendricks, Herbert D.
1990-01-01
The rapid expansion of remote sensing capability over the last two decades will take another major leap forward with the advent of the Earth Observing System (Eos). An approach is presented that will permit experiments and demonstrations in onboard information extraction. The approach is a non-intrusive, eavesdropping mode in which a small amount of spacecraft real estate is allocated to an onboard computation resource. How such an approach allows the evaluation of advanced technology in the space environment, advanced techniques in information extraction for both Earth science and information science studies, direct to user data products, and real-time response to events, all without affecting other on-board instrumentation is discussed.
NASA Technical Reports Server (NTRS)
1975-01-01
A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.
Modern Trends of Additional Professional Education Development for Mineral Resource Extracting
NASA Astrophysics Data System (ADS)
Borisova, Olga; Frolova, Victoria; Merzlikina, Elena
2017-11-01
The article contains the results of development of additional professional education research, including the field of mineral resource extracting in Russia. The paper describes the levels of education received in Russian Federation and determines the place and role of additional professional education among them. Key factors influencing the development of additional professional education are identified. As a result of the research, the authors proved the necessity of introducing additional professional education programs on educational Internet platforms for mineral resource extracting.
An annotated corpus with nanomedicine and pharmacokinetic parameters
Lewinski, Nastassja A; Jimenez, Ivan; McInnes, Bridget T
2017-01-01
A vast amount of data on nanomedicines is being generated and published, and natural language processing (NLP) approaches can automate the extraction of unstructured text-based data. Annotated corpora are a key resource for NLP and information extraction methods which employ machine learning. Although corpora are available for pharmaceuticals, resources for nanomedicines and nanotechnology are still limited. To foster nanotechnology text mining (NanoNLP) efforts, we have constructed a corpus of annotated drug product inserts taken from the US Food and Drug Administration’s Drugs@FDA online database. In this work, we present the development of the Engineered Nanomedicine Database corpus to support the evaluation of nanomedicine entity extraction. The data were manually annotated for 21 entity mentions consisting of nanomedicine physicochemical characterization, exposure, and biologic response information of 41 Food and Drug Administration-approved nanomedicines. We evaluate the reliability of the manual annotations and demonstrate the use of the corpus by evaluating two state-of-the-art named entity extraction systems, OpenNLP and Stanford NER. The annotated corpus is available open source and, based on these results, guidelines and suggestions for future development of additional nanomedicine corpora are provided. PMID:29066897
NASA Astrophysics Data System (ADS)
Kim, N.; Heo, S.; Lim, C. H.; Lee, W. K.
2017-12-01
Shale gas is gain attention due to the tremendous reserves beneath the earth. The two known high reservoirs are located in United States and China. According to U.S Energy Information Administration China have estimated 7,299 trillion cubic feet of recoverable shale gas and placed as world first reservoir. United States had 665 trillion cubic feet for the shale gas reservoir and placed fourth. Unlike the traditional fossil fuel, spatial distribution of shale gas is considered to be widely spread and the reserved amount and location make the resource as energy source for the next generation. United States dramatically increased the shale gas production. For instance, shale gas production composes more than 50% of total natural gas production whereas China and Canada shale gas produce very small amount of the shale gas. According to U.S Energy Information Administration's report, in 2014 United States produced shale gas almost 40 billion cubic feet per day but China only produced 0.25 billion cubic feet per day. Recently, China's policy had changed to decrease the coal powerplants to reduce the air pollution and the energy stress in China is keep increasing. Shale gas produce less air pollution while producing energy and considered to be clean energy source. Considering the situation of China and characteristics of shale gas, soon the demand of shale gas will increase in China. United States invested 71.7 billion dollars in 2013 but it Chinese government is only proceeding fundamental investment due to land degradation, limited water resources, geological location of the reservoirs.In this study, firstly we reviewed the current system and technology of shale gas extraction such as hydraulic Fracturing. Secondly, listed the possible environmental damages, land degradations, and resource demands for the shale gas extraction. Thirdly, invested the potential shale gas extraction amount in China based on the location of shale gas reservoirs and limited resources for the gas extraction. Fourthly, invested the potential land degradation on agricultural, surface water, and forest in developing shale gas extraction scenario. In conclusion, we suggested possible environmental damages and social impacts from shale gas extraction in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M.C.; Nunz, G.J.; Cremer, G.M.
1979-09-01
The potential of energy extracted from hot dry rock (HDR) was investigated as a commercailly feasible alternate energy source. Run Segments 3 and 4 were completed in the prototype reservoir of the Phase I energy-extraction system at Fenton Hill, New Mexico. Results of these tests yielded significant data on the existing system and this information will be applicable to future HDR systems. Plans and operations initiating a Phase II system are underway at the Fenton Hill site. This system, a deeper, hotter commercial-size reservoir, is intended to demonstrate the longevity and economics of an HDR system. Major activity occurred inmore » evaluation of the national resource potential and in characterizing possible future HDR geothermal sites. Work has begun in the institutional and industrial support area to assess the economics and promote commercial interest in HDR systems as an alternate energy source.« less
Gender as Contradiction: From Dichotomies to Diversity in Natural Resource Extraction
ERIC Educational Resources Information Center
O'Shaughnessy, Sara; Krogman, Naomi T.
2011-01-01
Given the varied nature of resource dependent communities, the gendered experiences of women and men may vary in unexpected and contradictory ways. Building on a review and critique of existing theoretical approaches and studies of US and Canadian extractive resource communities in both the feminist and rural social science literature, we provide…
NASA Technical Reports Server (NTRS)
Goldsmith, M.; Lavin, M. L.
1980-01-01
Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.
The BioLexicon: a large-scale terminological resource for biomedical text mining
2011-01-01
Background Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events. Results This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard. Conclusions The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring. PMID:21992002
The BioLexicon: a large-scale terminological resource for biomedical text mining.
Thompson, Paul; McNaught, John; Montemagni, Simonetta; Calzolari, Nicoletta; del Gratta, Riccardo; Lee, Vivian; Marchi, Simone; Monachini, Monica; Pezik, Piotr; Quochi, Valeria; Rupp, C J; Sasaki, Yutaka; Venturi, Giulia; Rebholz-Schuhmann, Dietrich; Ananiadou, Sophia
2011-10-12
Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events. This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard. The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.
Lunar Advanced Volatile Analysis Subsystem: Pressure Transducer Trade Study
NASA Technical Reports Server (NTRS)
Kang, Edward Shinuk
2017-01-01
In Situ Resource Utilization (ISRU) is a key factor in paving the way for the future of human space exploration. The ability to harvest resources on foreign astronomical objects to produce consumables and propellant offers potential reduction in mission cost and risk. Through previous missions, the existence of water ice at the poles of the moon has been identified, however the feasibility of water extraction for resources remains unanswered. The Resource Prospector (RP) mission is currently in development to provide ground truth, and will enable us to characterize the distribution of water at one of the lunar poles. Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is the primary payload on RP that will be used in conjunction with a rover. RESOLVE contains multiple instruments for systematically identifying the presence of water. The main process involves the use of two systems within RESOLVE: the Oxygen Volatile Extraction Node (OVEN) and Lunar Advanced Volatile Analysis (LAVA). Within the LAVA subsystem, there are multiple calculations that depend on accurate pressure readings. One of the most important instances where pressure transducers (PT) are used is for calculating the number of moles in a gas transfer from the OVEN subsystem. As a critical component of the main process, a mixture of custom and commercial off the shelf (COTS) PTs are currently being tested in the expected operating environment to eventually down select an option for integrated testing in the LAVA engineering test unit (ETU).
Hunter, Lawrence; Lu, Zhiyong; Firby, James; Baumgartner, William A; Johnson, Helen L; Ogren, Philip V; Cohen, K Bretonnel
2008-01-01
Background Information extraction (IE) efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering. Results OpenDMAP information extraction systems were produced for extracting protein transport assertions (transport), protein-protein interaction assertions (interaction) and assertions that a gene is expressed in a cell type (expression). Evaluations were performed on each system, resulting in F-scores ranging from .26 – .72 (precision .39 – .85, recall .16 – .85). Additionally, each of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport instances, 265,795 interaction instances and 176,153 expression instances. Conclusion OpenDMAP advances the performance standards for extracting protein-protein interaction predications from the full texts of biomedical research articles. Furthermore, this level of performance appears to generalize to other information extraction tasks, including extracting information about predicates of more than two arguments. The output of the information extraction system is always constructed from elements of an ontology, ensuring that the knowledge representation is grounded with respect to a carefully constructed model of reality. The results of these efforts can be used to increase the efficiency of manual curation efforts and to provide additional features in systems that integrate multiple sources for information extraction. The open source OpenDMAP code library is freely available at PMID:18237434
Parrish, Clyde F
2003-12-01
A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths.
Materials Flow and Sustainability
Sznopek, John L.; Brown, William M.
1998-01-01
Materials extracted from the Earth are necessary to produce our most fundamental needs – food, clothing, and shelter. Materials are needed to maintain and improve our standard of living. Understanding the whole system of materials flow, from source to ultimate disposition, can help us better manage the use of natural resources and protect the environment.
Energy Implications of Materials Processing
ERIC Educational Resources Information Center
Hayes, Earl T.
1976-01-01
Processing of materials could become energy-limited rather than resource-limited. Methods to extract metals, industrial minerals, and energy materials and convert them to useful states requires more than one-fifth of the United States energy budget. Energy accounting by industries must include a total systems analysis of costs to insure net energy…
Determining Regional Sensitivity to Energy-Related Water Withdrawals in Minnesota
NASA Astrophysics Data System (ADS)
McCulloch, A.; Brauman, K. A.
2015-12-01
Minnesota has abundant freshwater resources, yet concerns about water-impacts of energy and mining development are increasing. Statewide, total annual water withdrawals have increased, and, in some watersheds, withdrawals make up a large fraction of available water. The energy and mining sectors play a critical role in determining water availability, as water is used to irrigate biofuel feedstock crops, cool thermoelectric plants, and process and transport fuels and iron ore. We evaluated the Minnesota Department of Natural Resources (DNR) Water and Reporting System (MPARS) dataset (1988-2014) to identify regions where energy and mining-related water withdrawals are high or where they are increasing. The energy and mining sectors account for over 65 percent of total water extractions in Minnesota, but this percentage is greater in some regions. In certain southern and northeastern Minnesota watersheds, these extractions account for 90 percent of total water demand. Sensitivity to these demands is not dependent on total water demand alone, and is also not uniform among watersheds. We identified and evaluated factors influencing sensitivity, including population, extraction type (surface water or groundwater), percentage of increased demand, and whether withdrawals are consumptive or not. We determined that southern Minnesota is particularly sensitive to increased water demands, because of growing biofuel and sand extraction industries (the products of which are used in hydraulic fracturing). In the last ten years, ethanol production in Minnesota has increased by 440 percent, and over fifteen refineries (each with a capacity over 1.1 billion gallons), have been built. These users primarily extract from surface water bodies within a few watersheds, compromising local supplies. As these energy-related industries continue to grow, so will the demand for freshwater resources. Determining regional sensitivity to increased demands will allow policy-makers to manage the increased competition for Minnesota's future water supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sternberg, B.K.; Thomas, S.J.
1992-12-01
The overall objective of the project was to apply a new high-resolution imaging system to water resource investigations. This imaging system measures the ellipticity of received magnetic-field components. The source of the magnetic field is a long-line transmitter emitting frequencies from 30 Hz to 30 kHz. A new high-accuracy calibration method was used to enhance the resolution of the measurements. The specific objectives included: (1) refine the system hardware and software based on these investigations, (2) learn the limitations of this technology in practical water resource investigations, and (3) improve interpretation techniques to extract the highest possible resolution. Successful fieldmore » surveys were run at: (1) San Xavier Mine, Arizona - flow of injected fluid was monitored with the system. (2) Avra Valley, Arizona - subsurface stratigraphy was imaged. A survey at a third site was less successful; interpreted resistivity section does not agree with nearby well logs. Surveys are continuing at this site.« less
Developing a disease outbreak event corpus.
Conway, Mike; Kawazoe, Ai; Chanlekha, Hutchatai; Collier, Nigel
2010-09-28
In recent years, there has been a growth in work on the use of information extraction technologies for tracking disease outbreaks from online news texts, yet publicly available evaluation standards (and associated resources) for this new area of research have been noticeably lacking. This study seeks to create a "gold standard" data set against which to test how accurately disease outbreak information extraction systems can identify the semantics of disease outbreak events. Additionally, we hope that the provision of an annotation scheme (and associated corpus) to the community will encourage open evaluation in this new and growing application area. We developed an annotation scheme for identifying infectious disease outbreak events in news texts. An event--in the context of our annotation scheme--consists minimally of geographical (eg, country and province) and disease name information. However, the scheme also allows for the rich encoding of other domain salient concepts (eg, international travel, species, and food contamination). The work resulted in a 200-document corpus of event-annotated disease outbreak reports that can be used to evaluate the accuracy of event detection algorithms (in this case, for the BioCaster biosurveillance online news information extraction system). In the 200 documents, 394 distinct events were identified (mean 1.97 events per document, range 0-25 events per document). We also provide a download script and graphical user interface (GUI)-based event browsing software to facilitate corpus exploration. In summary, we present an annotation scheme and corpus that can be used in the evaluation of disease outbreak event extraction algorithms. The annotation scheme and corpus were designed both with the particular evaluation requirements of the BioCaster system in mind as well as the wider need for further evaluation resources in this growing research area.
NASA Astrophysics Data System (ADS)
Buang, Yohanes; Suwari, Ola, Antonius R. B.
2017-12-01
Effects of pH changes in solvents on isolation of antibacterial activities of natural product extracts were conducted in the present study. Sarang semut (M. pendens) tubers as the model material for the study was considered to be the strategic resource of natural products based on its biochemical and therapeutical effects. The water with pH 5, 7, 9, and 13 was used as the solvents. The antibacterial activities of the resulted extracts indicated that higher the working pH, higher activities of the resulted extracts. The extent activities of the resulted extracts followed the increasing pH of the maceration system. The study also found that higher pH of the working solvent, higher the amounts of the antibacterial extracts isolated from the sample matrix of the natural product. The higher pH of the water solvents plays essential roles to promote the antibacterial activities of the natural product extracts from M. pendens tubers.
Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems.
Zerrouki, Taha; Balla, Amar
2017-04-01
Arabic diacritics are often missed in Arabic scripts. This feature is a handicap for new learner to read َArabic, text to speech conversion systems, reading and semantic analysis of Arabic texts. The automatic diacritization systems are the best solution to handle this issue. But such automation needs resources as diactritized texts to train and evaluate such systems. In this paper, we describe our corpus of Arabic diacritized texts. This corpus is called Tashkeela. It can be used as a linguistic resource tool for natural language processing such as automatic diacritics systems, dis-ambiguity mechanism, features and data extraction. The corpus is freely available, it contains 75 million of fully vocalized words mainly 97 books from classical and modern Arabic language. The corpus is collected from manually vocalized texts using web crawling process.
Multispectral scanner data applications evaluation. Volume 1: User applications study
NASA Technical Reports Server (NTRS)
Thomson, F. J.; Erickson, J. D.; Nalepka, R. F.; Weber, J. D.
1974-01-01
A six-month systems study of earth resource surveys from satellites was conducted and is reported. SKYLAB S-192 multispectral scanner (MSS) data were used as a baseline to aid in evaluating the characteristics of future systems using satellite MSS sensors. The study took the viewpoint that overall system (sensor and processing) characteristics and parameter values should be determined largely by user requirements for automatic information extraction performance in quasi-operational earth resources surveys, the other major factor being hardware limitations imposed by state-of-the-art technology and cost. The objective was to use actual aircraft and spacecraft MSS data to outline parametrically the trade-offs between user performance requirements and hardware performance and limitations so as to allow subsequent evaluation of compromises which must be made in deciding what system(s) to build.
Pathak, Jyotishman; Bailey, Kent R; Beebe, Calvin E; Bethard, Steven; Carrell, David S; Chen, Pei J; Dligach, Dmitriy; Endle, Cory M; Hart, Lacey A; Haug, Peter J; Huff, Stanley M; Kaggal, Vinod C; Li, Dingcheng; Liu, Hongfang; Marchant, Kyle; Masanz, James; Miller, Timothy; Oniki, Thomas A; Palmer, Martha; Peterson, Kevin J; Rea, Susan; Savova, Guergana K; Stancl, Craig R; Sohn, Sunghwan; Solbrig, Harold R; Suesse, Dale B; Tao, Cui; Taylor, David P; Westberg, Les; Wu, Stephen; Zhuo, Ning; Chute, Christopher G
2013-01-01
Research objective To develop scalable informatics infrastructure for normalization of both structured and unstructured electronic health record (EHR) data into a unified, concept-based model for high-throughput phenotype extraction. Materials and methods Software tools and applications were developed to extract information from EHRs. Representative and convenience samples of both structured and unstructured data from two EHR systems—Mayo Clinic and Intermountain Healthcare—were used for development and validation. Extracted information was standardized and normalized to meaningful use (MU) conformant terminology and value set standards using Clinical Element Models (CEMs). These resources were used to demonstrate semi-automatic execution of MU clinical-quality measures modeled using the Quality Data Model (QDM) and an open-source rules engine. Results Using CEMs and open-source natural language processing and terminology services engines—namely, Apache clinical Text Analysis and Knowledge Extraction System (cTAKES) and Common Terminology Services (CTS2)—we developed a data-normalization platform that ensures data security, end-to-end connectivity, and reliable data flow within and across institutions. We demonstrated the applicability of this platform by executing a QDM-based MU quality measure that determines the percentage of patients between 18 and 75 years with diabetes whose most recent low-density lipoprotein cholesterol test result during the measurement year was <100 mg/dL on a randomly selected cohort of 273 Mayo Clinic patients. The platform identified 21 and 18 patients for the denominator and numerator of the quality measure, respectively. Validation results indicate that all identified patients meet the QDM-based criteria. Conclusions End-to-end automated systems for extracting clinical information from diverse EHR systems require extensive use of standardized vocabularies and terminologies, as well as robust information models for storing, discovering, and processing that information. This study demonstrates the application of modular and open-source resources for enabling secondary use of EHR data through normalization into standards-based, comparable, and consistent format for high-throughput phenotyping to identify patient cohorts. PMID:24190931
Lunar Resource Utilization: Development of a Reactor for Volatile Extraction from Regolith
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Sacksteder, Kurt R.; Nayagam, Vedha
2007-01-01
The extraction and processing of planetary resources into useful products, known as In- Situ Resource Utilization (ISRU), will have a profound impact on the future of planetary exploration. One such effort is the RESOLVE (Regolith and Environment Science, Oxygen and Lunar Volatiles Extraction) Project, which aims to extract and quantify these resources. As part of the first Engineering Breadboard Unit, the Regolith Volatiles Characterization (RVC) reactor was designed and built at the NASA Glenn Research Center. By heating and agitating the lunar regolith, loosely bound volatiles, such as hydrogen and water, are released and stored in the reactor for later analysis and collection. Intended for operation on a robotic rover, the reactor features a lightweight, compact design, easy loading and unloading of the regolith, and uniform heating of the regolith by means of vibrofluidization. The reactor performance was demonstrated using regolith simulant, JSC1, with favorable results.
Challenges and opportunities associated with waste management in India
Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh
2017-01-01
India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362
Automated software system for checking the structure and format of ACM SIG documents
NASA Astrophysics Data System (ADS)
Mirza, Arsalan Rahman; Sah, Melike
2017-04-01
Microsoft (MS) Office Word is one of the most commonly used software tools for creating documents. MS Word 2007 and above uses XML to represent the structure of MS Word documents. Metadata about the documents are automatically created using Office Open XML (OOXML) syntax. We develop a new framework, which is called ADFCS (Automated Document Format Checking System) that takes the advantage of the OOXML metadata, in order to extract semantic information from MS Office Word documents. In particular, we develop a new ontology for Association for Computing Machinery (ACM) Special Interested Group (SIG) documents for representing the structure and format of these documents by using OWL (Web Ontology Language). Then, the metadata is extracted automatically in RDF (Resource Description Framework) according to this ontology using the developed software. Finally, we generate extensive rules in order to infer whether the documents are formatted according to ACM SIG standards. This paper, introduces ACM SIG ontology, metadata extraction process, inference engine, ADFCS online user interface, system evaluation and user study evaluations.
Information extraction from Italian medical reports: An ontology-driven approach.
Viani, Natalia; Larizza, Cristiana; Tibollo, Valentina; Napolitano, Carlo; Priori, Silvia G; Bellazzi, Riccardo; Sacchi, Lucia
2018-03-01
In this work, we propose an ontology-driven approach to identify events and their attributes from episodes of care included in medical reports written in Italian. For this language, shared resources for clinical information extraction are not easily accessible. The corpus considered in this work includes 5432 non-annotated medical reports belonging to patients with rare arrhythmias. To guide the information extraction process, we built a domain-specific ontology that includes the events and the attributes to be extracted, with related regular expressions. The ontology and the annotation system were constructed on a development set, while the performance was evaluated on an independent test set. As a gold standard, we considered a manually curated hospital database named TRIAD, which stores most of the information written in reports. The proposed approach performs well on the considered Italian medical corpus, with a percentage of correct annotations above 90% for most considered clinical events. We also assessed the possibility to adapt the system to the analysis of another language (i.e., English), with promising results. Our annotation system relies on a domain ontology to extract and link information in clinical text. We developed an ontology that can be easily enriched and translated, and the system performs well on the considered task. In the future, it could be successfully used to automatically populate the TRIAD database. Copyright © 2017 Elsevier B.V. All rights reserved.
Information retrieval and terminology extraction in online resources for patients with diabetes.
Seljan, Sanja; Baretić, Maja; Kucis, Vlasta
2014-06-01
Terminology use, as a mean for information retrieval or document indexing, plays an important role in health literacy. Specific types of users, i.e. patients with diabetes need access to various online resources (on foreign and/or native language) searching for information on self-education of basic diabetic knowledge, on self-care activities regarding importance of dietetic food, medications, physical exercises and on self-management of insulin pumps. Automatic extraction of corpus-based terminology from online texts, manuals or professional papers, can help in building terminology lists or list of "browsing phrases" useful in information retrieval or in document indexing. Specific terminology lists represent an intermediate step between free text search and controlled vocabulary, between user's demands and existing online resources in native and foreign language. The research aiming to detect the role of terminology in online resources, is conducted on English and Croatian manuals and Croatian online texts, and divided into three interrelated parts: i) comparison of professional and popular terminology use ii) evaluation of automatic statistically-based terminology extraction on English and Croatian texts iii) comparison and evaluation of extracted terminology performed on English manual using statistical and hybrid approaches. Extracted terminology candidates are evaluated by comparison with three types of reference lists: list created by professional medical person, list of highly professional vocabulary contained in MeSH and list created by non-medical persons, made as intersection of 15 lists. Results report on use of popular and professional terminology in online diabetes resources, on evaluation of automatically extracted terminology candidates in English and Croatian texts and on comparison of statistical and hybrid extraction methods in English text. Evaluation of automatic and semi-automatic terminology extraction methods is performed by recall, precision and f-measure.
Parsing and Tagging of Bilingual Dictionary
2003-09-01
LAMP-TR-106 CAR-TR-991 CS-TR-4529 UMIACS-TR-2003-97 PARSING ANS TAGGING OF BILINGUAL DICTIONARY Huanfeng Ma1,2, Burcu Karagol-Ayan1,2, David... dictionaries hold great potential as a source of lexical resources for training and testing automated systems for optical character recognition, machine...translation, and cross-language information retrieval. In this paper, we describe a system for extracting term lexicons from printed bilingual dictionaries
Design of a decision-support architecture for management of remotely monitored patients.
Basilakis, Jim; Lovell, Nigel H; Redmond, Stephen J; Celler, Branko G
2010-09-01
Telehealth is the provision of health services at a distance. Typically, this occurs in unsupervised or remote environments, such as a patient's home. We describe one such telehealth system and the integration of extracted clinical measurement parameters with a decision-support system (DSS). An enterprise application-server framework, combined with a rules engine and statistical analysis tools, is used to analyze the acquired telehealth data, searching for trends and shifts in parameter values, as well as identifying individual measurements that exceed predetermined or adaptive thresholds. An overarching business process engine is used to manage the core DSS knowledge base and coordinate workflow outputs of the DSS. The primary role for such a DSS is to provide an effective means to reduce the data overload and to provide a means of health risk stratification to allow appropriate targeting of clinical resources to best manage the health of the patient. In this way, the system may ultimately influence changes in workflow by targeting scarce clinical resources to patients of most need. A single case study extracted from an initial pilot trial of the system, in patients with chronic obstructive pulmonary disease and chronic heart failure, will be reviewed to illustrate the potential benefit of integrating telehealth and decision support in the management of both acute and chronic disease.
NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth
2008-01-01
Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for Outpost. To minimize cost and ensure that ISRU technologies, systems, and functions are integrated properly into the Outpost, technology development efforts are being coordinated with other development areas such as Surface Mobility, Surface Power, Life Support, EVA, and Propulsion. Lastly, laboratory and field system-level tests and demonstrations will be performed as often as possible to demonstrate improvements in: Capabilities (ex. digging deeper); Performance (ex. lower power); and Duration (ex. more autonomy or more robustness). This presentation will provide the status of work performed to date within the NASA ISRU project with respect to technology and system development and field demonstration activities, as well as the current strategy to implement ISRU in future robotic and human lunar exploration missions.
Event-driven processing for hardware-efficient neural spike sorting
NASA Astrophysics Data System (ADS)
Liu, Yan; Pereira, João L.; Constandinou, Timothy G.
2018-02-01
Objective. The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. Approach. (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. Main results. It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. Significance. By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.
DISEASES: text mining and data integration of disease-gene associations.
Pletscher-Frankild, Sune; Pallejà, Albert; Tsafou, Kalliopi; Binder, Janos X; Jensen, Lars Juhl
2015-03-01
Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease-gene associations, cancer mutation data, and genome-wide association studies from existing databases. The DISEASES resource is accessible through a web interface at http://diseases.jensenlab.org/, where the text-mining software and all associations are also freely available for download. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Neo-Industrial and Sustainable Development of Russia as Mineral Resources Exploiting Country
NASA Astrophysics Data System (ADS)
Prokudina, Marina; Zhironkina, Olga; Kalinina, Oksana; Gasanov, Magerram; Agafonov, Felix
2017-11-01
In the Russian economy, the world leadership in the extraction of different mineral resources is combined with the potential for their processing and a significant scientific sector. Innovative development of raw materials extraction is impossible without the parallel technological modernization of the high-tech sector. In general, the complex of these processes is a neo-industrialization of the economy. Neo-industrially oriented transformation of the economy reflects complex changes in its structure, the transformation of established stable relationships between various elements of the system of social production that determine macroeconomic proportions. Neo-industrial transformations come along with the modification of economic relations associated with investments, innovations, labor and income distribution, with the process of locating productive forces and regulating the economy by the government. Neo-industrialization of economy is not only significant changes in its technological and reproductive structure (the development of high-tech industries, the integration of science and industry), but, above all, the implementation of a system structural policy of innovative development of raw material industry and the recovery of manufacturing industries on a new technological basis.
Uncovering the essential links in online commercial networks
NASA Astrophysics Data System (ADS)
Zeng, Wei; Fang, Meiling; Shao, Junming; Shang, Mingsheng
2016-09-01
Recommender systems are designed to effectively support individuals' decision-making process on various web sites. It can be naturally represented by a user-object bipartite network, where a link indicates that a user has collected an object. Recently, research on the information backbone has attracted researchers' interests, which is a sub-network with fewer nodes and links but carrying most of the relevant information. With the backbone, a system can generate satisfactory recommenda- tions while saving much computing resource. In this paper, we propose an enhanced topology-aware method to extract the information backbone in the bipartite network mainly based on the information of neighboring users and objects. Our backbone extraction method enables the recommender systems achieve more than 90% of the accuracy of the top-L recommendation, however, consuming only 20% links. The experimental results show that our method outperforms the alternative backbone extraction methods. Moreover, the structure of the information backbone is studied in detail. Finally, we highlight that the information backbone is one of the most important properties of the bipartite network, with which one can significantly improve the efficiency of the recommender system.
Extracting the Textual and Temporal Structure of Supercomputing Logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, S; Singh, I; Chandra, A
2009-05-26
Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an onlinemore » clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.« less
The Roles of Beneficiation in Lunar Work
NASA Technical Reports Server (NTRS)
Rickman, Doug L.
2010-01-01
Natural feedstocks used for any process are intrinsically variable. They may also contain deleterious components or low concentrations of desired fractions. For these three reasons it is standard industrial practice to beneficiate feedstocks. This is true across all industries which trans-form raw materials into standardized units. On the Moon there are three natural resources: vacuum, radiation and regolith. To utilize in situ resources on the Moon it is reasonable to presume some beneficiation of the regolith (ground rock) resource will be desirable if not essential. As on Earth, this will require fundamental understanding of the physics and chemistry of the relevant processes, which are exceeding complex in detail. Further, simulants are essential test articles for evaluation of components and systems planned for lunar deployment. Simulants are of course made from geologic feedstocks. Therefore, there is variation, deleterious components and incorrect concentrations of desired fractions in the feedstocks used for simulants. Thus, simulant production can benefit from beneficiation of the input feedstocks. Beneficiation of geologic feedstocks is the subject of extractive metallurgy. Clearly, NASA has two discrete interests pertaining to the science and technology of extractive metallurgy.
An ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Paz, Aaron
2017-01-01
ISRU of Mars resources was base lined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. HOWEVER: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not base lined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRU Phase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4LO2 ISRU production system.Evolvable Mars CampaignPre-deployed Mars ascent vehicle (MAV)4 crew membersPropellants: Oxygen MethaneGenerate a system model to roll up mass power of a full ISRU system and enable parametric trade studies. Leverage models from previous studies and technology development programs Anchor with mass power performance from existing hardware. Whenever possible used reference-able (published) numbers for traceability.Modular approach to allow subsystem trades and parametric studies. Propellant mass needs taken from most recently published MAV study:Polsgrove, T. et al. (2015), AIAA2015-4416MAV engines operate at mixture ratios (oxygen: methane) between 3:1 and 3.5:1, whereas the Sabatier reactor produces at a 4:1 ratio. Therefore:Methane production is the driving requirement-Excess Oxygen will be produced.
Natural Resource Extraction, Armed Violence, and Environmental Degradation
Downey, Liam; Bonds, Eric; Clark, Katherine
2011-01-01
The goal of this article is to demonstrate that environmental sociologists cannot fully explain the relationship between humans and the natural world without theorizing a link between natural resource extraction, armed violence, and environmental degradation. The authors begin by arguing that armed violence is one of several overlapping mechanisms that provide powerful actors with the means to (a) prevail over others in conflicts over natural resources and (b) ensure that natural resources critical to industrial production and state power continue to be extracted and sold in sufficient quantities to promote capital accumulation, state power, and ecological unequal exchange. The authors then identify 10 minerals that are critical to the functioning of the U.S. economy and/or military and demonstrate that the extraction of these minerals often involves the use of armed violence. They further demonstrate that armed violence is associated with the activities of the world’s three largest mining companies, with African mines that receive World Bank funding, and with petroleum and rainforest timber extraction. The authors conclude that the natural resource base on which industrial societies stand is constructed in large part through the use and threatened use of armed violence. As a result, armed violence plays a critical role in fostering environmental degradation and ecological unequal exchange. PMID:21909231
NASA Astrophysics Data System (ADS)
Teodoro, L. A.; Colaprete, A.; Roush, T. L.; Elphic, R. C.; Cook, A.; Kleinhenz, J.; Fritzler, E.; Smith, J. T.; Zacny, K.
2016-12-01
In the context of NASA's Resource Prospector (RP) mission to the high latitudes and permanently shadowed regions of the Moon, we study 3D models of volatile transport in the lunar regolith. This mission's goal is to extract and identify volatile species in the top meter of the lunar regolith layer. Roughly, RP consists of 5 elements: i) the Neutron Spectrometer System will search for high hydrogen concentrations and in turn select optimum drilling locations; ii) The Near Infrared Volatile Spectrometer System (NIRVSS) will characterize the nature of the surficial water ice; iii) The Drill Sub-system will extract samples from the top meter of the lunar surface and deliver them to the Oxygen and Volatile Extraction Node (OVEN); iv) OVEN will heat up the sample and extract the volatiles therein, that will be v) transferred to the Lunar Advanced Volatiles Analysis system for chemical composition analysis. A series of vacuum cryogenic experiments have been carried out at Glenn Research Center with the aim of quantifying the volatile losses during the drilling/sample acquisition phase and sample delivery to crucibles steps. These experiments' outputs include: i) Pressure measurements of several chemical species (e.g. H2O, Ar); ii) Temperature measurements within and at the surface of the lunar simulant using thermocouples; and iii) Surficial temperature NIRVSS measurements. Here, we report on the numerical modeling we are carrying out to understand the physics underpinning these experiments. The models include 2 main parts: i) reliable computation of temperature variation throughout the lunar soil container during the experiment as constrained by temperature measurements; and ii) molecular diffusion of volatiles. The latter includes both Fick's (flight of the molecules in the porous) and Knudsen's (sublimation of volatile molecules at the grain surface) laws. We also mimic the soil porosity by randomly allocating 75 microns particles in the simulation volume. Our preliminary results show both diffusion laws play a major role during the drilling phase.
Global health resource utilization associated with pacemaker complications.
Waweru, Catherine; Steenrod, Anna; Wolff, Claudia; Eggington, Simon; Wright, David Jay; Wyrwich, Kathleen W
2017-07-01
To estimate health resource utilization (HRU) associated with the management of pacemaker complications in various healthcare systems. Electrophysiologists (EPs) from four geographical regions (Western Europe, Australia, Japan, and North America) were invited to participate. Survey questions focused on HRU in the management of three chronic pacemaker complications (i.e. pacemaker infections requiring extraction, lead fractures/insulation breaches requiring replacement, and upper extremity deep venous thrombosis [DVT]). Panelists completed a maximum of two web-based surveys (iterative rounds). Mean, median values, and interquartile ranges were calculated and used to establish consensus. Overall, 32 and 29 panelists participated in the first and second rounds of the Delphi panel, respectively. Consensus was reached on treatment and HRU associated with a typical pacemaker implantation and complications. HRU was similar across regions, except for Japan, where panelists reported the longest duration of hospital stay in all scenarios. Infections were the most resource-intensive complications and were characterized by intravenous antibiotics days of 9.6?13.5 days and 21.3?29.2 days for pocket and lead infections respectively; laboratory and diagnostic tests, and system extraction and replacement procedures. DVT, on the other hand, was the least resource intensive complication. The results of the panel represent the views of the respondents who participated and may not be generalizable outside of this panel. The surveys were limited in scope and, therefore, did not include questions on management of acute complications (e.g. hematoma, pneumothorax). The Delphi technique provided a reliable and efficient approach to estimating resource utilization associated with chronic pacemaker complications. Estimates from the Delphi panel can be used to generate costs of pacemaker complications in various regions.
Proceedings of the Lunar Materials Technology Symposium
NASA Technical Reports Server (NTRS)
1992-01-01
The meeting was organized around a possible lunar outpost scenario, featuring industrial technologies, systems, and components applicable to the extraction, processing, and fabrication of local materials. Acknowledged space resources experts as well as investigators from outside the field whose knowledge could be applied to space development activities were brought together. Presentations came from a variety of specialists in fields such as minerals processing, environmental control, and communications. The sessions of the symposium were divided into the following areas: resource characterization, energy management, materials processing, environment control, and automation and communications.
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives of the Earth Observatory Satellite (EOS) program are defined. The system specifications for the satellite payload are examined. The broad objectives of the EOS-A program are as follows: (1) to develop space-borne sensors for the measurement of land resources, (2) to evolve spacecraft systems and subsystems which will permit earth observation with greater accuracy, coverage, spatial resolution, and continuity than existing systems, (3) to develop improved information processing, extraction, display, and distribution systems, and (4) to use space transportation systems for resupply and retrieval of the EOS.
Field Scale Testing of RESOLVE at 2010 ISRU Analog Test
NASA Technical Reports Server (NTRS)
Captain, Janine E.; Quinn, J. W.; Moss, T. J.; Weis, K. H.
2010-01-01
When mankind returns to the moon, there will be one aspect of the architecture that will totally change how we explore the solar system. For the first time in space exploration, we will take the initial steps towards breaking our reliance on Earth-supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In Situ Resource Utilization (ISRU), will be directed at extracting some of the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of hydrogen that can be reasonably extracted from the regolith, it would provide a foundation for true independence from Earth consumables. With in-situ hydrogen and oxygen (and/or water) we can produce many of the major consumables needed to travel to and operate on a sustainable lunar outpost. We would have water to drink, oxygen to breath, and rocket propellants and fuel cell reagents to enable extended access and operations across the moon. NASA initiated development of an experiment package named RESOLVE (Regolith & Environment Science and Oxygen & Lunar Volatile Extraction) that could be flown to the rim or into a permanently shadowed crater to answer the questions surrounding elevated hydrogen at the lunar poles.
NPCARE: database of natural products and fractional extracts for cancer regulation.
Choi, Hwanho; Cho, Sun Young; Pak, Ho Jeong; Kim, Youngsoo; Choi, Jung-Yun; Lee, Yoon Jae; Gong, Byung Hee; Kang, Yeon Seok; Han, Taehoon; Choi, Geunbae; Cho, Yeeun; Lee, Soomin; Ryoo, Dekwoo; Park, Hwangseo
2017-01-01
Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified. NPCARE (http://silver.sejong.ac.kr/npcare) is a publicly accessible online database of natural products and fractional extracts for cancer regulation. At NPCARE, one can explore 6578 natural compounds and 2566 fractional extracts isolated from 1952 distinct biological species including plants, marine organisms, fungi, and bacteria whose anticancer activities were validated with 1107 cell lines for 34 cancer types. Each entry in NPCARE is annotated with the cancer type, genus and species names of the biological resource, the cell line used for demonstrating the anticancer activity, PubChem ID, and a wealth of information about the target gene or protein. Besides the augmentation of plant entries up to 743 genus and 197 families, NPCARE is further enriched with the natural products and the fractional extracts of diverse non-traditional biological resources. NPCARE is anticipated to serve as a dominant gateway for the discovery of new anticancer medicines due to the inclusion of a large number of the fractional extracts as well as the natural compounds isolated from a variety of biological resources.
Concept recognition for extracting protein interaction relations from biomedical text
Baumgartner, William A; Lu, Zhiyong; Johnson, Helen L; Caporaso, J Gregory; Paquette, Jesse; Lindemann, Anna; White, Elizabeth K; Medvedeva, Olga; Cohen, K Bretonnel; Hunter, Lawrence
2008-01-01
Background: Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing. Results: Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist. Conclusion: Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet . PMID:18834500
The LifeWatch approach to the exploration of distributed species information
Fuentes, Daniel; Fiore, Nicola
2014-01-01
Abstract This paper introduces a new method of automatically extracting, integrating and presenting information regarding species from the most relevant online taxonomic resources. First, the information is extracted and joined using data wrappers and integration solutions. Then, an analytical tool is used to provide a visual representation of the data. The information is then integrated into a user friendly content management system. The proposal has been implemented using data from the Global Biodiversity Information Facility (GBIF), the Catalogue of Life (CoL), the World Register of Marine Species (WoRMS), the Integrated Taxonomic Information System (ITIS) and the Global Names Index (GNI). The approach improves data quality, avoiding taxonomic and nomenclature errors whilst increasing the availability and accessibility of the information. PMID:25589865
Development of a Reactor for the Extraction of Oxygen and Volatiles From Lunar Regolith
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Yuan, Zengguang; Sacksteder, Kurt; Caruso, John
2009-01-01
The RESOLVE (Regolith and Environment Science, Oxygen and Lunar Volatiles Extraction) Project, aims to extract and quantify useful resources from lunar soil. The reactor developed for RESOLVE is a dual purpose system, designed to evolve both water, at 150 C and up to 80 psig, and oxygen, using hydrogen reduction at 900 C. A variety of laboratory tests were performed to verify its operation and to explore the properties of the analog site soil. The results were also applied to modeling efforts which are being used to estimate the apparent thermal properties of the soil. The experimental and numerical results, along with the analog site tests, will be used to evolve and optimize future reactor designs.
NASA Astrophysics Data System (ADS)
Yuliusman; Ramadhan, I. T.; Huda, M.
2018-03-01
Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.
Bachman, John A; Gyori, Benjamin M; Sorger, Peter K
2018-06-28
For automated reading of scientific publications to extract useful information about molecular mechanisms it is critical that genes, proteins and other entities be correctly associated with uniform identifiers, a process known as named entity linking or "grounding." Correct grounding is essential for resolving relationships among mined information, curated interaction databases, and biological datasets. The accuracy of this process is largely dependent on the availability of machine-readable resources associating synonyms and abbreviations commonly found in biomedical literature with uniform identifiers. In a task involving automated reading of ∼215,000 articles using the REACH event extraction software we found that grounding was disproportionately inaccurate for multi-protein families (e.g., "AKT") and complexes with multiple subunits (e.g."NF- κB"). To address this problem we constructed FamPlex, a manually curated resource defining protein families and complexes as they are commonly encountered in biomedical text. In FamPlex the gene-level constituents of families and complexes are defined in a flexible format allowing for multi-level, hierarchical membership. To create FamPlex, text strings corresponding to entities were identified empirically from literature and linked manually to uniform identifiers; these identifiers were also mapped to equivalent entries in multiple related databases. FamPlex also includes curated prefix and suffix patterns that improve named entity recognition and event extraction. Evaluation of REACH extractions on a test corpus of ∼54,000 articles showed that FamPlex significantly increased grounding accuracy for families and complexes (from 15 to 71%). The hierarchical organization of entities in FamPlex also made it possible to integrate otherwise unconnected mechanistic information across families, subfamilies, and individual proteins. Applications of FamPlex to the TRIPS/DRUM reading system and the Biocreative VI Bioentity Normalization Task dataset demonstrated the utility of FamPlex in other settings. FamPlex is an effective resource for improving named entity recognition, grounding, and relationship resolution in automated reading of biomedical text. The content in FamPlex is available in both tabular and Open Biomedical Ontology formats at https://github.com/sorgerlab/famplex under the Creative Commons CC0 license and has been integrated into the TRIPS/DRUM and REACH reading systems.
NASA Astrophysics Data System (ADS)
Ehricke, Krafft A.
This first of several study papers, based on a fundamental paper presented in 1972, provides an independent conceptual analysis and evaluation of the lunar environment as industrial base and habitat. A selenosphere system strategy is outlined. The underlying concept is that of one or several lunar industrial zones for resource extraction and on-surface processing, integrated with a circumlunar zero-g processing capability, serving markets in geolunar space. A classification of lunar elements by utilization category is presented. Lunar oxygen is a prime candidate for being an initial economic "drawing card", because of its value for fast transportation in geolunar space, requiring significantly fewer ships for equal transfer capability per unit time than electric transports which, however, have value, especially between geosynchronous and lunar orbit. The reduced development difficulties of controlled fusion outside the atmosphere and its advantages for extracting oxygen and other elements in quantity are summarized. Examples of lunar cycle management as fundamental exoindustrial requirement for economic resource enhancement are presented. The principal initial socio-economic value of lunar industry lies in the use of lunar resources for exoindustrial products and operations designed to accelerate, intensify and diversify Earth-related benefits. In the longer run, lunar settlements are a highly suitable proving ground for studying and testing the complex matrix of technological, biological, cultural, social and psychological aspects that must be understood and manageable before large settlements beyond Earth can have a realistic basis for viability. The lunar environment is more suitable for experimentation and comparatively more "forgiving" in case of failures than is orbital space.
Thermal analysis elements of liquefied gas storage tanks
NASA Astrophysics Data System (ADS)
Yanvarev, I. A.; Krupnikov, A. V.
2017-08-01
Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.
To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...
Corominas, Albert; Fossas, Enric
2015-01-01
We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.
NASA Technical Reports Server (NTRS)
Thorley, G. A.; Draeger, W. C.; Lauer, D. T.; Lent, J.; Roberts, E.
1971-01-01
The four problem are as being investigated are: (1) determination of the feasibility of providing the resource manager with operationally useful information through the use of remote sensing techniques; (2) definition of the spectral characteristics of earth resources and the optimum procedures for calibrating tone and color characteristics of multispectral imagery (3) determination of the extent to which humans can extract useful earth resource information through remote sensing imagery; (4) determination of the extent to which automatic classification and data processing can extract useful information from remote sensing data.
Nosofsky, Robert M.; Denton, Stephen E.; Zaki, Safa R.; Murphy-Knudsen, Anne F.; Unverzagt, Frederick W.
2013-01-01
Studies of incidental category learning support the hypothesis of an implicit prototype-extraction system which is distinct from explicit memory (Smith, 2008). In those studies, patients with explicit-memory impairments due to damage to the medial-temporal lobe performed normally in implicit categorization tasks (Bozoki, Grossman, & Smith, 2006; Knowlton & Squire, 1993). However, alternative interpretations are that: i) even people with impairments to a single memory system have sufficient resources to succeed on the particular categorization tasks that have been tested (Nosofsky & Zaki, 1998; Zaki & Nosofsky, 2001); and ii) working memory can be used at time of test to learn the categories (Palmeri & Flanery, 1999). In the present experiments, patients with amnestic mild cognitive impairment or early Alzheimer’s disease were tested in prototype-extraction tasks to examine these possibilities. In a categorization task involving discrete-feature stimuli, the majority of subjects relied on memories for exceedingly few features, even when the task structure strongly encouraged reliance on broad-based prototypes. In a dot-pattern categorization task, even the memory-impaired patients were able to use working memory at time of test to extract the category structure (at least for the stimulus set used in past work). We argue that the results weaken the past case made in favor of a separate system of implicit-prototype extraction. PMID:22746953
30 CFR 702.12 - Contents of application for exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Contents of application for exemption. 702.12 Section 702.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.12...
30 CFR 702.12 - Contents of application for exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Contents of application for exemption. 702.12 Section 702.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.12...
30 CFR 702.16 - Stockpiling of minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...
30 CFR 702.16 - Stockpiling of minerals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...
30 CFR 702.16 - Stockpiling of minerals.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...
30 CFR 702.16 - Stockpiling of minerals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...
30 CFR 702.16 - Stockpiling of minerals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...
Emadzadeh, Ehsan; Sarker, Abeed; Nikfarjam, Azadeh; Gonzalez, Graciela
2017-01-01
Social networks, such as Twitter, have become important sources for active monitoring of user-reported adverse drug reactions (ADRs). Automatic extraction of ADR information can be crucial for healthcare providers, drug manufacturers, and consumers. However, because of the non-standard nature of social media language, automatically extracted ADR mentions need to be mapped to standard forms before they can be used by operational pharmacovigilance systems. We propose a modular natural language processing pipeline for mapping (normalizing) colloquial mentions of ADRs to their corresponding standardized identifiers. We seek to accomplish this task and enable customization of the pipeline so that distinct unlabeled free text resources can be incorporated to use the system for other normalization tasks. Our approach, which we call Hybrid Semantic Analysis (HSA), sequentially employs rule-based and semantic matching algorithms for mapping user-generated mentions to concept IDs in the Unified Medical Language System vocabulary. The semantic matching component of HSA is adaptive in nature and uses a regression model to combine various measures of semantic relatedness and resources to optimize normalization performance on the selected data source. On a publicly available corpus, our normalization method achieves 0.502 recall and 0.823 precision (F-measure: 0.624). Our proposed method outperforms a baseline based on latent semantic analysis and another that uses MetaMap.
Industrial applications of hot dry rock geothermal energy
NASA Astrophysics Data System (ADS)
Duchane, D. V.
1992-07-01
Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.
Options for a lunar base surface architecture
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.
The Service Environment for Enhanced Knowledge and Research (SEEKR) Framework
NASA Astrophysics Data System (ADS)
King, T. A.; Walker, R. J.; Weigel, R. S.; Narock, T. W.; McGuire, R. E.; Candey, R. M.
2011-12-01
The Service Environment for Enhanced Knowledge and Research (SEEKR) Framework is a configurable service oriented framework to enable the discovery, access and analysis of data shared in a community. The SEEKR framework integrates many existing independent services through the use of web technologies and standard metadata. Services are hosted on systems by using an application server and are callable by using REpresentational State Transfer (REST) protocols. Messages and metadata are transferred with eXtensible Markup Language (XML) encoding which conform to a published XML schema. Space Physics Archive Search and Extract (SPASE) metadata is central to utilizing the services. Resources (data, documents, software, etc.) are described with SPASE and the associated Resource Identifier is used to access and exchange resources. The configurable options for the service can be set by using a web interface. Services are packaged as web application resource (WAR) files for direct deployment on application services such as Tomcat or Jetty. We discuss the composition of the SEEKR framework, how new services can be integrated and the steps necessary to deploying the framework. The SEEKR Framework emerged from NASA's Virtual Magnetospheric Observatory (VMO) and other systems and we present an overview of these systems from a SEEKR Framework perspective.
Natural language processing and visualization in the molecular imaging domain.
Tulipano, P Karina; Tao, Ying; Millar, William S; Zanzonico, Pat; Kolbert, Katherine; Xu, Hua; Yu, Hong; Chen, Lifeng; Lussier, Yves A; Friedman, Carol
2007-06-01
Molecular imaging is at the crossroads of genomic sciences and medical imaging. Information within the molecular imaging literature could be used to link to genomic and imaging information resources and to organize and index images in a way that is potentially useful to researchers. A number of natural language processing (NLP) systems are available to automatically extract information from genomic literature. One existing NLP system, known as BioMedLEE, automatically extracts biological information consisting of biomolecular substances and phenotypic data. This paper focuses on the adaptation, evaluation, and application of BioMedLEE to the molecular imaging domain. In order to adapt BioMedLEE for this domain, we extend an existing molecular imaging terminology and incorporate it into BioMedLEE. BioMedLEE's performance is assessed with a formal evaluation study. The system's performance, measured as recall and precision, is 0.74 (95% CI: [.70-.76]) and 0.70 (95% CI [.63-.76]), respectively. We adapt a JAVA viewer known as PGviewer for the simultaneous visualization of images with NLP extracted information.
Generating disease-pertinent treatment vocabularies from MEDLINE citations.
Wang, Liqin; Del Fiol, Guilherme; Bray, Bruce E; Haug, Peter J
2017-01-01
Healthcare communities have identified a significant need for disease-specific information. Disease-specific ontologies are useful in assisting the retrieval of disease-relevant information from various sources. However, building these ontologies is labor intensive. Our goal is to develop a system for an automated generation of disease-pertinent concepts from a popular knowledge resource for the building of disease-specific ontologies. A pipeline system was developed with an initial focus of generating disease-specific treatment vocabularies. It was comprised of the components of disease-specific citation retrieval, predication extraction, treatment predication extraction, treatment concept extraction, and relevance ranking. A semantic schema was developed to support the extraction of treatment predications and concepts. Four ranking approaches (i.e., occurrence, interest, degree centrality, and weighted degree centrality) were proposed to measure the relevance of treatment concepts to the disease of interest. We measured the performance of four ranks in terms of the mean precision at the top 100 concepts with five diseases, as well as the precision-recall curves against two reference vocabularies. The performance of the system was also compared to two baseline approaches. The pipeline system achieved a mean precision of 0.80 for the top 100 concepts with the ranking by interest. There were no significant different among the four ranks (p=0.53). However, the pipeline-based system had significantly better performance than the two baselines. The pipeline system can be useful for an automated generation of disease-relevant treatment concepts from the biomedical literature. Copyright © 2016 Elsevier Inc. All rights reserved.
Espinosa, Santiago; Branch, Lyn C.; Cueva, Rubén
2014-01-01
Protected areas are essential for conservation of wildlife populations. However, in the tropics there are two important factors that may interact to threaten this objective: 1) road development associated with large-scale resource extraction near or within protected areas; and 2) historical occupancy by traditional or indigenous groups that depend on wildlife for their survival. To manage wildlife populations in the tropics, it is critical to understand the effects of roads on the spatial extent of hunting and how wildlife is used. A geographical analysis can help us answer questions such as: How do roads affect spatial extent of hunting? How does market vicinity relate to local consumption and trade of bushmeat? How does vicinity to markets influence choice of game? A geographical analysis also can help evaluate the consequences of increased accessibility in landscapes that function as source-sink systems. We applied spatial analyses to evaluate the effects of increased landscape and market accessibility by road development on spatial extent of harvested areas and wildlife use by indigenous hunters. Our study was conducted in Yasuní Biosphere Reserve, Ecuador, which is impacted by road development for oil extraction, and inhabited by the Waorani indigenous group. Hunting activities were self-reported for 12–14 months and each kill was georeferenced. Presence of roads was associated with a two-fold increase of the extraction area. Rates of bushmeat extraction and trade were higher closer to markets than further away. Hunters located closer to markets concentrated their effort on large-bodied species. Our results clearly demonstrate that placing roads within protected areas can seriously reduce their capacity to sustain wildlife populations and potentially threaten livelihoods of indigenous groups who depend on these resources for their survival. Our results critically inform current policy debates regarding resource extraction and road building near or within protected areas. PMID:25489954
Espinosa, Santiago; Branch, Lyn C; Cueva, Rubén
2014-01-01
Protected areas are essential for conservation of wildlife populations. However, in the tropics there are two important factors that may interact to threaten this objective: 1) road development associated with large-scale resource extraction near or within protected areas; and 2) historical occupancy by traditional or indigenous groups that depend on wildlife for their survival. To manage wildlife populations in the tropics, it is critical to understand the effects of roads on the spatial extent of hunting and how wildlife is used. A geographical analysis can help us answer questions such as: How do roads affect spatial extent of hunting? How does market vicinity relate to local consumption and trade of bushmeat? How does vicinity to markets influence choice of game? A geographical analysis also can help evaluate the consequences of increased accessibility in landscapes that function as source-sink systems. We applied spatial analyses to evaluate the effects of increased landscape and market accessibility by road development on spatial extent of harvested areas and wildlife use by indigenous hunters. Our study was conducted in Yasuní Biosphere Reserve, Ecuador, which is impacted by road development for oil extraction, and inhabited by the Waorani indigenous group. Hunting activities were self-reported for 12-14 months and each kill was georeferenced. Presence of roads was associated with a two-fold increase of the extraction area. Rates of bushmeat extraction and trade were higher closer to markets than further away. Hunters located closer to markets concentrated their effort on large-bodied species. Our results clearly demonstrate that placing roads within protected areas can seriously reduce their capacity to sustain wildlife populations and potentially threaten livelihoods of indigenous groups who depend on these resources for their survival. Our results critically inform current policy debates regarding resource extraction and road building near or within protected areas.
Kahiluoto, Helena; Kaseva, Janne
2016-01-01
Efficiency in the use of resources stream-lined for expected conditions could lead to reduced system diversity and consequently endanger resilience. We tested the hypothesis of a trade-off between farm resource-use efficiency and land-use diversity. We applied stochastic frontier production models to assess the dependence of resource-use-efficiency on land-use diversity as illustrated by the Shannon-Weaver index. Total revenue in relation to use of capital, land and labour on the farms in Southern Finland with a size exceeding 30 ha was studied. The data were extracted from the Finnish Profitability Bookkeeping data. Our results indicate that there is either no trade-off or a negligible trade-off of no economic importance. The small dependence of resource-use efficiency on land-use diversity can be positive as well as negative. We conclude that diversification as a strategy to enhance farm resilience does not necessarily constrain resource-use efficiency. PMID:27662475
Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost
NASA Technical Reports Server (NTRS)
Barker, Donald; Chamitoff, Gregory; James, George
1998-01-01
As a planet with striking similarities to Earth, Mars is an important focus for scientific research aimed at understanding the processes of planetary evolution and the formation of our solar system. Fortunately, Mars is also a planet with abundant natural resources, including assessible materials that can be used to support human life and to sustain a self-sufficient martian outpost. Resources required include water, breathable air, food, shelter, energy, and fuel. Through a mission design based on in situ resource development, we can establish a permanent outpost on Mars beginning with the first manned mission. This paper examines the potential for supporting the first manned mission with the objective of achieving self-sufficiency through well-understood resource development and a program of rigorous scientific research aimed at extending that capability. We examine the potential for initially extracting critical resources from the martian environment, and discuss the scientific investigations required to identify additional resources in the atmosphere, on the surface, and within the subsurface. We also discuss our current state of knowledge of Mars, technical considerations of resource utilization, and using unmanned missions' data for selecting an optimal site. The primary goal of achieving self-sufficiency on Mars would accelerate the development of human colonization beyond Earth, while providing a robust and permanent martian base from which humans can explore and conduct long-term research on planetary evolution, the solar system, and life itself.
Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments
NASA Astrophysics Data System (ADS)
Erickson, Amy A.; Feller, Ilka C.; Paul, Valerie J.; Kwiatkowski, Lisa M.; Lee, Woody
2008-02-01
Observational studies on leaf damage, gut content analyses, and crab behaviour have demonstrated that like numerous other mangrove and salt-marsh generalists, the mangrove tree crab Aratus pisonii feeds on a variety of food resources. This study is the first that experimentally tests feeding preferences of A. pisonii, as well as the first to test experimentally whether chemical composition of food resources is responsible for food selection. Feeding preferences were determined among a variety of plant, algal, and animal resources available in the field both in Florida and Belize, using multiple-choice feeding assays, where male and female crabs simultaneously were offered a variety of food items. To test whether chemistry of food resources was responsible for feeding preferences, chemical extracts of food resources were incorporated in an agar-based artificial food, and used in feeding assays. Results of feeding assays suggest that crabs prefer animal matter from ˜ 2.5 to 13× more than other available resources, including leaves of the red mangrove Rhizophora mangle, which contribute the most to their natural diet. Artificial feeding assays also demonstrated that chemical cues were responsible for selection of animal matter, up to 25× more than other available resources. Non-polar extracts (derived from extraction in 1:1 ethyl actetate:methanol) stimulated feeding the most, suggesting that fatty acids, triglycerides, or sterols may be important for growth, reproduction, or survival. Results for both sexes were similar across most assays. While chemical composition of food resources appears to play some role in selection, this does not discount the potential role of other factors, such as resource availability, competition, predation, or reproductive requirements in influencing feeding preferences. Bioassay-guided fractionation of extracts should aid in determining chemical constituents that play the greatest role in determining feeding preferences.
Human resource recommendation algorithm based on ensemble learning and Spark
NASA Astrophysics Data System (ADS)
Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie
2017-08-01
Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.
30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other minerals...
30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other minerals...
30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other minerals...
30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other minerals...
30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other minerals...
NASA Astrophysics Data System (ADS)
Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.; Gatti, Raymond C.; Peters, Micheal B.
1994-07-01
In this paper, we strive to achieve three goals: (1) to describe a continuous-thrusting space-fusion-propulsion engine called the Mirror Fusion Propulsion System (MFPS), (2) to describe MFPS' ability to accomplish two candidate outer-solar-system (OSS) missions using various levels of advanced technology identified in the laboratory, and (3) to describe some interesting safety features of MFPS that include continuous mission-abort capability, magnetic-field-shielding against solar particle events (SPE), and performance of in-orbit characterization of the target body's natural resources (prior to human landings) using fusion-neutrons, x-rays, and possibly the neutralized thrust beam. The first OSS mission discussed is a mission to the Saturnian system, primarily exploration and resource- characterization driven, with emphasis on minimizing the Earth-to-Saturn and return-trip flight times. The other OSS mission discussed is an economically-driven mission to Uranus, stopping first to perform in-orbit resource characterization of the major moons of Uranus prior to human landing, and then returning to earth with a payload consisting of 3He (removed from the Uranian atmosphere or extracted from the Uranian moons) to be used in a future earth-based fusion-power industry.
Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2010-01-01
The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. The concept of lunar ISRU has been considered and studied for decades, and scientists and engineers were theorizing and even testing concepts for how to extract oxygen from lunar soil even before the Apollo 11 mission to the Moon. There are four main areas where ISRU can significantly impact how human missions to the Moon will be performed: mission consumable production, civil engineering and construction, energy production, storage, and transfer, and manufacturing and repair. The area that has the greatest impact on mission mass, hardware design and selection, and mission architecture is mission consumable production, in particular, the ability to make propellants, life support consumables, and fuel cell reagents. Mission consumable production allows for refueling and reuse of spacecraft, increasing power production and storage, and increased capabilities and failure tolerance for crew life support. The other three areas allow for decreased mission risk due to radiation and plume damage, alternative power systems, and failure recover capabilities while also enabling infrastructure growth over Earth delivered assets. However, while lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. The first step is to understand the resources available through orbital and surface exploration missions. Resources of particular interest are hydrogen, hydroxyl, water, and other polar volatile resources recently measured by Chandrayaan, Lunar Reconnaissance Orbiter (LRO), and the Lunar Crater Observation and Sensing Satellite (LCROSS). The second step is to demonstrate critical aspects of ISRU systems to prove ISRU is feasible under lunar environmental and resource conditions (ex. subscale oxygen extraction from regolith). The third step is to perform integrated missions with ISRU and other connected systems, such as power, consumable storage, surface mobility, and life support at a relevant mission scale to demonstrate ISRU capabilities as well as the critical interfaces with other exploration systems. If possible, the mission should demonstrate the use of ISRU products (ex. in a rocket engine or fuel cell). This dress rehearsal mission would be the final step before full implementation of ISRU into human missions, and may be performed during human lunar exploration activities. This stepwise approach is the most conservative approach, and may only be possible with international cooperation due to the limited number of robotic missions each nation/space agency can perform within their budget.
Remote sensing and extractable biological resources
NASA Technical Reports Server (NTRS)
Cronin, L. E.
1972-01-01
The nature and quantity of extractable biological resources available in the Chesapeake Bay are discussed. The application of miniaturized radio sensors to track the movement of fish and birds is described. The specific uses of remote sensors for detecting and mapping areas of algae, red tide, thermal pollution, and vegetation beds are presented. The necessity for obtaining information on the physical, chemical, and meteorological features of the entire bay in order to provide improved resources management is emphasized.
Hopfe, Maren; Stucki, Gerold; Marshall, Ric; Twomey, Conal D; Üstün, T Bedirhan; Prodinger, Birgit
2016-02-03
Contemporary casemix systems for health services need to ensure that payment rates adequately account for actual resource consumption based on patients' needs for services. It has been argued that functioning information, as one important determinant of health service provision and resource use, should be taken into account when developing casemix systems. However, there has to date been little systematic collation of the evidence on the extent to which the addition of functioning information into existing casemix systems adds value to those systems with regard to the predictive power and resource variation explained by the groupings of these systems. Thus, the objective of this research was to examine the value of adding functioning information into casemix systems with respect to the prediction of resource use as measured by costs and length of stay. A systematic literature review was performed. Peer-reviewed studies, published before May 2014 were retrieved from CINAHL, EconLit, Embase, JSTOR, PubMed and Sociological Abstracts using keywords related to functioning ('Functioning', 'Functional status', 'Function*, 'ICF', 'International Classification of Functioning, Disability and Health', 'Activities of Daily Living' or 'ADL') and casemix systems ('Casemix', 'case mix', 'Diagnosis Related Groups', 'Function Related Groups', 'Resource Utilization Groups' or 'AN-SNAP'). In addition, a hand search of reference lists of included articles was conducted. Information about study aims, design, country, setting, methods, outcome variables, study results, and information regarding the authors' discussion of results, study limitations and implications was extracted. Ten included studies provided evidence demonstrating that adding functioning information into casemix systems improves predictive ability and fosters homogeneity in casemix groups with regard to costs and length of stay. Collection and integration of functioning information varied across studies. Results suggest that, in particular, DRG casemix systems can be improved in predicting resource use and capturing outcomes for frail elderly or severely functioning-impaired patients. Further exploration of the value of adding functioning information into casemix systems is one promising approach to improve casemix systems ability to adequately capture the differences in patient's needs for services and to better predict resource use.
A case study of data integration for aquatic resources using semantic web technologies
Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan
2015-01-01
Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.
Yunger Halpern, Nicole; Faist, Philippe; Oppenheim, Jonathan; Winter, Andreas
2016-01-01
The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity—the inability to extract work from equilibrium states—implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation. PMID:27384494
Analysis of edible oil processing options for the BIO-Plex advanced life support system
NASA Technical Reports Server (NTRS)
Greenwalt, C. J.; Hunter, J.
2000-01-01
Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.
Functionalization of mesoporous materials for lanthanide and actinide extraction.
Florek, Justyna; Giret, Simon; Juère, Estelle; Larivière, Dominic; Kleitz, Freddy
2016-10-14
Among the energy sources currently available that could address our insatiable appetite for energy and minimize our CO2 emission, solar, wind, and nuclear energy currently occupy an increasing portion of our energy portfolio. The energy associated with these sources can however only be harnessed after mineral resources containing valuable constituents such as actinides (Ac) and rare earth elements (REEs) are extracted, purified and transformed into components necessary for the conversion of energy into electricity. Unfortunately, the environmental impacts resulting from their manufacture including the generation of undesirable and, sometimes, radioactive wastes and the non-renewable nature of the mineral resources, to name a few, have emerged as challenges that should be addressed by the scientific community. In this perspective, the recent development of functionalized solid materials dedicated to selective elemental separation/pre-concentration could provide answers to several of the above-mentioned challenges. This review focuses on recent advances in the field of mesoporous solid-phase (SP) sorbents designed for REEs and Ac liquid-solid extraction. Particular attention will be devoted to silica and carbon sorbents functionalized with commonly known ligands, such as phosphorus or amide-containing functionalities. The extraction performances of these new systems are discussed in terms of sorption capacity and selectivity. In order to support potential industrial applications of the silica and carbon-based sorbents, their main drawbacks and advantages are highlighted and discussed.
Fine-grained information extraction from German transthoracic echocardiography reports.
Toepfer, Martin; Corovic, Hamo; Fette, Georg; Klügl, Peter; Störk, Stefan; Puppe, Frank
2015-11-12
Information extraction techniques that get structured representations out of unstructured data make a large amount of clinically relevant information about patients accessible for semantic applications. These methods typically rely on standardized terminologies that guide this process. Many languages and clinical domains, however, lack appropriate resources and tools, as well as evaluations of their applications, especially if detailed conceptualizations of the domain are required. For instance, German transthoracic echocardiography reports have not been targeted sufficiently before, despite of their importance for clinical trials. This work therefore aimed at development and evaluation of an information extraction component with a fine-grained terminology that enables to recognize almost all relevant information stated in German transthoracic echocardiography reports at the University Hospital of Würzburg. A domain expert validated and iteratively refined an automatically inferred base terminology. The terminology was used by an ontology-driven information extraction system that outputs attribute value pairs. The final component has been mapped to the central elements of a standardized terminology, and it has been evaluated according to documents with different layouts. The final system achieved state-of-the-art precision (micro average.996) and recall (micro average.961) on 100 test documents that represent more than 90 % of all reports. In particular, principal aspects as defined in a standardized external terminology were recognized with f 1=.989 (micro average) and f 1=.963 (macro average). As a result of keyword matching and restraint concept extraction, the system obtained high precision also on unstructured or exceptionally short documents, and documents with uncommon layout. The developed terminology and the proposed information extraction system allow to extract fine-grained information from German semi-structured transthoracic echocardiography reports with very high precision and high recall on the majority of documents at the University Hospital of Würzburg. Extracted results populate a clinical data warehouse which supports clinical research.
A study was initiated to determine the accuracy with which the Extraction Procedures (EP), employed in the regulations promulgated under Section 3001 of the Resource Conservation and Recovery Act (40 CFR 26.124), simulates the leaching an industrial waste would undergo when codis...
An estimate of the shadow price of water in the southern Ogallala Aquifer
USDA-ARS?s Scientific Manuscript database
In this paper, we attempt to quantify the shadow price of an additional inch of groundwater resource left in situ for the Southern Ogallala Aquifer. Previous authors have shown the degree to which the optimal resource extraction path may diverge from the competitive extraction path based upon varyin...
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
Mladinich, C.
2010-01-01
Human disturbance is a leading ecosystem stressor. Human-induced modifications include transportation networks, areal disturbances due to resource extraction, and recreation activities. High-resolution imagery and object-oriented classification rather than pixel-based techniques have successfully identified roads, buildings, and other anthropogenic features. Three commercial, automated feature-extraction software packages (Visual Learning Systems' Feature Analyst, ENVI Feature Extraction, and Definiens Developer) were evaluated by comparing their ability to effectively detect the disturbed surface patterns from motorized vehicle traffic. Each package achieved overall accuracies in the 70% range, demonstrating the potential to map the surface patterns. The Definiens classification was more consistent and statistically valid. Copyright ?? 2010 by Bellwether Publishing, Ltd. All rights reserved.
FPGA implementation for real-time background subtraction based on Horprasert model.
Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J; Diaz, Javier; Ros, Eduardo
2012-01-01
Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W.
A New Approach to Geoengineering: Manna From Heaven
NASA Astrophysics Data System (ADS)
Ellery, Alex
2015-04-01
Geo-engineering, although controversial, has become an emerging factor in coping with climate change. Although most are terrestrial-based technologies, I focus on a space-based approach implemented through a solar shield system. I present several new elements that essentially render the high-cost criticism moot. Of special relevance are two seemingly unrelated technologies - the Resource Prospector Mission (RPM) to the Moon in 2018 that shall implement a technology demonstration of simple material resource extraction from lunar regolith, and the emergence of multi-material 3D printing technology that promises unprecedented robotic manufacturing capabilities. My research group has begun theoretical and experimentation work in developing the concept of a 3D printed electric motor system from lunar-type resources. The electric motor underlies every universal mechanical machine. Together with 3D printed electronics, I submit that this would enable self-replicating machines to be realised. A detailed exposition on how this may be achieved will be outlined. Such self-replicating machines could construct the spacecraft required to implement a solar shield and solar power satellites in large numbers from lunar resources with the same underlying technologies at extremely low cost.
FPGA Implementation for Real-Time Background Subtraction Based on Horprasert Model
Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J.; Diaz, Javier; Ros, Eduardo
2012-01-01
Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W. PMID:22368487
de Deus Costa, Renata Maria; da Silva Barbosa, Rafael; Zucchi, Paola
2015-01-01
OBJECTIVE: To analyze the public expenditures of states on health care and the participation of states and the Federal District in financing the Unified Health System, better known by the acronym SUS. To develop the research, two targets were used: “to rescue expenses per government source (federal, state and municipal) during the period from 2002 to 2013” and “to rescue resource transfers from the federal SUS to the states and also to municipalities”. METHODS: This research is bibliographic, documentary and descriptive and used a quantitative approach. Data were extracted from the Information System Public Health Budget, and additional data were collected from the public managers of states, municipalities and the Federal District during the period from 2002 to 2013. Federal data from the Undersecretary of Planning and Budget (originally extracted from the Integrated System of Financial Administration of the Federal Government and available on the Budget Public Health System webpage) were also collected. RESULTS: The data revealed that during the same researched period, the Federal District has maintained the health care system budget, whereas states and municipalities have increased their budgets for the same spending. CONCLUSIONS: By analyzing the results, there is clearly a disparity regarding the investment expended by the entities of the Federation. Although municipalities and states have gradually increased their application of resources to health care, the federal state has maintained the same budget. These results reveal a bit of concern about public health funding. PMID:26017788
Motamed, Cyrus; Bourgain, Jean Louis
2016-06-01
Anaesthesia Information Management Systems (AIMS) generate large amounts of data, which might be useful for quality assurance programs. This study was designed to highlight the multiple contributions of our AIMS system in extracting quality indicators over a period of 10years. The study was conducted from 2002 to 2011. Two methods were used to extract anaesthesia indicators: the manual extraction of individual files for monitoring neuromuscular relaxation and structured query language (SQL) extraction for other indicators which were postoperative nausea and vomiting (PONV), pain, sedation scores, pain-related medications, scores and postoperative hypothermia. For each indicator, a program of information/meetings and adaptation/suggestions for operating room and PACU personnel was initiated to improve quality assurance, while data were extracted each year. The study included 77,573 patients. The mean overall completeness of data for the initial years ranged from 55 to 85% and was indicator-dependent, which then improved to 95% completeness for the last 5years. The incidence of neuromuscular monitoring was initially 67% and then increased to 95% (P<0.05). The rate of pharmacological reversal remained around 53% throughout the study. Regarding SQL data, an improvement of severe postoperative pain and PONV scores was observed throughout the study, while mild postoperative hypothermia remained a challenge, despite efforts for improvement. The AIMS system permitted the follow-up of certain indicators through manual sampling and many more via SQL extraction in a sustained and non-time-consuming way across years. However, it requires competent and especially dedicated resources to handle the database. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Jonnagaddala, Jitendra; Liaw, Siaw-Teng; Ray, Pradeep; Kumar, Manish; Dai, Hong-Jie; Hsu, Chien-Yeh
2015-01-01
Heart disease is the leading cause of death worldwide. Therefore, assessing the risk of its occurrence is a crucial step in predicting serious cardiac events. Identifying heart disease risk factors and tracking their progression is a preliminary step in heart disease risk assessment. A large number of studies have reported the use of risk factor data collected prospectively. Electronic health record systems are a great resource of the required risk factor data. Unfortunately, most of the valuable information on risk factor data is buried in the form of unstructured clinical notes in electronic health records. In this study, we present an information extraction system to extract related information on heart disease risk factors from unstructured clinical notes using a hybrid approach. The hybrid approach employs both machine learning and rule-based clinical text mining techniques. The developed system achieved an overall microaveraged F-score of 0.8302.
Recovery and Utilization of Extraterrestrial Resources
NASA Technical Reports Server (NTRS)
2004-01-01
This special bibliography includes the extraction, processing, and utilization of lunar, planetary, and asteroid resources; mining and excavation equipment, oxygen and propellant production; and in situ resource utilization.
Self-powered switch-controlled nucleic acid extraction system.
Han, Kyungsup; Yoon, Yong-Jin; Shin, Yong; Park, Mi Kyoung
2016-01-07
Over the past few decades, lab-on-a-chip (LOC) technologies have played a great role in revolutionizing the way in vitro medical diagnostics are conducted and transforming bulky and expensive laboratory instruments and labour-intensive tests into easy to use, cost-effective miniaturized systems with faster analysis time, which can be used for near-patient or point-of-care (POC) tests. Fluidic pumps and valves are among the key components for LOC systems; however, they often require on-line electrical power or batteries and make the whole system bulky and complex, therefore limiting its application to POC testing especially in low-resource setting. This is particularly problematic for molecular diagnostics where multi-step sample processing (e.g. lysing, washing, elution) is necessary. In this work, we have developed a self-powered switch-controlled nucleic acid extraction system (SSNES). The main components of SSNES are a powerless vacuum actuator using two disposable syringes and a switchgear made of PMMA blocks and an O-ring. In the vacuum actuator, an opened syringe and a blocked syringe are bound together and act as a working syringe and an actuating syringe, respectively. The negative pressure in the opened syringe is generated by a restoring force of the compressed air inside the blocked syringe and utilized as the vacuum source. The Venus symbol shape of the switchgear provides multiple functions including being a reagent reservoir, a push-button for the vacuum actuator, and an on-off valve. The SSNES consists of three sets of vacuum actuators, switchgears and microfluidic components. The entire system can be easily fabricated and is fully disposable. We have successfully demonstrated DNA extraction from a urine sample using a dimethyl adipimidate (DMA)-based extraction method and the performance of the DNA extraction has been confirmed by genetic (HRAS) analysis of DNA biomarkers from the extracted DNAs using the SSNES. Therefore, the SSNES can be widely used as a powerless and disposable system for DNA extraction and the syringe-based vacuum actuator would be easily utilized for diverse applications with various microchannels as a powerless fluidic pump.
E3Net: a system for exploring E3-mediated regulatory networks of cellular functions.
Han, Youngwoong; Lee, Hodong; Park, Jong C; Yi, Gwan-Su
2012-04-01
Ubiquitin-protein ligase (E3) is a key enzyme targeting specific substrates in diverse cellular processes for ubiquitination and degradation. The existing findings of substrate specificity of E3 are, however, scattered over a number of resources, making it difficult to study them together with an integrative view. Here we present E3Net, a web-based system that provides a comprehensive collection of available E3-substrate specificities and a systematic framework for the analysis of E3-mediated regulatory networks of diverse cellular functions. Currently, E3Net contains 2201 E3s and 4896 substrates in 427 organisms and 1671 E3-substrate specific relations between 493 E3s and 1277 substrates in 42 organisms, extracted mainly from MEDLINE abstracts and UniProt comments with an automatic text mining method and additional manual inspection and partly from high throughput experiment data and public ubiquitination databases. The significant functions and pathways of the extracted E3-specific substrate groups were identified from a functional enrichment analysis with 12 functional category resources for molecular functions, protein families, protein complexes, pathways, cellular processes, cellular localization, and diseases. E3Net includes interactive analysis and navigation tools that make it possible to build an integrative view of E3-substrate networks and their correlated functions with graphical illustrations and summarized descriptions. As a result, E3Net provides a comprehensive resource of E3s, substrates, and their functional implications summarized from the regulatory network structures of E3-specific substrate groups and their correlated functions. This resource will facilitate further in-depth investigation of ubiquitination-dependent regulatory mechanisms. E3Net is freely available online at http://pnet.kaist.ac.kr/e3net.
Automatic River Network Extraction from LIDAR Data
NASA Astrophysics Data System (ADS)
Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.
2016-06-01
National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.
Wang, Li; Zhang, Yaoyun; Jiang, Min; Wang, Jingqi; Dong, Jiancheng; Liu, Yun; Tao, Cui; Jiang, Guoqian; Zhou, Yi; Xu, Hua
2018-07-01
In recent years, electronic health record systems have been widely implemented in China, making clinical data available electronically. However, little effort has been devoted to making drug information exchangeable among these systems. This study aimed to build a Normalized Chinese Clinical Drug (NCCD) knowledge base, by applying and extending the information model of RxNorm to Chinese clinical drugs. Chinese drugs were collected from 4 major resources-China Food and Drug Administration, China Health Insurance Systems, Hospital Pharmacy Systems, and China Pharmacopoeia-for integration and normalization in NCCD. Chemical drugs were normalized using the information model in RxNorm without much change. Chinese patent drugs (i.e., Chinese herbal extracts), however, were represented using an expanded RxNorm model to incorporate the unique characteristics of these drugs. A hybrid approach combining automated natural language processing technologies and manual review by domain experts was then applied to drug attribute extraction, normalization, and further generation of drug names at different specification levels. Lastly, we reported the statistics of NCCD, as well as the evaluation results using several sets of randomly selected Chinese drugs. The current version of NCCD contains 16 976 chemical drugs and 2663 Chinese patent medicines, resulting in 19 639 clinical drugs, 250 267 unique concepts, and 2 602 760 relations. By manual review of 1700 chemical drugs and 250 Chinese patent drugs randomly selected from NCCD (about 10%), we showed that the hybrid approach could achieve an accuracy of 98.60% for drug name extraction and normalization. Using a collection of 500 chemical drugs and 500 Chinese patent drugs from other resources, we showed that NCCD achieved coverages of 97.0% and 90.0% for chemical drugs and Chinese patent drugs, respectively. Evaluation results demonstrated the potential to improve interoperability across various electronic drug systems in China.
Can multilinguality improve Biomedical Word Sense Disambiguation?
Duque, Andres; Martinez-Romo, Juan; Araujo, Lourdes
2016-12-01
Ambiguity in the biomedical domain represents a major issue when performing Natural Language Processing tasks over the huge amount of available information in the field. For this reason, Word Sense Disambiguation is critical for achieving accurate systems able to tackle complex tasks such as information extraction, summarization or document classification. In this work we explore whether multilinguality can help to solve the problem of ambiguity, and the conditions required for a system to improve the results obtained by monolingual approaches. Also, we analyze the best ways to generate those useful multilingual resources, and study different languages and sources of knowledge. The proposed system, based on co-occurrence graphs containing biomedical concepts and textual information, is evaluated on a test dataset frequently used in biomedicine. We can conclude that multilingual resources are able to provide a clear improvement of more than 7% compared to monolingual approaches, for graphs built from a small number of documents. Also, empirical results show that automatically translated resources are a useful source of information for this particular task. Copyright © 2016 Elsevier Inc. All rights reserved.
The atmosphere of Mars - Resources for the exploration and settlement of Mars
NASA Technical Reports Server (NTRS)
Meyer, T. R.; Mckay, C. P.
1984-01-01
This paper describes methods of processing the Mars atmosphere to supply water, oxygen and buffer gas for a Mars base. Existing life support system technology is combined with innovative methods of water extraction, and buffer gas processing. The design may also be extended to incorporate an integrated greenhouse to supply food, oxygen and water recycling. It is found that the work required to supply one kilogram of an argon/nitrogen buffer gas is 9.4 kW-hr. To extract water from the dry Martian atmosphere can require up to 102.8 kW-hr per kilogram of water depending on the relative humidity of the air.
Kerogen extraction from subterranean oil shale resources
Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus
2010-09-07
The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.
Kerogen extraction from subterranean oil shale resources
Looney, Mark Dean [Houston, TX; Lestz, Robert Steven [Missouri City, TX; Hollis, Kirk [Los Alamos, NM; Taylor, Craig [Los Alamos, NM; Kinkead, Scott [Los Alamos, NM; Wigand, Marcus [Los Alamos, NM
2009-03-10
The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.
Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin
2017-02-01
Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H 2 SO 4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO 2 eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.
2015-01-01
The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation environment and methodology, with associated laboratories that uses lean development methods and creativity-enhancing processes to invent and develop new solutions for space exploration. This paper will discuss the Swamp Works approach to developing space mining and resource extraction systems and the vision of space development it serves. The ultimate goal of the Swamp Works is to expand human civilization into the solar system via the use of local resources utilization. By mining and using the local resources in situ, it is conceivable that one day the logistics supply train from Earth can be eliminated and Earth independence of a space-based community will be enabled.
About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture
NASA Astrophysics Data System (ADS)
Grauer, Manfred; Barth, Thomas
2004-06-01
Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.
Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration
NASA Technical Reports Server (NTRS)
Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.;
2012-01-01
The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.
The Water-Energy-Food Nexus of Unconventional Fossil Fuels.
NASA Astrophysics Data System (ADS)
Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.
2017-12-01
Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.
Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports
Jennifer J Swenson; Catherine E Carter; Jean-Christophe Domec; Cesar I Delgado
2011-01-01
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity...
Toward an Economic Definition of Sustainable Yield for Coastal Aquifers
NASA Astrophysics Data System (ADS)
Jenson, J. W.; Habana, N. C.; Lander, M.
2016-12-01
The concept of aquifer sustainable yield has long been criticized, debated, and even disparaged among groundwater hydrologists, but policy-makers and professional water resource managers inevitably ask them for unequivocal answers to such questions as "What is the absolute maximum volume of water that could be sustainably withdrawn from this aquifer?" We submit that it is therefore incumbent upon hydrologists to develop and offer valid practical definitions of sustainable yield that can be usefully applied to given conditions and types of aquifers. In coastal aquifers, water quality—in terms of salinity—is affected by changes in the natural water budget and the volume rate of artificial extraction. In principle, one can identify a family of assay curves for a given aquifer, showing the specific relationships between the quantity and quality of the water extracted under given conditions of recharge. The concept of the assay curve, borrowed from the literature of natural-resource extraction economics, has to our knowledge not yet found its way into the literature of applied hydrology. The relationships between recharge, extraction, and water quality that define the assay curve can be determined empirically from sufficient observations of groundwater response to recharge and extraction and can be estimated from models that have been reliably history-matched ("calibrated") to such data. We thus propose a working definition of sustainable yield for coastal aquifers in terms of the capacity that ultimately could be achieved by an ideal production system, given what is known or can be assumed about the natural limiting conditions. Accordingly, we also offer an approach for defining an ideal production system for a given aquifer, and demonstrate how observational data and/or modeling results can be used to develop assay curves of quality vs. quantity extracted, which can serve as reliable predictive tools for engineers, managers, regulators, and policy-makers interested in sustainable management of groundwater from coastal aquifers. Such tools can provide scientifically valid baselines against which to make informed economic evaluations of future options for holistic sustainable management of coastal aquifers.
Complex Topographic Feature Ontology Patterns
Varanka, Dalia E.; Jerris, Thomas J.
2015-01-01
Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.
Evolution of agricultural water use in India: a systems approach
NASA Astrophysics Data System (ADS)
Hora, T.; Basu, N. B.
2016-12-01
Groundwater plays an important role in improving the resilience of agriculture practices by mitigating the risk associated with unreliable and seasonal rainfalls. This has been an important driver in satisfying the food demand for an ever increasing population across the world. However, the inability to manage this large but limited freshwater reserve has resulted in a sharp decline in water table levels, with India being at the forefront of this problem. This study looks at the temporal trajectory of groundwater extraction in India over a 40 year time span during which well irrigation has evolved to become a central component of agriculture there. Using a systems approach, we identify the regional hot-spots of unsustainable groundwater extraction and then analyze its relationship with the environmental, economic and social components of the region. Early results indicate that the state of Punjab has been overexploiting its groundwater resources since the early 1980's with a 22% jump in groundwater extraction after the introduction of a free electricity policy, with a concomitant reduction in the number of marginal farmers by 36%. This is in contrast with the state of Tamil Nadu, in which groundwater extraction is less severe, but the number of marginal farmers has increased.
Akiyama, H; Nose, M; Ohtsuki, N; Hisaka, S; Takiguchi, H; Tada, A; Sugimoto, N; Fuchino, H; Inui, T; Kawano, N; Hayashi, S; Hishida, A; Kudo, T; Sugiyama, K; Abe, Y; Mutsuga, M; Kawahara, N; Yoshimatsu, K
2017-01-01
Glycyrrhiza uralensis roots used in this study were produced using novel cultivation systems, including artificial hydroponics and artificial hydroponic-field hybrid cultivation. The equivalency between G. uralensis root extracts produced by hydroponics and/or hybrid cultivation and a commercial Glycyrrhiza crude drug were evaluated for both safety and efficacy, and there were no significant differences in terms of mutagenicity on the Ames tests. The levels of cadmium and mercury in both hydroponic roots and crude drugs were less than the limit of quantitation. Arsenic levels were lower in all hydroponic roots than in the crude drug, whereas mean lead levels in the crude drug were not significantly different from those in the hydroponically cultivated G. uralensis roots. Both hydroponic and hybrid-cultivated root extracts showed antiallergic activities against contact hypersensitivity that were similar to those of the crude drug extracts. These study results suggest that hydroponic and hybrid-cultivated roots are equivalent in safety and efficacy to those of commercial crude drugs. Further studies are necessary before the roots are applicable as replacements for the currently available commercial crude drugs produced from wild plant resources.
NASA Astrophysics Data System (ADS)
Shannon, R. H.; Richardson, R. D.
The Resource and Energy Management System (REM), which uses electrolytic H2 and O2 to produce synthetic crude and light oils from heavy hydrocarbons is described. The heavy hydrocarbon feedstocks include heavy oils, tar sand bitumens, heavy residual oils, oil shale kerogens, liquefied coal, and pyrolytically-extracted coal liquids. The system includes mini-upgraders, which can be implemented in modular form, to pump electrolytically-derived H2 into heavy oils to upgrade their energy content. Projected costs for the production of synthetic light oils using U.S. coal reserves with the REM process after liquefaction are $30-35/bbl, with the H2 costs being a controlling factor. The modular systems could be built in a much shorter time frame than much larger projects, and would be instrumental in establishing the electrolytic H2 production infrastructure needed for eventual full conversion to an H2-based economy.
Atlasmaker: A Grid-based Implementation of the Hyperatlas
NASA Astrophysics Data System (ADS)
Williams, R.; Djorgovski, S. G.; Feldmann, M. T.; Jacob, J.
2004-07-01
The Atlasmaker project is using Grid technology, in combination with NVO interoperability, to create new knowledge resources in astronomy. The product is a multi-faceted, multi-dimensional, scientifically trusted image atlas of the sky, made by federating many different surveys at different wavelengths, times, resolutions, polarizations, etc. The Atlasmaker software does resampling and mosaicking of image collections, and is well-suited to operate with the Hyperatlas standard. Requests can be satisfied via on-demand computations or by accessing a data cache. Computed data is stored in a distributed virtual file system, such as the Storage Resource Broker (SRB). We expect these atlases to be a new and powerful paradigm for knowledge extraction in astronomy, as well as a magnificent way to build educational resources. The system is being incorporated into the data analysis pipeline of the Palomar-Quest synoptic survey, and is being used to generate all-sky atlases from the 2MASS, SDSS, and DPOSS surveys for joint object detection.
Battaglin, William A.; Kuhn, Gerhard; Parker, Randolph S.
1993-01-01
The U.S. Geological Survey Precipitation-Runoff Modeling System, a modular, distributed-parameter, watershed-modeling system, is being applied to 20 smaller watersheds within the Gunnison River basin. The model is used to derive a daily water balance for subareas in a watershed, ultimately producing simulated streamflows that can be input into routing and accounting models used to assess downstream water availability under current conditions, and to assess the sensitivity of water resources in the basin to alterations in climate. A geographic information system (GIS) is used to automate a method for extracting physically based hydrologic response unit (HRU) distributed parameter values from digital data sources, and for the placement of those estimates into GIS spatial datalayers. The HRU parameters extracted are: area, mean elevation, average land-surface slope, predominant aspect, predominant land-cover type, predominant soil type, average total soil water-holding capacity, and average water-holding capacity of the root zone.
In-Situ Resource Utilization Experiment for the Asteroid Redirect Crewed Mission
NASA Astrophysics Data System (ADS)
Elliott, J.; Fries, M.; Love, S.; Sellar, R. G.; Voecks, G.; Wilson, D.
2015-10-01
The Asteroid Redirect Crewed Mission (ARCM) represents a unique opportunity to perform in-situ testing of concepts that could lead to full-scale exploitation of asteroids for their valuable resources [1]. This paper describes a concept for an astronautoperated "suitcase" experiment to would demonstrate asteroid volatile extraction using a solar-heated oven and integral cold trap in a configuration scalable to full-size asteroids. Conversion of liberated water into H2 and O2 products would also be demonstrated through an integral processing and storage unit. The plan also includes development of a local prospecting system consisting of a suit-mounted multi-spectral imager to aid the crew in choosing optimal samples, both for In-Situ Resource Utilization (ISRU) and for potential return to Earth.
Status and plans of the Department of the Interior EROS program
,
1975-01-01
The Earth Resources Observation Systems (EROS) Program of the Department of the Interior has been actively participating in the LANDSAT (formerly ERTS) program and other investigations with remotely sensed data. A large number of applications have been demonstrated that can assist in the discovery of nonrenewable resources, monitoring areal extent of renewable resources, monitoring environmental change, and in providing repetitive data for planimetric revision of small-scale maps and maps showing land cover classes. A new and potentially revolutionary approach, that of "automated cartography," has been initiated through the versatile nature of the data available from LANDSAT. "Automated cartography" as used here refers to the ability to automatically extract land cover classes and relate these classes to geographic position.
Working Group Reports and Presentations: Asteroids
NASA Technical Reports Server (NTRS)
Lewis, John
2006-01-01
The study and utilization of asteroids will be an economical way to enable exploration of the solar system and extend human presence in space. There are thousands of near-earth objects (NEOs) that we will be able to reach. They offer resources, transportation, and exploration platforms, but also present a potential threat to civilization. Asteroids play a catastrophic role in the history of the Earth. Geological records indicate a regular history of massive impacts, which astronomical observations confirm is likely to continue with potentially devastating consequences. However, study and exploration of near earth asteroids can significantly increase advanced warning of an Earth impact, and potentially lead to the technology necessary to avert such a collision. Efforts to detect and prevent cataclysmic events would tend to foster and likely require international cooperation toward a unified goal of self-preservation. Exploration of asteroids will help us to understand our history and perhaps save our future. Besides the obvious and compelling scientific and security drivers for asteroid research and exploration, there are numerous engineering and industrial applications for near-term asteroid exploration. We have strong evidence that some asteroids are metal rich. Some are water and organic rich. They can be reached with a very low fuel cost compared to other solar system destinations. Once we reach them, there are efficient, simple extraction technologies available that would facilitate utilization. In addition, the costs of returning extracted resources from asteroids will be a fraction of the cost to return similar resources from the moon to Low Earth Orbit (LEO). These raw materials, extracted and shipped at relatively low cost, can be used to manufacture structures, fuel, and products which could be used to foster mankind s further exploration of the solar system. Asteroids also have the potential to offer transport to several destinations in the solar system. In addition to Mars and the Asteroid belt, it is possible to nudge the orbits of NEOs to provide convenient transport to other destinations. Resources to support life on these long voyages may be gathered from the host asteroid itself. As asteroids travel over a wide range of inclinations and ranges, they offer possible platforms to perform scientific investigations. These include unique vantage point observations of the sun and planets. These observations can help us to understand solar activity and space weather. They also afford us an opportunity to see how the earth looks from afar with different perspectives. When we look for planets outside of our solar system, these observations will help us to calibrate our data. Asteroids may also be used as platforms to support very long baseline interferometry with unprecedented angular resolutions.
Natural resources assessment and their utilization: analyses from a Himalayan state.
Uniyal, Sanjay Kr; Singh, Rakesh D
2012-08-01
The present paper quantifies and reviews the natural resource use in the Himalayan state of Himachal Pradesh (HP). Twenty-five percent of the geographical area of HP is under forests and harbour ca. 3,400 plant species. The available bioresources not only support the livelihood of nearly 6 million people but also fulfill the forage requirement of 5.2 million livestock. Thus, dependence on bioresources is manifold. Based on field surveys to different localities of HP and analyses of published information, two types of resource use patterns have been identified. One, the direct use of forest resources which is represented by extraction of timber, fuelwood and fodder; and the second represents indirect resource use from the forest that is represented by activities related to agriculture, tourism and industry. Amongst the direct resource use, annual timber requirement of the local people works out to be 310,063 m(3). On the other hand, annual fuelwood and fodder requirement of local people is to the tune of 3,646,348.8 and 10,294,116.5 tons, respectively. Extraction of fodder therefore appears to be one of the main reasons for forest degradation in HP as opposed to timber and fuelwood extraction. However, compared to direct resource use, indirect resource use and pressures have far more pronounced effect on the forests. Of the indirect pressures, shifts in agriculture patterns and increased tourism seem to be the most prominent.
Intelligent resource discovery using ontology-based resource profiles
NASA Technical Reports Server (NTRS)
Hughes, J. Steven; Crichton, Dan; Kelly, Sean; Crichton, Jerry; Tran, Thuy
2004-01-01
Successful resource discovery across heterogeneous repositories is strongly dependent on the semantic and syntactic homogeneity of the associated resource descriptions. Ideally, resource descriptions are easily extracted from pre-existing standardized sources, expressed using standard syntactic and semantic structures, and managed and accessed within a distributed, flexible, and scaleable software framework.
NASA Astrophysics Data System (ADS)
Alemu, H.; Senay, G. B.; Velpuri, N.; Asante, K. O.
2008-12-01
The nomadic pastoral communities in East Africa heavily depend on small water bodies and artificial lakes for domestic and livestock uses. The shortage of water in the region has made these water resources of great importance to them and sometimes even the reason for conflicts amongst rival communities in the region. Satellite-based data has significantly transformed the way we track and estimate hydrological processes such as precipitation and evapotranspiration. This approach has been particularly useful in remote places where conventional station-based weather networks are scarce. Tropical Rainfall Measuring Mission (TRMM) satellite data were extracted for the study region. National Oceanic and Atmospheric Administration's (NOAA) Global Data Assimilation System (GDAS) data were used to extract the climatic parameters needed to calculate reference evapotranspiration. The elevation data needed to delineate the watersheds were extracted from the Shuttle Radar Topography Mission (SRTM) with spatial resolution of 90m. The waterholes (most of which have average surface area less than a hectare) were identified using Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) images with a spatial resolution of 15 m. As part of National Aeronautics and Space Administration's (NASA) funded enhancement to a livestock early warning decision support system, a simple hydrologic water balance model was developed to estimate daily waterhole depth variations. The model was run for over 10 years from 1998 till 2008 for 10 representative waterholes in the region. Although there were no independent datasets to validate the results, the temporal patterns captured both the seasonal and inter-annual variations, depicting known drought and flood years. Future research includes the installation of staff-gauges for model calibration and validation. The simple modeling approach demonstrated the effectiveness of integrating dynamic coarse resolution datasets such as TRMM with high resolution static datasets such as ASTER and SRTM DEM (Digital Elevation Model) to monitor water resources for drought early warning applications.
Methods for regional assessment of geothermal resources
Muffler, P.; Cataldi, R.
1978-01-01
A consistent, agreed-upon terminology is prerequisite for geothermal resource assessment. Accordingly, we propose a logical, sequential subdivision of the "geothermal resource base", accepting its definition as all the thermal energy in the earth's crust under a given area, measured from mean annual temperature. That part of the resource base which is shallow enough to be tapped by production drilling is termed the "accessible resource base", and it in turn is divided into "useful" and "residual" components. The useful component (i.e. the thermal energy that could reasonably be extracted at costs competitive with other forms of energy at some specified future time) is termed the "geothermal resource". This in turn is divided into "economic" and "subeconomic" components, based on conditions existing at the time of assessment. In the format of a McKelvey diagram, this logic defines the vertical axis (degree of economic feasibility). The horizontal axis (degree of geologic assurance) contains "identified" and "undiscovered" components. "Reserve" is then designated as the identified economic resource. All categories should be expressed in units of thermal energy, with resource and reserve figures calculated at wellhead, prior to the inevitable large losses inherent in any practical thermal use or in conversion to electricity. Methods for assessing geothermal resources can be grouped into 4 classes: (a) surface thermal flux, (b) volume, (c) planar fracture and (d) magmatic heat budget. The volume method appears to be most useful because (1) it is applicable to virtually any geologic environment, (2) the required parameters can in Sprinciple be measured or estimated, (3) the inevitable errors are in part compensated and (4) the major uncertainties (recoverability and resupply) are amenable to resolution in the foreseeable future. The major weakness in all the methods rests in the estimation of how much of the accessible resource base can be extracted at some time in the future. In a manner similar to mineral and fuel assessment, this recoverability is expressed as a "recovery factor". For an ideally permeable hot-water system, the recovery factor may be as much as 50% and seems to be independent of temperature. It must decrease as effective porosity (??e) decreases, but the relation between the two is little more than a guess. On the other hand, for favorable systems like Larderello that produce steam by a mechanism of intergranular vaporization, the recovery factor is probably around 15-20%, decreasing to zero at an effective porosity of zero. According to the anlysis of Bodvarsson (1974), it increases with decreasing reservoir temperature, and as pointed out by Nathenson (1975a) is limited at low temperatures by the need to have sufficient reservoir pressure for extraction and use. The extent to which a geothermal reservoir can be resupplied with heat during "industrial" times of 10-100 yr can be evaluated using simple analytical models. The results, combined with gravity and levelling data of Hunt (1977) for Wairakei and Isherwood (1977) for The Geysers, confirm earlier conclusions by Ramey (1970) and Nathenson (1975a) that resupply to reservoirs producing only steam can be neglected, and the conclusion of Nathenson (1975a) that it may be significant for hot-water systems of high natural discharge. Major subjects that demand continuing investigation include: 1. 1. Determination of recovery factors as functions of temperature and effective porosity, particularly for hot-water systems. 2. 2. Evaluation of fluid recharge and heat resupply by repetitive gravity, levelling and underground temperature surveys in producing geothermal fields. 3. 3. Analysis of the extent to which a recovery factor can be enhanced by stimulation and by use of confined circulation loops. ?? 1979.
Study on identifying deciduous forest by the method of feature space transformation
NASA Astrophysics Data System (ADS)
Zhang, Xuexia; Wu, Pengfei
2009-10-01
The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.
Gene/protein name recognition based on support vector machine using dictionary as features.
Mitsumori, Tomohiro; Fation, Sevrani; Murata, Masaki; Doi, Kouichi; Doi, Hirohumi
2005-01-01
Automated information extraction from biomedical literature is important because a vast amount of biomedical literature has been published. Recognition of the biomedical named entities is the first step in information extraction. We developed an automated recognition system based on the SVM algorithm and evaluated it in Task 1.A of BioCreAtIvE, a competition for automated gene/protein name recognition. In the work presented here, our recognition system uses the feature set of the word, the part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these features "internal resource features", i.e., features that can be found in the training data. Additionally, we consider the features of matching against dictionaries to be external resource features. We investigated and evaluated the effect of these features as well as the effect of tuning the parameters of the SVM algorithm. We found that the dictionary matching features contributed slightly to the improvement in the performance of the f-score. We attribute this to the possibility that the dictionary matching features might overlap with other features in the current multiple feature setting. During SVM learning, each feature alone had a marginally positive effect on system performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of the feature vector space and means that feature selection is not required.
Zhu, Hua-Xu; Duan, Jin-Ao; Guo, Li-Wei; Li, Bo; Lu, Jin; Tang, Yu-Ping; Pan, Lin-Mei
2014-05-01
Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modem, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese medicine resource industrialization in this paper.
Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Brophy, John R.; Oleson, Steve
2012-01-01
In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.
Environmental Resources Analysis System, A Prototype DSS
Flug, M.; Campbell, S.G.; Bizier, P.; DeBarry, P.
2003-01-01
Since the 1960's, an increase in the public's environmental ethics, federal species preservation, water quality protection, and interest in free flowing rivers have evolved to the current concern for stewardship and conservation of natural resources. This heightened environmental awareness creates an appetite for data, models, information management, and systematic analysis of multiple scientific disciplines. A good example of this information and analysis need resides in the Green and Yampa Rivers, tributary to the Upper Colorado River. These rivers are home to endangered native fish species including the pikeminnow and razorback sucker. Two dams, Fontenelle and Flaming Gorge, impound the Green River headwaters. The respective reservoirs store water supplies as well as generate hydropower. Conversely, the Yampa River is considered unregulated and encompasses most of Dinosaur National Monument. Recreation is highly regarded on both rivers including fishing, whitewater rafting, and aesthetic values. Vast areas of irrigated agriculture, forestry, and mineral extraction also surround these rivers. To address this information need, we developed a prototype Environmental Resources Analysis System (ERAS) spreadsheet-based decision support system (DSS). ERAS provides access to historic data sets, scientific information, statistical analysis, model outputs, and comparative methods all in a familiar and user-friendly format. This research project demonstrates a simplified decision support system for use by a diverse mix of resource managers, special interest groups, and individuals concerned about the sustainability of the Green and Yampa River ecosystem.
New geothermal heat extraction process to deliver clean power generation
McGrail, Pete
2017-12-27
A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.
NASA Astrophysics Data System (ADS)
Brookshire, D.; Bernknopf, R.; Adhikari, D. R.; Babis, C.; Broadbent, C. D.; Tidwell, V. C.
2015-12-01
Department of Interior Secretarial Order No. 3330, "… establishes a Department-wide mitigation strategy that will ensure consistency and efficiency in the review and permitting of infrastructure development projects and in conserving our Nation's valuable natural and cultural resources." The USGS Organic Act authorizes resource assessments to estimate the in-place potential capacity of energy, mineral, hydrologic, and biologic resources (20 Stat. 394; 43 U.S.C. 31) and later amendments. These two statements form the basis for the development of the Net Resources Assessment (NetRA) framework. NetRA is a policy-relevant, interdisciplinary approach to assessing natural resources availability in examining the regional-scale interrelationships between energy or mineral extraction and impact on ecosystem services. The systems dynamics approach (SD) emphasizes the interdependence of natural resource development and its effect on collocated ecosystem services over space and time. The example of the NetRA that will be presented focuses on tradeoffs associated with land management decisions in the West. The Piceance Basin, CO example that will be discussed involves development of a continuous gas deposit and its impact on Mule Deer and water quality. The SD is the hub for generating a range of simulated landscape outcomes. The probabilistic model provides an economic indicator as to the expected net societal benefit of economic development and biophysical indicators for ecosystem services affected in the region. Both natural and economic indicators are associated with each outcome via a tradeoff analysis the can be used for risk analysis. The NetRA also retains map attributes for before and after map comparisons to specific alternatives for an existing baseline. The model has three stages: map-based scenario development with slider bars (choice variables), side-by-side extraction and ecosystem services sub-models, and integrated multiple resource trade-off outcomes.
Kinetic Energy Recovery from the Chimney Flue Gases Using Ducted Turbine System
NASA Astrophysics Data System (ADS)
Mann, Harjeet S.; Singh, Pradeep K.
2017-03-01
An innovative idea of extracting kinetic energy from man-made wind resources using ducted turbine system for on-site power generation is introduced in this paper. A horizontal axis ducted turbine is attached to the top of the chimney to harness the kinetic energy of flue gases for producing electricity. The turbine system is positioned beyond the chimney outlet, to avoid any negative impact on the chimney performance. The convergent-divergent duct causes increase in the flue gas velocity and hence enhances the performance of the turbine. It also acts as a safety cover to the energy recovery system. The results from the CFD based simulation analysis indicate that significant power 34 kW can be harnessed from the chimney exhaust. The effect of airfoils NACA4412 and NACA4416 and the diffuser angle on the power extraction by the energy recovery system using a 6-bladed ducted turbine has been studied with the CFD simulation. It is observed that the average flue gas velocity in the duct section at the throat is approximately twice that of the inlet velocity, whereas maximum velocity achieved is 2.6 times the inlet velocity. The simulated results show that about power may be extracted from the chimney flue gases of 660 MW power plant. The system can be retrofitted to existing chimneys of thermal power plants, refineries and other industries.
Microwave Extraction of Lunar Water for Rocket Fuel
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Donahue, Benjamin; Kaukler, William
2008-01-01
Nearly 50% of the lunar surface is oxygen, present as oxides in silicate rocks and soil. Methods for reduction of these oxides could liberate the oxygen. Remote sensing has provided evidence of significant quantities of hydrogen possibly indicating hundreds of millions of metric tons, MT, of water at the lunar poles. If the presence of lunar water is verified, water is likely to be the first in situ resource exploited for human exploration and for LOX-H2 rocket fuel. In-Situ lunar resources offer unique advantages for space operations. Each unit of product produced on the lunar surface represents 6 units that need not to be launched into LEO. Previous studies have indicated the economic advantage of LOX for space tugs from LEO to GEO. Use of lunar derived LOX in a reusable lunar lander would greatly reduce the LEO mass required for a given payload to the moon. And Lunar LOX transported to L2 has unique advantages for a Mars mission. Several methods exist for extraction of oxygen from the soil. But, extraction of lunar water has several significant advantages. Microwave heating of lunar permafrost has additional important advantages for water extraction. Microwaves penetrate and heat from within not just at the surface and excavation is not required. Proof of concept experiments using a moon in a bottle concept have demonstrated that microwave processing of cryogenic lunar permafrost simulant in a vacuum rapidly and efficiently extracts water by sublimation. A prototype lunar water extraction rover was built and tested for heating of simulant. Microwave power was very efficiently delivered into a simulated lunar soil. Microwave dielectric properties (complex electric permittivity and magnetic permeability) of lunar regolith simulant, JSC-1A, were measured down to cryogenic temperatures and above room temperature. The microwave penetration has been correlated with the measured dielectric properties. Since the microwave penetration depth is a function of temperature and frequency, an extraction system can be designed for water removal from different depths.
A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics
NASA Astrophysics Data System (ADS)
Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet
2018-05-01
Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. [Figure not available: see fulltext.
A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics
NASA Astrophysics Data System (ADS)
Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet
2018-01-01
Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies.
A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics.
Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet
2018-05-01
Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. Graphical Abstract ᅟ.
Final report - Magma Energy Research Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colp, J.L.
1982-10-01
Scientific feasibility was demonstrated for the concept of magma energy extraction. The US magma resource is estimated at 50,000 to 500,000 quads of energy - a 700- to 7000-yr supply at the current US total energy use rate of 75 quads per year. Existing geophysical exploration systems are believed capable of locating and defining magma bodies and were demonstrated over a known shallow buried molten-rock body. Drilling rigs that can drill to the depths required to tap magma are currently available and experimental boreholes were drilled well into buried molten rock at temperatures up to 1100/sup 0/C. Engineering materials compatiblemore » with the buried magma environment are available and their performances were demonstrated in analog laboratory experiments. Studies show that energy can be extracted at attractive rates from magma resources in all petrologic compositions and physical configurations. Downhole heat extraction equipment was designed, built, and demonstrated successfully in buried molten rock and in the very hot margins surrounding it. Two methods of generating gaseous fuels in the high-temperature magmatic environment - generation of H/sub 2/ by the interaction of water with the ferrous iron and H/sub 2/, CH/sub 4/, and CO generation by the conversion of water-biomass mixtures - have been investigated and show promise.« less
Coproduction of volatiles and metals from extraterrestrial materials
NASA Technical Reports Server (NTRS)
Lewis, John S.
1991-01-01
Two main efforts in support of the general goals of SERC/culpr are presented. Investigations of processes for the coproduction of metals from extra-terrestrial materials in conjunction with plausible schemes for oxygen extraction continue. The principal emphasis was on the extraction and purification of iron from the ilmenite reduction process for oxygen, from the cathode metal deposits made in the magma electrolysis process for oxygen, and from native ferrous metal alloys on the moon and asteroids. All work on the separation and purification of ferrous metals was focussed upon the gaseous carbonyl process, a scheme that involves only temperatures attainable by passive thermal control. The exploration of a variety of schemes was initiated, involving the use of several different propulsion options and both propulsive and aerobraking capture at earth, for return of extraterrestrial resources to earth orbits. In addition, the search for new opportunities in space resource utilization continues. Examples include the continuation of work underway on: (1) the feasibility of locating solar power satellites in highly eccentric earth orbit; (2) the energetics of extracting the potential clean fusion fuel He-3 from the atmosphere for return to earth; and (3) the utility of a nuclear steam rocket (using non-terrestrial water as the working fluid) for transportation in the inner solar system.
Cattle and cultivators: A study of competition over natural resources in north Senegal
Freudenberger, Karen Schoonmaker; Wood, Eric
1998-01-01
This study presents an analysis of the interaction of humans and their environment in the arid Sahel ian zone of northern Senegal. It compares a pastoral community which lives primarily from the production of livestock and a farming community whose activities have traditionally centered on crop production. Living side by side but following different strategies for securing their livelihoods, these groups find themselves in increasing conflict over how the diminishing resources of the area should be used. The pastoral livelihood system, as practiced in the case study community of Maka Ndandary, is essentially conservationist in its approach to natural resources. It regulates the activities of community members toward the environment and employs diverse strategies to protect local resources against incursion by outsiders. The agricultural village, represented by the case study of Teud Bitty, takes a much more extractive approach to its resources. As resources have diminished over time, the villagers have become even more aggressive in their attempts to exploit what remains, whether soils or trees ... both within and outside their territory.
Resource Prospector: A Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2015-01-01
A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form. extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations
Combined impacts of tidal energy extraction and sea level rise in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Hashemi, M. R.; Kresning, B.
2016-12-01
The objective of this study was to assess the combined effects of SLR and tidal energy extraction on the dynamics of tides in the Gulf of Maine in both US and Canadian waters. The dynamics of tides in the Gulf of Maine is dominated by tidal resonance, which generates one of the largest tidal ranges in the world. Further, sea level rise (SLR) is affecting tidal circulations globally, and in the Gulf of Maine. A large tidal energy resource is available in the Gulf of Maine, particularly in the Bay of Fundy, and is expected to be harvested in the future. Currently, more than 6 projects are operational or under development in this region (in both US and Canadian waters). Understanding the far-field impacts of tidal-stream arrays is important for future development of tidal energy extraction. The impacts include possible changes in water elevation, which can potentially increase flooding in coastal areas. Further, SLR can affect tidal energy resources and the impacts of tidal energy extraction during the project lifetime - which is usually more than 25 years. A tidal model of the Gulf of Maine was developed using Regional Ocean Model System (ROMS) at one arcminute scale. An array of turbines were simulated in the model. After validation of the model at NOAA tidal gauge stations and NERACOOS buoys, several scenarios; including SLR scenario, and tidal extraction scenario, were examined. In particular, the results of a recent research was used to assess the impacts of SLR on the boundary of the model domain, which was neglected in previous studies. The results of the impacts of the tidal energy extraction with and without the SLR were presented, and compared with those from literature. This includes the decrease of tidal range and M2 amplitude in Minas Basin due to the 2.5 GW extraction scenario, and possible changes in Massachusetts coastal area. The impacts were compared with the level of uncertainty in the model. It was shown that the impact of SLR on the dynamics of tides is more than those from energy extraction assuming 2.5 GW extraction in Minas Passage.
NASA Technical Reports Server (NTRS)
Hasseeb, Hashmatullah; Iannetti, Anthony
2017-01-01
A major component of a Martian In-Situ Resource Utilization (ISRU) system is the CO2 acquisition subsystem. This subsystem must be able to extract and separate CO2 at ambient Martian pressures and then output the gas at high pressures for the chemical reactors to generate fuel and oxygen. The Temperature Swing Adsorption (TSA) Pump is a competitive design that can perform this task using heating and cooling cycles in an enclosed volume. The design of this system is explored and analyzed for an output pressure range of 50 kPa to 500 kPa and an adsorption temperature range of -50 C to 40 C while meeting notional requirements for two mission scenarios. Mass and energy consumption results are presented for 2-stage, 3-stage, and 4-stage systems using the following adsorbents: Grace 544 13X, BASF 13X, Grace 522 5A and VSA 10 LiX.
Rattanaumpawan, Pinyo; Boonyasiri, Adhiratha; Vong, Sirenda; Thamlikitkul, Visanu
2018-02-01
Electronic surveillance of infectious diseases involves rapidly collecting, collating, and analyzing vast amounts of data from interrelated multiple databases. Although many developed countries have invested in electronic surveillance for infectious diseases, the system still presents a challenge for resource-limited health care settings. We conducted a systematic review by performing a comprehensive literature search on MEDLINE (January 2000-December 2015) to identify studies relevant to electronic surveillance of infectious diseases. Study characteristics and results were extracted and systematically reviewed by 3 infectious disease physicians. A total of 110 studies were included. Most surveillance systems were developed and implemented in high-income countries; less than one-quarter were conducted in low-or middle-income countries. Information technologies can be used to facilitate the process of obtaining laboratory, clinical, and pharmacologic data for the surveillance of infectious diseases, including antimicrobial resistance (AMR) infections. These novel systems require greater resources; however, we found that using electronic surveillance systems could result in shorter times to detect targeted infectious diseases and improvement of data collection. This study highlights a lack of resources in areas where an effective, rapid surveillance system is most needed. The availability of information technology for the electronic surveillance of infectious diseases, including AMR infections, will facilitate the prevention and containment of such emerging infectious diseases. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Extraction of Oxygen from the Martian Atmosphere
NASA Technical Reports Server (NTRS)
England, C.
2004-01-01
A mechanical process was designed for direct extraction of molecular oxygen from the martian atmosphere based on liquefaction of the majority component, CO2, followed by separation of the lower-boiling components. The atmospheric gases are compressed from about 0.007 bar to 13 bar and then cooled to liquefy most of the CO2. The uncondensed gases are further compressed to 30 bar or more, and then cooled again to recover water as ice and to remove much of the remaining CO2. The final gaseous products consisting mostly of nitrogen, oxygen, and carbon monoxide are liquefied and purified by cryogenic distillation. The liquefied CO2 is expanded back to the low-pressure atmosphere with the addition of heat to recover a majority of the compression energy and to produce the needed mechanical work. Energy for the process is needed primarily as heat to drive the CO2-based expansion power system. When properly configured, the extraction process can be a net producer of electricity. The conceptual design, termed 'MARRS' for Mars Atmosphere Resource Recovery System, was based on the NASA/JSC Mars Reference Mission (MRM) requirement for oxygen. This mission requires both liquid oxygen for propellant, and gaseous oxygen as a component of air for the mission crew. With single redundancy both for propellant and crew air, the oxygen requirement for the MRM is estimated at 5.8 kg/hr. The process thermal power needed is about 120 kW, which can be provided at 300-500 C. A lower-cost nuclear reactor made largely of stainless steel could serve as the heat source. The chief development needed for MARRS is an efficient atmospheric compression technology, all other steps being derived from conventional chemical engineering separations. The conceptual design describes an exceptionally low-mass compression system that can be made from ultra-lightweight and deployable structures. This system adapts to the rapidly changing martian environment to supply the atmospheric resource to MARRS at constant conditions.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches.
Akhondi, Saber A; Hettne, Kristina M; van der Horst, Eelke; van Mulligen, Erik M; Kors, Jan A
2015-01-01
The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches
2015-01-01
Background The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. Results The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. Conclusions We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance. PMID:25810767
Quantum and Information Thermodynamics: A Unifying Framework Based on Repeated Interactions
NASA Astrophysics Data System (ADS)
Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano
2017-04-01
We expand the standard thermodynamic framework of a system coupled to a thermal reservoir by considering a stream of independently prepared units repeatedly put into contact with the system. These units can be in any nonequilibrium state and interact with the system with an arbitrary strength and duration. We show that this stream constitutes an effective resource of nonequilibrium free energy, and we identify the conditions under which it behaves as a heat, work, or information reservoir. We also show that this setup provides a natural framework to analyze information erasure ("Landauer's principle") and feedback-controlled systems ("Maxwell's demon"). In the limit of a short system-unit interaction time, we further demonstrate that this setup can be used to provide a thermodynamically sound interpretation to many effective master equations. We discuss how nonautonomously driven systems, micromasers, lasing without inversion and the electronic Maxwell demon can be thermodynamically analyzed within our framework. While the present framework accounts for quantum features (e.g., squeezing, entanglement, coherence), we also show that quantum resources do not offer any advantage compared to classical ones in terms of the maximum extractable work.
Cristy Watkins; Lynne M. Westphal
2015-01-01
In this paper, we describe our application of Ostrom et al.'s ADICO syntax, a grammatical tool based in the Institutional Analysis and Development framework, to a study of ecological restoration decision making in the Chicago Wilderness region. As this method has only been used to look at written policy and/or extractive natural resource management systems, our...
Libia Patricia Peralta Agudelo; Maristela Marangon
2006-01-01
The study is based in the Environmental Protection Area of Guaraqueçaba located in the Atlantic Forest of the State of Paraná, southern Brazil. EPAs in Brazil allow private ownership, resource extraction, and agriculture according to predefined land use laws. A systemsâ approach was adopted to define the main interacting variables needed to understand the local socio-...
Utilization of on-site resources for Regenerative Life Support Systems at a lunar outpost
NASA Technical Reports Server (NTRS)
Ming, D. W.; Golden, D. C.; Henninger, D. L.
1992-01-01
Regenerative life support systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration stays on the moon. It may be possible to supplement some of the materials needed for RLSS from resources on the moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation.
Thornburg, Christopher C; Britt, John R; Evans, Jason R; Akee, Rhone K; Whitt, James A; Trinh, Spencer K; Harris, Matthew J; Thompson, Jerell R; Ewing, Teresa L; Shipley, Suzanne M; Grothaus, Paul G; Newman, David J; Schneider, Joel P; Grkovic, Tanja; O'Keefe, Barry R
2018-06-13
The US National Cancer Institute's (NCI) Natural Product Repository is one of the world's largest, most diverse collections of natural products containing over 230,000 unique extracts derived from plant, marine, and microbial organisms that have been collected from biodiverse regions throughout the world. Importantly, this national resource is available to the research community for the screening of extracts and the isolation of bioactive natural products. However, despite the success of natural products in drug discovery, compatibility issues that make extracts challenging for liquid handling systems, extended timelines that complicate natural product-based drug discovery efforts and the presence of pan-assay interfering compounds have reduced enthusiasm for the high-throughput screening (HTS) of crude natural product extract libraries in targeted assay systems. To address these limitations, the NCI Program for Natural Product Discovery (NPNPD), a newly launched, national program to advance natural product discovery technologies and facilitate the discovery of structurally defined, validated lead molecules ready for translation will create a prefractionated library from over 125,000 natural product extracts with the aim of producing a publicly-accessible, HTS-amenable library of >1,000,000 fractions. This library, representing perhaps the largest accumulation of natural-product based fractions in the world, will be made available free of charge in 384-well plates for screening against all disease states in an effort to reinvigorate natural product-based drug discovery.
Modelling Single Tree Structure with Terrestrial Laser Scanner
NASA Astrophysics Data System (ADS)
Yurtseven, H.; Akgül, M.; Gülci, S.
2017-11-01
Recent technological developments, which has reliable accuracy and quality for all engineering works, such as remote sensing tools have wide range use in forestry applications. Last decade, sustainable use and management opportunities of forest resources are favorite topics. Thus, precision of obtained data plays an important role in evaluation of current status of forests' value. The use of aerial and terrestrial laser technology has more reliable and effective models to advance the appropriate natural resource management. This study investigates the use of terrestrial laser scanner (TLS) technology in forestry, and also the methodological data processing stages for tree volume extraction is explained. Z+F Imager 5010C TLS system was used for measure single tree information such as tree height, diameter of breast height, branch volume and canopy closure. In this context more detailed and accurate data can be obtained than conventional inventory sampling in forestry by using TLS systems. However the accuracy of obtained data is up to the experiences of TLS operator in the field. Number of scan stations and its positions are other important factors to reduce noise effect and accurate 3D modelling. The results indicated that the use of point cloud data to extract tree information for forestry applications are promising methodology for precision forestry.
Mars Colony in situ resource utilization: An integrated architecture and economics model
NASA Astrophysics Data System (ADS)
Shishko, Robert; Fradet, René; Do, Sydney; Saydam, Serkan; Tapia-Cortez, Carlos; Dempster, Andrew G.; Coulton, Jeff
2017-09-01
This paper reports on our effort to develop an ensemble of specialized models to explore the commercial potential of mining water/ice on Mars in support of a Mars Colony. This ensemble starts with a formal systems architecting framework to describe a Mars Colony and capture its artifacts' parameters and technical attributes. The resulting database is then linked to a variety of ;downstream; analytic models. In particular, we integrated an extraction process (i.e., ;mining;) model, a simulation of the colony's environmental control and life support infrastructure known as HabNet, and a risk-based economics model. The mining model focuses on the technologies associated with in situ resource extraction, processing, storage and handling, and delivery. This model computes the production rate as a function of the systems' technical parameters and the local Mars environment. HabNet simulates the fundamental sustainability relationships associated with establishing and maintaining the colony's population. The economics model brings together market information, investment and operating costs, along with measures of market uncertainty and Monte Carlo techniques, with the objective of determining the profitability of commercial water/ice in situ mining operations. All told, over 50 market and technical parameters can be varied in order to address ;what-if; questions, including colony location.
Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard
2018-01-01
Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.
Review: Regional land subsidence accompanying groundwater extraction
Galloway, Devin L.; Burbey, Thomas J.
2011-01-01
The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.
Sustainable Mars Sample Return
NASA Technical Reports Server (NTRS)
Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert
2011-01-01
The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.
Translation lexicon acquisition from bilingual dictionaries
NASA Astrophysics Data System (ADS)
Doermann, David S.; Ma, Huanfeng; Karagol-Ayan, Burcu; Oard, Douglas W.
2001-12-01
Bilingual dictionaries hold great potential as a source of lexical resources for training automated systems for optical character recognition, machine translation and cross-language information retrieval. In this work we describe a system for extracting term lexicons from printed copies of bilingual dictionaries. We describe our approach to page and definition segmentation and entry parsing. We have used the approach to parse a number of dictionaries and demonstrate the results for retrieval using a French-English Dictionary to generate a translation lexicon and a corpus of English queries applied to French documents to evaluation cross-language IR.
Modeling the Ocean Tide for Tidal Power Generation Applications
NASA Astrophysics Data System (ADS)
Kawase, M.; Gedney, M.
2014-12-01
Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the current speed. In the standard case considered, at the maximum power extraction the tidal range in the estuary is reduced by 37% and the natural dissipation by 78% from the unperturbed state. Thus, environmental consequences of power generation are likely to become the limiting factor on the scale of resource development before the physical maximum is reached.
Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources
Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin
2017-01-01
Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants. PMID:28067795
Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources.
Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin
2017-01-05
Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.
Natural gas production problems : solutions, methodologies, and modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick
2004-10-01
Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpretmore » and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.« less
Lunar Water Resource Demonstration (LWRD) Test Results
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.; Captain, Janine E.; Quinn, Jacqueline W.; Gibson, Tracy L.; Perusich, Stephen A.; Weis, Kyle H.
2009-01-01
NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,
Ecological accounting based on extended exergy: a sustainability perspective.
Dai, Jing; Chen, Bin; Sciubba, Enrico
2014-08-19
The excessive energy consumption, environmental pollution, and ecological destruction problems have gradually become huge obstacles for the development of societal-economic-natural complex ecosystems. Regarding the national ecological-economic system, how to make explicit the resource accounting, diagnose the resource conversion, and measure the disturbance of environmental emissions to the systems are the fundamental basis of sustainable development and coordinated management. This paper presents an extended exergy (EE) accounting including the material exergy and exergy equivalent of externalities consideration in a systematic process from production to consumption, and China in 2010 is chosen as a case study to foster an in-depth understanding of the conflict between high-speed development and the available resources. The whole society is decomposed into seven sectors (i.e., Agriculture, Extraction, Conversion, Industry, Transportation, Tertiary, and Domestic sectors) according to their distinct characteristics. An adaptive EE accounting database, which incorporates traditional energy, renewable energy, mineral element, and other natural resources as well as resource-based secondary products, is constructed on the basis of the internal flows in the system. In addition, the environmental emission accounting has been adjusted to calculate the externalities-equivalent exergy. The results show that the EE value for the year 2010 in China was 1.80 × 10(14) MJ, which is greatly increased. Furthermore, an EE-based sustainability indices system has been established to provide an epitomized exploration for evaluating the performance of flows and storages with the system from a sustainability perspective. The value of the EE-based sustainability indicator was calculated to be 0.23, much lower than the critical value of 1, implying that China is still developing in the stages of high energy consumption and a low sustainability level.
Does Arctic governance hold the key to achieving climate policy targets?
NASA Astrophysics Data System (ADS)
Forbis, Robert, Jr.; Hayhoe, Katharine
2018-02-01
Arctic feedbacks are increasingly viewed as the wild card in the climate system; but their most unpredictable and potentially dangerous aspect may lie in the human, rather than the physical, response to a warming climate. If Arctic policy is driven by agendas based on domestic resource development, the ensuing oil and gas extraction will ensure the failure of the Paris Agreement. If Arctic energy policy can be framed by the Arctic Council, however, its environmental agenda and fragmented governance structure offers the scientific community a fighting chance to determine the region’s energy future. Connecting Arctic climate science to resource economics via its unique governance structure is one of the most powerful ways the scientific community can protect the Arctic region’s environmental, cultural, and scientific resources, and influence international energy and climate policy.
Resource impact factor (RIF) approach to optimal use of energy resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.R.
1976-10-01
A concept called the Resource Impact Factor (RIF) is presented as a means to quantify the social value of energy resources for buildings. The flow of various raw resources from the point of extraction to the building project boundary is shown, and a flow chart indicating the decision making process is given. (PMA)
Confronting common-pool resource problems via cooperative management
USDA-ARS?s Scientific Manuscript database
Common-pool resources (CPRs) have long presented society with challenging environmental, social and policy dilemmas. CPRs are those for which 1) user access is difficult to exclude or limit, and 2) the resource is finite, i.e., once a quantity of the resource has been extracted, it is no longer avai...
SEEK: a systems biology data and model management platform.
Wolstencroft, Katherine; Owen, Stuart; Krebs, Olga; Nguyen, Quyen; Stanford, Natalie J; Golebiewski, Martin; Weidemann, Andreas; Bittkowski, Meik; An, Lihua; Shockley, David; Snoep, Jacky L; Mueller, Wolfgang; Goble, Carole
2015-07-11
Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems biology models. There are a large number of public repositories for storing biological data of a particular type, for example transcriptomics or proteomics, and there are several model repositories. However, this silo-type storage of data and models is not conducive to systems biology investigations. Interdependencies between multiple omics datasets and between datasets and models are essential. Researchers require an environment that will allow the management and sharing of heterogeneous data and models in the context of the experiments which created them. The SEEK is a suite of tools to support the management, sharing and exploration of data and models in systems biology. The SEEK platform provides an access-controlled, web-based environment for scientists to share and exchange data and models for day-to-day collaboration and for public dissemination. A plug-in architecture allows the linking of experiments, their protocols, data, models and results in a configurable system that is available 'off the shelf'. Tools to run model simulations, plot experimental data and assist with data annotation and standardisation combine to produce a collection of resources that support analysis as well as sharing. Underlying semantic web resources additionally extract and serve SEEK metadata in RDF (Resource Description Format). SEEK RDF enables rich semantic queries, both within SEEK and between related resources in the web of Linked Open Data. The SEEK platform has been adopted by many systems biology consortia across Europe. It is a data management environment that has a low barrier of uptake and provides rich resources for collaboration. This paper provides an update on the functions and features of the SEEK software, and describes the use of the SEEK in the SysMO consortium (Systems biology for Micro-organisms), and the VLN (virtual Liver Network), two large systems biology initiatives with different research aims and different scientific communities.
The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies
NASA Astrophysics Data System (ADS)
Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas
2017-04-01
The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined from an EGS perspective and the conceptual framework for an orebody-EGS has been formulated. Metal extraction from geothermal resources provides added value to the system, which has the potential to increase financial feasibility of geothermal development. This approach can contribute to a Europe-wide growth in industrial applications of geothermal resources in the future. The project also thrives to connect thousands of scientists, engineers, and decision-makers by establishing co-operative links to already running on critical raw materials, geothermal energy and other technology-driven projects.
Landfill mining: A critical review of two decades of research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krook, Joakim, E-mail: joakim.krook@liu.se; Svensson, Niclas; Eklund, Mats
Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settlingmore » issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.« less
Appropriateness in using LANDSAT in development energy related data bases
NASA Technical Reports Server (NTRS)
Harnden, E.
1981-01-01
The use of automated classification systems in the field of resource management and resource inventory is discussed. Applications of LANDSAT classification are outlined and include: energy load forecasting based upon land use inventories and change analysis, impact analysis of activities related to energy extraction, capability/suitability mapping in support of generation and substation location and transmission line routing, and assessment of solar energy potential in a highly urbanized setting where land values are high. It is found that the use of LANDSAT data is adequate for general inventories where few data categories are required, where resolution of data to around 150 acres minimum is required, and where no other complete imagery set can be obtained.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2016-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile- bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Detection and categorization of bacteria habitats using shallow linguistic analysis
2015-01-01
Background Information regarding bacteria biotopes is important for several research areas including health sciences, microbiology, and food processing and preservation. One of the challenges for scientists in these domains is the huge amount of information buried in the text of electronic resources. Developing methods to automatically extract bacteria habitat relations from the text of these electronic resources is crucial for facilitating research in these areas. Methods We introduce a linguistically motivated rule-based approach for recognizing and normalizing names of bacteria habitats in biomedical text by using an ontology. Our approach is based on the shallow syntactic analysis of the text that include sentence segmentation, part-of-speech (POS) tagging, partial parsing, and lemmatization. In addition, we propose two methods for identifying bacteria habitat localization relations. The underlying assumption for the first method is that discourse changes with a new paragraph. Therefore, it operates on a paragraph-basis. The second method performs a more fine-grained analysis of the text and operates on a sentence-basis. We also develop a novel anaphora resolution method for bacteria coreferences and incorporate it with the sentence-based relation extraction approach. Results We participated in the Bacteria Biotope (BB) Task of the BioNLP Shared Task 2013. Our system (Boun) achieved the second best performance with 68% Slot Error Rate (SER) in Sub-task 1 (Entity Detection and Categorization), and ranked third with an F-score of 27% in Sub-task 2 (Localization Event Extraction). This paper reports the system that is implemented for the shared task, including the novel methods developed and the improvements obtained after the official evaluation. The extensions include the expansion of the OntoBiotope ontology using the training set for Sub-task 1, and the novel sentence-based relation extraction method incorporated with anaphora resolution for Sub-task 2. These extensions resulted in promising results for Sub-task 1 with a SER of 68%, and state-of-the-art performance for Sub-task 2 with an F-score of 53%. Conclusions Our results show that a linguistically-oriented approach based on the shallow syntactic analysis of the text is as effective as machine learning approaches for the detection and ontology-based normalization of habitat entities. Furthermore, the newly developed sentence-based relation extraction system with the anaphora resolution module significantly outperforms the paragraph-based one, as well as the other systems that participated in the BB Shared Task 2013. PMID:26201262
Washing ashore: The politics of offshore oil in northern Angola
NASA Astrophysics Data System (ADS)
Reed, Kristin Michelle
This dissertation examines the political ecology of Angolan oil, by exploring state and corporate political economies; historical convergences of violence and capital; and struggles over the costs and benefits of oil production from the perspective of artisanal fishing and farming communities in the extractive zones. Angola is sub-Saharan Africa's second-largest oil producer but revenues from the enclave sector in oil rarely trickle down to the impoverished populace. The Angolan government strategically invests petrodollars in patronage networks to bolster their power; and watchdog agencies claim top officials divert the balance to offshore accounts. While the enclaved nature of production facilitates the restricted distribution of oil monies by concentrating services and revenue streams, the distortions and externalities that bleed out from these enclaves increase the misery of Angolans---especially those living in the extractive zones. By focusing on the lived experience of extraction, I explore the politics of oil through the forms of violence and degradation threatening the lives and livelihoods of local people. Most of Angola's oil is produced from offshore fields, so oil spills present a considerable risk to the health of local communities and ecosystems. The fishers and fish traders suffering from oil spills demand compensation from the liable oil corporations, yet the skewed system of disbursements only reaches the most powerful claimants. Moreover, faced with a repressive and unresponsive government, communities in extractive zones have come to rely on the same corporations for schools and health posts in a system I refer to as oil-backed development. I demonstrate that local histories of violence, national political exigencies, and transnational corporate interests govern the distribution of oil-backed development projects. Furthermore, I argue that the Angolan government leverages corporate donations for development to suit its own exclusionary interests and to gain control over dissidents and resources. In this way, oil-backed development complements more militant forms of territorialization while maintaining the exclusionary institutions and corrupt leadership that deprive Angolans of a fair share of the country's resource wealth.
Spatiotemporal conceptual platform for querying archaeological information systems
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Sartzetaki, Mary; Sarris, Apostolos
2015-04-01
Spatial and temporal distribution of archaeological sites has been shown to associate with several attributes including marine, water, mineral and food resources, climate conditions, geomorphological features, etc. In this study, archeological settlement attributes are evaluated under various associations in order to provide a specialized query platform in a geographic information system (GIS). Towards this end, a spatial database is designed to include a series of archaeological findings for a secluded geographic area of Crete in Greece. The key categories of the geodatabase include the archaeological type (palace, burial site, village, etc.), temporal information of the habitation/usage period (pre Minoan, Minoan, Byzantine, etc.), and the extracted geographical attributes of the sites (distance to sea, altitude, resources, etc.). Most of the related spatial attributes are extracted with readily available GIS tools. Additionally, a series of conceptual data attributes are estimated, including: Temporal relation of an era to a future one in terms of alteration of the archaeological type, topologic relations of various types and attributes, spatial proximity relations between various types. These complex spatiotemporal relational measures reveal new attributes towards better understanding of site selection for prehistoric and/or historic cultures, yet their potential combinations can become numerous. Therefore, after the quantification of the above mentioned attributes, they are classified as of their importance for archaeological site location modeling. Under this new classification scheme, the user may select a geographic area of interest and extract only the important attributes for a specific archaeological type. These extracted attributes may then be queried against the entire spatial database and provide a location map of possible new archaeological sites. This novel type of querying is robust since the user does not have to type a standard SQL query but graphically select an area of interest. In addition, according to the application at hand, novel spatiotemporal attributes and relations can be supported, towards the understanding of historical settlement patterns.
Algal Proteins: Extraction, Application, and Challenges Concerning Production
Bleakley, Stephen; Hayes, Maria
2017-01-01
Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited “crops”. Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined. PMID:28445408
Sustainable Development Strategy for Russian Mineral Resources Extracting Economy
NASA Astrophysics Data System (ADS)
Dotsenko, Elena; Ezdina, Natalya; Prilepskaya, Angelina; Pivnyk, Kirill
2017-11-01
The immaturity of strategic and conceptual documents in the sphere of sustainable development of the Russian economy had a negative impact on long-term strategic forecasting of its neo-industrialization. At the present stage, the problems of overcoming the mineral and raw material dependence, the negative structural shift of the Russian economy, the acceleration of the rates of economic growth, the reduction of technological gap from the developed countries become strategically in demand. The modern structure of the Russian economy, developed within the framework of the proposed market model, does not generate a sustainable type of development. It became obvious that in conditions of the market processes' entropy, without neo-industrial changes, the reconstruction of industry on a new convergence-technological basis and without increasing the share of high technology production the instability of macroeconomic system, the risks of environmental and economic security of Russia are growing. Therefore, today we need a transition from forming one industry development strategy to the national one that will take into account both the social and economic and environmental challenges facing Russia as a mineral resources extracting country.
ISRU Development Strategy and Recent Activities to Support Near and Far Term Missions
NASA Astrophysics Data System (ADS)
Baird, Russell S.; Sanders, Gerald B.; Simon, Thomas M.
2003-01-01
The practical expansion of humans beyond low Earth orbit into near-Earth space and out into the solar system for exploration, commercialization, tourism, and colonization will require the effective utilization of whatever indigenous resources are available to make these endeavors economically feasible and capable of extended operations. This concept of ``living off the land'' is called In-Situ Resource Utilization (ISRU). The resources available for ISRU applications vary widely, depending upon the location. However, there are resources, technologies, and processes that are common to multiple destinations and ISRU-related applications. These resources range from carbon dioxide (CO2) and water vapor found in human habitats (surface & spacecraft) and in the Martian atmosphere, to water (ice and hydrated minerals) and various oxygen, carbon, and metal-bearing resources found on comets and asteroids, and in planetary surface materials at numerous destinations of interest (Moon, Mars, Titan, and Europa). Many parties are investigating the common technologies and processes to effectively extract and use these resources. This paper will discuss how ISRU is enabling for both near and far term human exploration missions, and present a summary of recent and on-going ISRU work sponsored by the NASA/Johnson Space Center. Technology development activities that will be described in detail include an advanced CO2 freezer acquisition system, a multi-fluid common bulkhead cryogenic storage tank, and a variety of microchannel chemical reactor concepts. Recent advanced Sabatier reactor concept development activities in preparation for later, end-to-end system testing will be described as well. This paper will also discuss an ISRU-based strategy to enable extensive robotic and human surface exploration operations and a related on-going demonstration program for a fuel cell based power plant for rover applications. Technology commonalities between ISRU, life support systems, and Extra Vehicular Activity (EVA), applications will also be presented.
NASA Technical Reports Server (NTRS)
Redinbo, Robert
1994-01-01
Fault tolerance features in the first three major subsystems appearing in the next generation of communications satellites are described. These satellites will contain extensive but efficient high-speed processing and switching capabilities to support the low signal strengths associated with very small aperture terminals. The terminals' numerous data channels are combined through frequency division multiplexing (FDM) on the up-links and are protected individually by forward error-correcting (FEC) binary convolutional codes. The front-end processing resources, demultiplexer, demodulators, and FEC decoders extract all data channels which are then switched individually, multiplexed, and remodulated before retransmission to earth terminals through narrow beam spot antennas. Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values with data flows and operations, are used to protect the data processing operations. The additional checking features utilize resources that can be substituted for normal processing elements when resource reconfiguration is required to replace a failed unit.
Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremer, G.M.; Duffield, R.B.; Smith, M.C.
1980-08-01
The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studiesmore » indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.« less
RESOLVE - Starting Point for Partnerships in Lunar and Mars Resource Characterization
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Rosenbaum, Bernard; Simon, Thomas; Larson, William E.; Luecke, Dale; Captain, Jainine; Sacksteder, Kurt; Johnson, Kenneth R.; Boucher, Dale; Taylor, Jeffrey
2007-01-01
The mystery and controversy surrounding the possibility of finding water/ice at the lunar poles of the Moon based on the interpretation of neutron spectrometer data from Lunar Prospector and radar data from Clementine raises questions that both Science and the Human Exploration proponents want answered. From the Science perspective, the determination of lunar volatiles and in particular the increased hydrogen concentration detected at the lunar poles was identified as an important objectives for lunar exploration and understanding the history of the Moon, Sun, and the solar system. From the Human Exploration perspective, the potential for large concentrations of accessible water opens up possibilities for utilizing in-situ resources, known as In-Situ Resource Utilization (ISRU), to implement a sustained and affordable human exploration program of the Moon and beyond through production of propellants, fuel cell reagents, and life support consumables for lunar surface operations and mobility, and Earth-Moon transportation. Both the Science and Human Exploration proponents agree that a mission to the lunar poles to obtain ground truth data is the only means to conclusively answer the questions of whether water/ice exists, how much, what form, and where did it come from. In 2005, NASA initiated the Regolith and Environment Science & Oxygen and Lunar Volatiles Extraction (RESOLVE) project, and is currently developing hardware under the NASA Exploration Technology Development Program (ETDP). The purpose of the project was to begin developing technologies and operations that would answer the fundamental science questions, such as What resources are available on the Moon, where are they, what form, and where did they come from? as well as critical engineering questions, such as How will we mine these resources, what chemical extraction processes are the most practical and efficient, and what are the engineering challenges to be faced in this environment? .
Continental geodynamics and mineral exploration - the Western Australian perspective
NASA Astrophysics Data System (ADS)
Gessner, Klaus; Murdie, Ruth; Yuan, Huaiyu; Brisbout, Lucy; Sippl, Christian; Tyler, Ian; Kirkland, Chris; Wingate, Michael; Johnson, Simon; Spaggiari, Catherine; Smithies, Hugh; Lu, Yongjun; Gonzalez, Chris; Jessell, Mark; Holden, Eun-Jung; Gorczyk, Weronika; Occhipinti, Sandra
2017-04-01
The exploration for mineral resources and their extraction has been a fundamental human activity since the dawn of civilisation: Geology is everywhere - ore deposits are rare. Most deposits were found at or near Earth's surface, often by chance or serendipity. To meet the challenge of future demand, successful exploration requires the use of advanced technology and scientific methods to identify targets at depth. Whereas the use and development of high-tech exploration, extraction and processing methods is of great significance, understanding how, when and where dynamic Earth systems become ore-forming systems is a difficult scientific challenge. Ore deposits often form by a complex interplay of coupled physical processes with evolving geological structure. The mineral systems approach states that understanding the geodynamic and tectonic context of crustal scale hydrothermal fluid flow and magmatism can help constrain the spatial extent of heat and mass transport and therefore improve targeting success in mineral exploration. Tasked with promoting the geological assets of one of the World's largest and most resource-rich jurisdictions, the Geological Survey of Western Australia is breaking new ground by systematically collecting and integrating geophysical, geological and geochemical data with the objective to reveal critical ties between lithospheric evolution and mineral deposits. We present examples where this approach has led to fundamental reinterpretations of Archean and Proterozoic geodynamics and the nature of tectonic domains and their boundaries, including cases where geodynamic modelling has played an important role in testing hypotheses of crustal evolution.
Geng, Haiqing; Chen, Fan; Wang, Zhiyuan; Liu, Jie; Xu, Weihua
2017-05-01
The purpose of this research is to establish an environmental management zoning for coal mining industry which is served as a basis for making environmental management policies. Based on the specific impacts of coal mining and regional characteristics of environment and resources, the ecological impact, water resources impact, and arable land impact are chose as the zoning indexes to construct the index system. The ecological sensitivity is graded into three levels of low, medium, and high according to analytical hierarchy processes and gray fixed weight clustering analysis, and the water resources sensitivity is divided into five levels of lower, low, medium, high, and higher according to the weighted sum of sub-indexes, while only the arable land sensitive zone was extracted on the basis of the ratio of arable land to the county or city. By combining the ecological sensitivity zoning and the water resources sensitive zoning and then overlapping the arable-sensitive areas, the mainland China is classified into six types of environmental management zones for coal mining except to the forbidden exploitation areas.
Mehryary, Farrokh; Kaewphan, Suwisa; Hakala, Kai; Ginter, Filip
2016-01-01
Biomedical event extraction is one of the key tasks in biomedical text mining, supporting various applications such as database curation and hypothesis generation. Several systems, some of which have been applied at a large scale, have been introduced to solve this task. Past studies have shown that the identification of the phrases describing biological processes, also known as trigger detection, is a crucial part of event extraction, and notable overall performance gains can be obtained by solely focusing on this sub-task. In this paper we propose a novel approach for filtering falsely identified triggers from large-scale event databases, thus improving the quality of knowledge extraction. Our method relies on state-of-the-art word embeddings, event statistics gathered from the whole biomedical literature, and both supervised and unsupervised machine learning techniques. We focus on EVEX, an event database covering the whole PubMed and PubMed Central Open Access literature containing more than 40 million extracted events. The top most frequent EVEX trigger words are hierarchically clustered, and the resulting cluster tree is pruned to identify words that can never act as triggers regardless of their context. For rarely occurring trigger words we introduce a supervised approach trained on the combination of trigger word classification produced by the unsupervised clustering method and manual annotation. The method is evaluated on the official test set of BioNLP Shared Task on Event Extraction. The evaluation shows that the method can be used to improve the performance of the state-of-the-art event extraction systems. This successful effort also translates into removing 1,338,075 of potentially incorrect events from EVEX, thus greatly improving the quality of the data. The method is not solely bound to the EVEX resource and can be thus used to improve the quality of any event extraction system or database. The data and source code for this work are available at: http://bionlp-www.utu.fi/trigger-clustering/.
Terrestrial Micro Renewable Energy Applications of Space Technology
NASA Astrophysics Data System (ADS)
Komerath, N. M.; Komerath, P. P.
This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.
Utilization of on-site resources for regenerative life support systems at Lunar and Martian outposts
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Golden, D. C.; Henninger, Donald L.
1993-01-01
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transportng supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions. Natural materials on the Moon and/or Mars may be used for a variety of RLSS needs including (1) soils or solid-support substrate for plant growth, (2) sources for extraction of essential plant-growth nutrients, (3) sources of O2, H2, CO2, and water, (4) substrates for microbial populations in the degradation of wastes, and (5) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. In addition to the regolith, the martian atmosphere will provide additional resources at a Mars outpost, including water, CO2 and other atmospheric gases.
Lunar Water Resource Demonstration (LWRD)
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.
2009-01-01
Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith
RASSOR Demonstration in Regolith Bin
2016-09-29
An integrated test of the MARCO POLO/Mars Pathfinder in-situ resource utilization, or ISRU, system takes place at NASA’s Kennedy Space Center in Florida. A mockup of MARCO POLO, an ISRU propellant production technology demonstration simulated mission, is tested in a regolith bin with RASSOR 2.0, the Regolith Advanced Surface Systems Operations Robot. On the surface of Mars, mining robots like RASSOR will dig down into the regolith and take the material to a processing plant where usable elements such as hydrogen, oxygen and water can be extracted for life support systems. Regolith also shows promise for both construction and creating elements for rocket fuel.
Illegal fishing and territorial user rights in Chile.
Oyanedel, Rodrigo; Keim, Andres; Castilla, Juan Carlos; Gelcich, Stefan
2017-11-07
Illegal fishing poses a major threat to conservation of marine resources worldwide. However, there is still limited empirical research that quantifies illegal catch levels. We used the randomized response technique to estimate the proportion of divers and the quantities of loco (Concholepas concholepas) they extracted illegally. Loco have been managed for the past 17 years through a territorial user rights for fisheries system (TURFs) in Chile. Illegal fishing of loco was widespread within the TURFs system. Official reported landings (i.e., legal landings) accounted for 14-30% of the total loco extraction. Our estimates suggest that ignoring the magnitude of illegal fishing and considering only official landing statistics may lead to false conclusions about the status and trends of a TURFs managed fishery. We found evidence of fisher associations authorizing their members to poach inside TURFs, highlighting the need to design TURFs systems so that government agencies and fishers' incentives and objectives align through continuous adaptation. Government support for enforcement is a key element for the TURFs system to secure the rights that are in place. © 2017 Society for Conservation Biology.
Evaluation systems for clinical governance development: a comparative study.
Hooshmand, Elaheh; Tourani, Sogand; Ravaghi, Hamid; Ebrahimipour, Hossein
2014-01-01
Lack of scientific and confirmed researches and expert knowledge about evaluation systems for clinical governance development in Iran have made studies on different evaluation systems for clinical governance development a necessity. These studies must provide applied strategies to design criteria of implementing clinical governance for hospital's accreditation. This is a descriptive and comparative study on development of clinical governance models all over the world. Data have been gathered by reviewing related articles. Models have been studied in comprehensive review method. The evaluated models of clinical governance development were Australian, NHS, SPOCK and OPTIGOV. The final aspects extracted from these models were Responsiveness, Policies and Strategies, Organizational Structure, Allocating Resources, Education and Occupational Development, Performance Evaluation, External Evaluation, Patient Oriented Approach, Risk Management, Personnel's Participation, Information Technology, Human Resources, Research and Development, Evidence Based Medicine, Clinical Audit, Health Technology Assessment and Quality. These results are applicable for completing the present criteria which evaluating clinical governance application and provide practical framework to evaluate country's hospital on the basis of clinical governance elements.
An ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Paz, Aaron
2017-01-01
In-Situ Resource Utilization (ISRU) will enable the long term presence of humans beyond low earth orbit. Since 2009, oxygen production from the Mars atmosphere has been baselined as an enabling technology for Mars human exploration by NASA. However, using water from the Martian regolith in addition to the atmospheric CO2 would enable the production of both liquid Methane and liquid Oxygen, thus fully fueling a Mars return vehicle. A case study was performed to show how ISRU can support NASA's Evolvable Mars Campaign (EMC) using methane and oxygen production from Mars resources. A model was built and used to generate mass and power estimates of an end-to-end ISRU system including excavation and extraction water from Mars regolith, processing the Mars atmosphere, and liquefying the propellants. Even using the lowest yield regolith, a full ISRU system would weigh 1.7 mT while eliminating the need to transport 30 mT of ascent propellants from earth.
Video multiple watermarking technique based on image interlacing using DWT.
Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M
2014-01-01
Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.
Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.
2001-01-01
The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Khangaonkar, Tarang; Long, Wen
2014-02-07
In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less
Carter, Evelene M; Potts, Henry W W
2014-04-04
To investigate whether factors can be identified that significantly affect hospital length of stay from those available in an electronic patient record system, using primary total knee replacements as an example. To investigate whether a model can be produced to predict the length of stay based on these factors to help resource planning and patient expectations on their length of stay. Data were extracted from the electronic patient record system for discharges from primary total knee operations from January 2007 to December 2011 (n=2,130) at one UK hospital and analysed for their effect on length of stay using Mann-Whitney and Kruskal-Wallis tests for discrete data and Spearman's correlation coefficient for continuous data. Models for predicting length of stay for primary total knee replacements were tested using the Poisson regression and the negative binomial modelling techniques. Factors found to have a significant effect on length of stay were age, gender, consultant, discharge destination, deprivation and ethnicity. Applying a negative binomial model to these variables was successful. The model predicted the length of stay of those patients who stayed 4-6 days (~50% of admissions) with 75% accuracy within 2 days (model data). Overall, the model predicted the total days stayed over 5 years to be only 88 days more than actual, a 6.9% uplift (test data). Valuable information can be found about length of stay from the analysis of variables easily extracted from an electronic patient record system. Models can be successfully created to help improve resource planning and from which a simple decision support system can be produced to help patient expectation on their length of stay.
Using aerial images for establishing a workflow for the quantification of water management measures
NASA Astrophysics Data System (ADS)
Leuschner, Annette; Merz, Christoph; van Gasselt, Stephan; Steidl, Jörg
2017-04-01
Quantified landscape characteristics, such as morphology, land use or hydrological conditions, play an important role for hydrological investigations as landscape parameters directly control the overall water balance. A powerful assimilation and geospatial analysis of remote sensing datasets in combination with hydrological modeling allows to quantify landscape parameters and water balances efficiently. This study focuses on the development of a workflow to extract hydrologically relevant data from aerial image datasets and derived products in order to allow an effective parametrization of a hydrological model. Consistent and self-contained data source are indispensable for achieving reasonable modeling results. In order to minimize uncertainties and inconsistencies, input parameters for modeling should be extracted from one remote-sensing dataset mainly if possbile. Here, aerial images have been chosen because of their high spatial and spectral resolution that permits the extraction of various model relevant parameters, like morphology, land-use or artificial drainage-systems. The methodological repertoire to extract environmental parameters range from analyses of digital terrain models, multispectral classification and segmentation of land use distribution maps and mapping of artificial drainage-systems based on spectral and visual inspection. The workflow has been tested for a mesoscale catchment area which forms a characteristic hydrological system of a young moraine landscape located in the state of Brandenburg, Germany. These dataset were used as input-dataset for multi-temporal hydrological modelling of water balances to detect and quantify anthropogenic and meteorological impacts. ArcSWAT, as a GIS-implemented extension and graphical user input interface for the Soil Water Assessment Tool (SWAT) was chosen. The results of this modeling approach provide the basis for anticipating future development of the hydrological system, and regarding system changes for the adaption of water resource management decisions.
Joint optimization of regional water-power systems
NASA Astrophysics Data System (ADS)
Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter
2016-06-01
Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.
The ISES: A non-intrusive medium for in-space experiments in on-board information extraction
NASA Technical Reports Server (NTRS)
Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike
1990-01-01
The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.
Drilling to Extract Liquid Water on Mars: Feasible and Worth the Investment
NASA Technical Reports Server (NTRS)
Stoker, C.
2004-01-01
A critical application for the success of the Exploration Mission is developing cost effective means to extract resources from the Moon and Mars needed to support human exploration. Water is the most important resource in this regard, providing a critical life support consumable, the starting product of energy rich propellants, energy storage media (e.g. fuel cells), and a reagent used in virtually all manufacturing processes. Water is adsorbed and chemically bound in Mars soils, ice is present near the Martian surface at high latitudes, and water vapor is a minor atmospheric constituent, but extracting meaningful quantities requires large complex mechanical systems, massive feedstock handling, and large energy inputs. Liquid water aquifers are almost certain to be found at a depth of several kilometers on Mars based on our understanding of the average subsurface thermal gradient, and geological evidence from recent Mars missions suggests liquid water may be present much closer to the surface at some locations. The discovery of hundreds of recent water-carved gullies on Mars indicates liquid water can be found at depths of 200-500 meters in many locations. Drilling to obtain liquid water via pumping is therefore feasible and could lower the cost and improve the return of Mars exploration more than any other ISRU technology on the horizon. On the Moon, water ice may be found in quantity in permanently shadowed regions near the poles.
Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif
2008-03-01
High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.
Saha, Dipankar; Dhar, Y R; Vittala, S S
2010-06-01
A part of the Gangetic Alluvial Plain covering 2,228 km(2), in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km(2), affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of-(1) cumulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.
Shale Gas Boom or Bust? Estimating US and Global Economically Recoverable Resources
NASA Astrophysics Data System (ADS)
Brecha, R. J.; Hilaire, J.; Bauer, N.
2014-12-01
One of the most disruptive energy system technological developments of the past few decades is the rapid expansion of shale gas production in the United States. Because the changes have been so rapid there are great uncertainties as to the impacts of shale production for medium- and long-term energy and climate change mitigation policies. A necessary starting point for incorporating shale resources into modeling efforts is to understand the size of the resource, how much is technically recoverable (TRR), and finally, how much is economically recoverable (ERR) at a given cost. To assess production costs of shale gas, we combine top-down data with detailed bottom-up information. Studies solely based on top-down approaches do not adequately account for the heterogeneity of shale gas deposits and are unlikely to appropriately estimate extraction costs. We design an expedient bottom-up method based on publicly available US data to compute the levelized costs of shale gas extraction. Our results indicate the existence of economically attractive areas but also reveal a dramatic cost increase as lower-quality reservoirs are exploited. Extrapolating results for the US to the global level, our best estimate suggests that, at a cost of 6 US$/GJ, only 39% of the technically recoverable resources reported in top-down studies should be considered economically recoverable. This estimate increases to about 77% when considering optimistic TRR and estimated ultimate recovery parameters but could be lower than 12% for more pessimistic parameters. The current lack of information on the heterogeneity of shale gas deposits as well as on the development of future production technologies leads to significant uncertainties regarding recovery rates and production costs. Much of this uncertainty may be inherent, but for energy system planning purposes, with or without climate change mitigation policies, it is crucial to recognize the full ranges of recoverable quantities and costs.
NASA Astrophysics Data System (ADS)
Friedmann, David; Friedrich, Bernd
The steadily growing demand for critical metals and their price increase on the world market makes the mining of marine mineral resources in the not too distant future probable. Therefore, an enormous focus lays currently on the development of a viable process route to extract valuable metals from marine mineral resources such as polymetallic nodules. For a country with few natural resources like Germany, the industrial treatment of marine mineral resources could lead to a significantly decreased dependence on the global natural resource market. The focus during treatment of these nodules lies on the pyrometallurgical extraction of Ni, Cu and Co on one hand as well as the generation of a sellable ferromanganese and/or silicomanganese product on the other. All work is conducted in lab-scale SAF furnaces. The concept approach is zero-waste, which includes careful slag design, so that the produced slags adhere to environmental restrictions.
A Rules-Based Service for Suggesting Visualizations to Analyze Earth Science Phenomena.
NASA Astrophysics Data System (ADS)
Prabhu, A.; Zednik, S.; Fox, P. A.; Ramachandran, R.; Maskey, M.; Shie, C. L.; Shen, S.
2016-12-01
Current Earth Science Information Systems lack support for new or interdisciplinary researchers, who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. We need to evolve the current information systems, to reduce the time required for data preparation, processing and analysis. This can be done by effectively salvaging the "dark" resources in Earth Science. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. In order to effectively use these dark resources, especially for data processing and visualization, we need a combination of domain, data product and processing knowledge, i.e. a knowledge base from which specific data operations can be performed. In this presentation, we describe a semantic, rules based approach to provide i.e. a service to visualize Earth Science phenomena, based on the data variables extracted using the "dark" metadata resources. We use Jena rules to make assertions about compatibility between a phenomena and various visualizations based on multiple factors. We created separate orthogonal rulesets to map each of these factors to the various phenomena. Some of the factors we have considered include measurements, spatial resolution and time intervals. This approach enables easy additions and deletions based on newly obtained domain knowledge or phenomena related information and thus improving the accuracy of the rules service overall.
2012-05-10
CAPE CANAVERAL, Fla. – NASA systems engineer Jim Smith assembles the prototype lander for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project in a test facility behind the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. RESOLVE consists of a rover and drill provided by the Canadian Space Agency to support a NASA payload that is designed to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will be conducting field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Ben Smegelsky
Proposition and Organization of an Adaptive Learning Domain Based on Fusion from the Web
ERIC Educational Resources Information Center
Chaoui, Mohammed; Laskri, Mohamed Tayeb
2013-01-01
The Web allows self-navigated education through interaction with large amounts of Web resources. While enjoying the flexibility of Web tools, authors may suffer from research and filtering Web resources, when they face various resources formats and complex structures. An adaptation of extracted Web resources must be assured by authors, to give…
A bioinformatics knowledge discovery in text application for grid computing
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-01-01
Background A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. Methods The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. Results A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. Conclusion In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities. PMID:19534749
A bioinformatics knowledge discovery in text application for grid computing.
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-06-16
A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities.
Taxation of exhaustible resources. [Monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, P.; Heal, G.; Stiglitz, J.
1980-01-01
This paper analyzes the effect of taxation on the intertemporal allocation of an exhaustible resource. A general framework within which a large variety of taxes can be analyzed is developed and then applied to a number of specific taxes. It is shown that there exists a pattern of taxation which can generate essentially any desired pattern of resource usage. Many tax policies, however, have effects markedly different both from the effects that these policies would have in the case of produced commodities and from those which they are designed (or widely thought) to have. For instance, if extraction costs aremore » zero, a depletion allowance at a constant rate (widely thought to encourage the extraction of resources) has absolutely no effect; its gradual removal (usually thought to be preferable to a sudden removal) leads to faster rates of depletion (and lower prices) now, but higher prices in the future; which its sudden and unanticipated removal has absolutely no distortionary effect on the pattern of extraction. More generally, it is shown that the effects of tax structure on the patterns of extraction are critically dependent on expectations concerning future taxation. The changes in tax structure that have occurred in the past fifty years are of the kind that, if they were anticipated, (or if similar further changes are expected to occur in the future) lead to excessively fast exploitation of natural resources. However, if it is believed that current tax policies (including rates) will persist indefinitely, the current tax structure would lead to excessive conservationism. Thus, whether in fact current tax policies have lead to excessive conservationism is a moot question.« less
Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian
2018-09-01
Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights reserved.
[Evaluation of health system decentralization and reform of the Social Security system in Colombia].
Jaramillo, I
2002-01-01
The aim of this study is to present the results of the reforms in the health sector that have taken place in Colombia since 1990. These reforms replaced the previous national health system and the so-called Bismarkian social security system. The new system has three basic characteristics: a) the public subsidies are decentralized in the municipalities and territorial departments; b) the public hospitals have been converted into state social enterprises, which has led them towards a management model, and c) the health and social security system monopoly has been abolished and a system of health subsidies has been created for the poorest citizens. This article systematically collects secondary information extracted from the most important studies evaluating the health sector reforms in Colombia. The present author participated in some of these studies. The reforms have increased financial resources, which, has led to an increase in public system staff and their salaries. The availability of hospitals' budgetary resources has increased and the social security system has become wider, including 20% of the poorest population who have benefited from subsidies on demand. Ease of access and equity in the health system have significantly improved. However, indicators of public health have fallen and health professionals are critical of a system based on mediation, which increases transaction costs.
NASA Technical Reports Server (NTRS)
Hasseeb, Hashmatullah; Iannetti, Anthony
2017-01-01
Mars ISRU converts atmospheric CO2 to generate O2 and CH4. Reduces launch mass, thus mission cost. Increases mission duration and independence. CO2 acquisition system must: a) Reliably extract CO2 over the varying Martian environment. 1) approx. 0.67-0.93 kPa pressure and 2) 125 C to 40 C. b) Provide and compress high purity gas to chemical plants. 1) Separate N2, Ar2, etc. from approx. 95% CO2 atmosphere and 2) Current pressure targets: 50 kPa-500 kPa.
Application of territorial GIS to study of natural environment for regions under mining exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsanov, A.
1996-07-01
Mineral resources exploitation becomes one of the leading factors of technogenic impact to natural environment. The processes accompanying exploitation lead to changes of geological/geomorphological, engineering/geological, hydrogeological, geochemical and landscape conditions over the large territories surrounded mining exploitation districts. The types of environmental changes and disturbances are stipulated by several reasons such as kind of exploited resources (ore, petroleum, gas, coal, peat, building materials etc.); the ways of extraction (opened by quarry or closed by mine); natural zone (tundra, taiga, steppe, desert etc.). Expressive revelation and control of these environmental changes is impossible without wide using and analysis of various typesmore » and different times materials of airborne and satellite surveys (MASS). They are the basis of system approach to environmental study because of image is the decreased spatial model of territory. For integrated estimation of natural resources and perspectives of its economical profit using, as well as examination of influence of extraction objects to natural environment necessary to involve different data. Only territorial GIS permits to solve the tasks of collection, keeping, processing and analysis of this data as well as to conduct modelling of situations and presentation of information necessary to accept the decision. The core of GIS is the Data base which consists of initial remote sensing and cartographic data allow in completely obtain various information providing of full value and objectivity of investigations.« less
Geothermal resources of California sedimentary basins
Williams, C.F.; Grubb, F.V.; Galanis, S.P.
2004-01-01
The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
Managing interoperability and complexity in health systems.
Bouamrane, M-M; Tao, C; Sarkar, I N
2015-01-01
In recent years, we have witnessed substantial progress in the use of clinical informatics systems to support clinicians during episodes of care, manage specialised domain knowledge, perform complex clinical data analysis and improve the management of health organisations' resources. However, the vision of fully integrated health information eco-systems, which provide relevant information and useful knowledge at the point-of-care, remains elusive. This journal Focus Theme reviews some of the enduring challenges of interoperability and complexity in clinical informatics systems. Furthermore, a range of approaches are proposed in order to address, harness and resolve some of the many remaining issues towards a greater integration of health information systems and extraction of useful or new knowledge from heterogeneous electronic data repositories.
NASA Astrophysics Data System (ADS)
Shughrue, C. M.; Werner, B.; Nugnug, P. T.
2010-12-01
The catastrophic Deepwater Horizon oil spill highlights the risks for widespread environmental damage resulting from petroleum resource extraction. Possibilities for amelioration of these risks depend critically on understanding the dynamics and nonlinear interactions between various components of the coupled human-environmental resource extraction system. We use a complexity analysis to identify the levels of description and time scales at which these interactions are strongest, and then use the analysis as the basis for an agent-based numerical model with which decadal trends can be analyzed. Oil industry economic and technological activity and associated oil spills are components of a complex system that is coupled to natural environment, legislation, regulation, media, and resistance systems over annual to decadal time scales. In the model, oil spills are produced stochastically with a range of magnitudes depending on a reliability-engineering-based assessment of failure for the technology employed, human factors including compliance with operating procedures, and risks associated with the drilling environment. Oil industry agents determine drilling location and technological investment using a cost-benefit analysis relating projected revenue from added production to technology cost and government regulation. Media outlet agents reporting on the oil industry and environmental damage from oil spills assess the impacts of aggressively covering a story on circulation increases, advertiser concerns and potential loss of information sources. Environmental advocacy group agents increase public awareness of environmental damage (through media and public contact), solicit memberships and donations, and apply direct pressure on legislators for policy change. Heterogeneous general public agents adjust their desire for change in the level of regulation, contact their representatives or participate in resistance via protest by considering media sources, personal experiences with oil spills and individual predispositions toward the industry. Legislator agents pass legislation and influence regulator agents based on interaction with oil industry, media and general public agents. Regulator agents generate and enforce regulations by responding to pressure from legislator and oil industry agents. Oil spill impacts on the natural environment are related to number and magnitude of spills, drilling locations, and spill response methodology, determined collaboratively by government and oil company agents. Agents at the corporate and government levels use heterogeneous prediction models combined with a constant absolute risk aversion utility for wealth. This model simulates a nonlinear adaptive system with mechanisms to self-regulate oil industry activity, environmental damage and public response. A comparison of model output with historical oil industry development and environmental damage; the sensitivity of oil spill damage to economic, political and social factors; the potential for the emergence of new and possibly unstable behaviors; and opportunities for intervening in system dynamics to alter expected outcomes will be discussed. Supported by NSF: Geomorphology and Land Use Dynamics Program
Irrigation network extraction methodology from LiDAR DTM using Whitebox and ArcGIS
NASA Astrophysics Data System (ADS)
Mahor, M. A. P.; De La Cruz, R. M.; Olfindo, N. T.; Perez, A. M. C.
2016-10-01
Irrigation networks are important in distributing water resources to areas where rainfall is not enough to sustain agriculture. They are also crucial when it comes to being able to redirect vast amounts of water to decrease the risks of flooding in flat areas, especially near sources of water. With the lack of studies about irrigation feature extraction, which range from wide canals to small ditches, this study aims to present a method of extracting these features from LiDAR-derived digital terrain models (DTMs) using Geographic Information Systems (GIS) tools such as ArcGIS and Whitebox Geospatial Analysis Tools (Whitebox GAT). High-resolution LiDAR DTMs with 1-meter horizontal and 0.25-meter vertical accuracies were processed to generate the gully depth map. This map was then reclassified, converted to vector, and filtered according to segment length, and sinuosity to be able to isolate these irrigation features. Initial results in the test area show that the extraction completeness is greater than 80% when compared with data obtained from the National Irrigation Administration (NIA).
Ziegler, Jacob P.; Golebie, Elizabeth J.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2017-01-01
Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social‐ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social‐ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social‐ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social‐ecological processes to create deficits for state‐level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social‐ecological framework for maintaining ecosystem services like recreational fisheries.
Wilhelm, Linda; Besemer, Katharina; Fragner, Lena; Peter, Hannes; Weckwerth, Wolfram; Battin, Tom J
2015-01-01
Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams. PMID:25978543
Establishing lunar resource viability
NASA Astrophysics Data System (ADS)
Carpenter, J.; Fisackerly, R.; Houdou, B.
2016-11-01
Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.
NASA Astrophysics Data System (ADS)
Lee, O. A.; Eicken, H.; Payne, J. F.; Lassuy, D.
2014-12-01
The North Slope of Alaska is experiencing rapid changes in response to interacting climate and socioeconomic drivers. The North Slope Science Initiative (NSSI) is using scenarios as a tool to identify plausible, spatially explicit future states of resource extraction activities on the North Slope and adjacent seas through the year 2040. The objective of the scenarios process is to strategically assess research and monitoring needs on the North Slope. The participatory scenarios process involved stakeholder input (including Federal, State, local, academic, industry and non-profit representatives) to identify key drivers of change related to resource extraction activities on the North Slope. While climate change was identified as a key driver in the biophysical system, economic drivers related to oil and gas development were also important. Expert-reviewed informational materials were developed to help stakeholders obtain baseline knowledge and stimulate discussions about interactions between drivers, knowledge gaps and uncertainties. Map-based scenario products will allow mission-oriented agencies to jointly explore where to prioritize research investments and address risk in a complex, changing environment. Scenarios consider multidecadal timescales. However, tracking of indicator variables derived from scenarios can lead to important insights about the trajectory of the North Slope social-environmental system and inform management decisions to reduce risk on much shorter timescales. The inclusion of stakeholders helps provide a broad spectrum of expert viewpoints necessary for considering the range of plausible scenarios. A well-defined focal question, transparency in the participation process and continued outreach about the utility and limitations of scenarios are also important components of the scenarios process.
2016-10-01
and text data mining . A Spinal Cord Injury Pressure Ulcer and Deep tissue injury ontology, SCIPUDO, will be developed to ensure robust and extensive...on natural language programming and the need to convert text in to data for analysis. In progress c) Define Physio-MIMI based SCIPUD+ Resource...information extraction from the free text clinical note. 3) Significant Results Nothing to report 4) Other Achievements Nothing to report
SAS- Semantic Annotation Service for Geoscience resources on the web
NASA Astrophysics Data System (ADS)
Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.
2015-12-01
There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.
Gallegos, Tanya J.; Bern, Carleton R.; Birdwell, Justin E.; Haines, Seth S.; Engle, Mark A.
2015-01-01
Global trends toward developing new energy resources from lower grade, larger tonnage deposits that are not generally accessible using “conventional” extraction methods involve variations of subsurface in situ extraction techniques including in situ oil-shale retorting, hydraulic fracturing of petroleum reservoirs, and in situ recovery (ISR) of uranium. Although these methods are economically feasible and perhaps result in a smaller above-ground land-use footprint, there remain uncertainties regarding potential subsurface impacts to groundwater. This chapter provides an overview of the role of water in these technologies and the opportunities and challenges for water reuse and recycling.
Automated extraction and semantic analysis of mutation impacts from the biomedical literature
2012-01-01
Background Mutations as sources of evolution have long been the focus of attention in the biomedical literature. Accessing the mutational information and their impacts on protein properties facilitates research in various domains, such as enzymology and pharmacology. However, manually curating the rich and fast growing repository of biomedical literature is expensive and time-consuming. As a solution, text mining approaches have increasingly been deployed in the biomedical domain. While the detection of single-point mutations is well covered by existing systems, challenges still exist in grounding impacts to their respective mutations and recognizing the affected protein properties, in particular kinetic and stability properties together with physical quantities. Results We present an ontology model for mutation impacts, together with a comprehensive text mining system for extracting and analysing mutation impact information from full-text articles. Organisms, as sources of proteins, are extracted to help disambiguation of genes and proteins. Our system then detects mutation series to correctly ground detected impacts using novel heuristics. It also extracts the affected protein properties, in particular kinetic and stability properties, as well as the magnitude of the effects and validates these relations against the domain ontology. The output of our system can be provided in various formats, in particular by populating an OWL-DL ontology, which can then be queried to provide structured information. The performance of the system is evaluated on our manually annotated corpora. In the impact detection task, our system achieves a precision of 70.4%-71.1%, a recall of 71.3%-71.5%, and grounds the detected impacts with an accuracy of 76.5%-77%. The developed system, including resources, evaluation data and end-user and developer documentation is freely available under an open source license at http://www.semanticsoftware.info/open-mutation-miner. Conclusion We present Open Mutation Miner (OMM), the first comprehensive, fully open-source approach to automatically extract impacts and related relevant information from the biomedical literature. We assessed the performance of our work on manually annotated corpora and the results show the reliability of our approach. The representation of the extracted information into a structured format facilitates knowledge management and aids in database curation and correction. Furthermore, access to the analysis results is provided through multiple interfaces, including web services for automated data integration and desktop-based solutions for end user interactions. PMID:22759648
NASA Astrophysics Data System (ADS)
Wurl, Jobst; Gámez, Alba E.; Ivanova, Antonina; Imaz Lamadrid, Miguel A.; Hernández-Morales, Pablo
2018-04-01
Mismanagement has caused the overexploitation of one third of the major aquifers in Mexico, mainly due to excessive water extraction for agricultural irrigation. Santo Domingo (Baja California Sur, in northern Mexico, where agriculture absorbs nearly 80% of water) is the only aquifer in the Mexico where, after a period of overexploitation, equality between extraction and recharge rates was achieved, although this has not meant the securement of long-term water availability. This paper offers an analysis of hydrological resilience of a water-limited arid ecosystem under future extraction scenarios and changing climate conditions. A regional groundwater flow model is proposed using MODFLOW software. Then, different indicators were modeled as outcomes of coupled human-water systems to predict water trajectories under different human impacts. The aim was to recognize water insecurity scenarios and define appropriate actions to a more sustainable use of this scarce resource in the region. Thus, although runoff derived from extreme floods may favor infiltration, the involvement of local stakeholders and decision makers to reverse the adverse impacts of current water management and climate change is imperative if water availability and better quality are to be secured.
Concepts and Benefits of Lunar Core Drilling
NASA Technical Reports Server (NTRS)
McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.
2007-01-01
Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.
Vigi4Med Scraper: A Framework for Web Forum Structured Data Extraction and Semantic Representation
Audeh, Bissan; Beigbeder, Michel; Zimmermann, Antoine; Jaillon, Philippe; Bousquet, Cédric
2017-01-01
The extraction of information from social media is an essential yet complicated step for data analysis in multiple domains. In this paper, we present Vigi4Med Scraper, a generic open source framework for extracting structured data from web forums. Our framework is highly configurable; using a configuration file, the user can freely choose the data to extract from any web forum. The extracted data are anonymized and represented in a semantic structure using Resource Description Framework (RDF) graphs. This representation enables efficient manipulation by data analysis algorithms and allows the collected data to be directly linked to any existing semantic resource. To avoid server overload, an integrated proxy with caching functionality imposes a minimal delay between sequential requests. Vigi4Med Scraper represents the first step of Vigi4Med, a project to detect adverse drug reactions (ADRs) from social networks founded by the French drug safety agency Agence Nationale de Sécurité du Médicament (ANSM). Vigi4Med Scraper has successfully extracted greater than 200 gigabytes of data from the web forums of over 20 different websites. PMID:28122056
25 CFR 224.85 - When may a tribe enter into a lease or business agreement?
Code of Federal Regulations, 2010 CFR
2010-04-01
... TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT... business agreement for the purpose of energy resource development for: (a) Exploration for, extraction of, or other development of the tribe's energy mineral resources on tribal land including, but not...
25 CFR 224.85 - When may a tribe enter into a lease or business agreement?
Code of Federal Regulations, 2011 CFR
2011-04-01
... TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT... business agreement for the purpose of energy resource development for: (a) Exploration for, extraction of, or other development of the tribe's energy mineral resources on tribal land including, but not...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... AGENCY: Office of Natural Resources Revenue, Interior. ACTION: Notice. SUMMARY: The U.S. Department of... Conway; Department of the Interior; Office of Natural Resources Revenue; 1801 Pennsylvania Avenue NW... FURTHER INFORMATION CONTACT: Shirley Conway, Office of Natural Resources Revenue; telephone (202) 254-5554...
NASA Astrophysics Data System (ADS)
Zhernov, Evgeny; Nehoda, Evgenia
2017-11-01
The state, regional and industry approaches to the problem of personnel training for building an innovative knowledge economy at all levels that ensures sustainable development of the region are analyzed in the article using the cases of the Kemerovo region and the coal industry. A new regional-matrix approach to the training of highly qualified personnel is proposed, which allows to link the training systems with the regional economic matrix "natural resources - cognitive resources" developed by the author. A special feature of the new approach is the consideration of objective conditions and contradictions of regional systems of personnel training, which have formed as part of economic systems of regions differ-entiated in the matrix. The methodology of the research is based on the statement about the interconnectivity of general and local knowledge, from which the understanding of the need for a combination of regional, indus-try and state approaches to personnel training is derived. A new form of representing such a combination is the proposed approach, which is based on matrix analysis. The results of the research can be implemented in the practice of modernization of professional education of workers in the coal industry of the natural resources extractive region.
What determines social capital in a social-ecological system? Insights from a network perspective.
Barnes-Mauthe, Michele; Gray, Steven Allen; Arita, Shawn; Lynham, John; Leung, PingSun
2015-02-01
Social capital is an important resource that can be mobilized for purposive action or competitive gain. The distribution of social capital in social-ecological systems can determine who is more productive at extracting ecological resources and who emerges as influential in guiding their management, thereby empowering some while disempowering others. Despite its importance, the factors that contribute to variation in social capital among individuals have not been widely studied. We adopt a network perspective to examine what determines social capital among individuals in social-ecological systems. We begin by identifying network measures of social capital relevant for individuals in this context, and review existing evidence concerning their determinants. Using a complete social network dataset from Hawaii's longline fishery, we employ social network analysis and other statistical methods to empirically estimate these measures and determine the extent to which individual stakeholder attributes explain variation within them. We find that ethnicity is the strongest predictor of social capital. Measures of human capital (i.e., education, experience), years living in the community, and information-sharing attitudes are also important. Surprisingly, we find that when controlling for other factors, industry leaders and formal fishery representatives are generally not well connected. Our results offer new quantitative insights on the relationship between stakeholder diversity, social networks, and social capital in a coupled social-ecological system, which can aid in identifying barriers and opportunities for action to overcome resource management problems. Our results also have implications for achieving resource governance that is not only ecologically and economically sustainable, but also equitable.
What Determines Social Capital in a Social-Ecological System? Insights from a Network Perspective
NASA Astrophysics Data System (ADS)
Barnes-Mauthe, Michele; Gray, Steven Allen; Arita, Shawn; Lynham, John; Leung, PingSun
2015-02-01
Social capital is an important resource that can be mobilized for purposive action or competitive gain. The distribution of social capital in social-ecological systems can determine who is more productive at extracting ecological resources and who emerges as influential in guiding their management, thereby empowering some while disempowering others. Despite its importance, the factors that contribute to variation in social capital among individuals have not been widely studied. We adopt a network perspective to examine what determines social capital among individuals in social-ecological systems. We begin by identifying network measures of social capital relevant for individuals in this context, and review existing evidence concerning their determinants. Using a complete social network dataset from Hawaii's longline fishery, we employ social network analysis and other statistical methods to empirically estimate these measures and determine the extent to which individual stakeholder attributes explain variation within them. We find that ethnicity is the strongest predictor of social capital. Measures of human capital (i.e., education, experience), years living in the community, and information-sharing attitudes are also important. Surprisingly, we find that when controlling for other factors, industry leaders and formal fishery representatives are generally not well connected. Our results offer new quantitative insights on the relationship between stakeholder diversity, social networks, and social capital in a coupled social-ecological system, which can aid in identifying barriers and opportunities for action to overcome resource management problems. Our results also have implications for achieving resource governance that is not only ecologically and economically sustainable, but also equitable.
Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources
Brusseau, Mark L.; Narter, Matthew
2014-01-01
Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on metropolitan water resources was assessed for Tucson, AZ, by comparing the aggregate volume of extracted groundwater for all pump-and-treat systems associated with contaminated sites in the region to the total regional groundwater withdrawal. The analysis revealed that the aggregate volume of groundwater withdrawn for the pump-and-treat systems operating in Tucson, all of which are located at chlorinated-solvent contaminated sites, was 20% of the total groundwater withdrawal in the city for the study period. The treated groundwater was used primarily for direct delivery to local water supply systems or for reinjection as part of the pump-and-treat system. The volume of the treated groundwater used for potable water represented approximately 13% of the total potable water supply sourced from groundwater, and approximately 6% of the total potable water supply. This case study illustrates the significant impact chlorinated-solvent contaminated sites can have on groundwater resources and regional potable-water supplies. PMID:24116872
NASA Astrophysics Data System (ADS)
Chang, Vivide Tuan-Chyan; Merisier, Delson; Yu, Bing; Walmer, David K.; Ramanujam, Nirmala
2011-03-01
A significant challenge in detecting cervical pre-cancer in low-resource settings is the lack of effective screening facilities and trained personnel to detect the disease before it is advanced. Light based technologies, particularly quantitative optical spectroscopy, have the potential to provide an effective, low cost, and portable solution for cervical pre-cancer screening in these communities. We have developed and characterized a portable USB-powered optical spectroscopic system to quantify total hemoglobin content, hemoglobin saturation, and reduced scattering coefficient of cervical tissue in vivo. The system consists of a high-power LED as light source, a bifurcated fiber optic assembly, and two USB spectrometers for sample and calibration spectra acquisitions. The system was subsequently tested in Leogane, Haiti, where diffuse reflectance spectra from 33 colposcopically normal sites in 21 patients were acquired. Two different calibration methods, i.e., a post-study diffuse reflectance standard measurement and a real time self-calibration channel were studied. Our results suggest that a self-calibration channel enabled more accurate extraction of scattering contrast through simultaneous real-time correction of intensity drifts in the system. A self-calibration system also minimizes operator bias and required training. Hence, future contact spectroscopy or imaging systems should incorporate a selfcalibration channel to reliably extract scattering contrast.
Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K
2015-04-01
Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals
NASA Astrophysics Data System (ADS)
Tyurin, Alexey
2017-11-01
Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month) on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.
Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov
Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V
2016-01-01
Objective: Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. Methods: We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. Results and Discussion: The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. PMID:27013523
Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov.
Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V; Xu, Hua
2016-07-01
Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Maschi, Tina; Dennis, Kelly Sullivan; Gibson, Sandy; MacMillan, Thalia; Sternberg, Susan; Hom, Maryann
2011-05-01
The purpose of this article was to review the empirical literature that investigated trauma and stress among older adults in the criminal justice system. Nineteen journal articles published between 1988 and 2010 were identified and extracted via research databases and included mixed age samples of adjudicated older and younger adults (n = 11) or older adult only samples (n = 8). Findings revealed past and current trauma and stress, consequences and/or correlates, and internal and external coping resources among aging offenders. The implications and future directions for gerontological social work, research, and policy with older adults in the criminal justice system are advanced.
NASA Astrophysics Data System (ADS)
Sanders, Gerald B.; Larson, William E.
2015-05-01
A key aspect of enabling an affordable and sustainable program of human exploration beyond low Earth orbit is the ability to locate, extract, and harness the resources found in space to reduce what needs to be launched from Earth's deep gravity well and to minimize the risk of dependence on Earth for survival. Known as In Situ Resource Utilization or ISRU, the ability to convert space resources into useful and mission critical products has been shown in numerous studies to be mission and architecture enhancing or enabling. However at the time of the release of the US Vision for Space Exploration in 2004, only concept feasibility hardware for ISRU technologies and capabilities had been built and tested in the laboratory; no ISRU hardware had ever flown in a mission to the Moon or Mars. As a result, an ISRU development project was established with phased development of multiple generations of hardware and systems. To bridge the gap between past ISRU feasibility hardware and future hardware needed for space missions, and to increase confidence in mission and architecture planners that ISRU capabilities would meet exploration needs, the ISRU development project incorporated extensive ground and analog site testing to mature hardware, operations, and interconnectivity with other exploration systems linked to ISRU products. This report documents the series of analog test activities performed from 2008 to 2012, the stepwise progress achieved, and the end-to-end system and mission demonstrations accomplished in this test program.
Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.
Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua
2015-01-01
A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.
Sable, Rushikesh; Parajuli, Pravin; Jois, Seetharama
2017-01-01
Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market. PMID:28441741
NASA Astrophysics Data System (ADS)
Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.
2016-08-01
Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.
City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component
Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.
1996-01-01
Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy
Effects of Hydrocarbon Extraction on Landscapes of the Appalachian Basin
Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Kalaly, Siddiq S.
2015-09-30
The need for energy resources has created numerous economic opportunities for hydrocarbon extraction in the Appalachian basin. The development of alternative energy natural gas resources from deep-shale drilling techniques, along with conventional natural gas extraction methods, has created a flurry of wells, roads, pipelines, and related infrastructure across many parts of the region. An unintended and sometimes overlooked consequence of these activities is their effect on the structure and function of the landscape and ecosystems. The collective effect of over 100,000 hydrocarbon extraction permits for oil, coal bed methane, Marcellus and Utica Shale natural gas wells, and other types of hydrocarbon gases and their associated infrastructure has saturated much of the landscape and disturbed the natural environment in the Appalachian basin. The disturbance created by the sheer magnitude of the development of these collective wells and infrastructure directly affects how the landscape and ecosystems function and how they provide ecological goods and services.
Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection
Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season
2016-01-01
Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424
TheHiveDB image data management and analysis framework.
Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew
2014-01-06
The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative.
TheHiveDB image data management and analysis framework
Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew
2014-01-01
The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative. PMID:24432000
USDA-ARS?s Scientific Manuscript database
Extraction of DNA from tissue samples can be expensive both in time and monetary resources and can often require handling and disposal of hazardous chemicals. We have developed a high throughput protocol for extracting DNA from honey bees that is of a high enough quality and quantity to enable hundr...
Biological and Bioelectrochemical Recovery of Critical and Scarce Metals.
Nancharaiah, Y V; Mohan, S Venkata; Lens, P N L
2016-02-01
Metal-bearing solid and liquid wastes are increasingly considered as secondary sources of critical and scarce metals. Undoubtedly, microorganisms are a cost-effective resource for extracting and concentrating diffuse elements from secondary sources. Microbial biotechnology for extracting base metals from ores and treatment of metal-laden wastewaters has already been applied at full scale. By contrast, microbe-metal interactions in the recovery of scarce metals and a few critical metals have received attention, whereas the recovery of many others has been barely explored. Therefore, this article explores and details the potential application of microbial biotechnologies in the recovery of critical and scarce metals. In the past decade bioelectrochemical systems have emerged as a new technology platform for metal recovery coupled to the removal of organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Changing perspectives on resource extraction.
NASA Astrophysics Data System (ADS)
Gibson, Hazel; Stewart, Iain; Pahl, Sabine; Stokes, Alison
2015-04-01
Over the last century, resource extraction in the UK has changed immeasurably; from relatively small-scale, manually-operated facilities to the larger technological advanced sites that exist today. The communities that live near these sites have also changed, from housing workers that were as much of a resource as the geological material, to local residents who are environmentally literate and strongly value their landscape. Nowadays great pressure is put on the extractive industry to work in both environmentally sustainable and socially ethical ways, but how does this impact upon the local population? How do communities perceive the resource extraction that neighbours them? And is this perception rooted in a general understanding of geology and the subsurface? To explore resident's perceptions of the geological environment, three villages in the southwest of England have been investigated, using a mixed-methods mental models approach. The villages were selected as each has a different geological setting, both commercially and culturally. The first village has a strong historical geological identity, but little current geological activity. The second village has a large tungsten mine in the process of beginning production. The third village has no obvious cultural or commercial relationships with geology and acts as the control site. A broad sample from each of the three villages was qualitatively interviewed, the results of which were analyzed using an emergent thematic coding scheme. These qualitative results were then modelled using Morgan et al's mental models method (2002) and tested using a quantitative questionnaire. The results of this mixed method approach reveals the principal perceptions (or mental models) of residents in these three villages. The villages each present a different general perception of resource exploitation, which appears to be culturally driven, with the first village having the most positive correlations. These mental models are important as they indicate the changing perceptions of local residents in relation to both their local geology and human exploitation of geological resources. The implications of this research for developing strategies of engagement with local communities will be discussed.
Extracting patterns of database and software usage from the bioinformatics literature
Duck, Geraint; Nenadic, Goran; Brass, Andy; Robertson, David L.; Stevens, Robert
2014-01-01
Motivation: As a natural consequence of being a computer-based discipline, bioinformatics has a strong focus on database and software development, but the volume and variety of resources are growing at unprecedented rates. An audit of database and software usage patterns could help provide an overview of developments in bioinformatics and community common practice, and comparing the links between resources through time could demonstrate both the persistence of existing software and the emergence of new tools. Results: We study the connections between bioinformatics resources and construct networks of database and software usage patterns, based on resource co-occurrence, that correspond to snapshots of common practice in the bioinformatics community. We apply our approach to pairings of phylogenetics software reported in the literature and argue that these could provide a stepping stone into the identification of scientific best practice. Availability and implementation: The extracted resource data, the scripts used for network generation and the resulting networks are available at http://bionerds.sourceforge.net/networks/ Contact: robert.stevens@manchester.ac.uk PMID:25161253
Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary
2014-10-01
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Nonthermal Quantum Channels as a Thermodynamical Resource.
Navascués, Miguel; García-Pintos, Luis Pedro
2015-07-03
Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.
Nonthermal Quantum Channels as a Thermodynamical Resource
NASA Astrophysics Data System (ADS)
Navascués, Miguel; García-Pintos, Luis Pedro
2015-07-01
Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.
The effects of stress on attentional resources
NASA Technical Reports Server (NTRS)
Hancock, P. A.; Chignell, M. H.
1986-01-01
A new perspective is presented from which to view the action of stress on human behavior. At a behavioral level, the action of stress is related to notions of human attention and an indication of an isomorphic relationship between modes of control at a physiological and behavioral level is presented. Examples of this phenomenon are extracted from performance under heat stress, since this is one of the most simple stress circumstances. It is suggested that stress sufficient to overcome adaptive capability, that is efficient homeostasis, acts to drain attentional resources. The manner in which such resources fail approximates that function typical of a positive feedback system, which also characterizes the breakdown of physiological response under severe environmental stress. The end point of this draining sequence is the absence of all attentional resources, which is taken to be unconsciousness, to be rapidly followed by the failure of physiological adaptability upon which life sustaining functions depend. This overall picture preserves the inverted-U shaped relationship between stress and performance, yet is in distinct contrast to the traditional arousal account of such behavior. The theoretical and practical ramifications of these observations are explored.
HISTORICAL CONTAMINATION OF GROUNDWATER RESOURCES IN THE NORTH COAST KARST AQUIFERS OF PUERTO RICO
Padilla, Ingrid; Irizarry, Celys; Steele, Katherine
2012-01-01
The North Coast Karst Aquifer System of Puerto Rico is the island’s most productive aquifer. The characteristics that make it highly productive also make it vulnerable to contamination. This research, which addresses the historical contamination of groundwater resources in the northern karst region was conducted through integration of spatial hydrogeologic and contaminant concentration data in the La Plata-Arecibo area. The study used GIS technologies and focused on phthalates and chlorinated volatile organic compounds (CVOCs) and phthalates due to their ubiquitous presence in the environment as well as their presence in listed and potential superfund sites in Puerto Rico and U.S. and potential for exposure and health impacts. Results show an extensive historical contamination of the groundwater resources in the northern karst aquifers. Long-term contamination indicates the aquifers’ large capacity for storing and releasing contaminants and reflects a long-term potential for exposure. The degradation of this important water resource has resulted in a subsequent reduction of the extraction capacity and an increase in the cost of use. PMID:24772197
... Greece people have used grapes, grape leaves, and sap for health purposes. Grape seed extract was developed ... sharing research results, and educating the public. Its resources include publications (such as Dietary ... Department of Health & Human Services, National Institutes of Health, National Center for ...
In-stream hydrokinetic power: Review and appraisal
Van Zwieten, J.; McAnally, William; Ahmad, Jameel; ...
2015-09-01
The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year ofmore » extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.« less
Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn; ...
2017-01-27
There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn
There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less
NASA Technical Reports Server (NTRS)
Andrews, Daniel
2016-01-01
Efficient expansion of human presence beyond low-Earth orbit to asteroids and Mars will require the maximum possible use of local materials, so-called in-situ resources. The moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as provide significant exploration and science value. Since the moons polar regions have confirmed the presence of volatiles, as revealed by the LCROSS and LRO missions, the next step is to understand the nature and distribution of those candidate resources and how they might be extracted. Recent studies have even indicated that if those volatiles are practically available for harvesting, they could be processed into propellants and human life-support resources, significantly reducing the cost of human missions to Mars maybe by as much as 50!Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission under study by the NASA Human Exploration and Operations Mission Directorates (HEOMD). This clever mission is currently planned to launch as early as 2021 and will demonstrate extraction of oxygen, water and other volatiles, as well measure mineralogical content such as silicon and light metals from lunar regolith.
A Compact VLSI System for Bio-Inspired Visual Motion Estimation.
Shi, Cong; Luo, Gang
2018-04-01
This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.
Uraniferous Phosphates: Resource, Security Risk, or Contaminant
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMone, D.V.; Goodell, Ph.C.; Gibbs, S.G.
2008-07-01
The escalation of the price of uranium (U) yellow cake (summer high = $130/0.454 kg (lb) has called into question the continuing availability of sufficient stockpiles and ores to process. As was developed during the years following World War II, the establishment and maintenance of a strategic inventory is a reasonable consideration for today. Therefore, it becomes critical to look at potential secondary resources beyond the classical ore suites now being utilized. The most economically viable future secondary source seems to be the byproducts of the beneficiation of phosphoric acids derived from phosphate ores. Phosphorous (P) is an essential nutrientmore » for plants; its deficiency can result in highly restrictive limitations in crop productivity. Acidic soils in tropical and subtropical regions of the world are often P deficient with high P-sorption (fixation) capacities. To correct this deficiency, efficient water-soluble P fertilizers are required. The use of raw phosphate rocks not only adds phosphate but also its contained contaminants, including uranium to the treated land. Another immediate difficulty is phosphogypsum, the standard byproduct of simple extraction. It, for practical purposes, has been selectively classified as TENORM by regulators. The imposition of these standards presents major current and future disposal and re-utilization problems. Therefore, establishing an economically viable system that allows for uranium byproduct extraction from phosphoric acids is desirable. Such a system would be dependent on yellow cake base price stability, reserve estimates, political conditions, nation-state commitment, and dependence on nuclear energy. The accumulation of yellow cake from the additional extraction process provides a valuable commodity and allows the end acid to be a more environmentally acceptable product. The phosphogypsum already accumulated, as well as that which is in process, will not make a viable component for a radiation disposal devise (RDD). Concern for weapon proliferation by rogue nation states from the byproduct production of yellowcake is an unlikely scenario. To extract the fissile U-235 (0.07%) isotope from the yellowcake (99.3%) requires the erection of a costly major gaseous diffusion or a cascading centrifuge facility. Such a facility would be extremely difficult to mask. Therefore, from a diminished security risk and positive economic and environmental viewpoints, the utilization of a phosphoric acid beneficiation process extracting uranium is desirable. (authors)« less
Volatile Extractor (PVEx) for Planetary In Situ Resource Utilization
NASA Astrophysics Data System (ADS)
Zacny, K.; Morrison, P.; Vendiola, V.; Paz, A.
2017-02-01
Here we present a trade study and final approach for efficient extraction of volatiles from planetary regolith for the purpose of In Situ Resource Utilization. The project is SBIR funded and hardware is being fabricated.
Mars Soil-Based Resource Processing and Planetary Protection
NASA Technical Reports Server (NTRS)
Sanders, G. B.; Mueller, R. P.
2015-01-01
The ability to extract and process resources at the site of exploration into products and services, commonly referred to as In Situ Resource Utilization (ISRU), can have significant benefits for robotic and human exploration missions. In particular, the ability to use in situ resources to make propellants, fuel cell reactants, and life support consumables has been shown in studies to significantly reduce mission mass, cost, and risk, while enhancing or enabling missions not possible without the incorporation of ISRU. In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study. For the first time in a large scale Mars architecture study, water from Mars soil was considered as a potential resource. At the time of the study, knowledge of water resources (their form, concentration, and distribution) was extremely limited. Also, due to lack of understanding of how to apply planetary protection rules and requirements to ISRU soil-based excavation and processing, an extremely conservative approach was incorporated where only the top several centimeters of ultraviolet (UV) radiated soil could be processed (assumed to be 3% water by mass). While results of the Mars DRA 5.0 study showed that combining atmosphere processing to make oxygen and methane with soil processing to extract water provided the lowest mission mass, atmosphere processing to convert carbon dioxide (CO2) into oxygen was baselined for the mission since it was the lowest power and risk option. With increased knowledge and further clarification of Mars planetary protection rules, and the recent release of the Mars Exploration Program Analysis Group (MEPAG) report on "Special Regions and the Human Exploration of Mars", it is time to reexamine potential water resources on Mars, options for soil processing to extract water, and the implications with respect to planetary protection and Special Regions on Mars.
A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos
Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian
2016-01-01
Objective Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today’s keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users’ information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. Materials and Methods The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively. Results The authors produced a prototype implementation of the proposed system, which is publicly accessible at https://patentq.njit.edu/oer. To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Conclusion Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. PMID:26335986
The quantitative and condition-dependent Escherichia coli proteome
Schmidt, Alexander; Kochanowski, Karl; Vedelaar, Silke; Ahrné, Erik; Volkmer, Benjamin; Callipo, Luciano; Knoops, Kèvin; Bauer, Manuel; Aebersold, Ruedi; Heinemann, Matthias
2016-01-01
Measuring precise concentrations of proteins can provide insights into biological processes. Here, we use efficient protein extraction and sample fractionation and state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein abundance map of Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli genes (>2300 proteins) under 22 different experimental conditions and identify methylation and N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover system-wide proteome allocation, expression regulation, and post-translational adaptations. These data provide a valuable resource for the systems biology and broader E. coli research communities. PMID:26641532
Possible Applications of Photoautotrophic Biotechnologies at Lunar Settlements
NASA Technical Reports Server (NTRS)
McKay, David S.; Allen, Carl; Jones, J. A.; Bayless, D.; Brown, I.; Sarkisova, S.; Garrison, D.
2007-01-01
The most ambitious goal of the Vision of Space Exploration is to extend human presence across the solar system. Today, however, missions would have to bring all of the propellant, air, food, water, habitable volumes and shielding needed to sustain settlers beyond Earth. That is why resources for propellants, life support and construction of support systems and habitats must be found in space and utilized if humans hope to ever explore and colonize the solar system. The life support, fuel production and material processing systems currently proposed for spaceflight are essentially disconnected. Only traditional crop production has been proposed as a segment for bioregenerative life support systems, although the efficiency of higher plants for air regeneration is generally low. Thus, the investigation of air bioregeneration techniques based on the activity of photosynthetic organisms with higher rates of CO2 scrubbing and O2 release is very timely and important. Future systems for organic waste utilization in space may also benefit from the use of specific microorganisms. This janitorial job is efficiently carried out by microbes on Earth, which drive and connect different elemental cycles. It is likely that environmental control and life support systems based on bioregeneration will be capable of converting both organic and inorganic components of the waste at lunar settlements into edible biomass. The most challenging technologies for future lunar settlements are the extraction of elements (e.g. Fe, O, Si, etc) from local rocks for industrial feedstocks and the production of propellants. While such extraction can be accomplished by purely inorganic processes, the high energy requirements of such processes motivates the search for alternative technologies with lower energy requirements and appropriate efficiency. Well-developed terrestrial industrial biotechnologies for metals extraction and conversion could therefore be the prototypes for extraterrestrial biometallurgy.
Resource utilisation and costs in predementia and dementia: a systematic review protocol
Landeiro, Filipa; Wace, Helena; Ghinai, Isaac; Nye, Elsbeth; Mughal, Seher; Walsh, Katie; Roberts, Nia; Lecomte, Pascal; Wittenberg, Raphael; Wolstenholme, Jane; Handels, Ron; Roncancio-Diaz, Emilse; Potashman, Michele H; Tockhorn-Heidenreich, Antje; Gray, Alastair M
2018-01-01
Introduction Dementia is the fastest growing major cause of disability globally with a mounting social and financial impact for patients and their families but also to health and social care systems. This review aims to systematically synthesise evidence on the utilisation of resources and costs incurred by patients and their caregivers and by health and social care services across the full spectrum of dementia, from its preceding preclinical stage to end of life. The main drivers of resources used and costs will also be identified. Methods and analysis A systematic literature review was conducted in MEDLINE, EMBASE, CDSR, CENTRAL, DARE, EconLit, CEA Registry, TRIP, NHS EED, SCI, RePEc and OpenGrey between January 2000 and beginning of May 2017. Two reviewers will independently assess each study for inclusion and disagreements will be resolved by a third reviewer. Data will be extracted using a predefined data extraction form following best practice. Study quality will be assessed with the Effective Public Health Practice Project quality assessment tool. The reporting of costing methodology will be assessed using the British Medical Journal checklist. A narrative synthesis of all studies will be presented for resources used and costs incurred, by level of disease severity when available. If feasible, the data will be synthesised using appropriate statistical techniques. Ethics and dissemination Included articles will be reviewed for an ethics statement. The findings of the review will be disseminated in a related peer-reviewed journal and presented at conferences. They will also contribute to the work developed in the Real World Outcomes across the Alzheimer’s disease spectrum for better care: multi-modal data access platform (ROADMAP). Trial registration number CRD42017071413. PMID:29362261
Resource utilisation and costs in predementia and dementia: a systematic review protocol.
Landeiro, Filipa; Wace, Helena; Ghinai, Isaac; Nye, Elsbeth; Mughal, Seher; Walsh, Katie; Roberts, Nia; Lecomte, Pascal; Wittenberg, Raphael; Wolstenholme, Jane; Handels, Ron; Roncancio-Diaz, Emilse; Potashman, Michele H; Tockhorn-Heidenreich, Antje; Gray, Alastair M
2018-01-23
Dementia is the fastest growing major cause of disability globally with a mounting social and financial impact for patients and their families but also to health and social care systems. This review aims to systematically synthesise evidence on the utilisation of resources and costs incurred by patients and their caregivers and by health and social care services across the full spectrum of dementia, from its preceding preclinical stage to end of life. The main drivers of resources used and costs will also be identified. A systematic literature review was conducted in MEDLINE, EMBASE, CDSR, CENTRAL, DARE, EconLit, CEA Registry, TRIP, NHS EED, SCI, RePEc and OpenGrey between January 2000 and beginning of May 2017. Two reviewers will independently assess each study for inclusion and disagreements will be resolved by a third reviewer. Data will be extracted using a predefined data extraction form following best practice. Study quality will be assessed with the Effective Public Health Practice Project quality assessment tool. The reporting of costing methodology will be assessed using the British Medical Journal checklist. A narrative synthesis of all studies will be presented for resources used and costs incurred, by level of disease severity when available. If feasible, the data will be synthesised using appropriate statistical techniques. Included articles will be reviewed for an ethics statement. The findings of the review will be disseminated in a related peer-reviewed journal and presented at conferences. They will also contribute to the work developed in the Real World Outcomes across the Alzheimer's disease spectrum for better care: multi-modal data access platform (ROADMAP). CRD42017071413. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Automation of lidar-based hydrologic feature extraction workflows using GIS
NASA Astrophysics Data System (ADS)
Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.
2016-10-01
With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.
Robustness of norm-driven cooperation in the commons
2016-01-01
Sustainable use of common-pool resources such as fish, water or forests depends on the cooperation of resource users that restrain their individual extraction to socially optimal levels. Empirical evidence has shown that under certain social and biophysical conditions, self-organized cooperation in the commons can evolve. Global change, however, may drastically alter these conditions. We assess the robustness of cooperation to environmental variability in a stylized model of a community that harvests a shared resource. Community members follow a norm of socially optimal resource extraction, which is enforced through social sanctioning. Our results indicate that both resource abundance and a small increase in resource variability can lead to collapse of cooperation observed in the no-variability case, while either scarcity or large variability have the potential to stabilize it. The combined effects of changes in amount and variability can reinforce or counteract each other depending on their size and the initial level of cooperation in the community. If two socially separate groups are ecologically connected through resource leakage, cooperation in one can destabilize the other. These findings provide insights into possible effects of global change and spatial connectivity, indicating that there is no simple answer as to their effects on cooperation and sustainable resource use. PMID:26740611
Hidden flows and waste processing--an analysis of illustrative futures.
Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T
2010-12-14
An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.
Power requirements for the first lunar outpost (FLO)
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.; Bozek, John M.
1993-01-01
NASA's Exploration Program Office is currently developing a preliminary reference mission description that lays the framework from which the nation can return to the Moon by the end of the decade. The First Lunar Outpost is the initial phase of establishing a permanent presence on the Moon and the next step of sending humans to Mars. Many systems required for missions to Mars will be verified on the Moon, while still accomplishing valuable lunar science and in-situ resource utilization (ISRU). Some of FLO's major accomplishments will be long duration habitation, extended surface roving (both piloted and teleoperated) and a suite of science experiments, including lunar resources extraction. Of equal challenge will be to provide long life, reliable power sources to meet the needs of a lunar mission.
A study of actions in operative notes.
Wang, Yan; Pakhomov, Serguei; Burkart, Nora E; Ryan, James O; Melton, Genevieve B
2012-01-01
Operative notes contain rich information about techniques, instruments, and materials used in procedures. To assist development of effective information extraction (IE) techniques for operative notes, we investigated the sublanguage used to describe actions within the operative report 'procedure description' section. Deep parsing results of 362,310 operative notes with an expanded Stanford parser using the SPECIALIST Lexicon resulted in 200 verbs (92% coverage) including 147 action verbs. Nominal action predicates for each action verb were gathered from WordNet, SPECIALIST Lexicon, New Oxford American Dictionary and Stedman's Medical Dictionary. Coverage gaps were seen in existing lexical, domain, and semantic resources (Unified Medical Language System (UMLS) Metathesaurus, SPECIALIST Lexicon, WordNet and FrameNet). Our findings demonstrate the need to construct surgical domain-specific semantic resources for IE from operative notes.
Institutional challenges for mining and sustainability in Peru.
Bebbington, Anthony J; Bury, Jeffrey T
2009-10-13
Global consumption continues to generate growth in mining. In lesser developed economies, this growth offers the potential to generate new resources for development, but also creates challenges to sustainability in the regions in which extraction occurs. This context leads to debate on the institutional arrangements most likely to build synergies between mining, livelihoods, and development, and on the socio-political conditions under which such institutions can emerge. Building from a multiyear, three-country program of research projects, Peru, a global center of mining expansion, serves as an exemplar for analyzing the effects of extractive industry on livelihoods and the conditions under which arrangements favoring local sustainability might emerge. This program is guided by three emergent hypotheses in human-environmental sciences regarding the relationships among institutions, knowledge, learning, and sustainability. The research combines in-depth and comparative case study analysis, and uses mapping and spatial analysis, surveys, in-depth interviews, participant observation, and our own direct participation in public debates on the regulation of mining for development. The findings demonstrate the pressures that mining expansion has placed on water resources, livelihood assets, and social relationships. These pressures are a result of institutional conditions that separate the governance of mineral expansion, water resources, and local development, and of relationships of power that prioritize large scale investment over livelihood and environment. A further problem is the poor communication between mining sector knowledge systems and those of local populations. These results are consistent with themes recently elaborated in sustainability science.
Institutional challenges for mining and sustainability in Peru
Bebbington, Anthony J.; Bury, Jeffrey T.
2009-01-01
Global consumption continues to generate growth in mining. In lesser developed economies, this growth offers the potential to generate new resources for development, but also creates challenges to sustainability in the regions in which extraction occurs. This context leads to debate on the institutional arrangements most likely to build synergies between mining, livelihoods, and development, and on the socio-political conditions under which such institutions can emerge. Building from a multiyear, three-country program of research projects, Peru, a global center of mining expansion, serves as an exemplar for analyzing the effects of extractive industry on livelihoods and the conditions under which arrangements favoring local sustainability might emerge. This program is guided by three emergent hypotheses in human-environmental sciences regarding the relationships among institutions, knowledge, learning, and sustainability. The research combines in-depth and comparative case study analysis, and uses mapping and spatial analysis, surveys, in-depth interviews, participant observation, and our own direct participation in public debates on the regulation of mining for development. The findings demonstrate the pressures that mining expansion has placed on water resources, livelihood assets, and social relationships. These pressures are a result of institutional conditions that separate the governance of mineral expansion, water resources, and local development, and of relationships of power that prioritize large scale investment over livelihood and environment. A further problem is the poor communication between mining sector knowledge systems and those of local populations. These results are consistent with themes recently elaborated in sustainability science. PMID:19805172
2010-01-01
Background Quantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse. Ideally, the models stored in these repositories should be extensively tested and encoded in community-supported and standardised formats. In addition, the models and their components should be cross-referenced with other resources in order to allow their unambiguous identification. Description BioModels Database http://www.ebi.ac.uk/biomodels/ is aimed at addressing exactly these needs. It is a freely-accessible online resource for storing, viewing, retrieving, and analysing published, peer-reviewed quantitative models of biochemical and cellular systems. The structure and behaviour of each simulation model distributed by BioModels Database are thoroughly checked; in addition, model elements are annotated with terms from controlled vocabularies as well as linked to relevant data resources. Models can be examined online or downloaded in various formats. Reaction network diagrams generated from the models are also available in several formats. BioModels Database also provides features such as online simulation and the extraction of components from large scale models into smaller submodels. Finally, the system provides a range of web services that external software systems can use to access up-to-date data from the database. Conclusions BioModels Database has become a recognised reference resource for systems biology. It is being used by the community in a variety of ways; for example, it is used to benchmark different simulation systems, and to study the clustering of models based upon their annotations. Model deposition to the database today is advised by several publishers of scientific journals. The models in BioModels Database are freely distributed and reusable; the underlying software infrastructure is also available from SourceForge https://sourceforge.net/projects/biomodels/ under the GNU General Public License. PMID:20587024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Gary
This final report provides a complete summary of the activities, results, analytical discussion, and overall evaluation of the project titled “Economical and Environmentally Benign Extraction of Rare Earth Elements (REES) from Coal & Coal Byproducts” under DOE Award Number DE-FE-0027155 that started in March 2016 and ended December 2017. Fly ash was selected as the coal-byproduct source material due to fact that it is readily available with no need for extensive methods to obtain the material, it is produced in large quantities (>50 million tons per year) and had REE concentrations similar to other coal-byproducts. The selected fly ash usedmore » throughout this project was from the Mill Creek power generating facility operated by Louisville Gas and Electric located in Louisville, KY and was subjected to a variety of physical and chemical characterization tests. Results from fusion extractions showed that the selected fly-ash had a TREE+Y concentration of 480 ppm with critical REEs concentration of 200 ppm. The fly ash had an outlook ratio of 1.25 and an estimated value of $16-$18 worth of salable REEs per 1-tonne of fly ash. Additional characterizations by optical evaluation, QEMSCAN, XRD, size fractionation, and SEM analysis showed the fly ash consisted of small glassy spherules with a size range between 1 to 110 µm (ave. diam. of 13 um), was heterogeneous in chemical composition (main crystalline phases: aluminum oxides and iron oxides) and was primarily an amorphous material (75 to 80%). A simple stepped approach was completed to estimate the total REE resource quantity. The approach included REE characterization of the representative samples, evaluation of fly-ash availability, and final determination estimated resource availability with regards to REE grade on a regional and national scale. This data represents the best available information and is based upon the assumptions that the power generating facility where the fly-ash was obtained will use the same coal sources (actual mines were identified), the coal materials will have relatively consistent REE concentrations, and the REE extraction process developed during this project can achieve 42% REE recovery (validated and confirmed). Calculations indicated that the estimated REE resource is approximately 175,000 tonnes with a current estimated value of $3,330MM. The proposed REE extraction and production process developed during this project used four fundamental steps; 1) fly-ash pretreatment to enhance REE extraction, 2) REE extraction by acid digestion, 3) REE separation/concentration by carbon adsorption and column chromatography, and 4) REE oxide production. Secondary processing steps to manage process residuals and additional processing techniques to produce value-added products were incorporated into the process during the project. These secondary steps were not only necessary to manage residuals, but also provided additional revenue streams that offset operational and capital expenditures. The process produces one value product stream (production of zeolite Na-P1), a solids waste stream, and one liquid stream that met RCRA discharge requirements. Based upon final design criteria and operational parameters, the proposed system could produce approximately 200 grams of REOs from 1-tonne of fly-ash, thereby representing a TREE+Y recovery of 42% (project target of > 25%). A detailed economic model was developed to evaluate both CAPEX and OPEX estimates for systems with varying capacities between 100 kg to 200 tonnes of fly ash processed per day. Using a standard system capacity of 10 tonne/day system, capital costs were estimated at $88/kg fly ash while operating costs were estimated at approximately $450/kg fly ash. This operating cost estimate includes a revenue of $495/tonne of fly ash processed from the value-added product produced from the system (zeolite Na-P1). Although operating cost savings due to zeolite production were significant, the capital + operating cost for a 10 tonne system was more expensive than the total dollar value of REEs present in the fly ash material. Specifically, the estimated cost per 1-tonne of fly ash treated is approximately $540 while the estimated value of REEs in the fly ash is $18-$20/tonne. This is an excessive difference showing that the proposed process is not economically feasible strictly on the basis of REE revenue compared to extraction costs. Although the current proposed system does not produce sufficient quantities of REEs or additional revenue sources to offset operational and capital costs, supplementary factors including US strategic concerns, commercial demands, and defense department requirements must be factored. At this time, the process developed during this project provides foundational information for future development of simple processes that require low capital investment and one that will extract a valuable quality and quantity of REE oxides from industrial waste.« less
Hong, Na; Wen, Andrew; Shen, Feichen; Sohn, Sunghwan; Liu, Sijia; Liu, Hongfang; Jiang, Guoqian
2018-01-01
Standards-based modeling of electronic health records (EHR) data holds great significance for data interoperability and large-scale usage. Integration of unstructured data into a standard data model, however, poses unique challenges partially due to heterogeneous type systems used in existing clinical NLP systems. We introduce a scalable and standards-based framework for integrating structured and unstructured EHR data leveraging the HL7 Fast Healthcare Interoperability Resources (FHIR) specification. We implemented a clinical NLP pipeline enhanced with an FHIR-based type system and performed a case study using medication data from Mayo Clinic's EHR. Two UIMA-based NLP tools known as MedXN and MedTime were integrated in the pipeline to extract FHIR MedicationStatement resources and related attributes from unstructured medication lists. We developed a rule-based approach for assigning the NLP output types to the FHIR elements represented in the type system, whereas we investigated the FHIR elements belonging to the source of the structured EMR data. We used the FHIR resource "MedicationStatement" as an example to illustrate our integration framework and methods. For evaluation, we manually annotated FHIR elements in 166 medication statements from 14 clinical notes generated by Mayo Clinic in the course of patient care, and used standard performance measures (precision, recall and f-measure). The F-scores achieved ranged from 0.73 to 0.99 for the various FHIR element representations. The results demonstrated that our framework based on the FHIR type system is feasible for normalizing and integrating both structured and unstructured EHR data.
Ellis, Margaret S.
2002-01-01
The Powder River Basin, and specifically the Gillette coal field, contains large quantities of economically extractable coal resources. These coal resources have low total sulfur content and ash yield, and most of the resources are subbituminous in rank. A recent U.S Geological Survey study of economically extractable coal in the Gillette coal field focused on five coal beds, the Wyodak rider, Upper Wyodak, Canyon, Lower Wyodak-Werner, and Gates/Kennedy. This report compares the coal quality of these economically extractable coal beds to coal in the Wyodak-Anderson coal zone in the Powder River Basin and in the Gillette coal field (Flores and others, 1999) and other produced coal in the Gillette coal field (Glass, 2000). The Upper Wyodak, Canyon, and Lower Wyodak/Werner beds are within the Wyodak-Anderson coal zone. Compared with all coal in the Wyodak-Anderson coal zone, both throughout the Powder River Basin and just within the Gillette coal field; the thick, persistent Upper Wyodak coal bed in the Gillette coal field has higher mean gross calorific value (8,569 Btu/lb), lower mean ash yield (5.8 percent), and lower mean total sulfur content (0.46 percent).
Developing a hybrid dictionary-based bio-entity recognition technique.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2015-01-01
Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.
Developing a hybrid dictionary-based bio-entity recognition technique
2015-01-01
Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907
Front Range Infrastructure Resources Project--Aggregate Resources Activities
,
1998-01-01
Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of aggregate—sand, gravel, and stone. As urban areas expand, local sources of these resources become inaccessible. Other competitive land uses have a higher value than aggregate resources. For example, gravel cannot be mined from under a subdivision. The failure to plan for the protection and extraction of infrastructure resources often results in increased consumer cost, environmental damage, and an adversarial relationship between the industry and the community.
Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E
2012-11-20
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.
2012-01-01
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources. PMID:23168231
Ziegler, Jacob P; Golebie, Elizabeth J; Jones, Stuart E; Weidel, Brian C; Solomon, Christopher T
2017-01-01
Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries. © 2016 by the Ecological Society of America.
Status of the Magma Energy Project
NASA Astrophysics Data System (ADS)
Dunn, J. C.
The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.
Classification of clinically useful sentences in clinical evidence resources.
Morid, Mohammad Amin; Fiszman, Marcelo; Raja, Kalpana; Jonnalagadda, Siddhartha R; Del Fiol, Guilherme
2016-04-01
Most patient care questions raised by clinicians can be answered by online clinical knowledge resources. However, important barriers still challenge the use of these resources at the point of care. To design and assess a method for extracting clinically useful sentences from synthesized online clinical resources that represent the most clinically useful information for directly answering clinicians' information needs. We developed a Kernel-based Bayesian Network classification model based on different domain-specific feature types extracted from sentences in a gold standard composed of 18 UpToDate documents. These features included UMLS concepts and their semantic groups, semantic predications extracted by SemRep, patient population identified by a pattern-based natural language processing (NLP) algorithm, and cue words extracted by a feature selection technique. Algorithm performance was measured in terms of precision, recall, and F-measure. The feature-rich approach yielded an F-measure of 74% versus 37% for a feature co-occurrence method (p<0.001). Excluding predication, population, semantic concept or text-based features reduced the F-measure to 62%, 66%, 58% and 69% respectively (p<0.01). The classifier applied to Medline sentences reached an F-measure of 73%, which is equivalent to the performance of the classifier on UpToDate sentences (p=0.62). The feature-rich approach significantly outperformed general baseline methods. This approach significantly outperformed classifiers based on a single type of feature. Different types of semantic features provided a unique contribution to overall classification performance. The classifier's model and features used for UpToDate generalized well to Medline abstracts. Copyright © 2016 Elsevier Inc. All rights reserved.
A phase-based stereo vision system-on-a-chip.
Díaz, Javier; Ros, Eduardo; Sabatini, Silvio P; Solari, Fabio; Mota, Sonia
2007-02-01
A simple and fast technique for depth estimation based on phase measurement has been adopted for the implementation of a real-time stereo system with sub-pixel resolution on an FPGA device. The technique avoids the attendant problem of phase warping. The designed system takes full advantage of the inherent processing parallelism and segmentation capabilities of FPGA devices to achieve a computation speed of 65megapixels/s, which can be arranged with a customized frame-grabber module to process 211frames/s at a size of 640x480 pixels. The processing speed achieved is higher than conventional camera frame rates, thus allowing the system to extract multiple estimations and be used as a platform to evaluate integration schemes of a population of neurons without increasing hardware resource demands.
Efficient Execution Methods of Pivoting for Bulk Extraction of Entity-Attribute-Value-Modeled Data
Luo, Gang; Frey, Lewis J.
2017-01-01
Entity-attribute-value (EAV) tables are widely used to store data in electronic medical records and clinical study data management systems. Before they can be used by various analytical (e.g., data mining and machine learning) programs, EAV-modeled data usually must be transformed into conventional relational table format through pivot operations. This time-consuming and resource-intensive process is often performed repeatedly on a regular basis, e.g., to provide a daily refresh of the content in a clinical data warehouse. Thus, it would be beneficial to make pivot operations as efficient as possible. In this paper, we present three techniques for improving the efficiency of pivot operations: 1) filtering out EAV tuples related to unneeded clinical parameters early on; 2) supporting pivoting across multiple EAV tables; and 3) conducting multi-query optimization. We demonstrate the effectiveness of our techniques through implementation. We show that our optimized execution method of pivoting using these techniques significantly outperforms the current basic execution method of pivoting. Our techniques can be used to build a data extraction tool to simplify the specification of and improve the efficiency of extracting data from the EAV tables in electronic medical records and clinical study data management systems. PMID:25608318
A FPGA-based architecture for real-time image matching
NASA Astrophysics Data System (ADS)
Wang, Jianhui; Zhong, Sheng; Xu, Wenhui; Zhang, Weijun; Cao, Zhiguo
2013-10-01
Image matching is a fundamental task in computer vision. It is used to establish correspondence between two images taken at different viewpoint or different time from the same scene. However, its large computational complexity has been a challenge to most embedded systems. This paper proposes a single FPGA-based image matching system, which consists of SIFT feature detection, BRIEF descriptor extraction and BRIEF matching. It optimizes the FPGA architecture for the SIFT feature detection to reduce the FPGA resources utilization. Moreover, we implement BRIEF description and matching on FPGA also. The proposed system can implement image matching at 30fps (frame per second) for 1280x720 images. Its processing speed can meet the demand of most real-life computer vision applications.
Forest operations in coppice: Environmental assessment of two different logging methods.
Laschi, Andrea; Marchi, Enrico; González-García, Sara
2016-08-15
Wood is a renewable resource and it actively contributes to enhance energy production under a sustainable perspective. However, harvesting, transport and use of wood imply several consequences and impacts on environment. There are different ways for managing forests dedicated to wood production and a sustainable approach is fundamental to preserve the resource. In this context, Life Cycle Assessment (LCA) is a useful tool for estimating the environmental impacts related to renewable resources. Traditional coppice is a common approach for forest management in several areas, including southern Europe and, specifically, Italy, Spain and the Balkans. Due to different terrain conditions, different types of forest operations are considered for wood extraction from coppices, where the main product is firewood used in domestic heating. The aim of this work was to compare the main common systems for firewood production in two different terrain conditions ('flat/low steep' and 'steep/very steep' terrains), in a representative environment for Mediterranean area, located in central Italy, by means of LCA. Seven different impact categories were evaluated in a cradle-to-gate perspective taking into account all the operations carried out from the trees felling to the firewood storage at factory. Results showed that the extraction phase was the most important in terms of environmental burdens in firewood production and the use of heavy and high-power machines negatively influenced the emissions compared with manual operations. Finally, considering the general low-inputs involved in wood production in coppice, the transport of workers by car to the work site resulted on consistent contributions into environmental burdens. An additional analysis about the modifications of CH4 and N2O exchanges between soil and atmosphere, due to soil compaction in the extraction phase, was made and based on bibliographic information. Results showed a sensible difference between disturbed and undisturbed soil. Copyright © 2016 Elsevier B.V. All rights reserved.
F. J. Eller; Carol A. Clausen; Frederick Green; S.L. Taylor
2010-01-01
Eastern red cedar (Juniperus virginiana L.) is an abundant renewable resource and represents a vast potential source of valuable natural products that may serve as natural biocides. Both the wood and needles from J. virginiana were extracted using liquid carbon dioxide (L-CO2) as well as ethanol (EtOH) and the yields determined.Woodblocks were...
Extraction of volatile and metals from extraterrestrial materials
NASA Technical Reports Server (NTRS)
Lewis, John S.
1990-01-01
Since March 1, 1989, attention was concentrated on the extraction of ilmenite from extraterrestrial materials and on the planning and development of laboratory facilities for carbonyl extraction of ferrous metal alloys. Work under three subcontracts was administered by this project: (1) electrolytic production of oxygen from molten lunar materials; (2) microwave processing of lunar materials; and (3) production of a resource-oriented space science data base.
The life cycle of a mineral deposit: a teacher's guide for hands-on mineral education activities
Frank, Dave; Galloway, John; Assmus, Ken
2005-01-01
This teacher's guide defines what a mineral deposit is and how a mineral deposit is identified and measured, how the mineral resources are extracted, and how the mining site is reclaimed; how minerals and mineral resources are processed; and how we use mineral resources in our every day lives. Included are 10 activitybased learning exercises that educate students on basic geologic concepts; the processes of finding, identifying, and extracting the resources from a mineral deposit; and the uses of minerals. The guide is intended for K through 12 Earth science teachers and students and is designed to meet the National Science Content Standards as defined by the National Research Council (1996). To assist in the understanding of some of the geology and mineral terms, see the Glossary (appendix 1) and Minerals and Their Uses (appendix 2). The process of finding or exploring for a mineral deposit, extracting or mining the resource, recovering the resource, also known as beneficiation, and reclaiming the land mined can be described as the “life cycle” of a mineral deposit. The complete process is time consuming and expensive, requiring the use of modern technology and equipment, and may take many years to complete. Sometimes one entity or company completes the entire process from discovery to reclamation, but often it requires multiple groups with specialized experience working together. Mineral deposits are the source of many important commodities, such as copper and gold, used by our society, but it is important to realize that mineral deposits are a nonrenewable resource. Once mined, they are exhausted, and another source must be found. New mineral deposits are being continuously created by the Earth but may take millions of years to form. Mineral deposits differ from renewable resources, such as agricultural and timber products, which may be replenished within a few months to several years.
Resource Use in Small Island States: Material Flows in Iceland and Trinidad and Tobago, 1961-2008.
Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina
2014-04-01
Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption.
Resource Use in Small Island States
Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina
2014-01-01
Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption. PMID:25505367
Bio-processing of solid wastes and secondary resources for metal extraction - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007
2012-01-15
Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less
Automatic generation of Web mining environments
NASA Astrophysics Data System (ADS)
Cibelli, Maurizio; Costagliola, Gennaro
1999-02-01
The main problem related to the retrieval of information from the world wide web is the enormous number of unstructured documents and resources, i.e., the difficulty of locating and tracking appropriate sources. This paper presents a web mining environment (WME), which is capable of finding, extracting and structuring information related to a particular domain from web documents, using general purpose indices. The WME architecture includes a web engine filter (WEF), to sort and reduce the answer set returned by a web engine, a data source pre-processor (DSP), which processes html layout cues in order to collect and qualify page segments, and a heuristic-based information extraction system (HIES), to finally retrieve the required data. Furthermore, we present a web mining environment generator, WMEG, that allows naive users to generate a WME specific to a given domain by providing a set of specifications.
Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C
2018-01-15
Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio-economic outcomes through a systemic understanding of how the water system functions, and by connecting goals and budgets across multiple, currently fragmented policy areas. The underpinning principles of this necessary paradigm shift are proven and have wider geographic relevance, though context-specific research is required to underpin robust policy and practical implementation. Copyright © 2017 Elsevier B.V. All rights reserved.
Emissions Scenarios and Fossil-fuel Peaking
NASA Astrophysics Data System (ADS)
Brecha, R.
2008-12-01
Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some indicators are presented that the scenario presented here should not be disregarded, and comparisons are made to the outputs of emission scenarios used for the IPCC reports.
NASA Astrophysics Data System (ADS)
Kirk-lawlor, N. E.; Edwards, E. C.
2012-12-01
In many groundwater systems, the height of the water table must be above certain thresholds for some types of surface flow to exist. Examples of flows that depend on water table elevation include groundwater baseflow to river systems, groundwater flow to wetland systems, and flow to springs. Meeting many of the goals of sustainable water resource management requires maintaining these flows at certain rates. Water resource management decisions invariably involve weighing tradeoffs between different possible usage regimes and the economic consequences of potential management choices are an important factor in these tradeoffs. Policies based on sustainability may have a social cost from forgoing present income. This loss of income may be worth bearing, but should be well understood and carefully considered. Traditionally, the economic theory of groundwater exploitation has relied on the assumption of a single-cell or "bathtub" aquifer model, which offers a simple means to examine complex interactions between water user and hydrologic system behavior. However, such a model assumes a closed system and does not allow for the simulation of groundwater outflows that depend on water table elevation (e.g. baseflow, springs, wetlands), even though those outflows have value. We modify the traditional single-cell aquifer model by allowing for outflows when the water table is above certain threshold elevations. These thresholds behave similarly to holes in a bathtub, where the outflow is a positive function of the height of the water table above the threshold and the outflow is lost when the water table drops below the threshold. We find important economic consequences to this representation of the groundwater system. The economic value of services provided by threshold-dependent outflows (including non-market value), such as ecosystem services, can be incorporated. The value of services provided by these flows may warrant maintaining the water table at higher levels than would be the case if only the benefits and costs of groundwater extraction were considered. This hole-in-the-bathtub model can motivate managers to consider the costs of the loss of such flows, which may be very costly (in terms of loss of environmental services, loss of access to surface water, etc.). Alternatively, the decision to maintain the water table at an elevation that sustains a threshold-dependent outflow may cause income loss from the imposition of lower groundwater extraction rates. Weighing the benefits of maintaining threshold-dependent flows (including non-market benefits) with the net benefits of increased extraction is an important step in a prudent water management framework. To illustrate the usefulness of the modified model in a joint economic-hydrologic context, we provide a short case study of the Ojos de San Pedro area of the Rio Loa Basin in northern Chile. Evidence indicates that a wetland and lacustrine environment and a village dependent on that environment disappeared due to water extraction for industrial use. We demonstrate how the key features of the model provide important insight in understanding the tradeoffs that were made in this case.
Waters, Keith P; Zuber, Alexandra; Willy, Rankesh M; Kiriinya, Rose N; Waudo, Agnes N; Oluoch, Tom; Kimani, Francis M; Riley, Patricia L
2013-09-01
Countries worldwide are challenged by health worker shortages, skill mix imbalances, and maldistribution. Human resources information systems (HRIS) are used to monitor and address these health workforce issues, but global understanding of such systems is minimal and baseline information regarding their scope and capability is practically non-existent. The Kenya Health Workforce Information System (KHWIS) has been identified as a promising example of a functioning HRIS. The objective of this paper is to document the impact of KHWIS data on human resources policy, planning and management. Sources for this study included semi-structured interviews with senior officials at Kenya's Ministry of Medical Services (MOMS), Ministry of Public Health and Sanitation (MOPHS), the Department of Nursing within MOMS, the Nursing Council of Kenya, Kenya Medical Practitioners and Dentists Board, Kenya's Clinical Officers Council, and Kenya Medical Laboratory Technicians and Technologists Board. Additionally, quantitative data were extracted from KHWIS databases to supplement the interviews. Health sector policy documents were retrieved from MOMS and MOPHS websites, and reviewed to assess whether they documented any changes to policy and practice as having been impacted by KHWIS data. Interviews with Kenyan government and regulatory officials cited health workforce data provided by KHWIS influenced policy, regulation, and management. Policy changes include extension of Kenya's age of mandatory civil service retirement from 55 to 60 years. Data retrieved from KHWIS document increased relicensing of professional nurses, midwives, medical practitioners and dentists, and interviewees reported this improved compliance raised professional regulatory body revenues. The review of Government records revealed few references to KHWIS; however, documentation specifically cited the KHWIS as having improved the availability of human resources for health information regarding workforce planning, management, and development. KHWIS data have impacted a range of improvements in health worker regulation, human resources management, and workforce policy and planning at Kenya's ministries of health. Published by Elsevier Ireland Ltd.
Exploring Characterizations of Learning Object Repositories Using Data Mining Techniques
NASA Astrophysics Data System (ADS)
Segura, Alejandra; Vidal, Christian; Menendez, Victor; Zapata, Alfredo; Prieto, Manuel
Learning object repositories provide a platform for the sharing of Web-based educational resources. As these repositories evolve independently, it is difficult for users to have a clear picture of the kind of contents they give access to. Metadata can be used to automatically extract a characterization of these resources by using machine learning techniques. This paper presents an exploratory study carried out in the contents of four public repositories that uses clustering and association rule mining algorithms to extract characterizations of repository contents. The results of the analysis include potential relationships between different attributes of learning objects that may be useful to gain an understanding of the kind of resources available and eventually develop search mechanisms that consider repository descriptions as a criteria in federated search.
Data and Statistics on New York's Mining Resources - NYS Dept. of
New York's Mining Resources Skip to main navigation Data and Statistics on New York's Mining Resources and review information about the regulated site. Materials Mined in New York- This site provides information on the various material mined in New York and the locations where they are extracted. Mined Land
US Forest Service experimental forests and ranges: an untapped resource for social science
Susan Charnley; Lee K. Cerveny
2011-01-01
For a century, US Forest Service experimental forests and ranges (EFRs) have been a resource for scientists conducting long-term research relating to forestry and range management social science research has been limited, despite the history of occupation and current use of these sites for activities ranging from resource extraction and recreation to public education....
NASA Astrophysics Data System (ADS)
Edwards, E. C.; Cristi, O.; Libecap, G. D.
2012-12-01
There is a substantial body of evidence that groundwater overdraft is occurring worldwide. Economists argue that the cause of this overdraft is the open-access nature of the resource, which results in a "tragedy of the commons." Sustainable water management requires that some institution control the resource to limit this overdraft by reducing water extraction. This reduction creates scarcity and requires a method of rationing. The economically efficient outcome occurs when the lowest value uses of water are eliminated. This allocation, though, may have undesirable social consequences, such as the loss of small-scale farming, and political ramifications that make such an allocation unpopular to implement. This paper explores the economic cost of leaving water in low-value uses. The policy we explore is a moratorium on voluntary water sales to mining firms to protect the groundwater resource in northern Chile. This policy has accelerated the use of expensive desalinated water, whose cost is primarily driven by its heavy use of carbon-based electricity. Chile has a strong system of water property rights that economists argue ration water in a way that leads to the efficient allocation through water markets. This paper first explores the potential inefficiency of a water market when groundwater and surface water are linked, as well as when different users vary in their intensity of use. This theoretical background provides a framework for determining the economically efficient allocation of water and the losses associated with the moratorium in northern Chile. The policy does protect some environmental and cultural public goods, which potentially offset some or all of this cost. We provide a perspective on the magnitude of these public goods but do not attempt to value them explicitly. Instead, we demonstrate what their value must be so that the moratorium policy has a cost-to-benefit ratio of one. While the estimate of lost income from inefficiency is the main focus of the empirical work, the theoretical development provides an important perspective into groundwater management and the important role of understanding the physical system in water marketing. Worldwide, subsidized and scarce water is allocated to farmers for social and political reasons. The losses from this type of allocation are often ignored or marginalized. The Chilean case demonstrates that the losses due to economically inefficient allocation are real, because the alternative is greater consumption of other resources (fossil fuels in this case), not conservation. The Chilean case also demonstrates the difficulty of adequately defining water rights for efficient markets due to the physical properties of hydrologic systems. Because groundwater and surface water systems are linked and water is partially recycled, water markets may over allocate water to consumptive users or those with preferable extraction locations. This paper provides a theoretical exposition of how water rights that fail incorporate important properties of the physical system may lead to inefficient water markets.
Recent developments of downstream processing for microbial lipids and conversion to biodiesel.
Yellapu, Sravan Kumar; Bharti; Kaur, Rajwinder; Kumar, Lalit R; Tiwari, Bhagyashree; Zhang, Xiaolei; Tyagi, Rajeshwar D
2018-05-01
With increasing global population and depleting resources, there is an apparent demand for radical unprecedented innovation to satisfy the basal needs of lives. Hence, non-conventional renewable energy resources like biodiesel have been worked out in past few decades. Biofuel (e.g. Biodiesel) serves to be the most sustainable answer to solve "food vs. fuel crisis". In biorefinery process, lipid extraction from oleaginous microbial lipids is an integral part as it facilitates the release of fatty acids. Direct lipid extraction from wet cell-biomass is favorable in comparison to dry-cell biomass because it eliminates the application of expensive dehydration. However, this process is not commercialized yet, instead, it requires intensive research and development in order to establish robust approaches for lipid extraction that can be practically applied on an industrial scale. This review aims for the critical presentation on cell disruption, lipid recovery and purification to support extraction from wet cell-biomass for an efficient transesterification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scholarly Information Extraction Is Going to Make a Quantum Leap with PubMed Central (PMC).
Matthies, Franz; Hahn, Udo
2017-01-01
With the increasing availability of complete full texts (journal articles), rather than their surrogates (titles, abstracts), as resources for text analytics, entirely new opportunities arise for information extraction and text mining from scholarly publications. Yet, we gathered evidence that a range of problems are encountered for full-text processing when biomedical text analytics simply reuse existing NLP pipelines which were developed on the basis of abstracts (rather than full texts). We conducted experiments with four different relation extraction engines all of which were top performers in previous BioNLP Event Extraction Challenges. We found that abstract-trained engines loose up to 6.6% F-score points when run on full-text data. Hence, the reuse of existing abstract-based NLP software in a full-text scenario is considered harmful because of heavy performance losses. Given the current lack of annotated full-text resources to train on, our study quantifies the price paid for this short cut.
NASA Astrophysics Data System (ADS)
Shimada, J.; Shimada, M.; Tsunashima, K.; Aoyama, C.
2017-12-01
Methane hydrate is gaining remarkable attention as future natural gas resource. Collection procedures such as heating, depressurization, and chemical intrusion are being tested, but because of its high cost, they are still under development and not yet implemented. Cost reduction of the procedures cannot be expected as long as fossil fuel is used as power and heat source to extract methane gas from methane hydrate. In this regard, natural energy such as sunlight, wind, tidal, and wave powers should be implemented as energy resources as alternatives of fossil fuels. Using natural energy instead of fossil fuel will also help to prevent global warming. However, only a few proposals have been made regarding extraction methods to use clean natural energy effectively. In this study, authors will present a new extraction method using optical fibers to expose direct sunlight onto methane hydrate, and verify from various standpoints such as energy balance during extraction process and dependency of the environment.
Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C
2015-05-01
In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multi-criteria Resource Mapping and its Relevance in the Assessment of Habitat Changes
NASA Astrophysics Data System (ADS)
Van Lancker, V. R.; Kint, L.; van Heteren, S.
2016-02-01
Mineral and geological resources can be considered to be non-renewable on time scales relevant for decision makers. Once exhausted by humans, they are not replenished rapidly enough by nature, meaning that truly sustainable resource exploitation is not possible. Comprehensive knowledge on the distribution, composition and dynamics of geological resources and on the environmental impact of aggregate extraction is therefore critical. For the Belgian and southern Netherlands part of the North Sea, being representative of a typical sandbank system, a 4D resource decision-support system is being developed that links 3D geological models with environmental impact models. Aim is to quantify natural and man-made changes and to define from these sustainable exploitation thresholds. These are needed to ensure that recovery from perturbations is rapid and secure, and that the range of natural variation is maintained, a prerequisite stated in Europe's Marine Strategy Framework Directive, the environmental pillar of Europe's Maritime Policy. The geological subsurface is parameterised using a voxel modelling approach. Primarily, the voxels, or volume blocks of information, are constrained by the geology, based on coring and seismic data, but they are open to any resource-relevant information. The primary geological data entering the voxels are subdued to uncertainty modelling, a necessary step to produce data products with confidence limits. The presentation will focus on the novelty this approach brings for seabed and habitat mapping. In our model this is the upper voxel, providing the advantage of having a dynamical coupling to the geology and a suite of environmental parameters. In the context of assessing habitat changes, this coupling enables to account for spatial and temporal variability, seabed heterogeneity, as well as data uncertainty. The project is funded by Belgian Science Policy and is further valorised through EMODnet-Geology (DG MARE).
Fritz, Fleur; Tilahun, Binyam; Dugas, Martin
2015-03-01
Electronic medical record (EMR) systems have the potential of supporting clinical work by providing the right information at the right time to the right people and thus make efficient use of resources. This is especially important in low-resource settings where reliable data are also needed to support public health and local supporting organizations. In this systematic literature review, our objectives are to identify and collect literature about success criteria of EMR implementations in low-resource settings and to summarize them into recommendations. Our search strategy relied on PubMed queries and manual bibliography reviews. Studies were included if EMR implementations in low-resource settings were described. The extracted success criteria and measurements were summarized into 7 categories: ethical, financial, functionality, organizational, political, technical, and training. We collected 381 success criteria with 229 measurements from 47 articles out of 223 articles. Most papers were evaluations or lessons learned from African countries, published from 1999 to 2013. Almost half of the EMR systems served a specific disease area like human immunodeficiency virus (HIV). The majority of criteria that were reported dealt with the functionality, followed by organizational issues, and technical infrastructures. Sufficient training and skilled personnel were mentioned in roughly 10%. Political, ethical, and financial considerations did not play a predominant role. More evaluations based on reliable frameworks are needed. Highly reliable data handling methods, human resources and effective project management, as well as technical architecture and infrastructure are all key factors for successful EMR implementation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Multi-level computational methods for interdisciplinary research in the HathiTrust Digital Library
Allen, Colin; Börner, Katy; Light, Robert; McAlister, Simon; Ravenscroft, Andrew; Rose, Robert; Rose, Doori; Otsuka, Jun; Bourget, David; Lawrence, John; Reed, Chris
2017-01-01
We show how faceted search using a combination of traditional classification systems and mixed-membership topic models can go beyond keyword search to inform resource discovery, hypothesis formulation, and argument extraction for interdisciplinary research. Our test domain is the history and philosophy of scientific work on animal mind and cognition. The methods can be generalized to other research areas and ultimately support a system for semi-automatic identification of argument structures. We provide a case study for the application of the methods to the problem of identifying and extracting arguments about anthropomorphism during a critical period in the development of comparative psychology. We show how a combination of classification systems and mixed-membership models trained over large digital libraries can inform resource discovery in this domain. Through a novel approach of “drill-down” topic modeling—simultaneously reducing both the size of the corpus and the unit of analysis—we are able to reduce a large collection of fulltext volumes to a much smaller set of pages within six focal volumes containing arguments of interest to historians and philosophers of comparative psychology. The volumes identified in this way did not appear among the first ten results of the keyword search in the HathiTrust digital library and the pages bear the kind of “close reading” needed to generate original interpretations that is the heart of scholarly work in the humanities. Zooming back out, we provide a way to place the books onto a map of science originally constructed from very different data and for different purposes. The multilevel approach advances understanding of the intellectual and societal contexts in which writings are interpreted. PMID:28922416
Multi-level computational methods for interdisciplinary research in the HathiTrust Digital Library.
Murdock, Jaimie; Allen, Colin; Börner, Katy; Light, Robert; McAlister, Simon; Ravenscroft, Andrew; Rose, Robert; Rose, Doori; Otsuka, Jun; Bourget, David; Lawrence, John; Reed, Chris
2017-01-01
We show how faceted search using a combination of traditional classification systems and mixed-membership topic models can go beyond keyword search to inform resource discovery, hypothesis formulation, and argument extraction for interdisciplinary research. Our test domain is the history and philosophy of scientific work on animal mind and cognition. The methods can be generalized to other research areas and ultimately support a system for semi-automatic identification of argument structures. We provide a case study for the application of the methods to the problem of identifying and extracting arguments about anthropomorphism during a critical period in the development of comparative psychology. We show how a combination of classification systems and mixed-membership models trained over large digital libraries can inform resource discovery in this domain. Through a novel approach of "drill-down" topic modeling-simultaneously reducing both the size of the corpus and the unit of analysis-we are able to reduce a large collection of fulltext volumes to a much smaller set of pages within six focal volumes containing arguments of interest to historians and philosophers of comparative psychology. The volumes identified in this way did not appear among the first ten results of the keyword search in the HathiTrust digital library and the pages bear the kind of "close reading" needed to generate original interpretations that is the heart of scholarly work in the humanities. Zooming back out, we provide a way to place the books onto a map of science originally constructed from very different data and for different purposes. The multilevel approach advances understanding of the intellectual and societal contexts in which writings are interpreted.
Space Resource Utilization and Extending Human Presence Across the Solar System
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2005-01-01
The Presidents Vision for Exploration is not a single mission, but an open ended journey that seeks to answer "How can we live on other worlds?" Using space resources is the only known approach for affordable, sustained, flexible, and self sufficient, human occupation beyond Earth orbit. Earth is a large planet. A simple analysis using the rocket equation shows that if Earth were a bit larger, chemical propulsion as a mechanism to access space would become impractical. Thus, even with the most efficient chemical rocket launch capability, the cost of lifting massive payloads into space will remain very steep (currently about $l00k/lb to the Moon and greater than $500k/lb to Mars). Space resource utilization should begin with an aggressive broad based demonstration program as afforded by the precursor missions implementation of the President's Vision of Exploration. Ion engine upper stages, for example, were studied for over 30 years, but only implemented in design after the Deep Space 1 in space demonstration. These demonstrations should include: extraction of elements from lunar regolith, and Martian soil and atmosphere, demonstration of power break even and growth from lunar or Mars moons derived photovoltaics, oxygen extraction for life support and propellant, and metals and alloys for in space repair and the production of habits and radiation shielding. Space resource utilization yields operational dividends through the subsequent programs including: propellant from lunar oxygen which could cut transportation costs from Earth in half, mega watts per year of power grown from lunar photovoltaics at decreasing cost per kW, decreased cost for human Mars missions by a factor of 10 by using propellant derived from Mars atmosphere for return, and in space manufacturing and food production with space resources yielding safe sustained and eventually self sufficient human presence in space. After the demonstration and implementation, the space resource utilization investment enables commercial and private viability beyond Earth orbit. For example, analysis has shown the lunar oxygen production for propellant becomes commercially viable after the exploration program completes the R&D, and power from lunar derived photovoltaics could, according to past NASA sponsored studies, pay for themselves while supplying most of Earth's electrical energy after about 17 years. Besides the Moon and Mars the resources of the near Earth asteroids enable the building of large space structures and science payloads. Analysis has shown that one of the thousands of these objects (some as easily accessible in space as the Moon and Mars), 2 km dia, the size of a typical open pit mine, would cost the total global financial product of Earth for 30,000 years if we were to launch it from Earth. Beyond Mars, the belt asteroids have been calculated to contain enough materials for habitat and life to support 10 quadrillion people. Thus, the development and use of space resources enables the extension of human life through the solar system allowing humanity to move from a planetary to a solar system society.
A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.
2014-12-01
Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.
Application of Machine Learning in Urban Greenery Land Cover Extraction
NASA Astrophysics Data System (ADS)
Qiao, X.; Li, L. L.; Li, D.; Gan, Y. L.; Hou, A. Y.
2018-04-01
Urban greenery is a critical part of the modern city and the greenery coverage information is essential for land resource management, environmental monitoring and urban planning. It is a challenging work to extract the urban greenery information from remote sensing image as the trees and grassland are mixed with city built-ups. In this paper, we propose a new automatic pixel-based greenery extraction method using multispectral remote sensing images. The method includes three main steps. First, a small part of the images is manually interpreted to provide prior knowledge. Secondly, a five-layer neural network is trained and optimised with the manual extraction results, which are divided to serve as training samples, verification samples and testing samples. Lastly, the well-trained neural network will be applied to the unlabelled data to perform the greenery extraction. The GF-2 and GJ-1 high resolution multispectral remote sensing images were used to extract greenery coverage information in the built-up areas of city X. It shows a favourable performance in the 619 square kilometers areas. Also, when comparing with the traditional NDVI method, the proposed method gives a more accurate delineation of the greenery region. Due to the advantage of low computational load and high accuracy, it has a great potential for large area greenery auto extraction, which saves a lot of manpower and resources.
NASA Astrophysics Data System (ADS)
Gilman, Alison
The tumultuous experience of the Shell Petroleum Development Company of Nigeria Ltd (SPDC) in the Niger Delta region of Nigeria has contributed to the debates surrounding the role of transnational companies in their host communities and the impact that resource extraction has on the economic development of emerging countries. The case study demonstrates that methods used by extraction companies for interacting with their host communities are ineffective and superficial. Using the lessons learned from the Niger Delta conflict, this thesis proposes a new strategy, entitled community- corporate diplomacy, and a protocol for companies to implement before opening production sites in Africa. The proposed strategy and an accompanying protocol offer a break from the status quo in that they are built upon an understanding of the specificities of the African continent, that host communities need to be respected as key stakeholders, and that extraction activities have a higher risk of negatively impacting neighboring communities. The recommendation could be applied to other countries and industries, but the increasing importance of African natural resources, the particularities of African political and social structures and the effects of extraction activities make this proposal especially important for extractive companies beginning production in Africa. Keywords: Nigeria, Niger Delta, Shell, corporate social responsibility, transnational advocacy networks, multi-stakeholder initiatives, community relations, corporate diplomacy, Africa, extractive industries.
NASA Technical Reports Server (NTRS)
1976-01-01
Enabling technology needs and other requirements to support space industrialization include: large space structures; fabrication and joining processes; single stage to orbit and heavy lift launch vehicles; nuclear and solar space power systems; robotics, manipulators, and teleoperators; biotechnology in space; artificial gravity; the utilization of lunar materials for construction; and the extraction of oxygen and metals from lunar resources. New initiatives (FY 1978) directly supportive or partly related to space industrialization are listed.
The Self-Organized Archive: SPASE, PDS and Archive Cooperatives
NASA Astrophysics Data System (ADS)
King, T. A.; Hughes, J. S.; Roberts, D. A.; Walker, R. J.; Joy, S. P.
2005-05-01
Information systems with high quality metadata enable uses and services which often go beyond the original purpose. There are two types of metadata: annotations which are items that comment on or describe the content of a resource and identification attributes which describe the external properties of the resource itself. For example, annotations may indicate which columns are present in a table of data, whereas an identification attribute would indicate source of the table, such as the observatory, instrument, organization, and data type. When the identification attributes are collected and used as the basis of a search engine, a user can constrain on an attribute, the archive can then self-organize around the constraint, presenting the user with a particular view of the archive. In an archive cooperative where each participating data system or archive may have its own metadata standards, providing a multi-system search engine requires that individual archive metadata be mapped to a broad based standard. To explore how cooperative archives can form a larger self-organized archive we will show how the Space Physics Archive Search and Extract (SPASE) data model will allow different systems to create a cooperative and will use Planetary Data System (PDS) plus existing space physics activities as a demonstration.
Dust Removal Technolgy for a Mars In Situ Resource Utilization System
NASA Technical Reports Server (NTRS)
Calle, C. I.; Johansen, M. R.; Williams, B. S.; Hogue, M. D.; Mackey, P. J.; Clements, J. S.
2011-01-01
Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions.
INFLUENCE OF MINERAL FORM, MATRIX CONCENTRATION AND PH ON IN-VITRO EXTRACTABILITY
Due to extensive resources required to conduct bioavailability studies, there is a veritable need for a laboratory in-vitro extraction procedure that yields a strong correlation to actual animal results that is simple to conduct and relatively rapid in data productivity. Research...
Solar cells for lunar applications by vacuum evaporation of lunar regolith materials
NASA Technical Reports Server (NTRS)
Ignatiev, Alex
1991-01-01
The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.
NASA Technical Reports Server (NTRS)
Klein, S. B.
1980-01-01
Twenty states, the District of Columbia, and the Virgin Islands enacted erosion and sediment control legislation during the past decade to provide for the implementation or the strengthening of statewide erosion and sediment control plans for rural and/or urban lands. That legislation and the state programs developed to implement these laws are quoted and reviewed. The natural resource data requirements of each program are also extracted. The legislation includes amendments to conservation district laws, water quality laws, and erosion and sediment control laws. Laws which provides for legislative review of administrative regulations and LANDSAT applications and/or information systems that were involved in implementing or gathering data for a specific soil erosion and sediment control program are summarized as well as principal concerns affecting erosion and sediment control laws.
Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhiyao; Liu, Xiaobing; Gluesenkamp, Kyle R
2016-10-01
The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproducedmore » water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.« less
Laner, David; Rechberger, Helmut; De Soete, Wouter; De Meester, Steven; Astrup, Thomas F
2015-12-01
Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource recovery efficiencies. The calculated exergy efficiencies were used to compare the scenarios and to evaluate the applicability of exergy-based measures for expressing resource quality and for optimizing resource recovery. Exergy efficiencies were determined based on two approaches: (i) exergy flow analysis of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher efficiencies were associated with high levels of material recycling), while the scenario efficiencies based on the exergetic LCA lay in a narrow range around 14%. Metal recovery was beneficial in both types of analyses, but had more influence on the overall efficiency in the exergetic LCA approach, as avoided burdens associated with primary metal production were much more important than the exergy content of the recovered metals. On the other hand, plastic recovery was highly beneficial in the exergy flow analysis, but rather insignificant in exergetic LCA. The two approaches thereby offered different quantitative results as well as conclusions regarding material recovery. With respect to resource quality, the main challenge for the exergy flow analysis is the use of exergy content and exergy losses as a proxy for resource quality and resource losses, as exergy content is not per se correlated with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it is constrained by limited information available about the composition of flows in the system as well as about secondary production processes and their interaction with primary or traditional production chains. In the exergetic LCA, resource quality could be reflected by the savings achieved by product substitution and the consideration of the waste's upstream burden allowed for an evaluation of the waste's resource potential. For a comprehensive assessment of resource efficiency in waste LCA, the sensitivity of accounting for product substitution should be carefully analyzed and cumulative exergy consumption measures should be complimented by other impact categories. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xiaobiao; Xie, Shunping; Zhang, Xueliang; Chen, Cheng; Guo, Hao; Du, Jinkang; Duan, Zheng
2018-06-01
Surface water is vital resources for terrestrial life, while the rapid development of urbanization results in diverse changes in sizes, amounts, and quality of surface water. To accurately extract surface water from remote sensing imagery is very important for water environment conservations and water resource management. In this study, a new Multi-Band Water Index (MBWI) for Landsat 8 Operational Land Imager (OLI) images is proposed by maximizing the spectral difference between water and non-water surfaces using pure pixels. Based on the MBWI map, the K-means cluster method is applied to automatically extract surface water. The performance of MBWI is validated and compared with six widely used water indices in 29 sites of China. Results show that our proposed MBWI performs best with the highest accuracy in 26 out of the 29 test sites. Compared with other water indices, the MBWI results in lower mean water total errors by a range of 9.31%-25.99%, and higher mean overall accuracies and kappa coefficients by 0.87%-3.73% and 0.06-0.18, respectively. It is also demonstrated for MBWI in terms of robustly discriminating surface water from confused backgrounds that are usually sources of surface water extraction errors, e.g., mountainous shadows and dark built-up areas. In addition, the new index is validated to be able to mitigate the seasonal and daily influences resulting from the variations of the solar condition. MBWI holds the potential to be a useful surface water extraction technology for water resource studies and applications.
30 CFR 1206.451 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and mine or wash plant, or an approved ONRR-initially accepted deduction for costs of such... resource under a mineral leasing law that authorizes exploration for, development or extraction of, or... washing plant produces. ONRR means the Office of Natural Resources Revenue of the Department of the...
Optimizing Resource and Energy Recovery for Municipal Solid Waste Management
Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...
NASA Astrophysics Data System (ADS)
Abbud-Madrid, Angel
2018-02-01
The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward exploiting the resources from asteroids, the Moon, and Mars, an international legal framework is also needed to regulate commercial exploration and the use of space and planetary resources for the benefit of all humanity. These resources hold the secret to unleash an unprecedented wave of exploration and of economic prosperity by utilizing the full potential and value of space. It is up to us humans here on planet Earth to find the best way to use these extraterrestrial resources effectively and responsibly to make this promise a reality.
To build a mine: Prospect to product
NASA Technical Reports Server (NTRS)
Gertsch, Richard E.
1992-01-01
The terrestrial definition of ore is a quantity of earth materials containing a mineral that can be extracted at a profit. While a space-based resource-gathering operation may well be driven by other motives, such an operation should have the most favorable cost-benefit ratio possible. To this end, principles and procedures already tested by the stringent requirements of the profit motive should guide the selection, design, construction, and operation of a space-based mine. Proceeding from project initiation to a fully operational mine requires several interacting and overlapping steps, which are designed to facilitate the decision process and insure economic viability. The steps to achieve a fully operational mine are outlined. Presuming that the approach to developing nonterrestrial resources will parallel that for developing mineral resources on Earth, we can speculate on some of the problems associated with developing lunar and asteroidal resources. The baseline for our study group was a small lunar mine and oxygen extraction facility. The development of this facility is described in accordance with the steps outlined.
Bio-processing of solid wastes and secondary resources for metal extraction - A review.
Lee, Jae-Chun; Pandey, Banshi Dhar
2012-01-01
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.
Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant
NASA Technical Reports Server (NTRS)
Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.
2010-01-01
For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study
Identifying newly acquired cases of hepatitis C using surveillance: a literature review.
Sacks-Davis, R; VAN Gemert, C; Bergeri, I; Stoove, M; Hellard, M
2012-11-01
Surveillance of newly acquired hepatitis C virus (HCV) infection is crucial for understanding the epidemiology of HCV and informing public health practice. However, monitoring such infections via surveillance systems is challenging because they are commonly asymptomatic. A literature review was conducted to identify methodologies used by HCV surveillance systems to identify newly acquired infections; relevant surveillance systems in 15 countries were identified. Surveillance systems used three main strategies to identify newly acquired infections: (1) asking physicians to classify cases; (2) identifying symptomatic cases or cases with elevated alanine aminotransferases; and (3) identifying cases with documented evidence of anti-HCV antibody seroconversion within a specific time-frame. Case-ascertainment methods varied with greater completeness of data in enhanced compared to passive surveillance systems. Automated systems that extract and link testing data from multiple laboratory and clinic databases may provide an opportunity for collecting testing histories for individuals that is less resource intensive than enhanced surveillance.
NASA Astrophysics Data System (ADS)
Billo, Emily Ruth
Corporate social responsibility (CSR) programs developed in recent years as the business response to social and environmental criticism of corporate operations, and are most debated in those societies where neoliberalism emerged most prominently, the United States and the United Kingdom. My dissertation expands these debates investigating the CSR programs of a Spanish-owned multinational oil company, Repsol-YPF operating in the Ecuadorian Amazon region. It explores CSR programs as institutions that can facilitate ongoing resource extraction, and particular technologies of rule that serve to discipline indigenous peoples at the point of extraction. I conducted an institutional ethnography to examine the social relationships produced through CSR programs, and contend that the relationships formed within CSR programs enable ongoing resource extraction. This dissertation argues that CSR programs produce entanglements between state, corporate and indigenous actors that lead to competing and conflicting spaces of governance in Ecuador. These entanglements reflect the Ecuadorian state's attempts to 'erase' indigenous difference in the name of securing wealth and membership in the nation-state. In turn, CSR programs can both contain indigenous mobilization and resistance in Ecuador, but also highlight indigenous difference and rights and access to resources, predicated on membership in the nation-state. To that end, the dissertation is attentive to the ambivalence and uncertainty of indigenous actors produced through engagement with corporate capital, and suggests that ambivalence can also be a productive space.
de la Calle, Guillermo; García-Remesal, Miguel; Chiesa, Stefano; de la Iglesia, Diana; Maojo, Victor
2009-10-07
The rapid evolution of Internet technologies and the collaborative approaches that dominate the field have stimulated the development of numerous bioinformatics resources. To address this new framework, several initiatives have tried to organize these services and resources. In this paper, we present the BioInformatics Resource Inventory (BIRI), a new approach for automatically discovering and indexing available public bioinformatics resources using information extracted from the scientific literature. The index generated can be automatically updated by adding additional manuscripts describing new resources. We have developed web services and applications to test and validate our approach. It has not been designed to replace current indexes but to extend their capabilities with richer functionalities. We developed a web service to provide a set of high-level query primitives to access the index. The web service can be used by third-party web services or web-based applications. To test the web service, we created a pilot web application to access a preliminary knowledge base of resources. We tested our tool using an initial set of 400 abstracts. Almost 90% of the resources described in the abstracts were correctly classified. More than 500 descriptions of functionalities were extracted. These experiments suggest the feasibility of our approach for automatically discovering and indexing current and future bioinformatics resources. Given the domain-independent characteristics of this tool, it is currently being applied by the authors in other areas, such as medical nanoinformatics. BIRI is available at http://edelman.dia.fi.upm.es/biri/.
Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook
2014-01-01
Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data. PMID:25225874
Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook
2014-09-15
Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.
System Assessment of Carbon Dioxide Used as Gas Oxidant and Coolant in Vanadium-Extraction Converter
NASA Astrophysics Data System (ADS)
Du, Wei Tong; Wang, Yu; Liang, Xiao Ping
2017-10-01
With the aim of reducing carbon dioxide (CO2) emissions and of using waste resources in steel plants, the use of CO2 as a gas oxidant and coolant in the converter to increase productivity and energy efficiency was investigated in this study. Experiments were performed in combination with thermodynamic theory on vanadium-extraction with CO2 and oxygen (O2) mixed injections. The results indicate that the temperature of the hot metal bath decreased as the amount of CO2 introduced into O2 increased. At an injection of 85 vol.% O2 and 15 vol.% CO2, approximately 12% of additional carbon was retained in the hot metal. Moreover, the content of vanadium trioxide in the slag was higher. In addition, the O2 consumption per ton of hot metal was reduced by 8.5% and additional chemical energy was recovered by the controlled injection of CO2 into the converter. Therefore, using CO2 as a gas coolant was conducive to vanadium extraction, and O2 consumption was reduced.
Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles
NASA Astrophysics Data System (ADS)
Colaprete, A.; Elphic, R. C.; Andrews, D.; Bluethmann, W.; Quinn, J.; Chavers, D. G.
2017-12-01
Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles. While it is now understood that lunar water and other volatiles have a much greater extent of distribution, possible forms, and concentrations than previously believed, to fully understand how viable these volatiles are as a resource to support human exploration of the solar system, the distribution and form needs to be understood at a "human" scale. That is, the "ore body" must be better understood at the scales it would be worked before it can be evaluated as a potential architectural element within any evolvable lunar or Mars campaign. This talk will provide an overview of the RP mission with an emphasis on mission goals and measurements, and will provide an update as to its current status.
Simulation of Helium-3 Extraction from Lunar Ilmenite
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; Kulcinski, G. L.; Schmitt, H. H.
2004-01-01
Knowledge of the trapping mechanisms and diffusion characteristics of solar-wind implanted isotopes in the minerals of the lunar regolith will enable the optimization of the processes to extract solar wind gases from regolith particles. Extraction parameters include the temperature and duration of extraction, particle size, and gas yield. Diffusion data will increase the efficiency and profitability of future mining ventures. This data will also assist in optimizing the evaluations of various potential mining sites based on remote sensing data. For instance, if magnesian ilmenite (Mg,Fel.,Ti03) is found to retain He better than stoichiometric ilmenite (FeTi03), remote sensing data for Mg could be considered in addition to Ti and maturity data. The context of the currently discussed work is the mining of helium-3 for potential use as a fuel for fusion energy generation. However, the potential resources deposited by the solar wind include hydrogen (and derived water), helium-4, nitrogen and carbon. Implantation experiments such as those performed for helium isotopes in ilmenite are important for the optimized extraction of these additional resources. These experiments can easily be reproduced for most elements or isotopes of interest.
Content of polyphenol compound in mangrove and macroalga extracts
NASA Astrophysics Data System (ADS)
Takarina, N. D.; Patria, M. P.
2017-07-01
Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.
A novel method for harmless disposal and resource reutilization of steel wire rope sludges.
Zhang, Li; Liu, Yang-Sheng
2016-10-01
Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.
Prospects for the commercial development of hot dry rock geothermal energy in New Mexico
NASA Astrophysics Data System (ADS)
Duchane, D. V.; Goff, F.
A vast store of energy is available to the world in the form of hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The Los Alamos National Laboratory has developed technology to mine the heat from HDR by using techniques developed in the petroleum industry. In practice, an artificial reservoir is created in the hot rock and water is circulated through the reservoir to extract the thermal energy and bring it to the surface. There are virtually no adverse environmental effects from an HDR plant when the system is operated in a closed-loop mode with the process water continually recirculated. An experimental plant at Fenton Hill, NM is now undergoing long-term testing to demonstrate that energy can be obtained from HDR on a sustained basis with operational procedures which are readily adaptable to industry. Significant HDR resources exist in the state of New Mexico. Resources in the Valles Caldera, Zuni Uplift, and Rio Grande Rift have been evaluated in detail. Studies indicate that it should be possible to economically develop high grade HDR resources with technology available today. As advanced concepts for developing and operating HDR systems are investigated, even more widespread utilization of the technology will be commercially feasible.
Considerations on the Optimal and Efficient Processing of Information-Bearing Signals
ERIC Educational Resources Information Center
Harms, Herbert Andrew
2013-01-01
Noise is a fundamental hurdle that impedes the processing of information-bearing signals, specifically the extraction of salient information. Processing that is both optimal and efficient is desired; optimality ensures the extracted information has the highest fidelity allowed by the noise, while efficiency ensures limited resource usage. Optimal…
Eastern red cedar: critical fluid extraction and bioactivity of extracts
USDA-ARS?s Scientific Manuscript database
Eastern red cedar is an abundant natural resource in the United States. It is valuable for its lumber and cedarwood oil derived from the wood. Cedarwood is generally obtained by steam distillation; however, this process has several disadvantages, including relatively low yields and altered oil chara...
Forecasting the Depletion of Transboundary Groundwater Resources in Hyper-Arid Environments
NASA Astrophysics Data System (ADS)
Mazzoni, A.; Heggy, E.
2014-12-01
The increase in awareness about the overexploitation of transboundary groundwater resources in hyper-arid environments that occurred in the last decades has highlighted the need to better map, monitor and manage these resources. Climate change, economic and population growth are driving forces that put more pressure on these fragile but fundamental resources. The aim of our approach is to address the question of whether or not groundwater resources, especially non-renewable, could serve as "backstop" water resource during water shortage periods that would probably affect the drylands in the upcoming 100 years. The high dependence of arid regions on these resources requires prudent management to be able to preserve their fossil aquifers and exploit them in a more sustainable way. We use the NetLogo environment with the FAO Aquastat Database to evaluate if the actual trends of extraction, consumption and use of non-renewable groundwater resources would remain feasible with the future climate change impacts and the population growth scenarios. The case studies selected are three: the Nubian Sandstone Aquifer System, shared between Egypt, Libya, Sudan and Chad; the North Western Sahara Aquifer System, with Algeria, Tunisia and Libya and the Umm Radhuma Dammam Aquifer, in its central part, shared between Saudi Arabia, Qatar and Bahrain. The reason these three fossil aquifers were selected are manifold. First, they represent properly transboundary non-renewable groundwater resources, with all the implications that derive from this, i.e. the necessity of scientific and socio-political cooperation among riparians, the importance of monitoring the status of shared resources and the need to elaborate a shared management policy. Furthermore, each country is characterized by hyper-arid climatic conditions, which will be exacerbated in the next century by climate change and lead to probable severe water shortage periods. Together with climate change, the rate of population growth will be at unprecedented levels for these areas causing the water demand of these nations to grow largely. Our preliminary simulation results suggest that fossil aquifers cannot be used as a long-term solution for water shortage in hyper-arid environments. Aquifers in the Arabian Peninsula are forecasted to be depleted within decades.
Tewfik, Ihab
2008-01-01
2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2017-01-01
Deep-space crewed missions will not have regular access to the Earth's resources or the ability to rapidly return to Earth if a system fails. As crewed missions extend farther from Earth for longer periods, habitation systems must become more self-sufficient and reliable for safe, healthy, and sustainable human exploration. For human missions to Mars, Environmental Control and Life Support Systems (ECLSS) must be able operate for up to 1,100 days with minimal spares and consumables. These missions will require capabilities to more fully recycle atmospheric gases and wastewater to substantially reduce mission costs. Even with relatively austere requirements for use, water represents one of the largest consumables by mass. Systems must be available to extract and recycle water from all sources of waste. And given that there will be no opportunity to send samples back to Earth for analysis, analytical measurements will be limited to monitoring hardware brought on board the spacecraft. The Earth Reliant phase of NASA's exploration strategy includes leveraging the International Space Station (ISS) to demonstrate advanced capabilities for a robust and reliable ECLSS. The ISS Water Recovery System (WRS) includes a Urine Processor Assembly (UPA) for distillation and recovery of water from urine and a Water Processor Assembly (WPA) to process humidity condensate and urine distillate into potable water. Possible enhancements to more fully "close the water loop" include recovery of water from waste brines and solid wastes. A possible game changer is the recovery of water from local planetary resources through use of In Situ Resource Utilization (ISRU) technologies. As part of the development and demonstration sequence, NASA intends to utilize cis-Lunar space as a Proving Ground to verify systems for deep space habitation by conducting extended duration missions to validate our readiness for Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papillon, Martin, E-mail: martin.papillon@umontreal.ca; Rodon, Thierry, E-mail: thierry.rodon@pol.ulaval.ca
Indigenous peoples have gained considerable agency in shaping decisions regarding resource development on their traditional lands. This growing agency is reflected in the emergence of the right to free, prior, and informed consent (FPIC) when Indigenous rights may be adversely affected by major resource development projects. While many governments remain non-committal toward FPIC, corporate actors are more proactive at engaging with Indigenous peoples in seeking their consent to resource extraction projects through negotiated Impact and Benefit Agreements. Focusing on the Canadian context, this article discusses the roots and implications of a proponent-driven model for seeking Indigenous consent to natural resourcemore » extraction on their traditional lands. Building on two case studies, the paper argues that negotiated consent through IBAs offers a truncated version of FPIC from the perspective of the communities involved. The deliberative ethic at the core of FPIC is often undermined in the negotiation process associated with proponent-led IBAs. - Highlights: • FPIC is becoming a norm for resource extraction projects on Indigenous lands. • Proponent-led IBAs have become the main instrument to establish FPIC in Canada. • Case studies show elite-driven IBA negotiations do not always create the conditions for FPIC. • We need to pay attention to community deliberations as an inherent aspect of FPIC.« less
In many parts of the world, aquatic ecosystems are threatened by hydrological and water quality alterations due to extraction and conversion of natural resources for agriculture, urban development, forestry, mining, transportation, and water resources development. To evaluate the...
High performance green barriers based on nanocellulose
Sandeep S Nair; JY Zhu; Yulin Deng; Arthur J Ragauskas
2014-01-01
With the increasing environmental concerns such as sustainability and end-of-life disposal challenges, materials derived from renewable resources such as nanocellulose have been strongly advocated as potential replacements for packaging materials. Nanocellulose can be extracted from various plant resources through mechanical and chemical ways. Nanocellulose with its...
Mining natural variation for maize improvement: Selection on phenotypes and genes
USDA-ARS?s Scientific Manuscript database
Maize is highly genetically and phenotypically diverse. Tropical maize and teosinte are important genetic resources that harbor unique alleles not found in temperate maize hybrids. To access these resources, breeders must be able to extract favorable unique alleles from tropical maize and teosinte f...
Delineation and geometric modeling of road networks
NASA Astrophysics Data System (ADS)
Poullis, Charalambos; You, Suya
In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.
e-MIR2: a public online inventory of medical informatics resources.
de la Calle, Guillermo; García-Remesal, Miguel; Nkumu-Mbomio, Nelida; Kulikowski, Casimir; Maojo, Victor
2012-08-02
Over the past years, the number of available informatics resources in medicine has grown exponentially. While specific inventories of such resources have already begun to be developed for Bioinformatics (BI), comparable inventories are as yet not available for the Medical Informatics (MI) field, so that locating and accessing them currently remains a difficult and time-consuming task. We have created a repository of MI resources from the scientific literature, providing free access to its contents through a web-based service. We define informatics resources as all those elements that constitute, serve to define or are used by informatics systems, ranging from architectures or development methodologies to terminologies, vocabularies, databases or tools. Relevant information describing the resources is automatically extracted from manuscripts published in top-ranked MI journals. We used a pattern matching approach to detect the resources' names and their main features. Detected resources are classified according to three different criteria: functionality, resource type and domain. To facilitate these tasks, we have built three different classification schemas by following a novel approach based on folksonomies and social tagging. We adopted the terminology most frequently used by MI researchers in their publications to create the concepts and hierarchical relationships belonging to the classification schemas. The classification algorithm identifies the categories associated with resources and annotates them accordingly. The database is then populated with this data after manual curation and validation. We have created an online repository of MI resources to assist researchers in locating and accessing the most suitable resources to perform specific tasks. The database contains 609 resources at the time of writing and is available at http://www.gib.fi.upm.es/eMIR2. We are continuing to expand the number of available resources by taking into account further publications as well as suggestions from users and resource developers.
Work engagement in professional nursing practice: A systematic review.
Keyko, Kacey; Cummings, Greta G; Yonge, Olive; Wong, Carol A
2016-09-01
Work engagement in professional nursing practice is critically important to consider when addressing key challenges of health systems, including the global nursing shortage, pressures to reduce health care spending, and increasing demands for quality care and positive outcomes for patients. However, research on work engagement in professional nursing practice has not yet been synthesized and therefore, does not provide a sufficient foundation of knowledge to guide practice and further research. The overall aim of this systematic review is to determine what is currently known about the antecedents and outcomes of work engagement in professional nursing practice. Systematic review. The search strategy included eight electronic databases: CINAHL, MEDLINE, PsycINFO, PROQUEST, SCOPUS, Web of Science, EMBASE, and Business Source Complete. The search was conducted in October 2013. Quantitative and qualitative research that examined relationships between work engagement and antecedent or outcome factors was included. Quality assessment, data extractions, and analysis were completed on all included studies. Data extracted from included studies were synthesized through descriptive and narrative synthesis. Content analysis was used to categorize factors into themes and categories. 3621 titles and abstracts were screened and yielded 113 manuscripts for full text review. Full text review resulted in 18 included studies. All factors examined were grouped into either influences or outcomes of work engagement. A total of 77 influencing factors were categorized into 6 themes: organizational climate, job resources, professional resources, personal resources, job demands, and demographic variables. A total of 17 outcomes of work engagement were categorized into 3 themes: performance and care outcomes, professional outcomes, and personal outcomes. Based on the results, we adapted the Job Demands-Resources (JD-R) model and developed the Nursing Job Demands-Resources (NJD-R) model for work engagement in professional nursing practice, which reflects key adaptations related to organizational climate and professional resources. Our findings indicate that a wide range of antecedents, at multiple levels, are related to registered nurses' work engagement. Positive outcomes of work engagement are valuable to both performance and the individual nurse. The NJD-R model offers nursing science a valuable beginning framework to understand the current evidence, further direct nursing research, and begin to guide practice and policy. The results offer opportunities for nurse leaders to promote work engagement in professional nurses through action on organizational level resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rickels, W.; Visbeck, M.; Kronfeld-Goharani, U.; Neumann, B.; Schmidt, J.; van Doorn, E.; Matz-Lück, N.; Ott, K.; Quaas, M.
2013-12-01
The ocean regulates the global climate, provides humans with natural resources such as food, materials, important substances, and energy, and is essential for international trade and recreational and cultural activities. Together with human development and economic growth, free access to, and availability of, ocean resources and services have exerted strong pressure on marine systems, ranging from overfishing, increasing resource extraction, and alteration of coastal zones to various types of thoughtless pollution. International cooperation and effective governance are required to protect the marine environment and promote the sustainable use of marine resources in such a way that due account can be taken of the environmental values of current generations and the needs of future generations. For this purpose, developing and agreeing on to devote one of the Sustainable Development Goal (SDG) specifically to the Ocean and Coasts could prove to be an essential element. The new SDGs will build upon the Millennium Development Goals (MDGs) and replace them by 2015. Ensuring environmental sustainability in a general sense is one of the eight MDGs, but the ocean is not explicitly addressed. Furthermore, the creation of a comprehensive underlying set of ocean sustainability targets and effective indicators would help in assessing the current status of marine systems, diagnosing ongoing trends, and providing information for inclusive, forward-looking, and sustainable ocean governance. To achieve this, we propose to establish a global Future Ocean Spatial Planning (FOSP) process.
Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E
2015-10-15
This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+20%; high-very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high-very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status (i.e. groundwater quality) changes in the near future, the implementation of planning measures and natural resource management is recommended. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fogg, G. E.
2016-12-01
Hydrologists often compartmentalize subsurface fluid systems into soil, vadose zone, and groundwater even though such entities are all part of a dynamic continuum. Similarly, hydrogeologists mainly study the fresh groundwater that is essential to water resources upon which humans and ecosystems depend. While vast amounts of these fresh groundwater resources are in sedimentary basins, many of those basins contain vast amounts of saline groundwater and petroleum underneath the freshwater. Contrary to popular assumptions in the hydrogeology and petroleum communities, the saline groundwater and petroleum resources are not stagnant, but migrate in response to Tothian, topographically driven flow as well as other driving forces controlled by thermal, density and geomechanical processes. Importantly, the transition between fresh and saline groundwater does not necessarily represent a boundary between deep, stagnant groundwater and shallower, circulating groundwater. The deep groundwater is part of the subsurface fluid continuum, and exploitation of saline aquifer systems for conventional and unconventional (e.g., fracking) petroleum production or for injection of waste fluids should be done with some knowledge of the integrated fresh and saline water hydrogeologic system. Without sufficient knowledge of the deep and shallow hydrogeology, there will be significant uncertainty about the possible impacts of injection and petroleum extraction activities on overlying fresh groundwater quality and quantity. When significant uncertainty like this exists in science, public and scientific perceptions of consequences swing wildly from one extreme to another. Accordingly, professional and lay opinions on fracking range from predictions of doom to predictions of zero impact. This spastic range of opinions stems directly from the scientific uncertainty about hydrogeologic interactions between shallow and deep hydrogeologic systems. To responsibly manage both the fresh and saline, petroliferous groundwater resources, a new era of whole-system characterization is needed that integrates deep and shallow geologic and hydrogeologic models and data, including aquifer-aquitard frameworks, head and pressure in space and time, and hydrogeochemistry.
NASA Astrophysics Data System (ADS)
Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe
2014-01-01
Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.
Alpinia calcarata Roscoe: A potential phytopharmacological source of natural medicine
Rahman, Md Atiar; Islam, Md Shahidul
2015-01-01
Alpinia calcarata Roscoe (Family: Zingiberaceae), is a rhizomatous perennial herb, which is commonly used in the traditional medicinal systems in Sri Lanka. Alpinia calcarata is cultivated in tropical countries, including Sri Lanka, India, and Malaysia. Experimentally, rhizomes of Alpinia calcarata are shown to possess antibacterial, antifungal, anthelmintic, antinociceptive, anti-inflammatory, antioxidant, aphrodisiac, gastroprotective, and antidiabetic activities. Phytochemical screening revealed the presence of polyphenols, tannins, flavonoids, steroid glycosides and alkaloids in the extract and essential oil of this plant. Essential oil and extracts from this plant have been found to possess wide range of pharmacological and biological activities. This article provides a comprehensive review of its ethnomedical uses, chemical constituents and the pharmacological profile as a medicinal plant. Particular attention has been given to the pharmacological effects of the essential oil of Alpinia calcarata in this review so that the potential use of this plant either in pharmaceutics or as an agricultural resource can be evaluated. PMID:26009694
Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe
2014-01-15
Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.
Water recovery from sewage using forward osmosis.
Lutchmiah, Kerusha; Cornelissen, Emile R; Harmsen, Danny J H; Post, Jan W; Lampi, Keith; Ramaekers, Hans; Rietveld, Luuk C; Roest, Kees
2011-01-01
This research is part of the Sewer Mining project aimed at developing a new technological concept by extracting water from sewage by means of forward osmosis (FO). FO, in combination with a reconcentration system, e.g. reverse osmosis (RO) is used to recover high-quality water. Furthermore, the subsequent concentrated sewage (containing an inherent energy content) can be converted into a renewable energy (RE) source (i.e. biogas). The effectiveness of FO membranes in the recovery of water from sewage has been evaluated. Stable FO water flux values (>4.3 LMH) were obtained with primary effluent (screened, not treated) used as the feed solution. Fouling of the membrane was also induced and further investigated. Accumulated fouling was found to be apparent, but not irreversible. Sewer Mining could lead to a more economical and sustainable treatment of wastewater, facilitating the extraction of water and energy from sewage and changing the way it is perceived: not as waste, but as a resource.
Ecosystem management: A comparison of greater yellowstone and georges bank
NASA Astrophysics Data System (ADS)
Burroughs, Richard H.; Clark, Tim W.
1995-09-01
Ecosystem management links human activities with the functioning of natural environments over large spatial and temporal scales. Our examination of Greater Yellowstone and Georges Bank shows similarities exist between human uses, administrative characteristics, and some biophysical features. Each region faces growing pressures to replace traditional extractive uses with more sustainable extractive or noncommodity uses coupled with concern about endangered species. Ecosystem management as a set of practical guidelines for making decisions under evolving expectations is far from complete, and it embodies new demands on individuals and institutions. In each system these challenges are considered relative to: the public's symbolic understanding of the management challenge, ecosystem management ambiguities, information availability, information use, administrative setting, and learning capabilities of governance organizations Progress in making ecosystem management operational may occur as refinements in content and approach make it an increasingly attractive option for resource users, the public, and government officials.
Decker, Franziska; Oriola, David; Dalton, Benjamin
2018-01-01
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. PMID:29323637
NASA Astrophysics Data System (ADS)
Moser, L.; Schmitt, A.; Wendleder, A.
2016-06-01
Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks) and a high spatial sampling (about five meters). The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.
NASA Technical Reports Server (NTRS)
Abell, Paul A.
2011-01-01
U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.
Seafloor Topographic Analysis in Staged Ocean Resource Exploration
NASA Astrophysics Data System (ADS)
Ikeda, M.; Okawa, M.; Osawa, K.; Kadoshima, K.; Asakawa, E.; Sumi, T.
2017-12-01
J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-expense and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We designed a method to focus mineral deposit prospective area in multi-stages (the regional survey, semi-detail survey and detail survey) by extracted topographic features of some well-known seafloor massive sulfide deposits from seafloor topographic analysis using seafloor topographic data acquired by the bathymetric survey. We applied this procedure to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. In Addition, we tried to create a three-dimensional model of seafloor topography by SfM (Structure from Motion) technique using multiple image data of Chimney distributed around well-known seafloor massive sulfide deposit taken with Hi-Vision camera mounted on ROV in detail survey such as geophysical exploration. Topographic features of Chimney was extracted by measuring created three-dimensional model. As the result, it was possible to estimate shape of seafloor sulfide such as Chimney to be mined by three-dimensional model created from image data taken with camera mounted on ROV. In this presentation, we will discuss about focusing mineral deposit prospective area in multi-stages by seafloor topographic analysis using seafloor topographic data in exploration system for seafloor massive sulfide deposit and also discuss about three-dimensional model of seafloor topography created from seafloor image data taken with ROV.