Sample records for resource map state

  1. Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Maps Maps NREL develops an array of maps to support renewable energy development and generation resource in the United States by county Geothermal Maps of geothermal power plants, resources for enhanced geothermal systems, and hydrothermal sites in the United States Hydrogen Maps of hydrogen production

  2. Wound Care: Preventing Infection

    MedlinePlus

    ... and Sort All Resources State Resource Map Pain Management Information Publications Materiales en español / Spanish Materials Support Groups & ... and Sort All Resources State Resource Map Pain Management Information Publications Materiales en español / Spanish Materials Support Groups & ...

  3. When to Replace a Prosthesis

    MedlinePlus

    ... and Sort All Resources State Resource Map Pain Management Information Publications Materiales en español / Spanish Materials Support Groups & ... and Sort All Resources State Resource Map Pain Management Information Publications Materiales en español / Spanish Materials Support Groups & ...

  4. Points to Know and Consider When Preparing for and Undergoing an Amputation

    MedlinePlus

    ... and Sort All Resources State Resource Map Pain Management Information Publications Materiales en español / Spanish Materials Support Groups & ... and Sort All Resources State Resource Map Pain Management Information Publications Materiales en español / Spanish Materials Support Groups & ...

  5. Hydrologic Unit Map -- 1978, state of South Dakota

    USGS Publications Warehouse

    ,

    1978-01-01

    This map and accompanying table show Hydrologic Unites that are basically hydrographic in nature. The Cataloging Unites shown supplant the Cataloging Units previously depicted n the 1974 State Hydrologic Unit Map. The boundaries as shown have been adapted from the 1974 State Hydrologic Unit Map, "The Catalog of Information on Water Data" (1972), "Water Resources Regions and Subregions for the National Assessment of Water and Related Land Resources" by the U.S. Water Resources Council (1970), "River Basin of the United States" by the U.S. Soil Conservation Service (1963, 1970), "River Basin Maps Showing Hydrologic Stations" by the Inter-Agency Committee on Water Resources, Subcommittee on Hydrology (1961), and State planning maps. The Political Subdivision has been adopted from "Counties and County Equivalents of the States if the United States" presented in Federal Information Processing Standards Publication 6-2, issued by the National Bureau of Standards (1973) in which each county or county equivalent is identified by a 2-character State code and a 3-character county code. The Regions, Subregions and Accounting Units are aggregates of the Cataloging Unites. The Regions and Sub regions are currently (1978) used by the U.S> Water Resources Council for comprehensive planning, including the National Assessment, and as a standard geographical framework for more detailed water and related land-resources planning. The Accounting Units are those currently (1978) in use by the U.S. Geological Survey for managing the National Water Data Network. This map was revised to include a boundary realinement between Cataloging Units 10140103 and 10160009.

  6. Wind Resource Assessment | Wind | NREL

    Science.gov Websites

    Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can

  7. Map of assessed continuous (unconventional) oil resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2015-01-01

    The U.S. Geological Survey (USGS) conducts quantitative assessments of potential oil and gas resources of the onshore United States and associated coastal State waters. Since 2000, the USGS has completed assessments of continuous (unconventional) resources in the United States based on geologic studies and analysis of well-production data and has compiled digital maps of the assessment units classified into four categories: shale gas, tight gas, coalbed gas, and shale oil or tight oil (continuous oil). This is the fourth digital map product in a series of USGS unconventional oil and gas resource maps; its focus being shale-oil or tight-oil (continuous-oil) assessments. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, which includes an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and a published map file (.pmf). Supporting geologic studies of total petroleum systems and assessment units, as well as studies of the methodology used in the assessment of continuous-oil resources in the United States, are listed with hyperlinks in table 1. Assessment results and geologic reports are available at the USGS websitehttp://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx.

  8. Map of assessed tight-gas resources in the United States

    USGS Publications Warehouse

    Biewick, Laura R. H.; ,

    2014-01-01

    This report presents a digital map of tight-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within tight-gas assessment units (AUs). This is the second digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hard-copy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS tight-gas assessment publications and web pages.

  9. Map of assessed coalbed-gas resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2014-01-01

    This report presents a digital map of coalbed-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within coalbed-gas assessment units (AUs). This is the third digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS coalbed-gas assessment publications and web pages.

  10. USGS maps

    USGS Publications Warehouse

    ,

    2005-01-01

    Discover a small sample of the millions of maps produced by the U.S. Geological Survey (USGS) in its mission to map the Nation and survey its resources. This booklet gives a brief overview of the types of maps sold and distributed by the USGS through its Earth Science Information Centers (ESIC) and also available from business partners located in most States. The USGS provides a wide variety of maps, from topographic maps showing the geographic relief and thematic maps displaying the geology and water resources of the United States, to special studies of the moon and planets.

  11. USGS national surveys and analysis projects: Preliminary compilation of integrated geological datasets for the United States

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Stoeser, Douglas B.; Wilson, Frederic H.; Dicken, Connie L.; Ludington, Steve

    2007-01-01

    The growth in the use of Geographic nformation Systems (GS) has highlighted the need for regional and national digital geologic maps attributed with age and rock type information. Such spatial data can be conveniently used to generate derivative maps for purposes that include mineral-resource assessment, metallogenic studies, tectonic studies, human health and environmental research. n 1997, the United States Geological Survey’s Mineral Resources Program initiated an effort to develop national digital databases for use in mineral resource and environmental assessments. One primary activity of this effort was to compile a national digital geologic map database, utilizing state geologic maps, to support mineral resource studies in the range of 1:250,000- to 1:1,000,000-scale. Over the course of the past decade, state databases were prepared using a common standard for the database structure, fields, attributes, and data dictionaries. As of late 2006, standardized geological map databases for all conterminous (CONUS) states have been available on-line as USGS Open-File Reports. For Alaska and Hawaii, new state maps are being prepared, and the preliminary work for Alaska is being released as a series of 1:500,000-scale regional compilations. See below for a list of all published databases.

  12. United States Offshore Wind Resource Assessment

    NASA Astrophysics Data System (ADS)

    Schwartz, M.; Haymes, S.; Heimiller, D.

    2008-12-01

    The utilization of the offshore wind resource will be necessary if the United States is to meet the goal of having 20% of its electricity generated by wind power because many of the electrical load centers in the country are located along the coastlines. The United States Department of Energy, through its National Renewable Energy Laboratory (NREL), has supported an ongoing project to assess the wind resource for the offshore regions of the contiguous United States including the Great Lakes. Final offshore maps with a horizontal resolution of 200 meters (m) have been completed for Texas, Louisiana, Georgia, northern New England, and the Great Lakes. The ocean wind resource maps extend from the coastline to 50 nautical miles (nm) offshore. The Great Lake maps show the resource for all of the individual lakes. These maps depict the wind resource at 50 m above the water as classes of wind power density. Class 1 represents the lowest available wind resource, while Class 7 is the highest resource. Areas with Class 5 and higher wind resource can be economical for offshore project development. As offshore wind turbine technology improves, areas with Class 4 and higher resource should become economically viable. The wind resource maps are generated using output from a modified numerical weather prediction model combined with a wind flow model. The preliminary modeling is performed by AWS Truewind under subcontract to NREL. The preliminary model estimates are sent to NREL to be validated. NREL validates the preliminary estimates by comparing 50 m model data to available measurements that are extrapolated to 50 m. The validation results are used to modify the preliminary map and produce the final resource map. The sources of offshore wind measurement data include buoys, automated stations, lighthouses, and satellite- derived ocean wind speed data. The wind electric potential is represented as Megawatts (MW) of potential installed capacity and is based on the square kilometers (sq. km) of Class 5 and higher wind resource found in a specific region. NREL uses a factor of 5 MW of installed capacity per sq. km of "windy water" for its raw electric potential calculations. NREL uses Geographic Information System data to break down the offshore wind potential by state, water depth, and distance from shore. The wind potential estimates are based on the updated maps, and on previous offshore resource information for regions where new maps are not available. The estimates are updated as new maps are completed. For example, the updated Texas offshore map shows almost 3000 sq. km of Class 5 resource within 10 nm of shore and nearly 2000 sq. km of Class 5 resource or 10,000 MW of potential installed capacity in water depths of less than 30 m. NREL plans to develop exclusion criteria to further refine the offshore wind potential

  13. Validation of New Wind Resource Maps

    NASA Astrophysics Data System (ADS)

    Elliott, D.; Schwartz, M.

    2002-05-01

    The National Renewable Energy Laboratory (NREL) recently led a project to validate updated state wind resource maps for the northwestern United States produced by a private U.S. company, TrueWind Solutions (TWS). The independent validation project was a cooperative activity among NREL, TWS, and meteorological consultants. The independent validation concept originated at a May 2001 technical workshop held at NREL to discuss updating the Wind Energy Resource Atlas of the United States. Part of the workshop, which included more than 20 attendees from the wind resource mapping and consulting community, was dedicated to reviewing the latest techniques for wind resource assessment. It became clear that using a numerical modeling approach for wind resource mapping was rapidly gaining ground as a preferred technique and if the trend continues, it will soon become the most widely-used technique around the world. The numerical modeling approach is a relatively fast application compared to older mapping methods and, in theory, should be quite accurate because it directly estimates the magnitude of boundary-layer processes that affect the wind resource of a particular location. Numerical modeling output combined with high resolution terrain data can produce useful wind resource information at a resolution of 1 km or lower. However, because the use of the numerical modeling approach is new (last 35 years) and relatively unproven, meteorological consultants question the accuracy of the approach. It was clear that new state or regional wind maps produced by this method would have to undergo independent validation before the results would be accepted by the wind energy community and developers.

  14. Assessment of water resources potential of Ceará state (Brazil)

    NASA Astrophysics Data System (ADS)

    Araujo, Angelo; Pereira, Diamantino; Pereira, Paulo

    2016-04-01

    A methodological approach and results on water resources assessment in large areas are described with the case study of Ceará State (148,016 km2, northeast Brazil), where the scarceness of water resources is one of the main challenges in territorial planning and development. This work deals with the quantification and the mapping of water resources potential, being part of methodological approaches applied to the quantification of hydric diversity and geodiversity. Water resources potential is here considered as the sum of the hydric elements rainfall, groundwater specific discharge, water reservoirs, and river hierarchy. The assessment was based in a territorial organization by drainage sub-basins and in vector maps generated and treated with GIS software. Rainfall, groundwater specific discharge and hydrographical data were obtained in official institutions and allowed the construction of the annual mean rainfall map for a forty year period (1974-2014), the annual mean groundwater specific discharge map for a thirty-four year period, and the river and drainage basin hierarchy maps. These delivered rainfall, groundwater specific discharge, water reservoirs and river hierarchy partial indices expressed on quantitative maps with normalized values distributed by level 3 drainage basins. The sum of the partial indices originated the quantitative map of water resources potential index and by the Gaussian interpolation of this quantitative data a map of hydric diversity in Ceará state was created. Therefore, the water resources potential index is higher in 4 regions of the state (Noroeste Cearense, Zona Metropolitana de Fortaleza e da Zona Norte, Vale do Jaguaribe and Zonas Centro-sul e Sul Cearense). The index is low or very low in the whole region of Sertões Cearenses, confirming the important role of climatic features in hydrological diversity. Water resources management must consider technical tools for water resources assessment, in the line of other methods for quantitative assessment of natural features either biotic or abiotic. These results quantify water resources and their distribution in a large region with important climatic differences. They constitute a basis for the knowledge of regional issues concerning water needs, flood and droughts events and even engineering solutions for water resources management.

  15. Complete Bouguer gravity anomaly map of the state of Colorado

    USGS Publications Warehouse

    Abrams, Gerda A.

    1993-01-01

    The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.

  16. A compilation of subsea energy and mineral resources of the United States including its possessions and Trust Territory of the Pacific Islands

    USGS Publications Warehouse

    Holser, A.F.; Rowland, R.W.; Goud, M.R.

    1981-01-01

    The United States has not resolved most of its Continental Shelf boundaries with other states.  The lines on this map are only approximate, and they do no necessarily reflect the positions or views of the United States with respect to those boundaries.  Sources of data for the boundaries and the resource information shown on the map are enumerated below.

  17. United States Geological Survey, programs in Nevada

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  18. Hydrologic unit maps

    USGS Publications Warehouse

    Seaber, Paul R.; Kapinos, F. Paul; Knapp, George L.

    1987-01-01

    A set of maps depicting approved boundaries of, and numerical codes for, river-basin units of the United States has been developed by the U.S . Geological Survey. These 'Hydrologic Unit Maps' are four-color maps that present information on drainage, culture, hydrography, and hydrologic boundaries and codes of (1) the 21 major water-resources regions and the 222 subregions designated by the U.S . Water Resources Council, (2) the 352 accounting units of the U.S. Geological Survey's National Water Data Network, and (3) the 2,149 cataloging units of the U.S . Geological Survey's 'Catalog of information on Water Data:' The maps are plotted on the Geological Survey State base-map series at a scale of 1 :500,000 and, except for Alaska, depict hydrologic unit boundaries for all drainage basins greater than 700 square miles (1,813 square kilometers). A complete list of all the hydrologic units, along with their drainage areas, their names, and the names of the States or outlying areas in which they reside, is contained in the report. These maps and associated codes provide a standardized base for use by water-resources organizations in locating, storing, retrieving, and exchanging hydrologic data, in indexing and inventorying hydrologic data and information, in cataloging water-data acquisition activities, and in a variety of other applications. Because the maps have undergone extensive review by all principal Federal, regional, and State water-resource agencies, they are widely accepted for use in planning and describing water-use and related land-use activities, and in geographically organizing hydrologic data . Examples of these uses are given in the report . The hydrologic unit codes shown on the maps have been approved as a Federal Information Processing Standard for use by the Federal establishment.

  19. Mapping of Florida's Coastal and Marine Resources: Setting Priorities Workshop

    USGS Publications Warehouse

    Robbins, Lisa; Wolfe, Steven; Raabe, Ellen

    2008-01-01

    The importance of mapping habitats and bioregions as a means to improve resource management has become increasingly clear. Large areas of the waters surrounding Florida are unmapped or incompletely mapped, possibly hindering proper management and good decisionmaking. Mapping of these ecosystems is among the top priorities identified by the Florida Oceans and Coastal Council in their Annual Science Research Plan. However, lack of prioritization among the coastal and marine areas and lack of coordination of agency efforts impede efficient, cost-effective mapping. A workshop on Mapping of Florida's Coastal and Marine Resources was sponsored by the U.S. Geological Survey (USGS), Florida Department of Environmental Protection (FDEP), and Southeastern Regional Partnership for Planning and Sustainability (SERPPAS). The workshop was held at the USGS Florida Integrated Science Center (FISC) in St. Petersburg, FL, on February 7-8, 2007. The workshop was designed to provide State, Federal, university, and non-governmental organizations (NGOs) the opportunity to discuss their existing data coverage and create a prioritization of areas for new mapping data in Florida. Specific goals of the workshop were multifold, including to: * provide information to agencies on state-of-the-art technology for collecting data; * inform participants of the ongoing mapping programs in waters off Florida; * present the mapping needs and priorities of the State and Federal agencies and entities operating in Florida; * work with State of Florida agencies to establish an overall priority for areas needing mapping; * initiate discussion of a unified classification of habitat and bioregions; * discuss and examine the need to standardize terminology and data collection/storage so that data, in particular habitat data, can be shared; 9 identify opportunities for partnering and leveraging mapping efforts among agencies and entities; * identify impediments and organizational gaps that hinder collection of data for mapping; * seek innovative solutions to the primary obstacles identified; * identify the steps needed to move mapping of Florida's oceans and coasts forward, in preparation for a better coordinated, more cost-effective mapping program to allow State and Federal agencies to make better decisions on coastal-resource issues. Over 90 invited participants representing more than 30 State and Federal agencies, universities, NGOs, and private industries played a large role in the success of this two-day workshop. State of Florida agency participants created a ranked priority order for mapping 13 different regions around Florida. The data needed for each of the 13 priority regions were outlined. A matrix considering State and Federal priorities was created, utilizing input from all agencies. The matrix showed overlapping interests of the entities and will allow for partnering and leveraging of resources. The five most basic mapping needs were determined to be bathymetry, high-vertical resolution coastline for sea-level rise scenarios, shoreline change, subsurface geology, and benthic habitats at sufficient scale. There was a clear convergence on the need to coordinate mapping activities around the state. Suggestions for coordination included: * creating a glossary of terms: a standard for specifying agency data-mapping needs; * creating a geographic information officer (GIO) position or permanent organizing group to maintain communications established at this workshop and to maintain progress on the issues identified during the workshop. The person or group could develop a website, maintain a project-status matrix, develop a list of contacts, create links to legislative updates and links to funding sources; * developing a web portal and one-stop/clearinghouse of data. There was general consensus on the need to adopt a single habitat classification system and a strategy to accommodate existing systems smoothly. Unresolve

  20. Construction of optimal resources for concatenated quantum protocols

    NASA Astrophysics Data System (ADS)

    Pirker, A.; Wallnöfer, J.; Briegel, H. J.; Dür, W.

    2017-06-01

    We consider the explicit construction of resource states for measurement-based quantum information processing. We concentrate on special-purpose resource states that are capable to perform a certain operation or task, where we consider unitary Clifford circuits as well as non-trace-preserving completely positive maps, more specifically probabilistic operations including Clifford operations and Pauli measurements. We concentrate on 1 →m and m →1 operations, i.e., operations that map one input qubit to m output qubits or vice versa. Examples of such operations include encoding and decoding in quantum error correction, entanglement purification, or entanglement swapping. We provide a general framework to construct optimal resource states for complex tasks that are combinations of these elementary building blocks. All resource states only contain input and output qubits, and are hence of minimal size. We obtain a stabilizer description of the resulting resource states, which we also translate into a circuit pattern to experimentally generate these states. In particular, we derive recurrence relations at the level of stabilizers as key analytical tool to generate explicit (graph) descriptions of families of resource states. This allows us to explicitly construct resource states for encoding, decoding, and syndrome readout for concatenated quantum error correction codes, code switchers, multiple rounds of entanglement purification, quantum repeaters, and combinations thereof (such as resource states for entanglement purification of encoded states).

  1. Preliminary Integrated Geologic Map Databases for the United States: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island and Vermont

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Dicken, Connie L.; Horton, John D.; Foose, Michael P.; Mueller, Julia A.L.; Hon, Rudi

    2006-01-01

    The rapid growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national scale digital geologic maps that have standardized information about geologic age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. Although two digital geologic maps (Schruben and others, 1994; Reed and Bush, 2004) of the United States currently exist, their scales (1:2,500,000 and 1:5,000,000) are too general for many regional applications. Most states have digital geologic maps at scales of about 1:500,000, but the databases are not comparably structured and, thus, it is difficult to use the digital database for more than one state at a time. This report describes the result for a seven state region of an effort by the U.S. Geological Survey to produce a series of integrated and standardized state geologic map databases that cover the entire United States. In 1997, the United States Geological Survey's Mineral Resources Program initiated the National Surveys and Analysis (NSA) Project to develop national digital databases. One primary activity of this project was to compile a national digital geologic map database, utilizing state geologic maps, to support studies in the range of 1:250,000- to 1:1,000,000-scale. To accomplish this, state databases were prepared using a common standard for the database structure, fields, attribution, and data dictionaries. For Alaska and Hawaii new state maps are being prepared and the preliminary work for Alaska is being released as a series of 1:250,000 scale quadrangle reports. This document provides background information and documentation for the integrated geologic map databases of this report. This report is one of a series of such reports releasing preliminary standardized geologic map databases for the United States. The data products of the project consist of two main parts, the spatial databases and a set of supplemental tables relating to geologic map units. The datasets serve as a data resource to generate a variety of stratigraphic, age, and lithologic maps. This documentation is divided into four main sections: (1) description of the set of data files provided in this report, (2) specifications of the spatial databases, (3) specifications of the supplemental tables, and (4) an appendix containing the data dictionaries used to populate some fields of the spatial database and supplemental tables.

  2. State geological surveys: Their growing national role in policy

    USGS Publications Warehouse

    Gerhard, L.C.

    2000-01-01

    State geological surveys vary in organizational structure, but are political powers in the field of geology by virtue of their intimate knowledge of and involvement in legislative and political processes. Origins of state geological surveys lie in the recognition of society that settlement and prosperity depended on access to a variety of natural resources, resources that are most familiar to geologists. As the surveys adapt to modern societal pressures, making geology serve the public has become the new mission for many state geological surveys. Geologic mapping was the foundation of most early surveys, and the state surveys have brought mapping back into the public realm to meet today's challenges of growing population density, living environment desires, and resource access.

  3. Taxonomic classification of world map units in crop producing areas of Argentina and Brazil with representative US soil series and major land resource areas in which they occur

    NASA Technical Reports Server (NTRS)

    Huckle, H. F. (Principal Investigator)

    1980-01-01

    The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.

  4. Digital map data, text, and graphical images in support of the 1995 National assessment of United States oil and gas resources

    USGS Publications Warehouse

    Beeman, William R.; Obuch, Raymond C.; Brewton, James D.

    1996-01-01

    This CD-ROM contains files in support of the 1995 USGS National assessment of United States oil and gas resources (DDS-30), which was published separately and summarizes the results of a 3-year study of the oil and gas resources of the onshore and state waters of the United States. The study describes about 560 oil and gas plays in the United States--confirmed and hypothetical, conventional and unconventional. A parallel study of the Federal offshore is being conducted by the U.S. Minerals Management Service. This CD-ROM contains files in multiple formats, so that almost any computer user can import them into word processors and mapping software packages. No proprietary data are released on this CD-ROM. The complete text of DDS-30 is also available, as well as many figures. A companion CD-ROM (DDS-36) includes the tabular data, the programs, and the same text data, but none of the map data.

  5. A climatology of late-spring freezes in the northeastern United States.

    Treesearch

    Brian E. Potter; Thomas W. Cate

    1999-01-01

    Presents maps of late-spring freeze characteristics for the northeastern and north central United States based on heat-sum thresholds and historic climate data. Discusses patterns seen in the maps. Provides examples and ways these maps could be used by resource managers and research scientists.

  6. Sections | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP

  7. Use of IKONOS Data for Mapping Cultural Resources of Stennis Space Center, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Giardino, Marco

    2002-01-01

    Cultural resource surveys are important for compliance with Federal and State law. Stennis Space Center (SSC) in Mississippi is researching, developing, and validating remote sensing and Geographical Information System (GIS) methods for aiding cultural resource assessments on the center's own land. The suitability of IKONOS satellite imagery for georeferencing scanned historic maps is examined in this viewgraph presentation. IKONOS data can be used to map historic buildings and farmland in Gainsville, MS, and plan archaeological surveys.

  8. Geologic map of the Sherbrooke-Lewiston area, Maine, New Hampshire, and Vermont, United States, and Quebec, Canada

    USGS Publications Warehouse

    Moench, R.H.; Boone, G.M.; Bothner, Wallace A.; Boudette, E.L.; Hatch, N.L.; Hussey, A. M.; Marvinney, R.G.

    1995-01-01

    This map is part of a folio of maps of the Lewiston 1° x 2° quadrangle, Maine, New Hampshire, and Vermont, and part of the Sherbrooke 1° x 2° quadrangle, Maine, New Hampshire, and Vermont, United States, and Quebec, Canada, prepared under the Conterminous United States Mineral Assessment Program (CUSMAP). Adjacent areas in Quebec are shown, in order to illustrate the geologic continuity between northwestern Maine and northern Vermont and New Hampshire. Other results of the project are contained in reports by Nowlan and others (1990a,b,c; stream sediment geochemistry), and Cox (1990; potential tin resources related to the White Mountain Plutonic-Volcanic Suite), Bothner and others (in press; complete Bouguer gravity and aeromagnetic maps), Moench and Boudette (in press, geologic synthesis and mineral occurrence map), and Moench (in press; metallic mineral resources).

  9. A multiagency and multijurisdictional approach to mapping the glacial deposits of the Great Lakes region in three dimensions

    USGS Publications Warehouse

    Berg, Richard C.; Brown, Steven E.; Thomason, Jason F.; Hasenmueller, Nancy R.; Letsinger, Sally L.; Kincare, Kevin A.; Esch, John M.; Kehew, Alan E.; Thorleifson, L. Harvey; Kozlowski, Andrew L.; Bird, Brian C.; Pavey, Richard R.; Bajc, Andy F.; Burt, Abigail K.; Fleeger, Gary M.; Carson, Eric C.

    2016-01-01

    The Great Lakes Geologic Mapping Coalition (GLGMC), consisting of state geological surveys from all eight Great Lakes states, the Ontario Geological Survey, and the U.S. Geological Survey, was conceived out of a societal need for unbiased and scientifically defensible geologic information on the shallow subsurface, particularly the delineation, interpretation, and viability of groundwater resources. Only a small percentage (<10%) of the region had been mapped in the subsurface, and there was recognition that no single agency had the financial, intellectual, or physical resources to conduct such a massive geologic mapping effort at a detailed scale over a wide jurisdiction. The GLGMC provides a strategy for generating financial and stakeholder support for three-dimensional (3-D) geologic mapping, pooling of physical and personnel resources, and sharing of mapping and technological expertise to characterize the thick cover of glacial sediments. Since its inception in 1997, the GLGMC partners have conducted detailed surficial and 3-D geologic mapping within all jurisdictions, and concurrent significant scientific advancements have been made to increase understanding of the history and framework of geologic processes. More importantly, scientific information has been provided to public policymakers in understandable formats, emphasis has been placed on training early-career scientists in new mapping techniques and emerging technologies, and a successful model has been developed of state/provincial and federal collaboration focused on geologic mapping, as evidenced by this program's unprecedented and long-term successful experiment of 10 geological surveys working together to address common issues.

  10. Demographic Mapping via Computer Graphics.

    ERIC Educational Resources Information Center

    Banghart, Frank W.; And Others

    A computerized system, developed at Florida State University, is designed to locate students and resources on a geographic network. Using addresses of resources and students as input, the system quickly and accurately locates the addresses on a grid and creates a map showing their distribution. This geographical distribution serves as an…

  11. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    USGS Publications Warehouse

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  12. Applications of national land cover maps in United States forestry

    Treesearch

    Kurt H. Riitters; Gregory A. Reams

    2008-01-01

    Land cover maps derived from satellite imagery have a long and varied history of uses in United States forestry science and management. This article reviews recent developments concerning the use of national- to continental-scale land cover maps for inventory, monitoring, and resource assessment in the U.S. Forest Service. The use of mid-scale digital resolution...

  13. Obtaining maps and data from the U.S. Geological Survey*

    USGS Publications Warehouse

    Hallam, C.A.

    1982-01-01

    The U.S. Geological Survey produces a variety of resource information for the United States. This includes many data bases of particular interest to planners such as land use and terrain information prepared by the National Mapping Division, water quantity and quality data collected by Water Resources Division, and coal resource information gathered by the Geologic Division. These data are stored in various forms, and information on their availability can be obtained from appropriate offices in the U.S. Geological Survey as well as from USGS Circular 777. These data have been used for the management, development, and monitoring of our Nation's resources by Federal, State, and local agencies. ?? 1982.

  14. Forest resources of the United States, 2002: mapping the renewable resource planning act data

    Treesearch

    Cassandra M. Kurtz; Daniel J. Kaisershot; Dale D. Gormanson; Jeffery S. Wazenegger

    2009-01-01

    Forest Inventory and Analysis (FIA), a national program of the Forest Service, U.S. Department of Agriculture conducts and maintains comprehensive inventories of the forest resources in the United States. The Forest and Rangeland Renewable Resources Planning Act (RPA) of 1974 mandates a comprehensive assessment of past trends, current status, and the future potential...

  15. Using widely spaced observations of land use, forest attributes, and intrusions to map resource potential and human impact probability

    Treesearch

    Victor A. Rudis

    2000-01-01

    Scant information exists about the spatial extent of human impact on forest resource supplies, i.e., depreciative and nonforest uses. I used observations of ground-sampled land use and intrusions on forest land to map the probability of resource use and human impact for broad areas. Data came from a seven-state survey region (Alabama, Arkansas, Louisiana, Mississippi,...

  16. Using widely spaced observations of land use, forest attributes, and intrusions to map resource potential and human impact probability

    Treesearch

    Victor A. Rudis

    2000-01-01

    Scant information exists about the spatial extent of human impact on forest resource supplies, i.e., depreciative and nonforest uses. I used observations of ground-sampled land use and intrusions on forest land to map the probability of resource use and human impact for broad areas. Data came from a seven State survey region (Alabama, Arkansas, Louisiana, Mississippi,...

  17. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers

    USGS Publications Warehouse

    Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.

    2013-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.

  18. Mineral Resources | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and geophysical framework of Alaska as it pertains to the mineral resources of the state. Summary maps and reports illustrate the geology of the state's prospective mineral terranes and provide data on the location, type, and potential of the state's mineral resources. These data aid in the state's management of

  19. Mapping forest vegetation for the western United States using modified random forests imputation of FIA forest plots

    Treesearch

    Karin Riley; Isaac C. Grenfell; Mark A. Finney

    2016-01-01

    Maps of the number, size, and species of trees in forests across the western United States are desirable for many applications such as estimating terrestrial carbon resources, predicting tree mortality following wildfires, and for forest inventory. However, detailed mapping of trees for large areas is not feasible with current technologies, but statistical...

  20. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Scott, G.

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  1. Genealogical Research. An Introduction to the Resources of the State Historical Society of Wisconsin. Revised and Enlarged.

    ERIC Educational Resources Information Center

    Danky, James P., Ed.

    This resource guide provides an introduction to the resources of the State Historical Society of Wisconsin for the beginner as well as the experienced researcher. Introductory material includes a map showing the location of the Historical Society and provides information about parking, library hours, telephone numbers, and mailing address.…

  2. Radar systems for the water resources mission, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.

  3. The current state of the creation and modernization of national geodetic and cartographic resources in Poland

    NASA Astrophysics Data System (ADS)

    Doskocz, Adam

    2016-01-01

    All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI), including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.

  4. 40 CFR 81.329 - Nevada.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on the State of Nevada Division of Water Resources' map titled Water Resources and Inter-basin Flows...-26E) X Clovers Area (64)(32-39N, 42-46E) X 1 EPA designation replaces State designation. 2 Rest of... Boulder Flat (61) (31-37N, 45-51E): Upper Unit 61 X Lower Unit 61 X Rest of State 1 X 1 Rest of State...

  5. Geologic Materials Center - Inventory | Alaska Division of Geological &

    Science.gov Websites

    Alaska Visiting Alaska State Employees DGGS State of Alaska search Department of Natural Resources Reports Employment Staff Directory Publications Search Statewide Maps New Releases Sales Interactive Maps - Inventory Inventory Search Find GMC Inventory Samples The search interface functionality is dependent on the

  6. Cartographic production for the Florida Shelf Habitat (FLaSH) map study: generation of surface grids, contours, and KMZ files

    USGS Publications Warehouse

    Robbins, Lisa L.; Hansen, Mark; Raabe, Ellen; Knorr, Paul O.; Browne, Joseph

    2007-01-01

    The Florida shelf represents a finite source of economic resources, including commercial and recreational fisheries, tourism, recreation, sand and gravel resources, phosphate, and freshwater reserves. Yet the basic information needed to locate resources, or to interpret and utilize existing data, comes from many sources, dates, and formats. A multi-agency effort is underway to coordinate and prioritize the compilation of suitable datasets for an integrated information system of Florida’s coastal and ocean resources. This report and the associated data files represent part of the effort to make data accessible and useable with computer-mapping systems, web-based technologies, and user-friendly visualization tools. Among the datasets compiled and developed are seafloor imagery, marine sediment data, and existing bathymetric data. A U.S. Geological Survey-sponsored workshop in January 2007 resulted in the establishment of mapping priorities for the state. Bathymetry was identified as a common priority among agencies and researchers. State-of-the-art computer-mapping techniques and data-processing tools were used to develop shelf-wide raster and vector data layers. Florida Shelf Habitat (FLaSH) Mapping Project (http://coastal.er.usgs.gov/flash) endeavors to locate available data, identify data gaps, synthesize existing information, and expand our understanding of geologic processes in our dynamic coastal and marine systems.

  7. Applications of remote sensor data by state and Federal user agencies in Arizona

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.

    1972-01-01

    The use of NASA high altitude aerial photography of south eastern Arizona to develop a natural resources information system for Federal lands is discussed. The data are to be used by local, State, and Federal agencies in connection with geologic mapping projects, water resources investigations, and land use studies to determine the alignment of a proposed major aqueduct. In addition, the data are used to confirm land ownership boundaries, detect changes in land use, and legislative reappointment mapping. Other applications include mapping vegetive cover, evaluation of changes in wildlife habitat, location of deer kills, and as a base for recording telemetry data from radio-collared big game animals.

  8. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming's diverse energy resources. WERIC was established in 2006 by the University of Wyoming's Ruckelshaus Institute of Environment and Naturalmore » Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.« less

  9. Geospatial characteristics of Florida's coastal and offshore environments: Administrative and political boundaries and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics Geopdf of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, military areas, marine protected areas, cultural resources, locations of submerged cables, and shipping routes. The map should be useful to coastal resource managers and others interested in the administrative and political boundaries of Florida's coastal and offshore region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will find that they have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers.

  10. 1979-1980 Geothermal Resource Assessment Program in Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  11. USGS US topo maps for Alaska

    USGS Publications Warehouse

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  12. Forest resources of the United States, 1992

    Treesearch

    Douglas S. Powell; Joanne L. Faulkner; David R. Darr; Zhiliang Zhu; Douglas W. MacCleery

    1993-01-01

    The 1987 Resources Planning Act (RPA) Assessment forest resources statistics are updated to 1992, to provide current information on the Nation's forests. Resource tables present estimates of forest area, volume, mortality, growth, removals, and timber products output. Resource data are analyzed, and trends since 1987 are noted. A forest type map produced from...

  13. USGS Mineral Resources Program; national maps and datasets for research and land planning

    USGS Publications Warehouse

    Nicholson, S.W.; Stoeser, D.B.; Ludington, S.D.; Wilson, Frederic H.

    2001-01-01

    The U.S. Geological Survey, the Nation’s leader in producing and maintaining earth science data, serves as an advisor to Congress, the Department of the Interior, and many other Federal and State agencies. Nationwide datasets that are easily available and of high quality are critical for addressing a wide range of land-planning, resource, and environmental issues. Four types of digital databases (geological, geophysical, geochemical, and mineral occurrence) are being compiled and upgraded by the Mineral Resources Program on regional and national scales to meet these needs. Where existing data are incomplete, new data are being collected to ensure national coverage. Maps and analyses produced from these databases provide basic information essential for mineral resource assessments and environmental studies, as well as fundamental information for regional and national land-use studies. Maps and analyses produced from the databases are instrumental to ongoing basic research, such as the identification of mineral deposit origins, determination of regional background values of chemical elements with known environmental impact, and study of the relationships between toxic elements or mining practices to human health. As datasets are completed or revised, the information is made available through a variety of media, including the Internet. Much of the available information is the result of cooperative activities with State and other Federal agencies. The upgraded Mineral Resources Program datasets make geologic, geophysical, geochemical, and mineral occurrence information at the state, regional, and national scales available to members of Congress, State and Federal government agencies, researchers in academia, and the general public. The status of the Mineral Resources Program datasets is outlined below.

  14. U.S. Geological Survey 2002 Petroleum Resource Assessment of the National Petroleum Reserve in Alaska (NPRA): GIS Play Maps

    USGS Publications Warehouse

    Garrity, Christopher P.; Houseknecht, David W.; Bird, Kenneth J.

    2002-01-01

    This report provides digital GIS files of maps for each of the 24 plays evaluated in the U.S. Geological Survey (USGS) 2002 petroleum resource assessment of the NPRA (Bird and Houseknecht, 2002a). These are the same maps released in pdf format by Bird and Houseknecht (2002b). The USGS released in 2002 a summary of the estimated volume of technically recoverable, undiscovered oil and nonassociated gas resources for 24 plays in NPRA (Bird and Houseknecht, 2002b). The NPRA assessment study area includes Federal and Native onshore land and adjacent State offshore areas. A map showing the areal extent of each play was prepared by USGS geologists as a preliminary step in the assessment process. Boundaries were drawn on the basis of a variety of information, including seismic reflection data, results of previous exploration drilling, and regional patterns of rock properties. Play boundary polygons were captured by digitizing the play maps prepared by USGS geologists. Federal, Native, and State areas were later clipped from the play boundary polygons, allowing for acreages to be calculated for entire plays and for various subareas within plays.

  15. Genealogical Research. An Introduction to the Resources of the State Historical Society of Wisconsin.

    ERIC Educational Resources Information Center

    Danky, James P., Ed.

    Originally prepared for and delivered at a 1978 workshop about the resources of the State Historical Society of Wisconsin, the four essays in this pamphlet provide a series of guides to the archives, maps, printed materials, and other sources of genealogical data located in the State Historical Society of Wisconsin. All four essays were written by…

  16. NREL: International Activities - Bhutan Resource Maps

    Science.gov Websites

    modeling approach along with NREL's empirical validation methodology. The high-resolution (10-km) annual -time specific solar mapping approach developed at the U.S. State University of New York at Albany. Data

  17. 18 CFR 4.39 - Specifications for maps and drawings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and drawings. 4.39 Section 4.39 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT LICENSES, PERMITS, EXEMPTIONS, AND..., large scale maps may be required. Each map must have: (1) True and magnetic meridians; (2) State, county...

  18. 18 CFR 4.39 - Specifications for maps and drawings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and drawings. 4.39 Section 4.39 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT LICENSES, PERMITS, EXEMPTIONS, AND..., large scale maps may be required. Each map must have: (1) True and magnetic meridians; (2) State, county...

  19. 18 CFR 4.39 - Specifications for maps and drawings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and drawings. 4.39 Section 4.39 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT LICENSES, PERMITS, EXEMPTIONS, AND..., large scale maps may be required. Each map must have: (1) True and magnetic meridians; (2) State, county...

  20. The Sea-Floor Mapping Facility at the U.S. Geological Survey Woods Hole Field Center, Woods Hole, Massachusetts

    USGS Publications Warehouse

    Deusser, Rebecca E.; Schwab, William C.; Denny, Jane F.

    2002-01-01

    Researchers of the sea-floor mapping facility at the U.S. Geological Survey (USGS) Woods Hole Field Center in Woods Hole, Mass., use state-of-the-art technology to produce accurate geologic maps of the sea floor. In addition to basic bathymetry and morphology, sea-floor maps may contain information about the distribution of sand resources, patterns of coastal erosion, pathways of pollutant transport, and geologic controls on marine biological habitats. The maps may also show areas of human impacts, such as disturbance by bottom fishing and pollution caused by offshore waste disposal. The maps provide a framework for scientific research and provide critical information to decisionmakers who oversee resources in the coastal ocean.

  1. Porphyry copper deposit tract definition - A global analysis comparing geologic map scales

    USGS Publications Warehouse

    Raines, G.L.; Connors, K.A.; Chorlton, L.B.

    2007-01-01

    Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker's purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application. ?? International Association for Mathematical Geology 2007.

  2. Remote sensing of wildland resources: A state-of-the-art review

    Treesearch

    Robert C. Aldrich

    1979-01-01

    A review, with literature citations, of current remote sensing technology, applications, and costs for wildland resource management, including collection, interpretation, and processing of data gathered through photographic and nonphotographic techniques for classification and mapping, interpretive information for specific applications, measurement of resource...

  3. Harry S. Truman Dam and Reservoir, Missouri, Mitigation of the Adverse Effects Upon the Local Paleontological Resources. Volume 2. Plan Maps of Excavations.

    DTIC Science & Technology

    1983-01-01

    7 A-A147 693 HARRY S TRUMAN D’AM AND RESERVOIR MISSOURI MITIGATION OF 1/ THE ADVERSE EFFEC. .0) ILLINOIS STATE MUSEUM SOCIETY SPRINGFIELD d d...BUREAU OF STANDARDS-.1963-A 1 2 qZTM II 0A MITIGATION OF THE ADVERSE EFFECTS UPON THE LOCAL PALEONTOLOGICAL RESOURCES OF THE HARRY S. TRUMAN DAM AND...RESERVOIR OSAGE RIVER BASIN, MISSOURI FINAL REPORT OF FINDINGS VOLUME II: PLAN MAPS OF EXCAVATIONS by Jeffrey J. Saunders, Ph.D. Illinois State Museum

  4. Using NASA Satellite Observations to Map Wildfire Risk in the United States for Allocation of Fire Management Resources

    NASA Astrophysics Data System (ADS)

    Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.

    2017-12-01

    Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.

  5. Aggregate Resources Report Department of Defense and Bureau of Land Management Lands, Southwestern United States.

    DTIC Science & Technology

    1978-02-10

    Units ................................ 28 3.0 ARIZONA -CALIFORNIA STUDY AREA ........................ 35 3.1 Summary of Aggregate Resources...CONTENTS (Cont.) Page LIST OF APPENDICES A New Mexico-Texas Study Area Data Sheets B Arizona -California Study Area Data Sheets C Nevada-California Study...3 3 Arizona -California Study Area Location Map ..... 4 4 Nevada-California Study Area Location Map ...... 5 LIST OF TABLES 1 Preliminary

  6. Rapidly calculated density functional theory (DFT) relaxed Iso-potential Phi Si Maps: Beta-cellobiose

    USDA-ARS?s Scientific Manuscript database

    New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...

  7. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework

    USGS Publications Warehouse

    Omernik, James M.; Griffith, Glenn E.

    2014-01-01

    A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.

  8. Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework

    NASA Astrophysics Data System (ADS)

    Omernik, James M.; Griffith, Glenn E.

    2014-12-01

    A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.

  9. Civil Penalty Policies

    EPA Pesticide Factsheets

    The Environmental Protection Agency's Enforcement and Compliance History Online (ECHO) website provides customizable and downloadable information about environmental inspections, violations, and enforcement actions for EPA-regulated facilities, like power plants and factories. ECHO advances public information by sharing data related to facility compliance with and regulatory agency activity related to air, hazardous waste, clean water, and drinking water regulations. ECHO offers many user-friendly options to explore data, including:1. Facility Search (http://echo.epa.gov/facilities/facility-search?mediaSelected=all): ECHO information is searchable by varied criteria, including location, facility type, and compliance status related to the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Safe Drinking Water Act. Search results are customizable and downloadable.2. Comparative Maps (http://echo.epa.gov/maps/state-comparative-maps) and State Dashboards (http://echo.epa.gov/trends/comparative-maps-dashboards/state-air-dashboard): These tools offer aggregated information about facility compliance status and regulatory agency compliance monitoring and enforcement activity at the national and state level.3. Bulk Data Downloads (http://echo.epa.gov/resources/echo-data/data-downloads): One of ECHO's most popular features is the ability to work offline by downloading large data sets. Users can take advantage of the ECHO Exporter, which provides su

  10. Mapping the EEZ

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A cooperative, multi-year program to map the largely uncharted Exclusive Economic Zone (EEZ), begun last month, has the potential for piggybacking scientific observations and research. On March 10, 1983, President Ronald Reagan proclaimed the mineral-rich zone as the area between the U.S. shoreline and 200 nautical miles outward. The United States has sovereign rights for exploration, exploitation, conservation, and management of all living and nonliving resources within the zone.The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) will cooperate in the project that will map an area nearly twice the area of U.S. land. USGS responsibilities include definition of seafloor geology and definition of geological processes and resources, including sand and gravel, placers, phosphorites, manganese nodules, cobalt crusts, and sulfides (Eos, March 20, 1984, p. 105). NOAA, meanwhile, will be surveying, mapping, analyzing resources, and managing fisheries.

  11. Intelligent geocoding system to locate traffic crashes.

    PubMed

    Qin, Xiao; Parker, Steven; Liu, Yi; Graettinger, Andrew J; Forde, Susie

    2013-01-01

    State agencies continue to face many challenges associated with new federal crash safety and highway performance monitoring requirements that use data from multiple and disparate systems across different platforms and locations. On a national level, the federal government has a long-term vision for State Departments of Transportation (DOTs) to report state route and off-state route crash data in a single network. In general, crashes occurring on state-owned or state maintained highways are a priority at the Federal and State level; therefore, state-route crashes are being geocoded by state DOTs. On the other hand, crashes occurring on off-state highway system do not always get geocoded due to limited resources and techniques. Creating and maintaining a statewide crash geographic information systems (GIS) map with state route and non-state route crashes is a complicated and expensive task. This study introduces an automatic crash mapping process, Crash-Mapping Automation Tool (C-MAT), where an algorithm translates location information from a police report crash record to a geospatial map and creates a pinpoint map for all crashes. The algorithm has approximate 83 percent mapping rate. An important application of this work is the ability to associate the mapped crash records to underlying business data, such as roadway inventory and traffic volumes. The integrated crash map is the foundation for effective and efficient crash analyzes to prevent highway crashes. Published by Elsevier Ltd.

  12. Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data

    USGS Publications Warehouse

    Shasby, Mark; Carneggie, David M.

    1986-01-01

    During the past 5 years, the U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center Field Office in Anchorage, Alaska has worked cooperatively with Federal and State resource management agencies to produce land-cover and terrain maps for 245 million acres of Alaska. The need for current land-cover information in Alaska comes principally from the mandates of the Alaska National Interest Lands Conservation Act (ANILCA), December 1980, which requires major land management agencies to prepare comprehensive management plans. The land-cover mapping projects integrate digital Landsat data, terrain data, aerial photographs, and field data. The resultant land-cover and terrain maps and associated data bases are used for resource assessment, management, and planning by many Alaskan agencies including the U.S. Fish and Wildlife Service, U.S. Forest Service, Bureau of Land Management, and Alaska Department of Natural Resources. Applications addressed through use of the digital land-cover and terrain data bases range from comprehensive refuge planning to multiphased sampling procedures designed to inventory vegetation statewide. The land-cover mapping programs in Alaska demonstrate the operational utility of digital Landsat data and have resulted in a new land-cover mapping program by the USGS National Mapping Division to compile 1:250,000-scale land-cover maps in Alaska using a common statewide land-cover map legend.

  13. Development of a Florida Coastal Mapping Program Through Local and Regional Coordination

    NASA Astrophysics Data System (ADS)

    Hapke, C. J.; Kramer, P. A.; Fetherston-Resch, E.; Baumstark, R.

    2017-12-01

    The State of Florida has the longest coastline in the contiguous United States (2,170 km). The coastal zone is heavily populated and contains 1,900 km of sandy beaches that support economically important recreation and tourism. Florida's waters also host important marine mineral resources, unique ecosystems, and the largest number of recreational boats and saltwater fishermen in the country. There is increasing need and demand for high resolution data of the coast and adjacent seafloor for resource and habitat mapping, understanding coastal vulnerability, evaluating performance of restoration projects, and many other coastal and marine spatial planning efforts. The Florida Coastal Mapping Program (FCMP), initiated in 2017 as a regional collaboration between four federal and three state agencies, has goals of establishing the priorities for high resolution seafloor mapping of Florida's coastal environment, and developing a strategy for leveraging funds to support mapping priorities set by stakeholders. We began by creating a comprehensive digital inventory of existing data (collected by government, the private sector, and academia) from 1 kilometer inland to the 200 meter isobath for a statewide geospatial database and gap analysis. Data types include coastal topography, bathymetry, and acoustic data such as sidescan sonar and subbottom profiles. Next, we will develop appropriate proposals and legislative budget requests in response to opportunities to collect priority data in high priority areas. Data collection will be undertaken by a combination of state and federal agencies. The FCMP effort will provide the critical baseline information that is required for characterizing changes to fragile ecosystems, assessing marine resources, and forecasting the impacts on coastal infrastructure and recreational beaches from future storms and sea-level rise.

  14. Geospatial characteristics of Florida's coastal and offshore environments: Coastal habitats, artificial reefs, wrecks, dumping grounds, harbor obstructions and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, coastal habitats, artificial reefs, shipwrecks, dumping grounds, and harbor obstructions. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are provided as attached xml files for all geographic information system (GIS) layers.

  15. 80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Haymes, S.

    Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjustedmore » to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.« less

  16. Alaska Department of Natural Resources

    Science.gov Websites

    Questions Public Information Center Contacts/Office Directory Jobs/Volunteer Opportunities Boards and Recreation Support Services Division Offices Commissioner's Office Public Information Center Alaska State Resources / Commissioner's Office DNR FAQ - Frequently Asked Questions Maps & Geographic Information

  17. Level III and IV Ecoregions by State

    EPA Pesticide Factsheets

    Information and links to downloadable maps and datasets for Level III and IV ecoregions, listed by state. Ecoregions are areas of general similarity in the type, quality, and quantity of environmental resources.

  18. Regional Assessment of Remote Forests and Black Bear Habitat from Forest Resource Surveys

    Treesearch

    Victor A. Rudis; John B. Tansey

    1995-01-01

    We developed a spatially explicit modeling approach, using a county-scaled remote forest (i.e., forested area reserved from or having no direct human interference) assessment derived from 1984-1990 forest resource inventory data and a 1984 black bear (Ursus americantus) range map for 12 states in the southern United States.We defined minimum suitable and optimal black...

  19. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geochemical, remote sensing, and mineral resources maps of the Butte 1 degree x 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, James E.; Trautwein, C.M.; Wallace, C.A.; Lee, G.K.; Rowan, L.C.; Hanna, W.F.

    1993-01-01

    The Butte 1?x2 ? quadrangle in west-central Montana was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP). These investigations included geologic mapping, geochemical surveys, gravity and aeromagnetic surveys, examinations of mineral deposits, and specialized geochronologic and remote-sensing studies. The data collected during these studies were compiled, combined with available published and unpublished data, analyzed, and used in a mineral-resource assessment of the quadrangle. The results, including data, interpretations, and mineral-resource assessments for nine types of mineral deposits, are published separately as a folio of maps. These maps are accompanied by figures, tables, and explanatory text. This circular provides background information on the Butte quadrangle, summarizes the studies and published maps, and lists a selected bibliography of references pertinent to the geology, geochemistry, geophysics, and mineral resources of the quadrangle. The Butte quadrangle, which includes the world-famous Butte mining district, has a long history of mineral production. Many mining districts within the quadrangle have produced large quantities of many commodities; the most important in dollar value of production were copper, gold, silver, lead, zinc, manganese, molybdenum, and phosphate. At present, mines at several locations produce copper, molybdenum, gold, silver, lead, zinc, and phosphate. Exploration, mainly for gold, has indicated the presence of other mineral deposits that may be exploited in the future. The results of the investigations by the U.S. Geological Survey indicate that many areas of the quadrangle are highly favorable for the occurrence of additional undiscovered resources of gold, silver, copper, molybdenum, tungsten, and other metals in several deposit types.

  20. A Boundary Delineation System for the Bureau of Ocean Energy Management

    NASA Astrophysics Data System (ADS)

    Vandegraft, Douglas L.

    2018-05-01

    Federal government mapping of the offshore areas of the United States in support of the development of oil and gas resources began in 1954. The first mapping system utilized a network of rectangular blocks defined by State Plane coordinates which was later revised to utilize the Universal Transverse Mercator grid. Creation of offshore boundaries directed by the Submerged Lands Act and Outer Continental Shelf Lands Act were mathematically determined using early computer programs that performed the required computations, but required many steps. The Bureau of Ocean Energy Management has revised these antiquated methods using GIS technology which provide the required accuracy and produce the mapping products needed for leasing of energy resources, including renewable energy projects, on the outer continental shelf. (Note: this is an updated version of a paper of the same title written and published in 2015).

  1. Research on Integrated Mapping——A Case Study of Integrated Land Use with Swamp Mapping

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Yan, F.; Chang, L.

    2015-12-01

    Unified real estate registration system shows the attention, determination and effort to of CPC Central Committee and State Council on real estate registration in China. However, under current situation, China's real estate registration work made less progress. One of the reasons is that it's hard to express the property right of real estate on one map under the multi-sector management system. Under current multi-sector management system in China, different departments usually just survey and mapping the land type under its jurisdiction. For example, wetland investigation only mapping all kinds of wetland resources but not mapping other resource types. As a result, it cause he problem of coincidence or leak in integration of different results from different departments. As resources of the earth's surface, the total area of forest, grassland, wetland and so on should be equal to the total area of the earth's surface area. However, under the current system, the area of all kinds of resources is not equal to the sum of the earth's surface. Therefore, it is of great importance to express all the resources on one map. On one hand, this is conducive to find out the real area and distribution of resources and avoid the problem of coincidence or leak in integration; On the other hand, it is helpful to study the dynamic change of different resources. Therefore, we first proposed the "integrated mapping" as a solution, and take integrated land use with swamp mapping in Northeast China as an example to investigate the feasibility and difficulty. Study showed that: integrated land use with swamp mapping can be achieved through combining land use survey standards with swamps survey standards and "second mapping" program. Based on the experience of integrated land use with swamp mapping, we point out its reference function on integrated mapping and unified real estate registration system. We concluded that: (1) Comprehending and integrating different survey standard of different resources is the premise of "integrated mapping", (2) We put forward "multiple code" and "multiple interpretation" scheme in order to solve the problem of "attribute overlap", (3) The area of "attribute overlap" can be segmented by a certain ratio to determine the property right in unified real estate registration.

  2. California's forest resources. Preliminary assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    This Preliminary Assessment was prepared in response to the California Forest Resources Assessment and Policy Act of 1977 (FRAPA). This Act was passed to improve the information base upon which State resource administrators formulate forest policy. The Act provides for this report and a full assessment by 1987 and at five year intervals thereafter. Information is presented under the following chapter titles: introduction to the forest resources assessment program; the forest area: a general description; classifications of the forest lands; the watersheds; forest lands and the air resource; fish and wildlife resources; the forested rangelands; the wilderness; forest lands asmore » a recreation resource; the timber resource; wood energy; forest lands and the mineral, fossil fuels, and geothermal energy resources; mathematically modeling California's forest lands; vegetation mapping using remote sensing technology; important forest resources legislation; and, State and cooperative State/Federal forestry programs. Twelve indexes, a bibliography, and glossary are included. (JGB)« less

  3. Finding the Funds for Health Resources.

    ERIC Educational Resources Information Center

    Osorio, Jenny; Marx, Eva; Bauer, Louise

    2000-01-01

    Identifying, securing, and sustaining funding are the greatest challenges to establishing and maintaining school health programs. A federal/state government alliance (the School Health Program Finance Project) provides funding information; foundations and businesses provide substantial financial support. Districts should employ resource mapping to…

  4. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic and mineral resource maps of the Silver City 1 degree x 2 degrees Quadrangle, New Mexico and Arizona

    USGS Publications Warehouse

    Richter, Donald H.; Houser, B.B.; Watts, K.C.; Klein, D.P.; Sharp, W.N.; Drewes, Harald; Hedlund, D.C.; Raines, G.L.; Hassemer, J.R.

    1987-01-01

    The Silver City 1 ? x 2 ? quadrangle, consisting of about 20,650 km2 in southwestern New Mexico and southeastern Arizona, has been investigated by a multidisciplinary research team for the purpose of assessing its mineral resource potential. The results of this investigation are in a folio of 21 maps that contain detailed information on the geology, geochemistry, geophysics, mineral deposits, and potential mineral resources of the quadrangle. This Circular provides background information on the various studies and integrates the component maps. It contains an extensive selected bibliography pertinent to the geology and mineral deposits of the quadrangle. The quadrangle has produced more than $3.5 billion in mineral products since about 1850 and contains significant resources of gold, silver, copper, molybdenum, lead, zinc, iron, manganese-iron, zeolite minerals, and possibly tin and tungsten.

  5. The need for sustained and integrated high-resolution mapping of dynamic coastal environments

    USGS Publications Warehouse

    Stockdon, Hilary F.; Lillycrop, Jeff W.; Howd, Peter A.; Wozencraft, Jennifer M.

    2007-01-01

    The evolution of the United States' coastal zone response to both human activities and natural processes is dynamic. Coastal resource and population protection requires understanding, in detail, the processes needed for change as well as the physical setting. Sustained coastal area mapping allows change to be documented and baseline conditions to be established, as well as future behavior to be predicted in conjunction with physical process models. Hyperspectral imagers and airborne lidars, as well as other recent mapping technology advances, allow rapid national scale land use information and high-resolution elevation data collection. Coastal hazard risk evaluation has critical dependence on these rich data sets. A fundamental storm surge model parameter in predicting flooding location, for example, is coastal elevation data, and a foundation in identifying the most vulnerable populations and resources is land use maps. A wealth of information for physical change process study, coastal resource and community management and protection, and coastal area hazard vulnerability determination, is available in a comprehensive national coastal mapping plan designed to take advantage of recent mapping technology progress and data distribution, management, and collection.

  6. Level III and IV Ecoregions of the Continental United States

    EPA Pesticide Factsheets

    Information and downloadable maps and datasets for Level III and IV ecoregions of the continental United States. Ecoregions are areas of general similarity in the type, quality, and quantity of environmental resources.

  7. A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data

    USGS Publications Warehouse

    Raines, G.L.; Mihalasky, M.J.

    2002-01-01

    The U.S. Geological Survey (USGS) is proposing to conduct a global mineral-resource assessment using geologic maps, significant deposits, and exploration history as minimal data requirements. Using a geologic map and locations of significant pluton-related deposits, the pluton-related-deposit tract maps from the USGS national mineral-resource assessment have been reproduced with GIS-based analysis and modeling techniques. Agreement, kappa, and Jaccard's C correlation statistics between the expert USGS and calculated tract maps of 87%, 40%, and 28%, respectively, have been achieved using a combination of weights-of-evidence and weighted logistic regression methods. Between the experts' and calculated maps, the ranking of states measured by total permissive area correlates at 84%. The disagreement between the experts and calculated results can be explained primarily by tracts defined by geophysical evidence not considered in the calculations, generalization of tracts by the experts, differences in map scales, and the experts' inclusion of large tracts that are arguably not permissive. This analysis shows that tracts for regional mineral-resource assessment approximating those delineated by USGS experts can be calculated using weights of evidence and weighted logistic regression, a geologic map, and the location of significant deposits. Weights of evidence and weighted logistic regression applied to a global geologic map could provide quickly a useful reconnaissance definition of tracts for mineral assessment that is tied to the data and is reproducible. ?? 2002 International Association for Mathematical Geology.

  8. Distribution and Aggregate Thickness of Salt Deposits of the United States

    EPA Pesticide Factsheets

    The map shows the distribution and aggregate thickness of salt deposits of the United States. This information is from contour map sheets, scanned and processed for use in a global mineral resource assessment, produced by the U.S. Geological Survey. It is used here to provide a geospatial context to the distribution of rock-salt deposits in the US. It is useful in illustrating sources of chlorides.

  9. Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  10. Use of satellite imagery for wildland resource evaluation in the Great Basin

    NASA Technical Reports Server (NTRS)

    Tueller, P. T. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Most major vegetation types of Nevada have been mapped with success. The completed set of mosaic overlays will be more accurate and detailed than previous maps compiled by various State and Federal agencies due to the excellent vantage point that ERTS-1 data affords. This new vegetation type map will greatly aid resource agencies in their daily work. Such information as suitable grazing areas, wildlife habitat, forage production, and approximate wildland production potentials can be inferred from such a map. There has been some success in detecting vegetational changes with the use of ERTS-1 MSS imagery, but exposure differences have somewhat confounded the results. Future plans include work to solve this problem.

  11. Forest and Range Inventory and Mapping

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.

    1971-01-01

    The state of the art in remote sensing for forest and range inventories and mapping has been discussed. There remains a long way to go before some of these techniques can be used on an operational basis. By the time that the Earth Resources Technology Satellite and Skylab space missions are flown, it should be possible to tell what kind and what quality of information can be extracted from remote sensors and how it can be used for surveys of forest and range resources.

  12. Fault-Tolerant and Elastic Streaming MapReduce with Decentralized Coordination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbhare, Alok; Frincu, Marc; Simmhan, Yogesh

    2015-06-29

    The MapReduce programming model, due to its simplicity and scalability, has become an essential tool for processing large data volumes in distributed environments. Recent Stream Processing Systems (SPS) extend this model to provide low-latency analysis of high-velocity continuous data streams. However, integrating MapReduce with streaming poses challenges: first, the runtime variations in data characteristics such as data-rates and key-distribution cause resource overload, that inturn leads to fluctuations in the Quality of the Service (QoS); and second, the stateful reducers, whose state depends on the complete tuple history, necessitates efficient fault-recovery mechanisms to maintain the desired QoS in the presence ofmore » resource failures. We propose an integrated streaming MapReduce architecture leveraging the concept of consistent hashing to support runtime elasticity along with locality-aware data and state replication to provide efficient load-balancing with low-overhead fault-tolerance and parallel fault-recovery from multiple simultaneous failures. Our evaluation on a private cloud shows up to 2:8 improvement in peak throughput compared to Apache Storm SPS, and a low recovery latency of 700 -1500 ms from multiple failures.« less

  13. U.S. Geological Survey water resources Internet tools

    USGS Publications Warehouse

    Shaffer, Kimberly H.

    2013-11-07

    The U.S. Geological Fact Sheet (USGS) provides a wealth of information on hydrologic data, maps, graphs, and other resources for your State.Sources of water resources information are listed below.WaterWatchWaterQualityWatchGroundwater WatchWaterNowWaterAlertUSGS Flood Inundation MapperNational Water Information System (NWIS)StreamStatsNational Water Quality Assessment (NAWOA)

  14. Geospatial characteristics of Florida's coastal and offshore environments: Distribution of important habitats for coastal and offshore biological resources and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, and locations of important habitats (for example, Essential Fish Habitats (EFH), nesting areas, strandings) for marine invertebrates, fish, reptiles, birds, and marine mammals. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map can be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are provided as attached xml files for all geographic information system (GIS) layers.

  15. 18 CFR 4.39 - Specifications for maps and drawings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and drawings. 4.39 Section 4.39 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT LICENSES, PERMITS, EXEMPTIONS, AND..., large scale maps may be required. (1) True and magnetic meridians; (2) State, county, and town lines...

  16. 18 CFR 4.39 - Specifications for maps and drawings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and drawings. 4.39 Section 4.39 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT LICENSES, PERMITS, EXEMPTIONS, AND..., large scale maps may be required. (1) True and magnetic meridians; (2) State, county, and town lines...

  17. NCEP SST Analysis

    Science.gov Websites

    Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps

  18. Energy map of southwestern Wyoming, Part A - Coal and wind

    USGS Publications Warehouse

    Biewick, Laura; Jones, Nicholas R.

    2012-01-01

    To further advance the objectives of the Wyoming Landscape Conservation Initiative (WLCI) the U.S. Geological Survey (USGS) and the Wyoming State Geological Survey (WSGS) have compiled Part A of the Energy Map of Southwestern Wyoming. Focusing primarily on electrical power sources, Part A of the energy map is a compilation of both published and previously unpublished coal (including coalbed gas) and wind energy resources data, presented in a Geographic Information System (GIS) data package. Energy maps, data, documentation and spatial data processing capabilities are available in a geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map (plate 1) and other digital formats that can be downloaded at the USGS website. Accompanying the map (plate 1) and the geospatial data are four additional plates that describe the geology, energy resources, and related infrastructure. These tabular plates include coal mine (plate 2), coal field (plate 3), coalbed gas assessment unit (plate 4), and wind farm (plate 5) information with hyperlinks to source publications and data on the internet. The plates can be printed and examined in hardcopy, or accessed digitally. The data represent decades of research by the USGS, WSGS, BLM and others, and can facilitate landscape-level science assessments, and resource management decisionmaking.

  19. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garside, L.J.

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  20. Statistical strategy for inventorying and monitoring the ecosystem resources of the Mexican States of Jalisco and Colima at multiple scales and resolution levels

    Treesearch

    H. T. Schreuder; M. S. Williams; C. Aguirre-Bravo; P. L. Patterson

    2003-01-01

    The sampling strategy is presented for the initial phase of the natural resources pilot project in the Mexican States of Jalisco and Colima. The sampling design used is ground-based cluster sampling with poststratification based on Landsat Thematic Mapper imagery. The data collected will serve as a basis for additional data collection, mapping, and spatial modeling...

  1. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources

    PubMed Central

    Rauch, Jason N.

    2009-01-01

    Human activity has become a significant geomorphic force in modern times, resulting in unprecedented movements of material around Earth. An essential constituent of this material movement, the major industrial metals aluminium, copper, iron, and zinc in the human-built environment are mapped globally at 1-km nominal resolution for the year 2000 and compared with the locations of present-day in-ground resources. While the maps of in-ground resources generated essentially combine available databases, the mapping methodology of in-use stocks relies on the linear regression between gross domestic product and both in-use stock estimates and the Nighttime Lights of the World dataset. As the first global maps of in-use metal stocks, they reveal that a full 25% of the world's Fe, Al, Cu, and Zn in-use deposits are concentrated in three bands: (i) the Eastern seaboard from Washington, D.C. to Boston in the United States, (ii) England, Benelux into Germany and Northern Italy, and (iii) South Korea and Japan. This pattern is consistent across all metals investigated. In contrast, the global maps of primary metal resources reveal these deposits are more evenly distributed between the developed and developing worlds, with the distribution pattern differing depending on the metal. This analysis highlights the magnitude at which in-ground metal resources have been translocated to in-use stocks, largely from highly concentrated but globally dispersed in-ground deposits to more diffuse in-use stocks located primarily in developed urban regions. PMID:19858486

  2. Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  3. Navigating the Digital Shift: Mapping the Acquisition of Digital Instructional Materials

    ERIC Educational Resources Information Center

    Fox, Christine; Jones, Rachel; Neugent, Lan

    2015-01-01

    In 2015, the State Educational Technology Directors Association (SETDA) administered the Digital Instructional Materials Survey regarding state policies and guidelines for the acquisition, vetting, and funding of instructional resources for all 50 states, Guam, and the Commonwealth of Northern Mariana Islands (CNMI). Based upon this survey,…

  4. Remote sensing strategies for global resource exploration and environmental management

    NASA Astrophysics Data System (ADS)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources. If, however, satellite producing countries follow the Russian and Indian lead and restrict civil satellite data as tools of their national security and economic policies, remote sensing technology may become internationally competitive in space, redundant, prohibitively expensive, and generally unavailable to the world community.

  5. Terrain intelligence Chita Oblast (U.S.S.R.)

    USGS Publications Warehouse

    ,

    1943-01-01

    The following folio of maps and explanatory tables outlines the principal terrain features of the Chita Oblast.  Each map and table is devoted to a specialized set of problems; together they cover such subjects as terrain appreciations, rivers, surface-water and ground-water supplies, construction materials, fuels, suitability for temporary roads and airfields, mineral resources, and geology.  These maps and data were complied by the United States Geological Survey.

  6. Mapping water use - Landsat and water resources in the United States

    USGS Publications Warehouse

    Johnson, Rebecca L.

    2016-06-27

    Crucial to the process is the thermal (infrared) band from Landsat. Using the Landsat thermal band with its 100-meter resolution, water-use maps can be created at a scale detailed enough to show how much water crops are using at the level of individual fields anywhere in the world. 

  7. Activities and preliminary results of nearshore benthic habitat mapping in southern California, 1998

    USGS Publications Warehouse

    Cochrane, Guy R.; Lafferty, Kevin D.

    2000-01-01

    The nearshore benthic habitat of the Santa Barbara coast and Channel Islands supports a diversity of marine life that are commercially, recreationally, and intrinsically valuable. Some of these resources are known to be endangered including a variety of rockfish and the White Abalone. State and National agencies have been mandated to preserve and enhance these resources and require detailed habitat characterization in order to do so. This project will characterize and map the benthic habitat in areas that have been selected because they have been set aside as National Sanctuaries or State Preserves, or are areas of ongoing or planned fish population studies. Various management strategies are being developed to protect marine resources in the Santa Barbara Channel Islands Region. One approach under investigation is to implement no-take marine reserves (Agardy, T., 1997; Bohnsack, 1998; Roberts, 1997). One small reserve presently exists on Anacapa Island and there is a growing momentum to add additional reserves to form a reserve network (Lafferty et al., 2000). Reserves may provide relatively pristine marine communities in a wild state for study and appreciation. In addition, they may buffer some species from over-fishing. A key feature of marine reserve design is to protect a representation of the existing habitats in a region (Roberts, 1997). Unfortunately, the distribution of habitats is not well known in this area since the underwater equivalent of soils and vegetation maps that are widely available for terrestrial systems do not yet exist. Managers need habitat maps to help determine the most appropriate boundaries for reserves in a network in order to meet various criteria and goals (such as habitat representation, reserve size, habitat heterogeneity, reserve spacing, inclusion of sensitive habitats, etc.). Another use for habitat mapping is to better understand the distribution of those habitats that are particularly important to fished species or sensitive species. Combining habitat mapping with ongoing studies of egg and larval fish counts by the National Marine Fisheries Service (Russell Vetter), rockfish population studies by the California Department of Fish and Game (Dave VenTresca), and white abalone (Kevin Lafferty and others, USGS) will extend the ability to predict the distribution of these species and identify areas with appropriate habitat that might be suitable for restoration. Additional uses for habitat mapping include managing visitor use, kelp distribution, and archeological resources.

  8. a Framework for Capacity Building in Mapping Coastal Resources Using Remote Sensing in the Philippines

    NASA Astrophysics Data System (ADS)

    Tamondong, A.; Cruz, C.; Ticman, T.; Peralta, R.; Go, G. A.; Vergara, M.; Estabillo, M. S.; Cadalzo, I. E.; Jalbuena, R.; Blanco, A.

    2016-06-01

    Remote sensing has been an effective technology in mapping natural resources by reducing the costs and field data gathering time and bringing in timely information. With the launch of several earth observation satellites, an increase in the availability of satellite imageries provides an immense selection of data for the users. The Philippines has recently embarked in a program which will enable the gathering of LiDAR data in the whole country. The capacity of the Philippines to take advantage of these advancements and opportunities is lacking. There is a need to transfer the knowledge of remote sensing technology to other institutions to better utilize the available data. Being an archipelagic country with approximately 36,000 kilometers of coastline, and most of its people depending on its coastal resources, remote sensing is an optimal choice in mapping such resources. A project involving fifteen (15) state universities and colleges and higher education institutions all over the country headed by the University of the Philippines Training Center for Applied Geodesy and Photogrammetry and funded by the Department of Science and Technology was formed to carry out the task of capacity building in mapping the country's coastal resources using LiDAR and other remotely sensed datasets. This paper discusses the accomplishments and the future activities of the project.

  9. Rainwater harvesting state regulations and technical resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, Susan A.

    Pacific Northwest National Laboratory (PNNL) conducted in-depth research of state-level rainwater harvesting regulations for the Federal Energy Management Program (FEMP) to help federal agencies strategically identify locations conducive to rainwater harvesting projects. Currently, rainwater harvesting is not regulated by the federal government but rather it is up to individual states to regulate the collection and use of rainwater. There is no centralized information on state-level regulations on rainwater harvesting maintained by a federal agency or outside organization. To fill this information gap, PNNL performed detailed internet searches for each state, which included state agencies, universities, Cooperative Extension Offices, city governments,more » and related organizations. The state-by-state information on rainwater harvesting regulations was compiled and assembled into an interactive map that is color coded by state regulations. The map provides a visual representation of the general types of rainwater harvesting policies across the country as well as general information on the state programs if applicable. The map allows the user to quickly discern where rainwater harvesting is supported and regulated by the state. This map will be available on the FEMP website by September 2015.« less

  10. Integrating Geologic, Geochemical and Geophysical Data in a Statistical Analysis of Geothermal Resource Probability across the State of Hawaii

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Ito, G.; Thomas, D. M.; Hinz, N.; Frazer, L. N.; Waller, D.

    2015-12-01

    Hawaii offers the opportunity to gain knowledge and develop geothermal energy on the only oceanic hotspot in the U.S. As a remote island state, Hawaii is more dependent on imported fossil fuel than any other state in the U.S., and energy prices are 3 to 4 times higher than the national average. The only proven resource, located on Hawaii Island's active Kilauea volcano, is a region of high geologic risk; other regions of probable resource exist but lack adequate assessment. The last comprehensive statewide geothermal assessment occurred in 1983 and found a potential resource on all islands (Hawaii Institute of Geophysics, 1983). Phase 1 of a Department of Energy funded project to assess the probability of geothermal resource potential statewide in Hawaii was recently completed. The execution of this project was divided into three main tasks: (1) compile all historical and current data for Hawaii that is relevant to geothermal resources into a single Geographic Information System (GIS) project; (2) analyze and rank these datasets in terms of their relevance to the three primary properties of a viable geothermal resource: heat (H), fluid (F), and permeability (P); and (3) develop and apply a Bayesian statistical method to incorporate the ranks and produce probability models that map out Hawaii's geothermal resource potential. Here, we summarize the project methodology and present maps that highlight both high prospect areas as well as areas that lack enough data to make an adequate assessment. We suggest a path for future exploration activities in Hawaii, and discuss how this method of analysis can be adapted to other regions and other types of resources. The figure below shows multiple layers of GIS data for Hawaii Island. Color shades indicate crustal density anomalies produced from inversions of gravity (Flinders et al. 2013). Superimposed on this are mapped calderas, rift zones, volcanic cones, and faults (following Sherrod et al., 2007). These features were used to identify probable locations of intrusive rock (heat) and permeability.

  11. A Generalized Timeline Representation, Services, and Interface for Automating Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Johnston, Mark; Frank, Jeremy; Giuliano, Mark; Kavelaars, Alicia; Lenzen, Christoph; Policella, Nicola

    2012-01-01

    Numerous automated and semi-automated planning & scheduling systems have been developed for space applications. Most of these systems are model-based in that they encode domain knowledge necessary to predict spacecraft state and resources based on initial conditions and a proposed activity plan. The spacecraft state and resources as often modeled as a series of timelines, with a timeline or set of timelines to represent a state or resource key in the operations of the spacecraft. In this paper, we first describe a basic timeline representation that can represent a set of state, resource, timing, and transition constraints. We describe a number of planning and scheduling systems designed for space applications (and in many cases deployed for use of ongoing missions) and describe how they do and do not map onto this timeline model.

  12. GapMap: Enabling Comprehensive Autism Resource Epidemiology

    PubMed Central

    Albert, Nikhila; Schwartz, Jessey; Du, Michael

    2017-01-01

    Background For individuals with autism spectrum disorder (ASD), finding resources can be a lengthy and difficult process. The difficulty in obtaining global, fine-grained autism epidemiological data hinders researchers from quickly and efficiently studying large-scale correlations among ASD, environmental factors, and geographical and cultural factors. Objective The objective of this study was to define resource load and resource availability for families affected by autism and subsequently create a platform to enable a more accurate representation of prevalence rates and resource epidemiology. Methods We created a mobile application, GapMap, to collect locational, diagnostic, and resource use information from individuals with autism to compute accurate prevalence rates and better understand autism resource epidemiology. GapMap is hosted on AWS S3, running on a React and Redux front-end framework. The backend framework is comprised of an AWS API Gateway and Lambda Function setup, with secure and scalable end points for retrieving prevalence and resource data, and for submitting participant data. Measures of autism resource scarcity, including resource load, resource availability, and resource gaps were defined and preliminarily computed using simulated or scraped data. Results The average distance from an individual in the United States to the nearest diagnostic center is approximately 182 km (50 miles), with a standard deviation of 235 km (146 miles). The average distance from an individual with ASD to the nearest diagnostic center, however, is only 32 km (20 miles), suggesting that individuals who live closer to diagnostic services are more likely to be diagnosed. Conclusions This study confirmed that individuals closer to diagnostic services are more likely to be diagnosed and proposes GapMap, a means to measure and enable the alleviation of increasingly overburdened diagnostic centers and resource-poor areas where parents are unable to diagnose their children as quickly and easily as needed. GapMap will collect information that will provide more accurate data for computing resource loads and availability, uncovering the impact of resource epidemiology on age and likelihood of diagnosis, and gathering localized autism prevalence rates. PMID:28473303

  13. GapMap: Enabling Comprehensive Autism Resource Epidemiology.

    PubMed

    Albert, Nikhila; Daniels, Jena; Schwartz, Jessey; Du, Michael; Wall, Dennis P

    2017-05-04

    For individuals with autism spectrum disorder (ASD), finding resources can be a lengthy and difficult process. The difficulty in obtaining global, fine-grained autism epidemiological data hinders researchers from quickly and efficiently studying large-scale correlations among ASD, environmental factors, and geographical and cultural factors. The objective of this study was to define resource load and resource availability for families affected by autism and subsequently create a platform to enable a more accurate representation of prevalence rates and resource epidemiology. We created a mobile application, GapMap, to collect locational, diagnostic, and resource use information from individuals with autism to compute accurate prevalence rates and better understand autism resource epidemiology. GapMap is hosted on AWS S3, running on a React and Redux front-end framework. The backend framework is comprised of an AWS API Gateway and Lambda Function setup, with secure and scalable end points for retrieving prevalence and resource data, and for submitting participant data. Measures of autism resource scarcity, including resource load, resource availability, and resource gaps were defined and preliminarily computed using simulated or scraped data. The average distance from an individual in the United States to the nearest diagnostic center is approximately 182 km (50 miles), with a standard deviation of 235 km (146 miles). The average distance from an individual with ASD to the nearest diagnostic center, however, is only 32 km (20 miles), suggesting that individuals who live closer to diagnostic services are more likely to be diagnosed. This study confirmed that individuals closer to diagnostic services are more likely to be diagnosed and proposes GapMap, a means to measure and enable the alleviation of increasingly overburdened diagnostic centers and resource-poor areas where parents are unable to diagnose their children as quickly and easily as needed. GapMap will collect information that will provide more accurate data for computing resource loads and availability, uncovering the impact of resource epidemiology on age and likelihood of diagnosis, and gathering localized autism prevalence rates. ©Nikhila Albert, Jena Daniels, Jessey Schwartz, Michael Du, Dennis P Wall. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 04.05.2017.

  14. Inventory and analysis of rangeland resources of the state land block on Parker Mountain, Utah

    NASA Technical Reports Server (NTRS)

    Jaynes, R. A. (Principal Investigator)

    1983-01-01

    High altitude color infrared (CIR) photography was interpreted to provide an 1:24,000 overlay to U.S.G.S. topographic maps. The inventory and analysis of rangeland resources was augmented by the digital analysis of LANDSAT MSS data. Available geology, soils, and precipitation maps were used to sort out areas of confusion on the CIR photography. The map overlay from photo interpretation was also prepared with reference to print maps developed from LANDSAT MSS data. The resulting map overlay has a high degree of interpretive and spatial accuracy. An unacceptable level of confusion between the several sagebrush types in the MSS mapping was largely corrected by introducing ancillary data. Boundaries from geology, soils, and precipitation maps, as well as field observations, were digitized and pixel classes were adjusted according to the location of pixels with particular spectral signatures with respect to such boundaries. The resulting map, with six major cover classes, has an overall accuracy of 89%. Overall accuracy was 74% when these six classes were expanded to 20 classes.

  15. Preliminary integrated geologic map databases for the United States : Central states : Montana, Wyoming, Colorado, New Mexico, Kansas, Oklahoma, Texas, Missouri, Arkansas, and Louisiana

    USGS Publications Warehouse

    Stoeser, Douglas B.; Green, Gregory N.; Morath, Laurie C.; Heran, William D.; Wilson, Anna B.; Moore, David W.; Van Gosen, Bradley S.

    2005-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national digital geologic maps attributed with age and lithology information. Such maps can be conveniently used to generate derivative maps for purposes including mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This Open-File Report is a preliminary version of part of a series of integrated state geologic map databases that cover the entire United States. The only national-scale digital geologic maps that portray most or all of the United States for the conterminous U.S. are the digital version of the King and Beikman (1974a, b) map at a scale of 1:2,500,000, as digitized by Schruben and others (1994) and the digital version of the Geologic Map of North America (Reed and others, 2005a, b) compiled at a scale of 1:5,000,000 which is currently being prepared by the U.S. Geological Survey. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. In a few cases, new digital compilations were prepared (e.g. OH, SC, SD) or existing paper maps were digitized (e.g. KY, TX). For Alaska and Hawaii, new regional maps are being compiled and ultimately new state maps will be produced. The digital geologic maps are presented in standardized formats as ARC/INFO (.e00) export files and as ArcView shape (.shp) files. Accompanying these spatial databases are a set of five supplemental data tables that relate the map units to detailed lithologic and age information. The maps for the CONUS have been fitted to a common set of state boundaries based on the 1:100,000 topographic map series of the United States Geological Survey (USGS). When the individual state maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps. No attempt has been made to reconcile differences in mapped geology across state lines. This is the first version of this product and it will be subsequently updated to include four additional states (North Dakota, South Dakota, Nebraska, and Iowa)

  16. The United States Today: An Atlas of Reproducible Pages.

    ERIC Educational Resources Information Center

    World Eagle, Inc., Wellesley, MA.

    Black and white maps, graphs and tables that may be reproduced are presented in this volume focusing on the United States. Some of the features of the United States depicted are: size, population, agriculture and resources, manufactures, trade, citizenship, employment, income, poverty, the federal budget, energy, health, education, crime, and the…

  17. Coal assessments and coal research in the Appalachian basin: Chapter D.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Tewalt, Susan J.; Ruppert, Leslie F.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    State geological surveys are concentrating on mapping and correlating coal beds and coal zones and studying CBM potential and production. Both State surveys and the USGS are researching the potential for carbon dioxide sequestration in unmined coal beds and other geologic reservoirs. In addition, the State geological surveys continue their long-term collaboration with the USGS and provide coal stratigraphic data to the National Coal Resources Data System (NCRDS).

  18. Wetlands delineation by spectral signature analysis and legal implications

    NASA Technical Reports Server (NTRS)

    Anderon, R. R.; Carter, V.

    1972-01-01

    High altitude analysis of wetland resources and the use of such information in an operational mode to address specific problems of wetland preservation at a state level are discussed. Work efforts were directed toward: (1) developing techniques for using large scale color IR photography in state wetlands mapping program, (2) developing methods for obtaining wetlands ecology information from high altitude photography, (3) developing means by which spectral data can be more accurately analyzed visually, and (4) developing spectral data for automatic mapping of wetlands.

  19. Geochemical survey maps of the wildernesses and roadless areas in the White Mountains National Forest, Coos, Grafton, and Carroll counties, New Hampshire

    USGS Publications Warehouse

    Canney, F.C.; Howd, F.H.; Domenico, J.A.; Nakagawa, H.M.

    1987-01-01

    This map is based on joint investigations by the U.S. Geological Survey and the Office of the State Geologists of New Hampshire. The geochemical survey was conducted in the summer of 1980 and was integrated with an on-going multidisciplinary study of mineral resources of the Sherbrooke and Lewiston 1°x2° quadrangles under the Conterminous United States Mineral Assessment Program (CUSMAP).

  20. The US Geological Survey's National Mapping Division programs, products, and services that can support wetlands mapping

    USGS Publications Warehouse

    Baxter, F.S.

    1990-01-01

    The US Geological Survey (USGS) programs can play an important role in support of President Bush's policy of no net loss of wetlands. A principal goal of USGS is to provide cartographic information that contributes to the wise management of the Nation's natural resources. This information consists of maps, cartographic data bases (graphic and digital), remotely sensed imagery, and information services. These products are used by Federal, State, and local governments, the private sector, and individual citizens in making decisions on the existence and use of land and water resources. I discuss the programs, products, and information services of the National Mapping Division, the tools available to determine where wetlands exist, and the capability of periodic measurement of wetlands to help in assessing compliance with the concept of no net loss of wetlands. -from Author

  1. Karst map of Puerto Rico

    USGS Publications Warehouse

    Alemán González, Wilma B.

    2010-01-01

    This map is a digital compilation, combining the mapping of earlier geologists. Their work, cited on the map, contains more detailed descriptions of karst areas and landforms in Puerto Rico. This map is the basis for the Puerto Rico part of a new national karst map currently being compiled by the U.S. Geological Survey. In addition, this product is a standalone, citable source of digital karst data for Puerto Rico. Nearly 25 percent of the United States is underlain by karst terrain, and a large part of that area is undergoing urban and industrial development. Accurate delineations of karstic rocks are needed at scales suitable for national, State, and local maps. The data on this map contribute to a better understanding of subsidence hazards, groundwater contamination potential, and cave resources as well as serve as a guide to topical research on karst. Because the karst data were digitized from maps having a different scale and projection from those on the base map used for this publication, some karst features may not coincide perfectly with physiographic features portrayed on the base map.

  2. Forest area and conditions: a 2010 update of Chapter 16 of the Southern Forest Resource Assessment

    Treesearch

    Andrew J. Hartsell; Roger C. Conner

    2013-01-01

    This report updates the findings of Chapter 16 of the Southern Forest Resource Assessment (Wear and Greis 2002), based on 2010 report year data. Analysis focuses on changes in the South’s forest resources since 1999 using annual inventory, mapped-plot design data available for the first time for all 13 Southern States (excluding west Oklahoma and west Texas). The...

  3. Online, interactive assessment of geothermal energy potential in the U.S

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Clark, R.; Coleman, C.; Love, D.; Pape, E.; Musil, L.

    2011-12-01

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online 'mashups,' data integration, and applications. Emphasis is first to make as much information as possible accessible, with a long range goal to make data interoperable through standardized services and interchange formats. Resources may be made available as documents (files) in whatever format they are currently in, converted to tabular files using standard content models, or published as Open Geospatial Consortium or ESRI Web services using the standard xml schema. An initial set of thirty geoscience data content models are in use or under development to define standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps (depth to bedrock), aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from NGDS participating institutions (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive, holistic set of data critical to geothermal energy development. As of August 2011, over 33,000 data resources have been registered in the system catalog, along with scores of Web services to deliver integrated data to the desktop for free downloading or online use. The data exchange mechanism is built on the U.S. Geoscience Information Network (USGIN, http://lab.usgin.org) protocols and standards developed in partnership with the U.S. Geological Survey.

  4. Preliminary integrated geologic map databases for the United States: Digital data for the geology of southeast Alaska

    USGS Publications Warehouse

    Gehrels, George E.; Berg, Henry C.

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set of 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  5. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.

  6. India Solar Resource Data: Enhanced Data for Accelerated Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.

  7. Forest management and water in the United States [Chapter 13

    Treesearch

    Daniel G. Neary

    2017-01-01

    This chapter outlines a brief history of the United States native forests and forest plantations. It describes the past and current natural and plantation forest distribution (map, area, main species), as well as main products produced (timber, pulp, furniture, etc.). Integrated into this discussion is a characterization of the water resources of the United States and...

  8. Fifty-eighth annual report of the Director of the Geological Survey

    USGS Publications Warehouse

    Mendenhall, Walter Curran

    1937-01-01

    During the fiscal year 1937 the Geological Survey continued its systematic work in investigating, mapping, and reporting on the geology, the mineral and water resources, and the physical features of the United States. The results of this work are basic in all conservational activities, as those who plan and direct the conservation policies toward the wise development and use of the Nation's resources must first have the facts about the quantity, quality, distribution, and availability of those resources and adequate maps with which to pursue and record further studies. Through its technical supervision of prospecting, mining, and producing operations on public and Indian land under permits, leases, and licenses, the Survey was directly engaged in the practical application of conservation policies.

  9. Heavy-Mineral Placer Potential Map of the U.S. Continental Shelf, Western and Northern Gulf of Mexico

    USGS Publications Warehouse

    Shideler, Gerald L.

    1988-01-01

    The establishment of the Exclusive Economic Zone (EEZ) in 1983 by Presidential Proclamation opened for natural resource exploration a vast offshore frontier area contiguous to the United States and its territories. The EEZ extends from the seaward limit of state waters (3 nautical mi from shore) to 200 nautical mi offshore, and it includes the continental shelves. Within the context of the EEZ natural resource assessment effort, the purpose of this study is to delineate, on a regional basis, the potential for heavy-mineral placers on the U.S. Continental Shelf in the western and northern Gulf of Mexico from the United States-Mexico border to the Alabama-Florida state line. This map is intended to serve as a general guide for placer exploration. It shows favorable sea-floor areas for placer occurrence in water depths ranging from 0 to 100 fathoms (600 ft). The map can be used as a guide for focusing costly exploratory efforts, such as coring operations and geophysical surveys. The potential economic value of heavy-mineral placer concentrations on the U.S. Continental Shelf is a function of both geologic and economic variables. Geologic variables include the composition and concentration of the heavy-mineral assemblages and their environment of deposition. Economic variables include the current world market price of extracted metals, as well as the cost of mining, processing, and marketing the metals. These economic factors, in turn, are tempered by the nation1s socio-political climate, which determines its need for specific mineral resources at any given time.

  10. Classifying and mapping wetlands and peat resources using digital cartography

    USGS Publications Warehouse

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  11. Publications - GMC 263 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 263 main content DGGS GMC 263 Publication Details Title: Map location and geological logs of core for 1994 diamond drill

  12. Applied Remote Sensing Program (ARSP) to state and local government

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Clark, R.

    1975-01-01

    Environmental surveys of arid land areas (Arizona) in the United States are presented. Maps of soils, vegetation, drainage patterns, and land use are shown. The distribution of uranium deposits, oil and gas pools, is also shown. Legislation pertaining to the preservation of natural resources is discussed.

  13. The transfer of land resources information into the public sector—The Texas experience

    NASA Astrophysics Data System (ADS)

    Wermund, E. G.

    1980-03-01

    Mapping of land resources and environmental geology was initiated in Texas toward better communication of geology to the public policy sector. Relevant mapping parameters have included terrain, substrate, active processes, economic resources, and hydrology as well as physical, chemical, and biologic properties. Land resources maps and reports have been prepared for public agencies and published for technical and nontechnical readers; sales of these articles are one indicator of public policy transfer. Single lectures or participation in symposia and colloquia for scientific societies have been valuable only for peer review or as a means to sharpen communicative skills. The most successful mechanisms of public policy transfer have been (1) in-state workshops and short courses for elected officials, Governmental employees, and interested citizens; (2) legislative testimonies; (3) active participation on interagency committees; (4) reviews and comments on planning statements; and (5) a temporary loan of personnel to another agency. Areas where these methods successfully have impacted public policy are reflected in the present quality of Section 208, Section 701, and coastal zone management planning; applications for surface-mining permits; and environmental impact statement records in Texas.

  14. EnviroAtlas Webinar

    EPA Pesticide Factsheets

    EnviroAtlas is a web-based decision support tool that combines maps, analysis tools, downloadable data and informational resources that states, tribes and communities can use to help inform policy and planning decisions impacting their surroundings.

  15. Field Guide to the Plant Community Types of Voyageurs National Park

    USGS Publications Warehouse

    Faber-Langendoen, Don; Aaseng, Norman; Hop, Kevin; Lew-Smith, Michael

    2007-01-01

    INTRODUCTION The objective of the U.S. Geological Survey-National Park Service Vegetation Mapping Program is to classify, describe, and map vegetation for most of the park units within the National Park Service (NPS). The program was created in response to the NPS Natural Resources Inventory and Monitoring Guidelines issued in 1992. Products for each park include digital files of the vegetation map and field data, keys and descriptions to the plant communities, reports, metadata, map accuracy verification summaries, and aerial photographs. Interagency teams work in each park and, following standardized mapping and field sampling protocols, develop products and vegetation classification standards that document the various vegetation types found in a given park. The use of a standard national vegetation classification system and mapping protocol facilitate effective resource stewardship by ensuring compatibility and widespread use of the information throughout the NPS as well as by other Federal and state agencies. These vegetation classifications and maps and associated information support a wide variety of resource assessment, park management, and planning needs, and provide a structure for framing and answering critical scientific questions about plant communities and their relation to environmental processes across the landscape. This field guide is intended to make the classification accessible to park visitors and researchers at Voyageurs National Park, allowing them to identify any stand of natural vegetation and showing how the classification can be used in conjunction with the vegetation map (Hop and others, 2001).

  16. Comparison of U.S. Forest Land AreaEstimates From Forest Inventory and Analysis, National Resources Inventory, and Four Satellite Image-Derived Land Cover Data Sets

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard

    2005-01-01

    Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...

  17. An integrated study of earth resources in the state of California based on ERTS-1 and supporting aircraft data

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Thorley, G. A.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, V. R.; Wildman, W. E.; Huntington, G. L. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. Results of an integrated study of earth resources in the state of California using ERTS-1 and supporting aircraft data are presented. Areas of investigation cover (1) regional agricultural surveys; (2) solving water resource management problems; (3) resource management in Northern California using ERTS-1 data; (4) analysis of river meanders; (5) assessment and monitoring change in west side of the San Joaquin Valley and central coastal zone of state; (6) assessment and monitoring of changes in Southern California environment; (7) digital handling and processing of ERTS-1 data; (8) use of ERTS-1 data in educational and applied research programs of the Agricultural Extension Service; and (9) identification, classification, and mapping of salt affected soils.

  18. Cultural Resource Investigation of the Grand Forks/East Grand Forks Urban Study and the East Grand Forks Flood Control Project,

    DTIC Science & Technology

    1981-04-01

    and will not be impacted. Remarks: Level II. Father William Sherman, Pastor of St. Michael’s Church can be reached at St. Michael’s Church, 520 North...Trygg, J. William 1967 Composite Map of the Uni- % [ted States Land Surveyors’ L Original Plats and Field Notes, Minnesota Series, Sheet 20, Ely...Investigators/Years: Surveyors’ Original Plats and Notes, ’ 1872 Report/Reference: Trygg, J. William * 1967 Composite Map of United States Surveyors

  19. Mapping coastal vegetation, land use and environmental impact from ERTS-1. [Delaware Bay area

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Vegetation map overlays at a scale of 1:24,000 compiled by multispectral analysis from NASA aircraft imagery for all of Delaware's wetlands are being used as ground truth for ERTS-1 mapping and by state agencies for wetlands management. Six major vegetation species were discriminated and mapped, including percentages of minor species. Analogue enhancements of wetlands vegetation and dredge-fill operations have been produced using General Electric's GEMS data processing and ERTS-1 false color composites. Digital, thematic land use, and vegetation mapping of entire Delaware Bay area is in progress using Bendix Corporation's Earth Resources Data System and ERTS-1 digital tapes. Statistical evaluation of target-group selection reliability has been completed. Three papers have been published on ERTS-1 coastal vegetation and land use. Local and state officials are participating in the ERTS-1 program as co-investigators.

  20. Map showing mineral resource assessment for vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, John L.; Moll, S.H.

    1992-01-01

    The purpose of this report is to assess the potential for undiscovered vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten in the Butte 1 °X2° quadrangle. This quadrangle, in west-central Montana, is one of the most mineralized and productive regions in the United States. Its mining districts, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion. Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were also supported by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in resource assessment include a compilation of all data into data sets, the development of a descriptive model for vein and replacement deposits in the quadrangle, and the analysis of data using techniques provided by the Geographic Information System (GIS). This map is one of a number of reports and maps on the Butte 1 °X2° quadrangle. Other publications resulting from this study include U.S. Geological Survey Miscellaneous Investigations Series Maps 1-2050-A (Rowan and Segal, in press) and I-2050-B (Purdy and Rowan, in press); Miscellaneous Field Studies Map MF-1925 (Wallace, 1987); and Open-File Reports 86-292 (Wallace and others, 1986) and 86--0632 (Elliott and others, 1986). Reports on mineral resource assessment for several other types of deposits in the Butte quadrangle are in preparation.

  1. Digital Geologic Map of the Rosalia 1:100,000 Quadrangle, Washington and Idaho: A Digital Database for the 1990 S.Z. Waggoner Map

    USGS Publications Warehouse

    Derkey, Pamela D.; Johnson, Bruce R.; Lackaff, Beatrice B.; Derkey, Robert E.

    1998-01-01

    The geologic map of the Rosalia 1:100,000-scale quadrangle was compiled in 1990 by S.Z. Waggoner of the Washington state Division of Geology and Earth Resources. This data was entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The intent was to provide a digital geospatial database for a previously published black and white paper geologic map. This database can be queried in many ways to produce a variety of geologic maps. Digital base map data files are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000) as it has been somewhat generalized to fit the 1:100,000 scale map. The map area is located in eastern Washington and extends across the state border into western Idaho. This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. We wish to thank J. Eric Schuster of the Washington Division of Geology and Earth Resources for providing the original stable-base mylar and the funding for it to be scanned. We also thank Dick Blank and Barry Moring of the U.S. Geological Survey for reviewing the manuscript and digital files, respectively.

  2. Geologic map of Big Bend National Park, Texas

    USGS Publications Warehouse

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and interpretation, was from the USGS Crustal Geophysics and Geochemistry Science Center. Mapping contributed from university professors and students was mostly funded by independent sources, including academic institutions, private industry, and other agencies.

  3. Integrating Landsat-derived disturbance maps with FIA inventory data: Applications for state-Level forest resource assessments

    Treesearch

    Sonja Oswalt; Chengquan Huang; Hua Shi; James Vogelmann; Zhiliang Zhu; Samuel N. Goward; John Coulston

    2009-01-01

    Landsat images have been widely used for assessing forest characteristics and dynamics. Recently, significant progress has been made towards indepth exploration of the rich Landsat archive kept by the U.S. Geological Survey to improve our under standing of forest disturbance and recovery processes. In this study, we used Landsat images to map forest disturbances at...

  4. TOXMAP: A GIS-Based Gateway to Environmental Health Resources

    PubMed Central

    Hochstein, Colette; Szczur, Marti

    2009-01-01

    The National Library of Medicine (NLM) has an extensive collection of environmental health information, including bibliographic and technical data on hazardous chemical substances, in its TOXNET databases. TOXNET also provides access to the United States Environment Protection Agency (EPA)’s Toxics Release Inventory (TRI) data, which covers release of specific chemicals via air, water, and land, and by underground injection, as reported by industrial facilities around the United States. NLM has developed a Web-based geographic information system (GIS), TOXMAP , which allows users to create dynamic maps that show where TRI chemicals are released and that provides direct links to information about the chemicals in TOXNET. By extracting the associated regional geographic text terms from the displayed map (e.g., rivers, towns, county, state), TOXMAP also provides customized chemical and/or region-specific searches of NLM’s bibliographic biomedical resources. This paper focuses on TOXMAP’s features, data accuracy issues, challenges, user feedback techniques, and future directions. PMID:16893844

  5. Remote sensing inputs to National Model Implementation Program for water resources quality improvement

    NASA Technical Reports Server (NTRS)

    Eidenshink, J. C.; Schmer, F. A.

    1979-01-01

    The Lake Herman watershed in southeastern South Dakota has been selected as one of seven water resources systems in the United States for involvement in the National Model Implementation Program (MIP). MIP is a pilot program initiated to illustrate the effectiveness of existing water resources quality improvement programs. The Remote Sensing Institute (RSI) at South Dakota State University has produced a computerized geographic information system for the Lake Herman watershed. All components necessary for the monitoring and evaluation process were included in the data base. The computerized data were used to produce thematic maps and tabular data for the land cover and soil classes within the watershed. These data are being utilized operationally by SCS resource personnel for planning and management purposes.

  6. Sakhalin Island terrain intelligence

    USGS Publications Warehouse

    ,

    1943-01-01

    This folio of maps and explanatory tables outlines the principal terrain features of Sakhalin Island. Each map and table is devoted to a specialized set of problems; together they cover the subjects of terrain appreciation, climate, rivers, water supply, construction materials, suitability for roads, suitability for airfields, fuels and other mineral resources, and geology. In most cases, the map of the island is divided into two parts: N. of latitude 50° N., Russian Sakhalin, and south of latitude 50° N., Japanese Sakhalin or Karafuto. These maps and data were compiled by the United States Geological Survey during the period from March to September, 1943.

  7. An inventory of undiscovered Canadian mineral resources

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Griffiths, J. C.

    1982-01-01

    Unit regional value (URV) and unit regional weight are area standardized measures of the expected value and quantity, respectively, of the mineral resources of a region. Estimation and manipulation of the URV statistic is the basis of an approach to mineral resource evaluation. Estimates of the kind and value of exploitable mineral resources yet to be discovered in the provinces of Canada are used as an illustration of the procedure. The URV statistic is set within a previously developed model wherein geology, as measured by point counting geologic maps, is related to the historical record of mineral resource production of well-developed regions of the world, such as the 50 states of the U.S.A.; these may be considered the training set. The Canadian provinces are related to this training set using geological information obtained in the same way from geologic maps of the provinces. The desired predictions of yet to be discovered mineral resources in the Canadian provinces arise as a consequence. The implicit assumption is that regions of similar geology, if equally well developed, will produce similar weights and values of mineral resources.

  8. Maps showing industrial mineral resources of the Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    USGS Publications Warehouse

    Grisafe, David A.; Rueff, Ardel W.

    1991-01-01

    This map is part of a folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri prepared under the Conterminuous United States Mineral Assessment Program (CUSMAP). Other publications in this folio to date include U.S. Geological Survey Miscellaneous Field Studies Map MF-2125-A (Erickson and others, 1990). Additional maps showing various geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey Miscellaneous Field Studies Maps bearing this same serial number with different letter suffixes (MF-2125-C, -D, and so on). The industrial mineral resources of the Joplin 1° X 2° quadrangle are crushed stone, dimension stone, clay and shale, construction sand and gravel (including chat, or chert-rich tailings from metal mines), and asphaltic sandstone. At present only crushed stone, clay and shale, and construction sand and gravel are of economic importance; the remainder are considered hypothetical resources. The value of industrial mineral production during 1987, the most recent year of complete data as supplied by the U.S. Bureau of Mines, was nearly $25,600,000. In terms of finished products such as cement and brick, the value is several times that amount. Figure 1 shows the annual value of industrial mineral production within the quadrangle from 1960 through 1987.

  9. The surface water register: an empirically improved sample frame for monitoring the rivers and streams of Kansas

    EPA Science Inventory

    State-wide monitoring based on probability survey designs requires a spatially explicit representation of all streams and rivers of interest within a state, i.e., a sample frame. The sample frame should be the best available map representation of the resource. Many stream progr...

  10. 23 CFR 450.322 - Development and content of the metropolitan transportation plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., with State and local agencies responsible for land use management, natural resources, environmental... conservation plans or maps, if available; or (2) Comparison of transportation plans to inventories of natural... electronically accessible formats and means, such as the World Wide Web. (k) A State or MPO shall not be required...

  11. 23 CFR 450.322 - Development and content of the metropolitan transportation plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., with State and local agencies responsible for land use management, natural resources, environmental... conservation plans or maps, if available; or (2) Comparison of transportation plans to inventories of natural... electronically accessible formats and means, such as the World Wide Web. (k) A State or MPO shall not be required...

  12. 23 CFR 450.322 - Development and content of the metropolitan transportation plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., with State and local agencies responsible for land use management, natural resources, environmental... conservation plans or maps, if available; or (2) Comparison of transportation plans to inventories of natural... electronically accessible formats and means, such as the World Wide Web. (k) A State or MPO shall not be required...

  13. 23 CFR 450.322 - Development and content of the metropolitan transportation plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., with State and local agencies responsible for land use management, natural resources, environmental... conservation plans or maps, if available; or (2) Comparison of transportation plans to inventories of natural... electronically accessible formats and means, such as the World Wide Web. (k) A State or MPO shall not be required...

  14. The use of interactive graphical maps for browsing medical/health Internet information resources

    PubMed Central

    Boulos, Maged N Kamel

    2003-01-01

    As online information portals accumulate metadata descriptions of Web resources, it becomes necessary to develop effective ways for visualising and navigating the resultant huge metadata repositories as well as the different semantic relationships and attributes of described Web resources. Graphical maps provide a good method to visualise, understand and navigate a world that is too large and complex to be seen directly like the Web. Several examples of maps designed as a navigational aid for Web resources are presented in this review with an emphasis on maps of medical and health-related resources. The latter include HealthCyberMap maps , which can be classified as conceptual information space maps, and the very abstract and geometric Visual Net maps of PubMed (for demos). Information resources can be also organised and navigated based on their geographic attributes. Some of the maps presented in this review use a Kohonen Self-Organising Map algorithm, and only HealthCyberMap uses a Geographic Information System to classify Web resource data and render the maps. Maps based on familiar metaphors taken from users' everyday life are much easier to understand. Associative and pictorial map icons that enable instant recognition and comprehension are preferred to geometric ones and are key to successful maps for browsing medical/health Internet information resources. PMID:12556244

  15. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Tonopah 1 by 2 degree Quadrangle, Nevada

    USGS Publications Warehouse

    John, David A.; Nash, J.T.; Plouff, Donald; Whitebread, D.H.

    1991-01-01

    The Tonopah 1 ? by 2 ? quadrangle in south-central Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists references to the geology, geochemistry, geophysics, and mineral deposits of the Tonopah 1 ? by 2 ? quadrangle.

  16. EnviroAtlas - Metrics for Austin, TX

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web service depict ecosystem services at the census block group level for the community of Austin, Texas. These layers illustrate the ecosystems and natural resources that are associated with clean air (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanAir/MapServer); clean and plentiful water (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanPlentifulWater/MapServer); natural hazard mitigation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_NaturalHazardMitigation/MapServer); climate stabilization (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_ClimateStabilization/MapServer); food, fuel, and materials (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_FoodFuelMaterials/MapServer); recreation, culture, and aesthetics (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_RecreationCultureAesthetics/MapServer); and biodiversity conservation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_BiodiversityConservation/MapServer), and factors that place stress on those resources. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States as well as de

  17. Digital Data for the reconnaissance geologic map for the Kuskokwim Bay Region of Southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mohadjer, Solmaz; Coonrad, Warren L.; Shew, Nora B.; Labay, Keith A.

    2008-01-01

    INTRODUCTION The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  18. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance bedrock geologic map for the northern Alaska peninsula area, southwest Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    he growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  19. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO Exportfiles/ and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  20. Preliminary integrated geologic map databases for the United States: Digital data for the generalized bedrock geologic map, Yukon Flats region, east-central Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Phillips, Jeffrey D.; Stanley, Richard G.; Crews, Jessie

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  1. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the lower Yukon River region, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  2. Prioritizing Seafloor Mapping for Washington’s Pacific Coast

    PubMed Central

    Battista, Timothy; Buja, Ken; Christensen, John; Hennessey, Jennifer; Lassiter, Katrina

    2017-01-01

    Remote sensing systems are critical tools used for characterizing the geological and ecological composition of the seafloor. However, creating comprehensive and detailed maps of ocean and coastal environments has been hindered by the high cost of operating ship- and aircraft-based sensors. While a number of groups (e.g., academic research, government resource management, and private sector) are engaged in or would benefit from the collection of additional seafloor mapping data, disparate priorities, dauntingly large data gaps, and insufficient funding have confounded strategic planning efforts. In this study, we addressed these challenges by implementing a quantitative, spatial process to facilitate prioritizing seafloor mapping needs in Washington State. The Washington State Prioritization Tool (WASP), a custom web-based mapping tool, was developed to solicit and analyze mapping priorities from each participating group. The process resulted in the identification of several discrete, high priority mapping hotspots. As a result, several of the areas have been or will be subsequently mapped. Furthermore, information captured during the process about the intended application of the mapping data was paramount for identifying the optimum remote sensing sensors and acquisition parameters to use during subsequent mapping surveys. PMID:28350338

  3. Biomass energy inventory and mapping system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasile, J.D.

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was usedmore » as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.« less

  4. ERTS and EROS

    USGS Publications Warehouse

    Staff, EROS Program

    1972-01-01

    In June the National Aeronautics & Space Administration is to launch its first experimental satellite designed to view the Earth systematically with remote-sensing instruments that will provide new information about our resources and environment. The launching will culminate more than 8 years of planning and research by resource agencies of the Federal Government in cooperation with NASA, state and local governments, universities, and industry. The first Earth Resources Technology Satellite, ERTS-A, will be followed a year later by ERTS-B. Analyses of data from them, it is hoped, will lead to design of operational satellites for Earth resources investigations in the future. In the belief that satellite systems will be of significant assistance in meeting its responsibilities to map, monitor, and manage the vast resources and the public lands of the United States, the Department of the Interior assumed a major role in the ERTS-A Experiment.

  5. Ozone - Current Air Quality Index

    MedlinePlus

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  6. 24. Photocopy of photograph (from Division of Beaches and Parks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (from Division of Beaches and Parks, State of California, Department of Natural Resources) Photographer unknown, Date unknown MAP OF SUTTER'S FORT - Sutter's Fort, L & Twenty-Seventh Streets, Sacramento, Sacramento County, CA

  7. DIY Solar Market Analysis STAT Webinars | State, Local, and Tribal

    Science.gov Websites

    do they help policymakers? Solar Resource and Technical Potential: Finding, using, and making maps for decision makers PVWatts: New tips and tricks for the latest update Community Solar Scenario Tool

  8. The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States

    USGS Publications Warehouse

    Kuniansky, Eve L.; Weary, David J.; Kaufmann, James E.

    2016-01-01

    Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and maintains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.

  9. The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States

    NASA Astrophysics Data System (ADS)

    Kuniansky, Eve L.; Weary, David J.; Kaufmann, James E.

    2016-05-01

    Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was 125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than 300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and maintains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.

  10. Serving the Needs of Separating and Divorcing Families: A National Survey of Extension Parenting Education Programs and Resources

    ERIC Educational Resources Information Center

    Mulroy, Maureen T.; Riffe, Jane; Brandon, Denise; Lo, Yi-An; Vaidyanath, Harini

    2013-01-01

    An online survey was developed to map Extension's presence in divorce education initiatives and to catalogue the amount, type, and availability of resources that each state has dedicated to meeting the needs of this parent audience. Requests for participation were sent to members on the National Extension Human Service listserv and resulted…

  11. Indexing, screening, coding and cataloging of earth resources aircraft mission data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Tasks completed are as follows: (1) preparation of large Area Crop Inventory experiment for data base entry;(2) preparation of Earth Observations Aircraft Flight summary reports for publication; (3) updating of the aircraft mission index coverage map and Ames aircraft flight map; (4) Prepared of Earth Observation Helicopter Flight reports for publication; and (5) indexing of LANDSAT imagery. (6) formulation of phase 3 biowindows 1, 2, 3, and 4 listings by country, footprint, and acqusition dates; (7) preparation of flight summary reports; and (8) preparation of an Alaska state index coverage map.

  12. Surficial materials in the conterminous United States

    USGS Publications Warehouse

    Soller, David R.; Reheis, Marith C.

    2004-01-01

    Introduction: The Earth's bedrock is overlain in many places by a loosely compacted and mostly unconsolidated blanket of sediments in which soils commonly are developed. These sediments generally were eroded from underlying rock, and then were transported and deposited. In places, they exceed 1,000 ft (330 m) in thickness. Where the sediment blanket is absent, bedrock is either exposed or has been weathered to produce a residual soil. This map shows the sediments and the weathered, residual material; for ease of discussion, these are referred to here as 'surficial materials.' Certain areas on this map include a significant number of rock outcrops, which cannot be shown at the scale of the map; this is noted in the 'Description of Map Units' section. Most daily human activities occur on or near the Earth's surface. Homeowners, communities, and governments can make improved decisions about hazard, resource, and environmental issues, when they understand the nature of surficial materials and how they vary from place to place. For example, are the surficial materials upon which a home is built stable enough to resist subsidence or lateral movement during an earthquake? Do these materials support a ground water resource adequate for new homes? Can they adequately filter contaminants and protect buried aquifers both in underlying sediments and in bedrock? Are they suitable for development of a new wetland? Where can we find materials suitable for aggregate? The USGS National Cooperative Geologic Mapping Program (NCGMP) works with the State geological surveys to identify priority areas for mapping of surficial materials (for example, in areas of complex and poorly understood deposits of various sediment types, where metropolitan areas are experiencing rapid growth). To help establish these priorities, a modern, synoptic overview of the geology is needed. This map represents an overview of our current knowledge of the composition and distribution of surficial materials in the conterminous United States. (The map covers only the conterminous U.S. because similar geologic information in digital form was not readily available for Alaska and Hawaii.) The best available map has been a highly generalized depiction at 1:7,500,000-scale (about 120 miles to the inch), prepared for the USGS National Atlas (Hunt, 1979; 1986). This map is compiled at a slightly more detailed scale (about 80 miles to the inch) than Hunt (1979; 1986). We used digital methods, which enabled us to rapidly incorporate the variety of source maps available to us. State-scale geologic maps from the western United States were brought directly into this map, without expending the time needed to resolve interpretive differences among them. Therefore, abrupt changes in surficial materials are indicated along many State boundaries. This of course is an artifact of our compilation technique, and a limitation on its utility. However, this approach supports the basic premise of the map -- to provide an overview of surficial materials, and to identify areas where additional work may be needed in order to resolve scientific issues that can, in turn, lead to improved mapping.

  13. Geologic map of the Cameron 30' x 60' quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.

    2007-01-01

    This geologic map is the result of a cooperative effort of the U.S. Geological Survey and the National Park Service in collaboration with the Navajo Nation and the Hopi Tribe to provide regional geologic information for resource management officials of the National Park Service, U.S. Forest Service, Navajo Indian Reservation (herein the Navajo Nation), the Hopi Tribe, and for visitor information services at Grand Canyon National Park, Arizona as well as private enterprises that have lands within the area. The Cameron 30’ x 60’ quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Coconino County, northern Arizona and is bounded by longitude 111° to 112° W., and latitude 35°30’ to 36° N. The map area is within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into six physiographic areas: the Grand Canyon (including the Little Colorado River Gorge), Coconino Plateau, Marble Plateau, Little Colorado River Valley, Moenkopi Plateau, and the San Francisco Volcanic Field as defined by Billingsley and others, 1997 (fig. 1). Elevations range from about 2,274 m (7,460 ft) at the south rim of Grand Canyon along State Highway 64 to about 994 m (3,260 ft) in the Grand Canyon, northeast quarter of the map area.The Cameron quadrangle is one of the few remaining areas near the Grand Canyon where uniform geologic mapping was needed for geologic connectivity of the regional geologic framework that will be useful to federal, state, and private land resource managers who direct environmental and land management programs such as range management, biological studies, flood control, and water resource investigations. The geologic information presented will support future and ongoing local geologic investigations and associated scientific studies of all disciplines within the Cameron quadrangle area.

  14. LiDAR Applications in Resource Geology and Benefits for Land Management

    NASA Astrophysics Data System (ADS)

    Mikulovsky, R. P.; De La Fuente, J. A.

    2013-12-01

    The US Forest Service (US Department of Agriculture) manages a broad range of geologic resources and hazards on National Forests and Grass Lands throughout the United States. Resources include rock and earth materials, groundwater, caves and paleontological resources, minerals, energy resources, and unique geologic areas. Hazards include landslides, floods, earthquakes, volcanic eruptions, and naturally hazardous materials (e.g., asbestos, radon). Forest Service Geologists who address these issues are Resource Geologists. They have been exploring LiDAR as a revolutionary tool to efficiently manage all of these hazards and resources. However, most LiDAR applications for management have focused on timber and fuels management, rather than landforms. This study shows the applications and preliminary results of using LiDAR for managing geologic resources and hazards on public lands. Applications shown include calculating sediment budgets, mapping and monitoring landslides, mapping and characterizing borrow pits or mines, determining landslide potential, mapping faults, and characterizing groundwater dependent ecosystems. LiDAR can be used to model potential locations of groundwater dependent ecosystems with threatened or endangered plant species such as Howellia aquatilis. This difficult to locate species typically exists on the Mendocino National Forest within sag ponds on landslide benches. LiDAR metrics of known sites are used to model potential habitat. Thus LiDAR can link the disciplines of geology, hydrology, botany, archaeology and others for enhanced land management. As LiDAR acquisition costs decrease and it becomes more accessible, land management organizations will find a wealth of applications with potential far-reaching benefits for managing geologic resources and hazards.

  15. Significant applications of ERTS-1 data to resource management activities at the state level in Ohio. [strip mining and land use mapping

    NASA Technical Reports Server (NTRS)

    Sweet, D. C.; Pincura, P. G.; Meier, C. J.; Garrett, G. B.; Herd, L.; Wukelic, G. E.; Stephan, J. G.; Smail, H. E.

    1974-01-01

    Described are techniques utilized and the progress made in applying ERTS-1 data to (1) detecting, inventorying, and monitoring surface mining activities, particularly in relation to recently passed strip mine legislation in Ohio; (2) updating current land use maps at various scales for multiagency usage, and (3) solving other real-time problems existing throughout the various Ohio governmental agencies. General conclusions regarding current user views as to the opportunities and limitations of operationally using ERTS-1 data at the state level are also noted.

  16. NURE aerial gamma ray and magnetic detail survey of portions of northeast Washington. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The Northeast Washington Survey was performed under the United States Department of Energy's National Uranium Resource Evaluation (NURE) Program, which is designed to provide radioelement distribution information to assist in assessing the uraniferous material potential of the United States. The radiometric and ancilliary data were digitally recorded and processed. The results are presented in the form of stacked profiles, contour maps, flight path maps, statistical tables and frequency distribution histograms. These graphical outputs are presented at a scale of 1:62,500 and are contained in the individual Volume 2 reports.

  17. Species occurrence data for the Nation--USGS Biodiversity Information Serving Our Nation (BISON)

    USGS Publications Warehouse

    ,

    2015-12-14

    USGS Biodiversity Information Serving Our Nation (BISON) is a unique, Web-based Federal mapping resource for species occurrence data in the United States and its Territories. BISON’s size is unprecedented, including records for most living species found in the United States and encompassing the efforts of more than a million professionals.

  18. Map showing principal drainage basins, principal runoff-producing areas, and selected stream flow data in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1978-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. Streamflow records used to compile this map and the accompanying table were collected by the U.S. Geological Survey in cooperation with the Utah State Engineer and the Utah Department of Transportation. The principal runoff-producing areas were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Information about Lake Powell was furnished by the U.S. Bureau of Reclamation.

  19. Circumpolar Arctic vegetation mapping workshop

    USGS Publications Warehouse

    Walker, D. A.; Markon, C.J.

    1996-01-01

    The first Circumpolar Arctic Vegetation Mapping Workshop was held in the historic village of Lakta on the outskirts of St. Petersburg, Russia, March 21-25, 1994. The primary goals of the workshop were to: (1) review the status of arctic vegetation mapping in the circumpolar countries and (2) develop a strategy for synthesizing and updating the existing information into a new series of maps that portray the current state of knowledge. Such products are important for a number of purposes, such as the international effort to understand the consequences of global change in Arctic regions, to predict the direction of future changes, and for informed planning of resource development in the Arctic.

  20. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family.

    PubMed Central

    Liu, Zhanjiang; Karsi, Attila; Li, Ping; Cao, Dongfeng; Dunham, R

    2003-01-01

    Catfish is the major aquaculture species in the United States. The hybrid catfish produced by crossing channel catfish females with blue catfish males exhibit a number of desirable production traits, but their mass production has been difficult. To introduce desirable genes from blue catfish into channel catfish through introgression, a genetic linkage map is helpful. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP). A total of 607 AFLP markers were analyzed using 65 primer combinations and an interspecific backcross resource family. A total of 418 AFLP markers were assigned to 44 linkage groups. Among the remaining 189 markers, 101 were not used because of significant segregation distortion, 29 were unlinked, and 59 were eliminated because they span very large distances. The 418 AFLP markers covered 1593 cM Kosambi. The AFLP markers showed a high level of clustering that appears to be related to certain primer combinations. This linkage map will serve as the basis for mapping a greater number of markers to provide a map with high enough resolution for it to be useful for selective breeding programs using introgression. PMID:14573480

  1. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    USGS Publications Warehouse

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  2. Burn severity mapping in Australia 2009

    USGS Publications Warehouse

    McKinley, Randy; Clark, J.; Lecker, Jennifer

    2012-01-01

    In 2009, the Victoria Department of Sustainability and Environment estimated approximately 430,000 hectares of Victoria Australia were burned by numerous bushfires. Burned Area Emergency Response (BAER) teams from the United States were deployed to Victoria to assist local fire managers. The U.S. Geological Survey Earth Resources Observation and Science Center (USGS/EROS) and U.S. Forest Service Remote Sensing Applications Center (USFS/RSAC) aided the support effort by providing satellite-derived "soil burn severity " maps for over 280,000 burned hectares. In the United States, BAER teams are assembled to make rapid assessments of burned lands to identify potential hazards to public health and property. An early step in the assessment process is the creation of a soil burn severity map used to identify hazard areas and prioritize treatment locations. These maps are developed primarily using Landsat satellite imagery and the differenced Normalized Burn Ratio (dNBR) algorithm.

  3. The ORSER LANDSAT Data Base of Pennsylvania

    NASA Technical Reports Server (NTRS)

    Turner, B. J.; Williams, D. L.

    1982-01-01

    A mosaicked LANDSAT data base for Pennsylvania, installed at the computation center of the Pennsylvania State University is described. Initially constructed by Penn State's Office for Remote Sensing of Earth Resources (ORSER) for the purpose of assisting in state-wide mapping of gypsy moth defoliation, the data base will be available to a variety of potential users. It will provide geometrically correct LANDSAT data accessible by political, jurisdictional, or arbitrary boundaries.

  4. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Walker Lake 1 degree x 2 degrees Quadrangle, California and Nevada

    USGS Publications Warehouse

    Stewart, John Harris; Chaffee, M.A.; Dohrenwend, J.C.; John, D.A.; Kistler, R.W.; Kleinhampl, F.J.; Menzie, W.D.; Plouff, Donald; Rowan, L.C.; Silberling, Norman J.

    1984-01-01

    The Walker Lake 1? by 2? quadrangle in eastern California and western Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Walker Lake 1? by 2? quadrangle.

  5. The emerging role of lidar remote sensing in coastal research and resource management

    USGS Publications Warehouse

    Brock, J.C.; Purkis, S.J.

    2009-01-01

    Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping. ?? 2009 Coastal Education and Research Foundation.

  6. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Medford 1 degree x 2 degrees Quadrangle, Oregon and California

    USGS Publications Warehouse

    Smith, James G.; Blakely, R.J.; Johnson, M.G.; Page, N.J.; Peterson, J.A.; Singer, D.A.; Whittington, C.L.

    1986-01-01

    The Medford 1 ? by 2 ? quadrangle in southern Oregon and northern California was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Medford 1 ? by 2 ? quadrangle.

  7. The emerging role of lidar remote sensing in coastal research and resource management

    USGS Publications Warehouse

    Brock, John C.; Purkis, Samuel J.

    2009-01-01

    Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping.

  8. Operational aspects of remote sensing and gis for water resources conservation and management: few examples from Haryana state, India

    NASA Astrophysics Data System (ADS)

    Chaudhary, B. S.

    Remote Sensing as the term signifies is the technique of gathering information about an object or surface phenomenon without being in physical contact with it and essentially by using electromagnetic radiation. The principle of remote sensing is based on the solar radiation reflected or emitted from the surface of the earth. As different objects behave differently for the incoming solar radiation and have different thermal properties, the amount of solar radiation reflected, absorbed or emitted is also different. GIS is defined as an information system that is used to input, store, retrieve, manipulate, analyze and output geographically referenced data or geospatial data in order to support decision making for planning and management of natural resources. It has four essential components - hardware, software, geospatial data and the users. GIS is needed because of some inherent demerits in the manual methods. The conventional methods of surveying and mapping are time consuming, labour intensive and tedious. The techniques of Remote Sensing (RS) and GIS are effective in timely and efficient generation of database of various resources. The synoptic view and multi resolution satellite data is helpful in generating information at various scales. The mapping and monitoring of dynamic phenomenon such as floods, water logging, deforestation can be done very effectively with the aid of RS and GIS. The effective planning for water resources conservation and management at district level can be made if the data is generated on 1:50,000 scale. Hydrogeomorphological maps on 1:50,000 scale showing different ground water prospect zones have been prepared for different districts in Haryana State, India. This information has been supplemented with the available inputs from existing sources about the depth to water level and ground water quality. The other maps prepared under National (Natural) Resources Information System (NRIS) such as land use/ land cover, geomorphology, drainage/ canal network and soils etc have also been consulted for preparing water resources action plan. The maps thus prepared depict different units for further ground water prospecting. It is to mention here that some of the Palaeo-channels have been picked up first time. Various sites has been suggested for site specific water resources conservation measures such check dams/ gully plugging, earthen dams etc for recharging the ground water. The information thus developed has been submitted to PWD (Public Health) Department, Govt. of Haryana as well as other district agencies involved in the planning and management of natural resources, for further implementation of the activities suggested in different areas. During visit to different areas, it was found that the water resources action plans suggested are being implemented in the field to its maximum possibility both in the direction of fresh ground water areas exploration as well as water resources conservation. The ground water in the areas suggested is being recharged and the people are taking good crops.

  9. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.; Martinko, E. A. (Principal Investigator)

    1983-01-01

    The activities of the Kansas Applied Remote Sensing (KARS) Program during the period April 1, 1982 through Marsh 31, 1983 are described. The most important work revolved around the Kansas Interagency Task Force on Applied Remote Sensing and its efforts to establish an operational service oriented remote sensing program in Kansas state government. Concomitant with this work was the upgrading of KARS capabilities to process data for state agencies through the vehicle of a low cost digital data processing system. The KARS Program continued to take an active role in irrigation mapping. KARS is now integrating data acquired through analysis of LANDSAT into geographic information systems designed for evaluating groundwater resources. KARS also continues to work at the national level on the national inventory of state natural resources information systems.

  10. Using a Network Model to Assess Risk of Forest Pest Spread via Recreational Travel

    PubMed Central

    Koch, Frank H.; Yemshanov, Denys; Haack, Robert A.; Magarey, Roger D.

    2014-01-01

    Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially infested firewood. We constructed the model from US National Recreation Reservation Service data documenting more than seven million visitor reservations (including visitors from Canada) at campgrounds nationwide. This bi-directional model can be used to identify likely origin and destination locations for a camper-transported pest. To support broad-scale decision making, we used the model to generate summary maps for 48 US states and seven Canadian provinces that depict the most likely origins of campers traveling from outside the target state or province. The maps generally showed one of two basic spatial patterns of out-of-state (or out-of-province) origin risk. In the eastern United States, the riskiest out-of-state origin locations were usually found in a localized region restricted to portions of adjacent states. In the western United States, the riskiest out-of-state origin locations were typically associated with major urban areas located far from the state of interest. A few states and the Canadian provinces showed characteristics of both patterns. These model outputs can guide deployment of resources for surveillance, firewood inspections, or other activities. Significantly, the contrasting map patterns indicate that no single response strategy is appropriate for all states and provinces. If most out-of-state campers are traveling from distant areas, it may be effective to deploy resources at key points along major roads (e.g., interstate highways), since these locations could effectively represent bottlenecks of camper movement. If most campers are from nearby areas, they may have many feasible travel routes, so a more widely distributed deployment may be necessary. PMID:25007186

  11. Using a network model to assess risk of forest pest spread via recreational travel.

    PubMed

    Koch, Frank H; Yemshanov, Denys; Haack, Robert A; Magarey, Roger D

    2014-01-01

    Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially infested firewood. We constructed the model from US National Recreation Reservation Service data documenting more than seven million visitor reservations (including visitors from Canada) at campgrounds nationwide. This bi-directional model can be used to identify likely origin and destination locations for a camper-transported pest. To support broad-scale decision making, we used the model to generate summary maps for 48 US states and seven Canadian provinces that depict the most likely origins of campers traveling from outside the target state or province. The maps generally showed one of two basic spatial patterns of out-of-state (or out-of-province) origin risk. In the eastern United States, the riskiest out-of-state origin locations were usually found in a localized region restricted to portions of adjacent states. In the western United States, the riskiest out-of-state origin locations were typically associated with major urban areas located far from the state of interest. A few states and the Canadian provinces showed characteristics of both patterns. These model outputs can guide deployment of resources for surveillance, firewood inspections, or other activities. Significantly, the contrasting map patterns indicate that no single response strategy is appropriate for all states and provinces. If most out-of-state campers are traveling from distant areas, it may be effective to deploy resources at key points along major roads (e.g., interstate highways), since these locations could effectively represent bottlenecks of camper movement. If most campers are from nearby areas, they may have many feasible travel routes, so a more widely distributed deployment may be necessary.

  12. Chapter 4: The GIS Project for the Geologic Assessment of Undiscovered Oil and Gas in the Upper Cretaceous Navarro and Taylor Groups, Western Gulf Province, Texas

    USGS Publications Warehouse

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Cretaceous Navarro and Taylor Groups in the Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2003 assessment of undiscovered, technically recoverable oil and natural gas resources in the Western Gulf Province. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the general public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States - including physical locations of geologic and geographic data - and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site.

  13. Mapping America in 1880: The Urban Transition Historical GIS Project

    PubMed Central

    Logan, John R.; Jindrich, Jason; Shin, Hyoungjin; Zhang, Weiwei

    2011-01-01

    The Urban Transition Historical GIS Project is a new data resource for United States counties and cities that takes advantage of NAPP’s 100% digital transcription of records from the 1880 Census. It has developed several additional resources to make possible analysis of social patterns at the level of individuals and households while also taking into account information about their communities. One key contribution is the creation of historically accurate GIS maps showing the boundaries of enumeration districts in 39 major cities. These materials are now publicly available through a web-based mapping system. Addresses of all households in these cities are also being geocoded, a step that will enable spatial analyses of residential patterns at any geographic scale. Preliminary analyses demonstrate the utility of multiple scales and the ability to combine information about individuals with data about their neighborhoods. PMID:21475614

  14. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    USGS Publications Warehouse

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  15. Designing quantum information processing via structural physical approximation.

    PubMed

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  16. Designing quantum information processing via structural physical approximation

    NASA Astrophysics Data System (ADS)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  17. Net change in forest density, 1873-2001. Using historical maps to monitor long-term forest trends.

    Treesearch

    Greg C. Liknes; Mark D. Nelson; Daniel J. Kaisershot

    2013-01-01

    European settlement of the United States and utilization of forests are inextricably linked. Forest products fueled development, providing the building blocks for railroads, bridges, ships, and homes. Perhaps because of the importance of its forests, the United States has a rich cartographic history documenting its resources. Long-term, broad-scale monitoring efforts...

  18. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resource maps of the Ajo and Lukeville 1 degree x 2 degrees quadrangles, Arizona

    USGS Publications Warehouse

    Gray, Floyd; Tosdal, R.M.; Peterson, J.A.; Cox, D.P.; Miller, R.J.; Klein, D.P.; Theobald, P.K.; Haxel, G.B.; Grubensky, M.J.; Raines, G.L.; Barton, H.N.; Singer, D.A.; Eppinger, R.G.

    1992-01-01

    Encompassing about 21,000 km 2 in southwestern Arizona, the Ajo and Lukeville 1 ? by 2 ? quadrangles have been the subject of mineral resource investigations utilizing field and laboratory studies in the disciplines of geology, geochemistry, geophysics, and Landsat imagery. The results of these studies are published as a folio of maps, figures, and tables, with accompanying discussions. Past mineral production has been limited to copper from the Ajo Mining District. In addition to copper, the quadrangles contain potentially significant resources of gold and silver; a few other commodities, including molybdenum and evaporites, may also exist in the area as appreciable resources. This circular provides background information on the mineral deposits and on the investigations and integrates the information presented in the folio. The bibliography cites references to the geology, geochemistry, geophysics, and mineral deposits of the two quadrangles.

  19. RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks

    PubMed Central

    Cheng, Bo; Wei, Zesan

    2014-01-01

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650

  20. RESTful M2M gateway for remote wireless monitoring for district central heating networks.

    PubMed

    Cheng, Bo; Wei, Zesan

    2014-11-27

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented.

  1. Geologic map of the Richland 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Mosesmore » Lake, Ritzville quadrangles have already been released.« less

  2. Digital Data for the reconnaissance geologic map for Prince William Sound and the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Labay, Keith A.; Shew, Nora B.

    2007-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  3. Development and testing of method for assessing and mapping agricultural areas susceptible to atrazine leaching in the state of Washington

    USGS Publications Warehouse

    Voss, Frank D.

    2003-01-01

    In a joint effort by the Washington State Department of Agriculture, the Washington Department of Ecology, and the U.S. Geological Survey, the Environmental Protection Agency's Pesticide Root Zone Model and a Geographic Information System were used to develop and test a method for screening and mapping the susceptibility of ground water in agricultural areas to pesticide contamination. The objective was to produce a map that would be used by the Washington State Department of Agriculture to allocate resources for monitoring pesticide levels in ground water. The method was tested by producing a map showing susceptibility to leaching of the pesticide atrazine for the Columbia Basin Irrigation Project, which encompasses an area of intensive agriculture in eastern Washington. The reliability of the atrazine map was assessed by using statistical procedures to determine whether the median of the percentage of atrazine simulated to leach below the root zone in wells where atrazine was detected was statistically greater than the median percentage at wells where atrazine was not detected (at or above 0.001 microgram per liter) in 134 wells sampled by the U.S. Geological Survey. A statistical difference in medians was not found when all 134 wells were compared. However, a statistical difference was found in medians for two subsets of the 134 wells that were used in land-use studies (studies examining the quality of ground water beneath specific crops). The statistical results from wells from the land-use studies indicate that the model potentially can be used to map the relative susceptibility of agricultural areas to atrazine leaching. However, the distinction between areas of high and low susceptibility may not yet be sufficient to use the method for allocating resources to monitor water quality. Several options are offered for improving the reliability of future simulations.

  4. U.S. Geological Survey Information Sources

    USGS Publications Warehouse

    ,

    2000-01-01

    As the nation's largest water, earth and biological science and civilian mapping agency, the U.S. Geological Survey (USGS) works in cooperation with more than 2000 organizations across the country to provide reliable, impartial, scientific information to resource managers, planners, and other customers. This information is gathered in every state by USGS scientists to minimize the loss of life and property from natural disasters, to contribute to the conservation and the sound economic and physical development of the nation's natural resources, and to enhance the quality of life by monitoring water, biological, energy and mineral resources.

  5. U.S. Geological Survey Information Sources

    USGS Publications Warehouse

    ,

    2001-01-01

    As the Nation's largest water, earth, and biological science and civilian mapping agency, the U.S. Geological Survey (USGS) works in cooperation with more than 2,000 organizations across the country to provide reliable, impartial scientific information to resource managers, planners, and other customers. This information is gathered in every State by USGS scientists to minimize the loss of life and property from natural disasters, to contribute to the conservation and the sound economic and physical development of the Nation's natural resources, and to enhance the quality of life by monitoring water, biological, energy, and mineral resources

  6. 25. Photocopy of photograph (from Division of Beaches and Parks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of photograph (from Division of Beaches and Parks, State of California, Department of Natural REsources) Photographer unknown, Date unknown SUTTER'S MAP OF FORT WITH SUPERIMPOSED OUTLINE OF FORT - Sutter's Fort, L & Twenty-Seventh Streets, Sacramento, Sacramento County, CA

  7. Improved Wetland Mapping Through the use of Advanced Geospatial Technologies

    USDA-ARS?s Scientific Manuscript database

    For the United States to effectively manage its remaining wetlands, their abundance, distribution, boundaries, and inherent characteristics must be better understood. As natural resource management becomes more holistic and moves towards ecosystem management, the synoptic view that remotely sensed d...

  8. DNR Recorder's Office

    Science.gov Websites

    Preparing Documents Recorder Terms District Info District Contact Info Find Your District RO District Map FAQs Closures/Notices Contact Us State of Alaska / Natural Resources / Recorder's Office Recording imply an endorsement of that organization, site, product, or service. Simplifile contact information

  9. Wind Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Wind Maps Wind Maps Wind Prospector This GIS application supports resource assessment and data exploration for wind development. This collection of wind maps and assessments details the wind resource in Geospatial Data Science Team. National Wind Resource Assessment The national wind resource assessment was

  10. Digital data for the geology of the Southern Brooks Range, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Harris, Anita G.; Moore, Thomas E.; Bleick, Heather A.; Siwiec, Benjamin; Labay, Keith A.; Wilson, Frederic H.; Shew, Nora B.

    2008-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  11. Interdisciplinary applications and interpretations of ERTS data within the Susquehanna River Basin (resource inventory, land use, and pollution)

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. An interdisciplinary group at Penn State University is analyzing ERTS-1 data. The geographical area of interest is that of the Susquehanna River Basin in Pennsylvania. The objectives of the work have been to ascertain the usefulness of ERTS-1 data in the areas of natural resources and land use inventory, geology and hydrology, and environmental quality. Specific results include a study of land use in the Harrisburg area, discrimination between types of forest resources and vegetation, detection of previously unknown geologic faults and correlation of these with known mineral deposits and ground water, mapping of mine spoils in the anthracite region of eastern Pennsylvania, and mapping of strip mines and acid mine drainage in central Pennsylvania. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach.

  12. Fermion-to-qubit mappings with varying resource requirements for quantum simulation

    NASA Astrophysics Data System (ADS)

    Steudtner, Mark; Wehner, Stephanie

    2018-06-01

    The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.

  13. MROrchestrator: A Fine-Grained Resource Orchestration Framework for MapReduce Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bikash; Prabhakar, Ramya; Kandemir, Mahmut

    2012-01-01

    Efficient resource management in data centers and clouds running large distributed data processing frameworks like MapReduce is crucial for enhancing the performance of hosted applications and boosting resource utilization. However, existing resource scheduling schemes in Hadoop MapReduce allocate resources at the granularity of fixed-size, static portions of nodes, called slots. In this work, we show that MapReduce jobs have widely varying demands for multiple resources, making the static and fixed-size slot-level resource allocation a poor choice both from the performance and resource utilization standpoints. Furthermore, lack of co-ordination in the management of mul- tiple resources across nodes prevents dynamic slotmore » reconfigura- tion, and leads to resource contention. Motivated by this, we propose MROrchestrator, a MapReduce resource Orchestrator framework, which can dynamically identify resource bottlenecks, and resolve them through fine-grained, co-ordinated, and on- demand resource allocations. We have implemented MROrches- trator on two 24-node native and virtualized Hadoop clusters. Experimental results with a suite of representative MapReduce benchmarks demonstrate up to 38% reduction in job completion times, and up to 25% increase in resource utilization. We further show how popular resource managers like NGM and Mesos when augmented with MROrchestrator can hike up their performance.« less

  14. A conceptual method for monitoring locust habitat

    USGS Publications Warehouse

    Howard, Stephen M.; Loveland, Thomas R.; Ohlen, Donald O.; Moore, Donald G.; Gallo, Kevin P.; Olsson, Jonathon

    1987-01-01

    A procedure to map and monitor vegetation conditions in near-real time was developed at the United States Geological Survey;s Earth Resources Observation Systems Data Center for use in locust control efforts. Meteorological satellite dat were acquired daily for 3 weeks in October and November 1986 over a 1.4-million-square-kilometer study area centered on Botswana in southern Africa. Advanced Very High Resolution Radiometer data were screened to remove cloud-contaminated data and registered to a 1-kilometer geographic base. Each day the normalized difference vegetation index (NDVI) was calculated to determine the presence and relative amounts of green vegetation in the area. Over a 10-day cycle, subsequent dates of NDVI data were composited to fill in data removed by the cloud-screening process. At any pixel location, the maximum NDVI value was retained. At the end of the 10-day cycle, a composite vegetation-greenness map was produced and another cycle started. Greenness-change maps were produced by comparing two 10-day composite greenness images. Automated map production procedures were used to merge the NDVI image data with cartographic data (boundaries, roads, tick marks) digitized from 1:1,000,000-scale operational navigation charts. The vegetation-greenness map shoes the current distribution of vegetation in the region and can be used to locate potential locust breeding area. The change map shows areas where increases and decreases in greenness have occurred between processing cycles. Significant areas of locust damage in remote regions are characterized by an unexpected decrease in greenness. These maps can be used by locust control teams to efficiently target areas for reconnaissance. In general, the procedures and products have utility for resource managers who are required to monitor vegetation resources over large geographic regions.

  15. Shape indexes for semi-automated detection of windbreaks in thematic tree cover maps from the central United States

    Treesearch

    Greg C. Liknes; Dacia M. Meneguzzo; Todd A. Kellerman

    2017-01-01

    Windbreaks are an important ecological resource across the large expanse of agricultural land in the central United States and are often planted in straight-line or L-shaped configurations to serve specific functions. As high-resolution (i.e., <5 m) land cover datasets become more available for these areas, semi-or fully-automated methods for distinguishing...

  16. Soil Security Assessment of Tasmania

    NASA Astrophysics Data System (ADS)

    Field, Damien; Kidd, Darren; McBratney, Alex

    2017-04-01

    The concept of soil security aligns well with the aspirational and marketing policies of the Tasmanian Government, where increased agricultural expansion through new irrigation schemes and multiple-use State managed production forests co-exists beside pristine World Heritage conservation land, a major drawcard of the economically important tourism industry . Regarding the Sustainable Development Gaols (SDG's) this could be seen as a exemplar of the emerging tool for quantification of spatial soil security to effectively protect our soil resource in terms of food (SDG 2.4, 3.9) and water security (SDG 6.4, 6.6), biodiversity maintenance and safeguarding fragile ecosystems (SDG 15.3, 15.9). The recent development and application of Digital Soil Mapping and Assessment capacities in Tasmania to stimulate agricultural production and better target appropriate soil resources has formed the foundational systems that can enable the first efforts in quantifying and mapping Tasmanian Soil Security, in particular the five Soil Security dimensions (Capability, Condition, Capital, Codification and Connectivity). However, to provide a measure of overall soil security, it was necessary to separately assess the State's three major soil uses; Agriculture, Conservation and Forestry. These products will provide an indication of where different activities are sustainable or at risk, where more soil data is needed, and provide a tool to better plan for a State requiring optimal food and fibre production, without depleting its natural soil resources and impacting on the fragile ecosystems supporting environmental benefits and the tourism industry.

  17. Spatial Databases of Geological, Geophysical, and Mineral Resource Data Relevant to Sandstone-Hosted Copper Deposits in Central Kazakhstan

    USGS Publications Warehouse

    Syusyura, Boris; Box, Stephen E.; Wallis, John C.

    2010-01-01

    Central Kazakhstan is host to one of the world's giant sandstone-hosted copper deposits, the Dzhezkazgan deposit, and several similar, smaller deposits. The United Stated Geological Survey (USGS) is assessing the potential for other, undiscovered deposits of this type in the surrounding region of central Kazakhstan. As part of this effort, Syusyura compiled and partially translated an array of mostly unpublished geologic, geophysical, and mineral resource data for this region in digital format from the archives of the former Union of Soviet Socialists Republics (of which Kazakhstan was one of the member republics until its dissolution in 1991), as well as from later archives of the Republic of Kazakhstan or of the Kazakhstan consulting firm Mining Economic Consulting (MEC). These digital data are primarily map-based displays of information that were transmitted either in ESRI ArcGIS, georeferenced format, or non-georeferenced map image files. Box and Wallis reviewed all the data, translated Cyrillic text where necessary, inspected the maps for consistency, georeferenced the unprojected map images, and reorganized the data into the filename and folder structure of this publication.

  18. Salton Sea ecosystem monitoring and assessment plan

    USGS Publications Warehouse

    Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.

    2013-01-01

    The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The goal of the MAP is to provide a guide for data collection, analysis, management, and reporting to inform management actions for the Salton Sea ecosystem. Monitoring activities are directed at species and habitats that could be affected by or drive future restoration activities. The MAP is not intended to be a prescriptive document. Rather, it is envisioned to be a flexible, program-level guide that articulates high-level goals and objectives, and establishes broad sideboards within which future project-level investigations and studies will be evaluated and authorized. As such, the MAP, by design, does not, for example, include detailed protocols describing how investigations will be implemented. It is anticipated that detailed study proposals will be prepared as part of an implementation plan that will include such things as specific sampling objectives, sampling schemes, and statistical and spatial limits.

  19. Gulf of Mexico Data Atlas: Digital Data Discovery and Access

    NASA Astrophysics Data System (ADS)

    Rose, K.

    2014-12-01

    The Gulf of Mexico Data Atlas is an online data discovery and access tool that allows users to browse a growing collection of ecosystem-related datasets visualized as map plates. Thematically, the Atlas includes updated long-term assessments of the physical, biological, environmental, economic and living marine resource characteristics that indicate baseline conditions of the Gulf of Mexico ecosystems. These data are crucial components of integrated ecosystem assessments and modeling and support restoration and monitoring efforts in the Gulf. A multi-agency executive steering committee including members from international, federal, state, and non-governmental organizations was established to guide Atlas development and to contribute data and expertise. The Atlas currently contains over 235 maps in 70 subject areas. Each map plate is accompanied by a descriptive summary authored by a subject matter expert and each data set is fully documented by metadata in Federal Geographic Data Committee (FGDC)-compliant standards. Source data are available in native formats and as web mapping services (WMS). Datasets are also searchable through an accompanying Map Catalog and RSS feed. The Gulf of Mexico Data Atlas is an operational example of the philosophy of leveraging resources among agencies and activities involved in geospatial data as outlined in the US Department of Interior and FGDC "Geospatial Platform Modernization Roadmap v4 - March 2011". We continue to update and add datasets through existing and new partnerships to ensure that the Atlas becomes a truly ecosystem-wide resource.

  20. 2011, 2010 petroleum resource assessment of the National Petroleum Reserve in Alaska: GIS play maps

    USGS Publications Warehouse

    Garrity, Christopher P.; Houseknecht, David W.; Bird, Kenneth J.

    2011-01-01

    This report provides digital geographic information systems (GIS) files of maps for each of the 24 plays considered in the U.S. Geological Survey (USGS) 2010 updated petroleum resource assessment of the National Petroleum Reserve in Alaska (NPRA) (Houseknecht and others, 2010). These are the sample plays evaluated in a previous USGS assessment of the NPRA (Bird and Houseknecht, 2002a), maps of which were released in pdf format (Bird and Houseknecht, 2002b). The 2010 updated assessment of the NPRA evaluated each of the previously used 24 plays based on new geologic data available from exploration activities and scientific research. Quantitative assessments were revised for 11 plays, and no revisions were made for 9 plays. Estimates of the volume of technically recoverable, undiscovered oil, and nonassociated gas resources in these 20 plays are reported elsewhere (Houseknecht and others, 2010). Four plays quantitatively assessed in 2002 were eliminated from quantitative assessment for reasons explained by Houseknecht and others (2010). The NPRA assessment study area includes Federal and native onshore land and adjacent State offshore areas. A map showing the areal extent of each play was prepared by USGS geologists as a preliminary step in the assessment process. Boundaries were drawn on the basis of a variety of information, including seismic reflection data, results of exploration drilling, and regional patterns of rock properties. Play boundary polygons were captured by digitizing the play maps prepared by USGS geologists.

  1. Application of LANDSAT images in the Minas Gerais tectonic division

    NASA Technical Reports Server (NTRS)

    Dacunha, R. P.; Demattos, J. T.

    1978-01-01

    The interpretation of LANDSAT data for a regional geological investigation of Brazil is provided. Radar imagery, aerial photographs and aeromagnetic maps were also used. Automatic interpretation, using LANDSAT OCT's was carried out by the 1-100 equipment. As a primary result a tectonic map was obtained, at 1:1,000,000 scale, of an area of about 143,000 square kilometers, in the central portion of Minas Gerais and Eastern Goias States, known as regions potentially rich in mineral resources.

  2. Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment

    NASA Astrophysics Data System (ADS)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.

    2015-04-01

    Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes competing requirements.

  3. Mission Adaptive UAS Platform for Earth Science Resource Assessment

    NASA Technical Reports Server (NTRS)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.

    2015-01-01

    NASA Ames Research Center has led a number of important Earth science remote sensing missions including several directed at the assessment of natural resources. A key asset for accessing high risk airspace has been the 180 kg class SIERRA UAS platform, providing mission durations of up to 8 hrs at altitudes up to 3 km. Recent improvements to this mission capability are embodied in the incipient SIERRA-B variant. Two resource mapping problems having unusual mission characteristics requiring a mission adaptive capability are explored here. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This challenges the management of resources in the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the ocean color signal. Furthermore, as for all scanning imager applications, the primary flight control priority to fly the UAS directly to the next waypoint should compromise with the requirement to minimize roll and crab effects in the imagery. A second example involves the mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in several recent Earth Science missions including the October 2013 OCEANIA mission directed at improving the capability for hyperspectral reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magentometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes conflicting requirements. *

  4. What are parasitologists doing in the United States Geological Survey?

    USGS Publications Warehouse

    Cole, Rebecca A.

    2002-01-01

    The United States Geological Survey (USGS) was formed in 1879 as the nation's primary natural science and information agency. The mission of the agency is to provide scientific information to a??describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.a?? Prior to 1996, the USGS comprised 3 divisions or disciplines: geology, mapping, and water. Historically, the agency was most noted for cartographic products that were used widely by both government and private sector. With the inclusion of the National Biological Service into the USGS in 1996 as the Biological Resource Discipline (BRD), a living resources dimension was added to the earth sciences character of the USGS. With the addition of BRD, the bureau is able now to contribute both the physical and biological sciences to address the nation's resource management problems.

  5. Representation of Reptile Biodiversity and Ecosystem Services within the Protected Areas of the Conterminous United States

    EPA Science Inventory

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challange has been to integrate ecology with economics to better understand the effects of human policies and acti...

  6. Mapping isolated wetlands in a Karst landscape: GIS and remote sensing methods

    EPA Science Inventory

    Isolated wetlands occur in many areas of the United States, and although they are relatively common, they are a resource not yet thoroughly understood by the scientific community. Isolated wetlands have received increased attention recently, due to the 2001 Solid Waste Agency of ...

  7. 1993 Fiscal Year Water Resources Division Information Guide

    USGS Publications Warehouse

    ,

    1992-01-01

    This Guide briefly describes the Water Resources Division's mission, program, and organizational structure, and where and how to obtain specific types of hydrologic information. The Guide also contains a listing of addresses, telephone numbers, and office hours for Headquarters, Regional, District, and State offices. For some offices, two addresses are given: the mailing address of the office to which correspondence should be sent and the street address of the office. The map shows the location of the offices.

  8. Colorado oil shale: the current status, October 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    A general background to oil shale and the potential impacts of its development is given. A map containing the names and locations of current oil shale holdings is included. The history, geography, archaeology, ecology, water resources, air quality, energy resources, land use, sociology, transportation, and electric power for the state of Colorado are discussed. The Colorado Joint Review Process Stages I, II, and III-oil shale are explained. Projected shale oil production capacity to 1990 is presented. (DC)

  9. Title VI Lands Cultural Resource Management Plan Contract No. W9128F-10-P-0092

    DTIC Science & Technology

    2014-12-12

    VI GIS data that are often derived from digitized paper maps. For example, between 2005 and 2010 the SDGFP contracted with the South Dakota State...Plains Village lifeways. With the onset of a dryer , warmer climate, the Pacific episode, at about A.D. 1300, the Central Plains Village and Initial...Augustana College Archeology Laboratory conducted a cultural resources inventory for the WEB Water Development Association, Inc. in preparation for a

  10. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery

    USGS Publications Warehouse

    Yang, Limin; Huang, Chengquan; Homer, Collin G.; Wylie, Bruce K.; Coan, Michael

    2003-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.

  11. A Servicewide Benthic Mapping Program for National Parks

    USGS Publications Warehouse

    Moses, Christopher S.; Nayegandhi, Amar; Beavers, Rebecca; Brock, John

    2010-01-01

    In 2007, the National Park Service (NPS) Inventory and Monitoring Program directed the initiation of a benthic habitat mapping program in ocean and coastal parks in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With 74 ocean and Great Lakes parks stretching over more than 5,000 miles of coastline across 26 States and territories, this Servicewide Benthic Mapping Program (SBMP) is essential. This program will deliver benthic habitat maps and their associated inventory reports to NPS managers in a consistent, servicewide format to support informed management and protection of 3 million acres of submerged National Park System natural and cultural resources. The NPS and the U.S. Geological Survey (USGS) convened a workshop June 3-5, 2008, in Lakewood, Colo., to discuss the goals and develop the design of the NPS SBMP with an assembly of experts (Moses and others, 2010) who identified park needs and suggested best practices for inventory and mapping of bathymetry, benthic cover, geology, geomorphology, and some water-column properties. The recommended SBMP protocols include servicewide standards (such as gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). SBMP Mapping Process. The SBMP calls for a multi-step mapping process for each park, beginning with a gap assessment and data mining to determine data resources and needs. An interagency announcement of intent to acquire new data will provide opportunities to leverage partnerships. Prior to new data acquisition, all involved parties should be included in a scoping meeting held at network scale. Data collection will be followed by processing and interpretation, and finally expert review and publication. After publication, all digital materials will be archived in a common format. SBMP Classification Scheme. The SBMP will map using the Coastal and Marine Ecological Classification Standard (CMECS) that is being modified to include all NPS needs, such as lacustrine ecosystems and submerged cultural resources. CMECS Version III (Madden and others, 2010) includes components for water column, biotic cover, surface geology, sub-benthic, and geoform. SBMP Data Archiving. The SBMP calls for the storage of all raw data and final products in common-use data formats. The concept of 'collect once, use often' is essential to efficient use of mapping resources. Data should also be shared with other agencies and the public through various digital clearing houses, such as Geospatial One-Stop (http://gos2.geodata.gov/wps/portal/gos). To be most useful for managing submerged resources, the SBMP advocates the inventory and mapping of the five components of marine ecosystems: surface geology, biotic cover, geoform, sub-benthic, and water column. A complete benthic inventory of a park would include maps of bathymetry and the five components of CMECS. The completion of mapping for any set of components, such as bathymetry and surface geology, or a particular theme (for example, submerged aquatic vegetation) should also include a printed report.

  12. NOAA/NOS coastal and ocean assessment GIS: Initial application to environmental sensitivity index data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monaco, M.E.; Battista, T.A.; Gill, T.A.

    1997-06-01

    NOAA`s National Ocean Service (NOS) is developing a suite of desktop geographic information system (GIS) tools to define, assess, and solve coastal resource management issues. This paper describes one component of the emerging NOS Coastal and Ocean Assessment GIS: Environmental Sensitivity Index (ESI) data with emphasis on living marine resource information. This work is underway through a unique federal, state, and private-sector partnership. The desktop GIS is a versatile, user-friendly system designed to provide coastal managers with mapping and analysis capabilities. These functions are under development using the recently generated North Carolina ESI data, with emphasis on accessing, analyzing, andmore » mapping estuarine species distributions. Example system features include: a user-friendly front end, generation of ESI maps and tables, and custom spatial and temporal analyses. Partners in the development of the desktop system include: NOAA`s Office of Ocean Resources Conservation and Assessment (ORCA) and Coastal Services Center, the Minerals Management Service (MMS), Florida Marine Research Institute, Environmental Systems Research Institute, Inc., and Research Planning, Inc. This work complements and supports MMS`s Gulf-wide Information System designed to support oil-spill contingency planning.« less

  13. National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations

    NASA Astrophysics Data System (ADS)

    Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.

    2013-12-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity. As part of this follow up study, additional maps were generated to show the geographic distribution of the input estimates and the output results across the U.S. For example, the distribution of the SAUs with fresh, saline or mixed formation water quality is shown. Also mapped is the variation in CO2 density as related to basin location and to related properties such as subsurface temperature and pressure. Furthermore, variation in the estimated SAU depth and resulting TASR are shown across the assessment study areas, and these depend on the geologic basin size and filling history. Ultimately, multiple map displays are possible with the complete data set of input estimates and range of reported results. The findings from this study show the effectiveness of the USGS methodology and the robustness of the assessment.

  14. Oyster resource zones of the Barataria and Terrebonne estuaries of Louisiana

    USGS Publications Warehouse

    Melancon, E.; Soniat, T.; Cheramie, V.; Dugas, R.; Barras, J.; Lagarde, M.

    1998-01-01

    A 1:100,000 scale map delineating the subtidal oyster resource zones within the Barataria and Terrebonne estuaries was developed. Strategies to accomplish the task included interviews with Louisiana oystermen and state biologists to develop a draft map, field sampling to document oyster (Crassostrea virginica), Dermo (Perkinsus marinus), and oyster drill (Stramonita haemastoma) abundances, use of historical salinity data to aid in map verification, and public meetings to allow comment on a draft before final map preparation. Four oyster resource zones were delineated on the final map: a dry zone where subtidal oysters may be found when salinities increase, a wet zone where subtidal oysters may be found when salinities are suppressed, a wet-dry zone where subtidal oysters may be consistently found due to favorable salinities, and a high-salinity zone where natural oyster populations are predominantly found in intertidal and shallow waters. The dry zone is largely coincident with the brackish-marsh habitat, with some intermediate-type marsh. The wet-dry zone is found at the interface of the brackish and saline marshes, but extends further seaward than up-estuary. The wet zone and the high salinity zones are areas of mostly open water fringed by salt marshes. The dry zone encompasses 91,775 hectares, of which 48,788 hectares are water (53%). The wet zone encompasses 83,525 hectares, of which 66,958 hectares are water (80%). The wet-dry zone encompasses 171,893 hectares, of which 104,733 hectares are water (61%). The high salinity zone encompasses 125,705 hectares, of which 113,369 hectares are water (90%). There is a clear trend of increasing water habitat in the four zones over the past 30 years, and oysters are now cultivated on bottoms that were once marsh. The map should be useful in managing the effects upon oysters of freshwater diversions into the estuaries. It provides a pre-diversion record of the location of oyster resource zones and should prove helpful in the seaward relocation of oysters leases.

  15. Natural Resources Inventory and Land Evaluation in Switzerland

    NASA Technical Reports Server (NTRS)

    Haefner, H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A system was developed to operationally map and measure the areal extent of various land use categories for updating existing and producing new and actual thematic maps showing the latest state of rural and urban landscapes and its changes. The processing system includes: (1) preprocessing steps for radiometric and geometric corrections; (2) classification of the data by a multivariate procedure, using a stepwise linear discriminant analysis based on carefully selected training cells; and (3) output in form of color maps by printing black and white theme overlays of a selected scale with photomation system and its coloring and combination into a color composite.

  16. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further educational programs, materials and resources. The online format will encourage and support widespread participation across the Great Lakes region. Data from the needs assessment surveys will provide a foundation for online focus group discussion questions.

  17. City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component

    USGS Publications Warehouse

    Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.

    1996-01-01

    Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy

  18. Preliminary Geologic Map of the Cook Inlet Region, Alaska-Including Parts of the Talkeetna, Talkeetna Mountains, Tyonek, Anchorage, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Schmoll, Henry R.; Haeussler, Peter J.; Schmidt, Jeanine M.; Yehle, Lynn A.; Labay, Keith A.; Shew, Nora B.

    2009-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  19. BIA interpretation techniques for vegetation mapping using thematic mapper false color composites (interim report for San Carlos Reservation)

    USGS Publications Warehouse

    Bonner, W.J.; English, T.C.; Haas, R.H.; Feagan, T.R.; McKinley, R.A.

    1987-01-01

    The Bureau of Indian Affairs (BIA) is responsible for the natural resource management of approximately 52 million acres of Trust lands in the contiguous United States. The lands are distributed in a "patchwork" fashion throughout the country. Management responsibilities on these areas include: minerals, range, timber, fish and wildlife, agricultural, cultural, and archaeological resources. In an age of decreasing natural resources and increasing natural resource values, effective multiple resource management is critical. BIA has adopted a "systems approach" to natural resource management which utilizes Geographic Information System (GIS) technology. The GIS encompasses a continuum of spatial and relational data elements, and included functional capabilities such as: data collection, data entry, data base development, data analysis, data base management, display, and report generalization. In support of database development activities, BIA and BLM/TGS conducted a cooperative effort to investigate the potential of 1:100,000 scale Thematic Mapper (TM) False Color Composites (FCCs) for providing vegetation information suitable for input to the GIS and to later be incorporated as a generalized Bureau wide land cover map. Land cover information is critical as the majority of reservations currently have no land cover information in either map or digital form. This poster outlines an approach which includes the manual interpretation of land cover using TM FCCs, the digitizing of interpreted polygons, and the editing of digital data, used upon ground truthing exercises. An efficient and cost-effective methodology for generating large area land cover information is illustrated for the Mineral Strip area on the San Carlos Indian Reservation in Arizona. Techniques which capitalize on the knowledge of the local natural resources professionals, while minimizing machine processing requirements, are suggested.

  20. Level III Ecoregions of Alaska

    EPA Pesticide Factsheets

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. The ecoregions of Alaska are a framework for organizing and interpreting environmental data for State, national, and international level inventory, monitoring, and research efforts. The map and descriptions for 20 ecological regions were derived by synthesizing information on the geographic distribution of environmental factors such as climate, physiography, geology, permafrost, soils, and vegetation. A qualitative assessment was used to interpret the distributional patterns and relative importance of these factors from place to place (Gallant and others, 1995). Numeric identifiers assigned to the ecoregions are coordinated with those used on the map of Ecoregions of the Conterminous United States (Omernik 1987, U.S. EPA 2010) as a continuation of efforts to map ecoregions for the United States. Additionally, the ecoregions for Alaska and the conterminous United States, along with ecological regions for Canada (Wiken 1986) and Mexico, have been combined for maps at three hierarchical levels for North America (Omernik 1995, Commission for Environmental Cooperation, 1997, 2006). A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At Level III, there are currently 182

  1. Users guide to high altitude imagery of Michigan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A guide to the high altitude imagery of Michigan outlines the areas of the state covered by selected recent high altitude aircraft and Earth Resources Technology Satellite flights. The types of remote sensing used are described. Maps of the flight coverage areas are included along with price lists of available imagery.

  2. Look to the Mountain Top.

    ERIC Educational Resources Information Center

    Jones, Charles, Ed.

    Cultural background and the contemporary situation of American Indians in the United States are covered in this book. The first section of the book covers Indian art, literature, women's rights, warriors, religion, farming, natural resources, law, and the Indian as the first American. Included in the second part are: maps of Indian land…

  3. 77 FR 68705 - Community Connect Broadband Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... concise project summary and map can be used to inform USDA Rural Development State Directors of pending... and can also be used to fund operations of the project. This change gives applicants new flexibility... able to demonstrate that they have sufficient resources to construct, manage and sustain the project...

  4. A National Analysis of Reptile Biodiversity and Ecosystem Services within the Protected Areas of the United States

    EPA Science Inventory

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and acti...

  5. Ohio Water Resources Council

    Science.gov Websites

    Salt Storage Fact Sheet QUICK LINKS 2015-2019 Strategic Action Plan 2010-2014 Strategic Action Plan 2006 Strategic Action Plan OWRC Bylaws For More Information Brian Hall OWRC - State Agency Coordinating Program (Indirect Discharge) Primary Headwater Habitat Streams Remedial Action Plans (RAP) River Mile Maps

  6. Underground water resources of Long Island, New York

    USGS Publications Warehouse

    Veatch, A.C.; Slichter, C.S.; Bowman, Isaiah; Crosby, W.O.; Horton, R.E.

    1906-01-01

    As Long Island is the largest island on the eastern coast of the United States, and is of such size, 120 miles long and 23 miles wide, that it is a more or less noticeable feature on even very small-scale maps, little need be said of its general geographic position.

  7. The natural resources inventory system ASVT project

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1979-01-01

    The hardware/software and the associated procedures for a natural resource inventory and information system based on the use of LANDSAT-acquired multispectral scanner digital data is described. The system is designed to derive land cover/vegetation information from LANDSAT data and geographically reference this information for the production of various types of maps and for the compilation of acreage by land cover/vegetation category. The system also provides for data base building so that the LANDSAT-derived information can be related to information digitized from other sources (e.g., soils maps) in a geographic context in order to address specific applications. These applications include agricultural crop production estimation, erosion hazard-reforestation need assessment, whitetail deer habitat assessment, and site selection. The system is tested in demonstration areas located in the state of Mississippi, and the results of these application demonstrations are presented. A cost-efficiency comparison of producing land cover/vegetation maps and statistics with this system versus the use of small-scale aerial photography is made.

  8. A summary of ERTS data applications in Alaska

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Belon, A. E.

    1974-01-01

    ERTS has proven to be an exceedingly useful tool for the preparation of urgently needed resource surveys in Alaska. For this reason the wide utilization of ERTS data by federal, state and industrial agencies in Alaska is increasingly directed toward the solution of operational problems in resource inventories, environmental surveys, and land use planning. Examples of some applications are discussed in connection with surveys of potential agricultural lands; mapping of predicted archaeological sites; permafrost terrain and aufeis mapping; snow melt enhancement from Prudhoe Bay roads; geologic interpretations correlated ith possible new petroleum fields, with earthquake activity, and with plate tectonic motion along the Denali fault system; hydrology in monitoring surging glaciers and the break-up characteristics of the Chena River watershed; sea-ice morphology correlated with marine mammal distribution; and coastal sediment plume circulation patterns.

  9. Enhanced canopy fuel mapping by integrating lidar data

    USGS Publications Warehouse

    Peterson, Birgit E.; Nelson, Kurtis J.

    2016-10-03

    BackgroundThe Wildfire Sciences Team at the U.S. Geological Survey’s Earth Resources Observation and Science Center produces vegetation type, vegetation structure, and fuel products for the United States, primarily through the Landscape Fire and Resource Management Planning Tools (LANDFIRE) program. LANDFIRE products are used across disciplines for a variety of applications. The LANDFIRE data retain their currency and relevancy through periodic updating or remapping. These updating and remapping efforts provide opportunities to improve the LANDFIRE product suite by incorporating data from other sources. Light detection and ranging (lidar) is uniquely suitable for gathering information on vegetation structure and spatial arrangement because it can collect data in three dimensions. The Wildfire Sciences Team has several completed and ongoing studies focused on integrating lidar into vegetation and fuels mapping.

  10. NATIONAL CARTOGRAPHIC INFORMATION CENTER: AN INFORMATION RESOURCE ON MAPPING PRODUCTS FOR THE NATION.

    USGS Publications Warehouse

    Stevens, Alan R.

    1985-01-01

    Since its inception in 1974 the National Cartographic Information Center (NCIC), US Geological Survey, has rapidly developed to become a focal point for providing information on the availability of cartographic data, including maps/charts, aerial photographs, satellite imagery, geodetic control, digital mapping data, map materials and related cartographic products. In early years NCIC concentrated its efforts on encoding and entering several major National Mapping Division record collections into its systems. NCIC is now stressing the acquisition of data from sources outside the National Mapping Division, including 37 Federal agencies and more than a thousand State and private institutions. A critical review has recently been conducted by NCIC of its systems with the aim of improving its efficiency and levels of operation. Several activities which resulted include improving its existing networks, refinement of digital data distribution, study of new storage media and related projects.

  11. Population and business exposure to twenty scenario earthquakes in the State of Washington

    USGS Publications Warehouse

    Wood, Nathan; Ratliff, Jamie

    2011-01-01

    This report documents the results of an initial analysis of population and business exposure to scenario earthquakes in Washington. This analysis was conducted to support the U.S. Geological Survey (USGS) Pacific Northwest Multi-Hazards Demonstration Project (MHDP) and an ongoing collaboration between the State of Washington Emergency Management Division (WEMD) and the USGS on earthquake hazards and vulnerability topics. This report was developed to help WEMD meet internal planning needs. A subsequent report will provide analysis to the community level. The objective of this project was to use scenario ground-motion hazard maps to estimate population and business exposure to twenty Washington earthquakes. In consultation with the USGS Earthquake Hazards Program and the Washington Division of Geology and Natural Resources, the twenty scenario earthquakes were selected by WEMD (fig. 1). Hazard maps were then produced by the USGS and placed in the USGS ShakeMap archive.

  12. GAP Analysis Bulletin Number 15

    USGS Publications Warehouse

    Maxwell, Jill; Gergely, Kevin; Aycrigg, Jocelyn; Canonico, Gabrielle; Davidson, Anne; Coffey, Nicole

    2008-01-01

    The Mission of the Gap Analysis Program (GAP) is to promote conservation by providing broad geographic information on biological diversity to resource managers, planners, and policy makers who can use the information to make informed decisions. As part of the National Biological Information Infrastructure (NBII) ?a collaborative program to provide increased access to data and information on the nation?s biological resources--GAP data and analytical tools have been used in hundreds of applications: from basic research to comprehensive state wildlife plans; from educational projects in schools to ecoregional assessments of biodiversity. The challenge: keeping common species common means protecting them BEFORE they become threatened. To do this on a state or regional basis requires key information such as land cover descriptions, predicted distribution maps for native animals, and an assessment of the level of protection currently given to those plants and animals. GAP works cooperatively with Federal, state, and local natural resource professionals and academics to provide this kind of information. GAP activities focus on the creation of state and regional databases and maps that depict patterns of land management, land cover, and biodiversity. These data can be used to identify ?gaps? in conservation--instances where an animal or plant community is not adequately represented on the existing network of conservation lands. GAP is administered through the U.S. Geological Survey. Through building partnerships among disparate groups, GAP hopes to foster the kind of collaboration that is needed to address conservation issues on a broad scale. For more information, contact: John Mosesso National GAP Director 703-648-4079 Kevin Gergely National GAP Operations Manager 208-885-3565

  13. Fort Collins Science Center

    USGS Publications Warehouse

    Banowetz, Michele

    2004-01-01

    FORT serves all Department of the Interior land management bureaus and other natural resource agencies. In addition, FORT scientists partner with DOI and other federal entities such as CDC, DOE, EPA, NASA, NIH, and USDA to share expertise and resources. FORT also partners with several universities and works cooperatively with states and nongovernmental organizations. Products and services include reports and publications, predictive models and software, maps and GIS products, and other technical assistance in the form of meetings, workshops, training, field visits, and needs assessments.

  14. Mineral resources, geologic structure, and landform surveys

    NASA Technical Reports Server (NTRS)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  15. Geophysically inferred structural and lithologic map of the precambrian basement in the Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    USGS Publications Warehouse

    McCafferty, Anne E.; Cordell, Lindrith E.

    1992-01-01

    This report is an analysis of regional gravity and aeromagnetic data that was carried out as part of a Conterminuous United States Mineral Assessment Program (CUSMAP) study of the Joplin 1° X 2° quadrangle, Kansas and Missouri. It is one in a series of reports representing a cooperative effort between the U.S. Geological Survey, Kansas Geological Survey, and Missouri Department of Natural Resources, Division of Geology and Land Survey. The work presented here is part of a larger project whose goal is to assess the mineral resource potential of the Paleozoic sedimentary section and crystalline basement within the quadrangle. Reports discussing geochemical, geological, and various other aspects of the study area are included in this Miscellaneous Field Studies Map series as MF-2125-A through MF-2125-E. Geophysical interpretation of Precambrian crystalline basement lithology and structure is the focus of this report. The study of the crystalline basement is complicated by the lack of exposures due to the presence of a thick sequence of Phanerozoic sedimentary cover. In areas where there are no outcrops, the geologist must turn to other indirect methods to assist in an understanding of the basement. Previous investigations of the buried basement in this region used available drill hole data, isotope age information, and regional geophysical data (Sims, 1990; Denison and others, 1984; Bickford and others, 1986). These studies were regional in scope and were presented at state and multistate scales. The work documented here used recently collected detailed gravity and aeromagnetic data to enhance the regional geologic knowledge of the area. Terrace-density and terrace-magnetization maps were calculated from the gravity and aeromagnetic data, leading directly to inferred physical-property (density and magnetization) maps. Once these maps were produced, the known geology and drill-hole data were reconciled with the physical-property maps to form a refined structural and lithologic map of the crystalline basement.

  16. Vegetation mapping from ERTS imagery of the Okavango Delta. [Botswana

    NASA Technical Reports Server (NTRS)

    Willamson, D. T.

    1974-01-01

    The Okavango is Botswana's major water resource. The present study has been specifically directed at mapping vegetation types within the delta and generally concerned with finding what information of value to plant and animal ecologists could be extracted from the imagery. To date it has been found that. (1) It is possible to map broad vegetation types from the imagery. (2) Imagery of the delta records the state of the system in a manner which will facilitate long-term studies of plant succession. (3) Phenological events can be detected. (4) The imagery can be used to detect and map wild fires. This will be useful in determining the role of fire in the ecology of the region. Using the imagery it is thus possible to map existing vegetation and monitor both short and long-term changes.

  17. Two decision-support tools for assessing the potential effects of energy development on hydrologic resources as part of the Energy and Environment in the Rocky Mountain Area interactive energy atlas

    USGS Publications Warehouse

    Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.

    2014-01-01

    The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a site-specific basis and to explore the effectiveness of various mitigation practices.

  18. Map Resource Packet: Course Models for the History-Social Science Framework, Grade Seven.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This packet of maps is an auxiliary resource to the "World History and Geography: Medieval and Early Modern Times. Course Models for the History-Social Science Framework, Grade Seven." The set includes: outline, precipitation, and elevation maps; maps for locating key places; landform maps; and historical maps. The list of maps are…

  19. A New Map of Standardized Terrestrial Ecosystems of the Conterminous United States

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Warner, Harumi; Cress, Jill

    2009-01-01

    A new map of standardized, mesoscale (tens to thousands of hectares) terrestrial ecosystems for the conterminous United States was developed by using a biophysical stratification approach. The ecosystems delineated in this top-down, deductive modeling effort are described in NatureServe's classification of terrestrial ecological systems of the United States. The ecosystems were mapped as physically distinct areas and were associated with known distributions of vegetation assemblages by using a standardized methodology first developed for South America. This approach follows the geoecosystems concept of R.J. Huggett and the ecosystem geography approach of R.G. Bailey. Unique physical environments were delineated through a geospatial combination of national data layers for biogeography, bioclimate, surficial materials lithology, land surface forms, and topographic moisture potential. Combining these layers resulted in a comprehensive biophysical stratification of the conterminous United States, which produced 13,482 unique biophysical areas. These were considered as fundamental units of ecosystem structure and were aggregated into 419 potential terrestrial ecosystems. The ecosystems classification effort preceded the mapping effort and involved the independent development of diagnostic criteria, descriptions, and nomenclature for describing expert-derived ecological systems. The aggregation and labeling of the mapped ecosystem structure units into the ecological systems classification was accomplished in an iterative, expert-knowledge-based process using automated rulesets for identifying ecosystems on the basis of their biophysical and biogeographic attributes. The mapped ecosystems, at a 30-meter base resolution, represent an improvement in spatial and thematic (class) resolution over existing ecoregionalizations and are useful for a variety of applications, including ecosystem services assessments, climate change impact studies, biodiversity conservation, and resource management.

  20. Map showing outcrop of the coal-bearing units and land use in the Gulf Coast region

    USGS Publications Warehouse

    Warwick, Peter D.; SanFilipo, John R.; Crowley, Sharon S.; Thomas, Roger E.; Freid, John; Tully, John K.

    1997-01-01

    This map is a preliminary compilation of the outcrop geology of the known coal-bearing units in the Gulf Coast Coal region. The map has been compiled for use in the National Coal Resource Assessment Project currently being conducted by the U.S. Geological Survey, and will be updated as the assessment progresses. The purpose of the map is to show the distribution of coal-bearing rocks in the Gulf Coastal Plain Region and to show stratigraphic correlations, transportation network, fossil-fuel burning power plants, and federally managed lands in the region. It is hoped that this map may aid coal exploration and development in the region. Geologic contacts were digitized from paper copies of the maps listed in the reference section below. The primary source of information was the 1:500,000-scale state geology map series, but larger scale maps were use to better define certain areas, notably the Jackson-Claiborne contact in western Kentucky and Tennessee for example (Olive, 1980). Contacts along state boundaries were modified to best-fit information available from the border areas. Note that coal distribution in the mapped units is not uniform. For example, the Jackson Group contains coal in Texas, but in Mississippi is not presently known to contain significant coal deposits. The unit is widespread and in part non-marine and thus of potential future interest. In contrast, the Jackson Group is not shown in Georgia where it is mostly marine and residuum (weathered material) at the surface. Tertiary age coal has also been noted in the Vicksburg Group (Oligocene) of Louisiana and Mississippi, but is not shown on this map. Contacts with mapped surficial units are not always shown. The locations of coal mine permit boundaries are based on information available at the time of publication and were obtained from the Division of Surface Mining and Reclamation, Railroad Commission of Texas, Austin, and the Injection and Mining Division, Department of Natural Resources, Baton Rouge, Louisiana. The correlation of map units and formation names generally follow Galloway and others (1991). We have placed the Paleocene-Eocene boundary in the middle of the Calvert Bluff Formation in Texas based on unpublished pollen biostratigraphy reports (N.O. Fredericksen, unpublished data, 1993; D.J. Nichols, unpublished data, 1996).

  1. Predictive mapping of seabirds, pinnipeds and cetaceans off the Pacific Coast of Washington

    USGS Publications Warehouse

    Menza, Charles; Leirness, Jeffery B.; White, Tim; Winship, Arliss; Kinlan, Brian P.; Kracker, Laura; Zamon, Jeannette E.; Ballance, Lisa; Becker, Elizabeth; Forney, Karin A.; Barlow, Jay; Adams, Josh; Pereksta, David; Pearson, Scott; Pierce, John; Jeffries, Steven J.; Calambokidis, John; Douglas, Annie; Hanson, Bradford C.; Benson, Scott R.; Antrim, Liam

    2016-01-01

    This research supports the National Oceanic and Atmospheric Administration (NOAA) Coastal Zone Management Program, a voluntary partnership between the federal government and U.S. coastal and Great Lakes states and territories authorized by the Coastal Zone Management Act (CZMA) of 1972 to address national coastal issues. The act provides the basis for protecting, restoring, and responsibly developing our nation’s diverse coastal communities and resources. To meet the goals of the CZMA, the national program takes a comprehensive approach to coastal resource management – balancing the often competing and occasionally conflicting demands of coastal resource use, economic development, and conservation. A wide range of issues are addressed through the program, including coastal development, water quality, public access, habitat protection, energy facility siting, ocean governance and planning, coastal hazards, and climate change. Accurate maps of seabird and marine mammal distributions are an important tool for making informed management decisions that affect all of these issues. 

  2. Baby Brain Map

    MedlinePlus

    ... a Member Home Resources & Services Professional Resource Baby Brain Map Mar 17, 2016 The Brain Map was adapted in 2006 by ZERO TO ... supports Adobe Flash Player. To view the Baby Brain Map, please visit this page on a browser ...

  3. Mapping Health Needs to Support Health System Management in Poland

    PubMed Central

    Holecki, Tomasz; Romaniuk, Piotr; Woźniak-Holecka, Joanna; Szromek, Adam R.; Syrkiewicz-Świtała, Magdalena

    2018-01-01

    In Poland, following the example of other EU countries, the first maps of health needs prepared by the Ministry of Health were presented in 2016. The maps constitute a foundation for rational decision-making in the management of health care resources, being potentially useful for all actors in health system. This refers in particular to the institutions responsible for distribution of funds and contracting health service, but also for decision-makers, who determine the scope of funds to be utilized in the health system, or the structure of benefits provided to patients. Service providers are also addressees of the maps, to give them a basis for planning future activities. The article presents a structured assessment of the current state of affairs, based on recent experience and sets out likely directions for the development of health needs in mapping in Poland in the future. We discuss the criticism addressed toward maps by representatives of various groups acting in health care. It includes the lack of recognition of some of the key health needs, or wrong emphases, where much more attention is paid to the recognition of current resources in the health system, instead of making prognoses regarding the future developments of health needs. Nonetheless, we find that this instrument is potentially of high usability, in case of elimination of the existing weaknesses. PMID:29662876

  4. Ecoregions of California

    USGS Publications Warehouse

    Griffith, Glenn E.; Omernik, James M.; Smith, David W.; Cook, Terry D.; Tallyn, Ed; Moseley, Kendra; Johnson, Colleen B.

    2016-02-23

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across Federal agencies, State agencies, and nongovernment organizations that are responsible for different types of resources in the same geographical areas (Omernik and others, 2000).The approach used to compile this map is based on the premise that ecological regions are hierarchical and can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997, map revised 2006). At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions (U.S. Environmental Protection Agency, 2013). Level IV, depicted here for California, is a further refinement of level III ecoregions. Explanations of the methods used to define these ecoregions are given in Omernik (1995), Omernik and others (2000), and Omernik and Griffith (2014).California has great ecological and biological diversity. The State contains offshore islands and coastal lowlands, large alluvial valleys, forested mountain ranges, deserts, and various aquatic habitats. There are 13 level III ecoregions and 177 level IV ecoregions in California and most continue into ecologically similar parts of adjacent States of the United States or Mexico (Bryce and others, 2003; Thorson and others, 2003; Griffith and others, 2014).The California ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale (Omernik, 1987; U.S. Environmental Protection Agency, 2013). This poster is the result of a collaborative project primarily between U.S. Environmental Protection Agency (USEPA) Region IX, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), California Department of Fish and Wildlife (DFW), U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), U.S. Department of the Interior–Geological Survey (USGS), and other State of California agencies and universities.The project is associated with interagency efforts to develop a common framework of ecological regions (McMahon and others, 2001). Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service (Bailey and others, 1994; Miles and Goudy, 1997; Cleland and others, 2007), the USEPA (Omernik 1987, 1995), and the NRCS (U.S. Department of Agriculture–Soil Conservation Service, 1981; U.S. Department of Agriculture–Natural Resources Conservation Service, 2006). As each of these frameworks is further refined, their differences are becoming less discernible. Regional collaborative projects such as this one in California, where some agreement has been reached among multiple resource-management agencies, are a step toward attaining consensus and consistency in ecoregion frameworks for the entire nation.

  5. Developing Tsunami Evacuation Plans, Maps, And Procedures: Pilot Project in Central America

    NASA Astrophysics Data System (ADS)

    Arcos, N. P.; Kong, L. S. L.; Arcas, D.; Aliaga, B.; Coetzee, D.; Leonard, J.

    2015-12-01

    In the End-to-End tsunami warning chain, once a forecast is provided and a warning alert issued, communities must know what to do and where to go. The 'where to' answer would be reliable and practical community-level tsunami evacuation maps. Following the Exercise Pacific Wave 2011, a questionnaire was sent to the 46 Member States of Pacific Tsunami Warning System (PTWS). The results revealed over 42 percent of Member States lacked tsunami mass coastal evacuation plans. Additionally, a significant gap in mapping was exposed as over 55 percent of Member States lacked tsunami evacuation maps, routes, signs and assembly points. Thereby, a significant portion of countries in the Pacific lack appropriate tsunami planning and mapping for their at-risk coastal communities. While a variety of tools exist to establish tsunami inundation areas, these are inconsistent while a methodology has not been developed to assist countries develop tsunami evacuation maps, plans, and procedures. The International Tsunami Information Center (ITIC) and partners is leading a Pilot Project in Honduras demonstrating that globally standardized tools and methodologies can be applied by a country, with minimal tsunami warning and mitigation resources, towards the determination of tsunami inundation areas and subsequently community-owned tsunami evacuation maps and plans for at-risk communities. The Pilot involves a 1- to 2-year long process centered on a series of linked tsunami training workshops on: evacuation planning, evacuation map development, inundation modeling and map creation, tsunami warning & emergency response Standard Operating Procedures (SOPs), and conducting tsunami exercises (including evacuation). The Pilot's completion is capped with a UNESCO/IOC document so that other countries can replicate the process in their tsunami-prone communities.

  6. Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada.

    DTIC Science & Technology

    1980-05-01

    magneto- telluric studies. LINEAMENT ANALYSIS As part of the initial phase of the Fallon Exploration Project, a composite lineament analysis of the region...Nevada. United States Geological Survey Bulletin 750, 1924, pp. 79-86. Hoover, D. B., R. M. Senterfit, and Bruce Radtke. Telluric Profile Loca- tion...Map and Telluric Data for the Salt Wells Known Geothermal Resource Area, Nevada. United States Geological Survey Open File Report 77-66F, 1977. Horton

  7. PPDMs-a resource for mapping small molecule bioactivities from ChEMBL to Pfam-A protein domains.

    PubMed

    Kruger, Felix A; Gaulton, Anna; Nowotka, Michal; Overington, John P

    2015-03-01

    PPDMs is a resource that maps small molecule bioactivities to protein domains from the Pfam-A collection of protein families. Small molecule bioactivities mapped to protein domains add important precision to approaches that use protein sequence searches alignments to assist applications in computational drug discovery and systems and chemical biology. We have previously proposed a mapping heuristic for a subset of bioactivities stored in ChEMBL with the Pfam-A domain most likely to mediate small molecule binding. We have since refined this mapping using a manual procedure. Here, we present a resource that provides up-to-date mappings and the possibility to review assigned mappings as well as to participate in their assignment and curation. We also describe how mappings provided through the PPDMs resource are made accessible through the main schema of the ChEMBL database. The PPDMs resource and curation interface is available at https://www.ebi.ac.uk/chembl/research/ppdms/pfam_maps. The source-code for PPDMs is available under the Apache license at https://github.com/chembl/pfam_maps. Source code is available at https://github.com/chembl/pfam_map_loader to demonstrate the integration process with the main schema of ChEMBL. © The Author 2014. Published by Oxford University Press.

  8. Moon Mineralogy Mapper: Unlocking the Mysteries of the Moon

    NASA Technical Reports Server (NTRS)

    Runyon, Cassandra

    2006-01-01

    Moon Mineralogy Mapper (M3) is a state-of-the-art high spectral resolution imaging spectrometer that will characterize and map the mineral composition of the Moon. The M3 instrument will be flown on Chandrayaan-I, the Indian Space Research Organization (ISRO) mission to be launched in March 2008. The Moon is a cornerstone to understanding early solar system processes. M3 high-resolution compositional maps will dramatically improve our understanding about the early evolution of the terrestrial planets and will provide an assessment of lunar resources at high spatial resolution.

  9. Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Faust, N. L.

    1974-01-01

    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

  10. National Land Cover Database 2001 (NLCD01) Imperviousness Layer Tile 1, Northwest United States: IMPV01_1

    USGS Publications Warehouse

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the imperviousness layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp.. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  11. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 2, Northeast United States: CNPY01_2

    USGS Publications Warehouse

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  12. National Land Cover Database 2001 (NLCD01) Imperviousness Layer Tile 4, Southeast United States: IMPV01_4

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This 30-meter resolution data set represents the imperviousness layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp.. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  13. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 1, Northwest United States: CNPY01_1

    USGS Publications Warehouse

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov

  14. National Land Cover Database 2001 (NLCD01) Imperviousness Layer Tile 2, Northeast United States: IMPV01_2

    USGS Publications Warehouse

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the imperviousness layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp.. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  15. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 4, Southeast United States: CNPY01_4

    USGS Publications Warehouse

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  16. National Land Cover Database 2001 (NLCD01) Imperviousness Layer Tile 3, Southwest United States: IMPV01_3

    USGS Publications Warehouse

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the imperviousness layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp.. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  17. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 3, Southwest United States: CNPY01_3

    USGS Publications Warehouse

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  18. America's Soil and Water: Condition and Trends.

    ERIC Educational Resources Information Center

    1981

    A review of conditions and trends regarding soil and water resources of rural nonfederal lands of the United States is presented in this publication. Maps, charts, and graphs illustrate the data collected on various aspects of soil and water use and practice. Topic areas considered include: (1) land use patterns; (2) classes of land; (3)…

  19. Global Survey of Anthropogenic Neighborhood Threats to Conservation of Grass-Shrub and Forest Vegetation

    EPA Science Inventory

    We report a survey of land cover patterns focusing on forest, grassland, and shrubland for the United States. To provide information for a national resource assessment, an integrated survey of patterns was conducted using a circa 2001 land cover map. The survey was designed to ac...

  20. AKDNR - DNR Business Reporting System (DBRS)

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Resources > IRM GPU > Main Menu DNR Business Reporting System (DBRS) The DNR Business Reporting System (DBRS) allows users to generate reports from the DNR Business databases and maps. The reports offered

  1. Feasibility of Mapping Riparian Habitats Under Natural Conditions in California

    Treesearch

    David R. Dawdy

    1989-01-01

    The California State Water Resources Control Board is conducting hearings to set quantity and quality standards for river flows into San Francisco Bay. Comparisons of present conditions with "natural conditions" prior to European settlement were introduced into the hearings. Consumptive use relations were developed for various riparian and water-related...

  2. Lesson Planning with the Common Core

    ERIC Educational Resources Information Center

    Estes, Linda A.; McDuffie, Amy Roth; Tate, Cathie

    2014-01-01

    Planning a lesson can be similar to planning a road trip--a metaphor the authors use to describe how they applied research and theory to their lesson planning process. A map and mode of transportation, the Common Core State Standards for Mathematics (CCSSM) and textbooks as resources, can lead to desired destinations, such as students engaging in…

  3. Great Lakes Education Booklet, 1990-1991.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    This booklet integrates science, history, and environmental education to help students acquire a basic understanding of the importance of the Great Lakes located in the United States. The packet also contains a Great Lakes Basin resource map and a sand dune poster. These materials introduce students to a brief history of the lakes, the diversity…

  4. MX Siting Investigation Geotechnical Evaluation Conterminous United States. Volume II. Intermediate Screening.

    DTIC Science & Technology

    1977-12-21

    sections of the CSP ( Thordarson and others, 1967; Figure 8). Interbedded materials consist of agglomerates, air-fall and ash-flow tuffs which are welded to...of Economic Geology, 1977, Land resource map of Texas: Bur. Econ. Geol., Univ. Texas, Austin, Texas. (in press). Thordarson , W., Young, R.A., and

  5. Spatial fuel data products of the LANDFIRE Project

    Treesearch

    Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...

  6. NetAmerica: Travel the 50 States on the Information Highway.

    ERIC Educational Resources Information Center

    Garfield, Gary M.; McDonough, Suzanne

    This book, designed for grades four through eight, is a telecommunications resource that reviews and defines essential Internet terms, looks at critical goals of telecommunications, explains the role of the Internet as it relates to the curriculum, and provides teachers and students with a "road map" to electronic information for each of…

  7. Detecting Potential Water Quality Issues by Mapping Trophic Status Using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, A. L.; Harvey, K.; Huening, V.; Robinson, H.

    2017-12-01

    The identification, timing, and spatial distribution of recurrent algal blooms and aquatic vegetation can help water managers and policy makers make better water resource decisions. In many parts of the world there is little monitoring or reporting of water quality due to the required costs and effort to collect and process water samples. We propose to use Google Earth Engine to quickly identify the recurrence of trophic states in global inland water systems. Utilizing Landsat and Sentinel multispectral imagery, inland water quality parameters (i.e. chlorophyll a concentration) can be estimated and waters can be classified by trophic state; oligotrophic, mesotrophic, eutrophic, and hypereutrophic. The recurrence of eutrophic and hypereutrophic observations can highlight potentially problematic locations where algal blooms or aquatic vegetation occur routinely. Eutrophic and hypereutrophic waters commonly include many harmful algal blooms and waters prone to fish die-offs from hypoxia. While these maps may be limited by the accuracy of the algorithms utilized to estimate chlorophyll a; relative comparisons at a local scale can help water managers to focus limited resources.

  8. A Compilation of Provisional Karst Geospatial Data for the Interior Low Plateaus Physiographic Region, Central United States

    USGS Publications Warehouse

    Taylor, Charles J.; Nelson, Hugh L.

    2008-01-01

    Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.

  9. Object-based classification of semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Halabisky, Meghan; Moskal, L. Monika; Hall, Sonia A.

    2011-01-01

    Wetlands are valuable ecosystems that benefit society. However, throughout history wetlands have been converted to other land uses. For this reason, timely wetland maps are necessary for developing strategies to protect wetland habitat. The goal of this research was to develop a time-efficient, automated, low-cost method to map wetlands in a semi-arid landscape that could be scaled up for use at a county or state level, and could lay the groundwork for expanding to forested areas. Therefore, it was critical that the research project contain two components: accurate automated feature extraction and the use of low-cost imagery. For that reason, we tested the effectiveness of geographic object-based image analysis (GEOBIA) to delineate and classify wetlands using freely available true color aerial photographs provided through the National Agriculture Inventory Program. The GEOBIA method produced an overall accuracy of 89% (khat = 0.81), despite the absence of infrared spectral data. GEOBIA provides the automation that can save significant resources when scaled up while still providing sufficient spatial resolution and accuracy to be useful to state and local resource managers and policymakers.

  10. Spatial data available on the web at http://mrdata.usgs.gov/

    USGS Publications Warehouse

    Johnson, Bruce

    2002-01-01

    Earth science information is important to decisionmakers who formulate public policy related to mineral resource sustainability, land stewardship, environmental hazards, the economy, and public health. To meet the growing demand for easily accessible data, the Mineral Resources Program has developed, in cooperation with other Federal and State agencies, an Internet-based, data-delivery system that allows interested customers worldwide to download accurate, up-to-date mineral resource-related data at any time. All data in the system are spatially located and customers with Internet access and a modern Web browser can easily produce maps having user-defined overlays for any region of interest.

  11. R4FRS_RCRAINFO

    EPA Pesticide Factsheets

    To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (http://www.epa.gov/enviro). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.

  12. US EPA Region 4 RMP Facilities

    EPA Pesticide Factsheets

    To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (http://www.epa.gov/enviro). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.

  13. Bedrock Geologic Map of New Hampshire, a Digital Representation of Lyons and Others 1997 Map and Ancillary Files

    USGS Publications Warehouse

    Bennett, Derek S.; Lyons, John B.; Wittkop, Chad A.; Dicken, Connie L.

    2006-01-01

    The New Hampshire Geological Survey collects data and performs research on the land, mineral, and water resources of the State, and disseminates the findings of such research to the public through maps, reports, and other publications. The Bedrock Geologic Map of New Hampshire, by John B. Lyons, Wallace A. Bothner, Robert H. Moench, and James B. Thompson, was published in paper format by the U.S. Geological Survey (USGS) in 1997. The online version of this CD contains digital datasets of the State map that are intended to assist the professional geologist, land-use planners, water resource professionals, and engineers and to inform the interested layperson. In addition to the bedrock geology, the datasets include geopolitical and hydrologic information, such as political boundaries, quadrangle boundaries, hydrologic units, and water-well data. A more thorough explanation for each of these datasets may be found in the accompanying metadata files. The data are spatially referenced and may be used in a geographic information system (GIS). ArcExplorer, the Environmental Systems Research Institute's (ESRI) free GIS data viewer, is available at http://www.esri.com/software/arcexplorer. ArcExplorer provides basic functions that are needed to harness the power and versatility of the spatial datasets. Additional information on the viewer and other ESRI products may be found on the ArcExplorer website. Although extensive review and revisions of the data have been performed by the USGS and the New Hampshire Geological Survey, these data represent interpretations made by professional geologists using the best available data, and are intended to provide general geologic information. Use of these data at scales larger than 1:250,000 will not provide greater accuracy. The data are not intended to replace site-specific or specific-use investigations. The U.S. Geological Survey, New Hampshire Geological Survey, and State of New Hampshire make no representation or warranty, expressed or implied, regarding the use, accuracy, or completeness of the data presented herein, or from a map printed from these data; nor shall the act of distribution constitute any such warranty. The New Hampshire Geological Survey disclaims any legal responsibility or liability for interpretations made from the map, or decisions based thereon. For more information on New Hampshire Geological Survey programs please visit the State's website at http://des.nh.gov/Geology/. New Hampshire Geographically Referenced Analysis and Information Transfer System (NH GRANIT) provides access to statewide GIS (http://www.granit.unh.edu/). Questions about this CD or about other datasets should be directed to the New Hampshire Department of Environmental Services.

  14. Map of assessed shale gas in the United States, 2012

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2013-01-01

    The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.

  15. Commentary: A cautionary tale regarding use of the National Land Cover Dataset 1992

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Gallant, Alisa L.; Knutson, Melinda G.; Fox, Timothy J.; Suarez, Manuel J.

    2004-01-01

    Digital land-cover data are among the most popular data sources used in ecological research and natural resource management. However, processes for accurate land-cover classification over large regions are still evolving. We identified inconsistencies in the National Land Cover Dataset 1992, the most current and available representation of land cover for the conterminous United States. We also report means to address these inconsistencies in a bird-habitat model. We used a Geographic Information System (GIS) to position a regular grid (or lattice) over the upper midwestern United States and summarized the proportion of individual land covers in each cell within the lattice. These proportions were then mapped back onto the lattice, and the resultant lattice was compared to satellite paths, state borders, and regional map classification units. We observed mapping inconsistencies at the borders between mapping regions, states, and Thematic Mapper (TM) mapping paths in the upper midwestern United States, particularly related to grass I and-herbaceous, emergent-herbaceous wetland, and small-grain land covers. We attributed these discrepancies to differences in image dates between mapping regions, suboptimal image dates for distinguishing certain land-cover types, lack of suitable ancillary data for improving discrimination for rare land covers, and possibly differences among image interpreters. To overcome these inconsistencies for the purpose of modeling regional populations of birds, we combined grassland-herbaceous and pasture-hay land-cover classes and excluded the use of emergent-herbaceous and small-grain land covers. We recommend that users of digital land-cover data conduct similar assessments for other regions before using these data for habitat evaluation. Further, caution is advised in using these data in the analysis of regional land-cover change because it is not likely that future digital land-cover maps will repeat the same problems, thus resulting in biased estimates of change.

  16. The National Map - Orthoimagery Layer

    USGS Publications Warehouse

    ,

    2007-01-01

    Many Federal, State, and local agencies use a common set of framework geographic information databases as a tool for economic and community development, land and natural resource management, and health and safety services. Emergency management and homeland security applications rely on this information. Private industry, nongovernmental organizations, and individual citizens use the same geographic data. Geographic information underpins an increasingly large part of the Nation's economy. The U.S. Geological Survey (USGS) is developing The National Map to be a seamless, continually maintained, and nationally consistent set of online, public domain, framework geographic information databases. The National Map will serve as a foundation for integrating, sharing, and using data easily and consistently. The data will be the source of revised paper topographic maps. The National Map includes digital orthorectified imagery; elevation data; vector data for hydrography, transportation, boundary, and structure features; geographic names; and land cover information.

  17. Mapping Atlantic coastal marshlands, Maryland, Georgia, using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.; Carter, V. L.; Mcginness, J. W., Jr.

    1973-01-01

    Eastern coastal marshes are the most extensive and productive in the United States. A relatively low cost, moderately accurate method is needed to map these areas for management and protection. Groundbased and low-altitude aircraft methods for mapping are time-consuming and quite expensive. The launch of NASA's Earth Resources Technology Satellite has provided an opportunity to test the feasibility of mapping wetlands using small scale imagery. The test sites selected were in Chesapeake Bay, Maryland, and Ossabaw Island, Georgia. Results of the investigation indicate that the following may be ascertained from ERTS imagery, enlarged to 1:250,000: (1) upper wetland boundary; (2) drainage pattern in the wetland; (3) plant communities; (4) ditching activities associated with agriculture; and (5) lagooning for water-side home development. Conclusions are that ERTS will be an excellent tool for many types of coastal wetland mapping.

  18. Map showing length of freeze-free season in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Covington, Harry R.

    1972-01-01

    In general, long freeze-free periods occur at low elevations, and short freeze-free periods occur at high elevations. But some valley floors have shorter freeze-free seasons than the glancing foothills because air cooled at high elevations flows downward and is trapped in the valleys. This temperature pattern occurs in the western part of the quadrangle in Rabbit Valley, Grass Valley, and the Sevier River Valley near Salina.Because year-round weather stations are sparse in Utah, a special technique for estimating length of freeze-free season was developed by Dr. Gaylen L. Ashcroft, Assistant Professor of Climatology, Utah State University, and E. Arlo Richardson, State Climatologist, U.S. Weather Bureau, based on average annual temperature, average annual temperature range, average daily temperature range, and average july maximum temperature. This technique was used in preparation of the map showing “Length of 32°F freeze-free season for Utah,” figure 23 in Hydrologic Atlas of Utah (Utah State University and Utah Division of Water Resources, 1968), from which the data for this map were taken.

  19. Spatial fuel data products of the LANDFIRE Project

    USGS Publications Warehouse

    Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.

  20. The use of landsat 7 enhanced thematic mapper plus for mapping leafy spurge

    USGS Publications Warehouse

    Mladinich, C.S.; Bustos, M.R.; Stitt, S.; Root, R.; Brown, K.; Anderson, G.L.; Hager, S.

    2006-01-01

    Euphorbia esula L. (leafy spurge) is an invasive weed that is a major problem in much of the Upper Great Plains region, including parts of Montana, South Dakota, North Dakota, Nebraska, and Wyoming. Infestations in North Dakota alone have had a serious economic impact, estimated at $87 million annually in 1991, to the state's wildlife, tourism, and agricultural economy. Leafy spurge degrades prairie and badland ecosystems by displacing native grasses and forbs. It is a major threat to protected ecosystems in many national parks, national wild lands, and state recreational areas in the region. This study explores the use of Landsat 7 Enhanced Thematic Mapper Plus (Landsat) imagery and derived products as a management tool for mapping leafy spurge in Theodore Roosevelt National Park, in southwestern North Dakota. An unsupervised clustering approach was used to map leafy spurge classes and resulted in overall classification accuracies of approximately 63%. The uses of Landsat imagery did not provide the accuracy required for detailed mapping of small patches of the weed. However, it demonstrated the potential for mapping broad-scale (regional) leafy spurge occurrence. This paper offers recommendations on the suitability of Landsat imagery as a tool for use by resource managers to map and monitor leafy spurge populations over large areas.

  1. Chapter 7. The GIS project for the geologic assessment of undiscovered oil and gas in the Cotton Valley group and Travis Peak and Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Jurassic-Lower Cretaceous Cotton Valley Group and the Lower Cretaceous Travis Peak and Hosston Formations in the northern Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2002 assessment of undiscovered, technically recoverable oil and natural gas resources in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States-including physical locations of geologic and geographic data-and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site, http://energy.cr.usgs.gov/oilgas/noga/ .

  2. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    USGS Publications Warehouse

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin

    2018-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  3. Mapping extent and change in surface mines within the United States for 2001 to 2006

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Stehman, Stephen V.; Parker, Owen P.

    2016-01-01

    A complete, spatially explicit dataset illustrating the 21st century mining footprint for the conterminous United States does not exist. To address this need, we developed a semi-automated procedure to map the country's mining footprint (30-m pixel) and establish a baseline to monitor changes in mine extent over time. The process uses mine seed points derived from the U.S. Energy Information Administration (EIA), U.S. Geological Survey (USGS) Mineral Resources Data System (MRDS), and USGS National Land Cover Dataset (NLCD) and recodes patches of barren land that meet a “distance to seed” requirement and a patch area requirement before mapping a pixel as mining. Seed points derived from EIA coal points, an edited MRDS point file, and 1992 NLCD mine points were used in three separate efforts using different distance and patch area parameters for each. The three products were then merged to create a 2001 map of moderate-to-large mines in the United States, which was subsequently manually edited to reduce omission and commission errors. This process was replicated using NLCD 2006 barren pixels as a base layer to create a 2006 mine map and a 2001–2006 mine change map focusing on areas with surface mine expansion. In 2001, 8,324 km2 of surface mines were mapped. The footprint increased to 9,181 km2 in 2006, representing a 10·3% increase over 5 years. These methods exhibit merit as a timely approach to generate wall-to-wall, spatially explicit maps representing the recent extent of a wide range of surface mining activities across the country. 

  4. Strategic Considerations of the Sino-Cuban Relationship as the United States Renews Relations with Cuba

    DTIC Science & Technology

    2016-05-26

    obtained for the inclusion of pictures, maps, graphics, and any other works incorporated into this manuscript. A work of the United States Government is not...in 2004 by Venezuela and Cuba. The eleven members are Antigua and Barbuda, Bolivia, Cuba, Dominica, Ecuador , Grenada, Nicaragua, Saint Kitts and...region to the US alone in trade relations. China needs natural resources and commodities such as oil and soybeans and many Latin American governments and

  5. Bibliography of selected water-resources publications on Nevada by the U.S. Geological Survey, 1885 through 1995

    USGS Publications Warehouse

    Bunch, R.L.

    1996-01-01

    References to 898 water-resources publications are listed alphabetically by senior author and indexed by hydrographic-area name or other geographic features. Most of the publications were written between 1960 and 1995 by U.S. Geological Survey scientists and engineers of the Water Resources Division, Nevada District. Also included are references to publications by other Water Resources Division authors that deal with Nevada hydrology. References to publications written before 1960 are included to provide a historical perspective. The references include several types of Geological Survey book and map publications, as well as State-series reports, journal articles, conference and symposium papers, abstracts, and graduate- degree theses. Information on publication availability is provided also.

  6. Using Eco-Mapping to Understand Family Strengths and Resources

    ERIC Educational Resources Information Center

    McCormick, Katherine M.; Stricklin, Sarintha; Nowak, Theresa M.; Rous, Beth

    2008-01-01

    As professionals and families work together to identify and celebrate the strengths and resources unique to each family, new and innovative ways to describe and discuss family characteristics are needed. The eco-map, borrowed from social science disciplines, is one method used to describe family strengths and resources. The eco-map was developed…

  7. Annual summary of ground-water conditions in Arizona, spring 1984 to spring 1985

    USGS Publications Warehouse

    ,

    1986-01-01

    In arid and semiarid regions such as Arizona, the availability of adequate water supplies has a significant influence on the type and extent of economic development. About two-thirds of the water used in the State is groundwater. The nature and extent of the groundwater reservoirs must be known for proper management of this valuable resource. The U.S. Geological Survey, in cooperation with the State of Arizona, has conducted a program of groundwater studies in Arizona since 1939. The primary purposes of these studies are to define the amount, location, and quality of the groundwater resources of Arizona and to monitor the effects of large-scale development of the groundwater supplies. The program includes the collection, compilation, and analysis of the geologic and hydrologic data necessary to evaluate the groundwater resources of the State. The basic hydrologic data are in computer storage and are available to the public. Since 1974, a major thrust of the program has been to inventory the groundwater conditions in the 68 groundwater areas of the State. Several selected groundwater areas are studied each year; water levels are measured annually in a statewide observation well network, many groundwater samples are collected and analyzed annually, and groundwater pumpage is computed for most of the areas. As of July 1985, reports had been published for 56 of the 68 groundwater areas. Data collected in the groundwater areas include information on selected wells, water level measurements, and water samples for chemical analysis. The data for each of the selected groundwater areas are analyzed, and the results are published in map form. Typically, the maps show depth to water; change in water levels; altitude of the water level; and quality of water data, such as specific conductance, dissolved solids, and fluoride. (Lantz-PTT)

  8. A Comparison of Mental Health Care Systems in Northern and Southern Europe: A Service Mapping Study.

    PubMed

    Sadeniemi, Minna; Almeda, Nerea; Salinas-Pérez, Jose A; Gutiérrez-Colosía, Mencía R; García-Alonso, Carlos; Ala-Nikkola, Taina; Joffe, Grigori; Pirkola, Sami; Wahlbeck, Kristian; Cid, Jordi; Salvador-Carulla, Luis

    2018-05-31

    Mental health services (MHS) have gone through vast changes during the last decades, shifting from hospital to community-based care. Developing the optimal balance and use of resources requires standard comparisons of mental health care systems across countries. This study aimed to compare the structure, personnel resource allocation, and the productivity of the MHS in two benchmark health districts in a Nordic welfare state and a southern European, family-centered country. The study is part of the REFINEMENT (Research on Financing Systems' Effect on the Quality of Mental Health Care) project. The study areas were the Helsinki and Uusimaa region in Finland and the Girona region in Spain. The MHS were mapped by using the DESDE-LTC (Description and Evaluation of Services and Directories for Long Term Care) tool. There were 6.7 times more personnel resources in the MHS in Helsinki and Uusimaa than in Girona. The resource allocation was more residential-service-oriented in Helsinki and Uusimaa. The difference in mental health personnel resources is not explained by the respective differences in the need for MHS among the population. It is important to make a standard comparison of the MHS for supporting policymaking and to ensure equal access to care across European countries.

  9. Availability of groundwater data for California, water year 2010

    USGS Publications Warehouse

    Ray, Mary; Orlando, Patricia v.P.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the groundwater resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to groundwater data for Water Year 2010. It contains a map of California showing the number of wells (by county) with available water-level or water-quality data for Water Year 2010 (fig. 1) and instructions for obtaining this and other groundwater information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report "Water Resources Data for California, Volume 5. Ground-Water Data"; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.

  10. Cancer Diagnosis Epigenomics Scientific Workflow Scheduling in the Cloud Computing Environment Using an Improved PSO Algorithm

    PubMed

    N, Sadhasivam; R, Balamurugan; M, Pandi

    2018-01-27

    Objective: Epigenetic modifications involving DNA methylation and histone statud are responsible for the stable maintenance of cellular phenotypes. Abnormalities may be causally involved in cancer development and therefore could have diagnostic potential. The field of epigenomics refers to all epigenetic modifications implicated in control of gene expression, with a focus on better understanding of human biology in both normal and pathological states. Epigenomics scientific workflow is essentially a data processing pipeline to automate the execution of various genome sequencing operations or tasks. Cloud platform is a popular computing platform for deploying large scale epigenomics scientific workflow. Its dynamic environment provides various resources to scientific users on a pay-per-use billing model. Scheduling epigenomics scientific workflow tasks is a complicated problem in cloud platform. We here focused on application of an improved particle swam optimization (IPSO) algorithm for this purpose. Methods: The IPSO algorithm was applied to find suitable resources and allocate epigenomics tasks so that the total cost was minimized for detection of epigenetic abnormalities of potential application for cancer diagnosis. Result: The results showed that IPSO based task to resource mapping reduced total cost by 6.83 percent as compared to the traditional PSO algorithm. Conclusion: The results for various cancer diagnosis tasks showed that IPSO based task to resource mapping can achieve better costs when compared to PSO based mapping for epigenomics scientific application workflow. Creative Commons Attribution License

  11. Coal Fields and Federal Lands of the Conterminous United States

    USGS Publications Warehouse

    Biewick, Laura

    1997-01-01

    The map depicts the relationship of coal and public lands in the conterminous U. S. Multiple GIS layers are being created for the purpose of deriving estimates of how much coal is owned and administered by the Federal government. Federal coal areas have a profound effect on land-management decisions. Regulatory agencies attempt to balance energy development with alternative land-use and environmental concerns. A GIS database of Federal lands used in energy resource assessments is being developed by the U. S. Geological Survey (USGS) in cooperation with the U.S. Bureau of Land Management (BLM) to integrate information on status of public land, and minerals owned by the Federal government with geologic information on coal resources, other spatial data, coal quality characteristics, and coal availability for development. Using national-scale data we estimate that approximately 60 percent of the area underlain by coal-bearing rocks in the conterminous United States are under Federal surface. Coal produced from Federal leases has tripled from about 12 percent of the total U.S. production in 1976 to almost 34 percent in 1995 (Energy Information Administration website ftp://ftp.eia.doe.gov/pub/coal/cia_95_tables/t13p01.txt). The reason for this increase is demand for low-sulfur coal for use in power plants and the fact that large reserves of this low-sulfur coal are in the western interior U.S., where the Federal government owns the rights to most of the coal reserves. The map was created using Arc/Info 7.0.3 on a UNIX system. The HPGL2 plot file for this map is available from the USGS Energy Resource Surveys Team from http://energy.cr.usgs.gov:8080/energy/coal.html.

  12. Wind Energy Resource Atlas of the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; George, R.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  13. Mapping of West Nile Virus Risk in the Northeast United States Using Multi-temporal Meteorological Satellite Data

    NASA Astrophysics Data System (ADS)

    Backenson, P.; White, D. J.; Eidson, M.; Smith, P. F.; Kramer, L. D.; Morse, D. L.; Tucker, C. J.; Myers, M. F.; Hay, S. I.; Rogers, D. J.

    2002-05-01

    West Nile Virus (WNV) was first discovered in the United States in September of 1999, after a cluster of cases of human neurological illness was identified in the borough of Queens in New York City. Eventually, that outbreak led to 62 human cases of WNV, including seven deaths. Multiple researchers identified and isolated the virus in several bird and mosquito species in New York. In 2000, an elaborate surveillance system was developed to detect the presence of WNV before human cases occur. This system was largely successful, as the number of WNV detections in birds and mosquitoes increased tremendously, while the number of human cases dropped to 14. In 2001, this surveillance system, and those like it in other states, detected the spread of WNV to over 25 states, with over 50 human cases. Detecting WNV in both birds and mosquitoes, however, is a time and labor intensive task, requiring dedicated staff and resources. In New York it has required hundreds of staff, and millions of dollars. It often takes at least 10 days from the time of specimen collection to the time when results are available. To improve efficiency and cost-effectiveness, proxies are sought to estimate the risk of WNV infection in a given area, preferably on a real-time basis. The project discussed here utilizes remotely sensed meteorological data to accomplish that goal. Data from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA series of meteorological satellites provided the Normalized Difference Vegetation Index (NDVI) and land surface temperature proxies, as well as elevation, and were temporal Fourier processed. Bird and mosquito data (both infected and uninfected) were added to these images to suggest conditions favoring disease transmission. AVHRR data were also used to analyze changes over time that might be associated with the arrival of WNV in the United States, and with its potential spread over time. Maximum likelihood methods applied to these satellite data allowed production of a series of risk maps that measured the similarity of satellite conditions in a given area to the bird and mosquito data collected on the ground. Both bird and mosquito risk maps showed high kappa indices of agreement. As surveillance teams collect more field data on the ground, these risk maps should become more accurate. These risk maps can then be used by state and local authorities to better direct public health staff and resources, and hopefully prevent large-scale outbreaks of West Nile Virus in the future.

  14. Hurricane Safety and Information - Central Pacific Hurricane Center -

    Science.gov Websites

    NOAA NWS United States Department of Commerce Central Pacific Hurricane Center National Oceanic and Distance Calculator Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Search For Go NWS All NOAA ▾ Hurricane Safety Hurricane Awareness Week Information from CPHC Red Cross

  15. A Water "Atlas" Exercise with Conservation Students.

    ERIC Educational Resources Information Center

    Wije, Chand

    1992-01-01

    Describes how a water atlas can be used as a tool in conservation courses. Presents a three stage approach to a classroom exercise. Includes textbook study of a significance of water as a resource, student preparation of a list of local and state of Ohio environmental issues, and collection or creation of maps to create an atlas. (DK)

  16. The scientific foundation of the LANDFIRE Prototype Project [Chapter 3

    Treesearch

    Robert E. Keane; Matthew Rollins

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, originated from a recent mapping project that developed a set of coarse-scale spatial data layers for wildland fire management describing fire hazard and ecological status for the conterminous United States (Hardy and others 2001; Schmidt and others 2002; www. fs...

  17. A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest.

    Treesearch

    Demetrios Gatziolis; Hans-Erik Andersen

    2008-01-01

    Light detection and ranging (LIDAR) is an emerging remote-sensing technology with promising potential to assist in mapping, monitoring, and assessment of forest resources. Continuous technological advancement and substantial reductions in data acquisition cost have enabled acquisition of laser data over entire states and regions. These developments have triggered an...

  18. National Land Cover Database 2001 (NLCD01)

    USGS Publications Warehouse

    LaMotte, Andrew E.

    2016-01-01

    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see http://water.usgs.gov/GIS/browse/nlcd01-partition.jpg). The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: http://www.mrlc.gov/mrlc2k.asp). The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see http://water.usgs.gov/GIS/browse/nlcd01-mappingzones.jpg), were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  19. Monitoring subsidence with InSAR and inference of groundwater change

    NASA Astrophysics Data System (ADS)

    Farr, T. G.

    2014-12-01

    Groundwater use is increasing in many parts of the world due to population pressure and reduced availability of surface water and rainfall. California's Central Valley and southern Arizona in particular have experienced subsidence in many groundwater basins in recent years due to groundwater overdraft. In order to make informed decisions for adaptation, water resource managers need to know the extent of groundwater depletion, both spatially and volumetrically, and to be able to monitor it over long periods. Water wells provide one solution, but owing to remoteness, funding limitations, a lack of wells, and the difficulty of mandating government monitoring of private wells, less direct methods are necessary. Mapping and monitoring subsidence and rebound from orbit with interferometric synthetic aperture radar (InSAR) may provide important indicators of groundwater state and dynamics for water resource managers as well as warnings of potential damage to infrastructure. We are working with water resource managers at the California Department of Water Resources to produce and update maps of subsidence 'hot-spots' where subsidence threatens to cause irreversible aquifer compaction and loss of groundwater storage capacity. In the future, Germany's TerraSAR-X, Italy's Cosmo SkyMed, Japan's PALSAR-2, Europe's Sentinels, and NASA's NISAR offer the promise of extending the time series of observations and expanding this capability to regions of the world with no effective means to monitor the state of their groundwater. This would provide societal benefits to large segments of the global population dependent on groundwater to bridge gaps in surface and rain water supply. As Earth's climate changes, monitoring of this critical resource will help reduce conflicts over water. * Work performed under contract to NASA

  20. Water-resources data for the United States: water year 2011

    USGS Publications Warehouse

    ,

    2011-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  1. Water-resources data for the United States: water year 2010

    USGS Publications Warehouse

    ,

    2010-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  2. Water-resources data for the United States: water year 2007

    USGS Publications Warehouse

    ,

    2007-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  3. Water-resources data for the United States: water year 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  4. Geologic map of the Peach Springs 30' x 60' quadrangle, Mohave and Coconino counties, northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Dyer, Helen C.

    2006-01-01

    This map is a product of a cooperative project of the U.S. Geological Survey, the U.S. National Park Service, and the Bureau of Land Management to provide geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead National Recreation Area, Grand Canyon-Parashant-National Monument, and adjacent lands in northwestern Arizona. This map is a synthesis of previous and new geologic mapping that encompasses the Peach Springs 30' x 60' quadrangle, Arizona. The geologic data will support future geologic, biologic, hydrologic, and other science resource studies of this area conducted by the National Park Service, the Hualapai Indian Tribe, the Bureau of Land Management, the State of Arizona, and private organizations. The Colorado River and its tributaries have dissected the southwestern Colorado Plateau into what is now the southwestern part of Grand Canyon. The erosion of Grand Canyon has exposed about 426 m (1,400 ft) of Proterozoic crystalline metamorphic rocks and granite, about 1,450 m (4,760 ft) of Paleozoic strata, and about 300 m (1,000 ft) of Tertiary sedimentary rocks. Outcrops of Proterozoic crystalline rocks are exposed at the bottom of Grand Canyon at Granite Park from Colorado River Mile 207 to 209, at Mile 212, and in the Lower Granite Gorge from Colorado River Mile 216 to 262, and along the Grand Wash Cliffs in the southwest corner of the map area.

  5. Listening to Students: Customer Journey Mapping at Birmingham City University Library and Learning Resources

    ERIC Educational Resources Information Center

    Andrews, Judith; Eade, Eleanor

    2013-01-01

    Birmingham City University's Library and Learning Resources' strategic aim is to improve student satisfaction. A key element is the achievement of the Customer Excellence Standard. An important component of the standard is the mapping of services to improve quality. Library and Learning Resources has developed a methodology to map these…

  6. Quaternary geologic map of the Wolf Point 1° × 2° quadrangle, Montana and North Dakota

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.

    2016-09-08

    The Wolf Point quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S.-Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Peerless Plateau and Flaxville Plain. The primary river is the Missouri River.The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy.  Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed.  Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits.Till of late Wisconsin age is represented by three map units. Till of Illinoian age also is mapped.  Till deposited during pre-Illinoian glaciations is not mapped, but is widespread in the subsurface.  Linear ice-molded landforms (primarily drumlins), shown by symbol, indicate directions of ice flow during late Wisconsin and Illinoian glaciations. The Quaternary geologic map of the Wolf Point quadrangle, northeastern Montana and North Dakota, was prepared to provide a database for compilation of a Quaternary geologic map of the Regina 4° × 6° quadrangle, United States and Canada, at scale 1:1,000,000, for the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series.  This map was compiled from data from many sources, at several different map scales.  That information was generalized and simplified, and then transferred to a base map at 1:250,000 scale to serve as the base for final reduction to 1:1,000,000, the nominal reading scale of maps in the Quaternary Geologic Atlas of the United States map series.  This map is the generalized and simplified 1:250,000 scale compilation.  Letter symbols for the map units are those used for the same units in the Quaternary Geologic Atlas of the United States map series. The map summarizes new, and selected published and unpublished, geologic information for public use and for use by Federal, State, and local governmental agencies for land use planning, including assessment of natural resources, natural hazards, recreation potential, and land use management.  It also is a base from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  7. Resource theory of non-Gaussian operations

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Shor, Peter W.; Shapiro, Jeffrey H.

    2018-05-01

    Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition, and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.

  8. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch. Other lands include about 13 sections of Arizona State land, about ? of a section of private land along House Rock Wash, and about 1? sections of private land at Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. Landmark features within the map area include the Vermilion Cliffs, Paria Plateau, Marble Canyon, and House Rock Valley. Surface drainage in House Rock Valley is to the east toward the Colorado River in Marble Canyon. Large tributaries of Marble Canyon from north to south include Badger Canyon, Soap Creek, Rider Canyon, North Canyon, Bedrock Canyon, and South Canyon. Elevations range from about 2,875 ft (876 m) at the Colorado River in the southeast corner of the map to approximately 7,355 ft (2,224 m) on the east rim of Paria Plateau along the north-central edge of the map area. Three small settlements are in the map area along U.S. Highway 89A, Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. The community of Jacob Lake is about 9 mi (14.5 km) west of House Rock Valley on the Kaibab Plateau. Lees Ferry is 5 mi (8 km) north of Marble Canyon and marks the confluence of the Paria and Colorado Rivers and the beginning of Marble Canyon. U.S. Highway 89A provides access to the northern part of the map area. Dirt roads lead south into House Rock Valley from U.S. Highway 89A and are collectively maintained by the Bureau of Land Management, the U.S. National Forest Service, and the Grand Canyon Trust. House Rock Valley is one of the few remaining areas where uniform geologic mapping is needed for connectivity to the regional Grand Canyon geologic framework. This information is useful to Federal and State resource managers who direct environmental and land management programs that encompass such issues as range management, biological studies, flood control, water, and mineral-resource investigations. The geologic information will support future and ongoing geologic investigations and scientific studies

  9. Hydrogen Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Hydrogen Maps Hydrogen Maps This collection of U.S. hydrogen maps provides examples of how : Milestone Report, NREL Technical Report (2006) Hydrogen Potential from Renewable Energy Resources This study Technical Report (2007) Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Resources This study

  10. Monitoring Drought Conditions in the Navajo Nation Using NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Ly, Vickie; Gao, Michael; Cary, Cheryl; Turnbull-Appell, Sophie; Surunis, Anton

    2016-01-01

    The Navajo Nation, a 65,700 sq km Native American territory located in the southwestern United States, has been increasingly impacted by severe drought events and changes in climate. These events are coupled with a lack of domestic water infrastructure and economic resources, leaving approximately one-third of the population without access to potable water in their homes. Current methods of monitoring drought are dependent on state-based monthly Standardized Precipitation Index value maps calculated by the Western Regional Climate Center. However, these maps do not provide the spatial resolution needed to illustrate differences in drought severity across the vast Nation. To better understand and monitor drought events and drought regime changes in the Navajo Nation, this project created a geodatabase of historical climate information specific to the area, and a decision support tool to calculate average Standardized Precipitation Index values for user-specified areas. The tool and geodatabase use Tropical Rainfall Monitoring Mission (TRMM) and Global Precipitation Monitor (GPM) observed precipitation data and Parameter-elevation Relationships on Independent Slopes Model modeled historical precipitation data, as well as NASA's modeled Land Data Assimilation Systems deep soil moisture, evaporation, and transpiration data products. The geodatabase and decision support tool will allow resource managers in the Navajo Nation to utilize current and future NASA Earth observation data for increased decision-making capacity regarding future climate change impact on water resources.

  11. Long-range side scan sonar and geophysical survey of the Aleutian Basin

    NASA Astrophysics Data System (ADS)

    Carlson, P. R.; Cooper, , A. K.; Gardner, J. V.; Karl, H. A.; Marlow, M. S.; Stevenson, A. J.; Huggett, Q.; Kenyon, N. H.; Parson, L. M.

    In 1983, President Ronald Reagan established the Exclusive Economic Zone, an area of 3.9 billion acres (˜1.6 billion hectares) that gives the United States exclusive rights to energy and mineral resources on and under the seafloor for a distance of 200 nautical miles (˜370 km) from its coastline and in its territorial seas [Rowland et al., 1983]. The U.S. Geological Survey established a program, EEZ-Scan, in spring 1984 to map this new undersea territory [Gardner, 1984; EEZ-Scan Group, 1985]. The results of the first field season of mapping the EEZ off the conterminous west coast of the United States have been published as an atlas [EEZ-Scan 84 Scientific Staff, 1986] that is the first volume of a series.

  12. Distribution of soil organic carbon in the conterminous United States

    USGS Publications Warehouse

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  13. Length and area equivalents for interpreting wildland resource maps

    Treesearch

    Elliot L. Amidon; Marilyn S. Whitfield

    1969-01-01

    Map users must refer to an appropriate scale in interpreting wildland resource maps. Length and area equivalents for nine map scales commonly used have been computed. For each scale a 1-page table consists of map-to-ground equivalents, buffer strip or road widths, and cell dimensions required for a specified acreage. The conversion factors are stored in a Fortran...

  14. Cornell University remote sensing program. [selected research projects in land and water resource management

    NASA Technical Reports Server (NTRS)

    Liang, T.; Belcher, D. J.; Mcnair, A. J.

    1974-01-01

    The major activities of the program staff from December 1, 1973 to May 31, 1974 are reported and include: (1) communication and instruction; (2) data and facilities; (3) research completed; (4) research in progress; (5) selected correspondence; (6) grant sponsored travel; and (7) seminars and newsletters. Detailed information and maps are given for the following selected projects: (1) ERTS mapping of waterways in the Tug Hill region of New York State; (2) photo-archeological investigation of Great Gully, New York; and (3) evaluation of selected highway impacts using aerial photography.

  15. US EPA Region 4 Brownfields

    EPA Pesticide Factsheets

    To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (https://www3.epa.gov/enviro/). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site. This dataset shows Brownfields listed in the 2012 Facility Registry System.

  16. U.S. EPAs Geospatial Data Access Project

    EPA Pesticide Factsheets

    To improve public health and the environment, the United States Environmental Protection Agency (EPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata Shapefile, Feature Class or extensible markup language (XML) file containing facility and site information from EPA's national program systems. The files are Internet accessible from the Envirofacts Web site (https://www3.epa.gov/enviro/). The data may be used with geospatial mapping applications. (Note: The files omit facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the files contain a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.

  17. Adding It Up: A Rationale for Mapping Public Resources for Children, Youth and Families

    ERIC Educational Resources Information Center

    Flynn-Khan, Margaret; Ferber, Thaddeus; Gaines, Elizabeth; Pittman, Karen

    2006-01-01

    This introduction, one of three parts of "Adding It Up: A Guide to Mapping Public Resources for Children, Youth and Families," explains the why, how and what behind creating a children, youth, and families (CYF) resource map. Setting the stage for what's involved in the process, this overview provides a good framework for understanding both the…

  18. Geographic analysis and monitoring at the United States Geological Survey

    USGS Publications Warehouse

    Findley, J.

    2003-01-01

    The Geographic Analysis and Monitoring (GAM) Program of the U.S. Geological Survey assesses the Nation's land surface at a variety of spatial and temporal scales to understand the rates, causes, and consequences of natural and human-induced processes and their interactions that affect the landscape over time. The program plays an important role in developing National Map tools and application. The GAM is a science and synthesis program that not only assesses the rates of changes to the Earth's land surface, but also provides reports on the status and trends of the Nation's land resources on a periodic basis, produces a land-use and land- cover database for the periodically updated map and data set-the Geographic Face of the Nation, and conducts research leading to improved understanding and knowledge about geographic processes. Scientific investigations provide comprehensive information needed to understand the environmental, resource, and economic consequences of landscape change. These analyses responds to the needs of resource managers and offers the American public baseline information to help them understand the dynamic nature of our national landscape and to anticipate the opportunities and consequences of our actions.

  19. A study of the utilization of ERTS-1 data from the Wabash River Basin. [soil mapping, crop identification, water resources

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. In soil association mapping, computerized analysis of ERTS-1 MSS data has yielded images which will prove useful in the ongoing Cooperative Soil Survey program, involving the Soil Conservation Service of USDA and other state and local agencies. In the present mode of operation, a soil survey for a county may take up to 5 years to be completed. Results indicate that a great deal of soils information can be extracted from ERTS-1 data by computer analysis. This information is expected to be very valuable in the premapping conference phase of a soil survey, resulting in more efficient field operations during the actual mapping. In the earth surface features mapping effort it was found that temporal data improved the classification accuracy of forest classification in Tippecanoe County, Indiana. In water resources study a severe scanner look angle effect was observed in the aircraft scanner data of a test lake which was not present in ERTS-1 data of the same site. This effect was greatly accentuated by surface roughness caused by strong winds. Quantitative evaluation of urban features classification in ERTS-1 data was obtained. An 87.1% test accuracy was obtained for eight categories in Marion County, Indiana.

  20. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Science.gov Websites

    Energy's Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program. Its collection , and thermal springs. View NREL's Geothermal resource maps as well as maps for other renewable energy Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources

  1. Map showing the potential for mineral deposits associated with Precambrian mafic and ultramafic rocks in the Blacktail and Henrys Lake mountains and the Greenhorn and Ruby ranges of southwestern Montana

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Van Gosen, Bradley S.; Carlson, Robert R.; Kulik, Dolores M.

    1998-01-01

    In response to requests from the Bureau of Land Management (BLM) and the U.S. Forest Service (USFS), the U.S. Geological Survey (USGS) conducted a mineral resource assessment in the Dillon BLM Resource Area in Beaverhead and Madison Counties, southwestern Montana. These agencies use mineral resource data in creating and updating land-use management plans for federal lands for the reasonably foreseeable future. Mineral resources that have not been developed in the past may be developed in the future, based on changing commodity demands and market conditions. Therefore, federal land managers need geologic information on known mineral occurrences as well as on areas that are permissive for the occurrence of undiscovered mineral resources. This map was prepared to provide this type of geologic information for mineral deposits that can be associated with ultramafic rocks. Areas of exposed Precambrian ultramafic rocks are labeled with uppercase letters (A-F). Sources of geologic maps used to compile this map are shown on the smaller index map ("Index to Geologic Mapping"); lowercase letters (a-m) on the index map are keyed to the reference list.

  2. NREL: International Activities - Afghanistan Resource Maps

    Science.gov Websites

    facilities, load centers, terrain conditions, and land use. The high-resolution (1-km) annual wind power maps . The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather -km Resolution Annual Maps (Direct) Low-Res (JPG 104 KB) | High-Res (ZIP 330 KB) 40-km Resolution

  3. Maps, Distortion, and Meaning. Resource Paper No. 75-4.

    ERIC Educational Resources Information Center

    Monmonier, Mark S.

    The document is designed to help map readers comprehend the uses and limitations of maps. Intended predominantly for college students of geography, graphic arts, and public communication, the resource paper should also be of general interest to informed citizens and map enthusiasts. The document is presented in six chapters. Chapter I discusses…

  4. A Community Resource Map to Support Clinical-Community Linkages in a Randomized Controlled Trial of Childhood Obesity, Eastern Massachusetts, 2014-2016.

    PubMed

    Fiechtner, Lauren; Puente, Gabriella C; Sharifi, Mona; Block, Jason P; Price, Sarah; Marshall, Richard; Blossom, Jeff; Gerber, Monica W; Taveras, Elsie M

    2017-07-06

    Novel approaches to health care delivery that leverage community resources could improve outcomes for children at high risk for obesity. We describe the process by which we created an online interactive community resources map for use in the Connect for Health randomized controlled trial. The trial was conducted in the 6 pediatric practices that cared for the highest percentage of children with overweight or obesity within a large multi-specialty group practice in eastern Massachusetts. By using semistructured interviews with parents and community partners and geographic information systems (GIS), we created and validated a community resource map for use in a randomized controlled trial for childhood obesity. We conducted semistructured interviews with 11 parents and received stakeholder feedback from 5 community partners, 2 pediatricians, and 3 obesity-built environment experts to identify community resources that could support behavior change. We used GIS databases to identify the location of resources. After the resources were validated, we created an online, interactive searchable map. We evaluated parent resource empowerment at baseline and follow-up, examined if the participant families went to new locations for physical activity and food shopping, and evaluated how satisfied the families were with the information they received. Parents, community partners, and experts identified several resources to be included in the map, including farmers markets, supermarkets, parks, and fitness centers. Parents expressed the need for affordable activities. Parent resource empowerment increased by 0.25 units (95% confidence interval, 0.21-0.30) over the 1-year intervention period; 76.2% of participants were physically active at new places, 57.1% of participant families shopped at new locations; and 71.8% reported they were very satisfied with the information they received. Parents and community partners identified several community resources that could help support behavior change. Parent resource empowerment and use of community resources increased over the intervention period, suggesting that community resource mapping should inform future interventions.

  5. Identifier mapping performance for integrating transcriptomics and proteomics experimental results

    PubMed Central

    2011-01-01

    Background Studies integrating transcriptomic data with proteomic data can illuminate the proteome more clearly than either separately. Integromic studies can deepen understanding of the dynamic complex regulatory relationship between the transcriptome and the proteome. Integrating these data dictates a reliable mapping between the identifier nomenclature resultant from the two high-throughput platforms. However, this kind of analysis is well known to be hampered by lack of standardization of identifier nomenclature among proteins, genes, and microarray probe sets. Therefore data integration may also play a role in critiquing the fallible gene identifications that both platforms emit. Results We compared three freely available internet-based identifier mapping resources for mapping UniProt accessions (ACCs) to Affymetrix probesets identifications (IDs): DAVID, EnVision, and NetAffx. Liquid chromatography-tandem mass spectrometry analyses of 91 endometrial cancer and 7 noncancer samples generated 11,879 distinct ACCs. For each ACC, we compared the retrieval sets of probeset IDs from each mapping resource. We confirmed a high level of discrepancy among the mapping resources. On the same samples, mRNA expression was available. Therefore, to evaluate the quality of each ACC-to-probeset match, we calculated proteome-transcriptome correlations, and compared the resources presuming that better mapping of identifiers should generate a higher proportion of mapped pairs with strong inter-platform correlations. A mixture model for the correlations fitted well and supported regression analysis, providing a window into the performance of the mapping resources. The resources have added and dropped matches over two years, but their overall performance has not changed. Conclusions The methods presented here serve to achieve concrete context-specific insight, to support well-informed decisions in choosing an ID mapping strategy for "omic" data merging. PMID:21619611

  6. Malaria Disease Mapping in Malaysia based on Besag-York-Mollie (BYM) Model

    NASA Astrophysics Data System (ADS)

    Azah Samat, Nor; Mey, Liew Wan

    2017-09-01

    Disease mapping is the visual representation of the geographical distribution which give an overview info about the incidence of disease within a population through spatial epidemiology data. Based on the result of map, it helps in monitoring and planning resource needs at all levels of health care and designing appropriate interventions, tailored towards areas that deserve closer scrutiny or communities that lead to further investigations to identify important risk factors. Therefore, the choice of statistical model used for relative risk estimation is important because production of disease risk map relies on the model used. This paper proposes Besag-York-Mollie (BYM) model to estimate the relative risk for Malaria in Malaysia. The analysis involved using the number of Malaria cases that obtained from the Ministry of Health Malaysia. The outcomes of analysis are displayed through graph and map, including Malaria disease risk map that constructed according to the estimation of relative risk. The distribution of high and low risk areas of Malaria disease occurrences for all states in Malaysia can be identified in the risk map.

  7. Wind Energy Resource Atlas of the Dominican Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; George, R.

    2001-10-01

    The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

  8. Using GIS and secondary data to target diabetes-related public health efforts.

    PubMed

    Curtis, Amy B; Kothari, Catherine; Paul, Rajib; Connors, Elyse

    2013-01-01

    To efficiently help communities prevent and manage diabetes, health departments need to be able to target populations with high risk but low resources. To aid in this process, we mapped county-level diabetes-related rates and resources/use using publicly available secondary data to identify Michigan counties with high diabetes prevalence and low or no medical and/or community resources. We collected county-level diabetes-related rates and resources from Web-based sources and mapped them using geographic information systems (GIS) software. Data included age-adjusted county diabetes rates, diabetes-related medical resource and resource use (i.e., the number of endocrinologists and percentage of Medicare patients with diabetes who received hemoglobin A1c testing in the past year), community resources (i.e., the number of certified diabetes self-management education and diabetes support groups), as well as population estimates and demographics (e.g., rural residence, education, poverty, and race/ethnicity). We created GIS maps highlighting areas that had higher-than-median rates of disease and lower-than-median resources. We also conducted linear, logistic, and Poisson regression analyses to confirm GIS findings. There were clear regional trends in resource distribution across Michigan. The 15 counties in the Upper Peninsula were lacking in medical resources but higher in community resources compared with the 68 counties in the Lower Peninsula. There was little apparent association between need (diabetes prevalence) and diabetes-related resources/use. Specific counties with high diabetes prevalence and low resources were easily identified using GIS mapping. Using public data and mapping tools identified diabetes health-service shortage areas for targeted public health programming.

  9. An XML transfer schema for exchange of genomic and genetic mapping data: implementation as a web service in a Taverna workflow.

    PubMed

    Paterson, Trevor; Law, Andy

    2009-08-14

    Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. We have developed a simple generic XML schema (GenomicMappingData.xsd - GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data.

  10. An XML transfer schema for exchange of genomic and genetic mapping data: implementation as a web service in a Taverna workflow

    PubMed Central

    Paterson, Trevor; Law, Andy

    2009-01-01

    Background Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. Results We have developed a simple generic XML schema (GenomicMappingData.xsd – GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. Conclusion The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data. PMID:19682365

  11. Adding It Up: A Guide for Mapping Public Resources for Children, Youth and Families

    ERIC Educational Resources Information Center

    Flynn-Khan, Margaret; Ferber, Thaddeus; Gaines, Elizabeth; Pittman, Karen

    2006-01-01

    This guide is a joint effort from the Forum for Youth Investment and the Finance Project designed to help decision makers and community leaders both learn the importance of a good children youth and families (CYF) resource map and lay out the process of creating or improving a CYF resource map of their own. The handbook has been designed to…

  12. Forest resources of the Ouachita Mountain region of Arkansas

    Treesearch

    I.F. Eldredge

    1938-01-01

    The Ouachita Mountain region of Arkansas is a rugged, timbered area extending fanwise from Little Rock westward to the Oklahoma state line. The Arkansas River form the northern boundary, and the southernmost ridges of the Ouachita Mountains approximate the southern limits of the area (map, fig. 3). It includes all 9 counties and part of 3 others, totaling 4,917,700...

  13. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States

    Treesearch

    LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard

    2012-01-01

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...

  14. MODIS land cover and LAI collection 4 product quality across nine states in the western hemisphere.

    Treesearch

    Warren B. Cohen; Thomas K. Maiersperger; David P. Turner; William D. Ritts; Dirk Pflugmacher; Robert E. Kennedy; Alan Kirschbaum; Steven W. Running; Marcos Costa; Stith T. Gower

    2006-01-01

    Global maps of land cover and leaf area index (LAI) derived from the Moderate Resolution Imaging Spectrometer (MODIS) reflectance data are an important resource in studies of global change, but errors in these must be characterized and well understood. Product validation requires careful scaling from ground and related measurements to a grain commensurate with MODIS...

  15. Environmental Assessment for Replacement of Taxiway Sierra, Taxiway Whiskey, Pad 12, and Pad 13 at Joint Base Andrews-Naval Air Facility Washington, Prince George’s County, Maryland

    DTIC Science & Technology

    2013-04-01

    Mineral Economics, Pennsylvania State University Years of Experience: 14 Jennifer Jarvis B.S., Environmental Resource Management, Virginia...please contact Ms. Hodges at 301-981 -1426. Attachments: Vicinity Map and Site Plans Distribution List (listed on next page) STEVE RICHARDS Chief

  16. Ecoregions of Arizona (poster)

    USGS Publications Warehouse

    Griffith, Glenn E.; Omernik, James M.; Johnson, Colleen Burch; Turner, Dale S.

    2014-01-01

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources; they are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The Arizona ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity. These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions. Level IV is a further subdivision of level III ecoregions. Arizona contains arid deserts and canyonlands, semiarid shrub- and grass-covered plains, woodland- and shrubland-covered hills, lava fields and volcanic plateaus, forested mountains, glaciated peaks, and river alluvial floodplains. Ecological diversity is remarkably high. There are 7 level III ecoregions and 52 level IV ecoregions in Arizona and many continue into ecologically similar parts of adjacent states. This poster is part of a collaborative project primarily between the U.S. Geological Survey (USGS), USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), USEPA Region IX, U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), The Nature Conservancy, and several Arizona state agencies. The project is associated with an interagency effort to develop a common national framework of ecological regions. Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service, the USEPA, and the NRCS. As each of these frameworks is further refined, their differences are becoming less discernible. Collaborative ecoregion projects, such as this one in Arizona, are a step toward attaining consensus and consistency in ecoregion frameworks for the entire nation.

  17. Geologic map of the Venezuela part of the Puerto Ayacucho 2 degrees x 3 degrees Quadrangle, Amazonas Federal Territory, Venezuela

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Olmore, Steven D.; Mendoza, Vicente; García, Andrés; Rendon, Ines; Estanga, Yasmin; Rincon, Haydee; Martinez, Felix; Lugo, Elis; Rivero, Nelson; Schruben, Paul G.

    1994-01-01

    This map is one of a series of 1:500,000-scale maps that, along with several other products, stems from a cooperative agreement between the U.S. Geological Survey (USGS) and the Corporacion Venezolana de Guayana, Tecnica Minera, C.A. (TECMIN), a Venezuelan Government-owned mining and mineral exploration company. The agreement covered cooperative work carried out in the Precambrian Shield of southern Venezuela during 1987-1991 and included a geologic and mineral resource inventory, technology transfer, and scientific training (Wynn and others, in press). The Precambrian Guayana Shield (Escudo de Guyana, not to be confused with the neighboring country of Guyana) includes some of the oldest known rocks in the world (Mendoza, 1977) and also covers parts of neighboring Guyana, Surinam, French Guiana, Columbia, and Brazil. In Venezuela, it underlies most of Bolivar state and all of the Amazonas Federal Territory (see index map).

  18. Aniakchak National Monument and Preserve: Geologic resources inventory report

    USGS Publications Warehouse

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  19. Concept Maps: Practice Applications in Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Daley, Barbara J.

    2010-01-01

    Concept maps can be used as both a cognitive and constructivist learning strategy in teaching and learning in adult education and human resource development. The maps can be used to understand course readings, analyze case studies, develop reflective thinking and enhance research skills. The creation of concept maps can also be supported by the…

  20. Description of a user-oriented geographic information system - The resource analysis program

    NASA Technical Reports Server (NTRS)

    Tilmann, S. E.; Mokma, D. L.

    1980-01-01

    This paper describes the Resource Analysis Program, an applied geographic information system. Several applications are presented which utilized soil, and other natural resource data, to develop integrated maps and data analyses. These applications demonstrate the methods of analysis and the philosophy of approach used in the mapping system. The applications are evaluated in reference to four major needs of a functional mapping system: data capture, data libraries, data analysis, and mapping and data display. These four criteria are then used to describe an effort to develop the next generation of applied mapping systems. This approach uses inexpensive microcomputers for field applications and should prove to be a viable entry point for users heretofore unable or unwilling to venture into applied computer mapping.

  1. Representation of natural numbers in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, Paul

    2001-03-01

    This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less

  2. A method for testing land resource area concepts

    USDA-ARS?s Scientific Manuscript database

    Land Resource Units (LRUs) are defined by the National Soil Survey Handbook as aggregations of soil map units and subunits of Major Land Resource Areas (MLRAs). In the USDA NRCS Land Resource Hierarchy, LRUs are defined as the level between MLRAs and STATSGO and are mapped at 1:1 million scale. They...

  3. Preliminary Geologic Map of the Laredo, Crystal City-Eagle Pass, San Antonio, and Del Rio 1 x 2 Quadrangles, Texas, and the Nuevo Laredo, Ciudad Acuna, Piedras Negras, and Nueva Rosita 1 x 2 Quadrangles, Mexico

    USGS Publications Warehouse

    Page, William R.; Berry, Margaret E.; VanSistine, D. Paco; Snyders, Scott R.

    2009-01-01

    The purpose of this map is to provide an integrated, bi-national geologic map dataset for display and analyses on an Arc Internet Map Service (IMS) dedicated to environmental health studies in the United States-Mexico border region. The IMS web site was designed by the US-Mexico Border Environmental Health Initiative project and collaborators, and the IMS and project web site address is http://borderhealth.cr.usgs.gov/. The objective of the project is to acquire, evaluate, analyze, and provide earth, biologic, and human health resources data within a GIS framework (IMS) to further our understanding of possible linkages between the physical environment and public health issues. The geologic map dataset is just one of many datasets included in the web site; other datasets include biologic, hydrologic, geographic, and human health themes.

  4. Tabular data, text, and graphical images in support of the 1995 National assessment of United States oil and gas resources

    USGS Publications Warehouse

    Charpentier, Ronald R.; Klett, T.R.; Obuch, R.C.; Brewton, J.D.

    1996-01-01

    This CD-ROM contains files in support of the 1995 USGS National assessment of United States oil and gas resources (DDS-30), which was published separately and summarizes the results of a 3-year study of the oil and gas resources of the onshore and state waters of the United States. The study describes about 560 oil and gas plays in the United States; confirmed and hypothetical, conventional and unconventional. A parallel study of the Federal offshore is being conducted by the U.S. Minerals Management Service. This CD-ROM contains files in multiple formats, so that almost any computer user can import them into word processors and spreadsheets. The tabular data include some tables not released in DDS-30. No proprietary data are released on this CD-ROM, but some tables of summary statistics from the proprietary files are provided. The complete text of DDS-30 is also available, as well as many figures. Also included are some of the programs used in the assessment, in source code and with supporting documentation. A companion CD-ROM (DDS-35) includes the map data and the same text data, but none of the tabular data or assessment programs.

  5. National Land Cover Database 2001 (NLCD01) Tile 2, Northeast United States: NLCD01_2

    USGS Publications Warehouse

    LaMotte, Andrew

    2008-01-01

    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see http://water.usgs.gov/GIS/browse/nlcd01-partition.jpg). The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: http://www.mrlc.gov/mrlc2k.asp). The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see http://water.usgs.gov/GIS/browse/nlcd01-mappingzones.jpg), were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  6. National Land Cover Database 2001 (NLCD01) Tile 3, Southwest United States: NLCD01_3

    USGS Publications Warehouse

    LaMotte, Andrew

    2008-01-01

    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see http://water.usgs.gov/GIS/browse/nlcd01-partition.jpg).The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: http://www.mrlc.gov/mrlc2k.asp). The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see http://water.usgs.gov/GIS/browse/nlcd01-mappingzones.jpg), were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  7. National Land Cover Database 2001 (NLCD01) Tile 1, Northwest United States: NLCD01_1

    USGS Publications Warehouse

    LaMotte, Andrew

    2008-01-01

    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see http://water.usgs.gov/GIS/browse/nlcd01-partition.jpg). The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: http://www.mrlc.gov/mrlc2k.asp). The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see http://water.usgs.gov/GIS/browse/nlcd01-mappingzones.jpg), were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  8. National Land Cover Database 2001 (NLCD01) Tile 4, Southeast United States: NLCD01_4

    USGS Publications Warehouse

    LaMotte, Andrew

    2008-01-01

    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see http://water.usgs.gov/GIS/browse/nlcd01-partition.jpg). The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: http://www.mrlc.gov/mrlc2k.asp). The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see http://water.usgs.gov/GIS/browse/nlcd01-mappingzones.jpg), were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  9. Mapping, monitoring, and modeling Western Gateway Community landscape dynamics

    USGS Publications Warehouse

    Hester, David J.

    2013-01-01

    Federal public lands in the western United States are becoming increasingly surrounded by Gateway Communities. These communities are undergoing landscape change due to population growth, economic growth, and the resulting land-use development. Socioeconomic, demographic, and land-use changes in Gateway Communities are often perceived as threats to Federal land resources, natural amenities, cultural resources, and recreational opportunities. However, land-surface disturbances on Federal public lands, such as conventional and alternative energy development (which impact surrounding Gateway Communities), are also environmental and societal issues that Federal land and adjacent regional community planners need to consider in their long-range land-use planning.

  10. Cultural Resources Survey of Areas to be Affected by New Facilities at Two Locations Within the Indian Memorial Recreation Area, Lake Oahe, South Dakota,

    DTIC Science & Technology

    1978-07-01

    of utilization patterns associated with various lithic resources. Some confusion regarding the Davis Site (39C014) and the Red Horse Hawk Site (39C034...the Red Horse Hawk Site. The sketch map on page 57, which is labeled "Red Horse Hawk," seems to be of the site which recent investigators have...numbers in the State site card file.) 39C034 - Red Horse Hawk Location: 0 of a of Section& Township North, Range 0 East. Comment: This fortified

  11. Mineral resource assessment of the Dillon 1 degree x 2 degrees Quadrangle, Idaho and Montana

    USGS Publications Warehouse

    Pearson, Robert Carl; Trautwein, C.M.; Ruppel, E.T.; Hanna, W.F.; Rowan, L.C.; Loen, J.S.; Berger, B.R.

    1992-01-01

    The Dillon 1°x2° quadrangle in southwestern Montana and east-central Idaho was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP) to determine its mineral resource potential. An interdisciplinary study was made of geology, geochemistry, geophysics (gravity and aeromagnetics), remote sensing, and mineral deposits. The results of those studies, as well as mineral resource assessment of numerous mineraldeposit types, are published separately as a folio of maps. This report summarizes the studies, provides background information on them, and presents a selected bibliography relevant to the geology and mineral resources of the quadrangle. The quadrangle contains large resources of gold and substantial resources of talc and chlorite, all of which were being mined in the 1980's and early 1990's. Submarginal resources of molybdenum, copper, tungsten, and iron range from moderately large to large. Other commodities that may be present in significant amounts are chromite, lead, zinc, silver, barite, zeolite minerals, and various nonmetallic metamorphic minerals.

  12. Converting multilevel nonclassicality into genuine multipartite entanglement

    NASA Astrophysics Data System (ADS)

    Regula, Bartosz; Piani, Marco; Cianciaruso, Marco; Bromley, Thomas R.; Streltsov, Alexander; Adesso, Gerardo

    2018-03-01

    Characterizing genuine quantum resources and determining operational rules for their manipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such key resources are nonclassicality, manifested as quantum superposition between reference states of a single system, and entanglement, capturing quantum correlations among two or more subsystems. Here we present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing that a faithful reversible transformation between the two resources is always possible within a precise resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system as an instance of nonclassicality, we introduce explicit protocols for such a mapping. We further show that the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also quantitatively, restricting the amount of entanglement achievable in the process and in particular yielding an equality between the two resources when quantified by fidelity-based geometric measures.

  13. Quaternary geologic map of the Winnipeg 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, D. S.; Ringrose, S.M.; Clayton, Lee; Schreiner, B.T.; Goebel, J.E.

    2000-01-01

    The Quaternary Geologic Map of the Winnipeg 4? ? 6? Quadrangle, United States and Canada, is a component of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420), an effort to produce 4? ? 6? Quaternary geologic maps, at 1:1 million scale, of the entire conterminous United States and adjacent Canada. The map and the accompanying text and supplemental illustrations provide a regional overview of the areal distributions and characteristics of surficial deposits and materials of Quaternary age (~1.8 Ma to present) in parts of North Dakota, Minnesota, Manitoba, and Saskatchewan. The map is not a map of soils as soils are recognized in agriculture. Rather, it is a map of soils as recognized in engineering geology, or of substrata or parent materials in which agricultural soils are formed. The map units are distinguished chiefly on the basis of (1)genesis (processes of origin) or environments of deposition: for example, sediments deposited primarily by glacial ice (glacial deposits or till), sediments deposited in lakes (lacustrine deposits), or sediments deposited by wind (eolian deposits); (2) age: for example, how long ago the deposits accumulated; (3) texture (grain size)of the deposits or materials; (4) composition (particle lithology) of the deposits or materials; (5) thickness; and (6) other physical, chemical, and engineering properties. Supplemental illustrations show (1) temporal correlation of the map units, (2) the areal relationships of late Wisconsin glacial ice lobes and sublobes, (3) temporal and spatial correlation of late Wisconsin glacial phases, readvance limits, and ice margin stillstands, (4) temporal and stratigraphic correlation of surface and subsurface glacial deposits in the Winnipeg quadrangle and in adjacent 4? ? 6? quadrangles, and (5) responsibility for state and province compilations. The database provides information related to geologic hazards (for example, materials that are characterized by expansive clay minerals; landslide deposits or landslide-prone deposits), natural resources (for example, sources of aggregate, peat, and clay; potential shallow sources of groundwater), and areas of environmental concern (for example, areas that are potentially suitable for specific ecosystem habitats; areas of potential soil and groundwater contamination). All of these aspects of the database relate directly to land use, management, and policy. The map, text, and accompanying illustrations provide a database of regional scope related to geologic history, climatic changes, the stratigraphic and chronologic frameworks of surface and subsurface deposits and materials of Quaternary age, and other problems and concerns.

  14. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  15. Environmental limitation mapping of potential biomass resources across the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Christopher; Halbleib, Michael D.; Hannaway, David B.

    Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long-term production potentials in the United states. Such information is a starting point for planners and economic modelers, and there is a need for this spatial information to be developed in a consistent manner for a variety of crops, so that their production potentials can be intercompared to support crop selection decisions. As part of the Sun Grant Regional Feedstockmore » Partnership (RFP), an approach to mapping these potential biomass resources was developed to take advantage of the informational synergy realized when bringing together coordinated field trials, close interaction with expert agronomists, and spatial modeling into a single, collaborative effort. A modeling and mapping system called PRISM-ELM was designed to answer a basic question: How do climate and soil characteristics affect the spatial distribution and long-term production patterns of a given crop? This empirical/mechanistic/biogeographical hybrid model employs a limiting factor approach, where productivity is determined by the most limiting of the factors addressed in submodels that simulate water balance, winter low-temperature response, summer high-temperature response, and soil pH, salinity, and drainage. Yield maps are developed through linear regressions relating soil and climate attributes to reported yield data. The model was parameterized and validated using grain yield data for winter wheat and maize, which served as benchmarks for parameterizing the model for upland and lowland switchgrass, CRP grasses, Miscanthus, biomass sorghum, energycane, willow, and poplar. The resulting maps served as potential production inputs to analyses comparing the viability of biomass crops under various economic scenarios. The modeling and parameterization framework can be expanded to include other biomass crops.« less

  16. Environmental limitation mapping of potential biomass resources across the conterminous United States

    DOE PAGES

    Daly, Christopher; Halbleib, Michael D.; Hannaway, David B.; ...

    2017-12-22

    Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long-term production potentials in the United states. Such information is a starting point for planners and economic modelers, and there is a need for this spatial information to be developed in a consistent manner for a variety of crops, so that their production potentials can be intercompared to support crop selection decisions. As part of the Sun Grant Regional Feedstockmore » Partnership (RFP), an approach to mapping these potential biomass resources was developed to take advantage of the informational synergy realized when bringing together coordinated field trials, close interaction with expert agronomists, and spatial modeling into a single, collaborative effort. A modeling and mapping system called PRISM-ELM was designed to answer a basic question: How do climate and soil characteristics affect the spatial distribution and long-term production patterns of a given crop? This empirical/mechanistic/biogeographical hybrid model employs a limiting factor approach, where productivity is determined by the most limiting of the factors addressed in submodels that simulate water balance, winter low-temperature response, summer high-temperature response, and soil pH, salinity, and drainage. Yield maps are developed through linear regressions relating soil and climate attributes to reported yield data. The model was parameterized and validated using grain yield data for winter wheat and maize, which served as benchmarks for parameterizing the model for upland and lowland switchgrass, CRP grasses, Miscanthus, biomass sorghum, energycane, willow, and poplar. The resulting maps served as potential production inputs to analyses comparing the viability of biomass crops under various economic scenarios. The modeling and parameterization framework can be expanded to include other biomass crops.« less

  17. Maps showing geology, oil and gas fields, and geological provinces of South America

    USGS Publications Warehouse

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  18. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    NASA Astrophysics Data System (ADS)

    Kjellgren, S.

    2013-07-01

    In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  19. U.S. Geological Survey programs in Florida, 1999

    USGS Publications Warehouse

    ,

    1999-01-01

    The safety, health, and economic well-being of Florida?s citizens are important to the U.S. Geological Survey (USGS), which is involved in water-related, geologic, biological, land use, and mapping issues in many parts of the State. The USGS office in Tallahassee acts as the liaison for all studies conducted by USGS scientists in Florida. Water resources activities are conducted not only from the office in Tallahassee, but also from offices in Miami, Tampa, and Altamonte Springs (Orlando). Scientists in these offices investigate surface water, ground water and water quality in Florida, working in cooperation with other Federal, State and local agencies and organizations. The USGS Center for Coastal Geology and Regional Marine Studies was established in St. Petersburg in 1988, in cooperation with the University of South Florida. The Center conducts a wide variety of research on mineral resources and on coastal and regional marine problems, including coastal erosion, climate change, wetlands deterioration, and coastal pollution. A USGS mapping office is located in St. Petersburg. Also, the Earth Science Information Center (ESIC) in Tallahassee provides USGS information to customers and directs inquiries to the appropriate USGS office or State agency on earth science topics, particularly those related to cartography, geography, aerial photography, and digital data. Biologists at the USGS Florida Caribbean Science Center, located in Gainesville, conduct biological and ecosystem studies in Florida, Puerto Rico, and the Virgin Islands.

  20. Maps showing mineral resource assessment for porphyry and stockwork deposits of copper, molybdenum, and tungsten and for stockwork and disseminated deposits of gold and silver in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Moll, S.H.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, John L.

    1993-01-01

    This report documents the assessment for potential occurrences of undiscovered porphyry and stockwork deposits of copper, molybdenum, and tungsten (porphyry Cu-Mo-W) and stockwork and disseminated deposits of gold and silver (disseminated Au-Ag) in the Butte 1 °X2° quadrangle. The Butte quadrangle, in west-central Montana, is one of the best known mineral producing regions in the U.S. Mining districts in the quadrangle, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion (at the time of production). Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were supported, in part, by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in this resource assessment for porphyry Cu-Mo-W and disseminated Au-Ag deposits in the quadrangle include a compilation of all data, the development of descriptive occurrence models, and the analysis of data using techniques provided by a Geographic Information System (GIS). This map is one of several maps on the Butte 1 °X2° quadrangle. Other deposit types have been assessed for the Butte quadrangle, and maps (U.S. Geological Survey (USGS) Miscellaneous Investigation Series Maps) for each of the following have been prepared: Vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten (Elliott, Wallace, and others, 1992a) and skarn deposits of gold, silver, copper, tungsten, and iron (Elliott and others, 1992b ). Other publications resulting from this study include linear features map (Rowan and others, 1991 ); limonite and hydrothermal alteration map (Rowan and Segal, 1989); mineral occurrence maps (Elliott and others, 1986; Elliott, Loen, and others, 1992); and geologic maps (Wallace, 1987; Wallace and others, 1987).

  1. GIS-based identification of areas that have resource potential for critical minerals in six selected groups of deposit types in Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Jones, James V.; Hayes, Timothy S.

    2016-11-16

    Alaska has considerable potential for undiscovered mineral resources. This report evaluates potential for undiscovered critical minerals in Alaska. Critical minerals are those for which the United States imports more than half of its total supply and which are largely derived from nations that cannot be considered reliable trading partners. In this report, estimated resource potential and certainty for the state of Alaska are analyzed and mapped for the following six selected mineral deposit groups that may contain one or more critical minerals: (1) rare earth elements-thorium-yttrium-niobium(-uranium-zirconium) [REE-Th-Y-Nb(-U-Zr)] deposits associated with peralkaline to carbonatitic igneous intrusive rocks; (2) placer and paleoplacer gold (Au) deposits that in some places might also produce platinum group elements (PGE), chromium (Cr), tin (Sn), tungsten (W), silver (Ag), or titanium (Ti); (3) platinum group elements(-cobalt-chromium-nickel-titanium-vanadium) [PGE(-Co-Cr-Ni-Ti-V)] deposits associated with mafic to ultramafic intrusive rocks; (4) carbonate-hosted copper(-cobalt-silver-germanium-gallium) [Cu(-Co-Ag-Ge-Ga)] deposits; (5) sandstone-hosted uranium(-vanadium-copper) [U(-V-Cu)] deposits; and (6) tin-tungsten-molybdenum(-tantalum-indium-fluorspar) [Sn-W-Mo(-Ta-In-fluorspar)] deposits associated with specialized granites.This study used a data-driven, geographic information system (GIS)-implemented method to identify areas that have mineral resource potential in Alaska. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic units) as the spatial unit of classification. The final map output uses a red, yellow, green, and gray color scheme to portray estimated relative potential (High, Medium, Low, Unknown) for each of the six groups of mineral deposit types, and it indicates the relative certainty (High, Medium, Low) of that estimate for each 12-digit hydrologic unit through color shading. Accompanying tables describe the data layers employed to score favorability for the presence of each mineral deposit group, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to estimated measures of potential and certainty. Core datasets used include the Alaska Geochemical Database, Version 2.0 (AGDB2); the Alaska Division of Geological & Geophysical Surveys (ADGGS) web-based geochemical database; the digital “Geologic Map of Alaska;” the Alaska Resource Data File (ARDF); and aerial gamma-ray surveys flown as part of the National Uranium Resource Evaluation (NURE) Program by the U.S. Department of Energy.Maps accompanying this report illustrate the scores for estimated mineral resource potential for the six deposit groups for the state of Alaska. Areas that have known potential, as well as new areas that were not previously known to have potential, for the targeted minerals and deposit groups are identified and described. Numerous areas in Alaska, some of them large, have high potential for one or more of the selected groups of deposit types within Alaska.ContributorsMatthew Granitto, Timothy S. Hayes, James V. Jones, III, Susan M. Karl, Keith A. Labay, Jeffrey L. Mauk, Jeanine M. Schmidt, Nora B. Shew, Erin Todd, Bronwen Wang, Melanie B. Werdon, and Douglas B. Yager

  2. Geologic map of the Priest Rapids 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Priest Rapids 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of those quadrangles are being released as DGER open-file reports (listed below). The map of the Wenatchee quadrangle has been published by the US Geological Surveymore » (Tabor and others, 1982), and the Moses Lake (Gulick, 1990a), Ritzville (Gulick, 1990b), and Rosalia (Waggoner, 1990) quadrangles have already been released. The geology of the Priest Rapids quadrangle has not previously been compiled at 1:100,000 scale. Furthermore, this is the first 1:100,000 or smaller scale geologic map of the area to incorporate both bedrock and surficial geology. This map was compiled in 1992, using published and unpublished geologic maps as sources of data.« less

  3. Localization of Allotetraploid Gossypium SNPs Using Physical Mapping Resources

    USDA-ARS?s Scientific Manuscript database

    Recent efforts in Gossypium SNP development have produced thousands of putative SNPs for G. barbadense, G. mustelinum, and G. tomentosum relative to G. hirsutum. Here we report on current efforts to localize putative SNPs using physical mapping resources. Recent advances in physical mapping resour...

  4. Tampa Bay environmental atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunneke, J.T.; Palik, T.F.

    1984-12-01

    Biological and water resource data for Tampa Bay were compiled and mapped at a scale of 1:24,000. This atlas consists of (1) composited information overlain on 18 biological and 20 water resource base maps and (2) an accompanying map narrative. Subjects mapped on the water resource maps are contours of the mean middepth specific conductivity which can be converted to salinity; bathymetry, sediments, tidal currents, the freshwater/saltwater interface, dredge spoil disposal sites; locations of industrial and municipal point source discharges, tide stations, and water quality sampling stations. The point source discharge locations show permitted capacity and the water quality samplingmore » stations show 5-year averages for chlorophyll, conductivity, turbidity, temperature, and total nitrogen. The subjects shown on the biological resource maps are clam and oyster beds, shellfish harvest areas, colonial bird nesting sites, manatee habitat, seagrass beds and artificial reefs. Spawning seasons, nursery habitats, and adult habitats are identified for major fish species. The atlas will provide useful information for coastal planning and management in Tampa Bay.« less

  5. Functional Classification of Natural Resources for Valuing Natural Resources in Korea

    NASA Astrophysics Data System (ADS)

    Choi, H.; Lee, W.; Kwak, H.

    2013-12-01

    The ecosystem services concept emphasizes not only regulating services, but also supporting, provisioning, and cultural/social services according to the Millennium Ecosystem Assessment (MA). While the spatial and quantifying of ecosystem services is becoming increasingly recognized for natural resources conservation, however, due to methodological challenges, ecosystem services quantification is rarely considered in Republic of Korea (ROK). This study matches appropriate indicators, data and mapping for describing respective states, quantification and ecosystem valuation. The results were analyzed with statistical and GIS-based techniques. We classified the ecosystem services function based on reference to the literature, interviews and a modified approach compared to the MA, the Economics of Ecosystems and Biodiversity (TEEB). For quantifying values, we subdivided land cover types using ecological features and normalized numerical information of provisioning services, regulating services and cultural services. Resulting hotspots of ecosystem services are related to landscape features and land cover types in ROK. The mapping results show hotspots of ecosystem services where high level of ecosystem services is distributed - around Baekdudaegan protected area (Gangwon, Gyeongbuk Province, Chungbuk, Jeonam Province). n addition, the results of our study show that ecosystem services function - especially, fostering water resources, erosion control, air quality and pollution control in terrestrial ecosystems - can contribute to planning management policy for ecosystem based management at regional scale.

  6. HealthCyberMap: a semantic visual browser of medical Internet resources based on clinical codes and the human body metaphor.

    PubMed

    Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R

    2002-12-01

    HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.

  7. Map showing general availability of ground water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1977-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. This map is based partly on records of water wells, springs, and coal and petroleum exploration holes, partly on unpublished reports of field evaluations of prospective stock-water well sites by personnel of the U.S. Geological Survey, and partly on a 6-day field reconnaissance by the writer in parts of the mapped area.Most of the data used to compile this map were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), Goode (1966, 1969), and the final environmental impact statement for the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Few data about the availability or depth of ground water could be obtained for large areas in the Kaiparowits coal basin. In those areas, expected yields of individual wells are inferred from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973), and depths of ground water in wells are inferred largely from the local topography.El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided specific information regarding the availability and depth of ground water in their exploratory holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.

  8. Mapping, Monitoring and Modeling Submersed Aquatic Vegetation Species and Communities

    NASA Astrophysics Data System (ADS)

    Hartis, Brett Michael

    Aquatic macrophyte communities are critically important habitat species in aquatic systems worldwide. None are more important than those found beneath the water's surface, commonly referred to as submersed aquatic vegetation (SAV). Although vital to such systems, many native submersed plants have shown near irreversible declines in recent decades as water quality impairment, habitat destruction, and encroachment by invasive species have increased. In the past, aquatic plant science has emphasized the restoration and protection of native species and the management of invasive species. Comparatively little emphasis has been directed toward adequately mapping and monitoring these resources to track their viability over time. Modeling the potential intrusion of certain invasive plant species has also been given little attention, likely because aquatic systems in general can be difficult to assess. In recent years, scientists and resource managers alike have begun paying more attention to mapping SAV communities and to address the spread of invasive species across various regions. This research attempts to provide new, cutting-edge techniques to improve SAV mapping and monitoring efforts in coastal regions, at both community and individual species levels, while also providing insights about the establishment potential of Hydrilla verticillata, a noxious, highly invasive submersed plant. Technological advances in satellite remote sensing, interpolation and spatial analysis in geographic information systems, and state-of-the-art climate envelope modeling techniques were used to further assess the dynamic nature of SAV on various scales. This work contributes to the growing science of mapping, monitoring, and modeling of SAV

  9. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers and the public

    USGS Publications Warehouse

    Carr, N.B.; Babel, N.; Diffendorfer, J.; Ignizio, D.; Hawkins, S.; Latysh, N.; Leib, K.; Linard, J.; Matherne, A.

    2012-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of oil, gas (including shale gas and coal-bed methane), and uranium, as well as renewable energy resources such as geothermal, solar, and wind. Much of the development in the West is occurring on public lands, including those under Federal and State jurisdictions. In Colorado and New Mexico, these public lands make up about 40 percent of the land area. Both states benefit from the revenue generated by energy production, but resource managers and other decisionmakers must balance the benefits of energy development with the potential consequences for ecosystems, recreation, and other resources. Although a substantial amount of geospatial data on existing energy development and energy potential is available, much of this information is not readily accessible to natural resource decisionmakers, policymakers, or the public. Furthermore, the data often exist in varied formats, requiring considerable processing before these datasets can be used to evaluate tradeoffs among resources, compare development alternatives, or quantify cumulative impacts. To allow for a comprehensive evaluation among different energy types, an interdisciplinary team of U.S. Geological Survey (USGS) scientists has developed an online Interactive Energy Atlas for Colorado and New Mexico. The Energy and Environment in the Rocky Mountain Area (EERMA) interdisciplinary team includes investigators from several USGS science centers1. The purpose of the EERMA Interactive Energy Atlas is to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The Atlas is designed to meet the needs of various users, including GIS analysts, resource managers, policymakers, and the public, who seek information about energy in the western United States. Currently, the Atlas has two primary capabilities, a GIS data viewer and an interactive map gallery.

  10. Investigation of remote sensing techniques as inputs to operational resource management. [Butte County, Black Hills, South Dakota, Blackhawk Quadrangle, and Belle Fouche Basin

    NASA Technical Reports Server (NTRS)

    Schmer, F. A. (Principal Investigator); Isakson, R. E.; Eidenshink, J. C.

    1977-01-01

    The author has identified the following significant results. Visual interpretation of 1:125,000 color LANDSAT prints produced timely level 1 maps of accuracies in excess of 80% for agricultural land identification. Accurate classification of agricultural land via digital analysis of LANDSAT CCT's required precise timing of the date of data collection with mid to late June optimum for western South Dakota. The LANDSAT repetitive nine day cycle over the state allowed the surface areas of stockdams and small reservoir systems to be monitored to provide a timely approximation of surface water conditions on the range. Combined use of DIRS, K-class, and LANDSAT CCT's demonstrated the ability to produce aspen maps of greater detail and timeliness than was available using US Forest Service maps. Visual temporal analyses of LANDSAT imagery improved highway map drainage information and were used to prepare a seven county drainage network. An optimum map of flood-prone areas was developed, utilizing high altitude aerial photography and USGS maps.

  11. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  12. Introduction to Community-Focused Exposure and Risk ...

    EPA Pesticide Factsheets

    C-FERST is a web-based “toolkit” of information, with community maps that show environmental data, public health data, and socioeconomic indications. It is used as a guide to help community assessments. With C-FERST you can: View maps of your community • Compare local, county, and state estimates • Explore and learn about issues in your environment • Find additional resources • Plan your project with guides • Interact with other C-FERST. Goals of this presentation: • Understand the purpose, functions, value and limitations of C-FERST • Identify and generate information about environmental public health issues • Describe C-FERST to communities or individuals

  13. Procedures for woody vegetation surveys in the Kazgail rural council area, Kordofan, Sudan

    USGS Publications Warehouse

    Falconer, Allan; Cross, Matthew D.; Orr, Donald G.

    1990-01-01

    Efforts to reforest parts of the Kordofan Province of Sudan are receiving support from international development agencies. These efforts include planning and implementing reforestation activities that require the collection of natural resources and socioeconomic data, and the preparation of base maps. A combination of remote sensing, geographic information system and global positioning systems procedures are used in this study to meet these requirements.Remote sensing techniques were used to provide base maps and to guide the compilation of vegetation resources maps. These techniques provided a rapid and efficient method for documenting available resources. Pocket‐sized global positioning system units were used to establish the location of field data collected for mapping and resource analysis. A microcomputer data management system tabulated and displayed the field data. The resulting system for data analysis, management, and planning has been adopted for the mapping and inventory of the Gum Belt of Sudan.

  14. The Neuro Bureau ADHD-200 Preprocessed repository.

    PubMed

    Bellec, Pierre; Chu, Carlton; Chouinard-Decorte, François; Benhajali, Yassine; Margulies, Daniel S; Craddock, R Cameron

    2017-01-01

    In 2011, the "ADHD-200 Global Competition" was held with the aim of identifying biomarkers of attention-deficit/hyperactivity disorder from resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (s-MRI) data collected on 973 individuals. Statisticians and computer scientists were potentially the most qualified for the machine learning aspect of the competition, but generally lacked the specialized skills to implement the necessary steps of data preparation for rs-fMRI. Realizing this barrier to entry, the Neuro Bureau prospectively collaborated with all competitors by preprocessing the data and sharing these results at the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) (http://www.nitrc.org/frs/?group_id=383). This "ADHD-200 Preprocessed" release included multiple analytical pipelines to cater to different philosophies of data analysis. The processed derivatives included denoised and registered 4D fMRI volumes, regional time series extracted from brain parcellations, maps of 10 intrinsic connectivity networks, fractional amplitude of low frequency fluctuation, and regional homogeneity, along with grey matter density maps. The data was used by several teams who competed in the ADHD-200 Global Competition, including the winning entry by a group of biostaticians. To the best of our knowledge, the ADHD-200 Preprocessed release was the first large public resource of preprocessed resting-state fMRI and structural MRI data, and remains to this day the only resource featuring a battery of alternative processing paths. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mapping forest characteristics at fine resolution across large landscapes of the southeastern United States using NAIP imagery and FIA field plot data

    Treesearch

    John Hogland; Nathaniel Anderson; Joseph St. Peter; Jason Drake; Paul Medley

    2018-01-01

    Accurate information is important for effective management of natural resources. In the field of forestry, field measurements of forest characteristics such as species composition, basal area, and stand density are used to inform and evaluate management activities. Quantifying these metrics accurately across large landscapes in a meaningful way is extremely important...

  16. The Navajo Atlas: Environments, Resources, People, and History of the Dine Bikeyah. The Civilization of the American Indian Series, Volume 157.

    ERIC Educational Resources Information Center

    Goodman, James M.

    The 48 maps and descriptive narratives in this atlas of the Navajo Reservation are divided into six sections. Part I, Navajo Country, displays Navajo land in relationship to the United States and the region, and becomes more detailed to place locations within the Dine Bikeyah, or Navajo Land, including administrative and political subdivisions of…

  17. Forest resources in Northwest Florida

    Treesearch

    I.F. Eldredge

    1938-01-01

    Northwest Florida is the long arm of the State that extends along the Gulf Coast south of Georgia and Alabama and includes the 16 counties west of the Aucilla River (see map, fig. 1). It is a rather sparsely settled area in which only 26 percent of the total population of 254,000 (1930 Census) live in cities of 2,500 population or larger; most of the inhabitants live...

  18. A technique for mapping urban ash trees using object-based image analysis

    Treesearch

    Dacia M. Meneguzzo; Susan J. Crocker; Greg C. Liknes

    2010-01-01

    Ash trees are an important resource in the State of Minnesota and a common fixture lining the streets of the Twin Cities metropolitan area. In 2009, the emerald ash borer (EAB), an invasive pest of ash, was discovered in the city of St. Paul. To properly respond to the new-found threat, decisionmakers would benefit from detailed, spatially explicit information on the...

  19. Relevance of ERTS-1 to the State of Ohio. [environmental monitoring and resources management

    NASA Technical Reports Server (NTRS)

    Sweet, D. C.; Pincura, P. G.; Wukelic, G. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. During the first year of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in southeastern Ohio, the potential of using ERTS-1 imagery in water quality and coastal zone management in the Lake Erie region, and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs were experimentally demonstrated and reported as significant project results.

  20. Activities for Plate Tectonics using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.

    2016-12-01

    The concept of plate tectonics is a fundamental component of our understanding of how Earth works yet authentic, high-quality geoscience data related to plate tectonics may not be readily available to all students. To compound matters, when data is accessible, students may not possess the skills or resources necessary to explore and analyse it. As a result, much emphasis at federal and state level is now placed upon encouraging students to work with more data and more technology more often and more rigourously. Easy-to-use digital platforms offer much potential for promoting inquiry-based learning at all levels of education. GeoMapApp is one such tool. Developed at Columbia University's Lamont-Doherty Earth Observatory, GeoMapApp (http://www.geomapapp.org) is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. Simple strategies for data manipulation, visualisation and presentation allow uses to explore the data in meaningful ways. Layering and transparency capabilities further allow learners to use GeoMapApp to compare multiple data sets at once, and high-impact Save Session functionality allows a GeoMapApp project to be saved for sharing or later use. In this presentation, activities related to plate tectonics will be highlighted. One GeoMapApp activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Each activity shown can be done by students on an individual basis, as pairs, or as groups. Educators report that student use of GeoMapApp fosters an increased sense of data "ownership" amongst students, promotes STEM skills, and provides them with access to authentic research-grade geoscience data using the same cutting-edge technological tool used by researchers.

  1. Prediction and discovery of new geothermal resources in the Great Basin: Multiple evidence of a large undiscovered resource base

    USGS Publications Warehouse

    Coolbaugh, M.F.; Raines, G.L.; Zehner, R.E.; Shevenell, L.; Williams, C.F.

    2006-01-01

    Geothermal potential maps by themselves cannot directly be used to estimate undiscovered resources. To address the undiscovered resource base in the Great Basin, a new and relatively quantitative methodology is presented. The methodology involves three steps, the first being the construction of a data-driven probabilistic model of the location of known geothermal systems using weights of evidence. The second step is the construction of a degree-of-exploration model. This degree-of-exploration model uses expert judgment in a fuzzy logic context to estimate how well each spot in the state has been explored, using as constraints digital maps of the depth to the water table, presence of the carbonate aquifer, and the location, depth, and type of drill-holes. Finally, the exploration model and the data-driven occurrence model are combined together quantitatively using area-weighted modifications to the weights-of-evidence equations. Using this methodology in the state of Nevada, the number of undiscovered geothermal systems with reservoir temperatures ???100??C is estimated at 157, which is 3.2 times greater than the 69 known systems. Currently, nine of the 69 known systems are producing electricity. If it is conservatively assumed that an additional nine for a total of 18 of the known systems will eventually produce electricity, then the model predicts 59 known and undiscovered geothermal systems are capable of producing electricity under current economic conditions in the state, a figure that is more than six times higher than the current number. Many additional geothermal systems could potentially become economic under improved economic conditions or with improved methods of reservoir stimulation (Enhanced Geothermal Systems).This large predicted geothermal resource base appears corroborated by recent grass-roots geothermal discoveries in the state of Nevada. At least two and possibly three newly recognized geothermal systems with estimated reservoir temperatures ???150??C have been identified on the Pyramid Lake Paiute Reservation in west-central Nevada. Evidence of three blind geothermal systems has recently been uncovered near the borate-bearing playas at Rhodes, Teels, and Columbus Marshes in southwestern Nevada. Recent gold exploration drilling has resulted in at least four new geothermal discoveries, including the McGinness Hills geothermal system with an estimated reservoir temperature of roughly 200??C. All of this evidence suggests that the potential for expansion of geothermal power production in Nevada is significant.

  2. 30 CFR 777.14 - Maps and plans: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Maps and plans: General requirements. 777.14 Section 777.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... REGULATORY PROGRAMS GENERAL CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.14 Maps and plans: General...

  3. 30 CFR 777.14 - Maps and plans: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Maps and plans: General requirements. 777.14 Section 777.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... REGULATORY PROGRAMS GENERAL CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.14 Maps and plans: General...

  4. The Alaskan Mineral Resource Assessment Program; guide to information contained in the folio of geologic and mineral resource maps of the Chandalar Quadrangle, Alaska

    USGS Publications Warehouse

    Reiser, H.N.; Brosge, W.P.; DeYoung, J.H.; Marsh, S.P.; Hamilton, T.D.; Cady, J.W.; Albert, N.R.D.

    1979-01-01

    The Chandalar quadrangle in east-central Alaska was investigated by a multidisciplinary research group to assess the mineral resource potential of the quadrangle. This circular serves as a guide to and integrates with a folio of 10 miscellaneous field study (MF) maps and 2 open-file (OF) reports (table 1) concerned with the geology, geophysics, geochemistry, Landsat imagery, and mineral resources of the area. Revisions to the previously published Chandalar quadrangle geologic map, a new radiometric age determination, and a bibliography are also included.

  5. Some key techniques of SPOT-5 image processing in new national land and resources investigation project

    NASA Astrophysics Data System (ADS)

    Xue, Changsheng; Li, Qingquan; Li, Deren

    2004-02-01

    In 1988, the detail information on land resource was investigated in China. Fourteen years later, it has changed a lot. It is necessary that the second land resource detailed investigation should be implemented. On this condition, the New National Land and Resources Investigation Project in China, which will last 12 years, has been started since 1999. The project is directly under the administration of the Ministry of Land and Resource (MLR). It was organized and implemented By China Geological, China Land Surveying and Planning Institute (CLSPI) and Information Center of MLR. It is a grand and cross century project supported by the Central Finance, based on State and public interests and strategic characteristics. Up to now, "Land Use Dynamic Monitoring By Remote Sensing," "Arable Land Resource Investigation," "Rural Collective Land Property Right Investgiation," "Establishment of Public Consulting Standardization of Cadastral Information," "Land Resource Fundamental Maps and Data Updating," "Urban Land Price Investigation and Intensive Utilization Potential Capacity Evaluation," "Farmland Classification, Gradation, and Evaluation," "Land Use Database Construction at City or County Level" 8 subprojects have had the preliminary achievements. In this project, SPOT-1/2/4 and Landsat-7 TM data were always applied to monitor land use dynamic change as the main data resource. Certainly, IRS, CBERS-2, and IKONOS data also were tested in small areas. In 2002, the SPOT-5 data, whose spatial resolution of the panchromatic image is 2.5 meters and the spectral one is 10 meters, were applied into update the land use base map at the 1:10000 scale in 26 Chinese cities. The purpose in this paper is to communicate the experience of SPOT-5 image processing with the colleagues.

  6. Estimating uncertainty in map intersections

    Treesearch

    Ronald E. McRoberts; Mark A. Hatfield; Susan J. Crocker

    2009-01-01

    Traditionally, natural resource managers have asked the question "How much?" and have received sample-based estimates of resource totals or means. Increasingly, however, the same managers are now asking the additional question "Where?" and are expecting spatially explicit answers in the form of maps. Recent development of natural resource databases...

  7. Philippines Wind Energy Resource Atlas Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  8. Arizona land use experiment

    NASA Technical Reports Server (NTRS)

    Winikka, C. C.; Schumann, H. H.

    1975-01-01

    Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.

  9. A Comparison of Satellite Data-Based Drought Indicators in Detecting the 2012 Drought in the Southeastern US

    NASA Technical Reports Server (NTRS)

    Yagci, Ali Levent; Santanello, Joseph A.; Rodell, Matthew; Deng, Meixia; Di, Liping

    2018-01-01

    The drought of 2012 in the North America devastated agricultural crops and pastures, further damaging agriculture and livestock industries and leading to great losses in the economy. The drought maps of the United States Drought Monitor (USDM) and various drought monitoring techniques based on the data collected by the satellites orbiting in space such as the Gravity Recovery and Climate Experiment (GRACE) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are inter-compared during the 2012 drought conditions in the southeastern United States. The results indicated that spatial extent of drought reported by USDM were in general agreement with those reported by the MODIS-based drought maps. GRACE-based drought maps suggested that the southeastern US experienced widespread decline in surface and root-zone soil moisture and groundwater resources. Disagreements among all drought indicators were observed over irrigated areas, especially in Lower Mississippi region where agriculture is mainly irrigated. Besides, we demonstrated that time lag of vegetation response to changes in soil moisture and groundwater partly contributed to these disagreements, as well.

  10. Mapping the potential distribution of the invasive Red Shiner, Cyprinella lutrensis (Teleostei: Cyprinidae) across waterways of the conterminous United States

    USGS Publications Warehouse

    Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David

    2012-01-01

    Predicting the future spread of non-native aquatic species continues to be a high priority for natural resource managers striving to maintain biodiversity and ecosystem function. Modeling the potential distributions of alien aquatic species through spatially explicit mapping is an increasingly important tool for risk assessment and prediction. Habitat modeling also facilitates the identification of key environmental variables influencing species distributions. We modeled the potential distribution of an aggressive invasive minnow, the red shiner (Cyprinella lutrensis), in waterways of the conterminous United States using maximum entropy (Maxent). We used inventory records from the USGS Nonindigenous Aquatic Species Database, native records for C. lutrensis from museum collections, and a geographic information system of 20 raster climatic and environmental variables to produce a map of potential red shiner habitat. Summer climatic variables were the most important environmental predictors of C. lutrensis distribution, which was consistent with the high temperature tolerance of this species. Results from this study provide insights into the locations and environmental conditions in the US that are susceptible to red shiner invasion.

  11. Study of water-table behaviour for the Indian Punjab using GIS.

    PubMed

    Kaur, Samanpreet; Aggarwal, Rajan; Soni, Ashwani

    2011-01-01

    The state of Punjab (India) has witnessed a spectacular increase in agricultural production in the last few decades. This has been possible due to high use of fertilizers, good quality seeds and increased use of water resources. This increased demand of water resources has resulted in extensive use of groundwater in the central districts of the state and surface water (canals) in South-West Punjab, where groundwater is of poor quality in general. The state has been facing the twin problem of water table decline/rise in different parts. Efficient management relies on comprehensive database and regular monitoring of the resources. GIS is one of the important tools for integrating and analyzing spatial information from different sources or disciplines. It helps to integrate, analyze and represent spatial information and database of any resource, which could be easily used for planning of resource development, environmental protection and scientific researches and investigations. Geographical Information Systems (GIS) have been used for a variety of groundwater studies. Groundwater level change maps are useful in determining areas of greatest changes in storage in the regional systems. In this study, an attempt has been made to assess the long term groundwater behaviour of the state using GIS to visually and spatially analyze water level data obtained from the state and central agencies. The data was analysed for 0-3 m, 3-10 m, 10-20 m and beyond 20 m. The study revealed that per cent area with water table depth > 10 m was 20% in 1998 and has increased to 58% by 2006 which is critical limit for shifting from centrifugal pump to submersible pump.

  12. The United States Geological Survey in Alaska: Accomplishments during 1976

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  13. Generalized Bell states map physical systems’ quantum evolution into a grammar for quantum information processing

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco

    2017-12-01

    Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.

  14. Applied Remote Sensing Program (ARSP). [photomapping arid land in Arizona for land and resources management

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Imagery from U-2 flight or Skylab is used to produce maps of Arizona for resource management and land use. Color photography and thermal mapping techniques are described for studying vegetation growth, natural resources, flood plains, soil erosion, and heat loss from buildings.

  15. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  16. Usefulness of natural regions for lake management: Analysis of variation among lakes in northwestern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Omernik, James M.; Rohm, Christina M.; Lillie, Richard A.; Mesner, Nancy

    1991-03-01

    A map of summer total phosphorus in lakes was compiled recently for a three-state area of the upper Midwest for purposes of identifying regional patterns of total phosphorus in lakes and attainable lake trophic state. Spatial patterns in total phosphorus from approximately 3000 lakes were studied in conjunction with maps of geographic characteristics that tend to affect phosphorus balance in lakes to identify regions of similarity in phosphorus concentrations in lakes or similarity in the mosaic of values as compared to adjacent areas. While degrees of relative homogeneity are apparent at many scales, the map was designed at a scale that would yield regions with sufficient homogeneity to be useful for lake management throughout the area. In this study, data from 210 lakes in a 1560-mi2 area in northwestern Wisconsin, sampled by the Wisconsin Department of Natural Resources in the spring of 1988 (subsequent to the compilation of the phosphorus map), were examined to: (1) substantiate the existence of the regions depicted on the map in northwest Wisconsin, (2) determine the nature and relative precision of the regional boundaries, (3) determine the relative importance of natural and anthropogenic watershed characteristics, lake types, lake area, and lake depth in explaining within-region differences in lake phosphorus, and (4) demonstrate how the regions might be used by local lake managers.

  17. Quantum resource theories in the single-shot regime

    NASA Astrophysics Data System (ADS)

    Gour, Gilad

    2017-06-01

    One of the main goals of any resource theory such as entanglement, quantum thermodynamics, quantum coherence, and asymmetry, is to find necessary and sufficient conditions that determine whether one resource can be converted to another by the set of free operations. Here we find such conditions for a large class of quantum resource theories which we call affine resource theories. Affine resource theories include the resource theories of athermality, asymmetry, and coherence, but not entanglement. Remarkably, the necessary and sufficient conditions can be expressed as a family of inequalities between resource monotones (quantifiers) that are given in terms of the conditional min-entropy. The set of free operations is taken to be (1) the maximal set (i.e., consists of all resource nongenerating quantum channels) or (2) the self-dual set of free operations (i.e., consists of all resource nongenerating maps for which the dual map is also resource nongenerating). As an example, we apply our results to quantum thermodynamics with Gibbs preserving operations, and several other affine resource theories. Finally, we discuss the applications of these results to resource theories that are not affine and, along the way, provide the necessary and sufficient conditions that a quantum resource theory consists of a resource destroying map.

  18. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    NASA Astrophysics Data System (ADS)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  19. WRIS: a resource information system for wildland management

    Treesearch

    Robert M. Russell; David A. Sharpnack; Elliot Amidon

    1975-01-01

    WRIS (Wildland Resource Information System) is a computer system for processing, storing, retrieving, updating, and displaying geographic data. The polygon, representing a land area boundary, forms the building block of WRIS. Polygons form a map. Maps are digitized manually or by automatic scanning. Computer programs can extract and produce polygon maps and can overlay...

  20. Community Mapping in Action: Uncovering Resources and Assets for Young Children and Their Families

    ERIC Educational Resources Information Center

    Ordonez-Jasis, Rosario; Myck-Wayne, Janice

    2012-01-01

    Community mapping is a promising practice that can assist early intervention/early childhood special education (EI/ECSE) professionals uncover the depth and diversity of community needs, resources, and learning opportunities, in the neighborhoods surrounding their schools. Community mapping is an inquiry-based method that situates learning in the…

  1. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  2. Fiscal mapping autism spectrum disorder funds: a case study of Ohio.

    PubMed

    Joyce, Hilary D; Hoffman, Jill; Anderson-Butcher, Dawn; Moodie-Dyer, Amber

    2014-01-01

    Individuals with autism spectrum disorders (ASDs) have complex needs requiring regular service utilization. Policymakers, administrators, and community leaders are looking for ways to finance ASD services and systems. Understanding the fiscal resources that support ASD services is essential. This article uses fiscal mapping to explore ASD funding streams in Ohio. Fiscal mapping steps are overviewed to assist ASD stakeholders in identifying and examining ASD-related funding. Implications are drawn related to how fiscal mapping could be used to identify and leverage funding for ASD services. The resulting information is critical to utilizing existing resources, advocating for resources, and leveraging available funds.

  3. A scheme for the uniform mapping and monitoring of earth resources and environmental complexes using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Poulton, C. E. (Principal Investigator); Welch, R. I.

    1973-01-01

    There are no author-identified significant results in this report. Progress on plans for the development and testing of a practical procedure and system for the uniform mapping and monitoring of natural ecosystems and environmental complexes from space-acquired imagery is discussed. With primary emphasis on ERTS-1 imagery, but supported by appropriate aircraft photography as necessary, the objectives are to accomplish the following: (1) Develop and test in a few selected sites and areas of the western United States a standard format for an ecological and land use legend for making natural resource inventories on a simulated global basis. (2) Based on these same limited geographic areas, identify the potentialities and limitations of the legend concept for the recognition and annotation of ecological analogs and environmental complexes. An additional objective is to determine the optimum combination of space photography, aerial photography, ground data, human data analysis, and automatic data analysis for estimating crop yield in the rice growing areas of California and Louisiana.

  4. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

    PubMed

    Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D

    2013-08-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

  5. Scheduling Results for the THEMIS Observation Scheduling Tool

    NASA Technical Reports Server (NTRS)

    Mclaren, David; Rabideau, Gregg; Chien, Steve; Knight, Russell; Anwar, Sadaat; Mehall, Greg; Christensen, Philip

    2011-01-01

    We describe a scheduling system intended to assist in the development of instrument data acquisitions for the THEMIS instrument, onboard the Mars Odyssey spacecraft, and compare results from multiple scheduling algorithms. This tool creates observations of both (a) targeted geographical regions of interest and (b) general mapping observations, while respecting spacecraft constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. This tool therefore must address both geometric and state/timing/resource constraints. We describe a tool that maps geometric polygon overlap constraints to set covering constraints using a grid-based approach. These set covering constraints are then incorporated into a greedy optimization scheduling algorithm incorporating operations constraints to generate feasible schedules. The resultant tool generates schedules of hundreds of observations per week out of potential thousands of observations. This tool is currently under evaluation by the THEMIS observation planning team at Arizona State University.

  6. Evaluation and comparison of ERTS measurements of major crops and soil associations for selected test sites in the central United States. [Texas, Indiana, Kansas, Iowa, Nebraska, and North Dakota

    NASA Technical Reports Server (NTRS)

    Baumgardner, M. F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Multispectral scanner data obtained by ERTS-1 over six test sites in the Central United States were analyzed and interpreted. ERTS-1 data for some of the test sites were geometrically corrected and temporally overlayed. Computer-implemented pattern recognition techniques were used in the analysis of all multispectral data. These techniques were used to evaluate ERTS-1 data as a tool for soil survey. Geology maps and land use inventories were prepared by digital analysis of multispectral data. Identification and mapping of crop species and rangelands were achieved throught the analysis of 1972 and 1973 ERTS-1 data. Multiple dates of ERTS-1 data were examined to determine the variation with time of the areal extent of surface water resources on the Southern Great Plain.

  7. EnviroAtlas - Recreation, Culture, and Aesthetics Metrics for Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Recreation, Culture, and Aesthetics category in this web service includes layers illustrating the ecosystems and natural resources that provide inherent cultural and aesthetic value or recreation opportunity, the need or demand for these amenities, the impacts associated with their presence and accessibility, and factors that place stress on the natural environment's capability to provide these benefits. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States. Additional descriptive information about each attribute in this web service is located within each web service layer (see Full Metadata hyperlink) or can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. Geologic map and guide of the island of Oahu, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.

    1939-01-01

    This bulletin, although designated Bulletin 2, is actually the fourth of a series published by the Division of Hydrography of the Territory of Hawaii. All four of the bulletins thus far published relate to the geology and ground-water resources of the island of Oahu.1 Together they present the results obtained on this island in the program of ground-water investigation of the Territory that has been conducted in cooperation with the Geological Survey, of the United States Department of the Interior. Bulletin 5 which is in preparation will describe the progress made in developing the ground-water resources of Oahu since Bulletin 1 was issued. In Bulletin 2 is presented the detailed geologic map of Oahu that has resulted from this investigation. The base for this map is the new topographic map of Oahu prepared by the Topographic Branch of the Geological Survey. This bulletin also contains a guide to the geology along the main highways, which can be used advantageously in connection with the geologic map. For 18 years the writer has had the great privilege of working under the technical direction of Mr. 0. E. Meinzer, geologist in charge of the Division of Ground Water, U. S. Geological Survey. Nearly two decades ago Mr. Meinzer envisioned the great benefits that the people of Hawaii would derive from a thorough study of the groundwater resources of these islands. He also recognized that a full knowledge of these resources could be obtained only by a complete understanding of the geology of the islands and the processes which formed them. This bulletin is one of a series that has been made possible largely as a result of his broad vision. Credit is due Mr. W. 0 . Clark for the location of all the dikes shown on plate 2 in the headwaters of Kamananui Stream near the north end of the Koolau Range, and to Dr. C. K. Wentworth for about a dozen dikes north of Kaimuki. Messrs. 0. E. Meinzer, G. R. Mansfield, M. H. Carson, G. A. Macdonald, and S. H. Elbert kindly criticized the manuscript. Mr. Harry L. Taeuber designed the cover and with James Y. Nitta prepared the illustrations. Their work has greatly enriched this bulletin. The topographic maps of 15-minute quadrangles, on a scale of 1 to 20,000 (approximately 3 inches to the mile), were used in the field as a base for the geologic mapping. The data were then transferred to the new topographic map of Oahu, which is on a scale of 1 to 62,500. The resulting geologic map is reproduced as plate 2 (in pocket) of this report. Some of the outcrops are too small to be shown on this smaller map. Plate 2 of this report was listed as plate 2 in Bulletin 1, which was, however, published without the map because of the time required to prepare and engrave the topographic base and the geologic map. The geologic structure sections at the bottom of plate 2 were not described in Bulletin 1, but are discussed below.

  9. Reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Arizona

    USGS Publications Warehouse

    Metzger, Donald G.

    1957-01-01

    In accordance with a request from its cooperating agency, the Arizona State Land Department, the U.S. Geological Survey has made a brief reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Ariz., to determine the probable hydrologic effects of a proposed dam on Lynx Creek. The construction of this dam has been proposed by the Arizona Game and Fish Department, for recreational and fish-cultural purposes. Data on the geology of the area were furnished by Mrs. Medora M. Krieger, geologist, Geologic Division, U.S. Geological Survey, and the map was prepared by Floyd R. Twenter, geologist, Ground Water Branch.

  10. MetaMap: An atlas of metatranscriptomic reads in human disease-related RNA-seq data.

    PubMed

    Simon, L M; Karg, S; Westermann, A J; Engel, M; Elbehery, A H A; Hense, B; Heinig, M; Deng, L; Theis, F J

    2018-06-12

    With the advent of the age of big data in bioinformatics, large volumes of data and high performance computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale. Ever more studies imply the microbiome in both normal human physiology and a wide range of diseases. RNA sequencing technology (RNA-seq) is commonly used to infer global eukaryotic gene expression patterns under defined conditions, including human disease-related contexts, but its generic nature also enables the detection of microbial and viral transcripts. We developed a bioinformatic pipeline to screen existing human RNA-seq datasets for the presence of microbial and viral reads by re-inspecting the non-human-mapping read fraction. We validated this approach by recapitulating outcomes from 6 independent controlled infection experiments of cell line models and comparison with an alternative metatranscriptomic mapping strategy. We then applied the pipeline to close to 150 terabytes of publicly available raw RNA-seq data from >17,000 samples from >400 studies relevant to human disease using state-of-the-art high performance computing systems. The resulting data of this large-scale re-analysis are made available in the presented MetaMap resource. Our results demonstrate that common human RNA-seq data, including those archived in public repositories, might contain valuable information to correlate microbial and viral detection patterns with diverse diseases. The presented MetaMap database thus provides a rich resource for hypothesis generation towards the role of the microbiome in human disease. Additionally, codes to process new datasets and perform statistical analyses are made available at https://github.com/theislab/MetaMap.

  11. Coastal resource and sensitivity mapping of Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odin, L.M.

    1997-08-01

    This paper describes a project to establish a relationship between environmental sensitivity (primarily to oil pollution) and response planning and prevention priorities for Vietnamese coastal regions. An inventory of coastal environmental sensitivity and the creation of index mapping was performed. Satellite and geographical information system data were integrated and used for database creation. The database was used to create a coastal resource map, coastal sensitivity map, and a field inventory base map. The final coastal environment sensitivity classification showed that almost 40 percent of the 7448 km of mapped shoreline has a high to medium high sensitivity to oil pollution.

  12. Exploration cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huttrer, J.

    This presentation by Jerry Huttrer, President, Geothermal Management Company, discusses the general state of exploration in the geothermal industry today, and mentions some ways to economize and perhaps save costs of geothermal exploration in the future. He suggests an increased use of satellite imagery in the mapping of geothermal resources and the identification of hot spots. Also, coordinating with oil and gas exploration efforts, the efficiency of the exploration task could be optimized.

  13. Sacaton riparian grasslands of the Sky Islands: Mapping distribution and ecological condition using state-and-transition models in Upper Cienega Creek Watershed

    Treesearch

    Ron Tiller; Melissa Hughes; Gita Bodner

    2013-01-01

    Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the region’s most extensive...

  14. Science supporting Gulf of Mexico oil-spill response, mitigation, and restoration activities-Assessment, monitoring, mapping, and coordination

    USGS Publications Warehouse

    Kindinger, Jack; Tihansky, Ann B.; Cimitile, Matthew

    2011-01-01

    The St. Petersburg Coastal and Marine Science Center of the U.S. Geological Survey (USGS) investigates physical processes related to coastal and marine environments and societal implications related to natural hazards, resource sustainability, and environmental change. Immediately after the Deepwater Horizon event, the USGS began responding to data requests, directing response personnel, and providing coastal and shelf geophysical data to coastal-resource managers. The USGS provided oil-spill responders with up-to-date coastal bathymetry, geologic data, and maps characterizing vulnerability and levels of risk from potential spill impacts in Louisiana, Mississippi, and Alabama. Baseline conditions prior to any spill impacts were documented through programs that included shoreline sampling and sediment coring from east Texas to the east coast of Florida and aerial photography of many environmentally sensitive Gulf coastal areas. The USGS responded to numerous verbal and written data requests from Federal, State, and local partners and academic institutions with USGS scientific staff participating in the Coast Guard Unified Commands (UC) and Operational Science Advisory Teams (OSAT). The USGS conducted technical review of reports and plans for many response activities. Oil-spill responders, managers, and personnel on the ground, including partners such as the National Park Service, Gulf Islands National Seashore, Chandeleur Islands Refuge, and State agencies, continue to rely on USGS products.

  15. GIS for public health : A study of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Shrinagesh, B.; Kalpana, Markandey; Kiran, Baktula

    2014-06-01

    Geographic information systems and remote sensing have capabilities that are ideally suited for use in infectious disease surveillance and control, particularly for the many vector-borne neglected diseases that are often found in poor populations in remote rural areas. They are also highly relevant to meet the demands of outbreak investigation and response, where prompt location of cases, rapid communication of information, and quick mapping of the epidemic's dynamics are vital. The situation has changed dramatically over the past few years. GIS helps in determining geographic distribution of diseases, analysing spatial and temporal trends, Mapping populations at risk, Stratifying risk factors, Assessing resource allocation, Planning and targeting interventions, Monitoring diseases and interventions over time. There are vast disparities in people's health even among the different districts across the state of Andhra Pradesh largely attributed to the resource allocation by the state government. Despite having centers of excellence in healthcare delivery, these facilities are limited and are inadequate in meeting the current healthcare demands. The main objectives are to study the prevalent diseases in Andhra Pradesh, to study the infrastructural facilities available in A.P. The methodology includes the Spatial Database, which will be mostly in the form of digitized format. The Non-Spatial Database includes both secondary data as well as the primary data.

  16. Saline aquifer mapping project in the southeastern United States

    USGS Publications Warehouse

    Williams, Lester J.; Spechler, Rick M.

    2011-01-01

    In 2009, the U.S. Geological Survey initiated a study of saline aquifers in the southeastern United States to evaluate the potential use of brackish or saline water from the deeper portions of the Floridan aquifer system and the underlying Coastal Plain aquifer system (Fig. 1). The objective of this study is to improve the overall understanding of the available saline water resources for potential future development. Specific tasks are to (1) develop a digital georeferenced database of borehole geophysical data to enable analysis and characterization of saline aquifers (see locations in Fig. 1), (2) identify and map the regional extent of saline aquifer systems and describe the thickness and character of hydrologic units that compose these systems, and (3) delineate salinity variations at key well sites and along section lines to provide a regional depiction of the freshwater-saltwater interfaces. Electrical resistivity and induction logs, coupled with a variety of different porosity logs (sonic, density, and neutron), are the primary types of borehole geophysical logs being used to estimate the water quality in brackish and saline formations. The results from the geophysical log calculations are being compared to available water-quality data obtained from water wells and from drill-stem water samples collected in test wells. Overall, the saline aquifer mapping project is helping to improve the understanding of saline water resources in the area. These aquifers may be sources of large quantities of water that could be treated by using reverse osmosis or similar technologies, or they could be used for aquifer storage and recovery systems.

  17. Human cDNA mapping using fluorescence in situ hybridization. Final progress report, April 1, 1994--July 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenberg, J.R.

    The ultimate goal of this research is to generate and apply novel technologies to speed completion and integration of the human genome map and sequence with biomedical problems. To do this, techniques were developed and genome-wide resources generated. This includes a genome-wide Mapped and Integrated BAC/PAC Resource that has been used for gene finding, map completion and anchoring, breakpoint definition and sequencing. In the last period of the grant, the Human Mapped BAC/PAC Resource was also applied to determine regions of human variation and to develop a novel paradigm of primate evolution through to humans. Further, in order to moremore » rapidly evaluate animal models of human disease, a BAC Map of the mouse was generated in collaboration with the MTI Genome Center, Dr. Bruce Birren.« less

  18. USGS National Assessment of Oil and Gas Online (NOGA Online)

    USGS Publications Warehouse

    Biewick, L.H.

    2003-01-01

    The Central Energy Resources Team (CERT) of the U.S. Geological Survey is providing results of the USGS National Assessment of Oil and Gas online (NOGA Online). In addition to providing resource estimates and geologic reports, NOGA Online includes an internet map application that allows interactive viewing and analysis of assessment data and results. CERT is in the process of reassessing domestic oil and natural gas resources in a series of priority basins in the United States using a Total Petroleum System (TPS) approach where the assessment unit is the basic appraisal unit (rather than the oil and gas play used in the 1995 study). Assessments of undiscovered oil and gas resources in five such priority provinces were recently completed to meet the requirements of the Energy Policy and Conservation Act of 2000 (EPCA 2000). New assessment results are made available at this site on an ongoing basis.

  19. Cultural resources regulatory analysis, area overview, and assessment of previous Department of Energy and Kirtland Air Force Base inventories for Sandia National Laboratories, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoagland, S.R.; Lord, K.J.

    The following regulatory analysis and literature review of archaeological and historic resources on the Sandia National Laboratory/New Mexico (SNL/NM) occupied properties was prepared by the Chambers Group Inc. in January 1992. Based upon compliance surveys of Technical Area I through V undertaken in 1990 and 1991 the report concludes that, although consultation with the Department of Energy and State Historic Preservation Officer will still be required for particular projects, cultural resources should not affect the overall planning and development of future SNL/NM projects. As SNL/NM buildings approach 50 years in age additional analysis and consultations may be required. In ordermore » to protect sensitive resources, the location coordinates and maps provided in the original report are not included here.« less

  20. Selected literature on water-resources investigations in New Jersey by the U.S. Geological Survey, through 1986

    USGS Publications Warehouse

    Schaefer, F. L.

    1987-01-01

    Because of the importance and complexity of the water resources of New Jersey today, there is a need for a current bibliography to serve as a basis for future water resources studies. This report lists about 400 book reports, map reports, and articles that deal with the water resources of New Jersey published through 1986. The publications are grouped under three major headings: (1) publications of the U.S. Geological Survey, (2) publications of State agencies prepared by or in cooperation with the U.S. Geological Survey, and (3) other publications, such as technical journals prepared by or co-authored by U.S. Geological Survey personnel. Most of the publications are available for inspection at the West Trenton office of the U.S. Geologic Survey and at large public and university libraries. Ordering information is given for those publications that are for sale. (USGS)

  1. 30 CFR 75.1204-1 - Places to give notice and file maps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Places to give notice and file maps. 75.1204-1 Section 75.1204-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Maps § 75.1204-1 Places to give...

  2. Earth Resources Technology Satellite data collection project, ERTS - Bolivia. [thematic mapping

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E.

    1974-01-01

    The Earth Resources Technology Satellite program of Bolivia has developed a multidisciplinary project to carry out investigations in cartography and to prepare various thematic maps. In cartography, investigations are being carried out with the ERTS-1 images and with existing maps, to determine their application to the preparation of new cartographic products on one hand and on the other to map those regions where the cartography is still deficient. The application of the MSS images to the geological mapping has given more than satisfactory results. Working with conventional photointerpretation, it has been possible to prepare regional geological maps, tectonic maps, studies relative to mining, geomorphological maps, studies relative to petroleum exploration, volcanological maps and maps of hydrologic basins. In agriculture, the ERTS images are used to study land classification and forest and soils mapping.

  3. Mapping knowledge management resources of maternal, newborn and child health (MNCH) among people living in rural and urban settings of Ilorin, Nigeria.

    PubMed

    Bolarinwa, Oladimeji Akeem; Ameen, Hafsat Abolore; Durowade, Kabir Adekunle; Akande, Tanimola Makanjuola

    2014-01-01

    Lack of access to information and knowledge about mother and child health was identified as a major contributor to poor maternal and child health in Nigeria. The Partnership for Maternal, Newborn and Child Health (PMNCH) has recognized mapping the knowledge management of Maternal Newborn and Child Health (MNCH) as one of the major strategies to be deployed in improving the health of these vulnerable groups. The main aim of this study is to map the knowledge management resources of Maternal, Newborn and Child Health (MNCH) in rural and urban settings of Ilorin West LGA of Kwara state Nigeria. It is a descriptive cross-sectional study with a comparative analysis of findings from urban and rural settings. Epi-mapping was used to carve out the LGA and map responses. The p-value of less than 0.05 was considered significant at 95% confidence level. The study showed that traditional leader was responsible for more than half of the traditional way of obtaining information by rural (66.7%) and urban (56.2%) respondents while documentation accounts for the main MNCH knowledge preservation for the rural (40.6%) and the urban (50%) dwellers. Traditional leaders (32.2%) and elders (46.7%) were the main people responsible for dissemination of knowledge in rural areas whereas elders (35.9%) and Parents (19.9%) were the main people responsible in urban areas. It was concluded that traditional and family institutions are important in the knowledge management of MNCH in both rural and urban settings of Nigeria.

  4. Energy map of southwestern Wyoming - Energy data archived, organized, integrated, and accessible

    USGS Publications Warehouse

    Biewick, Laura; Jones, Nicholas R.; Wilson, Anna B.

    2013-01-01

    The Wyoming Landscape Conservation Initiative (WLCI) focuses on conserving world-class wildlife resources while facilitating responsible energy development in southwestern Wyoming. To further advance the objectives of the WLCI long-term, science-based effort, a comprehensive inventory of energy resource and production data is being published in two parts. Energy maps, data, documentation and spatial data processing capabilities are available in geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map, and other digital formats that can be downloaded at the USGS website.

  5. Classification and area estimation of land covers in Kansas using ground-gathered and LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    May, G. A.; Holko, M. L.; Anderson, J. E.

    1983-01-01

    Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.

  6. Mapping deep aquifer salinity trends in the southern San Joaquin Valley using borehole geophysical data constrained by chemical analyses

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Shimabukuro, D.; Stephens, M.; Chang, W. H.; Ball, L. B.; Everett, R.; Metzger, L.; Landon, M. K.

    2016-12-01

    The California State Water Resources Control Board and the California Division of Oil, Gas and Geothermal Resources are collaborating with the U.S. Geological Survey to map groundwater resources near oil fields and to assess potential interactions between oil and gas development and groundwater resources. Groundwater resources having salinity less than 10,000 mg/L total dissolved solids may be classified as Underground Sources of Drinking Water (USDW) and subject to protection under the federal Safe Drinking Water Act. In this study, we use information from oil well borehole geophysical logs, oilfield produced water and groundwater chemistry data, and three-dimensional geologic surfaces to map the spatial distribution of salinity in aquifers near oil fields. Salinity in the southern San Joaquin Valley is controlled primarily by depth and location. The base of protected waters occurs at very shallow depths, often < 300 meters, in the western part of the valley where aquifer recharge is low in the rain shadow of the Coast Ranges. The base of protected water is much deeper, often >1,500 meters, in the eastern part of the San Joaquin Valley where higher runoff from the western slopes of the Sierra Nevada provide relatively abundant aquifer recharge. Stratigraphy acts as a secondary control on salinity within these broader areas. Formations deposited in non-marine environments are generally fresher than marine deposits. Layers isolated vertically between confining beds and cut off from recharge sources may be more saline than underlying aquifers that outcrop in upland areas on the edge of the valley with more direct connection to regional recharge areas. The role of faulting is more ambiguous. In some areas, abrupt changes in salinity may be fault controlled but, more commonly, the faults serve as traps separating oil-bearing strata that are exempt from USDW regulations, from water-bearing strata that are not exempt.

  7. Review of USGS Open-file Report 95-525 ("Cartographic and digital standard for geologic map information") and plans for development of Federal draft standards for geologic map information

    USGS Publications Warehouse

    Soller, David R.

    1996-01-01

    This report summarizes a technical review of USGS Open-File Report 95-525, 'Cartographic and Digital Standard for Geologic Map Information' and OFR 95-526 (diskettes containing digital representations of the standard symbols). If you are considering the purchase or use of those documents, you should read this report first. For some purposes, OFR 95-525 (the printed document) will prove to be an excellent resource. However, technical review identified significant problems with the two documents that will be addressed by various Federal and State committees composed of geologists and cartographers, as noted below. Therefore, the 2-year review period noted in OFR 95-525 is no longer applicable. Until those problems are resolved and formal standards are issued, you may consult the following World-Wide Web (WWW) site which contains information about development of geologic map standards: URL: http://ncgmp.usgs.gov/ngmdbproject/home.html

  8. Invasive species management and research using GIS

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2007-01-01

    Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.

  9. Water-resources activities of the U.S. Geological Survey in Kansas; fiscal years 1983 and 1984

    USGS Publications Warehouse

    Combs, L.J.

    1985-01-01

    The principal mission of the U.S. Geological Survey, Water Resources Division, in Kansas is to investigate the occurrence, quantity, quality, distribution, and movement of surface and ground waters throughout the State. Primary activities include the systematic collection, analysis, and interpretation of hydrologic data, evaluation of water demands, and water-resources research. Hydrologic investigations are conducted through four basic types of projects: (1) data-collection programs, (2) local or areal investigations, (3) statewide or regional investigations, and (4) research projects. These projects are funded through cooperative agreements with State and local agencies, transfer of funds from other Federal agencies, and direct Federal funds. Fifty water-related projects were ongoing during fiscal years 1983 and 1984 in Kansas. This report describes for each of these water-resources activities the problem that initiated the study, the objectives of the project, and the approach designed to achieve these objectives. Information on data-collection stations in Kansas is presented in maps and tables. A list of the 40 reports approved for publication by the U.S. Geological Survey, its cooperators, or technical and scientific organizations during 1983 and 1984 is provided. (USGS)

  10. 76 FR 56215 - John H. Chafee Coastal Barrier Resources System; Baldwin and Mobile Counties, AL; Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... aquatic habitat. These areas are depicted on a series of maps entitled ``John H. Chafee Coastal Barrier...] John H. Chafee Coastal Barrier Resources System; Baldwin and Mobile Counties, AL; Availability of Draft... availability of a John H. Chafee Coastal Barrier Resources System (CBRS) draft revised map, dated September 22...

  11. SCANIT: centralized digitizing of forest resource maps or photographs

    Treesearch

    Elliot L. Amidon; E. Joyce Dye

    1981-01-01

    Spatial data on wildland resource maps and aerial photographs can be analyzed by computer after digitizing. SCANIT is a computerized system for encoding such data in digital form. The system, consisting of a collection of computer programs and subroutines, provides a powerful and versatile tool for a variety of resource analyses. SCANIT also may be converted easily to...

  12. Development of a multi-disciplinary ERTS user program in the state of Ohio. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Baldridge, P. E.; Weber, C.; Schaal, G.; Wilhelm, C.; Wurelic, G. E.; Stephan, J. G.; Ebbert, T. F.; Smail, H. E.; Mckeon, J.; Schmidt, N. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A current uniform land inventory was derived, in part, from LANDSAT data. The State has the ability to convert processed land information from LANDSAT to Ohio Capability Analysis Program (OCAP). The OCAP is a computer information and mapping system comprised of various programs used to digitally store, analyze, and display land capability information. More accurate processing of LANDSAT data could lead to reasonably accurate, useful land allocations models. It was feasible to use LANDSAT data to investigate minerals, pollution, land use, and resource inventory.

  13. Alabama-Mississippi Coastal Classification Maps - Perdido Pass to Cat Island

    USGS Publications Warehouse

    Morton, Robert A.; Peterson, Russell L.

    2005-01-01

    The primary purpose of the USGS National Assessment of Coastal Change Project is to provide accurate representations of pre-storm ground conditions for areas that are designated high-priority because they have dense populations or valuable resources that are at risk from storm waves. Another purpose of the project is to develop a geomorphic (land feature) coastal classification that, with only minor modification, can be applied to most coastal regions in the United States. A Coastal Classification Map describing local geomorphic features is the first step toward determining the hazard vulnerability of an area. The Coastal Classification Maps of the National Assessment of Coastal Change Project present ground conditions such as beach width, dune elevations, overwash potential, and density of development. In order to complete a hazard vulnerability assessment, that information must be integrated with other information, such as prior storm impacts and beach stability. The Coastal Classification Maps provide much of the basic information for such an assessment and represent a critical component of a storm-impact forecasting capability. The map above shows the areas covered by this web site. Click on any of the location names or outlines to view the Coastal Classification Map for that area.

  14. Using a Metro Map Metaphor for Organizing Web-Based Learning Resources.

    ERIC Educational Resources Information Center

    Bang, Tove; Gronbaek, Kaj; Hansen, Per Steen

    This paper briefly describes the WebNize system and how it applies a Metro Map metaphor for organizing guided tours in Web based resources. Then, experiences in using the Metro Map based tours in a Knowledge Sharing project at the library at Aarhus School of Business (ASB) in Denmark, are discussed. The Library has been involved in establishing a…

  15. Inventory and analysis of natural vegetation and related resources from space and high altitude photography

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.; Faulkner, D. P.; Johnson, J. R.; Mouat, D. A.; Schrumpf, B. J.

    1971-01-01

    A high altitude photomosaic resource map of Site 29 was produced which provided an opportunity to test photo interpretation accuracy of natural vegetation resource features when mapped at a small (1:133,400) scale. Helicopter reconnaissance over 144 previously selected test points revealed a highly adequate level of photo interpretation accuracy. In general, the reasons for errors could be accounted for. The same photomosaic resource map enabled construction of interpretive land use overlays. Based on features of the landscape, including natural vegetation types, judgements for land use suitability were made and have been presented for two types of potential land use. These two, agriculture and urbanization, represent potential land use conflicts.

  16. Map of National Aquatic Resource Surveys Sampling Locations

    EPA Pesticide Factsheets

    This map displays all of the lakes, rivers and streams, wetlands, and coastal waters sampled by the National Aquatic Resource Surveys, a collaborative EPA program that assesses the condition of the nation's waters using statistical designs.

  17. The use of geoinformation technologies for renewable energy and regional aspects of developing renewable energy in Russia

    NASA Astrophysics Data System (ADS)

    Rafikova, Y. Y.; Kiseleva, S. V.; Nefedova, L. V.; Frid, S. E.

    2014-12-01

    The work presents the results of development of the geoinformation system "Renewable Energy Sources of Russia". Regional maps of installations and resources are presented. The problem of determination of small hydropower potential connected with the shortage of hydrological data is stated. Assessment of efficiency of techno-economic analysis of simulation-based autonomous solar lighting systems is described. Overview of regional experience, policies and targets is included.

  18. The Increasingly Long Road to School in Rural China: The Impacts of Education Network Consolidation on Broadly Defined Schooling Distance in Xinfeng County of Rural China

    ERIC Educational Resources Information Center

    Zhao, Dan; Barakat, Bilal

    2015-01-01

    In the early 2000s, China's Ministry of Education embarked on a program of school mapping restructure (SMR) that involved closing small rural schools and opening up larger centralized schools in towns and county seats.The stated aim of the policy was to improve educational resources and raise the human capital of rural students. Any progress that…

  19. Seeing the forest for the trees: utilizing modified random forests imputation of forest plot data for landscape-level analyses

    Treesearch

    Karin L. Riley; Isaac C. Grenfell; Mark A. Finney

    2015-01-01

    Mapping the number, size, and species of trees in forests across the western United States has utility for a number of research endeavors, ranging from estimation of terrestrial carbon resources to tree mortality following wildfires. For landscape fire and forest simulations that use the Forest Vegetation Simulator (FVS), a tree-level dataset, or “tree list”, is a...

  20. The United States Geological Survey in Alaska: Organization and status of programs in 1977

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  1. Adaptive management of flows from dams: a win-win framework for water users

    USGS Publications Warehouse

    Irwin, Elise R.

    2013-01-01

    Alabama is blessed with more than 77,000 miles of rivers and streams that carve through the terrestrial landscape of the state. When you think about it, every road you drive on crosses a river and many of our major cities are located on the bank of a river. In fact, Alabama's capital cities - Cahawba (Dallas County; 1820-1826), Tuscaloosa (Tuscaloosa County; 1826-1846), and Montgomery County; 1846-present) - were all located on major rivers. It is estimated by the U.S. Geological Survey that 10 percent of the freshwater resources in the continental United States flows through Alabama. When you look at a map of its hydrology, the state is blue!

  2. Edge map analysis in chest X-rays for automatic pulmonary abnormality screening.

    PubMed

    Santosh, K C; Vajda, Szilárd; Antani, Sameer; Thoma, George R

    2016-09-01

    Our particular motivator is the need for screening HIV+ populations in resource-constrained regions for the evidence of tuberculosis, using posteroanterior chest radiographs (CXRs). The proposed method is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [Formula: see text] at different numbers of bins and different pyramid levels, using five different regions-of-interest selection. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine and have achieved a maximum abnormality detection accuracy (ACC) of 86.36 % and area under the ROC curve (AUC) of 0.93 at 1 s per image, on average. We have presented an automatic method for screening pulmonary abnormalities using thoracic edge map in CXR images. The proposed method outperforms previously reported state-of-the-art results.

  3. Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Livo, K. Eric

    2008-01-01

    Hyperspectral remote sensing data were acquired over Afghanistan with the HyMap imaging spectrometer (Cocks and others, 1998) operating on the WB-57 high altitude NASA research aircraft (http://jsc-aircraft-ops.jsc.nasa.gov/wb57/index.html). These data were acquired during the interval of August 22, 2007 to October 2, 2007, as part of the United States Geological Survey (USGS) project 'Oil and Gas Resources Assessment of the Katawaz and Helmand Basins'. A total of 218 flight lines of hyperspectral remote sensing data were collected over the country. This report describes the planning of the airborne survey and the flight lines that were flown. Included with this report are digital files of the nadir tracks of the flight lines, including a map of the labeled flight lines and corresponding vector shape files for geographic information systems (GIS).

  4. Inland area contingency plan and maps for Pennsylvania (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  5. Inland area contingency plan and maps for Virginia (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less

  6. A New Method for Computing Three-Dimensional Capture Fraction in Heterogeneous Regional Systems using the MODFLOW Adjoint Code

    NASA Astrophysics Data System (ADS)

    Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.

    2011-12-01

    Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model at 704,000 grid blocks (140,800 grid blocks x 5 layers) in just 6 minutes. The capture fraction maps from the perturbation and adjoint methods agree closely. The results of this study indicate that the adjoint capture method and its associated computational efficiency will enable scientists and engineers facing water resource management decisions to evaluate the sensitivity and uncertainty of impacts to regional water resource systems as part of groundwater supply strategies. Bredehoeft, J.D., S.S. Papadopulos, and H.H. Cooper Jr, Groundwater: The water budget myth. In Scientific Basis of Water-Resources Management, ed. National Research Council (U.S.), Geophysical Study Committee, 51-57. Washington D.C.: National Academy Press, 1982. Clemo, Tom, MODFLOW-2005 Ground-Water Model-Users Guide to Adjoint State based Sensitivity Process (ADJ), BSU CGISS 07-01, Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, 2007. Leake, S.A., H.W. Reeves, and J.E. Dickinson, A New Capture Fraction Method to Map How Pumpage Affects Surface Water Flow, Ground Water, 48(5), 670-700, 2010.

  7. Atlas of natural hazards in the Hawaiian coastal zone

    USGS Publications Warehouse

    Fletcher, Charles H.; Grossman, Eric E.; Richmond, Bruce M.; Gibbs, Ann E.

    2002-01-01

    The purpose of this report is to communicate to citizens and regulatory authorities the history and relative intensity of coastal hazards in Hawaii. This information is the key to the wise use and management of coastal resources. The information contained in this document,we hope,will improve the ability of Hawaiian citizens and visitors to safely enjoy the coast and provide a strong data set for planners and managers to guide the future of coastal resources. This work is largely based on previous investigations by scientific and engineering researchers and county, state, and federal offices and agencies. The unique aspect of this report is that, to the extent possible, it assimilates prior efforts in documenting Hawaiian coastal hazards and combines existing knowledge into a single comprehensive coastal hazard data set. This is by no means the final word on coastal hazards in Hawaii. Every hazardous phenomenon described here, and others such as slope failure and rocky shoreline collapse, need to be more carefully quantified, forecast, and mitigated. Our ultimate goal, of course, is to make the Hawaiian coast a safer place by educating the people of the state, and their leaders, about the hazardous nature of the environment. In so doing, we will also be taking steps toward improved preservation of coastal environments, because the best way to avoid coastal hazards is to avoid inappropriate development in the coastal zone. We have chosen maps as the medium for both recording and communicating the hazard history and its intensity along the Hawaiian coast.Two types of maps are used: 1) smallscale maps showing a general history of hazards on each island and summarizing coastal hazards in a readily understandable format for general use, and 2) a large-scale series of technical maps (1:50,000) depicting coastal sections approximately 5 to 7 miles in length with color bands along the coast ranking the relative intensity of each hazard at the adjacent shoreline.

  8. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    NASA Astrophysics Data System (ADS)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing modern data for comparison with isotope analyses conducted on fossil leaf material in paleoecological studies.

  9. Geology and mineral resource assessment of the Venezuelan Guayana Shield at 1:500,000 scale; a digital representation of maps published by the U.S. Geological Survey

    USGS Publications Warehouse

    Schruben, Paul G.; Wynn, J.C.; Gray, Floyd; Cox, D.P.; Sterwart, J.H.; Brooks, W.E.

    1997-01-01

    This CD-ROM contains vector-based digital maps of the geology and resource assessment of the Venezuela Guayana Shield originally published as paper maps in 1993 in U. S. Geological Survey Bulletin 2062, at a scale of 1:1 million and revised in 1993-95 as separate maps at a scale of 1:500,000. Although the maps on this disc can be displayed at different scales, they are not intended to be used at any scale more detailed than 1:500,000.

  10. One map policy (OMP) implementation strategy to accelerate mapping of regional spatial planing (RTRW) in Indonesia

    NASA Astrophysics Data System (ADS)

    Hasyim, Fuad; Subagio, Habib; Darmawan, Mulyanto

    2016-06-01

    A preparation of spatial planning documents require basic geospatial information and thematic accuracies. Recently these issues become important because spatial planning maps are impartial attachment of the regional act draft on spatial planning (PERDA). The needs of geospatial information in the preparation of spatial planning maps preparation can be divided into two major groups: (i). basic geospatial information (IGD), consist of of Indonesia Topographic maps (RBI), coastal and marine environmental maps (LPI), and geodetic control network and (ii). Thematic Geospatial Information (IGT). Currently, mostly local goverment in Indonesia have not finished their regulation draft on spatial planning due to some constrain including technical aspect. Some constrain in mapping of spatial planning are as follows: the availability of large scale ofbasic geospatial information, the availability of mapping guidelines, and human resources. Ideal conditions to be achieved for spatial planning maps are: (i) the availability of updated geospatial information in accordance with the scale needed for spatial planning maps, (ii) the guideline of mapping for spatial planning to support local government in completion their PERDA, and (iii) capacity building of local goverment human resources to completed spatial planning maps. The OMP strategies formulated to achieve these conditions are: (i) accelerating of IGD at scale of 1:50,000, 1: 25,000 and 1: 5,000, (ii) to accelerate mapping and integration of Thematic Geospatial Information (IGT) through stocktaking availability and mapping guidelines, (iii) the development of mapping guidelines and dissemination of spatial utilization and (iv) training of human resource on mapping technology.

  11. Uncertainty estimation for map-based analyses

    Treesearch

    Ronald E. McRoberts; Mark A. Hatfield; Susan J. Crocker

    2010-01-01

    Traditionally, natural resource managers have asked the question, “How much?” and have received sample-based estimates of resource totals or means. Increasingly, however, the same managers are now asking the additional question, “Where?” and are expecting spatially explicit answers in the form of maps. Recent development of natural resource databases, access to...

  12. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan.

    PubMed

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-18

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  13. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan

    PubMed Central

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-01-01

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management. PMID:27857230

  14. SWOT analysis on National Common Geospatial Information Service Platform of China

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyan; He, Biao

    2010-11-01

    Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.

  15. Land use maps of the Tanana and Purcell Mountain areas, Alaska, based on Earth Resources Technology Satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS imagery in photographic format was used to make land use maps of two areas of special interest to native corporations under terms of the Alaska Native Claims Settlement Act. Land selections are to be made in these areas, and the maps should facilitate decisions because of their comprehensive presentation of resource distribution information. The ERTS images enabled mapping broadly-defined land use classes in large areas in a comparatively short time. Some aerial photography was used to identify colors and shades of gray on the various images. The 14 mapped land use categories are identified according to the classification system under development by the U.S. Geological Survey. These maps exemplify a series of about a dozen diverse Alaskan areas. The principal resource depicted is vegetation, and clearly shown are vegetation units of special importance, including stands possibly containing trees of commercial grade and stands constituting wildlife habitat.

  16. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize

    USDA-ARS?s Scientific Manuscript database

    In this study, we generated a linkage map containing 1,151,856 high quality SNPs between Mo17 and B73, which were verified in the maize intermated B73'×'Mo17 (IBM) Syn10 population. This resource is an excellent complement to existing maize genetic maps available in an online database (iPlant, http:...

  17. Natural Resource Information System, design analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The computer-based system stores, processes, and displays map data relating to natural resources. The system was designed on the basis of requirements established in a user survey and an analysis of decision flow. The design analysis effort is described, and the rationale behind major design decisions, including map processing, cell vs. polygon, choice of classification systems, mapping accuracy, system hardware, and software language is summarized.

  18. Integrative Literature Review: Concept Mapping--A Strategy to Support the Development of Practice, Research, and Theory within Human Resource Development

    ERIC Educational Resources Information Center

    Daley, Barbara J.; Conceicao, Simone C. O.; Mina, Liliana; Altman, Brian A.; Baldor, Maria; Brown, James

    2010-01-01

    The purpose of this integrative literature review is to summarize research on concept mapping and to offer ideas on how concept mapping can facilitate practice, research, and theory development within human resource development. In this review, more than 300 articles, written in both English and Spanish, presented at two different concept mapping…

  19. Geologic map of the Valle 30' x 60' quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Felger, Tracey J.; Priest, Susan S.

    2006-01-01

    The geologic map of the Valle 30' x 60' quadrangle is the result of a cooperative effort between the U.S. Geological Survey and the National Park Service to provide geologic information for regional resource management and visitor information services for Grand Canyon National Park, Arizona. The map area encompasses approximately 1,960 sq.mi. within Coconino County, northern Arizona and is bounded by long 112 deg to 113 deg W. and lat 35 deg 30 min to 36 deg N. and lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into four physiographic parts; (1) the Grand Canyon (Cataract Canyon and extreme northeast corner of the map area), (2) the Coconino Plateau, (3) the Mount Floyd Volcanic Field, and (4) the San Francisco Volcanic Field as defined by Billingsley and others, 1997. Elevations range from 7,460 ft (2,274 m) on the Coconino Plateau along State Highway 64 northeast corner of the map area, to about 4,200 ft (1,280 m) at the bottom of Cataract Canyon. Settlements within the map area include Tusayan and Valle, Arizona. State Highway 64 and U.S. Highway 180 provide access to the Tusayan and Valle areas. Indian Route 18 is a paved highway in the northwest corner of the map area that is maintained by the Hualapai and Havasupai Indian Tribes and leads from State Route 66 about 7 mi (11 km) east of Peach Springs, Arizona to Hualapai Hilltop, a parking lot just north of the map area at the rim of Cataract Canyon where visitors begin an 8 mi (13 km) hike into Havasupai, Arizona. Other remote parts of the map are accessed by two dirt roads, which are maintained by Coconino County, and by several unmaintained local ranch roads. Weather conditions restrict travel within the area and visitors must obtain permission to access a few local ranch lands in the south-central edge of the map area. Extra water and food are highly recommended when traveling in this remote region. Access into Cataract Canyon is restricted to horse or foot travel and visitors must obtain permission from the Havasupai Tribe to hike within the Havasupai Indian Reservation. In the central part of the map area, most of the land is privately owned and managed by the Babbitt Ranches Inc. in conjunction with the Nature Conservancy and the Navajo Tribe. In the southern half of the map, land alternates between privately owned land and State land forming a checkerboard pattern. The National Park Service manages land in Grand Canyon National Park (extreme northeast edge of map area), the U.S. Forest Service manages lands in the Kaibab National Forest, the Hualapai Tribe manages lands in the northwest quarter of the map area, and the Havasupai Tribe manages lands within Cataract Canyon and adjacent parts of the Coconino Plateau.

  20. Assessing the ecological state and managing Armenia's farmlands

    NASA Astrophysics Data System (ADS)

    Saghatelyan, Armen; Asmaryan, Shushanik; Muradyan, Vahagn; Tepanosyan, Garegin; Minasyan, Lilit

    2014-05-01

    The territory of the Republic of Armenia (RA) occupies an area 29.8 sq. km, the major part of which - 2077 hectares - falls on farmlands located at a height 400-3200m a.s.l. Such a variation in altitude complicates development of territories especially in the case they have an extensive character stemmed from the Soviet era: land plough-up on sites lying at a very steep angle of decline - >20 grade, unregulated grazing and so on. A long-term, unplanned and unregulated use of farmlands entailed intense washout of upper soil horizon, which subsequently provoked intense development of erosion and degradation of lands. A practicable solution to this problem is a scientifically and methodically grounded assessment of ecological state of farmlands and economically 'competent' planning and management of agricultural resources. With the view of developing animal husbandry and managing pastures/hayfields, in 2011-2012 the Government of the Republic of Armenia under support of the World Bank implemented a Farm Resources Management and Competitiveness Program. The goal of the Program is ceasing a trend to overgrazing and degradation of close-to-village sites, using remote pastures/hayfields in the best effective manner, improving feed production and animal feeding networks, and promoting a growth in animal feed production volumes. To achieve that, the following works were planned and implemented successfully in 23 rural communities of 6 marzes of the RA, which was done by 3 stages. In preparatory stage • Accessible web resources - programs and sites (Google Earth, www.landcocer.org) with a view of identifying information to support implementation of the planned activities, were explored and evaluated. • Cartographic material (topographic maps sc.1:10000, landscape maps, panchromatic and multi-spectral high- and medium - resolution satellite images /LANDSAT ETM, QuickBird/ and other thematic cartographic and archival material) required for subsequent treatment of information which underlay development of field maps of the noted communities of the six marzes, was selected. Schematic maps required for implementation of field works, which helped indicate optimal routes and evaluate accessibility of separate sites, were produced. • Through collation between maps and satellite images visual signatures of interpretation of satellite images of separate objects (cliffs, rocky river slopes, etc.) were developed, which in chamber conditions would help calculate and exclude idle, vegetation- barren and impassable areas from pastures. Based on field observations and tests the overall state of natural pastures and the level of degradation was assessed. In final stage for the 23 communities series of cartographic layers was produced that included relief, river-ravine and road networks, infrastructure (roads, aqueducts, electricity cables, gas pipelines, irrigation points, structures erected on grazing sites); data on land use and soil types in the noted communities were processed, a relevant database was compiled and mapped. Finally, with a view of assessing the usable area of vegetation cover on the grazing sites, the area occupied by objects found on separate pastures (stone contents, stone fields, rocks, rocky-side ravines etc.) was calculated. The latter underpinned the assessment of ecological status of all the grazing sites.

  1. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wannamaker, Philip E.

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less

  2. A Landsat-based inventory procedure for agriculture in California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Thomas, R. W.; Brown, C. E.; Bauer, E. H.

    1982-01-01

    Agriculture, which occupies a vital position in the economy of the State of California, depends crucially on the available water. The California Department of Water Resources (DWR) is, therefore, greatly concerned with the total water requirements for agricultural applications. In view of the limitations of an area-limited, single-date survey system, the DWR has been cooperating with NASA and the University of California in a study of the applicability of Landsat imagery and digital data as an aid in making decisions concerning the management of water resources. Attention is given to a statewide inventory of irrigated land, computer-assisted estimation and mapping of irrigated land, and a crop type analysis using Landsat digital data.

  3. Environmental Assessments in the Riparian Corridor of the Colorado River Delta

    NASA Technical Reports Server (NTRS)

    2001-01-01

    We will develop remote sensing methods to conduct environmental assessments in the riparian corridor of the Colorado River delta, shared by the United States and Mexico. This important regional ecosystem is dependent upon US water flows, yet the most important wildlife habitats are in Mexico. The delta region is poorly known and difficult to monitor on the ground. We will use ground-validated, aerial and satellite methods to develop accurate vegetation and habitat maps and predictive hydrological and vegetation models of this ecosystem in response to US flood releases. The work products will advance our understanding of water resource issues in dryland climates and provide a specific application tool for a critical binational natural resource area.

  4. Oyster Fisheries App

    NASA Technical Reports Server (NTRS)

    Perez Guerrero, Geraldo A.; Armstrong, Duane; Underwood, Lauren

    2015-01-01

    This project is creating a cloud-enabled, HTML 5 web application to help oyster fishermen and state agencies apply Earth science to improve the management of this important natural and economic resource. The Oyster Fisheries app gathers and analyzes environmental and water quality information, and alerts fishermen and resources managers about problems in oyster fishing waters. An intuitive interface based on Google Maps displays the geospatial information and provides familiar interactive controls to the users. Alerts can be tailored to notify users when conditions in specific leases or public fishing areas require attention. The app is hosted on the Amazon Web Services cloud. It is being developed and tested using some of the latest web development tools such as web components and Polymer.

  5. Geologic map of the Middletown quadrangle, Frederick, Shenandoah, and Warren Counties, Virginia

    USGS Publications Warehouse

    Orndorff, Randall C.; Epstein, Jack Burton; McDowell, Robert C.

    1999-01-01

    The Middletown 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia mapped or being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This map was originally published as a paper product in 1999. It has been converted to GIS-based digital form. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. For more information about the Project see: http://geology.er.usgs.gov/eespteam/Karst/index.html for Geologic Discipline efforts and http://va.water.usgs.gov/va134/index.htm for Water Resources Discipline efforts.

  6. Hydrogeologic and geospatial data for the assesment of focused recharge to the Carbonate-Rock Aquifer in Genesee County, New York

    USGS Publications Warehouse

    Reddy, James E.; Kappel, William M.

    2010-01-01

    Existing hydrogeologic and geospatial data useful for the assessment of focused recharge to the carbonate-rock aquifer in the central part of Genesee County, NY, were compiled from numerous local, State, and Federal agency sources. Data sources utilized in this pilot study include available geospatial datasets from Federal and State agencies, interviews with local highway departments and the Genesee County Soil and Water Conservation District, and an initial assessment of karst features through the analysis of ortho-photographs, with minimal field verification. The compiled information is presented in a series of county-wide and quadrangle maps. The county-wide maps present generalized hydrogeologic conditions including distribution of geologic units, major faults, and karst features, and bedrock-surface and water-table configurations. Ten sets of quadrangle maps of the area that overlies the carbonate-rock aquifer present more detailed and additional information including distribution of bedrock outcrops, thin and (or) permeable soils, and karst features such as sinkholes and swallets. Water-resource managers can utilize the information summarized in this report as a guide to their assessment of focused recharge to, and the potential for surface contaminants to reach the carbonate-rock aquifer.

  7. Multi-criteria Resource Mapping and its Relevance in the Assessment of Habitat Changes

    NASA Astrophysics Data System (ADS)

    Van Lancker, V. R.; Kint, L.; van Heteren, S.

    2016-02-01

    Mineral and geological resources can be considered to be non-renewable on time scales relevant for decision makers. Once exhausted by humans, they are not replenished rapidly enough by nature, meaning that truly sustainable resource exploitation is not possible. Comprehensive knowledge on the distribution, composition and dynamics of geological resources and on the environmental impact of aggregate extraction is therefore critical. For the Belgian and southern Netherlands part of the North Sea, being representative of a typical sandbank system, a 4D resource decision-support system is being developed that links 3D geological models with environmental impact models. Aim is to quantify natural and man-made changes and to define from these sustainable exploitation thresholds. These are needed to ensure that recovery from perturbations is rapid and secure, and that the range of natural variation is maintained, a prerequisite stated in Europe's Marine Strategy Framework Directive, the environmental pillar of Europe's Maritime Policy. The geological subsurface is parameterised using a voxel modelling approach. Primarily, the voxels, or volume blocks of information, are constrained by the geology, based on coring and seismic data, but they are open to any resource-relevant information. The primary geological data entering the voxels are subdued to uncertainty modelling, a necessary step to produce data products with confidence limits. The presentation will focus on the novelty this approach brings for seabed and habitat mapping. In our model this is the upper voxel, providing the advantage of having a dynamical coupling to the geology and a suite of environmental parameters. In the context of assessing habitat changes, this coupling enables to account for spatial and temporal variability, seabed heterogeneity, as well as data uncertainty. The project is funded by Belgian Science Policy and is further valorised through EMODnet-Geology (DG MARE).

  8. SSMap: a new UniProt-PDB mapping resource for the curation of structural-related information in the UniProt/Swiss-Prot Knowledgebase.

    PubMed

    David, Fabrice P A; Yip, Yum L

    2008-09-23

    Sequences and structures provide valuable complementary information on protein features and functions. However, it is not always straightforward for users to gather information concurrently from the sequence and structure levels. The UniProt knowledgebase (UniProtKB) strives to help users on this undertaking by providing complete cross-references to Protein Data Bank (PDB) as well as coherent feature annotation using available structural information. In this study, SSMap - a new UniProt-PDB residue-residue level mapping - was generated. The primary objective of this mapping is not only to facilitate the two tasks mentioned above, but also to palliate a number of shortcomings of existent mappings. SSMap is the first isoform sequence-specific mapping resource and is up-to-date for UniProtKB annotation tasks. The method employed by SSMap differs from the other mapping resources in that it stresses on the correct reconstruction of the PDB sequence from structures, and on the correct attribution of a UniProtKB entry to each PDB chain by using a series of post-processing steps. SSMap was compared to other existing mapping resources in terms of the correctness of the attribution of PDB chains to UniProtKB entries, and of the quality of the pairwise alignments supporting the residue-residue mapping. It was found that SSMap shared about 80% of the mappings with other mapping sources. New and alternative mappings proposed by SSMap were mostly good as assessed by manual verification of data subsets. As for local pairwise alignments, it was shown that major discrepancies (both in terms of alignment lengths and boundaries), when present, were often due to differences in methodologies used for the mappings. SSMap provides an independent, good quality UniProt-PDB mapping. The systematic comparison conducted in this study allows the further identification of general problems in UniProt-PDB mappings so that both the coverage and the quality of the mappings can be systematically improved for the benefit of the scientific community. SSMap mapping is currently used to provide PDB cross-references in UniProtKB.

  9. Implementing Natural Resources Cadastral Plan in Pasargadae District of Iran by Using Quick Bird Images

    NASA Astrophysics Data System (ADS)

    Azhdari, G. H.; Deilami, K.; Firooznia, E.

    2015-12-01

    Natural Resources are essential for security and sustainable development of each country. Therefore, in order to reach sustainable development, conservation as well as optimum utilization of natural resources, executing of natural resources cadastral plan is necessary and essential. Governments conduct lands management in Iran, so there is a need for comprehensive plan with arranged program for best evaluation. In this research as a pilot, Pasargadae city is opted. Pasargadae region is located in north-east of Shiraz in Fars province with Latitude and longitude of 30° 15 ´ 53 ° N and 53° 13 ´ 29 ° E respectively. In order to generate the cadastral maps, Firstly, images from QuickBird satellite with 50-60 centimeters resolution were georeferenced by utilizing ground control points with accurate GPS coordinates. In addition to satellite images, old paper maps with 1:10000 scale in local coordinate system from agriculture ministry in 1963 were digitized according to 1:25000 scale map from army geographical organization with AutoCad software. Beside, paper maps with 1:50000 scale and Google Earth were used to find the changes during time. All the above maps were added to QuickBird images as new layers by using ArcMap software. These maps also were utilized to determine the different land-uses. Thus, by employing ArcMap software lands divide into 2 groups: firstly, lands with official document, which is owned by either natural or legal persons, and secondly national lands under different uses such as forestry, range management and desertification plans. Consequently, the generation of cadastral maps leads to better difference between private and national lands. In addition, producing cadastral maps prevent the destruction and illegal possession of natural lands by individuals.

  10. A Complex Systems Model Approach to Quantified Mineral Resource Appraisal

    USGS Publications Warehouse

    Gettings, M.E.; Bultman, M.W.; Fisher, F.S.

    2004-01-01

    For federal and state land management agencies, mineral resource appraisal has evolved from value-based to outcome-based procedures wherein the consequences of resource development are compared with those of other management options. Complex systems modeling is proposed as a general framework in which to build models that can evaluate outcomes. Three frequently used methods of mineral resource appraisal (subjective probabilistic estimates, weights of evidence modeling, and fuzzy logic modeling) are discussed to obtain insight into methods of incorporating complexity into mineral resource appraisal models. Fuzzy logic and weights of evidence are most easily utilized in complex systems models. A fundamental product of new appraisals is the production of reusable, accessible databases and methodologies so that appraisals can easily be repeated with new or refined data. The data are representations of complex systems and must be so regarded if all of their information content is to be utilized. The proposed generalized model framework is applicable to mineral assessment and other geoscience problems. We begin with a (fuzzy) cognitive map using (+1,0,-1) values for the links and evaluate the map for various scenarios to obtain a ranking of the importance of various links. Fieldwork and modeling studies identify important links and help identify unanticipated links. Next, the links are given membership functions in accordance with the data. Finally, processes are associated with the links; ideally, the controlling physical and chemical events and equations are found for each link. After calibration and testing, this complex systems model is used for predictions under various scenarios.

  11. International Maps | Geospatial Data Science | NREL

    Science.gov Websites

    International Maps International Maps This map collection provides examples of how geographic information system modeling is used in international resource analysis. The images below are samples of

  12. The U.S. Geological Survey's water resources program in New York

    USGS Publications Warehouse

    Wiltshire, Denise A.

    1983-01-01

    The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.

  13. Emissions & Generation Resource Integrated Database (eGRID), eGRID2010

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes.eGRID2010 contains the complete release of year 2007 data, as well as years 2005 and 2004 data. Excel spreadsheets, full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are included in this data set. The Archived data in eGRID2002 contain years 1996 through 2000 data.For year 2007 data, the first Microsoft Excel workbook, Plant, contains boiler, generator, and plant spreadsheets. The second Microsoft Excel workbook, Aggregation, contains aggregated data by state, electric generating company, parent company, power control area, eGRID subregion, NERC region, and U.S. total levels. The third Microsoft Excel workbook, ImportExport, contains state import-export data, as well as U.S. generation and consumption data for years 2007, 2005, and 2004. For eGRID data for years 2005 and 2004, a user friendly web application, eGRIDweb, is available to select, view, print, and export specified data.

  14. A physical map of the bovine genome

    PubMed Central

    Snelling, Warren M; Chiu, Readman; Schein, Jacqueline E; Hobbs, Matthew; Abbey, Colette A; Adelson, David L; Aerts, Jan; Bennett, Gary L; Bosdet, Ian E; Boussaha, Mekki; Brauning, Rudiger; Caetano, Alexandre R; Costa, Marcos M; Crawford, Allan M; Dalrymple, Brian P; Eggen, André; Everts-van der Wind, Annelie; Floriot, Sandrine; Gautier, Mathieu; Gill, Clare A; Green, Ronnie D; Holt, Robert; Jann, Oliver; Jones, Steven JM; Kappes, Steven M; Keele, John W; de Jong, Pieter J; Larkin, Denis M; Lewin, Harris A; McEwan, John C; McKay, Stephanie; Marra, Marco A; Mathewson, Carrie A; Matukumalli, Lakshmi K; Moore, Stephen S; Murdoch, Brenda; Nicholas, Frank W; Osoegawa, Kazutoyo; Roy, Alice; Salih, Hanni; Schibler, Laurent; Schnabel, Robert D; Silveri, Licia; Skow, Loren C; Smith, Timothy PL; Sonstegard, Tad S; Taylor, Jeremy F; Tellam, Ross; Van Tassell, Curtis P; Williams, John L; Womack, James E; Wye, Natasja H; Yang, George; Zhao, Shaying

    2007-01-01

    Background Cattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing project. Results A bovine BAC map was constructed with HindIII restriction digest fragments of 290,797 BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two genetic maps and marker scores from three whole-genome RH panels were consolidated on a 17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high, although discrepancies exist. The composite and BAC maps are more similar than either is to the draft assembly. Conclusion Further refinement of the maps and greater integration into the genome assembly process may contribute to a high quality assembly. The maps provide resources to associate phenotypic variation with underlying genomic variation, and are crucial resources for understanding the biology underpinning this important ruminant species so closely associated with humans. PMID:17697342

  15. Map showing selected surface-water data for the Alton-Kolob coal-fields area, Utah

    USGS Publications Warehouse

    Price, Don

    1982-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Alton-Kolob coal-fields area, Utah. Streamflow records used to compile the map and the following table were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas were delineated form a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964).

  16. EnviroAtlas - Biodiversity Metrics by 12-digit HUC for the Southwestern United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset was produced by a joint effort of New Mexico State University, US EPA, and the US Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems, have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, or cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 15 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for all vertebrate species except fish. Metrics include species richness for all vertebrates, specific taxon gr

  17. EnviroAtlas - Bird National Biodiversity Ecosystem Services Metrics by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This dataset was produced by a joint effort of New Mexico State University (NMSU), the U.S. Environmental Protection Agency (EPA), and the U.S. Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems, have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, or cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 15 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for bird species. Metrics include all bird species richness, lists identif

  18. EnviroAtlas - Biodiversity Metrics by 12-digit HUC for the Southeastern United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset was produced by a joint effort of New Mexico State University, US EPA, and the US Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems, have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, or cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 14 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for all vertebrate species except fish. Metrics include species richness for all vertebrates, specific taxon gr

  19. EnviroAtlas - Total reptile species by 12-digit HUC for the conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset was produced by a joint effort of New Mexico State University, US Environmental Protection Agency (US EPA,) and the U.S. Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 15 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for all vertebrate species except fish. Metrics include species richness fo

  20. Geologic map of the Bartlett Springs Fault Zone in the vicinity of Lake Pillsbury and adjacent areas of Mendocino, Lake, and Glenn Counties, California

    USGS Publications Warehouse

    Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.

    2010-01-01

    The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study area is characterized by northwest-trending ridges separated by steep-sided valleys. Elevations in this part of the Coast Ranges vary from 1,500 ft (457 m) to 6,600 ft (2,012 m), commonly with gradients of 1,000 ft per mile (90 m per km). The steep slopes are covered by brush, grass, oak, and conifer forests. Access to most of the area is by county roads and Forest Service Route M6 from Potter Valley to Lake Pillsbury and by county road and Forest Service Route M6 and M1 from Upper Lake and State Highway 20. From the north, State Highway 261 provides access from Covelo. Forest Service Route M1 trends roughly north from its intersection with Route M6 south of Hull Mountain and through the Elk Creek and Black Butte Roadless areas to State Highway 261. Side roads used for logging and jeep trails provide additional access in parts of the area.

Top