A figure-of-merit approach to extraterrestrial resource utilization
NASA Technical Reports Server (NTRS)
Ramohalli, K.; Kirsch, T.
1990-01-01
A concept is developed for interrelated optimizations in space missions that utilize extraterrestrial resources. It is shown that isolated (component) optimizations may not result in the best mission. It is shown that substantial benefits can be had through less than the best propellants, propellant combinations, propulsion hardware, and actually, some waste in the traditional sense. One ready example is the possibility of discarding hydrogen produced extraterrestrially by water splitting and using only the oxygen to burn storable fuels. The gains in refrigeration and leak-proof equipment mass (elimination) outweigh the loss in specific impulse. After a brief discussion of this concept, the synthesis of the four major components of any future space mission is developed. The four components are: orbital mechanics of the transportation; performance of the rocket motor; support systems that include power; thermal and process controls, and instruments; and in situ resource utilization plant equipment. This paper's main aim is to develop the concept of a figure-of-merit for the mission. The Mars Sample Return Mission is used to illustrate the new concept. At this time, a popular spreadsheet is used to quantitatively indicate the interdependent nature of the mission optimization. Future prospects are outlined that promise great economy through extraterrestrial resource utilization and a technique for quickly evaluating the same.
Simon, J L
1982-01-01
Lack of careful attention to the language used in the discussion of economic concepts has resulted in considerable confusion and error. 2 frequent sources of confusion include tautology and the absence of operational definitions of concepts. This paper outlines a more effective scientific practice through reference to 2 economic examples: 1) the concept of utility, where it is demonstrated that choice of an operational definition of the concept facilitates interpersonal comparisons; and 2) causality, where a multidimensional operational definition is needed to discriminate among the various meanings of the term in theoretical, empirical, and policy contexts. The paper further discusses the example of natural resource scarcity, where application of the term "finite" reveals that there is no empirical evidence of physical limits to growth in the use of resources. A more appropriate measure of scarcity is the economic concept of price.
Asteroid Redirect Mission Concept: A Bold Approach for Utilizing Space Resources
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Merrill, Raymond G.; Brophy, John R.; Mueller, Robert P.
2014-01-01
The utilization of natural resources from asteroids is an idea that is older than the Space Age. The technologies are now available to transform this endeavour from an idea into reality. The Asteroid Redirect Mission (ARM) is a mission concept which includes the goal of robotically returning a small Near-Earth Asteroid (NEA) or a multi-ton boulder from a large NEA to cislunar space in the mid 2020's using an advanced Solar Electric Propulsion (SEP) vehicle and currently available technologies. The paradigm shift enabled by the ARM concept would allow in-situ resource utilization (ISRU) to be used at the human mission departure location (i.e., cislunar space) versus exclusively at the deep-space mission destination. This approach drastically reduces the barriers associated with utilizing ISRU for human deep-space missions. The successful testing of ISRU techniques and associated equipment could enable large-scale commercial ISRU operations to become a reality and enable a future space-based economy utilizing processed asteroidal materials. This paper provides an overview of the ARM concept and discusses the mission objectives, key technologies, and capabilities associated with the mission, as well as how the ARM and associated operations would benefit humanity's quest for the exploration and settlement of space.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.
1992-01-01
Unresolved issues of lunar geology are reviewed and the role of a lunar outpost in helping to address them is considered. Plans for in situ resource utilization of lunar materials are examined. Concepts for a lunar outpost are described.
Threshold concepts: implications for the management of natural resources
Guntenspergen, Glenn R.; Gross, John
2014-01-01
Threshold concepts can have broad relevance in natural resource management. However, the concept of ecological thresholds has not been widely incorporated or adopted in management goals. This largely stems from the uncertainty revolving around threshold levels and the post hoc analyses that have generally been used to identify them. Natural resource managers have a need for new tools and approaches that will help them assess the existence and detection of conditions that demand management actions. Recognition of additional threshold concepts include: utility thresholds (which are based on human values about ecological systems) and decision thresholds (which reflect management objectives and values and include ecological knowledge about a system) as well as ecological thresholds. All of these concepts provide a framework for considering the use of threshold concepts in natural resource decision making.
In-Situ Resource Utilization (ISRU) Development Program
NASA Technical Reports Server (NTRS)
Sanders, Jerry
1998-01-01
The question "Why In-Situ Resource Utilization (ISRU)?" is addressed in this presentation. The reasons given concentrate on Cost reduction, Mass reduction, Risk reduction, the expansion of human exploration and presence and the enabling of industrial exploitation. A review of the Martian and Lunar resources available for ISRU is presented. Other ISRU concepts (i.e., In-Situ Consumable production (ISCP) and In-Situ Propellant Production (ISPP)) are introduced and further explained. The objectives of a Mars ISRU System Technology (MIST) include (1) the characterization of technology and subsystem performance for mission modeling and technology funding planning, (2) reduce risk and concerns arising from sample return and human missions utilizing ISRU, and (3) demonstrate the environmental suitability of ISRU components/processes and systems. A proof of concept demonstration schedule and a facility overview for MIST is presented.
Current NASA Plans for Mars In Situ Resource Utilization
NASA Technical Reports Server (NTRS)
Sanders, Gerald
2018-01-01
The presentation is to provide relevant information to the NASA funded Center for the Utilization of Biological Engineering in Space (CUBES) Institute. The presentation cover the following: 1) What is In Situ Resource Utilization (ISRU), 2) What are the resources of interest at the Moon and Mars, 3) ISRU-related mission requirements and ISRU economics, 4) Challenges and Risk for ISRU, 5) Concept of Operation for Mars ISRU Systems, 6) Current State of the Art (SOA) in ISRU, and 7) Current ISRU development and mission status.
School Community Relations and Resources in Effective Schools.
ERIC Educational Resources Information Center
Michel, George J.
1985-01-01
Discusses resources available to schools operating as open and closed systems. Examines school/community relations and school effectiveness, schools as resource machines, and resources offered by teachers and parents. Stresses that broad concepts of community, good communication, and citizen involvement can utilize resources at high levels of…
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1991-01-01
A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.
Analysis of Water Resource Utilization Potential for Jiangsu Coastal Area ' in Nantong City
NASA Astrophysics Data System (ADS)
Ren, Li; Liu, Jin-Tao; Ni, Jian-Jun
2015-04-01
Along with the advance of the growth of population and social economy, requirements for water quality and quantity in coastal areas is getting higher and higher, but due to the uneven distribution of rainfall years and water exploitation, use and management level, the influence of the shortage of water resources is increasingly prominent, seriously restricting the social and economic sustainable development in this region. Accordingly, water resource utilization potential in Jiangsu coastal region is vital for water security in the region. Taking Nantong City as the study area, the regional water resources development and utilization status were evaluated. In this paper, the meaning of water resources, water resources development and utilization, and water resources development and utilization of the three stages of concepts such as system were discussed. Then the development and utilization of regional water resource evaluation were carried out, and the significance of regional society, economy, resources and environment and its development status quo of water resources were exploited. According to conditions and area source, an evaluation index system for development and utilization of water resources of Nantong was built up. The index layer was composed of 16 indicators. In this study, analytic hierarchy process (AHP) was used to determine of weights of indicators at all levels in the index system. Multistage fuzzy comprehensive evaluation model was selected to evaluate the water resources development and utilization status of Nantong, and then water resource utilization potential of Nantong was analyzed.
In-Situ Resource Utilization Experiment for the Asteroid Redirect Crewed Mission
NASA Astrophysics Data System (ADS)
Elliott, J.; Fries, M.; Love, S.; Sellar, R. G.; Voecks, G.; Wilson, D.
2015-10-01
The Asteroid Redirect Crewed Mission (ARCM) represents a unique opportunity to perform in-situ testing of concepts that could lead to full-scale exploitation of asteroids for their valuable resources [1]. This paper describes a concept for an astronautoperated "suitcase" experiment to would demonstrate asteroid volatile extraction using a solar-heated oven and integral cold trap in a configuration scalable to full-size asteroids. Conversion of liberated water into H2 and O2 products would also be demonstrated through an integral processing and storage unit. The plan also includes development of a local prospecting system consisting of a suit-mounted multi-spectral imager to aid the crew in choosing optimal samples, both for In-Situ Resource Utilization (ISRU) and for potential return to Earth.
[Mathematics in the Out Doors].
ERIC Educational Resources Information Center
Barcomb, Francois; And Others
Designed for the instruction of emotionally handicapped children and youth, this guide presents mathematical concepts and activities which may be utilized in outdoor education. Three authors provide three individualized resource guides on mathematics; Guide 1 deals with the concepts of measurement, time, estimation, geometry, counting, and…
The tissue microarray OWL schema: An open-source tool for sharing tissue microarray data
Kang, Hyunseok P.; Borromeo, Charles D.; Berman, Jules J.; Becich, Michael J.
2010-01-01
Background: Tissue microarrays (TMAs) are enormously useful tools for translational research, but incompatibilities in database systems between various researchers and institutions prevent the efficient sharing of data that could help realize their full potential. Resource Description Framework (RDF) provides a flexible method to represent knowledge in triples, which take the form Subject-Predicate-Object. All data resources are described using Uniform Resource Identifiers (URIs), which are global in scope. We present an OWL (Web Ontology Language) schema that expands upon the TMA data exchange specification to address this issue and assist in data sharing and integration. Methods: A minimal OWL schema was designed containing only concepts specific to TMA experiments. More general data elements were incorporated from predefined ontologies such as the NCI thesaurus. URIs were assigned using the Linked Data format. Results: We present examples of files utilizing the schema and conversion of XML data (similar to the TMA DES) to OWL. Conclusion: By utilizing predefined ontologies and global unique identifiers, this OWL schema provides a solution to the limitations of XML, which represents concepts defined in a localized setting. This will help increase the utilization of tissue resources, facilitating collaborative translational research efforts. PMID:20805954
Knowledge Resources - A Knowledge Management Approach for Digital Ecosystems
NASA Astrophysics Data System (ADS)
Kurz, Thomas; Eder, Raimund; Heistracher, Thomas
The paper at hand presents an innovative approach for the conception and implementation of knowledge management in Digital Ecosystems. Based on a reflection of Digital Ecosystem research of the past years, an architecture is outlined which utilizes Knowledge Resources as the central and simplest entities of knowledge transfer. After the discussion of the related conception, the result of a first prototypical implementation is described that helps the transformation of implicit knowledge to explicit knowledge for wide use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, T.S.
1986-01-01
This study was developed through a synthesis and review of literature and research related to the current status of job satisfaction, energy resources, and perceptions of how energy is utilized in the manufacturing work environment. This synthesis and review revolved around several proven contributing factors of job satisfaction, such as age, education, and challenge from work itself. Quality of work life programs and their components are discussed in relation to their impact on job satisfaction. The nature of energy resource utilization is traced back through history with an emphasis on the limitations of current resources and options for the future.more » The review highlights the current debate over what should be the future path of energy resource development. The concept of satisfaction of human needs is reviewed and related to job satisfaction and energy resources. The purpose of this research study was to contribute to the understanding of how perceptions of energy resources relate to job satisfaction. Results of the study indicated that there were no significant differences between an individual's energy resource consciousness and perceptions of energy utilization in the work place, energy resource consciousness and job satisfaction, and job satisfaction and perceptions of energy utilization in the workplace.« less
Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals.
Ruppert, Agnieszka M; Weinberg, Kamil; Palkovits, Regina
2012-03-12
In view of the diminishing oil resources and the ongoing climate change, the use of efficient and environmentally benign technologies for the utilization of renewable resources has become indispensible. Therein, hydrogenolysis reactions offer a promising possibility for future biorefinery concepts. These reactions result in the cleavage of C-C and C-O bonds by hydrogen and allow direct access to valuable platform chemicals already integrated in today's value chains. Thus, hydrogenolysis bears the potential to bridge currently available technologies and future biomass-based refinery concepts. This Review highlights past and present developments in this field, with special emphasis on the direct utilization of cellulosic feedstocks. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Fang; Si, Liqi
2018-05-01
According to Maslow's hierarchy of needs, the process of human development and utilization of water resources can be divided into three stages: engineering water conservancy, resource water conservancy and harmonious coexistence between man and water. These three stages reflect the transformation of the idea of human development and utilization of water resources and eventually reach the state of harmony between human being and water. At the same time, this article draws on the experiences of water management under the thinking of sustainable development in the United States, Western Europe, Northern Europe and Africa. Finally, this paper points out that we need to realize the harmonious coexistence between man and water and sustainable development of water resources in the process of development and utilization of water resources, which is the inevitable requirement of the economic and social development.
Management of a Learning Resource Center: A Seven-Year Study.
ERIC Educational Resources Information Center
Hampton, Carol L.; And Others
1979-01-01
Data compiled over seven years present evidence that small-group or "cluster" carrels are successfully utilized by medical students in a learning resource center and should be considered to be an efficient method of managing space, software, and hardware. Three management concepts are reported. (Author/LBH)
Physical Education Through Movement in the City.
ERIC Educational Resources Information Center
Munz, Lorraine
The product of a Special Studies Institute, this teacher developed resource guide for the emotionally handicapped (K-6) presents concepts and activities relative to physical education in the urban out-of-doors. Focus is on adapting physical education to an urban environment, utilizing city resources and instilling skills necessary to cope with…
Utility Computing: Reality and Beyond
NASA Astrophysics Data System (ADS)
Ivanov, Ivan I.
Utility Computing is not a new concept. It involves organizing and providing a wide range of computing-related services as public utilities. Much like water, gas, electricity and telecommunications, the concept of computing as public utility was announced in 1955. Utility Computing remained a concept for near 50 years. Now some models and forms of Utility Computing are emerging such as storage and server virtualization, grid computing, and automated provisioning. Recent trends in Utility Computing as a complex technology involve business procedures that could profoundly transform the nature of companies' IT services, organizational IT strategies and technology infrastructure, and business models. In the ultimate Utility Computing models, organizations will be able to acquire as much IT services as they need, whenever and wherever they need them. Based on networked businesses and new secure online applications, Utility Computing would facilitate "agility-integration" of IT resources and services within and between virtual companies. With the application of Utility Computing there could be concealment of the complexity of IT, reduction of operational expenses, and converting of IT costs to variable `on-demand' services. How far should technology, business and society go to adopt Utility Computing forms, modes and models?
Overcoming Terminology Barrier Using Web Resources for Cross-Language Medical Information Retrieval
Lu, Wen-Hsiang; Lin, Ray Shih-Jui; Chan, Yi-Che; Chen, Kuan-Hsi
2006-01-01
A number of authoritative medical websites, such as PubMed and MedlinePlus, provide consumers with the most up-to-date health information. However, non-English speakers often encounter not only language barriers (from other languages to English) but also terminology barriers (from laypersons’ terms to professional medical terms) when retrieving information from these websites. Our previous work addresses language barriers by developing a multilingual medical thesaurus, Chinese-English MeSH, while this study presents an approach to overcome terminology barriers based on Web resources. Two techniques were utilized in our approach: monolingual concept mapping using approximate string matching and crosslingual concept mapping using Web resources. The evaluation shows that our approach can significantly improve the performance on MeSH concept mapping and cross-language medical information retrieval. PMID:17238395
Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory
ERIC Educational Resources Information Center
Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad
2015-01-01
Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282more » references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.« less
Terrestrial and Lunar Geological Terminology
NASA Technical Reports Server (NTRS)
Schrader, Christian
2009-01-01
This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.
[Essentials of pharmacophylogeny: knowledge pedigree, epistemology and paradigm shift].
Hao, Da-cheng; Xiao, Pei-gen; Liu, Li-wei; Peng, Yong; He, Chun-nian
2015-09-01
Chinese materia medica resource (CMM resource) is the foundation of the development of traditional Chinese medicine. In the study of sustainable utilization of CMM resource, adopting innovative theory and method to find new CMM resource is one of hotspots and always highlighted. Pharmacophylogeny interrogates the phylogenetic relationship of medicinal organisms (especially medicinal plants), as well as the intrinsic correlation of morphological taxonomy, molecular phylogeny, chemical constituents, and therapeutic efficacy (ethnopharmacology and pharmacological activity). This new discipline may have the power to change the way we utilize medicinal plant resources and develop plant-based drugs. Phylogenomics is the crossing of evolutionary biology and genomics, in which genome data are utilized for evolutionary reconstructions. Phylogenomics can be integrated into the flow chart of drug discovery and development, and extends the field of pharmacophylogeny at the omic level, thus the concept of pharmacophylogenomics could be redefined in the context of plant pharmaceutical resources. This contribution gives a brief discourse of knowledge pedigree of pharmacophylogeny, epistemology and paradigm shift, highlighting the theoretical and practical values of pharmacophylogenomics. Many medicinally important tribes and genera, such as Clematis, Pulsatilla, Anemone, Cimicifugeae, Nigella, Delphinieae, Adonideae, Aquilegia, Thalictrum, and Coptis, belong to Ranunculaceae family. Compared to other plant families, Ranunculaceae has the most species that are recorded in China Pharmacopoeia (CP) 2010. However, many Ranunculaceae species, e. g., those that are closely related to CP species, as well as those endemic to China, have not been investigated in depth, and their phylogenetic relationship and potential in medicinal use remain elusive. As such, it is proposed to select Ranunculaceae to exemplify the utility of pharmacophylogenomics and to elaborate the new concept empirically. It is argued that phylogenetic and evolutionary relationship of medicinally important tribes and genera within Ranunculaceae could be elucidated at the genomic, transcriptomic, and metabolomic levels, from which the intrinsic correlation between medicinal plant genotype and metabolic phenotype, and between genetic diversity and chemodivesity of closely related taxa, could be revealed. This proof-of-concept study regards pharmacophylogenomics as the updated version of pharmacophylogeny and would enrich the intension and spread the extension of pharmacophylogeny. The interdisciplinary knowledge and techniques will be integrated in the proposed study to promote development of CMM resource discipline and to boost sustainable development of Chinese medicinal plant resources.
ERIC Educational Resources Information Center
Upchurch, Jim; Fischer, Larry
The cooperative agricultural programs described in this report were undertaken by John Wood Community College (JWCC) as part of a "common market" instructional delivery system, which utilizes existing community resources through contractual agreements with area schools, businesses, and government agencies. The report first provides a rationale for…
A "SYSTEMS" APPROACH TO THE COORDINATION OF INSTRUCTION AND LEARNING RESOURCES.
ERIC Educational Resources Information Center
HUNTER, ARMAND L.
THE QUESTION OF ESTABLISHING SYSTEMS AND PROCEDURES WHEREBY INSTITUTIONS CAN TEACH MORE STUDENTS FASTER AND MORE EFFICIENTLY IS POSED. THE SOLUTION IS THAT OF DEVELOPING A NEW CONCEPT IN THE DESIGN OF A "SYSTEMS" APPROACH TO THE PROGRAMING AND UTILIZATION OF INSTRUCTIONAL AND LEARNING RESOURCES. THE VALUE AND PURPOSE ASPECTS OF THE…
Smart City: Utilization of IT resources to encounter natural disaster
NASA Astrophysics Data System (ADS)
Hartama, D.; Mawengkang, Herman; Zarlis, M.; Sembiring, R. W.
2017-09-01
This study proposes a framework for the utilization of IT resources in the face of natural disasters with the concept of Smart City in urban areas, which often face the earthquake, particularly in the city of North Sumatra and Aceh. Smart City is a city that integrates social development, capital, civic participation, and transportation with the use of information technology to support the preservation of natural resources and improved quality of life. Changes in the climate and environment have an impact on the occurrence of natural disasters, which tend to increase in recent decades, thus providing socio-economic impacts for the community. This study suggests a new approach that combines the Geographic Information System (GIS) and Mobile IT-based Android in the form of Geospatial information to encounter disaster. Resources and IT Infrastructure in implementing the Smart Mobility with Mobile service can make urban areas as a Smart City. This study describes the urban growth using the Smart City concept and considers how a GIS and Mobile Systems can increase Disaster Management, which consists of Preparedness, mitigation, response, and recovery for recovery from natural disasters.
Meteorite as raw material for Direct Metal Printing: A proof of concept study
NASA Astrophysics Data System (ADS)
Lietaert, Karel; Thijs, Lore; Neirinck, Bram; Lapauw, Thomas; Morrison, Brian; Lewicki, Chris; Van Vaerenbergh, Jonas
2018-02-01
Asteroid mining as such is not a new concept, as it has been described in science fiction for more than a century and some of its aspects have been studied by academia for more than 30 years. Recently, there is a renewed interest in this subject due the more and more concrete plans for long-duration space missions and the need for resources to support industrial activity in space. The use of locally available resources would greatly improve the economics and sustainability of such missions. Due to its economy in material, use of additive manufacturing (AM) provides an interesting route to valorize these resources for the production of spare parts, tools and large-scale structures optimized for their local microgravity environment. Proof of concept has already been provided for AM of moon regolith. In this paper the concept of In-Situ Resource Utilization is extended towards the production of metallic objects using powdered iron meteorite as raw material. The meteorite-based powder was used to produce a structural part but further research is needed to obtain a high density part without microcracks.
NASA Astrophysics Data System (ADS)
Djuwansyah, M. R.
2018-02-01
This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.
Design requirements for operational earth resources ground data processing
NASA Technical Reports Server (NTRS)
Baldwin, C. J.; Bradford, L. H.; Burnett, E. S.; Hutson, D. E.; Kinsler, B. A.; Kugle, D. R.; Webber, D. S.
1972-01-01
Realistic tradeoff data and evaluation techniques were studied that permit conceptual design of operational earth resources ground processing systems. Methodology for determining user requirements that utilize the limited information available from users is presented along with definitions of sensor capabilities projected into the shuttle/station era. A tentative method is presented for synthesizing candidate ground processing concepts.
Landscape ecology: a concept for protecting park resources
Allen, Craig D.; Lissoway, John; Yarborough, Keith
1990-01-01
The Southwest Region has been supporting Resource Basic Inventory (RBI) efforts to establish baseline data for comparisons with long-term monitoring results to be conducted in the future. This “pulse taking” is a part of the Servicewide initiative being fostered so that resource managers, scientists, and park managers will be able to track the health of park resources by determining changes and trends. The RBI work is being linked with the development of Geographic Information Systems (GIS) at Bandelier, Big Thicket, Big Bend, Padre Island, and Guadalupe Mountains. Many of the parks in the southwest Region have only partially completed RBIs. This informational shortcoming is a pervasive threat to the parks because without detailed knowledge of the parks’ respective resources the Service cannot protect them adequately. To overcome this deficiency, the SWRO’s Division of Natural Resources Management and Science has fostered at Bandelier a pilot research effort, which started in FY ’87 and utilizes a landscape ecology paradigm. This concept links the RBI, GIS, and research activities in a park to present an overall picture of the park in its regional ecosystem setting. The flowchart diagrams this project’s concept. The results have been encouraging. A final report was recently completed (Allen 1989). This concept may now be applied to other Southwest Region parks.
A Lunar Electromagnetic Launch System for In-Situ Resource Utilization
NASA Technical Reports Server (NTRS)
Wright, Michael R.; Kuznetsov, Steven B.; Kloesel, Kurt J.
2010-01-01
Future human exploration of the moon will require the development of capabilities for in-situ resource utilization (ISRU). Transport of lunar-derived commodities such as fuel and oxygen to orbiting resource depots has been proposed to enable refueling landers or other vehicles. A lunar electromagnetic launch (LEML) system could be an effective means of transporting materials, as an alternative to non-renewable chemical-based propulsion systems. An example LEML concept is presented based on previous studies, existing EML technologies, and NASA's human exploration architecture. A preliminary assessment of the cost-versus-benefit of such a system is also offered; the conclusion, however, is not as favorable for LEML as originally suggested.
NASA Technical Reports Server (NTRS)
1997-01-01
Patterned after the Cassini Resource Exchange (CRE), Sholtz and Associates established the Automated Credit Exchange (ACE), an Internet-based concept that automates the auctioning of "pollution credits" in Southern California. An early challenge of the Jet Propulsion Laboratory's Cassini mission was allocating the spacecraft's resources. To support the decision-making process, the CRE was developed. The system removes the need for the science instrument manager to know the individual instruments' requirements for the spacecraft resources. Instead, by utilizing principles of exchange, the CRE induces the instrument teams to reveal their requirements. In doing so, they arrive at an efficient allocation of spacecraft resources by trading among themselves. A Southern California RECLAIM air pollution credit trading market has been set up using same bartering methods utilized in the Cassini mission in order to help companies keep pollution and costs down.
ISRU: An Overview of NASA'S Current Development Activities and Long-Term Goals
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Nicholson, Leonard S. (Technical Monitor)
2000-01-01
The concept of "living off the land" by utilizing the indigenous resources of the Moon, Mars, or other potential sites of robotic and human exploration has been termed In-Situ Resource Utilization (ISRU). It is fundamental to any program of extended human presence and operation on other extraterrestrial bodies that we learn how to utilize the indigenous resources. The chief benefits of ISRU are that it can reduce the mass, cost, and risk of robotic and human exploration while providing capabilities that enable the commercial development of space. In January 1997, the American Institute of Aeronautics and Astronautics (AIAA) Space Processing Technical Committee released a position paper entitled, "Need for A NASA Indigenous Space Resource Utilization (ISRU) Program". Besides outlining some of the potential advantages of incorporating ISRU into Lunar and Mars human mission plans and providing an overview of technologies and processes of interest, the position paper concluded with a list of seven recommendations to NASA. This paper will examine the seven recommendations proposed and provide an overview of NASA's current ISRU development activities and possible long term goals with respect to these recommendations.
Utilization of Educationally Oriented Microcomputer Based Laboratories
ERIC Educational Resources Information Center
Fitzpatrick, Michael J.; Howard, James A.
1977-01-01
Describes one approach to supplying engineering and computer science educators with an economical portable digital systems laboratory centered around microprocessors. Expansion of the microcomputer based laboratory concept to include Learning Resource Aided Instruction (LRAI) systems is explored. (Author)
Intelligent Transportation Infrastructure Benefits: Expected And Experienced
DOT National Transportation Integrated Search
1996-08-20
In traffic engineering, the concept of traffic control is giving way to the broader philosophy of Transportation Systems Management (TSM), whose purpose is not to move vehicles, but to optimize the utilization of transportation resources to improve t...
NASA Astrophysics Data System (ADS)
Blacic, J. D.; Dreesen, D.; Mockler, T.
2000-01-01
There are two principal factors that control the economics and ultimate utilization of space resources: 1) space transportation, and 2) space resource utilization technologies. Development of space transportation technology is driven by major government (military and civilian) programs and, to a lesser degree, private industry-funded research. Communication within the propulsion and spacecraft engineering community is aided by an effective independent professional organization, the American Institute of Aeronautics and Astronautics (AIAA). The many aerospace engineering programs in major university engineering schools sustain professional-level education in these fields. NASA does an excellent job of public education in space science and engineering at all levels. Planetary science, a precursor and supporting discipline for space resource utilization, has benefited from the establishment of the Lunar and Planetary Institute (LPI) which has served, since the early post-Apollo days, as a focus for both professional and educational development in the geosciences of the Moon and other planets. The closest thing the nonaerospace engineering disciplines have had to this kind of professional nexus is the sponsorship by the American Society of Civil Engineers of a series of space engineering conferences that have had a predominantly space resource orientation. However, many of us with long-standing interests in space resource development have felt that an LPI-like, independent institute was needed to focus and facilitate both research and education on the specific engineering disciplines needed to develop space resource utilization technologies on an on-going basis.
Spacelab user implementation assessment study. Volume 1: Concept development and evaluation
NASA Technical Reports Server (NTRS)
1975-01-01
The total matrix of alternate Spacelab processing concepts and the rejection rationale utilized to reduce the matrix of 243 alternates to the final candidate processing concepts are developed. The work breakdown structure used for the systematic estimation and compilation of integration and checkout resources is presented along with descriptors of each element. Program models are provided of the space transportation system, the Spacelab, the orbiter, and the ATL that were used as the basis for the study trades, analyses, and optimizations. Resource requirements for all processing concepts are summarized along with the optimizations of the processing concepts. Concept evaluations including flight-rate sensitivities of the GSE, facilities, Spacelab hardware elements, and personnel are delineated. An analysis is presented of the applicability of the candidate concepts to potential spacelab users. The impact of the use of the western test range as an orbiter/spacelab launch site on the candidate processing concepts is evaluated. An assessment of the geographical co-location of experiment, Spacelab, and orbiter-cargo integration is included. Ownership options of the support module/system igloo are discussed.
Study on Evaluation Index System of Green mine construction
NASA Astrophysics Data System (ADS)
Li, xin; Yang, JunJie; Yan, Hongcai; Cao, Hongjun
2017-11-01
Green mine is a new and science comprehensive construction mode of mine, which runs the concept of green development through the whole process of mineral resources development and utilization, promotes the transformation and upgrading of mineral enterprises and achieves the healthy and sustainable development of mining industry. This paper is based on “the basic conditions of national green mine”, combined with the current situation of green mine construction, constructing green mine construction evaluation index system which is divided into five areas, including management, comprehensive utilization of mineral resources. technological innovation. ecological environment and cultural construction.
Illuminating the processes of knowledge transfer in nursing.
Aita, Marilyn; Richer, Marie-Claire; Héon, Marjolaine
2007-01-01
Over the past 10 years, there has been a propensity to translate research findings and evidence into clinical practice, and concepts such as knowledge transfer, research dissemination, research utilization, and evidence-based practice have been described in the nursing literature. This manuscript shows a selective review of the definitions and utilization of these concepts and offers a perspective on their interrelationships by indicating how knowledge transfer processes are the basis of all the concepts under review. Definitions and utilization of knowledge transfer in the literature have been influenced by educational and social perspectives and indicate two important processes that are rooted in the mechanisms of research dissemination, research utilization, and evidence-based practice. These processes refer to a cognitive and an interpersonal dimension. Knowledge transfer underlies a process involving cognitive resources as well as an interpersonal process where the knowledge is transferred between individuals or groups of individuals. This manuscript can contribute to our understanding of the theoretical foundations linking these concepts and these processes by comparing and contrasting them. It also shows the value and empirical importance of the cognitive and interpersonal processes of knowledge transfer by which research findings and evidence can be successfully translated and implemented into the nursing clinical practice.
ERIC Educational Resources Information Center
Frank, James
This module is an activity and film-oriented unit focusing on the importance of mangroves in the South Florida ecosystem. The module is part of a series designed to be used by teachers, students, and community members to help them utilize community resources in developing and teaching environmental concepts and responsibility, and in seeking ways…
Utilization of Adult and Non-Formal Education Programs in Combating Rural Poverty in Nigeria
ERIC Educational Resources Information Center
Ihejirika, John Chinedu
2012-01-01
The purpose of this paper was to examine the concept of poverty and its causes in Nigeria and to analyze how adult and non-formal education programs can be utilized to reduce rural poverty in Nigeria. In spite of Nigeria's affluence in human and material resources, it is classified among countries with high level of poverty. Incidentally, the…
A critical analysis of the cumulative rainfall departure concept.
Weber, Kenneth; Stewart, Mark
2004-01-01
Evaluation of trends in time-series, such as precipitation or ground water levels, is an essential element in many hydrologic evaluations, including water resource studies and planning efforts. The cumulative rainfall departure (CRD) from normal rainfall is a concept sometimes utilized to evaluate the temporal correlation of rainfall with surface water or ground water levels. Permutations of the concept have been used to estimate recharge or aquifer storativity, and in attempts to explain declining ground water levels. The cumulative departure concept has hydrologic meaning in the short term, as a generalized evaluation of either meager or abundant rainfall, and when utilized in connection with a detailed water budget analysis can be used in a predictive fashion. However, the concept can be misapplied if extended over lengthy periods. Misapplication occurs because of several factors including the separation of the mean and median in nonnormal distributions, how the choice of beginning and end points of the data can affect the results, the lack of consideration that above-average rainfall can reset the hydrologic system without mathematically eliminating the accumulated deficit, and the lack of support for the necessary inference that rainfall events and hydrologic levels widely separated in time are linked. Standard statistical techniques are available to reliably determine trends and can provide rigorous statistical measures of the significance of conclusions. Misuse of the CRD concept can lead to erroneous and unsupported conclusions regarding hydrologic relationships and can potentially result in misguided water resource decision-making.
Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2015-01-01
Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.
NASA Astrophysics Data System (ADS)
Anandhi, Aavudai; Kannan, Narayanan
2018-02-01
Water is an essential natural resource. Among many stressors, altered climate is exerting pressure on water resource systems, increasing its demand and creating a need for vulnerability assessments. The overall objective of this study was to develop a novel tool that can translate a theoretical concept (vulnerability of water resources (VWR)) to an operational framework mainly under altered temperature and precipitation, as well as for population change (smaller extent). The developed tool had three stages and utilized a novel systems thinking approach. Stage-1: Translating theoretical concept to characteristics identified from studies; Stage-2: Operationalizing characteristics to methodology in VWR; Stage-3: Utilizing the methodology for development of a conceptual modeling tool for VWR: WR-VISTA (Water Resource Vulnerability assessment conceptual model using Indicators selected by System's Thinking Approach). The specific novelties were: 1) The important characteristics in VWR were identified in Stage-1 (target system, system components, scale, level of detail, data source, frameworks, and indicator); 2) WR-VISTA combined two vulnerability assessments frameworks: the European's Driver-Pressure-State-Impact-Response framework (DPSIR) and the Intergovernmental Panel on Climate Change's framework (IPCC's); and 3) used systems thinking approaches in VWR for indicator selection. The developed application was demonstrated in Kansas (overlying the High Plains region/Ogallala Aquifer, considered the "breadbasket of the world"), using 26 indicators with intermediate level of detail. Our results indicate that the western part of the state is vulnerable from agricultural water use and the eastern part from urban water use. The developed tool can be easily replicated to other regions within and outside the US.
ISRU Development Strategy and Recent Activities to Support Near and Far Term Missions
NASA Astrophysics Data System (ADS)
Baird, Russell S.; Sanders, Gerald B.; Simon, Thomas M.
2003-01-01
The practical expansion of humans beyond low Earth orbit into near-Earth space and out into the solar system for exploration, commercialization, tourism, and colonization will require the effective utilization of whatever indigenous resources are available to make these endeavors economically feasible and capable of extended operations. This concept of ``living off the land'' is called In-Situ Resource Utilization (ISRU). The resources available for ISRU applications vary widely, depending upon the location. However, there are resources, technologies, and processes that are common to multiple destinations and ISRU-related applications. These resources range from carbon dioxide (CO2) and water vapor found in human habitats (surface & spacecraft) and in the Martian atmosphere, to water (ice and hydrated minerals) and various oxygen, carbon, and metal-bearing resources found on comets and asteroids, and in planetary surface materials at numerous destinations of interest (Moon, Mars, Titan, and Europa). Many parties are investigating the common technologies and processes to effectively extract and use these resources. This paper will discuss how ISRU is enabling for both near and far term human exploration missions, and present a summary of recent and on-going ISRU work sponsored by the NASA/Johnson Space Center. Technology development activities that will be described in detail include an advanced CO2 freezer acquisition system, a multi-fluid common bulkhead cryogenic storage tank, and a variety of microchannel chemical reactor concepts. Recent advanced Sabatier reactor concept development activities in preparation for later, end-to-end system testing will be described as well. This paper will also discuss an ISRU-based strategy to enable extensive robotic and human surface exploration operations and a related on-going demonstration program for a fuel cell based power plant for rover applications. Technology commonalities between ISRU, life support systems, and Extra Vehicular Activity (EVA), applications will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel withmore » the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)« less
Resource utilization during software development
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1988-01-01
This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.
Applying Intermediate Microeconomics to Terrorism
ERIC Educational Resources Information Center
Anderton, Charles H.; Carter, John R.
2006-01-01
The authors show how microeconomic concepts and principles are applicable to the study of terrorism. The utility maximization model provides insights into both terrorist resource allocation choices and government counterterrorism efforts, and basic game theory helps characterize the strategic interdependencies among terrorists and governments.…
Take a Break: A Token Economy in the Fifth Grade.
ERIC Educational Resources Information Center
Hail, John M.
2000-01-01
Describes the use of a token economy in a fifth-grade classroom that teaches students economic concepts and helps develop their decision-making skills. States that students learn about scarcity, savings, price, inflation, insurance, rent, and utilities. Includes additional resources. (CMK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brokensha, D.; Castro, A.P.; Kundu, M.
1984-04-01
Using a systems approach and focusing on the social context, the study examines natural resource management in relation to fuelwood production and agroforestry. An initial section describing the use and interlinkage of the concepts of ecozone and ecosystem is followed by a discussion of problem ecozones, human use of ecozones, agricultural ecosystems, resource competition, uses of trees and forest products, and tree planting. Rural resource management strategies at the household, community, local, and state levels are discussed in the context of political economy, land tenure and rights, tenancy and sharecropping, group or public landholding, and acquisition and transfer of land.
White meat-Green farm: case study of Brinson Farms
USDA-ARS?s Scientific Manuscript database
Comprehensive on-farm resource utilization and renewable energy generation at the farm scale are not new concepts. However, truly encompassing implementation of these ideals is lacking. Brinson Farms operates 10 commercial broiler houses. The farm generates heat for its houses using biomass boile...
Martian Atmospheric Dust Mitigation for ISRU Intakes via Electrostatic Precipitation
NASA Technical Reports Server (NTRS)
Phillips, James R., III; Pollard, Jacob R. S.; Johansen, Michael R.; Mackey, Paul J.; Clements, Sid; Calle, Carlos I.
2016-01-01
This document is the presentation to be given at the 2016 American Society of Civil Engineers Earth and Space Conference to examine the concept of using electrostatic precipitation for Martian atmospheric dust mitigation of the intakes of in-situ resource utilization reactors.
Sustainability can be broadly defined as the resilient outcome of the interaction among social equity, economic stability, and environmental quality factors. For example, the utilization of natural resource capitals are constrained by economic forces, and further modulated by soc...
International standards for health economic evaluation with a focus on the German approach.
Riedel, R; Repschläger, U; Griebenow, R; Breitkopf, S; Schmidt, S; Guhl, A
2013-08-01
Health economic evaluation (HEE) is increasingly used in healthcare decision-making on the allocation of limited resources in national healthcare systems. Although the methods used for HEE vary in different countries, all economic evaluations address two questions: Are limited resources used optimally? Is value for money achieved in their use? Our objective is to explain some fundamental concepts in HEE and how these concepts are adapted in different countries, notably in Germany. We performed a bibliographic search to identify existing methods of health economic evaluation of new drugs used by the official agencies of 11 countries (Austria, Australia, Canada, Finland, France, the Netherlands, Norway, New Zealand, Sweden, the United States and England and Wales) and compared them with that used by the German national agency IQWiG. All countries considered follow internationally established standards of HEE. The majority of countries, including Germany, utilize primary outcome parameters such as disease-related morbidity and mortality for assessing relative efficacy and effectiveness. The most frequently recommended form of health economic evaluation is the cost-utility analysis (CUA). The German IQWIG is the only HTA body to use the cost-benefit concept of 'efficiency frontier' in its assessment. While the core principles of HEE are the same worldwide, there is a lack of harmonization in the details. This requires resource-consuming adaptations in the analyses to meet different national requirements. We describe the core principles of HEE as a common basis for further discussions by all stakeholders. © 2013 John Wiley & Sons Ltd.
First Lunar Outpost support study
NASA Technical Reports Server (NTRS)
Bartz, Christopher; Cook, John; Rusingizandekwe, Jean-Luc
1993-01-01
The First Lunar Outpost (FLO) is the first manned step in the accomplishment of the Space Exploration Initiative, the Vice President's directive to NASA on the 20th anniversary of the Apollo moon landing. FLO's broad objectives are the establishment of a permanent human presence on the moon, supporting the utilization of extraterrestrial resources in a long-term, sustained program. The primary objective is to emplace and validate the first elements of a man tended outpost on the lunar surface to provide the basis for: (1) establishing, maintaining and expanding human activities and influence across the surface; (2) establishing, maintaining and enhancing human safety and productivity; (3) accommodating space transportation operations to and from the surface; (4) accommodating production of scientific information; (5) exploiting in-situ resources. Secondary objectives are: (1) to conduct local, small scale science (including life science); (2) In-situ resource utilization (ISRU) demonstrations; (3) engineering and operations tests; (4) to characterize the local environment; and (5) to explore locally. The current work is part of ongoing research at the Sasakawa International Center for Space Architecture supporting NASA's First Lunar Outpost initiative. Research at SICSA supporting the First Lunar Outpost initiative has been funded through the Space Exploration Initiatives office at Johnson Space Center. The objectives of the current study are to further develop a module concept from an evaluation of volumetric and programmatic requirements, and pursue a high fidelity design of this concept, with the intention of providing a high fidelity design mockup to research planetary design issues and evaluate future design concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitner, S.
In the current economic climate and for the foreseeable future, resource policy (especially with respect to energy consumption) has the potential to make a profound impact upon the economic life of our communities. Energy and economic policies should be viewed as catalysts that can help a community - and ultimately a state, or even a nation - achieve larger societal goals such as enhanced employment opportunities. To achieve this potential, we must divorce ourselves from unproductive past concepts and understand the inherent constraints associated with resource utilization to better work them to the advantage of the community. The key elementmore » here is to ensure that community economic goals shape the policymaking process. Without such considerations neither communities nor their respective nations will be able to offset fully the growing economic burden imposed by restrictions arising from a ''business-as-usual'' approach to resource utilization.« less
Asteroid exploration and utilization: The Hawking explorer
NASA Technical Reports Server (NTRS)
Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian
1991-01-01
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.
Asteroid exploration and utilization: The Hawking explorer
NASA Astrophysics Data System (ADS)
Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian
1991-12-01
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.
The Use of COCOON in Teaching Silviculture
ERIC Educational Resources Information Center
Vacik, Harald; Wolfslehner, Bernhard; Spork, Josef; Kortschak, Ernst
2006-01-01
At the Institute of Silviculture at the University of Natural Resources and Applied Life Sciences, Vienna, students learn to cross-link ecological, socio-economic and technical knowledge of maintaining, regenerating, tending and utilizing forests in a sustainable way. They learn complex concepts and processes most successfully when they are…
Internal Labor Markets: An Empirical Investigation.
ERIC Educational Resources Information Center
Mahoney, Thomas A.; Milkovich, George T.
Methods of internal labor market analysis for three organizational areas are presented, along with some evidence about the validity and utility of conceptual descriptions of such markets. The general concept of an internal labor market refers to the process of pricing and allocation of manpower resources with an employing organization and rests…
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Larson, William E.
2012-01-01
Incorporation of In-Situ Resource Utilization (ISRU) and the production of mission critical consumables for 9 propulsion, power, and life support into mission architectures can greatly reduce the mass, cost, and risk of missions 10 leading to a sustainable and affordable approach to human exploration beyond Earth. ISRU and its products can 11 also greatly affect how other exploration systems are developed, including determining which technologies are 12 important or enabling. While the concept of lunar ISRU has existed for over 40 years, the technologies and systems 13 had not progressed much past simple laboratory proof-of-concept tests. With the release of the Vision for Space 14 Exploration in 2004 with the goal of harnessing the Moon.s resources, NASA initiated the ISRU Project in the 15 Exploration Technology Development Program (ETDP) to develop the technologies and systems needed to meet 16 this goal. In the five years of work in the ISRU Project, significant advancements and accomplishments occurred in 17 several important areas of lunar ISRU. Also, two analog field tests held in Hawaii in 2008 and 2010 demonstrated 18 all the steps in ISRU capabilities required along with the integration of ISRU products and hardware with 19 propulsion, power, and cryogenic storage systems. This paper will review the scope of the ISRU Project in the 20 ETDP, ISRU incorporation and development strategies utilized by the ISRU Project, and ISRU development and 21 test accomplishments over the five years of funded project activity.
Recent concepts in missions to Mars - Extraterrestrial processes
NASA Technical Reports Server (NTRS)
Ramohalli, K. N.; Ash, R. L.; Lawton, E. A.; French, J. R.; Frisbee, R. H.
1986-01-01
This paper presents some recent concepts in Mars Sample Return (MSR) missions that utilize extraterrestrial resources. The concepts examined include the power and energy needs of this mission. It is shown that solar energy is not especially attractive. Radioisotopic power generator and a Rankine cycle use are seen to be viable options. Quantitative estimates, taking into consideration state-of-the-art and projected technologies indicate that the power/energy per se is not critical to the mission - but reliability is. Hence, various modern options for the components of the power generation and utilization are discussed. The dramatic savings in Shuttle (or other) vehicle launches are quantitatively plotted. The basic system that is discussed here is the production of hydrocarbon (methane) fuel and oxygen from Martian atmosphere. For the simplest mission, it is seen that earth-carried methane burned with oxygen produced on site provides the best system.
NASA Technical Reports Server (NTRS)
Roberts, Christopher J.; Morgenstern, Robert M.; Israel, David J.; Borky, John M.; Bradley, Thomas H.
2017-01-01
NASA's next generation space communications network will involve dynamic and autonomous services analogous to services provided by current terrestrial wireless networks. This architecture concept, known as the Space Mobile Network (SMN), is enabled by several technologies now in development. A pillar of the SMN architecture is the establishment and utilization of a continuous bidirectional control plane space link channel and a new User Initiated Service (UIS) protocol to enable more dynamic and autonomous mission operations concepts, reduced user space communications planning burden, and more efficient and effective provider network resource utilization. This paper provides preliminary results from the application of model driven architecture methodology to develop UIS. Such an approach is necessary to ensure systematic investigation of several open questions concerning the efficiency, robustness, interoperability, scalability and security of the control plane space link and UIS protocol.
Solid state instrumentation concepts for earth resource observation
NASA Technical Reports Server (NTRS)
Richard, H. L.
1982-01-01
Late in 1980, specifications were prepared for detail design definition of a six band solid state multispectral instrument having three visible (VIS), one near infrared (NIR), and two short wave infrared (SWIR) bands. This instrument concept, known as the Multispectral Linear Array (MLA), also offered increased spatial resolution, on board gain and offset correction, and additional operational modes which would allow for cross track and stereoscopic viewing as well as a multialtitude operational capability. A description is presented of a summary of some of the salient features of four different MLA design concepts, as developed by four American companies. The designs ranged from the use of multiple refractive telescopes utilizing three groups of focal plane detectors electronic correlation processing for achieving spatial registration, and incorporating palladium silicide (PdSi) SWIR detectors, to a four-mirror all-reflective telecentric system utilizing a beam splitter for spatial registration.
NASA Technical Reports Server (NTRS)
Bayliss, B. P.
1974-01-01
Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.
Real-time information management environment (RIME)
NASA Astrophysics Data System (ADS)
DeCleene, Brian T.; Griffin, Sean; Matchett, Garry; Niejadlik, Richard
2000-08-01
Whereas data mining and exploitation improve the quality and quantity of information available to the user, there remains a mission requirement to assist the end-user in managing the access to this information and ensuring that the appropriate information is delivered to the right user in time to make decisions and take action. This paper discusses TASC's federated architecture to next- generation information management, contrasts the approach against emerging technologies, and quantifies the performance gains. This architecture and implementation, known as Real-time Information Management Environment (RIME), is based on two key concepts: information utility and content-based channelization. The introduction of utility allows users to express the importance and delivery requirements of their information needs in the context of their mission. Rather than competing for resources on a first-come/first-served basis, the infrastructure employs these utility functions to dynamically react to unanticipated loading by optimizing the delivered information utility. Furthermore, commander's resource policies shape these functions to ensure that resources are allocated according to military doctrine. Using information about the desired content, channelization identifies opportunities to aggregate users onto shared channels reducing redundant transmissions. Hence, channelization increases the information throughput of the system and balances sender/receiver processing load.
NASA Technical Reports Server (NTRS)
Smith, Stephen F.; Pathak, Dhiraj K.
1991-01-01
In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.
NASA Astrophysics Data System (ADS)
Helmig, R.; Becker, B.; Flemisch, B.
2015-12-01
The natural subsurface is gaining in importance for a variety of engineering applications related to energy supply. At the same time it is already utilized in many ways. On the one hand, the subsurface with its groundwater system represents the most important source of drinking water; on the other hand, it contains natural resources such as petroleum, natural gas and coal. In recent years, the subsurface has been gaining importance as a resource of energy and as an energy and waste repository. It can serve as a short-, medium- or long-term storage medium for energy in various forms, e.g. in the form of methane (CH4), hydrogen (H2) or compressed air. The subsurface is also attracting increasing interest as a natural source of energy, regarding, for instance, the extraction of fossil methane by hydraulic fracturing or the utilization of geothermal energy as a renewable energy source. As a result, with increasing exploitation, resource conflicts are becoming more and more common and complex. Modeling concepts for simulating multiphase flow that can reproduce the high complexity of the underlying processes in an efficient way need to be developed. The application of these model concepts is of great importance with respect to feasibility, risk analysis, storage capacity and sensitivity issues. This talk will give an overview on possible utilization conflicts in subsurface systems and how the groundwater is affected. It will focus on presenting fundamental properties and functions of a compositional multiphase system in a porous medium and introduce basic multiscale and multiphysics concepts as well as formulate conservation laws for simulating energy storage in the subsurface. Large-scale simulations that show the general applicability of the modeling concepts of such complicated natural systems, especially the impact on the groundwater of simultaneously using geothermal energy and storing chemical and thermal energy, and how such real large-scale systems provide a good environment for balancing the efficiency potential and possible weaknesses of the approaches will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Koenig, Gregory A; Machovec, Dylan
2016-01-01
Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e.,more » Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.« less
Puyol, Daniel; Batstone, Damien J; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O
2016-01-01
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.
2017-01-01
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567
NASA Astrophysics Data System (ADS)
Dreyer, Christopher B.; Abbud-Madrid, Angel; Atkinson, Jared; Lampe, Alexander; Markley, Tasha; Williams, Hunter; McDonough, Kara; Canney, Travis; Haines, Joseph
2018-06-01
Many surfaces found on the Moon, asteroids, Mars, moons, and other planetary bodies are covered in a fine granular material known as regolith. Increased knowledge of the physical properties of extraterrestrial regolith surfaces will help advance the scientific knowledge of these bodies as well as the development of exploration (e.g., instrument and robotic) and in situ resource utilization (ISRU) systems. The Center for Space Resources at the Colorado School of Mines as part of the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust of NASA's Solar System Exploration Research Virtual Institute has developed a novel system, called the ISRU Experimental Probe (IEP) that can support studies of dry and icy regolith from -196 to 150 °C and pressure from laboratory ambient pressure to 10-7 Torr. The IEP system and proof-of-concept results are presented in this paper.
ERIC Educational Resources Information Center
Lee, Moosung
2010-01-01
This article discusses conceptual considerations for social capital research in education from a social network perspective. Specifically, the article raises three key conceptual issues that call for further elaboration of concepts of social capital: redefining potential resources as accessible but un-utilized sources of social capital;…
2015-03-01
our focus will remain on Android rather than being all-inclusive of others such as iOS, Blackberry 10, and Windows Phone. The proof-of-concept...the attack surface for malicious applications to compromise vulnerable Services grows . Additionally, Services also have a life cycle with
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
The guide is one in a series for teachers, students, and community members to help them utilize community resources in developing and teaching environmental concepts, responsibility, and problem solving. This particular guide focuses on social studies and language arts aspects of environmental education for sixth graders. Background information…
Short Lumber: Concept and Acceptance
Janice K. Wiedenbeck
1993-01-01
The primary purpose of this study was to evaluate short length lumber (less than 8 feet long) utilization opportunities within the furniture and cabinet industries. If such a high-value market for short length lumber could be developed, the profit potential for many sawmills would increase and the forest resource management options in many areas would expand. Short...
ERIC Educational Resources Information Center
Oliver-Hoyo, Maria T.; Pinto, Gabriel
2008-01-01
This instructional resource utilizes consumer product information by which students compare theoretical stoichiometric calculations to CO[subscript 2] car emissions and fuel consumption data. Representing graphically the emission of CO[subscript 2] versus consumption of fuel provides a tangible way of connecting concepts studied in chemistry…
ERIC Educational Resources Information Center
Lu, Fong-Mei; Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James
2008-01-01
This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating…
Cost comparisons for the use of nonterrestrial materials in space manufacturing of large structures
NASA Technical Reports Server (NTRS)
Bock, E. H.; Risley, R. C.
1979-01-01
This paper presents results of a study sponsored by NASA to evaluate the relative merits of constructing solar power satellites (SPS) using resources obtained from the earth and from the moon. Three representative lunar resources utilization (LRU) concepts are developed and compared with a previously defined earth baseline concept. Economic assessment of the alternatives includes cost determination, economic threshold sensitivity to manufacturing cost variations, cost uncertainties, program funding schedule, and present value of costs. Results indicate that LRU for space construction is competitive with the earth baseline approach for a program requiring 100,000 metric tons per year of completed satellites. LRU can reduce earth-launched cargo requirements to less than 10% of that needed to build satellites exclusively from earth materials. LRU is potentially more cost-effective than earth-derived material utilization, due to significant reductions in both transportation and manufacturing costs. Because of uncertainties, cost-effectiveness cannot be ascertained with great confidence. The probability of LRU attaining a lower total program cost within the 30-year program appears to range from 57 to 93%.
Development of a figure-of-merit for space missions
NASA Technical Reports Server (NTRS)
Preiss, Bruce; Pan, Thomas; Ramohalli, Kumar
1991-01-01
The concept of a quantitative figure-of-merit (FOM) to evaluate different and competing options for space missions is further developed. Over six hundred individual factors are considered. These range from mission orbital mechanics to in-situ resource utilization (ISRU/ISMU) plants. The program utilizes a commercial software package for synthesis and visual display; the details are completely developed in-house. Historical FOM's are derived for successful space missions such as the Surveyor, Voyager, Apollo, etc. A cost FOM is also mentioned. The bulk of this work is devoted to one specific example of Mars Sample Return (MSR). The program is flexible enough to accommodate a variety of evolving technologies. Initial results show that the FOM for sample return is a function of the mass returned to LEO, and that missions utilizing ISRU/ISMU are far more cost effective than those that rely on all earth-transported resources.
Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (aboutmore » 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)« less
Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less
Lunar in situ resource utilization by activated thermites
NASA Astrophysics Data System (ADS)
Hobosyan, Mkhitar; Martirosyan, Karen
2011-10-01
NASA's anticipated returns to the Moon by 2020, subsequent establishment of lunar in situ resource utilization technologies are essential. The surface of Moon is covered with small eroded particles of regolith called lunar dust that adheres electro-statically to everything coming in contact with it, and is of much concern for future lunar base because of its continual mitigation. The next major concern is the protection of equipment and personnel in long term expeditions from harmful UV radiation, which can be made by constructing protective buildings. For construction of permanent structures it is highly desired to have regular shaped sintered regolith with utilization of local materials and with minimum energy consumption. In this study the concept of sintering of lunar regolith with activated thermite reactions is discussed. The thermodynamic calculations as well as the experimental procedure is provided to prove the effectiveness of activated thermites for regolith sintering using local lunar resources with a low (15 wt. %) concentration of aluminum or magnesium. The thermite method is much more energy efficient than the other sintering methods suggested in literature.
NASA's Analog Missions: Driving Exploration Through Innovative Testing
NASA Technical Reports Server (NTRS)
Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.
2012-01-01
Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).
Progression In The Concepts Of Cognitive Sense Wireless Networks - An Analysis Report
NASA Astrophysics Data System (ADS)
Ajay, V. P.; Nesasudha, M.
2017-10-01
This paper illustrates the conception of networks, their primary goals (from day one to the present), the changes it had to endure to get to its present form and the developments which are in progress and in store for further standardization. The analysis gives more importance to the specifics of the Cognitive Radio Networks, which makes use of the dynamic spectrum access procedures, framed for better utilization of our available spectrum resources. The main conceptual difficulties and current research trends are also discussed in terms of real time implementation.
ERIC Educational Resources Information Center
Southwest Educational Development Lab., Austin, TX.
One of a series of booklets on disability research, this paper explores two major developments in the application of information technology: health care informatics and knowledge management. Both of these concepts focus on maximizing the value of, and access to, information resources. Both use technology to create interactive systems through which…
Yang, Shuo; Lin, Ling; Li, Shao Peng; Li, Qiang; Wang, Xiu Teng; Sun, Liang
2017-05-01
Utilization of fly ash is of great importance in China in the context of resource and environmental crises. Different fly ash utilization processes are proposed, and some have been practically applied. However, none of these fly ash utilization pathways has been evaluated comprehensively by integrating both environmental and economic perspectives. In this study, three high-aluminum fly ash utilization methods in Mongolia were assessed and compared based on the concept of eco-efficiency. The environmental assessment was conducted in accordance with life-cycle assessment principles, and a monetization-weighting approach was applied to obtain social willingness-to-pay as a reflection of environmental impact. The environmental assessment results revealed that the reuse of fly ash had significant advantage for saving primary resource, while solid waste, depletion of water, and global warming were the three highest environmental impacts from the life cycle perspective. The economic performance assessment showed positive net profits for fly ash utilization, but high value-added products were not necessarily indicative of better economic performance due to the relatively high operation cost. Comparison of the eco-efficiency indicators (EEIs) implied that the process of scenario 1#, which produced mullite ceramic and active calcium silicate, was the most recommended out of the three scenarios on the present scale. This judgment was consistent with the evaluation of the resource utilization rate. The present study showed that the EEI could be used to compare different fly ash utilization processes in a comprehensive and objective manner, thus providing definitive and insightful suggestions for decision-making and technical improvement.
In Situ Resource-Based Lunar and Martian Habitat Structures Development at NASA/MSFC
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Fiske, Michael R.; McGregory, Walter; Pope, Regina D.
2005-01-01
As the nation prepares to return to the Moon and subsequently to Mars, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of habitat structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. A relatively large number of habitat structure configurations can be developed from a relatively small set of in-situ resource-based construction products, including, blocks, raw regolith, reinforced concrete, and glass products. A much larger group of habitat designs can be developed when "imported" material are brought from Earth, including thin films and liners, and foldable, or expandable metal structures. These, and other technologies have been identified, and subjected to a rigorous trade study evaluation with respect to exploration and other performance criteria. In this paper, results of this trade study will be presented, as well as various habitat structure design concepts and concepts for construction automation. Results of initial tests aimed at concrete, block and glass production using Lunar regolith simulants will also be presented. Key issues and concerns will be discussed, as well as design concepts for a Lunar environment testbed to be developed at MSFC's Microgravity Development Laboratory. (MDL).
In-situ Resource-based Lunar and Martian Habitat Structures Development at NASA/MSFC
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Burks, Kevin H.; Fiske, Michael R.; Strong, Janet D.; McGregor, Walter
2005-01-01
As the nation prepares to return to the Moon and subsequently to Mars, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of habitat structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. A relatively large number of habitat structure configurations can be developed from a relatively small set of in-situ resource-based construction products, including, blocks, raw regolith, reinforced concrete, and glass products. A much larger group of habitat designs can be developed when "imported" material are brought from Earth, including thin films and liners, and foldable, or expandable metal structures. These, and other technologies have been identified, and subjected to a rigorous trade study evaluation with respect to exploration and other performance criteria. In this paper, results of this trade study will be presented, as well as various habitat structure design concepts and concepts for construction automation. Results of initial tests aimed at concrete, block and glass production using Lunar regolith simulants will also be presented. Key issues and concerns will be discussed, as well as design concepts for a Lunar environment testbed to be developed at MSFC's Microgravity Development Laboratory (MDL).
Materials and design concepts for space-resilient structures
NASA Astrophysics Data System (ADS)
Naser, Mohannad Z.; Chehab, Alaa I.
2018-04-01
Space exploration and terraforming nearby planets have been fascinating concepts for the longest time. Nowadays, that technological advancements with regard to space exploration are thriving, it is only a matter of time before humans can start colonizing nearby moons and planets. This paper presents a state-of-the-art literature review on recent developments of "space-native" construction materials, and highlights evolutionary design concepts for "space-resilient" structures (i.e., colonies and habitats). This paper also details effects of harsh (and unique) space environments on various terrestrial and extraterrestrial construction materials, as well as on space infrastructure and structural systems. The feasibility of exploiting available space resources in terms of "in-situ resource utilization" and "harvesting of elements and compounds", as well as emergence of enabling technologies such as "cultured (lab-grown)" space construction materials are discussed. Towards the end of the present review, number of limitations and challenges facing Lunar and Martian exploration, and venues in-need for urgent research are identified and examined.
MIUS community conceptual design study
NASA Technical Reports Server (NTRS)
Fulbright, B. E.
1976-01-01
The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.
Study of network resource allocation based on market and game theoretic mechanism
NASA Astrophysics Data System (ADS)
Liu, Yingmei; Wang, Hongwei; Wang, Gang
2004-04-01
We work on the network resource allocation issue concerning network management system function based on market-oriented mechanism. The scheme is to model the telecommunication network resources as trading goods in which the various network components could be owned by different competitive, real-world entities. This is a multidisciplinary framework concentrating on the similarity between resource allocation in network environment and the market mechanism in economic theory. By taking an economic (market-based and game theoretic) approach in routing of communication network, we study the dynamic behavior under game-theoretic framework in allocating network resources. Based on the prior work of Gibney and Jennings, we apply concepts of utility and fitness to the market mechanism with an intention to close the gap between experiment environment and real world situation.
1988-08-19
take place over the period of several days. Decisions regarding MOPP level or resource allocation made on day I may have no immediate impact, but a...present -- conditions, and manage a resource library to assist the DCA in making decisions under conditions of uncertainty. Several areas of utilization are...students work through a scenario, the device couid then display the consequences of those decisions or provide optimal decision recommendations
Microwave remote sensing from space for earth resource surveys
NASA Technical Reports Server (NTRS)
1977-01-01
The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.
Feltman, D M; Du, H; Leuthner, S R
2012-11-01
To understand neonatologists' attitudes toward end-of-life (EOL) management in clinical scenarios, EOL ethical concepts and resource utilization. American Academy of Pediatrics (AAP) Perinatal section members completed an anonymous online survey. Respondents indicated preferences in limiting life-sustaining treatments in four clinical scenarios, ranked agreement with EOL-care ethics statements, indicated outside resources previously used and provided demographic information. In all, 451 surveys were analyzed. Across clinical scenarios and as general ethical concepts, withdrawal of mechanical ventilation in severely affected patients was most accepted by respondents; withdrawal of artificial nutrition and hydration was least accepted. One-third of neonatologists did not agree that non-initiation of treatment is ethically equivalent to withdrawal. Around 20% of neonatologists would not defer care if uncomfortable with a parent's request. Respondents' resources included ethics committees, AAP guidelines and legal counsel/courts. Challenges to providing just, unified EOL care strategies are discussed, including deferring care, limiting artificial nutrition/hydration and conditions surrounding ventilator withdrawal.
Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science
NASA Astrophysics Data System (ADS)
Emadzadeh, Ehsan
Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.
NASA Astrophysics Data System (ADS)
Sallam, Osama M.
2014-12-01
The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.
NASA Astrophysics Data System (ADS)
Shi, Chenchen; Zhan, Jinyan
Virtual water refers to the volumes of water required to produce a commodity or service. It reflects human's actual consumption of water resources and therefore has certain significance in water resources management. Over the years, the concept of virtual water has caught the attentions of water manager and decision maker. In order to utilize this concept, the accounting and estimation of virtual water is the foundation that lies in this issue. Till now, the accounting methods mainly include the method provided by Food and Agriculture Organization of the United Nations (FAO), water footprint and input-output analysis method. In this paper, we chose Northwest China, which is a typical arid region that is facing with rapid economic development, as the study area and built an Input-Output (IO) analysis method to estimate virtual water among different industry sectors in the northwest China. The accounting and estimation results could be used to give suggestions to increase water use efficiency and promote virtual water trade in the study area. Comparison of the proposed method with other prevailing method was also analyzed. The introduced method could be utilized for accounting and estimation of virtual water by sectors, with its superiority in characterizing industrial water consumption and the accounting results could lend certain credence to the water resource management and industrial transformation for the future economic development of northwest China.
Alpha-Fair Resource Allocation under Incomplete Information and Presence of a Jammer
NASA Astrophysics Data System (ADS)
Altman, Eitan; Avrachenkov, Konstantin; Garnaev, Andrey
In the present work we deal with the concept of alpha-fair resource allocation in the situation where the decision maker (in our case, the base station) does not have complete information about the environment. Namely, we develop a concept of α-fairness under uncertainty to allocate power resource in the presence of a jammer under two types of uncertainty: (a) the decision maker does not have complete knowledge about the parameters of the environment, but knows only their distribution, (b) the jammer can come into the environment with some probability bringing extra background noise. The goal of the decision maker is to maximize the α-fairness utility function with respect to the SNIR (signal to noise-plus-interference ratio). Here we consider a concept of the expected α-fairness utility function (short-term fairness) as well as fairness of expectation (long-term fairness). In the scenario with the unknown parameters of the environment the most adequate approach is a zero-sum game since it can also be viewed as a minimax problem for the decision maker playing against the nature where the decision maker has to apply the best allocation under the worst circumstances. In the scenario with the uncertainty about jamming being in the system the Nash equilibrium concept is employed since the agents have non-zero sum payoffs: the decision maker would like to maximize either the expected fairness or the fairness of expectation while the jammer would like to minimize the fairness if he comes in on the scene. For all the plots the equilibrium strategies in closed form are found. We have shown that for all the scenarios the equilibrium has to be constructed into two steps. In the first step the equilibrium jamming strategy has to be constructed based on a solution of the corresponding modification of the water-filling equation. In the second step the decision maker equilibrium strategy has to be constructed equalizing the induced by jammer background noise.
In-Situ Resource Utilization for further exploration of the Moon
NASA Astrophysics Data System (ADS)
Thakore, B.; Pohajsky, S.
In-Situ Resource Utilization ISRU is the concept of living off the land Initially proposed in the mid 20th Century many experts have suggested that ISRU is an important enabler for the expansion of humanity beyond the confines of limited resources on Earth However even today ISRU remains a relatively underdeveloped and under--demonstrated in current exploration roadmaps This paper summarizes the proposals of an interdisciplinary study carried out by 27 students from 17 different countries at the International Space University The study reviewed the past and present ISRU techniques and related robotic technologies in the context of complementing the Moon and Mars exploration scenarios of the major space faring countries The economic viability and benefits of ISRU are examined together with the regulatory ethical and cultural aspects of space resource utilisation The renewed opportunities for moon exploration have rekindled interest in ISRU as an enabling technology It is important to assess both the tangible and intangible benefits of this technology in order to evaluate the technical and economic feasibility of adopting it in support of human exploration of the Moon Mars and beyond
Mechanical properties of small-scale laminated wood composite poles: effects of taper and webs
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2006-01-01
Laminated hollow wood composite poles represent an efficient utilization of the timber resource and a promising alternative for solid poles that are commonly used in the power transmission and telecommunication lines. The objective of this study was to improve the performance of composite poles by introducing the bio-mimicry concept into the design of hollow wood...
ERIC Educational Resources Information Center
Desrosiers, Jean-Yves
1991-01-01
Task modulation is being examined as a means for improved utilization of human resources and greater flexibility within departments of Quebec universities. In this paper (written in French), a definition for this concept is proposed, the literature is reviewed, and prerequisite and other conditions critical to successful implementation are…
The Philippine Bases: Continuing Utility in a Changing Strategic Context,
1980-02-01
economy. One study has shown that the total impact of such spending (local purchases , construction, wages to Filipinos, and various US private spending...results of research studies in selected areas of national strategy formulation and management of national security resources. Unless otherwise noted...NTENDINI WSJ.......: .3 Background .. . . . . . . . . . . . . . . . . .3 The Forward Strategy Concept ./..:*....**’* 5 The "Failback" Option to Gua
Research on agricultural ecology and environment analysis and modeling based on RS and GIS
NASA Astrophysics Data System (ADS)
Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng
2009-07-01
Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.
Status report on renewable energy in the States
NASA Astrophysics Data System (ADS)
Swezey, B.; Sinclair, K.
1992-12-01
As the concept of integrated resource planning has spread among states and utilities, a reexamination of the role of renewable energy sources in the utility resource mix is taking place. This report documents the findings of a study of state regulatory commissions undertaken to: (1) help assess the state of knowledge and awareness about renewable energy resources and technologies; (2) assess the impacts of state policies on renewable energy development; and (3) identify important information needs. The key findings from this effort are: Renewable energy development has occurred only slowly over the last decade, and a small number of states account for the bulk of development. The development that has occurred has been limited to non-utility entities. Directed state policies have been a key driver in renewable energy development. Those states not currently addressing renewables may need more data and information before they proceed with directed policies. Other important observations are: The cost of renewables is an overriding concern. Regulators distinguish between 'emerging' and 'established' renewable energy technologies. Specific data are lacking on state-level renewable energy development. Detailed renewable resource assessments have yet to be performed in many states. This report identifies renewable energy information needs of state regulators. However, a number of concerns are also identified that must be addressed before renewables will receive serious attention in many of those states with limited renewables experience. Finally, the report catalogs a wide variety of policies that have been utilized in the states to promote greater development of renewable energy.
What can we learn from resource pulses?
Yang, Louie H; Bastow, Justin L; Spence, Kenneth O; Wright, Amber N
2008-03-01
An increasing number of studies in a wide range of natural systems have investigated how pulses of resource availability influence ecological processes at individual, population, and community levels. Taken together, these studies suggest that some common processes may underlie pulsed resource dynamics in a wide diversity of systems. Developing a common framework of terms and concepts for the study of resource pulses may facilitate greater synthesis among these apparently disparate systems. Here, we propose a general definition of the resource pulse concept, outline some common patterns in the causes and consequences of resource pulses, and suggest a few key questions for future investigations. We define resource pulses as episodes of increased resource availability in space and time that combine low frequency (rarity), large magnitude (intensity), and short duration (brevity), and emphasize the importance of considering resource pulses at spatial and temporal scales relevant to specific resource-onsumer interactions. Although resource pulses are uncommon events for consumers in specific systems, our review of the existing literature suggests that pulsed resource dynamics are actually widespread phenomena in nature. Resource pulses often result from climatic and environmental factors, processes of spatiotemporal accumulation and release, outbreak population dynamics, or a combination of these factors. These events can affect life history traits and behavior at the level of individual consumers, numerical responses at the population level, and indirect effects at the community level. Consumers show strategies for utilizing ephemeral resources opportunistically, reducing resource variability by averaging over larger spatial scales, and tolerating extended interpulse periods of reduced resource availability. Resource pulses can also create persistent effects in communities through several mechanisms. We suggest that the study of resource pulses provides opportunities to understand the dynamics of many specific systems, and may also contribute to broader ecological questions at individual, population, and community levels.
Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.
2014-01-01
Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.
H2@Scale Resource and Market Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark
The 'H2@Scale' concept is based on the potential for wide-scale utilization of hydrogen as an energy intermediate where the hydrogen is produced from low cost energy resources and it is used in both the transportation and industrial sectors. H2@Scale has the potential to address grid resiliency, energy security, and cross-sectoral emissions reductions. This presentation summarizes the status of an ongoing analysis effort to quantify the benefits of H2@Scale. It includes initial results regarding market potential, resource potential, and impacts of when electrolytic hydrogen is produced with renewable electricity to meet the potential market demands. It also proposes additional analysis effortsmore » to better quantify each of the factors.« less
NASA Technical Reports Server (NTRS)
1975-01-01
A glossary of terms, a work breakdown structure, and work element descriptions, resource needs, and costs are introduced. The generic work breakdown structure was utilized to organize specific structures for each product under study; each structure containing both space and ground elements arrived at via mutual interaction. Concept definition and assessment, provided the study team and the participants visibility of the limits, and the organization of the efforts provided by both groups spelling out where such efforts fit into the generation of processing concepts.
Important features of Sustainable Aggregate Resource Management
Solar, Slavko V.; Shields, Deborah J.; Langer, William H.
2004-01-01
Every society, whether developed, developing or in a phase of renewal following governmental change, requires stable, adequate and secure supplies of natural resources. In the latter case, there could be significant need for construction materials for rebuilding infrastructure, industrial capacity, and housing. It is essential that these large-volume materials be provided in a rational manner that maximizes their societal contribution and minimizes environmental impacts. We describe an approach to resource management based on the principles of sustainable developed. Sustainable Aggregate Resource Management offers a way of addressing the conflicting needs and interests of environmental, economic, and social systems. Sustainability is an ethics based concept that utilizes science and democratic processes to reach acceptable agreements and tradeoffs among interests, while acknowledging the fundamental importance of the environment and social goods. We discuss the features of sustainable aggregate resource management.
Cockpit Resource Management (CRM) training in the 349th military airlift wing
NASA Technical Reports Server (NTRS)
Halliday, John T.; Biegalski, Conrad S.; Inzana, Anthony
1987-01-01
CRM training can be done on a limited budget. It seems that everyone has a special name for their CRM program. A new program was created and entitled, Aircrew Resource Management (ARM) to emphasize the use of the full resources on our aircraft. That is meant to specifically include the loadmasters. The name also emphasizes the concept that all crewmembers are responsible for safe completion of the trip. The loadmasters have been the brightest students to date. They are a classic under-utilized resource. Together, their crew position has been credited with more ARM saves than the engineers and pilots. The seminar-based program is run by two seminar facilitators that is reinforced by Line Oriented Flight Training sessions run by the active-duty counterparts.
NASA Astrophysics Data System (ADS)
Agustinus, E. T. S.
2018-02-01
Indonesia's position on the path of ring of fire makes it rich in mineral resources. Nevertheless, in the past, the exploitation of Indonesian mineral resources was uncontrolled resulting in environmental degradation and marginal reserves. Exploitation of excessive mineral resources is very detrimental to the state. Reflecting on the occasion, the management and utilization of Indonesia's mineral resources need to be good in mining practice. The problem is how to utilize the mineral reserve resources effectively and efficiently. Utilization of marginal reserves requires new technologies and processing methods because the old processing methods are inadequate. This paper gives a result of Multi Blending Technology (MBT) Method. The underlying concept is not to do the extraction or refinement but processing through the formulation of raw materials by adding an additive and produce a new material called functional materials. Application of this method becomes important to be summarized into a scientific paper in a book form, so that the information can spread across multiple print media and become focused on and optimized. This book is expected to be used as a reference for stakeholder providing added value to environmentally marginal reserves in Indonesia. The conclusions are that Multi Blending Technology (MBT) Method can be used as a strategy to increase added values effectively and efficiently to marginal reserve minerals and that Multi Blending Technology (MBT) method has been applied to forsterite, Atapulgite Synthesis, Zeoceramic, GEM, MPMO, SMAC and Geomaterial.
Lattice Boltzmann for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael; Kocheemoolayil, Joseph; Kiris, Cetin
2017-01-01
Increase predictive use of High-Fidelity Computational Aero- Acoustics (CAA) capabilities for NASA's next generation aviation concepts. CFD has been utilized substantially in analysis and design for steady-state problems (RANS). Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc) ü Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles Need an order of magnitude reduction in wall time to solution!
Phase 0 study for a geothermal superheated water proof of concept facility
NASA Technical Reports Server (NTRS)
Douglass, R. H.; Pearson, R. O.
1974-01-01
A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation.
Kurt Merrill; Alan Graefe
1998-01-01
Many natural areas are now in the process of developing climbing management plans in order to control management factors associated with the growth of rock climbing. These factors may include limiting areas of use and limiting the type of climber utilizing the resource. The purpose of this study was to further develop and operationalize the concept of recreation...
Expert Meeting Report: HVAC Fault Detection, Diagnosis, and Repair/Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, David
The concept for the expert meeting described in this report was to bring together most of the stakeholders in the area of FDD, including academic researchers, manufacturers, educators, program managers and implementers, representatives of standards organizations, utilities, HVAC contractors, and home performance contractors to identify the major gaps and to develop ideas about what can be done to capitalize on the residential HVAC efficiency resource.
Expert Meeting Report: HVAC Fault Detection, DIagnosis, and Repair/Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, David
The concept for the expert meeting described in this report was to bring together most of the stakeholders in the area of FDD, including academic researchers, manufacturers, educators, program managers and implementers, representatives of standards organizations, utilities, HVAC contractors, and home performance contractors to identify the major gaps and to develop ideas about what can be done to capitalize on the residential HVAC efficiency resource.
NASA Technical Reports Server (NTRS)
Scheffler, R. L.
1979-01-01
To demonstrate the concept of utility scale electricity production from a high wind energy resource, a program was initiated to construct and test a 3 megawatt (3,000 kW) Schachle wind turbine generator near Palm Springs, California. The background and current status of this program are presented along with a summary of future planned program activities.
[Research progress on water footprint in agricultural products].
Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying
2015-10-01
Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
For NASA's Resource Prospector (RP) Lunar Rover Mission, we are moving away from a control center concept, to a fully distributed operation utilizing control nodes, with decision support from anywhere via mobile devices. This operations concept will utilize distributed information systems, notifications, mobile data access, and optimized mobile data display for off-console decision support. We see this concept of operations as a step in the evolution of mission operations from a central control center concept to a mission operations anywhere concept. The RP example is part of a trend, in which mission expertise for design, development and operations is distributed across countries and across the globe. Future spacecraft operations will be most cost efficient and flexible by following this distributed expertise, enabling operations from anywhere. For the RP mission we arrived at the decision to utilize a fully distributed operations team, where everyone operates from their home institution, based on evaluating the following factors: the requirement for physical proximity for near-real time command and control decisions; the cost of distributed control nodes vs. a centralized control center; the impact on training and mission preparation of flying the team to a central location. Physical proximity for operational decisions is seldom required, though certain categories of decisions, such as launch abort, or close coordination for mission or safety-critical near-real-time command and control decisions may benefit from co-location. The cost of facilities and operational infrastructure has not been found to be a driving factor for location in our studies. Mission training and preparation benefit from having all operators train and operate from home institutions.
Ananiadou, Sophia
2016-01-01
Biomedical literature articles and narrative content from Electronic Health Records (EHRs) both constitute rich sources of disease-phenotype information. Phenotype concepts may be mentioned in text in multiple ways, using phrases with a variety of structures. This variability stems partly from the different backgrounds of the authors, but also from the different writing styles typically used in each text type. Since EHR narrative reports and literature articles contain different but complementary types of valuable information, combining details from each text type can help to uncover new disease-phenotype associations. However, the alternative ways in which the same concept may be mentioned in each source constitutes a barrier to the automatic integration of information. Accordingly, identification of the unique concepts represented by phrases in text can help to bridge the gap between text types. We describe our development of a novel method, PhenoNorm, which integrates a number of different similarity measures to allow automatic linking of phenotype concept mentions to known concepts in the UMLS Metathesaurus, a biomedical terminological resource. PhenoNorm was developed using the PhenoCHF corpus—a collection of literature articles and narratives in EHRs, annotated for phenotypic information relating to congestive heart failure (CHF). We evaluate the performance of PhenoNorm in linking CHF-related phenotype mentions to Metathesaurus concepts, using a newly enriched version of PhenoCHF, in which each phenotype mention has an expert-verified link to a concept in the UMLS Metathesaurus. We show that PhenoNorm outperforms a number of alternative methods applied to the same task. Furthermore, we demonstrate PhenoNorm’s wider utility, by evaluating its ability to link mentions of various other types of medically-related information, occurring in texts covering wider subject areas, to concepts in different terminological resources. We show that PhenoNorm can maintain performance levels, and that its accuracy compares favourably to other methods applied to these tasks. PMID:27643689
Konstantinidis, Stathis Th; Wharrad, Heather; Windle, Richard; Bamidis, Panagiotis D
2017-01-01
The knowledge existing in the World Wide Web is exponentially expanding, while continuous advancements in health sciences contribute to the creation of new knowledge. There are a lot of efforts trying to identify how the social connectivity can endorse patients' empowerment, while other studies look at the identification and the quality of online materials. However, emphasis has not been put on the big picture of connecting the existing resources with the patients "new habits" of learning through their own Personal Learning Networks. In this paper we propose a framework for empowering patients' digital health literacy adjusted to patients' currents needs by utilizing the contemporary way of learning through Personal Learning Networks, existing high quality learning resources and semantics technologies for interconnecting knowledge pieces. The framework based on the concept of knowledge maps for health as defined in this paper. Health Digital Literacy needs definitely further enhancement and the use of the proposed concept might lead to useful tools which enable use of understandable health trusted resources tailored to each person needs.
NASA Technical Reports Server (NTRS)
Simon, Thomas M.
2008-01-01
One of the ways that the Constellation Program can differ from Apollo is to employ a live-off-the-land or In-Situ Resource Utilization (ISRU) supported architecture. The options considered over the past decades for using indigenous materials have varied considerably in terms of what resources to attempt to acquire, how much to acquire, and what the motivations are to acquiring these resources. The latest NASA concepts for supporting the lunar outpost have considered many of these plans and compared these options to customers requirements and desires. Depending on the architecture employed, ISRU technologies can make a significant contribution towards a sustainable and affordable lunar outpost. While extensive ground testing will reduce some mission risk, one or more flight demonstrations prior to the first crew's arrival will build confidence and increase the chance that outpost architects will include ISRU as part of the early outpost architecture. This presentation includes some of the options for using ISRU that are under consideration for the lunar outpost, the precursor missions that would support these applications, and a notional timeline to allow the lessons learned from the precursor missions to support outpost hardware designs.
Lu, Fong-Mei; Stewart, James; White, John G.
2007-01-01
The utilization of biology research resources, coupled with a “learning by inquiry” approach, has great potential to aid students in gaining an understanding of fundamental biological principles. To help realize this potential, we have developed a Web portal for undergraduate biology education, WormClassroom.org, based on current research resources of a model research organism, Caenorhabditis elegans. This portal is intended to serve as a resource gateway for students to learn biological concepts using C. elegans research material. The driving forces behind the WormClassroom website were the strengths of C. elegans as a teaching organism, getting researchers and educators to work together to develop instructional materials, and the 3 P's (problem posing, problem solving, and peer persuasion) approach for inquiry learning. Iterative assessment is an important aspect of the WormClassroom site development because it not only ensures that content is up-to-date and accurate, but also verifies that it does, in fact, aid student learning. A primary assessment was performed to refine the WormClassroom website utilizing undergraduate biology students and nonstudent experts such as C. elegans researchers; results and comments were used for site improvement. We are actively encouraging continued resource contributions from the C. elegans research and education community for the further development of WormClassroom. PMID:17548872
NASA Technical Reports Server (NTRS)
1976-01-01
Integrated Utility Systems (IUS) have been suggested as a means of reducing the cost and conserving the nonrenewable energy resources required to supply utility services (energy, water, and waste disposal) to developments of limited size. The potential for further improving the performance and reducing the cost of IUS installations through the use of energy storage devices is examined and the results are summarized. Candidate energy storage concepts in the general areas of thermal, inertial, superconducting magnetic, electrochemical, chemical, and compressed air energy storage are assessed and the storage of thermal energy as the sensible heat of water is selected as the primary candidate for near term application to IUS.
Biologically Inspired Behavioral Strategies for Autonomous Aerial Explorers on Mars
NASA Technical Reports Server (NTRS)
Plice, Laura; Pisanich, Greg; Lau, Benton; Young, Larry A.
2002-01-01
The natural world is a rich source of problem- solving approaches. This paper discusses the feasibility and technical challenges underlying mimicking, or analogously adapting, biological behavioral strategies to mission/flight planning for aerial vehicles engaged in planetary exploration. Two candidate concepts based on natural resource utilization and searching behaviors are adapted io technological applications. Prototypes and test missions addressing the difficulties of implementation and their solutions are also described.
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Kay-Bunnell, Linda; Werner, Martin R.; Park, Sang-Young; Kumar, Renjith R.
2002-01-01
There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS is a future spacebased system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This paper provides a summary of CAPS and discusses several key areas and technologies that are being investigated.
DESM: portal for microbial knowledge exploration systems.
Salhi, Adil; Essack, Magbubah; Radovanovic, Aleksandar; Marchand, Benoit; Bougouffa, Salim; Antunes, Andre; Simoes, Marta Filipa; Lafi, Feras F; Motwalli, Olaa A; Bokhari, Ameerah; Malas, Tariq; Amoudi, Soha Al; Othum, Ghofran; Allam, Intikhab; Mineta, Katsuhiko; Gao, Xin; Hoehndorf, Robert; C Archer, John A; Gojobori, Takashi; Bajic, Vladimir B
2016-01-04
Microorganisms produce an enormous variety of chemical compounds. It is of general interest for microbiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microorganisms and their ability for bioproduction. To enable such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs contain information derived through text-mining of PubMed information and complemented by information data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPathways, BioGrid). All PubMed records were indexed using 4,538,278 concepts from 29 dictionaries, with 1 638 986 records utilized in KBs. Concepts used are normalized whenever possible. Most of the KBs focus on a particular type of microbial activity, such as production of biocatalysts or nutraceuticals. Others are focused on specific categories of microorganisms, e.g. streptomyces or cyanobacteria. KBs are all structured in a uniform manner and have a standardized user interface. Information exploration is enabled through various searches. Users can explore statistically most significant concepts or pairs of concepts, generate hypotheses, create interactive networks of associated concepts and export results. We believe DESM will be a useful complement to the existing resources to benefit microbiology and biotechnology research. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Extraction and Capture of Water from Martian Regolith Experimental Proof-of-Concept
NASA Technical Reports Server (NTRS)
Linne, Diane; Kleinhenz, Julie; Bauman, Steve; Johnson, Kyle
2016-01-01
Mars Design Reference Architecture 5.0:Lists in-situ resource utilization (ISRU) as enabling for robust human Mars missionsLO2LCH4 ascent propulsion 25,000 kg oxygen from atmosphere for ascent and life support Atmospheric based ISRU processes less operationally complex than surface based limited concept evaluation to date and Mars surface water property and distribution uncertainty would not allow [Mars soil water processing] to be base lined at this time Limited Concept Evaluation to Date Lunar regolith O2 extraction processing experience Lunar regolith is fluidized and heated to high temperatures with H2 to produce H2O from iron-bearing minerals Mars similarity concept: Soil placed in fluidized bed reactor Heated to moderate temperatures Inert gas flow used to fluidize the bed and help with water desorption Challenges: High-temperature dusty seals Working gas requires downstream separation and recycling to reduce consumables loss Batch process heating thermally inefficient.
Natural Language Processing Methods and Systems for Biomedical Ontology Learning
Liu, Kaihong; Hogan, William R.; Crowley, Rebecca S.
2010-01-01
While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they must achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships as well as difficulty in updating the ontology as knowledge changes. Methodologies developed in the fields of natural language processing, information extraction, information retrieval and machine learning provide techniques for automating the enrichment of an ontology from free-text documents. In this article, we review existing methodologies and developed systems, and discuss how existing methods can benefit the development of biomedical ontologies. PMID:20647054
Designing and visualizing the water-energy-food nexus system
NASA Astrophysics Data System (ADS)
Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.
2017-12-01
The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.
Frailty in the critically ill: a novel concept
2011-01-01
The concept of frailty has been defined as a multidimensional syndrome characterized by the loss of physical and cognitive reserve that predisposes to the accumulation of deficits and increased vulnerability to adverse events. Frailty is strongly correlated with age, and overlaps with and extends aspects of a patient's disability status (that is, functional limitation) and/or burden of comorbid disease. The frail phenotype has more specifically been characterized by adverse changes to a patient's mobility, muscle mass, nutritional status, strength and endurance. We contend that, in selected circumstances, the critically ill patient may be analogous to the frail geriatric patient. The prevalence of frailty amongst critically ill patients is currently unknown; however, it is probably increasing, based on data showing that the utilization of intensive care unit (ICU) resources by older people is rising. Owing to the theoretical similarities in frailty between geriatric and critically ill patients, this concept may have clinical relevance and may be predictive of outcomes, along with showing important interaction with several factors including illness severity, comorbid disease, and the social and structural environment. We believe studies of frailty in critically ill patients are needed to evaluate how it correlates with outcomes such as survival and quality of life, and how it relates to resource utilization, such as length of mechanical ventilation, ICU stay and duration of hospitalization. We hypothesize that the objective measurement of frailty may provide additional support and reinforcement to clinicians confronted with end-of-life decisions on the appropriateness of ICU support and/or withholding of life-sustaining therapies. PMID:21345259
Improving HIV outcomes in resource-limited countries: the importance of quality indicators.
Ahonkhai, Aima A; Bassett, Ingrid V; Ferris, Timothy G; Freedberg, Kenneth A
2012-11-24
Resource-limited countries increasingly depend on quality indicators to improve outcomes within HIV treatment programs, but indicators of program performance suitable for use at the local program level remain underdeveloped. Using the existing literature as a guide, we applied standard quality improvement (QI) concepts to the continuum of HIV care from HIV diagnosis, to enrollment and retention in care, and highlighted critical service delivery process steps to identify opportunities for performance indicator development. We then identified existing indicators to measure program performance, citing examples used by pivotal donor agencies, and assessed their feasibility for use in surveying local program performance. Clinical delivery steps without existing performance measures were identified as opportunities for measure development. Using National Quality Forum (NQF) criteria as a guide, we developed measurement concepts suitable for use at the local program level that address existing gaps in program performance assessment. This analysis of the HIV continuum of care identified seven critical process steps providing numerous opportunities for performance measurement. Analysis of care delivery process steps and the application of NQF criteria identified 24 new measure concepts that are potentially useful for improving operational performance in HIV care at the local level. An evidence-based set of program-level quality indicators is critical for the improvement of HIV care in resource-limited settings. These performance indicators should be utilized as treatment programs continue to grow.
ERIC Educational Resources Information Center
Frank, James
This module is an activity/discussion-centered unit focusing on the importance of shoreline surface area. The module is part of a series designed to be used by teachers, students, and community members to help them utilize community resources in developing and teaching environmental concepts and responsibility, and in seeking ways to solve…
Entomologic considerations in the study of onchocerciasis transmission.
Vargas, L; Díaz-Nájera, A
1980-01-01
The entomological resources utilized for a better understanding of Onchocerca volvulus transmission are discussed in this paper. Vector density, anthropohilia, gonotrophic cycyle, parous condition longevity and probability of survival in days after the infectious meal are assessed here in order to integrate an overall picture. The concept of vectorial capacity is developed stressing the quantitative aspects. Parasitism of the black-flies by filariae that are doubtfully identified as O. volvulus is also mentioned here.
Update on value-based medicine.
Brown, Melissa M; Brown, Gary C
2013-05-01
To update concepts in Value-Based Medicine, especially in view of the Patient Protection and Affordable Care Act. The Patient Protection and Affordable Care Act assures that some variant of Value-Based Medicine cost-utility analysis will play a key role in the healthcare system. It identifies the highest quality care, thereby maximizing the most efficacious use of healthcare resources and empowering patients and physicians.Standardization is critical for the creation and acceptance of a Value-Based Medicine, cost-utility analysis, information system, since 27 million different input variants can go into a cost-utility analysis. Key among such standards is the use of patient preferences (utilities), as patients best understand the quality of life associated with their health states. The inclusion of societal costs, versus direct medical costs alone, demonstrates that medical interventions are more cost effective and, in many instances, provide a net financial return-on-investment to society referent to the direct medical costs expended. Value-Based Medicine provides a standardized methodology, integrating critical, patient, quality-of-life preferences, and societal costs, to allow the highest quality, most cost-effective care. Central to Value-Based Medicine is the concept that all patients deserve the interventions that provide the greatest patient value (improvement in quality of life and/or length of life).
NASA Astrophysics Data System (ADS)
Letendre, Steven Emery
The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.
Advances in biologically inspired on/near sensor processing
NASA Astrophysics Data System (ADS)
McCarley, Paul L.
1999-07-01
As electro-optic sensors increase in size and frame rate, the data transfer and digital processing resource requirements also increase. In many missions, the spatial area of interest is but a small fraction of the available field of view. Choosing the right region of interest, however, is a challenge and still requires an enormous amount of downstream digital processing resources. In order to filter this ever-increasing amount of data, we look at how nature solves the problem. The Advanced Guidance Division of the Munitions Directorate, Air Force Research Laboratory at Elgin AFB, Florida, has been pursuing research in the are of advanced sensor and image processing concepts based on biologically inspired sensory information processing. A summary of two 'neuromorphic' processing efforts will be presented along with a seeker system concept utilizing this innovative technology. The Neuroseek program is developing a 256 X 256 2-color dual band IRFPA coupled to an optimized silicon CMOS read-out and processing integrated circuit that provides simultaneous full-frame imaging in MWIR/LWIR wavebands along with built-in biologically inspired sensor image processing functions. Concepts and requirements for future such efforts will also be discussed.
Link, Bruce G.; Phelan, Jo
2015-01-01
When people have an interest in keeping other people down, in or away, stigma is a resource that allows them to obtain ends they desire. We call this resource “stigma power” and use the term to refer to instances in which stigma processes achieve the aims of stigmatizers with respect to the exploitation, control or exclusion of others. We draw on Bourdieu (1987; 1990) who notes that power is often most effectively deployed when it is hidden or “misrecognized.” To explore the utility of the stigma power concept we examine ways in which the goals of stigmatizers are achieved but hidden in the stigma coping efforts of people with mental illnesses. We developed new self-report measures and administered them to a sample of individuals who have experienced mental illness to test whether results are consistent with the possibility that, in response to negative societal conceptions, the attitudes, beliefs and behaviors of people with psychosis lead them to be concerned with staying in, propelled to stay away and induced to feel downwardly placed –precisely the outcomes stigmatizers might desire. Our introduction of the stigma power concept carries the possibility of seeing stigmatizing circumstances in a new light. PMID:24507908
Scheduling the future NASA Space Network: Experiences with a flexible scheduling prototype
NASA Technical Reports Server (NTRS)
Happell, Nadine; Moe, Karen L.; Minnix, Jay
1993-01-01
NASA's Space Network (SN) provides telecommunications and tracking services to low earth orbiting spacecraft. One proposal for improving resource allocation and automating conflict resolution for the SN is the concept of flexible scheduling. In this concept, each Payload Operations Control Center (POCC) will possess a Space Network User POCC Interface (SNUPI) to support the development and management of flexible requests. Flexible requests express the flexibility, constraints, and repetitious nature of the user's communications requirements. Flexible scheduling is expected to improve SN resource utilization and user satisfaction, as well as reduce the effort to produce and maintain a schedule. A prototype testbed has been developed to better understand flexible scheduling as it applies to the SN. This testbed consists of a SNUPI workstation, an SN scheduler, and a flexible request language that conveys information between the two systems. All three are being evaluated by operations personnel. Benchmark testing is being conducted on the scheduler to quantify the productivity improvements achieved with flexible requests.
Concept of operations for triage of mechanical ventilation in an epidemic.
Hick, John L; O'Laughlin, Daniel T
2006-02-01
The recent outbreak of severe acute respiratory syndrome and the growing potential of an influenza pandemic force us to consider the fact that despite great advances in critical care medicine, we lack the capacity to provide intensive care to the large number of patients that may be generated in an epidemic or multisite bioterrorism event. Because many epidemic and bioterrorist agent illnesses involve respiratory failure, mechanical ventilation is a frequently required intervention but one that is in limited supply. In advance of such an event, we must develop triage criteria that depend on clinical indicators of survivability and resource utilization to allocate scarce health care resources to those who are most likely to benefit. These criteria must be tiered, flexible, and implemented regionally, rather than institutionally, with the backing of public health agencies and relief of liability. This report provides a sample concept of operations for triage of mechanical ventilation in epidemic situations and discusses some of the ethical principles and pitfalls of such systems.
[Introductory concepts of health economics and the social impact of alcohol abuse].
Moraes, Edilaine; Campos, Geraldo M; Figlie, Neliana B; Laranjeira, Ronaldo R; Ferraz, Marcos B
2006-12-01
Brazilian society bears high economic costs in view of the problems resulting from the alcohol consumption. There is a lack of economic studies into alcohol misuse or dependence in Brazil due to the limited financial resources, despite the huge health problems the country has been facing. This paper aims to introduce basic concepts of Heath Economics to health care practitioners, such as: Complete and Incomplete Economic Evaluation, Disease Costs, Cost Comparison, Types of Evaluation (cost-minimisation, cost-effectiveness, cost-utility, and cost-benefice), Point of View Analysis (from patient, health institution, Ministry of Health, or society), Types of Costs (direct, indirect and intangible), and other ones. In addition, research data on the impact of the alcohol consumption on the Brazilian society is described. We do not intend to exhaust the subjects addressed in this paper, but emphasise the need for more national researches that link the economic evaluation to the alcohol addiction issue in order to seek maximum efficiency by maximising the health care and minimising the scarce health system resources.
Cognitive Load and Listening Effort: Concepts and Age-Related Considerations.
Lemke, Ulrike; Besser, Jana
2016-01-01
Listening effort has been recognized as an important dimension of everyday listening, especially with regard to the comprehension of spoken language. At constant levels of comprehension performance, the level of effort exerted and perceived during listening can differ considerably across listeners and situations. In this article, listening effort is used as an umbrella term for two different types of effort that can arise during listening. One of these types is processing effort, which is used to denote the utilization of "extra" mental processing resources in listening conditions that are adverse for an individual. A conceptual description is introduced how processing effort could be defined in terms of situational influences, the listener's auditory and cognitive resources, and the listener's personal state. Also, the proposed relationship between processing effort and subjectively perceived listening effort is discussed. Notably, previous research has shown that the availability of mental resources, as well as the ability to use them efficiently, changes over the course of adult aging. These common age-related changes in cognitive abilities and their neurocognitive organization are discussed in the context of the presented concept, especially regarding situations in which listening effort may be increased for older people.
NASA Astrophysics Data System (ADS)
Esmaeili, Maryam; Bahrini, Aram; Shayanrad, Sepideh
2015-12-01
Oil and gas as the non-renewable resources are considered very valuable for the countries with petroleum economics. These resources are not only diffused equally around the world, but also they are common in some places which their neighbors often come into conflicts. Consequently, it is vital for those countries to manage their resource utilization. Lately, game theory was applied in conflict resolution of common resources, such as water, which is a proof of its efficacy and capability. This paper models the conflicts between Iran and its neighbors namely Qatar and Iraq between their oil and gas common resources using game theory approach. In other words, the future of these countries will be introduced and analyzed by some well-known 2 × 2 games to achieve a better perspective of their conflicts. Because of information inadequacy of the players, in addition to Nash Stability, various solution concepts are used based on the foresight, disimprovements, and knowledge of preferences. The results of mathematical models show how the countries could take a reasonable strategy to exploit their common resources.
Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Bushnell, Dennis M.
2016-01-01
The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars.
Study benefit value of utilization water resources for energy and sustainable environment
NASA Astrophysics Data System (ADS)
Juniah, Restu; Sastradinata, Marwan
2017-11-01
Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.
NEO Targets for Biological In Situ Resource Utilization
NASA Astrophysics Data System (ADS)
Grace, J. M.; Ernst, S. M.; Navarrete, J. U.; Gentry, D.
2014-12-01
We are investigating a mission architecture concept for low-cost pre-processing of materials on long synodic period asteroids using bioengineered microbes delivered by small spacecraft. Space exploration opportunities, particularly those requiring a human presence, are sharply constrained by the high cost of launching resources such as fuel, construction materials, oxygen, water, and foodstuffs. Near-Earth asteroids (NEAs) have been proposed for supporting a human space presence. However, the combination of high initial investment requirements, delayed potential return, and uncertainty in resource payoff currently prevents their effective utilization.Biomining is the process in which microorganisms perform useful material reduction, sequestration or separation. It is commonly used in terrestrial copper extraction. Compared to physical and chemical methods of extraction it is slow, but very low cost, thus rendering economical even very poor ores. These advantages are potentially extensible to asteroid in situ resource utilization (ISRU).One of the first limiting factors for the use of biology in these environments is temperature. A survey of NEA data was conducted to identify those NEAs whose projected interior temperatures remained within both potential (-5 - 100 ºC) and preferred (15 - 45 ºC) ranges for the minimum projected time per synodic period without exceeding 100 ºC at any point. Approximately 2800 of the 11000 NEAs (25%) are predicted to remain within the potential range for at least 90 days, and 120 (1%) in the preferred range.A second major factor is water availability and stability. We have evaluated a design for a small-spacecraft-based injector which forces low-temperature fluid into the NEA interior, creating potentially habitable microniches. The fluid contains microbes genetically engineered to accelerate the degradation rates of a desired fraction of the native resources, allowing for more efficient material extraction upon a subsequent encounter.
NASA Technical Reports Server (NTRS)
McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.
2010-01-01
CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.
Were, Martin C; Mamlin, Burke W; Tierney, William M; Wolfe, Ben; Biondich, Paul G
2007-10-11
The challenges of creating and maintaining concept dictionaries are compounded in resource-limited settings. Approaches to alleviate this burden need to be based on information derived in these settings. We created a concept dictionary and evaluated new concept proposals for an open source EMR in a resource-limited setting. Overall, 87% of the concepts in the initial dictionary were used. There were 5137 new concepts proposed, with 77% of these proposed only once. Further characterization of new concept proposals revealed that 41% were due to deficiency in the existing dictionary, and 19% were synonyms to existing concepts. 25% of the requests contained misspellings, 41% were complex terms, and 17% were ambiguous. Given the resource-intensive nature of dictionary creation and maintenance, there should be considerations for centralizing the concept dictionary service, using standards, prioritizing concept proposals, and redesigning the user-interface to reduce this burden in settings with limited resources.
Were, Martin C.; Mamlin, Burke W.; Tierney, William M.; Wolfe, Ben; Biondich, Paul G.
2007-01-01
The challenges of creating and maintaining concept dictionaries are compounded in resource-limited settings. Approaches to alleviate this burden need to be based on information derived in these settings. We created a concept dictionary and evaluated new concept proposals for an open source EMR in a resource-limited setting. Overall, 87% of the concepts in the initial dictionary were used. There were 5137 new concepts proposed, with 77% of these proposed only once. Further characterization of new concept proposals revealed that 41% were due to deficiency in the existing dictionary, and 19% were synonyms to existing concepts. 25% of the requests contained misspellings, 41% were complex terms, and 17% were ambiguous. Given the resource-intensive nature of dictionary creation and maintenance, there should be considerations for centralizing the concept dictionary service, using standards, prioritizing concept proposals, and redesigning the user-interface to reduce this burden in settings with limited resources. PMID:18693945
Mars Molniya Orbit Atmospheric Resource Mining. [FY 16 NIAC Phase I Project
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Sforzo, Brandon; Braun, Robert D.; Sibille, Laurent
2017-01-01
This NASA Innovative Advanced Concepts (NIAC) Phase I study examined the revolutionary concept of performing resource collection and utilization during Mars orbital operations in order to enable the landing of large payloads. An exploration architecture was developed, out of which several mission alternatives were developed. Concepts of operations were then developed for each mission alternative, followed by concepts for spacecraft systems, which were traded to assess their feasibility. A novel architecture using Mars Molniya Orbit Atmospheric Resource Mining is feasible to enable an Earth-independent and pioneering, permanent human presence on Mars by providing a reusable, single-stage-to-orbit transportation system. This will allow cargo and crew to be routinely delivered to and from Mars without transporting propellants from Earth.In Phase I, our study explored how electrical energy could be harnessed from the kinetic energy of the incoming spacecraft and then be used to produce the oxygen necessary for landing. This concept of operations is revolutionary in that its focus is on using in situ resources in complementary and varied forms: the upper atmosphere of Mars is used for aerocapture, which is followed by aerobraking, the kinetic energy of the spacecraft is transformed into usable electrical energy during aerobraking, and the atmospheric composition is the source of oxidizer for a landing under supersonic retropropulsion. This NASA Innovative Advanced Concepts (NIAC) Phase I study explores a novel mission architecture to establish routine, Earth-independent transfer of large mass payloads between Earth and the Mars surface and back to Mars orbit. The first stage of routine mission operations involves an atmospheric resource mining aerobraking campaign following aerocapture into a highly elliptical Mars orbit. During each pass through the atmosphere, the vehicle ingests the atmospheric oxidizer and stores it onboard, using solid oxide electrolysis to convert the primarily CO2 atmosphere into usable O2 for propellant. Power is made available through the use of magnetohydrodynamic energy generation, which converts the motion of the plasma in the shock later into usable electrical energy. Upon termination of the aerobraking sequence, the descent vehicle detaches from the orbit stack, deorbits, and executes the entry, descent, and landing sequence. Hypersonic deceleration is achieved via a deployable heat shield to lower the vehicle ballistic coefficient, and supersonic and subsonic deceleration are achieved via retropropulsion. Mars surface operations involve resource mining of the Martian regolith to produce CH4 and O2 propellant to be used for the subsequent MDAV ascent back to high Mars orbit (HMO) providing an apoapsis raise maneuver to initialize the aerobraking sequence, in addition to providing fuel from the Mars surface for EDL propulsive descent. The Resource Collector Vehicle (RCV), which is used for the orbital mining operations, is raised back to HMO via onboard deployable augmented solar electric propulsion. Concepts of operations were developed for each mission alternative, to evaluate between them and assess feasibility.
St Fleur, Rose; McKeever, Joyce
2014-01-01
The concept of the nurse-physician leadership dyad incorporates the expertise of both nurses and physicians as leaders of change within health system environments. The leadership dyad model has been used traditionally in health care administrative settings to manage utilization of resources more effectively. Because the Baby-Friendly designation requires major cultural shifts in long-standing maternity care practices, an interdisciplinary approach to implementation is necessary. © 2014 AWHONN.
NASA Technical Reports Server (NTRS)
McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.
2012-01-01
There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility
Hulse, Nathan C; Long, Jie; Tao, Cui
2013-01-01
Infobuttons have been established to be an effective resource for addressing information needs at the point of care, as evidenced by recent research and their inclusion in government-based electronic health record incentive programs in the United States. Yet their utility has been limited to wide success for only a specific set of domains (lab data, medication orders, and problem lists) and only for discrete, singular concepts that are already documented in the electronic medical record. In this manuscript, we present an effort to broaden their utility by connecting a semantic web-based phenotyping engine with an infobutton framework in order to identify and address broader issues in patient data, derived from multiple data sources. We have tested these patterns by defining and testing semantic definitions of pre-diabetes and metabolic syndrome. We intend to carry forward relevant information to the infobutton framework to present timely, relevant education resources to patients and providers.
An Analysis of Organizational Performance Based on Hospital Specialization Level and Strategy Type
Kim, Han-Sung; Kim, Young-Hoon; Woo, Jung-Sik; Hyun, Sook-Jung
2015-01-01
Introduction Hospitals are studying the focused factory concept and attempting to increase their power in a competitive industry by becoming more specialized. Methodology This study uses the information theory index (ITI) and the Herfindahl-Hirschman index (HHI) to analyze the extent of specialization by Korean hospitals that receive national health insurance reimbursements. Hierarchical regression analysis is used to assess the impact of hospital specialization on the following four aspects of operational performance: productivity, profitability, efficiency and quality of care. Study Results The results show that a focused strategy (high HHI) improves the income and adjusted number of patients per specialist through the efficient utilization of human resources. However, a diversified strategy (high ITI) improves the hospital utilization ratio, income per bed and adjusted number of patients per bed (controlling for material resources such as beds). In addition, as the concentration index increases, case-mix mortality rates and referral rates decrease, indicating that specialization has a positive relationship with quality of care. PMID:26218570
An Analysis of Organizational Performance Based on Hospital Specialization Level and Strategy Type.
Kim, Han-Sung; Kim, Young-Hoon; Woo, Jung-Sik; Hyun, Sook-Jung
2015-01-01
Hospitals are studying the focused factory concept and attempting to increase their power in a competitive industry by becoming more specialized. This study uses the information theory index (ITI) and the Herfindahl-Hirschman index (HHI) to analyze the extent of specialization by Korean hospitals that receive national health insurance reimbursements. Hierarchical regression analysis is used to assess the impact of hospital specialization on the following four aspects of operational performance: productivity, profitability, efficiency and quality of care. The results show that a focused strategy (high HHI) improves the income and adjusted number of patients per specialist through the efficient utilization of human resources. However, a diversified strategy (high ITI) improves the hospital utilization ratio, income per bed and adjusted number of patients per bed (controlling for material resources such as beds). In addition, as the concentration index increases, case-mix mortality rates and referral rates decrease, indicating that specialization has a positive relationship with quality of care.
Game theoretic sensor management for target tracking
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh; Douville, Philip; Yang, Chun; Kadar, Ivan
2010-04-01
This paper develops and evaluates a game-theoretic approach to distributed sensor-network management for target tracking via sensor-based negotiation. We present a distributed sensor-based negotiation game model for sensor management for multi-sensor multi-target tacking situations. In our negotiation framework, each negotiation agent represents a sensor and each sensor maximizes their utility using a game approach. The greediness of each sensor is limited by the fact that the sensor-to-target assignment efficiency will decrease if too many sensor resources are assigned to a same target. It is similar to the market concept in real world, such as agreements between buyers and sellers in an auction market. Sensors are willing to switch targets so that they can obtain their highest utility and the most efficient way of applying their resources. Our sub-game perfect equilibrium-based negotiation strategies dynamically and distributedly assign sensors to targets. Numerical simulations are performed to demonstrate our sensor-based negotiation approach for distributed sensor management.
NASA Astrophysics Data System (ADS)
García-Santos, Glenda; Madruga de Brito, Mariana; Höllermann, Britta; Taft, Linda; Almoradie, Adrian; Evers, Mariele
2018-06-01
Understanding the interactions between water resources and its social dimensions is crucial for an effective and sustainable water management. The identification of sensitive control variables and feedback loops of a specific human-hydro-scape can enhance the knowledge about the potential factors and/or agents leading to the current water resources and ecosystems situation, which in turn supports the decision-making process of desirable futures. Our study presents the utility of a system dynamics modeling approach for water management and decision-making for the case of a forest ecosystem under risk of wildfires. We use the pluralistic water research concept to explore different scenarios and simulate the emergent behaviour of water interception and net precipitation after a wildfire in a forest ecosystem. Through a case study, we illustrate the applicability of this new methodology.
Solar Versus Fission Surface Power for Mars
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.;
2016-01-01
A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.
Kreula, Sanna M; Kaewphan, Suwisa; Ginter, Filip; Jones, Patrik R
2018-01-01
The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from 'reading the literature'. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already 'known', and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to ( i ) discover novel candidate associations between different genes or proteins in the network, and ( ii ) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource.
NASA Astrophysics Data System (ADS)
dias, S. B.; Yang, C.; Li, Z.; XIA, J.; Liu, K.; Gui, Z.; Li, W.
2013-12-01
Global climate change has become one of the biggest concerns for human kind in the 21st century due to its broad impacts on society and ecosystems across the world. Arctic has been observed as one of the most vulnerable regions to the climate change. In order to understand the impacts of climate change on the natural environment, ecosystems, biodiversity and others in the Arctic region, and thus to better support the planning and decision making process, cross-disciplinary researches are required to monitor and analyze changes of Arctic regions such as water, sea level, biodiversity and so on. Conducting such research demands the efficient utilization of various geospatially referenced data, web services and information related to Arctic region. In this paper, we propose a cloud-enabled and service-oriented Spatial Web Portal (SWP) to support the discovery, integration and utilization of Arctic related geospatial resources, serving as a building block of polar CI. This SWP leverages the following techniques: 1) a hybrid searching mechanism combining centralized local search, distributed catalogue search and specialized Internet search for effectively discovering Arctic data and web services from multiple sources; 2) a service-oriented quality-enabled framework for seamless integration and utilization of various geospatial resources; and 3) a cloud-enabled parallel spatial index building approach to facilitate near-real time resource indexing and searching. A proof-of-concept prototype is developed to demonstrate the feasibility of the proposed SWP, using an example of analyzing the Arctic snow cover change over the past 50 years.
TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments
NASA Technical Reports Server (NTRS)
Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.
2016-01-01
"Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment
Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2013-01-01
A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU provides a near and early opportunity to perform the following that are applicable to other human exploration mission destinations: Identify and characterize resources, how they are distributed, and the material, location and environment in which they are found; Demonstrate concepts, technologies, and hardware that can reduce the cost and risk of human exploration beyond Earth orbit; Use the Moon for operation experience and mission validation for much longer missions that are farther from Earth Develop and evolve ISRU to support sustained, economical human presence beyond Earth's orbit, including promoting space commercialization As Table 1 depicts, the Moon provides environments and resources applicable to Mars and NEOs. Two lunar ISRU resource and product pathways that have notable synergism with NEO, Phobos/Demos, and Mars ISRU are oxygen/metal extraction from regolith, and water/volatile extraction from lunar polar materials. To minimize the risk of developing and incorporating ISRU into human missions, a phased implementation plan is recommended that starts with prospecting and demonstrating critical technologies on robotic and human missions, then performing pilot scale operations (in non-mission critical roles) to enhance exploration mission capabilities, leading to full utilization of space resources in mission critical roles. Which lunar ISRU pathway is followed will depend on the results of early resource prospecting/proof-ofconcept mission(s), and long-term human exploration plans.
Moving toward integrated value-based planning: The issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamberlin, J.H.; Braithwait, C.L.
1988-07-01
Integrated Value-Based Planning (IVP) is a promising new planning approach that uses value, as well as cost, as the common denominator for evaluating supply and demand resource options. Planning based on value yields an ''apples to apples'' comparison of utility and customer options. The IVP approach can form the cornerstone of a successful market-driven utility planning strategy. This conference will raise questions, discuss issues, and further the exchange of information regarding the tools, concepts, and techniques needed to put IVP into the utility planner's toolbox. This proceedings is more than a compendium of papers. It is designed to let bothmore » participants and non-participants exchange information. To this end, listings and cross-listings of papers, speakers and participant interest areas, along with the ever-invaluable phone number have been included.« less
Resource Prospector: A Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2015-01-01
A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form. extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations
Reconstructing High School Chemical Reaction Lessons to Motivate and Support Conceptual Learning
NASA Astrophysics Data System (ADS)
Ndiforamang, Nathan Moma
The primary focus of this education leadership portfolio is to reconstruct lessons on chemical reaction concepts for teachers to use and reach all learners of chemistry in Cecil County Public Schools. As a high school chemistry teacher, I have observed that student enrollment in chemistry is relatively low, and students show little enthusiasm about being successful in chemistry compared to other science subjects. To understand these issues, I researched conceptual learning, misconceptions, and best practices; prepared open-ended questions in a survey for chemistry teachers in my district; distributed the survey; received their responses; and processed the information received. I analyzed the data using qualitative techniques, and the results revealed that many of the tools provided in the district's curriculum guide for chemistry were not effective in class. I used the data to search for learning tools and classroom resources that could improve students understanding of chemistry concepts. I then reconstructed eight lessons on chemical reaction concepts utilizing those tools and resources. I redistributed the reconstructed lessons to teachers who had volunteered to review the lessons and provide professional feedback. The teachers' feedback revealed that the tools and resources incorporated in the reconstructed lessons included interactive activities that would excite students. The teachers indicated that the lessons were technology rich and included a variety of learning strategies. They also noted that the lessons included too many activities to cover within a day's lesson, and some of the recommended weblinks had technical issues. Most of the suggestions received were used to improve the quality of the reconstructed lessons and will serve as a resource for future fine-tuning of the lessons.
Avionics test bed development plan
NASA Technical Reports Server (NTRS)
Harris, L. H.; Parks, J. M.; Murdock, C. R.
1981-01-01
A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.
A New Concept in Planetary Exploration: ISRU With Power Bursts
NASA Astrophysics Data System (ADS)
Streibech, Douglas; Urdaneta, Mario; Chapman, Patricia; Furfaro, Roberto; Ramohalli, Kumar
2000-01-01
The concept of generating power bursts upon demand in space exploration is presented. As acknowledged by two NASA Novel Technology Report (NTR) awards, the concept is new and innovative. As a general background, it must be recalled that power has always been a major limiting factor in exploration, especially in the exploration of far off sites like Mars (contrasted with LEO or GEO). Without the high power ability, no amount of energy (that can only be expended at a low rate, i.e., low power) can accomplish such simple operations as: crushing a rock, hopping over an obstacle, drilling deep, and eventually ascent from the planet to an orbiting craft above, or even the return journey to Earth. The concept presented here is an advance over the much studied In-Situ Resource Utilization (ISRU); we use ISRU for the extraction of the needed fuel and oxidizer from the local resources, store these gases, and expend them rapidly when needed. In the martian scenario, these gases will be carbon monoxide (fuel) and oxygen (oxidizer) extracted from the atmospheric carbon dioxide; subsequently, higher chemistry is possible after the discovery, and utilization of water which enables the production of an entire spectrum of hydrocarbons and carbohydrates. If nitrogen can also be added at a still later date, many more chemicals in the ammonia based family are possible. At SERC (University of Arizona) we have pioneered all of these chemical productions. In another award-winning innovation, an ultra-light weight material, popularly known as muscle wires, is used in a biology-inspired robot called BiRoD. The expenditure of energy in these materials produces power that results in mechanical motion. The short term power generation is thousands of times the average power that was used to harness the local resource in the first place. At the time of this abstract, BiRoD has been designed, assembled, and shown to work in a primitive way, in its component form; new media have carried the high-profile story all over the nation. At the time of the Congress, we expect to no only have many more pieces of quantitative, engineering data from BiRoD but we still also attempt to bring that robot to the session for an actual demonstration.
3D Reacting Flow Analysis of LANTR Nozzles
NASA Astrophysics Data System (ADS)
Stewart, Mark E. M.; Krivanek, Thomas M.; Hemminger, Joseph A.; Bulman, M. J.
2006-01-01
This paper presents performance predictions for LANTR nozzles and the system implications for their use in a manned Mars mission. The LANTR concept is rocket thrust augmentation by injecting Oxygen into the nozzle to combust the Hydrogen exhaust of a Nuclear Thermal Rocket. The performance predictions are based on three-dimensional reacting flow simulations using VULCAN. These simulations explore a range of O2/H2 mixture ratios, injector configurations, and concepts. These performance predictions are used for a trade analysis within a system study for a manned Mars mission. Results indicate that the greatest benefit of LANTR will occur with In-Situ Resource Utilization (ISRU). However, Hydrogen propellant volume reductions may allow greater margins for fitting tanks within the launch vehicle where packaging issues occur.
Häfner, Isabelle; Flunger, Barbara; Dicke, Anna-Lena; Gaspard, Hanna; Brisson, Brigitte M; Nagengast, Benjamin; Trautwein, Ulrich
2017-08-01
Using a cluster randomized field trial, the present study tested whether 2 relevance interventions affected students' value beliefs, self-concept, and effort in math differently depending on family background (socioeconomic status, family interest (FI), and parental utility value). Eighty-two classrooms were randomly assigned to either 1 of 2 intervention conditions or a control group. Data from 1,916 students (M age = 14.62, SD age = 0.47) and their predominantly Caucasian middle-class parents were obtained via separate questionnaires. Multilevel regression analyses with cross-level interactions were used to investigate differential intervention effects on students' motivational beliefs 6 weeks and 5 months after the intervention. Socioeconomic status, FI, and parental utility values were investigated as moderators of the intervention effects. The intervention conditions were especially effective in promoting students' utility, attainment, intrinsic value beliefs, and effort 5 months after the intervention for students whose parents reported lower levels of math interest. Furthermore, students whose parents reported low math utility values especially profited in terms of their utility and attainment math values 5 months after the intervention. No systematic differential intervention effects were found for socioeconomic status. These results highlight the effectiveness of relevance interventions in decreasing motivational gaps between students from families with fewer or more motivational resources. Findings point to the substantial importance of motivational family resources, which have been neglected in previous research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng
2017-01-01
In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109
Concepts and Benefits of Lunar Core Drilling
NASA Technical Reports Server (NTRS)
McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.
2007-01-01
Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.
Oxygen and Metals Processing on the Moon: Will Materials Science Change Our Future in Space?
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Sadoway, Donald R.
2008-01-01
As part of an In-Situ Resource Utilization infrastructure on the lunar surface, the production of oxygen and metals by various technologies is under development within NASA projects. Such an effort reflects the ambition to change paradigms in space exploration to enable human presence for the long-term. Sustaining such presence involves the acceptance of a new concept in space activities; crews must be able to generate some of their consumables from local resources. The balance between accepting early development risks and reducing long-term mission risks is at the core of the technology development approach. We will present an overview of the technologies involved and present their possible impact on the future of human expansion in the solar system.
Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2016-01-01
Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively. PMID:26923104
NASA Astrophysics Data System (ADS)
Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2016-02-01
Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively.
2012-06-12
CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson, back to camera, discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
2012-06-12
CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson, back to rover, discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
2012-06-12
CAPE CANAVERAL, Fla. – Media representatives discuss the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with NASA In Situ Resource Utilization Project Manager William Larson, facing the rover, in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
2012-06-12
CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration for media representatives in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashaw, R.
In its original usage, the term {open_quotes}circuit rider{close_quotes} described a minister supported by several congregations, who rode from rural church to rural church spreading religion. Today, thanks to a grant from the Department of Energy, there`s a new kind of circuit rider at work in small communities and rural areas, spreading the gospel of integrated resource planning. The concept of the circuit rider was advanced in 1994 by a coalition of associations, private businesses and government agencies, including the American Public Power Association, the National Rural Electric Cooperative Association, the federal power marketing agencies and the National Renewable Energy Laboratory.more » The group proposed to DOE the creation of a program for the advancement of integrated resource planning (IRP) in public power, designed to extend the resources and capabilities of publicly and cooperatively owned utilities in IRP by offering a several types of assistance, including training, direct consultation and publications.« less
Matching Livestock Production Systems and Environment
NASA Astrophysics Data System (ADS)
Becchetti, T.; Stackhouse, J.; Snell, L.; Lile, D.; George, H.; Harper, J. M.; Larson, S.; Mashiri, F.; Doran, M.; Barry, S.
2015-12-01
Livestock production systems vary greatly over the world. Producers try to match the resources they have with the demands of production, this can vary by species, class of animal, number of animals, and production goals, etc. Using California's diversity in production systems as an example, we explored how livestock producers best utilize the forage and feed found in different ecosystems and available in different parts of the state. Livestock grazing, the predominant land use in California and in much of the world, makes efficient use of the natural vegetation produced without additional water (irrigation), minimal inputs such as fertilizer while often supporting a variety of conservation objectives including vegetation management, fire fuels management, and habitat and open space conservation. The numerous by-products produced by other sectors of California's agriculture as well as food industries, such as brewer's grain, cottonseeds, and almond hulls are utilized as a feed source for livestock. These by-products are not only an important feed source especially in drought years but are diverted from our waste stream when utilized by livestock. The concept of matching available resources to livestock needs throughout the world is often overlooked and production systems are often over simplified in projects conducting a life cycle analysis or developing carbon foot prints for livestock production systems. This paper provides details on the various production systems found in California, the ecosystem they have adapted to, and how the producers use science and ecological knowledge to match the biological requirements of the livestock and conservation objectives to feed and forage resources.
Energy and water quality management systems for water utility's operations: a review.
Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G
2015-04-15
Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.
NCBI disease corpus: a resource for disease name recognition and concept normalization.
Doğan, Rezarta Islamaj; Leaman, Robert; Lu, Zhiyong
2014-02-01
Information encoded in natural language in biomedical literature publications is only useful if efficient and reliable ways of accessing and analyzing that information are available. Natural language processing and text mining tools are therefore essential for extracting valuable information, however, the development of powerful, highly effective tools to automatically detect central biomedical concepts such as diseases is conditional on the availability of annotated corpora. This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®). Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations. Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked against annotations of the rest of the corpus to assure corpus-wide consistency. The public release of the NCBI disease corpus contains 6892 disease mentions, which are mapped to 790 unique disease concepts. Of these, 88% link to a MeSH identifier, while the rest contain an OMIM identifier. We were able to link 91% of the mentions to a single disease concept, while the rest are described as a combination of concepts. In order to help researchers use the corpus to design and test disease identification methods, we have prepared the corpus as training, testing and development sets. To demonstrate its utility, we conducted a benchmarking experiment where we compared three different knowledge-based disease normalization methods with a best performance in F-measure of 63.7%. These results show that the NCBI disease corpus has the potential to significantly improve the state-of-the-art in disease name recognition and normalization research, by providing a high-quality gold standard thus enabling the development of machine-learning based approaches for such tasks. The NCBI disease corpus, guidelines and other associated resources are available at: http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/. Published by Elsevier Inc.
Learning energy literacy concepts from energy-efficient homes
NASA Astrophysics Data System (ADS)
Paige, Frederick Eugene
The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity generation. • Utility bill limits and constraints exemplify the ability to conserve energy resources. • Replicable examples teach lessons on conservation. • Via an understanding of the water-energy nexus, water conservation lessons transfer to energy saving lessons. • Passive design exemplifies how a shift in thinking can conserve energy resources through informed efficient decision-making. • Societal shifts in energy consumption are evident at home. • Efficient homes provide applicable examples of social and technological innovations. • The home is the environment in which memorable lessons on energy are passed through cultures. • Home energy consumption comparisons are a popular and effective social innovation, but people have mixed emotions about their usefulness. • A utility bill communicates that utility companies are monitoring energy use to calculate cost. • Interactivity enhances feedback from energy monitors. • Calculating and monitoring energy use is perceived as a complex mathematical process. • Energy consumption feedback at the appliance level is desired to inform decisions. • There is a separation between personal energy monitoring and public monitoring. Implications of this research are that an energy literate society will have the knowledge that is a prerequisite for the motivation to address energy and climate issues. Educators, policy makers, engineers, and designers all play a role in creating a built environment that encourages energy saving behavior.
Fuel cells and the city of the future — a Japanese view
NASA Astrophysics Data System (ADS)
Satomi, Tomohide
The development and practical application of fuel cells have been promoted aggressively in Japan, and the on-site phosphoric acid fuel cell (PAFC) has been attained with the prospect for practical market enery in commercial buildings by the middle of the 1990s. Fuel cells have features of less environmental impact and high energy efficiency which meet the requirements of the utility system for the future city. In Japan, the recent concentration of social functions and population to the city have begun to cause many serious problems. To resolve these environmental and resource related problems and to move towards developing and constructing a new city, one answer offered is the concept of CAN (community amenity network). CAN is a sophisticated utility system which integrates fuel cells as well as a system for effective use of unused energy and recycling of waste disposal and water. For solving the housing shortage problem in the next century, the concept of skyscraper building cities is currently proposed. Fuel cell systems can also be applied to these cities as a major element of the integrated zone energy supply network facility.
Propellant production and useful materials: Hardware data from components and the systems
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar
1992-01-01
Research activities at the University of Arizona/NASA Space Engineering Research Center are described; the primary emphasis is on hardware development and operation. The research activities are all aimed toward introducing significant cost reductions through the utilization of resources locally available at extraterrestrial sites. The four logical aspects include lunar, Martian, support, and common technologies. These are described in turn. The hardware realizations are based upon sound scientific principles which are used to screen a host of interesting and novel concepts. Small scale feasibility studies are used as the screen to allow only the most promising concepts to proceed. Specific examples include: kg/day-class oxygen plant that uses CO2 as the feed stock, spent stream utilization to produce methane and 'higher' compounds (using hydrogen from a water electrolysis plant), separation of CO from the CO2, reduction of any iron bearing silicate (lunar soils), production of structural components, smart sensors and autonomous controls, and quantitative computer simulation of extraterrestrial plants. The most important feature of all this research continues to be the training of high-quality students for our future in space.
NASA Technical Reports Server (NTRS)
Stoots, Carl; Mulloth, Lila M.; Luna, Bernadette; Varghese, Mini M.
2009-01-01
CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.
[Decision procedures and international law].
Mahiou, A
1992-01-01
This work examines the significance of international spaces in the ocean, the polar regions, the air, and beyond the atmosphere; the importance of their resources; and the prospects for communal management of them in the future. International spaces and resources are considered those over which 1 country cannot exercise any right of appropriation and over which all countries exercise exactly the same rights. International spaces are more extensive than national spaces, and their extension and potential richness of resources incite nations to attempt to exercise control over them. Concerns about the environment have contributed to development of the notion of a common patrimony of humanity and the consequent rejection of traditional concepts of total freedom of action of states in regard to common spaces and resources. The existing governance of international spaces and resources was guided by a few simple principles that assured free access, with only the problems of harmonizing the uses and interests of the concerned countries. The idea of a common patrimony of humanity is closely linked to development of the law of the sea, in which it received its most complete expression to date. The emergence and recognition of juridical principles relative to common spaces and resources has been a long and controversial process, and not all such principles have attracted the same degree of support among nations. Even when consensus has been achieved regarding 1 of the principles, divergent interpretations have been made concerning the content and scope of the principle or the regulations that should result from it. 6 principles can be identified concerning nonappropriation, the oldest and long the only principle regulating use of international spaces; peaceful utilization; rational utilization; equitable utilization; protection of spaces and resources; and joint international administration or management. An important question concerning the development of a structure for regulation of international spaces and resources is whether management should be institutional, which tends to favor collective control and decision making through an international mechanism, or contractual, which tends to favor individual countries in the absence of an international constraining mechanism. 4 aspects at stake in the international management of spaces and resources are the potential use of international spaces for military purposes. the unequal economic ability of countries to invest in and benefit from communal resources, their related unequal access to sophisticated technology, and the juridical arrangements themselves.
Global Health Initiatives of the International Oncology Community.
Al-Sukhun, Sana; de Lima Lopes, Gilberto; Gospodarowicz, Mary; Ginsburg, Ophira; Yu, Peter Paul
2017-01-01
Cancer has become one of the leading causes of morbidity and mortality in low- and middle-income countries (LMICs), where 60% of the world's total new cases are diagnosed. The challenge for effective control of cancer is multifaceted. It mandates integration of effective cancer prevention, encouraging early detection, and utilization of resource-adapted therapeutic and supportive interventions. In the resource-constrained setting, it becomes challenging to deliver each service optimally, and efficient allocation of resources is the best way to improve the outcome. This concept was translated into action through development of resource-stratified guidelines, pioneered by the Breast Health Global Initiative (BHGI), and later adopted by most oncology societies in an attempt to help physicians deliver the best possible care in a limited-resource setting. Improving outcome entails collaboration between key stakeholders, including the pharmaceutical industry, local and national health authorities, the World Health Organization (WHO), and other nonprofit, patient-oriented organizations. Therefore, we started to observe global health initiatives-led by ASCO, the Union for International Cancer Control (UICC), and the WHO-to address these challenges at the international level. This article discusses some of these initiatives.
Kreula, Sanna M.; Kaewphan, Suwisa; Ginter, Filip
2018-01-01
The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from ‘reading the literature’. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already ‘known’, and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to (i) discover novel candidate associations between different genes or proteins in the network, and (ii) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource. PMID:29844966
Individualised and personalised QALYs in exceptional treatment decisions.
Heale, Warwick
2016-10-01
Quality-adjusted life years (QALYs) are used to determine how to allocate resources to health programmes or to treatments within those programmes in order to gain maximum utility from those limited, shared healthcare resources. However, if we use those same population- based QALYs when faced with individual treatment decisions we may act unjustly in relation to that individual or in relation to the wider population. A treatment with a population-based incremental cost-effectiveness ratio beyond our willingness to pay threshold may be denied to a patient even if, for that particular patient, the QALYs gained for the cost would fall within that threshold. When considering individual cases, it is proposed that we should take an individualised approach to the cost of treatment and response to treatment ('individualised QALYs') and a personalised approach to the valuation of health states ('personalised QALYs'). Only if we do this, can we maximise utility and give the patient a fair opportunity to benefit. Individualised and personalised QALYs also allow us to express patient choice and religious treatment preferences in terms of utility. Individualised and personalised QALYs are explored in the context of individual funding requests in the National Health Service. In preference to the concept of 'clinical exceptionality', individualised and personalised QALYs provide the potential for better and more consistent decisions and improved utility. Rather than treating unequal patients as if they were equal, individualised and personalised QALYs promote fair and unequal access to resources for some of our most unequal patients. Potential challenges are also considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
NASA Astrophysics Data System (ADS)
Holbert, Nathan Ryan
Video games have recently become a popular space for educational design due to their interactive and engaging nature and the ubiquity of the gaming experience among youth. Though many researchers argue video games can provide opportunities for learning, educational game design has focused on the classroom rather than the informal settings where games are typically played. Educational games have been moderately successful at achieving learning gains on standardized items, but have failed to show improvements on related but distal problems. In this dissertation I develop and assess a new design principle, called constructible authentic representations for creating informal gaming experiences that players will actively draw on when reasoning in formal and real world contexts. These games provide players with opportunities to engage in meaningful construction with components that integrate relevant concepts to create in-game representations that visually and epistemologically align with related tools and representations utilized in the target domain. In the first phase of the dissertation, I observed children playing popular video games to better understand what in-game representations children attend to and how interactions with these representations contribute to intuitive ideas of encountered STEM content. Results from this study fed into the iterative design of two prototype video games, FormulaT Racing and Particles!, intending to give players useful knowledge resources for reasoning about kinematics and the particulate nature of matter respectively. Designed games encourage players to utilize and refine intuitive ideas about target content through the construction of domain relevant representations. To assess the effectiveness of these designs I conducted two studies of children ages 7-14 playing prototype games in informal settings. An analysis of pre- and post-game clinical interviews, domain specific tasks, and video and logging data of gameplay suggests players developed useful knowledge resources, likely gained and/or refined from experiences in-game, that are employed to solve non-game problems and tasks. Furthermore, players utilized in-game representations as objects-to-think-with when explaining real world phenomena and formal concepts. The results suggest that games designed to include constructible authentic representations can provide players with powerful and useful knowledge resources accessible when thinking and reasoning in a variety of contexts.
Burton, R; Mauk, D
1993-03-01
By integrating customer satisfaction planning and industrial engineering techniques when examining internal costs and efficiencies, materiel managers are able to better realize what concepts will best meet their customers' needs. Defining your customer(s), applying industrial engineering techniques, completing work sampling studies, itemizing recommendations and benefits to each alternative, performing feasibility and cost-analysis matrixes and utilizing resources through productivity monitoring will get you on the right path toward selecting concepts to use. This article reviews the above procedures as they applied to one hospital's decision-making process to determine whether to incorporate a stockless inventory program. Through an analysis of customer demand, the hospital realized that stockless was the way to go, but not by outsourcing the function--the hospital incorporated an in-house stockless inventory program.
Strategies for Derisking Translational Processes for Biomedical Technologies.
Abou-El-Enein, Mohamed; Duda, Georg N; Gruskin, Elliott A; Grainger, David W
2017-02-01
Inefficient translational processes for technology-oriented biomedical research have led to some prominent and frequent failures in the development of many leading drug candidates, several designated investigational drugs, and some medical devices, as well as documented patient harm and postmarket product withdrawals. Derisking this process, particularly in the early stages, should increase translational efficiency and streamline resource utilization, especially in an academic setting. In this opinion article, we identify a 12-step guideline for reducing risks typically associated with translating medical technologies as they move toward prototypes, preclinical proof of concept, and possible clinical testing. Integrating the described 12-step process should prove valuable for improving how early-stage academic biomedical concepts are cultivated, culled, and manicured toward intended clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
HPC on Competitive Cloud Resources
NASA Astrophysics Data System (ADS)
Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff
Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.
Autonomous In-Situ Resources Prospector
NASA Technical Reports Server (NTRS)
Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.
2004-01-01
This presentation will describe the concept of an autonomous, intelligent, rover-based rapid surveying system to identify and map several key lunar resources to optimize their ISRU (In Situ Resource Utilization) extraction potential. Prior to an extraction phase for any target resource, ground-based surveys are needed to provide confirmation of remote observation, to quantify and map their 3-D distribution, and to locate optimal extraction sites (e.g. ore bodies) with precision to maximize their economic benefit. The system will search for and quantify optimal minerals for oxygen production feedstock, water ice, and high glass-content regolith that can be used for building materials. These are targeted because of their utility and because they are, or are likely to be, variable in quantity over spatial scales accessible to a rover (i.e., few km). Oxygen has benefits for life support systems and as an oxidizer for propellants. Water is a key resource for sustainable exploration, with utility for life support, propellants, and other industrial processes. High glass-content regolith has utility as a feedstock for building materials as it readily sinters upon heating into a cohesive matrix more readily than other regolith materials or crystalline basalts. Lunar glasses are also a potential feedstock for oxygen production, as many are rich in iron and titanium oxides that are optimal for oxygen extraction. To accomplish this task, a system of sensors and decision-making algorithms for an autonomous prospecting rover is described. One set of sensors will be located in the wheel tread of the robotic search vehicle providing contact sensor data on regolith composition. Another set of instruments will be housed on the platform of the rover, including VIS-NIR imagers and spectrometers, both for far-field context and near-field characterization of the regolith in the immediate vicinity of the rover. Also included in the sensor suite are a neutron spectrometer, ground-penetrating radar, and an instrumented cone penetrometer for subsurface assessment. Output from these sensors will be evaluated autonomously in real-time by decision-making software to evaluate if any of the targeted resources has been detected, and if so, to quantify their abundance. Algorithms for optimizing the mapping strategy based on target resource abundance and distribution are also included in the autonomous software. This approach emphasizes on-the-fly survey measurements to enable efficient and rapid prospecting of large areas, which will improve the economics of ISRU system approaches. The mature technology will enable autonomous rovers to create in-situ resource maps of lunar or other planetary surfaces, which will facilitate human and robotic exploration.
NASA Astrophysics Data System (ADS)
Wright, Christopher G.
2011-12-01
This research examines the intellectual and linguistic resources that a group of African American boys brought to the study of the science of sound and the practice of representation. By taking a resource-rich view of the boys' linguistic and representational practices, my objective is to investigate children's abilities in producing, using, critiquing, and modifying representations. Specifically, this research looks to explore and identify the varieties of resources that African American boys utilize in developing scientific understanding. Using transcripts from group sessions, as well as the drawings produced during these sessions, I utilized a combination of discourse analysis to explore the boys' linguistic interactions during the critique of drawings with a focus on the boys' manipulation of line segments in order to explore their representational competencies. Analysis of the transcripts and the boys' drawings revealed several important findings. First, elements of Signifying were instrumental in the group's collective exploration of each other's drawings, and the ideas of sound transmission being represented in the drawings. Thus, I found that the boys' use of Signifying was key to their engagement win the practice of critique. Second, the boys' ideas regarding sound transmission were not fixed, stable misconceptions that could be "fixed" through instruction. Instead, I believe that their explanations and drawings were generated from a web of ideas regarding sound transmission. Lastly, the boys exhibited a form of meta-representational competency that included the production, modification, and manipulation of notations used to represent sound transmission. Despite this competency, the negotiation process necessary in constructing meaning of a drawing highlighted the complexities in developing a conventional understanding or meaning for representations. Additional research is necessary for exploring the intellectual and lingustic resources that children from communities of color bring to the science classroom. The objective of this research was not to highlight a single intellectual and linguistic resource that educators and educational researchers could expect to witness when working with African American boys. Instead, the objective was to highlight an approach to teaching and learning that investigated and highlighted the resources that children from communities of color have developed within their communities and from their varied life experiences that may be conducive to scientific exploration and language. Recognizing that all children bring a variety of resources that can be utilized and further developed in order to expand their understandings of scientific concepts or a representational practices must be continually explored if we are to begin the process of addressing inequitable access to science opportunities.
Duan, Jin-ao; Su, Shu-lan; Guo, Sheng; Jiang, Shu; Liu, Pei; Yan, Hui; Qian, Da-wei; Zhu, Hua-xu; Tang, Yu-ping; Wu, Qi-nan
2015-09-01
The objects of research on the resources chemistry of Chinese medicinal materials (RCCMM) are promotion of efficient production, rational utilization and improving quality of CMM and natural products. The development of TCM cause depends on the efficient utilization and sustainable development of CMM, hinges on the technologies and methods for using and discovering medicinal biological resources, stand or fall on the extension of industy chains, detailed utilizaion of resource chemical components by multi-way, multi-level. All of these may help to the recycling utilization and sound development of RCMM. In this article, five respects were discussed to the RCCMM researches and resources recycling utilization ways and goals and tasks. First, based on the principle of resource scarcity, discovering or replacing CMM resources, protecting the rare or endangered species or resources. Second, based on the multifunctionality of CMM, realizing the value-added and value compensation, and promoting the utilization efficiency through systermatic and detailed exploitation and utilization. Third, based on the resource conservation and environment-friendly, reducing raw material consumption, lowering cost, promoting recycling utilization and elevating utilization efficiency. Fourth, based on the stratege of turning harm into good, using the invasive alien biological resources by multi-ways and enriching the medicial resources. Fifth, based on the method of structure modification of chemical components, exploring and enhancing the utility value of resouces chemical substances. These data should provide references and attention for improving the utilization efficiency, promoting the development of recycling economy, and changing the mode of economic growth of agriculture and industry of CMM fundamentally.
NASA Astrophysics Data System (ADS)
Yue, S. S.; Wen, Y. N.; Lv, G. N.; Hu, D.
2013-10-01
In recent years, the increasing development of cloud computing technologies laid critical foundation for efficiently solving complicated geographic issues. However, it is still difficult to realize the cooperative operation of massive heterogeneous geographical models. Traditional cloud architecture is apt to provide centralized solution to end users, while all the required resources are often offered by large enterprises or special agencies. Thus, it's a closed framework from the perspective of resource utilization. Solving comprehensive geographic issues requires integrating multifarious heterogeneous geographical models and data. In this case, an open computing platform is in need, with which the model owners can package and deploy their models into cloud conveniently, while model users can search, access and utilize those models with cloud facility. Based on this concept, the open cloud service strategies for the sharing of heterogeneous geographic analysis models is studied in this article. The key technology: unified cloud interface strategy, sharing platform based on cloud service, and computing platform based on cloud service are discussed in detail, and related experiments are conducted for further verification.
NASA Technical Reports Server (NTRS)
Guarneri, C. A.; Reed, A.; Renman, R. E.
1972-01-01
This study of water reclamation and waste disposal is directed toward a more efficient utilization of natural resources. From an ecological standpoint improved methods of land use, water processing equipment, and ideal population profiles are investigated. Methods are described whereby significant reduction in water usage can be achieved by the adoption of presently available and practically applied technological concepts. Allowances are made for social, natural, and economic contingencies which are likely to occur up to the year 2000.
Remote sensing applications for range management
NASA Technical Reports Server (NTRS)
Haas, R. H.
1981-01-01
The use of satellite information for range management is discussed. The use of infrared photography and color photography for analysis of vegetation cover is described. The methods of interpreting LANDSAT imagery are highlighted and possible applications of such interpretive methods to range management are considered. The concept of using LANDSAT as a sampling frame for renewable natural resource inventories was examined. It is concluded that a blending of LANDSAT vegetation data with soils and digital terrain data, will define a basic sampling unit that is appropriate for range management utilization.
LANDSAT-D ground segment operations plan, revision A
NASA Technical Reports Server (NTRS)
Evans, B.
1982-01-01
The basic concept for the utilization of LANDSAT ground processing resources is described. Only the steady state activities that support normal ground processing are addressed. This ground segment operations plan covers all processing of the multispectral scanner and the processing of thematic mapper through data acquisition and payload correction data generation for the LANDSAT 4 mission. The capabilities embedded in the hardware and software elements are presented from an operations viewpoint. The personnel assignments associated with each functional process and the mechanisms available for controlling the overall data flow are identified.
Genewein, U; Jakob, M; Bingisser, R; Burla, S; Heberer, M
2009-02-01
Mission and organization of emergency units were analysed to understand the underlying principles and concepts. The recent literature (2000-2007) on organizational structures and functional concepts of clinical emergency units was reviewed. An organizational portfolio based on the criteria specialization (presence of medical specialists on the emergency unit) and integration (integration of the emergency unit into the hospital structure) was established. The resulting organizational archetypes were comparatively assessed based on established efficiency criteria (efficiency of resource utilization, process efficiency, market efficiency). Clinical emergency units differ with regard to autonomy (within the hospital structure), range of services and service depth (horizontal and vertical integration). The "specialization"-"integration"-portfolio enabled the definition of typical organizational patterns (so-called archetypes): profit centres primarily driven by economic objectives, service centres operating on the basis of agreements with the hospital board, functional clinical units integrated into medical specialty units (e.g., surgery, gynaecology) and modular organizations characterized by small emergency teams that would call specialists immediately after triage and initial diagnostic. There is no "one fits all" concept for the organization of clinical emergency units. Instead, a number of well characterized organizational concepts are available enabling a rational choice based on a hospital's mission and demand.
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
The Utility of Concept Maps to Facilitate Higher-Level Learning in a Large Classroom Setting
Carr-Lopez, Sian M.; Vyas, Deepti; Patel, Rajul A.; Gnesa, Eric H.
2014-01-01
Objective. To describe the utility of concept mapping in a cardiovascular therapeutics course within a large classroom setting. Design. Students enrolled in a cardiovascular care therapeutics course completed concept maps for each major chronic cardiovascular condition. A grading rubric was used to facilitate peer-assessment of the concept map. Assessment. Students were administered a survey at the end of the course assessing their perceptions on the usefulness of the concept maps during the course and also during APPEs to assess utility beyond the course. Question item analyses were conducted on cumulative final examinations comparing student performance on concept-mapped topics compared to nonconcept-mapped topics. Conclusion. Concept maps help to facilitate meaningful learning within the course and the majority of students utilized them beyond the course. PMID:26056408
A framework for considering externalities in urban water asset management.
Marlow, David; Pearson, Leonie; Macdonald, Darla Hatton; Whitten, Stuart; Burn, Stewart
2011-01-01
Urban communities rely on a complex network of infrastructure assets to connect them to water resources. There is considerable capital investment required to maintain, upgrade and extend this infrastructure. As the remit of a water utility is broader than just financial considerations, infrastructure investment decisions must be made in light of environmental and societal issues. One way of facilitating this is to integrate consideration of externalities into decision making processes. This paper considers the concept of externalities from an asset management perspective. A case study is provided to show the practical implications to a water utility and asset managers. A framework for the inclusion of externalities in asset management decision making is also presented. The potential for application of the framework is highlighted through a brief consideration of its key elements.
Joslin, A C; Green, R; German, J B; Lange, M C
2014-09-01
Advances in the development of bioinformatic tools continue to improve investigators' ability to interrogate, organize, and derive knowledge from large amounts of heterogeneous information. These tools often require advanced technical skills not possessed by life scientists. User-friendly, low-barrier-to-entry methods of visualizing nutrigenomics information are yet to be developed. We utilized concept mapping software from the Institute for Human and Machine Cognition to create a conceptual model of diet and health-related data that provides a foundation for future nutrigenomics ontologies describing published nutrient-gene/polymorphism-phenotype data. In this model, maps containing phenotype, nutrient, gene product, and genetic polymorphism interactions are visualized as triples of two concepts linked together by a linking phrase. These triples, or "knowledge propositions," contextualize aggregated data and information into easy-to-read knowledge maps. Maps of these triples enable visualization of genes spanning the One-Carbon Metabolism (OCM) pathway, their sequence variants, and multiple literature-mined associations including concepts relevant to nutrition, phenotypes, and health. The concept map development process documents the incongruity of information derived from pathway databases versus literature resources. This conceptual model highlights the importance of incorporating information about genes in upstream pathways that provide substrates, as well as downstream pathways that utilize products of the pathway under investigation, in this case OCM. Other genes and their polymorphisms, such as TCN2 and FUT2, although not directly involved in OCM, potentially alter OCM pathway functionality. These upstream gene products regulate substrates such as B12. Constellations of polymorphisms affecting the functionality of genes along OCM, together with substrate and cofactor availability, may impact resultant phenotypes. These conceptual maps provide a foundational framework for development of nutrient-gene/polymorphism-phenotype ontologies and systems visualization.
Space, our next frontier; Proceedings of the conference, Dallas, TX, June 7, 8, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, G.
1985-01-01
The present conference on space development encompasses space commercialization, legislative, legal, and insurance-related factors in current space programs, political aspects of space militarization and governmental control, the military future uses of space and their consequences, command and control issues arising in space, economic influences on space policy, and recent developments in space solar power generation concepts. Attention is given to public opinion surveys concerning the scientific, military, and economic uses of space, the Leasecraft orbital industrial infrastructure concept, capitalism and democracy in space development, the current status of space law on commercialization topics, the nature of Ballistic Missile Defense, themore » Soviet Space threat, the High Frontier concept for space defense, lunar solar power systems, solar power satellites, and the utilization of lunar resources for the reduction of lunar base construction costs. Such specific technical issues as microgravity crystal growth and directional solidification, electrophoresis operations for pharmaceuticals, and technical barriers to commercial access to space, are also noted.« less
NASA Astrophysics Data System (ADS)
Sanders, Gerald B.; Larson, William E.
2015-05-01
A key aspect of enabling an affordable and sustainable program of human exploration beyond low Earth orbit is the ability to locate, extract, and harness the resources found in space to reduce what needs to be launched from Earth's deep gravity well and to minimize the risk of dependence on Earth for survival. Known as In Situ Resource Utilization or ISRU, the ability to convert space resources into useful and mission critical products has been shown in numerous studies to be mission and architecture enhancing or enabling. However at the time of the release of the US Vision for Space Exploration in 2004, only concept feasibility hardware for ISRU technologies and capabilities had been built and tested in the laboratory; no ISRU hardware had ever flown in a mission to the Moon or Mars. As a result, an ISRU development project was established with phased development of multiple generations of hardware and systems. To bridge the gap between past ISRU feasibility hardware and future hardware needed for space missions, and to increase confidence in mission and architecture planners that ISRU capabilities would meet exploration needs, the ISRU development project incorporated extensive ground and analog site testing to mature hardware, operations, and interconnectivity with other exploration systems linked to ISRU products. This report documents the series of analog test activities performed from 2008 to 2012, the stepwise progress achieved, and the end-to-end system and mission demonstrations accomplished in this test program.
NASA Technical Reports Server (NTRS)
Bell, Evan A.
2015-01-01
During my time at NASA, I worked with the Granular Mechanics and Regolith Organization (GMRO), better known as Swamp Works. The goal of the lab is to find ways to utilize resources found after the astronaut or robot has landed on another planet or asteroid. This concept is known as in-situ resource utilization and it is critical to long term missions such as those to Mars. During my time here I worked on the Asteroid and Lava Tube Free Flyer project (ALTFF). A lava tube, such as the one shown in figure 1, is a long tear drop shaped cavern that is produced when molten lava tunnels through the surrounding rock creating large unground pathways. Before mining for resources on Mars or on asteroids, a sampling mission must be done to scout out useful resource deposits. ALTFF's goal is to provide a low cost, autonomous scout robot that can sample the surface and return to the mother ship or lander for further processing of the samples. The vehicle will be looking for water ice in the regolith that can be processed into either potable water, hydrogen and oxygen fuel, or a binder material for 3D printing. By using a low cost craft to sample, there is much less risk to the more expensive mother ship or lander. While my main task was the construction of a simulation environment to test control code in and the construction of the asteroid free flyer prototype, there were other tasks that I performed relating to the ALTFF project.
Comet/Asteroid Protection System (CAPS): Preliminary Space-Based Concept and Study Results
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Park, Sang-Young; Koons, Robert H.; Bremer, James C.; Murphy, Douglas G.; Hoffman, James A.; Kumar, Renjith R.; Seywald, Hans
2005-01-01
There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) is a future space-based system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This Technical Memorandum provides a compilation of key related topics and analyses performed during the CAPS study, which was performed under the Revolutionary Aerospace Systems Concepts (RASC) program, and discusses technologies that could enable the implementation of this future system.
Application and Prospect of Big Data in Water Resources
NASA Astrophysics Data System (ADS)
Xi, Danchi; Xu, Xinyi
2017-04-01
Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.
Measuring Resource Utilization: A Systematic Review of Validated Self-Reported Questionnaires.
Leggett, Laura E; Khadaroo, Rachel G; Holroyd-Leduc, Jayna; Lorenzetti, Diane L; Hanson, Heather; Wagg, Adrian; Padwal, Raj; Clement, Fiona
2016-03-01
A variety of methods may be used to obtain costing data. Although administrative data are most commonly used, the data available in these datasets are often limited. An alternative method of obtaining costing is through self-reported questionnaires. Currently, there are no systematic reviews that summarize self-reported resource utilization instruments from the published literature.The aim of the study was to identify validated self-report healthcare resource use instruments and to map their attributes.A systematic review was conducted. The search identified articles using terms like "healthcare utilization" and "questionnaire." All abstracts and full texts were considered in duplicate. For inclusion, studies had to assess the validity of a self-reported resource use questionnaire, to report original data, include adult populations, and the questionnaire had to be publically available. Data such as type of resource utilization assessed by each questionnaire, and validation findings were extracted from each study.In all, 2343 unique citations were retrieved; 2297 were excluded during abstract review. Forty-six studies were reviewed in full text, and 15 studies were included in this systematic review. Six assessed resource utilization of patients with chronic conditions; 5 assessed mental health service utilization; 3 assessed resource utilization by a general population; and 1 assessed utilization in older populations. The most frequently measured resources included visits to general practitioners and inpatient stays; nonmedical resources were least frequently measured. Self-reported questionnaires on resource utilization had good agreement with administrative data, although, visits to general practitioners, outpatient days, and nurse visits had poorer agreement.Self-reported questionnaires are a valid method of collecting data on healthcare resource utilization.
Hot dry rock geothermal energy: A renewable energy resource that is ready for development now
NASA Astrophysics Data System (ADS)
Brown, D. W.; Potter, R. M.; Myers, C. W.
Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow-tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.
NASA Astrophysics Data System (ADS)
Wright, Willie E.
2003-05-01
As Military Medical Information Assurance organizations face off with modern pressures to downsize and outsource, they battle with losing knowledgeable people who leave and take with them what they know. This knowledge is increasingly being recognized as an important resource and organizations are now taking steps to manage it. In addition, as the pressures for globalization (Castells, 1998) increase, collaboration and cooperation are becoming more distributed and international. Knowledge sharing in a distributed international environment is becoming an essential part of Knowledge Management. This is a major shortfall in the current approach to capturing and sharing knowledge in Military Medical Information Assurance. This paper addresses this challenge by exploring Risk Information Management Resource (RIMR) as a tool for sharing knowledge using the concept of Communities of Practice. RIMR is based no the framework of sharing and using knowledge. This concept is done through three major components - people, process and technology. The people aspect enables remote collaboration, support communities of practice, reward and recognize knowledge sharing while encouraging storytelling. The process aspect enhances knowledge capture and manages information. While the technology aspect enhance system integration and data mining, it also utilizes intelligent agents and exploits expert systems. These coupled with supporting activities of education and training, technology infrastructure and information security enables effective information assurance collaboration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Waight, Jim; Grover, Shailendra
OMNETRIC Corp., Duke Energy, CPS Energy, and the University of Texas at San Antonio (UTSA) created a project team to execute the project 'OpenFMB Reference Architecture Demonstration.' The project included development and demonstration of concepts that will enable the electric utility grid to host larger penetrations of renewable resources. The project concept calls for the aggregation of renewable resources and loads into microgrids and the control of these microgrids with an implementation of the OpenFMB Reference Architecture. The production of power from the renewable resources that are appearing on the grid today is very closely linked to the weather. Themore » difficulty of forecasting the weather, which is well understood, leads to difficulty in forecasting the production of renewable resources. The current state of the art in forecasting the power production from renewables (solar PV and wind) are accuracies in the range of 12-25 percent NMAE. In contrast the demand for electricity aggregated to the system level, is easier to predict. The state of the art of demand forecasting done, 24 hours ahead, is about 2-3% MAPE. Forecasting the load to be supplied from conventional resources (demand minus generation from renewable resources) is thus very hard to forecast. This means that even a few hours before the time of consumption, there can be considerable uncertainty over what must be done to balance supply and demand. Adding to the problem of difficulty of forecasting, is the reality of the variability of the actual production of power from renewables. Due to the variability of wind speeds and solar insolation, the actual output of power from renewable resources can vary significantly over a short period of time. Gusts of winds result is variation of power output of wind turbines. The shadows of clouds moving over solar PV arrays result in the variation of power production of the array. This compounds the problem of balancing supply and demand in real time. Establishing a control system that can manage distribution systems with large penetrations of renewable resources is difficult due to two major issues: (1) the lack of standardization and interoperability between the vast array of equipment in operation and on the market, most of which use different and proprietary means of communication and (2) the magnitude of the network and the information it generates and consumes. The objective of this project is to provide the industry with a design concept and tools that will enable the electric power grid to overcome these barriers and support a larger penetration of clean energy from renewable resources.« less
Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Colaprete, Anthony; Elphic, Richard C.; Forgione, Joshua; White, Bruce; McMurray, Robert; Cook, Amanda M.; Bielawski, Richard; Fritzler, Erin L.; Thompson, Sarah J.;
2016-01-01
In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method.
Nasa's Ant-Inspired Swarmie Robots
NASA Technical Reports Server (NTRS)
Leucht, Kurt W.
2016-01-01
As humans push further beyond the grasp of earth, robotic missions in advance of human missions will play an increasingly important role. These robotic systems will find and retrieve valuable resources as part of an in-situ resource utilization (ISRU) strategy. They will need to be highly autonomous while maintaining high task performance levels. NASA Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots to be used as a ground-based research platform for ISRU missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in a previously unmapped environment and return those resources to a central site. This talk will guide the audience through the Swarmie robot project from its conception by students in a New Mexico research lab to its robot trials in an outdoor parking lot at NASA. The software technologies and techniques used on the project will be discussed, as well as various challenges and solutions that were encountered by the development team along the way.
Study 2.6 operations analysis mission characterization
NASA Technical Reports Server (NTRS)
Wolfe, R. R.
1973-01-01
An analysis of the current operations concepts of NASA and DoD is presented to determine if alternatives exist which may improve the utilization of resources. The final product is intended to show how sensitive these ground rules and design approaches are relative to the total cost of doing business. The results are comparative in nature, and assess one concept against another as opposed to establishing an absolute cost value for program requirements. An assessment of the mission characteristics is explained to clarify the intent, scope, and direction of this effort to improve the understanding of what is to be accomplished. The characterization of missions is oriented toward grouping missions which may offer potential economic benefits by reducing overall program costs. Program costs include design, development, testing, and engineering, recurring unit costs for logistic vehicles, payload costs. and direct operating costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Brian; Huque, Aminul; Rogers, Lindsey
In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less
Environmental design implications for two deep space SmallSats
NASA Astrophysics Data System (ADS)
Kahn, Peter; Imken, Travis; Elliott, John; Sherwood, Brent; Frick, Andreas; Sheldon, Douglas; Lunine, Jonathan
2017-10-01
The extreme environmental challenges of deep space exploration force unique solutions to small satellite design in order to enable their use as scientifically viable spacecraft. The challenges of implementing small satellites within limited resources can be daunting when faced with radiation effects on delicate electronics that require shielding or unique adaptations for protection, or mass, power and volume limitations due to constraints placed by the carrier spacecraft, or even Planetary Protection compliant design techniques that drive assembly and testing. This paper will explore two concept studies where the environmental constraints and/or planetary protection mitigations drove the design of the Flight System. The paper will describe the key technical drivers on the Sylph mission concept to explore a plume at Europa as a secondary free-flyer as a part of the planned Europa Mission. Sylph is a radiation-hardened smallsat concept that would utilize terrain relative navigation to fly at low altitudes through a plume, if found, and relay the mass spectra data back through the flyby spacecraft during its 24-h mission. The second topic to be discussed will be the mission design constraints of the Near Earth Asteroid (NEA) Scout concept. NEAScout is a 6U cubesat that would utilize an 86 sq. m solar sail as propulsion to execute a flyby with a near-Earth asteroid and help retire Strategic Knowledge Gaps for future human exploration. NEAScout would cruise for 24 months to reach and characterize one Near-Earth asteroid that is representative of Human Exploration targets and telemeter that data directly back to Earth at the end of its roughly 2.5 year mission.
An approach to modeling and optimization of integrated renewable energy system (ires)
NASA Astrophysics Data System (ADS)
Maheshwari, Zeel
The purpose of this study was to cost optimize electrical part of IRES (Integrated Renewable Energy Systems) using HOMER and maximize the utilization of resources using MATLAB programming. IRES is an effective and a viable strategy that can be employed to harness renewable energy resources to energize remote rural areas of developing countries. The resource- need matching, which is the basis for IRES makes it possible to provide energy in an efficient and cost effective manner. Modeling and optimization of IRES for a selected study area makes IRES more advantageous when compared to hybrid concepts. A remote rural area with a population of 700 in 120 households and 450 cattle is considered as an example for cost analysis and optimization. Mathematical models for key components of IRES such as biogas generator, hydropower generator, wind turbine, PV system and battery banks are developed. A discussion of the size of water reservoir required is also presented. Modeling of IRES on the basis of need to resource and resource to need matching is pursued to help in optimum use of resources for the needs. Fixed resources such as biogas and water are used in prioritized order whereas movable resources such as wind and solar can be used simultaneously for different priorities. IRES is cost optimized for electricity demand using HOMER software that is developed by the NREL (National Renewable Energy Laboratory). HOMER optimizes configuration for electrical demand only and does not consider other demands such as biogas for cooking and water for domestic and irrigation purposes. Hence an optimization program based on the need-resource modeling of IRES is performed in MATLAB. Optimization of the utilization of resources for several needs is performed. Results obtained from MATLAB clearly show that the available resources can fulfill the demand of the rural areas. Introduction of IRES in rural communities has many socio-economic implications. It brings about improvement in living environment and community welfare by supplying the basic needs such as biogas for cooking, water for domestic and irrigation purposes and electrical energy for lighting, communication, cold storage, educational and small- scale industrial purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark
The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizesmore » energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and roadmap development to identify and prioritize component, subsystem and system testing that will lead to prototype demonstration.« less
Recovery and Utilization of Extraterrestrial Resources
NASA Technical Reports Server (NTRS)
2004-01-01
This special bibliography includes the extraction, processing, and utilization of lunar, planetary, and asteroid resources; mining and excavation equipment, oxygen and propellant production; and in situ resource utilization.
Aoyama, Wakako; Tatsumi, Asami
2017-01-31
In this study, concepts were constructed that express learning experiences in nursing master's degree programs utilized in occupational health nursing activities with the aim of clarifying those characteristics. This was based on the idea that elucidation of the characteristics of learning experiences in nursing master's degree programs used in occupational health nursing activities would be meaningful in providing high-quality occupational health services that respond to the needs of society. Semi-structured interviews were conducted with 10 people who fulfilled the three conditions of having completed a master's degree programs, working as an occupational health nurse after completion of the program, and not continuing on to a doctoral program. The nursing conceptualization method of Naomi Funashima was used. From the obtained data, 512 code items expressing learning experiences in master's degree programs utilized in occupational health nursing activities were identified. These items included five core categories (concepts), 34 categories, and 69 subcategories. The five concepts constructed were "Pursuit of expertise and self-evaluation," "Mutual understanding of various people that leads to human resources utilization," "Theoretical and academic learning that influences changes in activities," "Research learning that lead to activities based on scientific evidence," and "Learning that leads to high-quality activities making use of expertise." It was found that various learning experiences in the master's program to pursue the specialty of occupational health nurses in order to recognize their roles as well as the experiences to take the initiative in learning had been integrated in their activities after completion of the course and had contributed to their high-quality occupational health nursing activities. It was suggested that the learning experiences in the master's program, which had been revealed in this study, were the experiences necessary for providing high-quality occupational health nursing activities to satisfy the social needs.
Mars for Earthlings: an analog approach to Mars in undergraduate education.
Chan, Marjorie; Kahmann-Robinson, Julia
2014-01-01
Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.
Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.
Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua
2015-01-01
A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.
Research on the use of space resources
NASA Technical Reports Server (NTRS)
Carroll, W. F. (Editor)
1983-01-01
The second year of a multiyear research program on the processing and use of extraterrestrial resources is covered. The research tasks included: (1) silicate processing, (2) magma electrolysis, (3) vapor phase reduction, and (4) metals separation. Concomitant studies included: (1) energy systems, (2) transportation systems, (3) utilization analysis, and (4) resource exploration missions. Emphasis in fiscal year 1982 was placed on the magma electrolysis and vapor phase reduction processes (both analytical and experimental) for separation of oxygen and metals from lunar regolith. The early experimental work on magma electrolysis resulted in gram quantities of iron (mixed metals) and the identification of significant anode, cathode, and container problems. In the vapor phase reduction tasks a detailed analysis of various process concepts led to the selection of two specific processes designated as ""Vapor Separation'' and ""Selective Ionization.'' Experimental work was deferred to fiscal year 1983. In the Silicate Processing task a thermophysical model of the casting process was developed and used to study the effect of variations in material properties on the cooling behavior of lunar basalt.
A Survey of Geologic Resources. Chapter 11
NASA Technical Reports Server (NTRS)
Edmonson, Jennifer; Rickman, Doug
2012-01-01
This chapter focuses on the resources available from the Moon itself: regolith, geologically concentrated materials, and lunar physical features that will enable habitation and generation of power on the surface. This chapter briefly covers the formation of the Moon and thus the formation of the crust of the Moon, as well as the evolution of the regolith. The characteristics of the regolith are provided in some detail, including its mineralogy and lithology. The location of high concentrations of specific minerals or rocks is noted. Other ideal locations for in situ resource utilization technology and lunar habitation are presented. This chapter is intended to be a brief review of current knowledge, and to serve as a foundational source for further study. Each concept presented here has a wealth of literature associated with it; the reader is therefore directed to that literature with each discussion. With great interest in possible manned lunar landings and continued study of the Moon by multiple satellites, the available information changes regularly.
Microgravity Materials Research and Code U ISRU
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Sibille, Laurent
2004-01-01
The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.
Integrating MRP (materiel requirements planning) II and JIT to achieve world-class status.
Titone, R C
1994-05-01
The concepts and principles of using manufacturing resource planning (MRP II) for planning are not new. Their success has been proven in numerous manufacturing companies in America. The concepts and principles of using just-in-time (JIT) inventory for execution, while more recent, have also been available for some time, and their success in Japan well documented. However, it is the effective integration of these two powerful tools that open the way to achieving world-class manufacturing status. This article will utilize a newly developed world-class manufacturing model, which will review the aspects of planning, beginning with a business plan through the production planning process and culminating with a master schedule that drives a materiel/capacity plan. The importance and interrelationship of these functions are reviewed. The model then illustrates the important aspects of executing these plans beginning with people issues, through total quality control (TQC) and pull systems. We will then utilize this new functional model to demonstrate the relationship between these various functions and the importance of integrating them with a total comprehensive manufacturing strategy that will lead to world-class manufacturing and profits.
An Inter-Personal Information Sharing Model Based on Personalized Recommendations
NASA Astrophysics Data System (ADS)
Kamei, Koji; Funakoshi, Kaname; Akahani, Jun-Ichi; Satoh, Tetsuji
In this paper, we propose an inter-personal information sharing model among individuals based on personalized recommendations. In the proposed model, we define an information resource as shared between people when both of them consider it important --- not merely when they both possess it. In other words, the model defines the importance of information resources based on personalized recommendations from identifiable acquaintances. The proposed method is based on a collaborative filtering system that focuses on evaluations from identifiable acquaintances. It utilizes both user evaluations for documents and their contents. In other words, each user profile is represented as a matrix of credibility to the other users' evaluations on each domain of interests. We extended the content-based collaborative filtering method to distinguish other users to whom the documents should be recommended. We also applied a concept-based vector space model to represent the domain of interests instead of the previous method which represented them by a term-based vector space model. We introduce a personalized concept-base compiled from each user's information repository to improve the information retrieval in the user's environment. Furthermore, the concept-spaces change from user to user since they reflect the personalities of the users. Because of different concept-spaces, the similarity between a document and a user's interest varies for each user. As a result, a user receives recommendations from other users who have different view points, achieving inter-personal information sharing based on personalized recommendations. This paper also describes an experimental simulation of our information sharing model. In our laboratory, five participants accumulated a personal repository of e-mails and web pages from which they built their own concept-base. Then we estimated the user profiles according to personalized concept-bases and sets of documents which others evaluated. We simulated inter-personal recommendation based on the user profiles and evaluated the performance of the recommendation method by comparing the recommended documents to the result of the content-based collaborative filtering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweitzer, M.
1991-01-01
Integrated resource planning differs from traditional utility planning practices primarily in its increased attention to demand-side management (DSM) programs and its integration of supply- and demand-side resources into a combined resource portfolio. This report details the findings from an Oak Ridge National Laboratory (ORNL) survey of 24 electric utilities that have well-developed integrated planning processes. These utilities account for roughly one-third of total capacity, electricity generation, and DSM-program expenditures nationwide. The ORNL survey was designed to obtain descriptive data on a national sample of utilities and to test a number of hypothesized relationships between selected utility characteristics and the mixmore » of resources selected for the integrated plan, with an emphasis on the use of DSM resources and the processes by which they are chosen. The survey solicited information on each utility's current and projected resource mix, operating environment, procedures used to screen potential DSM resources, techniques used to obtain public input and to integrate supply- and demand-side options into a unified plan, and procedures used in the final selection of resources for the plan.« less
Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mueller, Robert P.
2015-01-01
A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.
Understanding the essentials of economic evaluation.
Schmid, G P
1995-01-01
Economic evaluation (EE) answers the following simple question: "From which course of action do we get the most value for our money?" We ask this question because resources are always limited, i.e., we never have enough money to do all the things we would like to do. Three types of economic evaluations are used: cost-effectiveness analysis, cost-utility analysis, and cost-benefit analysis. Although all involve a monetary and outcome comparison of two or more courses of action, the methodologies and outcomes of each type vary, making each one particularly suited for specific and different indications. Although the performance of an EE may be complex, its concept is intuitively simple. Understanding the basic elements of economic analysis is more and more important to all health-care providers because health-care policy makers at all levels are increasingly using EE for allocating resources.
Prospects of complete feed system in ruminant feeding: A review
Beigh, Yasir Afzal; Ganai, Abdul Majeed; Ahmad, Haidar Ali
2017-01-01
Effective utilization of available feed resources is the key for economical livestock rearing. Complete feed system is one of the latest developments to exploit the potential of animal feed resources in the best possible way. The complete feed is a quantitative mixture of all dietary ingredients, blended thoroughly to prevent separation and selection, fed as a sole source of nutrients except water and is formulated in a desired proportion to meet the specific nutrient requirements. The concentrate and roughage levels may vary according to the nutrient requirement of ruminants for different production purposes. The complete feed with the use of fibrous crop residue is a noble way to increase the voluntary feed intake and thus animal’s production performance. In this system of feeding, the ruminant animals have continuous free choice availability of uniform feed mixture, resulting in more uniform load on the rumen and less fluctuation in release of ammonia which supports more efficient utilization of ruminal non-protein nitrogen. Feeding complete diet stabilizes ruminal fermentation, thereby improves nutrient utilization. This feeding system allows expanded use of agro-industrial byproducts, crop residues and nonconventional feeds in ruminant ration for maximizing production and minimizing feeding cost, thus being increasingly appreciated. However, to extend the concept extensively to the field and make this technology successful and viable for farmers, more efforts are needed to be taken. PMID:28507415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, F. G.; Luo, Y.; Mohanpurkar, M.
Since the modern-day introduction of plug-in electric vehicles (PEVs), scientists have proposed leveraging PEV battery packs as distributed energy resources for the electric grid. PEV charging can be controlled not only to provide energy for transportation but also to provide grid services and to facilitate the integration of renewable energy generation. With renewable generation increasing at an unprecedented rate, most of which is non-dispatchable and intermittent, the concept of using PEVs as controllable loads is appealing to electric utilities. This additional functionality could also provide value to PEV owners and drive PEV adoption. It has been widely proposed that PEVsmore » can provide valuable grid services, such as load shifting to provide voltage regulation. The objective this work is to address the degree to which PEVs can provide grid services and mutually benefit the electric utilities, PEV owners, and auto manufacturers.« less
Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks
NASA Astrophysics Data System (ADS)
Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie
2015-12-01
Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.
Extraterrestrial consumables production and utilization
NASA Technical Reports Server (NTRS)
Sanders, A. P.
1972-01-01
Potential oxygen requirements for lunar-surface, lunar-orbit, and planetary missions are presented with emphasis on: (1) emergency survival of the crew, (2) provision of energy consumables for vehicles, and (3) nondependency on an earth supply of oxygen. Although many extraterrestrial resource processes are analytically feasible, this study has considered hydrogen and fluorine processing concepts to obtain oxygen or water (or both). The results are quite encouraging and are extrapolatable to other processes. Preliminary mission planning and sequencing analysis has enabled the programmatic evaluation of using lunar-derived oxygen relative to transportation cost as a function of vehicle delivery and operational capability.
NASA Astrophysics Data System (ADS)
Fu, Z. H.; Zhao, H. J.; Wang, H.; Lu, W. T.; Wang, J.; Guo, H. C.
2017-11-01
Economic restructuring, water resources management, population planning and environmental protection are subjects to inner uncertainties of a compound system with objectives which are competitive alternatives. Optimization model and water quality model are usually used to solve problems in a certain aspect. To overcome the uncertainty and coupling in reginal planning management, an interval fuzzy program combined with water quality model for regional planning and management has been developed to obtain the absolutely ;optimal; solution in this study. The model is a hybrid methodology of interval parameter programming (IPP), fuzzy programing (FP), and a general one-dimensional water quality model. The method extends on the traditional interval parameter fuzzy programming method by integrating water quality model into the optimization framework. Meanwhile, as an abstract concept, water resources carrying capacity has been transformed into specific and calculable index. Besides, unlike many of the past studies about water resource management, population as a significant factor has been considered. The results suggested that the methodology was applicable for reflecting the complexities of the regional planning and management systems within the planning period. The government policy makers could establish effective industrial structure, water resources utilization patterns and population planning, and to better understand the tradeoffs among economic, water resources, population and environmental objectives.
Detrimental Effects of “Stretch” Goals in Specialty Substance Use Disorder Treatment Organizations
Lemoine, G. James; Blum, Terry C.; Roman, Paul M.
2016-01-01
Background “Stretch” goals, a rarely examined concept that represents seemingly impossible, highly ambitious organizational goals ostensibly established to fill performance gaps and motivate employees, are examined within a sample of substance use disorder (SUD) treatment centers in the United States in terms of their prevalence and effects on organizational behavior. Stretch goals are defined as “seemingly impossible” goals intended to motivate employees to achieve high performance. In light of the high level of environmental change and unpredictability faced by SUD treatment centers in recent decades, we theorize that stretch goals would be both common and often detrimental (in terms of capacity utilization rate and efficiency) in these settings. Methods In a longitudinal analysis of data from leaders of a representative U. S. national sample of 219 SUD treatment centers characterized by entrepreneurial management structures, we examined the prevalence of stretch goals and their impact on key outcome variables of capacity utilization rate and efficiency. Results Widespread adoption of stretch goals was found, with 43% of our sample falling within the stretch category. Stretch goals had a negative main effect on capacity utilization rate as compared to less ambitious challenging goals. Stretch and prior performance interacted to further predict capacity utilization rate, whereas stretch and slack resource availability interacted to predict center efficiency. Discussion Although stretch goals are frequently used in the SUD treatment industry, we find them mostly detrimental to performance. Stretch goals may enhance the efficiency of treatment centers with prior limited resource availability, but they are negatively associated with capacity utilization, especially in centers with a record of already strong performance. Despite the high prevalence of such goals and positive values centered on aspirational behavior, these results strongly suggest caution in such goal setting in SUD treatment centers. PMID:26976811
Working More Productively: Tools for Administrative Data
Roos, Leslie L; Soodeen, Ruth-Ann; Bond, Ruth; Burchill, Charles
2003-01-01
Objective This paper describes a web-based resource () that contains a series of tools for working with administrative data. This work in knowledge management represents an effort to document, find, and transfer concepts and techniques, both within the local research group and to a more broadly defined user community. Concepts and associated computer programs are made as “modular” as possible to facilitate easy transfer from one project to another. Study Setting/Data Sources Tools to work with a registry, longitudinal administrative data, and special files (survey and clinical) from the Province of Manitoba, Canada in the 1990–2003 period. Data Collection Literature review and analyses of web site utilization were used to generate the findings. Principal Findings The Internet-based Concept Dictionary and SAS macros developed in Manitoba are being used in a growing number of research centers. Nearly 32,000 hits from more than 10,200 hosts in a recent month demonstrate broad interest in the Concept Dictionary. Conclusions The tools, taken together, make up a knowledge repository and research production system that aid local work and have great potential internationally. Modular software provides considerable efficiency. The merging of documentation and researcher-to-researcher dissemination keeps costs manageable. PMID:14596394
Development of a Two-Stage Mars Ascent Vehicle Using In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Paxton, Laurel; Vaughan, David
2014-01-01
Mars Sample Return (MSR) and Mars In-Situ Resource Utilization (ISRU) present two main challenges for the advancement of Mars science. MSR would demonstrate Mars lift-off capability, while ISRU would test the ability to produce fuel and oxidizer using Martian resources, a crucial step for future human missions. A two-stage Mars Ascent Vehicle (MAV) concept was developed to support sample return as well as in-situ propellant production. The MAV would be powered by a solid rocket first stage and a LOX-propane second stage. A liquid second-stage provides higher orbit insertion reliability than a solid second stage as well as a degree of complexity eventually required for manned missions. Propane in particular offers comparable performance to methane without requiring cryogenic storage. The total MAV mass would be 119.9 kg to carry an 11 kg payload to orbit. The feasibility of in-situ fuel and oxidizer production was also examined. Two potential schemes were evaluated for production capability, size and power requirements. The schemes examined utilize CO2 and water as starting blocks to produce LOX and a propane blend. The infrastructure required to fuel and launch the MAV was also explored.
A proposed concept for the extraction of energy stored in magnetic or electric fields in space
NASA Technical Reports Server (NTRS)
Papailiou, D. D.
1976-01-01
It is known that enormous energy resources associated with electric, magnetic, gravitational, and other fields exist in space. It is also known that the major difficulty in 'tapping' this energy arises from the extremely low density level at which this energy exists. An analytical study has been made of a particular scheme that appears promising for an efficient utilization of some of these energy resources in propulsion. The principle involves the exchange of energy between a fluctuating magnetic field and a velocity field of electrically conducting fluid in turbulent motion located onboard a spacecraft. Under certain conditions the total energy of the turbulent flow field onboard the spacecraft can be increased and this increase appears in the form of Joulean heat. The utilization of the fluctuating part of the magnetic field, in the form of Joulean dissipation (because of its random character) does not introduce any drag on the spacecraft. The application appears promising for flights in the vicinity of Jupiter and other planets. The rate at which energy is gained by the conducting fluid is of the order of 100 watts when the rms value of the fluctuating magnetic field strength is about 1 gauss.
NASA Astrophysics Data System (ADS)
Lee, Kevin M.; French, R. S.; Hands, D. R.; Loranz, D. R.; Martino, D.; Rudolph, A. L.; Wysong, J.; Young, T. S.; Prather, E. E.; CATS
2010-01-01
ClassAction is a computer database of materials designed to enhance the conceptual understanding and reasoning abilities of Astro 101 students by promoting interactive engagement and providing rapid feedback. The main focus is dynamic conceptual questions largely based upon graphics that can be projected in the classroom. Instructors have the capability to select, order, and recast these questions into alternate permutations based on their own preferences and student responses. Instructors may also provide feedback through extensive resources including outlines, graphics, and simulations. The Light and Spectroscopy Concept Inventory (LSCI) is a multiple-choice assessment instrument which focuses on the electromagnetic spectrum, Doppler shift, Wien's Law, Stefan-Boltzmann Law, and Kirchhoff's Laws. Illustrative examples of how these concepts are targeted by the questions and resources of the ClassAction module are shown. ClassAction materials covering light and spectra concepts were utilized in multiple classrooms at 6 different institutions and the LSCI was delivered as a pretest and posttest to measure the gains in student understanding. A comparison of the gains achieved in these classes will be made against the national LSCI data. We will report on our investigation into correlations between gain and the extent of ClassAction usage. ClassAction materials are publicly available at http://astro.unl.edu. We would like to thank the NSF for funding under Grant Nos. 0404988 and 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
Methods of Evaluation of the State and Efficiency of the Urban Environment
NASA Astrophysics Data System (ADS)
Patrakeyev, I.; Ziborov, V.; Lazorenko-Hevel, N.
2017-12-01
Today, humanity is experiencing an "urban age", and therefore issues of good management of energy consumption and energy spent on utilization of waste in cities are becoming particularly acute. In this regard, the working group of the World Energy Council proposed a concept of the "energy balance" of the urban environment. This concept was that the energy produced should cover the energy consumed. Metabolism of the urban environment is so hot and so rarely studied by urban planners. This condition is linked first with the fact that metabolism is nothing more than a network of exchange of physical, energy resources and information. This is the real point of meeting the natural, technological, social, economic processes and their transformation into one another. Metabolism is the most important tool for knowing the real mechanics of the movement of resources in such a complex system as the urban environment. The content of the article is an analysis of significant energy and material flows characterizing the metabolism of the urban environment. We considered in the article a new energy paradigm. This paradigm will help in carrying out research in such areas as reducing the burden on the state of the environment, reducing environmental problems and reducing dependence on fossil fuels. Methods and models of metabolic processes in the urban environment will allow to implement in practice the concept of sustainable development of the urban environment, which is the development of the teaching V. Vernadsky about the noosphere.
NASA Astrophysics Data System (ADS)
Davis, L.; Weatherley, J.; Bhushan, S.; Khan, H.; de La Chica, S.; Deardorff, R.
2004-12-01
An exciting pilot program took place this summer, pioneering the development of Digital Library for Earth System Education (DLESE) Teaching Boxes with the Univ. of CA. Berkeley Museum of Paleontology, SF State Univ., USGS and 7 middle/high school teachers from the San Francisco area. This session will share the DLESE Teaching Box concept, explain the pilot program, and explore the tremendous opportunities for expanding this notion to embrace interdisciplinary approaches to learning about the Earth in the undergraduate science and pre-service teaching arenas. A Teaching Box is a metaphor for an online assembly of interrelated learning concepts, digital resources, and cohesive narration that bridges the gap between discrete resources and understanding. Within a Teaching Box, an instructor or student can pick a topic and see the concepts that build an understanding of that topic, explore online resources that support learning of those concepts, and benefit from the narration (the glue) that weaves concepts, activities, and background information together into a complete teaching/learning story. In this session, we will demonstrate the emerging Teaching Box prototypes and explore how this platform may promote STEM learning by utilizing DLESE tools and services in ways that begin to blur traditional disciplinary boundaries, overcome limitations of discipline-specific vocabularies, and foster collaboration. We will show ways in which new DLESE Web Services could support learning in this highly contextualized environment. We will see glimpses of how learners and educators will be able to modify or create their own Teaching Boxes specific to a unit of study or course, and perhaps share them with the Earth Science Education community. We will see ways to stay abreast of current Earth events, emerging research, and real-time data and incorporate such dynamic information into one learning environment. Services will be described and demonstrated in the context of Teaching Boxes: - DLESE Web Services provide a programmatic interface that allows the Teaching Box (or any web page) to have the same DLESE search, bookmarking features, and data management that are found at the DLESE web site. - DLESE Smart Links are hyperlinks that can be created by anyone and implemented as easily as defining a specific query. Clicking a Smart Link displays a list of resources that corresponds to the specific query. We'll talk about how this service can help to bridge the gap between vocabularies and disciplines and the interesting possibilities it presents for contextualizing searches and building custom topical menus. - The Really Simple Syndication (RSS) service delivers online information immediately, and allows end-users to subscribe to receive regular news, events, and data on a given Teaching Box topic. This opens the door to event-based learning. - Strand Maps, developed by the AAAS, are diagrams of interconnected learning concepts across a range of science, technology, engineering, and mathematics disciplines. The University of Colorado and its project partners are developing the Strand Map Service (SMS) to provide an interactive interface to interrelated learning goals, content knowledge, (including student misconceptions) and educational resources in the National Science Digital Library and DLESE.
NASA Astrophysics Data System (ADS)
Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.
2009-03-01
Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.
Space Station Mission Planning Study (MPS) development study. Volume 3: Software development plan
NASA Technical Reports Server (NTRS)
Klus, W. L.
1987-01-01
A software development plan is presented for the definition, design, and implementation of the Space Station (SS) Payload Mission Planning System (MPS). This plan is an evolving document and must be updated periodically as the SS design and operations concepts as well as the SS MPS concept evolve. The major segments of this plan are as follows: an overview of the SS MPS and a description of its required capabilities including the computer programs identified as configurable items with an explanation of the place and function of each within the system; an overview of the project plan and a detailed description of each development project activity breaking each into lower level tasks where applicable; identification of the resources required and recommendations for the manner in which they should be utilized including recommended schedules and estimated manpower requirements; and a description of the practices, standards, and techniques recommended for the SS MPS Software (SW) development.
On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers
NASA Astrophysics Data System (ADS)
Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.
2017-10-01
This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.
Animating the Discussion about Climate Change
NASA Astrophysics Data System (ADS)
Ratner, A.
2016-12-01
Abstract concepts such as climate change are extremely difficult for both students and adults to grasp. Given that many of these concepts involve issues at global scales or at a microscopic level, photos and video are simply insufficient much of the time. Through an innovative partnership between The Marine Mammal Center, a marine mammal hospital and education facility, and the California College of the Arts Animation Department, we have been able to provide animation students real-world experience in producing scientific animations, and the Center has been able to create an animated video highlighting the science of climate change and effects on marine mammals. Using the science direct from our veterinary and research teams, along with scientifically tested communication strategies related to climate change from the National Network of Ocean and Climate Change Interpretation and Frameworks Institute, this video enables us to teach students and adults of all ages these complex scientific concepts in a fun, engaging, and easily understandable way. Utilizing the skill set and expertise of the College professor as director (currently a lead animator at Pixar Animation), this video provided animation students critical experience in the animation field, exposure and engagement in a critical environmental issue, and an understanding of the opportunities available within the field of animation for educational and scientific purposes. This presentation will highlight the opportunities to utilize animation for educational purposes and provide resources surrounding climate change that could be beneficial to educators at their own organizations.
This proceedings document summarizes prepared remarks, presentations and discussions from the G7 Alliance on Resource Efficiency: U.S.-hosted Workshop on the Use of Life Cycle Concepts in Supply Chain Management to Achieve Resource Efficiency.
[Application of synthetic biology to sustainable utilization of Chinese materia medica resources].
Huang, Lu-Qi; Gao, Wei; Zhou, Yong-Jin
2014-01-01
Bioactive natural products are the material bases of Chinese materia medica resources. With successful applications of synthetic biology strategies to the researches and productions of taxol, artemisinin and tanshinone, etc, the potential ability of synthetic biology in the sustainable utilization of Chinese materia medica resources has been attracted by many researchers. This paper reviews the development of synthetic biology, the opportunities of sustainable utilization of Chinese materia medica resources, and the progress of synthetic biology applied to the researches of bioactive natural products. Furthermore, this paper also analyzes how to apply synthetic biology to sustainable utilization of Chinese materia medica resources and what the crucial factors are. Production of bioactive natural products with synthetic biology strategies will become a significant approach for the sustainable utilization of Chinese materia medica resources.
Scoping study of integrated resource planning needs in the public utility sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, C J; Garrick, J M; Rue, D R
Integrated resource planning (IRP) is an approach to utility resource planning that integrates the evaluation of supply- and demand-site options for providing energy services at the least cost. Many utilities practice IRP; however, most studies about IRP focus on investor-owned utilities (IOUs). This scoping study investigates the IRP activities and needs of public utilities (not-for-profit utilities, including federal, state, municipal, and cooperative utilities). This study (1) profiles IRP-related characteristics of the public utility sector, (2) articulates the needs of public utilities in understanding and implementing IRP, and (3) identifies strategies to advance IRP principles in public utility planning.
Moradi, Milad; Ghadiri, Nasser
2018-01-01
Automatic text summarization tools help users in the biomedical domain to acquire their intended information from various textual resources more efficiently. Some of biomedical text summarization systems put the basis of their sentence selection approach on the frequency of concepts extracted from the input text. However, it seems that exploring other measures rather than the raw frequency for identifying valuable contents within an input document, or considering correlations existing between concepts, may be more useful for this type of summarization. In this paper, we describe a Bayesian summarization method for biomedical text documents. The Bayesian summarizer initially maps the input text to the Unified Medical Language System (UMLS) concepts; then it selects the important ones to be used as classification features. We introduce six different feature selection approaches to identify the most important concepts of the text and select the most informative contents according to the distribution of these concepts. We show that with the use of an appropriate feature selection approach, the Bayesian summarizer can improve the performance of biomedical summarization. Using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) toolkit, we perform extensive evaluations on a corpus of scientific papers in the biomedical domain. The results show that when the Bayesian summarizer utilizes the feature selection methods that do not use the raw frequency, it can outperform the biomedical summarizers that rely on the frequency of concepts, domain-independent and baseline methods. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Creswell, William H., Jr.; And Others
The following resource guide is one in a series which presents extensive bibliographic material oriented around a specific concept, in this guide, the predictability and uniqueness of growing and developing. A section is devoted to selected materials related to the concept; grade levels for which each resource might be useful are indicated beside…
ERIC Educational Resources Information Center
Creswell, William H., Jr.; And Others
The following resource guide is one in a series which presents extensive bibliographic material oriented around a specific concept, in this guide, forces affecting personal health practices. A section is devoted to selected materials related to the concept; grade levels for which each resource might be useful are indicated beside each citation. A…
Determinants of resource needs and utilization among refugees over time.
Wright, A Michelle; Aldhalimi, Abir; Lumley, Mark A; Jamil, Hikmet; Pole, Nnamdi; Arnetz, Judith E; Arnetz, Bengt B
2016-04-01
This study examined refugees' resource needs and utilization over time, investigated the relationships between pre-displacement/socio-demographic variables and resource needs and utilization, and explored the role of resource needs and utilization on psychiatric symptom trajectories. Iraqi refugees to the United States (N = 298) were assessed upon arrival and at 1-year intervals for 2 years for socio-demographic variables and pre-displacement trauma experiences, their need for and utilization of 14 different resources, and PTSD and depressive symptoms. Although refugees reported reduction of some needs over time (e.g., need for cash assistance declined from 99 to 71 %), other needs remained high (e.g., 99 % of refugees reported a need for health care at the 2-year interview). Generally, the lowest needs were reported after 2 years, and the highest utilization occurred during the first year post-arrival. Pre-displacement trauma exposure predicted high health care needs but not high health care utilization. Both high need for and use of health care predicted increasing PTSD and depressive symptoms. Specifically, increased use of psychological care across the three measurement waves predicted more PTSD and depression symptoms at the 2-year interview. Differences emerged between need for and actual use of resources, especially for highly trauma-exposed refugees. Resettlement agencies and assistance programs should consider the complex relationships between resource needs, resource utilization, and mental health during the early resettlement period.
Determinants of Resource Needs and Utilization Among Refugees Over Time
Wright, A. Michelle; Aldhalimi, Abir; Lumley, Mark A.; Jamil, Hikmet; Pole, Nnamdi; Arnetz, Judith E.; Arnetz, Bengt B.
2015-01-01
Purpose This study examined refugees’ resource needs and utilization over time, investigated the relationships between pre-displacement/socio-demographic variables and resource needs and utilization, and explored the role of resource needs and utilization on psychiatric symptom trajectories. Methods Iraqi refugees to the United States (N=298) were assessed upon arrival and at 1-year intervals for two years for socio-demographic variables and pre-displacement trauma experiences, their need for and utilization of 14 different resources, and PTSD and depressive symptoms. Results Although refugees reported reduction of some needs over time (e.g., need for cash assistance declined from 99% to 71%), other needs remained high (e.g., 99% of refugees reported a need for health care at the 2-year interview). Generally, the lowest needs were reported after 2 years, and the highest utilization occurred during the first year post-arrival. Pre-displacement trauma exposure predicted high health care needs but not high health care utilization. Both high need for and use of health care predicted increasing PTSD and depressive symptoms. Specifically, increased use of psychological care across the three measurement waves predicted more PTSD and depression symptoms at the 2-year interview. Conclusions Differences emerged between need for and actual use of resources, especially for highly trauma-exposed refugees. Resettlement agencies and assistance programs should consider the complex relationships between resource needs, resource utilization, and mental health during the early resettlement period. PMID:26370213
Evolutionary principles and their practical application
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-01-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966
Evolutionary principles and their practical application.
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-03-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Standard format data units - Tools for automatic exchange of space mission data
NASA Astrophysics Data System (ADS)
Willett, J. B.
A set of standard formatting rules for the data sets, and a standard computer-readable language with which to describe the data, are two tools which are used to create the Standard Format Data Unit (SFDU). The NASA/JPL proposal for creation and utilization of SFDUs is presented, and its relationship to recommendations from the Consultative Committee for Space Data Systems (CCSDS) is discussed. Several current and planned implementations of the SFDU concept among major space flight projects are identified. The purpose of creating the concept of an SFDU is to allow members of the science community to share national and global resource data independently of project or program. The feedback from SFDU implementation efforts is considered an essential part of the CCSDS activity. Even though the CCSDS specifically deals with space data systems, the SFDU concept can be applied to practically every data system on an open network. The SFDU is in the early phase of CCSDS standard definition work, and must go through several other phases before being formally recommended as an international standard.
Peer Instruction Materials for Light and Spectra
NASA Astrophysics Data System (ADS)
Lee, Kevin M.; Siedell, C. M.; Prather, E. E.
2008-05-01
This poster will describe a new set of materials from the ClassAction project focusing on light and spectra. We will identify the concepts covered in the Light and Spectroscopy Concept Inventory (LSCI) which include the electromagnetic spectrum, Doppler shift, Wien's Law, Stefan-Boltzmann Law, and Kirchhoff's Laws. We will then specifically address how these concepts are targeted by the questions and resources of the ClassAction module. ClassAction is a collection of materials designed to enhance the metacognitive skills of college and high school introductory astronomy students by promoting interactive engagement and providing rapid feedback. The main focus is dynamic peer instruction questions that can be projected in the classroom. Instructors have the capability to recast these questions into alternate permutations based on their own preferences and formative feedback from the class. The questions can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and simulations which the instructor can utilize to provide feedback. These materials are publicly available at http://astro.unl.edu and are funded by NSF grant #0404988.
All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor.
Wang, Chao; Xiong, Ye; Wang, Hanwei; Sun, Qingfeng
2018-05-30
All-round utilization of resources is proposed for maximizing environmental and economic benefits. Herein, the concept of all-round utilization on biomass derivations applying to carbon-based supercapacitors is demonstrated. Orange peel is used for all subassemblies of supercapacitor, including electrodes, separator and electrolyte. A monolithic porous carbon (OPHPC) is prepared by one-step carbonization of orange peel and another composite electrode is further synthesized by a simple hydrothermal process, based on sufficient utilization of natural structure and chemical components. OPHPC exhibits a high specific surface area of 860 m 2 g -1 and naturally doped nitrogen. The composite electrode shows the homogeneous and high mass loading of MnO 2 . Orange peel also affords the role of separator benefited from the natural porous channel structure and high porosity of 74.6%. Orange peel juice is exploited to produce the electrolyte, and exhibits the best retention in natural separator. All-orange peel all-solid-state supercapacitor shows the high areal capacitance of 3987 mF cm -2 . Furthermore, the flexibility of orange peel is also utilized to achieve the shape-tailored monolithic porous carbon electrode and device, which further extends the utilized dimensionality in biomass applying to supercapacitors. The work starts with all dimensional utilization for biomass derived supercapacitor. Copyright © 2018. Published by Elsevier Inc.
Callaghan, Lynne; Lea, Susan J; Mutton, Lauren; Whittlesea, Emma
2011-11-01
This paper presents the development and evaluation of a set of innovative video resources aimed at enhancing health students' understanding and learning of generic research concepts. It is vital that health students achieve a solid foundation in research methods in order to support and inform evidence-based practice. Research concepts were identified through a stakeholder consultation with research methods teaching staff from a variety of health professions. Research concepts and processes included reliability, validity, statistical significance, descriptive statistics, qualitative and quantitative methods, sampling and population, research ethics and searching for and evaluating literature. Videos were produced, informed by a 3-component model, including: first, animated slides of concept definition, second, acted analogical scenarios of concepts and third, interviews with staff regarding the application of the concepts in their own research. Workshop-style focus groups were conducted with 27 students from midwifery, paramedicine and physiotherapy degree programmes. Overall, students perceived the resources as demystifying the topic of research methods through the clarification of definition and application of concepts and making sense of concepts through the analogical videos. Students evaluated the resources extremely positively in comparison with books and lectures and believed that the combination of audio and visual media benefited their learning. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Utilities: a solution of a decision problem?].
Koller, Michael; Ohmann, Christian; Lorenz, Wilfried
2008-01-01
Utility is a concept that originates from utilitarianism, a highly influential philosophical school in the Anglo-American world. The cornerstone of utilitarianism is the principle of maximum happiness or utility. In the medical sciences, this utility approach has been adopted and developed within the field of medical decision making. On an operational level, utility is the evaluation of a health state or an outcome on a one-dimensional scale ranging from 0 (death) to 1 (perfect health). By adding the concept of expectancy, the graphic representation of both concepts in a decision tree results in the specification of expected utilities and helps to resolve complex medical decision problems. Criticism of the utility approach relates to the rational perspective on humans (which is rejected by a considerable fraction of research in psychology) and to the artificial methods used in the evaluation of utility, such as Standard Gamble or Time Trade Off. These may well be the reason why the utility approach has never been accepted in Germany. Nevertheless, innovative concepts for defining goals in health care are urgently required, as the current debate in Germany on "Nutzen" (interestingly translated as 'benefit' instead of as 'utility') and integrated outcome models indicates. It remains to be seen whether this discussion will lead to a re-evaluation of the utility approach.
Performance Evaluation of Staged Bosch Process for CO2 Reduction to Produce Life Support Consumables
NASA Technical Reports Server (NTRS)
Vilekar, Saurabh A.; Hawley, Kyle; Junaedi, Christian; Walsh, Dennis; Roychoudhury, Subir; Abney. Morgan B.; Mansell, James M.
2012-01-01
Utilizing carbon dioxide to produce water and hence oxygen is critical for sustained manned missions in space, and to support both NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) concepts. For long term missions beyond low Earth orbit, where resupply is significantly more difficult and costly, open loop ARS, like Sabatier, consume inputs such as hydrogen. The Bosch process, on the other hand, has the potential to achieve complete loop closure and is hence a preferred choice. However, current single stage Bosch reactor designs suffer from a large recycle penalty due to slow reaction rates and the inherent limitation in approaching thermodynamic equilibrium. Developmental efforts are seeking to improve upon the efficiency (hence reducing the recycle penalty) of current single stage Bosch reactors which employ traditional steel wool catalysts. Precision Combustion, Inc. (PCI), with support from NASA, has investigated the potential for utilizing catalysts supported over short-contact time Microlith substrates for the Bosch reaction to achieve faster reaction rates, higher conversions, and a reduced recycle flows. Proof-of-concept testing was accomplished for a staged Bosch process by splitting the chemistry in two separate reactors, first being the reverse water-gas-shift (RWGS) and the second being the carbon formation reactor (CFR) via hydrogenation and/or Boudouard. This paper presents the results from this feasibility study at various operating conditions. Additionally, results from two 70 hour durability tests for the RWGS reactor are discussed.
Rouillard, Andrew D.; Wang, Zichen; Ma’ayan, Avi
2015-01-01
With advances in genomics, transcriptomics, metabolomics and proteomics, and more expansive electronic clinical record monitoring, as well as advances in computation, we have entered the Big Data era in biomedical research. Data gathering is growing rapidly while only a small fraction of this data is converted to useful knowledge or reused in future studies. To improve this, an important concept that is often overlooked is data abstraction. To fuse and reuse biomedical datasets from diverse resources, data abstraction is frequently required. Here we summarize some of the major Big Data biomedical research resources for genomics, proteomics and phenotype data, collected from mammalian cells, tissues and organisms. We then suggest simple data abstraction methods for fusing this diverse but related data. Finally, we demonstrate examples of the potential utility of such data integration efforts, while warning about the inherit biases that exist within such data. PMID:26101093
Creating CAD designs and performing their subsequent analysis using opensource solutions in Python
NASA Astrophysics Data System (ADS)
Iakushkin, Oleg O.; Sedova, Olga S.
2018-01-01
The paper discusses the concept of a system that encapsulates the transition from geometry building to strength tests. The solution we propose views the engineer as a programmer who is capable of coding the procedure for working with the modeli.e., to outline the necessary transformations and create cases for boundary conditions. We propose a prototype of such system. In our work, we used: Python programming language to create the program; Jupyter framework to create a single workspace visualization; pythonOCC library to implement CAD; FeniCS library to implement FEM; GMSH and VTK utilities. The prototype is launched on a platform which is a dynamically expandable multi-tenant cloud service providing users with all computing resources on demand. However, the system may be deployed locally for prototyping or work that does not involve resource-intensive computing. To make it possible, we used containerization, isolating the system in a Docker container.
Counselor Assessments of Training and Adoption Barriers
Bartholomew, Norma G.; Joe, George W.; Rowan-Szal, Grace A.; Simpson, D. Dwayne
2007-01-01
The prevailing emphasis on adoption of evidence-based practices suggests more focused training evaluations are needed that capture factors in clinician decisions to use new techniques. This includes relationships of post-conference evaluations with subsequent adoption of training materials. Training assessments were therefore collected at two time points from substance abuse treatment counselors who attended training on dual diagnosis and on therapeutic alliance as part of a state-sponsored conference. Customized evaluations were collected to assess counselor perceptions of training quality, relevance, and resources in relation to its utilization during the 6 months following the conference. Higher ratings for relevance of training concepts and materials to service needs of clients, desire to have additional training, and level of program support were each related to greater trial usage during the follow-up period. Primary resource-related and procedural barriers cited by counselors included lack of time and redundancy with existing practices. PMID:17434707
Analysis of information systems for hydropower operations
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W. W. G.
1976-01-01
The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined.
Analysis of information systems for hydropower operations: Executive summary
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W.
1976-01-01
An analysis was performed of the operations of hydropower systems, with emphasis on water resource management, to determine how aerospace derived information system technologies can effectively increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined in detail to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results were used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept was outlined.
The Effect of Formulary Restrictions on Patient and Payer Outcomes: A Systematic Literature Review.
Park, Yujin; Raza, Syed; George, Aneesh; Agrawal, Rumjhum; Ko, John
2017-08-01
Formulary restrictions are implemented to reduce pharmacy costs and ensure appropriate use of pharmaceutical products. As adoption of formulary restrictions increases with rising pharmacy costs, there is a need to better understand the potential effect of formulary restrictions on patient and payer outcomes. To conduct a systematic literature review that assesses the effect of formulary restrictions on the following outcomes: medication adherence, clinical outcomes, treatment satisfaction, drug utilization, health care resource utilization, and economic outcomes. Studies published in 2005 or later were identified from the MEDLINE, Embase, and Cochrane databases and the National Health Service Economic Evaluation Database, using 2 sets of search terms. A total of 17 formulary restriction terms (e.g., step therapy [ST] and prior authorization [PA]) and 55 outcome terms were included, resulting in 935 unique search term combinations. Two reviewers independently conducted analyses of the titles, abstracts, and full-text articles. The search was limited to English-language articles that evaluated the effect of ST and/or PA placed by U.S. third-party payers on the following outcomes: patient outcomes (medication adherence, clinical outcomes, and treatment satisfaction) and payer outcomes (drug utilization, health care resource utilization, and economic outcomes). Of 2,321 reviewed articles, 59 articles met the study inclusion criteria. The included studies assessed the effect of ST (n = 18), PA (n = 35), or both (n = 6) on medication adherence (n = 14), clinical outcomes (n = 12), treatment satisfaction (n = 2), drug utilization (n = 39), health care resource utilization (n = 18), and economic outcomes (n = 42). The 59 articles measured 164 outcomes across the patient, health care resource utilization, and economic outcome categories of interest. Of the total number of outcomes, 50.6% (n = 83) were negative in direction or were unfavorable, whereas 40.2% (n = 66) were positive in direction or were favorable, when the perspectives of patients and payers were considered. Of the total number of drug utilization outcomes reported (n = 46), the majority showed lower drug utilization (> 90%). However, in some of the articles, pharmacy cost savings resulting from lower drug utilization appeared to be offset by increased medical costs. Formulary coverage decisions may have unintended consequences on patient and payer outcomes despite lower drug utilization and pharmacy cost savings; therefore, careful evaluation of restrictions before policy implementation and continued reevaluation after implementation is warranted. This study was funded by Novartis Pharmaceuticals. Park and Ko are employed by Novartis Pharmaceuticals in East Hanover, New Jersey, and Ko holds stock in Novartis. Raza, George, and Agrawal are employed by Novartis Healthcare in Hyderabad, India. Study concept and design were contributed primarily by Park and Ko, along with the other authors. Raza, George, and Agrawal collected the data, along with Park and Ko. Data interpretation was performed by Agrawal, Raza, George, Park, and Ko. The manuscript was written and revised by Raza, George, and Park, along with Ko and Agrawal. Results from this systematic literature review were presented at the AMCP Annual Meeting 2016; San Francisco, California; April 19-22, 2016.
New Technologies for Reliable, Low-Cost In Situ Resource Utilization
NASA Astrophysics Data System (ADS)
Ramohalli, Kumar
1998-01-01
New technologies can dramatically alter overall mission feasibility, architecture, window-of-opportunity, and science return. In the specific context of planetary exploration/development, several new technologies have been recently developed. It is significant that every one of these new technologies won a NASA NTR award in 1997-1998. In the area of low-cost space access and planetary transportation, hybrids are discussed. Whether we carry all of the fuel and oxidizer from Earth, or we make some or all of it in situ, mass advantages are shown through calculations. The hybrisol concept, where a solid fuel is cast over a state-of-the-art solid propellant, is introduced as a further advance in these ideas,. Thus, the motor operates as a controllable, high Isp rocket initially, and transitions to a high-thrust rocket after ascent, at which time the empty oxidizer tank is jettisoned. Again, calculations show significant advantages. In the area of efficient energy use for various mechanical actuations and robotic movements, muscle wires are introduced. Not only do we present detailed systems-level schemes, but we also present results from a hardware mechanism that has seen more than 18,000 cycles of operation. Recognizing that power is the real issue in planetary exploration/ development, the concept of LORPEX is introduced as a means of converting low-level energy accumulation into sudden bursts of power that can give factors of millions (in power magnification) in the process; this robot employs a low-power In Situ Resource Utilization (ISRU) unit to accumulate ISRU-generated fuel and oxidizer to be consumed at a rapid rate, chemically in an engine. Drilling, hopping, jumping, and ascent, or even return to Earth, are possible. Again, the hardware has been built and initial systems checkout demonstrated. Long-duration exploration and long-distance travel are made possible through aerobots, as is well known for planets with an atmosphere. However, power has again been a limiting factor. With our new concept of PV-enhanced aerobots, the aerobot surface is covered with ultra-lightweight photovoltaic cells that generate power. The power is used for buoyancy enhancement, communication, and science instruments In the area of fuel/oxidizer generation, a new concept is introduced that avoids the fragile solid oxide electrolyzers (SOXE) and Sabatier reactors (that need H). The new concept of MIMOCE is naturally suited for the local atmosphere, operates at a significantly lower temperature (<400? C), and has no troublesome seals or electrodes with bonding problems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Aspen Group Resources Corp., Commercial Concepts, Inc., Desert Health Products, Inc., Equalnet Communications Corp., Geneva Steel Holdings Corp... securities of Commercial Concepts, Inc. because it has not filed any periodic reports since the period ended...
ERIC Educational Resources Information Center
Daley, Barbara J.; Conceicao, Simone C. O.; Mina, Liliana; Altman, Brian A.; Baldor, Maria; Brown, James
2010-01-01
The purpose of this integrative literature review is to summarize research on concept mapping and to offer ideas on how concept mapping can facilitate practice, research, and theory development within human resource development. In this review, more than 300 articles, written in both English and Spanish, presented at two different concept mapping…
ERIC Educational Resources Information Center
Creswell, William H., Jr.; And Others
The following resource guide is one in a series which presents extensive bibliographic material oriented around a specific concept, in this guide, food selection and eating patterns. A section is devoted to selected materials related to the concept; grade levels for which each resource might be useful are indicated beside each citation. A second…
NASA Technical Reports Server (NTRS)
Corman, J. C.
1976-01-01
A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.
Green chemistry, biofuels, and biorefinery.
Clark, James H; Luque, Rafael; Matharu, Avtar S
2012-01-01
In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.
Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations
NASA Technical Reports Server (NTRS)
Alhorn, Dean Carl
1999-01-01
Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.
Customer and service profitability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballaban, M.; Kelly, K.; Wisniewski, L.
1996-03-01
The rapid pace of competitive change in the generation sector has pushed electric utilities to rethink the concept of being obligated to serve all customers and with this change, the notion of measuring customer profitability is also being redefined. Traditionally, uniform services were provided to all customers. Rates were based on each customer classes` contribution to average costs, and consequently return was equally allocated across all customer segments. Profitability was defined strictly on an aggregate basis. The increasing demand for choice by electric customers will require electricity providers to redefine if not who they serve, than certainly how they providemore » differentiated services tailored to specific customer segments. Utilities are beginning to analyze the value, or profitability, of offering these services. Aggregate data no longer provides an accurate assessment of how resources should be allocated most efficiently. As services are unbundled, so too must costs be disaggregated to effectively measure the profitability of various options.« less
Production experience with the ATLAS Event Service
NASA Astrophysics Data System (ADS)
Benjamin, D.; Calafiura, P.; Childers, T.; De, K.; Guan, W.; Maeno, T.; Nilsson, P.; Tsulaia, V.; Van Gemmeren, P.; Wenaus, T.; ATLAS Collaboration
2017-10-01
The ATLAS Event Service (AES) has been designed and implemented for efficient running of ATLAS production workflows on a variety of computing platforms, ranging from conventional Grid sites to opportunistic, often short-lived resources, such as spot market commercial clouds, supercomputers and volunteer computing. The Event Service architecture allows real time delivery of fine grained workloads to running payload applications which process dispatched events or event ranges and immediately stream the outputs to highly scalable Object Stores. Thanks to its agile and flexible architecture the AES is currently being used by grid sites for assigning low priority workloads to otherwise idle computing resources; similarly harvesting HPC resources in an efficient back-fill mode; and massively scaling out to the 50-100k concurrent core level on the Amazon spot market to efficiently utilize those transient resources for peak production needs. Platform ports in development include ATLAS@Home (BOINC) and the Google Compute Engine, and a growing number of HPC platforms. After briefly reviewing the concept and the architecture of the Event Service, we will report the status and experience gained in AES commissioning and production operations on supercomputers, and our plans for extending ES application beyond Geant4 simulation to other workflows, such as reconstruction and data analysis.
Resource allocation and supervisory control architecture for intelligent behavior generation
NASA Astrophysics Data System (ADS)
Shah, Hitesh K.; Bahl, Vikas; Moore, Kevin L.; Flann, Nicholas S.; Martin, Jason
2003-09-01
In earlier research the Center for Self-Organizing and Intelligent Systems (CSOIS) at Utah State University (USU) was funded by the US Army Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program to develop and demonstrate enhanced mobility concepts for unmanned ground vehicles (UGVs). As part of our research, we presented the use of a grammar-based approach to enabling intelligent behaviors in autonomous robotic vehicles. With the growth of the number of available resources on the robot, the variety of the generated behaviors and the need for parallel execution of multiple behaviors to achieve reaction also grew. As continuation of our past efforts, in this paper, we discuss the parallel execution of behaviors and the management of utilized resources. In our approach, available resources are wrapped with a layer (termed services) that synchronizes and serializes access to the underlying resources. The controlling agents (called behavior generating agents) generate behaviors to be executed via these services. The agents are prioritized and then, based on their priority and the availability of requested services, the Control Supervisor decides on a winner for the grant of access to services. Though the architecture is applicable to a variety of autonomous vehicles, we discuss its application on T4, a mid-sized autonomous vehicle developed for security applications.
Coffee Connections. A Precollegiate Curriculum Unit. Grades Nine through Twelve. Revised.
ERIC Educational Resources Information Center
Stanford Univ., CA. Stanford Program on International and Cross Cultural Education.
This unit, designed for grades 9-12, introduces students to economic concepts of international trade through the case of the international coffee industry in California and Brazil. The following concepts are among those examined: commodities, factors of production (human resources, capital resources, and environmental resources), imports and…
"Clicking through" or Learning Concepts
ERIC Educational Resources Information Center
Stidwell, Peter
2005-01-01
The author has developed an innovative science website resource that also shows how engineers use science. As well as addressing scientific facts and concepts, the resource also engages children in the process of scientific enquiry, using graph tools and data interpretation. Part of the resource helps children to understand that much of what they…
Managing Human Resources in a Multinational Context
ERIC Educational Resources Information Center
Sumetzberger, Walter
2005-01-01
Purpose: To develop more sensitivity for different patterns of human resource management in multinational companies. Design/methodology/approach: Systemic approach; the concepts and models are based on the evaluation of consulting projects in the field of human resource management. Findings: A concept of four typical varieties of human resource…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, L.E.
1991-01-01
This research sought to address the relationship between self-concept and customer satisfaction: can customer satisfaction with a major electric utility be explained in terms of the self-reported, self-concept of the utility's managers The population to which the results of this study were generalized consisted of customer service managers in public electric utilities across the United States. In order to represent this population, a sample was selected consisting of customer service managers at a midwestern electric utility based in a large metropolitan area. Participants in this study were managers of four direct customer contact service organizations within six geographic division organizations.more » The methodology included comparisons of these four customer contact service organizations on twelve independent, self-concept variables and six customer satisfaction dependent variables using Analysis of Variance (ANOVA), Scheffe' tests, Chi-Square, and Stepwise multiple regression. The groups were found not to be significantly different and knowledge of the self-concept scores for managers will not increase the ability to predict customer satisfaction over no knowledge of self-concept scores.« less
NASA Technical Reports Server (NTRS)
Ignatiev, A.
2000-01-01
Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.
Text Mining to inform construction of Earth and Environmental Science Ontologies
NASA Astrophysics Data System (ADS)
Schildhauer, M.; Adams, B.; Rebich Hespanha, S.
2013-12-01
There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their research, it gives us an alternative bottom-up approach to populating and enriching ontologies, that complements more traditional knowledge modeling endeavors.
McGowan, Conor P.; Lyons, James E.; Smith, David
2015-01-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
NASA Astrophysics Data System (ADS)
McGowan, Conor P.; Lyons, James E.; Smith, David R.
2015-04-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
Gaining perspective on the water-energy nexus at the community scale.
Perrone, Debra; Murphy, Jennifer; Hornberger, George M
2011-05-15
Water and energy resources are interrelated but their influence on each other is rarely considered. To quantify the water and energy portfolios associated with a community's water-energy nexus (WEN) and the influence of geographic location on resources, we present the WEN tool. The WEN tool quantifies a community's transport (consumed for or lost before delivery) and nexus (energy for water and water for energy) resources so communities can assess their resource flows. In addition, to provide insight into the full range of impacts of water and energy resource acquisition and to frame the influence of geography on resources, we coin the term "urban resource islands". The concept of urban resource islands provides a framework for considering the implication of geography on a community's water and energy resource acquisition and use. The WEN tool and the concept of resource islands can promote communities to think about their hidden resources and integrate such concepts into their sustainability trade-off analyses and policy decisions. In this paper, we use Tucson, Arizona, United States as a case study.
Mars for Earthlings: An Analog Approach to Mars in Undergraduate Education
Kahmann-Robinson, Julia
2014-01-01
Abstract Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html. Key Words: Mars—Geology—Planetary science—Astrobiology—NASA education. Astrobiology 14, 42–49. PMID:24359289
Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system
Karlson, Agnes M. L.; Gorokhova, Elena; Elmgren, Ragnar
2015-01-01
Successful establishment of invasive species is often related to the existence of vacant niches. Competition occurs when invaders use the same limiting resources as members of the recipient community, which will be reflected in some overlap of their trophic niches. The concept of isotopic niche has been used to study trophic niche partitioning among species. Here, we present a two-year field study comparing isotopic niches of the deposit-feeding community in a naturally species-poor system. The isotopic niche analyses showed no overlap between a recent polychaete invader and any of the native species suggesting that it has occupied a vacant niche. Its narrow isotopic niche suggests specialized feeding, however, the high δ15N values compared to natives are most likely due to isotope fractionation effects related to nitrogen recycling and a mismatch between biological stoichiometry of the polychaete and the sediment nitrogen content. Notably, highly overlapping isotopic niches were inferred for the native species, which is surprising in a food-limited system. Therefore, our results demonstrate that invaders may broaden the community trophic diversity and enhance resource utilization, but also raise questions about the congruence between trophic and isotopic niche concepts and call for careful examination of assumptions underlying isotopic niche interpretation. PMID:25988260
1984-12-01
costs . The goal of this thesis is to help the Portuguese Navy in formulating a formal and coherent approach to its human resource accounting , and in so...ABSTRACT Human Resource Accounting means accounting for people as an organizational asset. It is the measurement of the cost and value of people to the...29 II.HUMAN RESOURCE COSTS . . . . . . . . . . . 30 A. CONCEPTS OF COST AND MEASUREMENT METHODS . . . 30 1. Accounting Concepts of Costs
In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Duke, Michael
2005-01-01
A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.
Decision theory for computing variable and value ordering decisions for scheduling problems
NASA Technical Reports Server (NTRS)
Linden, Theodore A.
1993-01-01
Heuristics that guide search are critical when solving large planning and scheduling problems, but most variable and value ordering heuristics are sensitive to only one feature of the search state. One wants to combine evidence from all features of the search state into a subjective probability that a value choice is best, but there has been no solid semantics for merging evidence when it is conceived in these terms. Instead, variable and value ordering decisions should be viewed as problems in decision theory. This led to two key insights: (1) The fundamental concept that allows heuristic evidence to be merged is the net incremental utility that will be achieved by assigning a value to a variable. Probability distributions about net incremental utility can merge evidence from the utility function, binary constraints, resource constraints, and other problem features. The subjective probability that a value is the best choice is then derived from probability distributions about net incremental utility. (2) The methods used for rumor control in Bayesian Networks are the primary way to prevent cycling in the computation of probable net incremental utility. These insights lead to semantically justifiable ways to compute heuristic variable and value ordering decisions that merge evidence from all available features of the search state.
The expanded role of computers in Space Station Freedom real-time operations
NASA Technical Reports Server (NTRS)
Crawford, R. Paul; Cannon, Kathleen V.
1990-01-01
The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.
Computer support for cooperative tasks in Mission Operations Centers
NASA Technical Reports Server (NTRS)
Fox, Jeffrey; Moore, Mike
1994-01-01
Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.
Addressing underutilization of consumer health information resource centers: a formative study*
Kennedy, May G.; Kiken, Laura; Shipman, Jean P.
2008-01-01
Problem: Four consumer health information centers in Richmond, Virginia, provide one-on-one assistance in accessing health information. Because they may not be fully utilized at present, an exploratory marketing study of factors affecting usage of the centers was conducted. Method: Observers counted center passers-by and tracked their paths. Also, brief intercept interviews were conducted with people who had just used a center, people nearby who could have used one but did not, and people on the street. Finally, in-depth individual interviews were conducted with key informants. Results: There was a high degree of satisfaction with the centers among users. Nonusers universally endorsed the center concept. However, most passers-by did not even glance at the centers, and intercept interviewees suggested better signage and promoting the resource centers through various media channels. Key informants added suggestions about interpersonal strategies (e.g., physician referrals) for center usage promotion but cautioned that a large increase in traffic could not be accommodated without increasing staff size or shifting from a model of individualized service. Conclusions: Triangulating findings from multiple data collection methods can provide useful guidance for efforts to promote center utilization. At minimum, steps should be taken to make the largest centers more noticeable. Because center utilization is not only associated with consumer satisfaction with hospitals, but may also foster health literacy, both hospital-based and community-based usage promotion strategies may be warranted. All such promotional strategies should be audience-tested before they are adopted. PMID:18219380
Addressing underutilization of consumer health information resource centers: a formative study.
Kennedy, May G; Kiken, Laura; Shipman, Jean P
2008-01-01
Four consumer health information centers in Richmond, Virginia, provide one-on-one assistance in accessing health information. Because they may not be fully utilized at present, an exploratory marketing study of factors affecting usage of the centers was conducted. Observers counted center passers-by and tracked their paths. Also, brief intercept interviews were conducted with people who had just used a center, people nearby who could have used one but did not, and people on the street. Finally, in-depth individual interviews were conducted with key informants. There was a high degree of satisfaction with the centers among users. Nonusers universally endorsed the center concept. However, most passers-by did not even glance at the centers, and intercept interviewees suggested better signage and promoting the resource centers through various media channels. Key informants added suggestions about interpersonal strategies (e.g., physician referrals) for center usage promotion but cautioned that a large increase in traffic could not be accommodated without increasing staff size or shifting from a model of individualized service. Triangulating findings from multiple data collection methods can provide useful guidance for efforts to promote center utilization. At minimum, steps should be taken to make the largest centers more noticeable. Because center utilization is not only associated with consumer satisfaction with hospitals, but may also foster health literacy, both hospital-based and community-based usage promotion strategies may be warranted. All such promotional strategies should be audience-tested before they are adopted.
NASA Astrophysics Data System (ADS)
Rudiastuti, A. W.; Munawaroh; Setyawan, I. E.; Pramono, G. H.
2018-04-01
Sustainable coastal management is playing an important role in coastal resources conservation, particularly on small islands. Karimata archipelago has unique characteristics and great potential to be developed as a tourism object, one of which is Karimata Island as the largest island and also reserve area. The concept of ecotourism focuses on the ecology conservation, economic benefits, and social life. Ecotourism aims to build sustainable tourism that provides economically viable and social benefits to the community. This study aims to develop coastal management strategy based on ecotourism at Karimata Island. Spatial approaching through coastal type was done. Qualitative descriptive analysis and SWOT are used to develop sustainable management strategies for the coast of Karimata Island, where the opportunities and challenges to the development of coastal ecotourism Karimata Island also included. If this potential is optimally utilized, it can be relied as an economic opportunity for local communities. Structurally shaped coast, marine depositional coast and coast build by organism are several of coastal types found at Karimata Island. Coastal ecosystems inhabited Karimata Island are mangroves, coral reefs, and macro-algae. Karimata Island have not been optimally utilized for tourist destinations. The biggest obstacle encountered is the accessibility from Kalimantan or other island at Karimata islands. Several problems related to the utilization of coastal resources were found such as mangrove and coral reef damage, also regulation that less supportive. The results of this study are expected to provide an overview of solutions for the development of coastal tourism potentials in Karimata Island.
NASA Astrophysics Data System (ADS)
Vafeiadou, Anna-Maria; Antoniadou, Chryssanthi; Chintiroglou, Chariton
2012-09-01
The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.
Chen, Yixi; Guzauskas, Gregory F; Gu, Chengming; Wang, Bruce C M; Furnback, Wesley E; Xie, Guotong; Dong, Peng; Garrison, Louis P
2016-11-02
The "big data" era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR) practices will need to evolve to accommodate individual patient-level HEOR analyses. We propose the concept of "precision HEOR", which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient.
Chen, Yixi; Guzauskas, Gregory F.; Gu, Chengming; Wang, Bruce C. M.; Furnback, Wesley E.; Xie, Guotong; Dong, Peng; Garrison, Louis P.
2016-01-01
The “big data” era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR) practices will need to evolve to accommodate individual patient–level HEOR analyses. We propose the concept of “precision HEOR”, which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient. PMID:27827859
IRM Concepts: Building Blocks for the 1990s.
ERIC Educational Resources Information Center
Owen, Darrell E.
1989-01-01
Presents a conceptual overview of information resources management (IRM) by synthesizing concepts put forward during the 1980s and charts opportunities to move these concepts into practice. It is argued that the reorganization required by IRM is justified by better use of resources, better decision making, and an improved corporate structure. (21…
18 CFR 401.32 - Concept of 3.8.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of 3.8. 401.32 Section 401.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.32 Concept...
18 CFR 401.32 - Concept of 3.8.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of 3.8. 401.32 Section 401.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.32 Concept...
18 CFR 401.2 - Concept of the plan.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of the plan. 401.2 Section 401.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.2 Concept of the plan. (a) The...
An Architecture for Cross-Cloud System Management
NASA Astrophysics Data System (ADS)
Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad
The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.
Fasoli, DiJon R; Glickman, Mark E; Eisen, Susan V
2010-04-01
Though demand for mental health services (MHS) among US veterans is increasing, MHS utilization per veteran is decreasing. With health and social service needs competing for limited resources, it is important to understand the association between patient factors, MHS utilization, and clinical outcomes. We use a framework based on Andersen's behavioral model of health service utilization to examine predisposing characteristics, enabling resources, and clinical need as predictors of MHS utilization and clinical outcomes. This was a prospective observational study of veterans receiving inpatient or outpatient MHS through Veterans Administration programs. Clinician ratings (Global Assessment of Functioning [GAF]) and self-report assessments (Behavior and Symptom Identification Scale-24) were completed for 421 veterans at enrollment and 3 months later. Linear and logistic regression analyses were conducted to examine: (1) predisposing characteristics, enabling resources, and need as predictors of MHS inpatient, residential, and outpatient utilization and (2) the association between individual characteristics, utilization, and clinical outcomes. Being older, female, having greater clinical need, lack of enabling resources (employment, stable housing, and social support), and easy access to treatment significantly predicted greater MHS utilization at 3-month follow-up. Less clinical need and no inpatient psychiatric hospitalization predicted better GAF and Behavior and Symptom Identification Scale-24 scores. White race and residential treatment also predicted better GAF scores. Neither enabling resources, nor number of outpatient mental health visits predicted clinical outcomes. This application of Andersen's behavioral model of health service utilization confirmed associations between some predisposing characteristics, need, and enabling resources on MHS utilization but only predisposing characteristics, need, and utilization were associated with clinical outcomes.
Using Forecasting to Predict Long-Term Resource Utilization for Web Services
ERIC Educational Resources Information Center
Yoas, Daniel W.
2013-01-01
Researchers have spent years understanding resource utilization to improve scheduling, load balancing, and system management through short-term prediction of resource utilization. Early research focused primarily on single operating systems; later, interest shifted to distributed systems and, finally, into web services. In each case researchers…
Ching-Yu Huang; Grizelle Gonzalez; Paul F. Hendrix
2016-01-01
Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (...
Feasibility study of solar energy utilization in modular integrated utility systems
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility and benefits were evaluated of solar thermal energy systems on Integrated Utility Systems. The effort included the identification of potential system concepts, evaluation of hardware status, and performance of weighted system evaluations to select promising system concepts deserving of further study.
NASA In-Situ Resource Utilization Project-and Seals Challenges
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt; Linne, Diane
2006-01-01
A viewgraph presentation on NASA's In-Situ Resource Utilization Project and Seals Challenges is shown. The topics include: 1) What Are Space Resources?; 2) Space Resource Utilization for Exploration; 3) ISRU Enables Affordable, Sustainable & Flexible Exploration; 4) Propellant from the Moon Could Revolutionize Space Transportation; 5) NASA ISRU Capability Roadmap Study, 2005; 6) Timeline for ISRU Capability Implementation; 7) Lunar ISRU Implementation Approach; 8) ISRU Technical-to-Mission Capability Roadmap; 9) ISRU Resources & Products of Interest; and 10) Challenging Seals Requirements for ISRU.
Student concepts of Natural Selection from a resource-based perspective
NASA Astrophysics Data System (ADS)
Benjamin, Scott Shawn
The past two decades have produced a substantial amount of research about the teaching and learning of evolution; however, recent research often lacks a theoretical foundation. Application of a new theoretical framework could help fill the void and improve research about student concepts of evolution. This study seeks to show that a resource-based framework (Hammer et al., 2005) can improve research into student concepts of natural selection. Concepts of natural selection from urban community college students were assessed via qualitative (interviews, written open-response questions, and write/think aloud procedures) and quantitative methods (coded open response analysis, Concept Inventory for Natural Selection (CINS)(Anderson, Fisher, & Norman, 2002). Results showed that students demonstrate four important aspects of resource-based framework: the multi-faceted construction of concepts, context sensitivity/ concept flexibility, at-the-moment activation of resources, and perceptual frames. In open response assessment, evolutionary-gain responses produced significantly different responses than evolutionary-loss questions with: 1) significantly more correct answers for the gain than loss question (Wilcoxon signed rank test, z = -3.68, p=0.0002); 2) more Lamarckian responses to loss than the gain question (Fisher exact, p=0.0039); and significantly different distributions in expanded need vs basic need answers (Fishers exact, p = 0.02). Results from CINS scores showed significant differences in post activity scores between students that held different naive concepts associated with origin of variation, origin of species, differential reproduction, and limited survival suggesting that some naive ideas facilitate learning. Outcomes also suggest that an everyday or self-experience typological perceptual frame is an underlying source of many incorrect ideas about evolution. Interview and write/think aloud assessments propose four process resources applied by students as they explain evolutionary change: list what I know, why story, compare past to present, mapping self-experience. The study concludes that a resource-based framework is a valuable tool to advance the study student concepts of natural selection.
Fostering the Exploitation of Open Educational Resources
ERIC Educational Resources Information Center
Richter, Thomas; Veith, Patrick
2014-01-01
The central concept behind Open Educational Resources (OER) is opening up the access to educational resources for stakeholders who are not the usual target user group. This concept must be perceived as innovative because it describes a general economic and social paradigm shift: Education, which formerly was limited to a specific group of…
Compartmentalization, resource allocation, and wood quality
Kevin T. Smith
2015-01-01
The concept of a trade-off of tree resources between growth and defense is readily grasped. The most detailed development of the concept is for the growth-differentiation balance hypothesis that predicts that resources for normal growth and primary metabolism are diverted to support plant defense and secondary or stress metabolism. This hypothesis has been applied to...
The Potential for Ambient Plasma Wave Propulsion
NASA Technical Reports Server (NTRS)
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at frequencies below the ion cyclotron frequency. They have been observed in both laboratory and astrophysical settings. On Earth, they are being investigated as a possible means for plasma heating, current drive, and momentum addition in magnetic confinement fusion systems. In addition, Alfven waves have been proposed as a mechanism for acceleration of the solar wind away from the sun.
Xu, Xinglong; Zhou, Lulin; Antwi, Henry Asante; Chen, Xi
2018-02-20
While the demand for health services keep escalating at the grass roots or rural areas of China, a substantial portion of healthcare resources remain stagnant in the more developed cities and this has entrenched health inequity in many parts of China. At its conception, China's Deepen Medical Reform started in 2012 was intended to flush out possible disparities and promote a more equitable and efficient distribution of healthcare resources. Nearly half a decade of this reform, there are uncertainties as to whether the attainment of the objectives of the reform is in sight. Using a hybrid of panel data analysis and an augmented data envelopment analysis (DEA), we model human resources, material, finance to determine their technical and scale efficiency to comprehensively evaluate the transverse and longitudinal allocation efficiency of community health resources in Jiangsu Province. We observed that the Deepen Medical Reform in China has led to an increase concern to ensure efficient allocation of community health resources by health policy makers in the province. This has led to greater efficiency in health resource allocation in Jiangsu in general but serious regional or municipal disparities still exist. Using the DEA model, we note that the output from the Community Health Centers does not commensurate with the substantial resources (human resources, materials, and financial) invested in them. We further observe that the case is worst in less-developed Northern parts of Jiangsu Province. The government of Jiangsu Province could improve the efficiency of health resource allocation by improving the community health service system, rationalizing the allocation of health personnel, optimizing the allocation of material resources, and enhancing the level of health of financial resource allocation.
Assessing gains in teacher knowledge and confidence in a long-duration climate literacy initiative
NASA Astrophysics Data System (ADS)
Haine, D. B.; Kendall, L.; Yelton, S.
2013-12-01
Climate Literacy: Integrating Modeling & Technology Experiences (CLIMATE) in NC Classrooms, an interdisciplinary, global climate change program for NC high school science teachers is administered by UNC Chapel Hill's Institute for the Environment (IE) with funding from NASA's Innovations in Climate Education (NICE) Program. Currently in its third year, this year-long program serves 24 teaching fellows annually and combines hands-on climate science investigations with experiential learning in fragile ecosystem environments to achieve the following program goals: increased teacher knowledge of climate change science and predicted impacts; increased teacher knowledge of modeling and technology resources, with an emphasis on those provided by NASA; and increased teacher confidence in using technology to address climate change education. A mixed-methods evaluation approach that includes external evaluation is providing quantitative and qualitative data about the extent to which program goals are being achieved. With regard to increases in teacher knowledge, teachers often self-report an increase in knowledge as a result of a program activity; this session will describe our strategies for assessing actual gains in teacher knowledge which include pre- and post-collaborative concept mapping and pre- and post-open response questionnaires. For each evaluation approach utilized, the process of analyzing these qualitative data will be discussed and results shared. For example, a collaborative concept mapping activity for assessment of learning as a result of the summer institute was utilized to assess gains in content knowledge. Working in small groups, teachers were asked to identify key vocabulary terms and show their relationship to one another via a concept map to answer these questions: What is global climate change? What is/are the: evidence? mechanisms? causes? consequences? Concept maps were constructed at the beginning (pre) and again at the end (post) of the Summer Institute. Concept map analysis revealed that post-maps included more key terms/concepts on average than pre-concept maps and that 6-9 NEW terms were present on post-maps; these NEW terms were directly related to science content addressed during the summer institute. In an effort to assess knowledge gained as a result of participating in an experiential weekend retreat, a pre- and post-open response questionnaire focused on the spruce-fir forest, an ecosystem prominently featured during programming, was administered. Post-learning assessments revealed learning gains for 100% of participants, all of whom were able to provide responses that referenced specific content covered during the retreat. To demonstrate increased teacher confidence in using technology to support climate science instruction, teachers are asked to develop and pilot a lesson that integrates at least one NASA resource. In collaboration with an external evaluator, a rubric was developed to evaluate submitted lessons in an effort to assess progress at achieving this program goal. The process of developing this rubric as well as the results from this analysis will be shared along with the challenges and insights that have been revealed from analyzing submitted lessons.
Marenco, Luis; Li, Yuli; Martone, Maryann E; Sternberg, Paul W; Shepherd, Gordon M; Miller, Perry L
2008-09-01
This paper describes a pilot query interface that has been constructed to help us explore a "concept-based" approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface.
Li, Yuli; Martone, Maryann E.; Sternberg, Paul W.; Shepherd, Gordon M.; Miller, Perry L.
2009-01-01
This paper describes a pilot query interface that has been constructed to help us explore a “concept-based” approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface. PMID:18953674
Dawson, Anna P; Cargo, Margaret; Stewart, Harold; Chong, Alwin; Daniel, Mark
2013-02-01
Aboriginal Australians, including Aboriginal Health Workers (AHWs), smoke at rates double the non-Aboriginal population. This study utilized concept mapping methodology to identify and prioritize culturally relevant strategies to promote smoking cessation in AHWs. Stakeholder participants included AHWs, other health service employees and tobacco control personnel. Smoking cessation strategies (n = 74) were brainstormed using 34 interviews, 3 focus groups and a stakeholder workshop. Stakeholders sorted strategies into meaningful groups and rated them on perceived importance and feasibility. A concept map was developed using multi-dimensional scaling and hierarchical cluster analyses. Ten unique clusters of smoking cessation strategies were depicted that targeted individuals, family and peers, community, workplace and public policy. Smoking cessation resources and services were represented in addition to broader strategies addressing social and environmental stressors that perpetuate smoking and make quitting difficult. The perceived importance and feasibility of clusters were rated differently by participants working in health services that were government-coordinated compared with community-controlled. For health service workers within vulnerable populations, these findings clearly implicate a need for contextualized strategies that mitigate social and environmental stressors in addition to conventional strategies for tobacco control. The concept map is being applied in knowledge translation to guide development of smoking cessation programs for AHWs.
NASA Technical Reports Server (NTRS)
Robinson, John E., III; Lee, Alan; Lai, Chok Fung
2017-01-01
This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.
Concept Maps: Practice Applications in Adult Education and Human Resource Development
ERIC Educational Resources Information Center
Daley, Barbara J.
2010-01-01
Concept maps can be used as both a cognitive and constructivist learning strategy in teaching and learning in adult education and human resource development. The maps can be used to understand course readings, analyze case studies, develop reflective thinking and enhance research skills. The creation of concept maps can also be supported by the…
EPA announced the availability of the final report, Concepts, Methods, and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document. This report provides the concepts, methods and data sources needed to assist in...
The Conservation and Protection: The Development and Utilization of Human Resources.
ERIC Educational Resources Information Center
Lippitt, Ronald
The three dimensions of the quality of the environment for human resource development are discussed as issues of opportunity versus deprivation, issues of growth inducing versus growth destroying interventions, and issues of utilization versus non-utilization of human resources. Both pathology and potential are illustrated by descriptions of our…
18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and utilization...
Space platform utilities distribution study
NASA Technical Reports Server (NTRS)
Lefever, A. E.
1980-01-01
Generic concepts for the installation of power data and thermal fluid distribution lines on large space platforms were discussed. Connections with central utility subsystem modules and pallet interfaces were also considered. Three system concept study platforms were used as basepoints for the detail development. The tradeoff of high voltage low voltage power distribution and the impact of fiber optics as a data distribution mechanism were analyzed. Thermal expansion and temperature control of utility lines and ducts were considered. Technology developments required for implementation of the generic distribution concepts were identified.
Food security and sustainability: can one exist without the other?
Berry, Elliot M; Dernini, Sandro; Burlingame, Barbara; Meybeck, Alexandre; Conforti, Piero
2015-09-01
To position the concept of sustainability within the context of food security. An overview of the interrelationships between food security and sustainability based on a non-systematic literature review and informed discussions based principally on a quasi-historical approach from meetings and reports. International and global food security and nutrition. The Rome Declaration on World Food Security in 1996 defined its three basic dimensions as: availability, accessibility and utilization, with a focus on nutritional well-being. It also stressed the importance of sustainable management of natural resources and the elimination of unsustainable patterns of food consumption and production. In 2009, at the World Summit on Food Security, the concept of stability/vulnerability was added as the short-term time indicator of the ability of food systems to withstand shocks, whether natural or man-made, as part of the Five Rome Principles for Sustainable Global Food Security. More recently, intergovernmental processes have emphasized the importance of sustainability to preserve the environment, natural resources and agro-ecosystems (and thus the overlying social system), as well as the importance of food security as part of sustainability and vice versa. Sustainability should be considered as part of the long-term time dimension in the assessment of food security. From such a perspective the concept of sustainable diets can play a key role as a goal and a way of maintaining nutritional well-being and health, while ensuring the sustainability for future food security. Without integrating sustainability as an explicit (fifth?) dimension of food security, today's policies and programmes could become the very cause of increased food insecurity in the future.
Kibbe, Warren A.; Arze, Cesar; Felix, Victor; Mitraka, Elvira; Bolton, Evan; Fu, Gang; Mungall, Christopher J.; Binder, Janos X.; Malone, James; Vasant, Drashtti; Parkinson, Helen; Schriml, Lynn M.
2015-01-01
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years. These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. This will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning. PMID:25348409
Hydrogen-via-electricity concept. Critique report
NASA Technical Reports Server (NTRS)
Escher, W. J. D.
1981-01-01
The hydrogen-via-electricity (HvE) concept is the prospective use of hydrogen fuel produced electrolytically from the electric utility grid as a means of responding to conventional fuels shortages. The two sets of comments and critiques of this concept solicited from the Government/Government contractor group and from the electric utility companies are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Wiser, Ryan; Phadke, Amol
2008-02-01
The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to actively assess carbon regulatory risk within their resource planning processes, and to evaluate options for mitigating that risk. However, given the relatively recent emergence of this issue and the rapidly changing political landscape,more » methods and assumptions used to analyze carbon regulatory risk, and the impact of this analysis on the selection of a preferred resource portfolio, vary considerably across utilities. In this study, we examine the treatment of carbon regulatory risk in utility resource planning, through a comparison of the most-recent resource plans filed by fifteen investor-owned and publicly-owned utilities in the Western U.S. Together, these utilities account for approximately 60percent of retail electricity sales in the West, and cover nine of eleven Western states. This report has two related elements. First, we compare and assess utilities' approaches to addressing key analytical issues that arise when considering the risk of future carbon regulations. Second, we summarize the composition and carbon intensity of the preferred resource portfolios selected by these fifteen utilities and compare them to potential CO2 emission benchmark levels.« less
NASA Astrophysics Data System (ADS)
Ren, L.
2016-12-01
As a comprehensive system, there are many subsystems such as water resource subsystem, social subsystem, economic subsystem and ecological subsystem in water resource sustainable utilization system. In this paper, an evaluation system including three levels is set up according to the metric demands of sustainable water resource utilization in Jiangsu coast reclamation region, namely the target level, the rule level, and the index level. Considering the large number of the indexes, the analytic hierarchy process is used to determine the weights of all these subsystems in the total goal of water sustainable utilization. By analyzing these weights, the attributes of water resource itself is found to be the most important aspect for the evaluation of sustainable utilization in Jiangsu coast reclamation region, and the second important aspect is the situation of the eco-environment.
Decision insight into stakeholder conflict for ERN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siirola, John; Tidwell, Vincent Carroll; Benz, Zachary O.
Participatory modeling has become an important tool in facilitating resource decision making and dispute resolution. Approaches to modeling that are commonly used in this context often do not adequately account for important human factors. Current techniques provide insights into how certain human activities and variables affect resource outcomes; however, they do not directly simulate the complex variables that shape how, why, and under what conditions different human agents behave in ways that affect resources and human interactions related to them. Current approaches also do not adequately reveal how the effects of individual decisions scale up to have systemic level effectsmore » in complex resource systems. This lack of integration prevents the development of more robust models to support decision making and dispute resolution processes. Development of integrated tools is further hampered by the fact that collection of primary data for decision-making modeling is costly and time consuming. This project seeks to develop a new approach to resource modeling that incorporates both technical and behavioral modeling techniques into a single decision-making architecture. The modeling platform is enhanced by use of traditional and advanced processes and tools for expedited data capture. Specific objectives of the project are: (1) Develop a proof of concept for a new technical approach to resource modeling that combines the computational techniques of system dynamics and agent based modeling, (2) Develop an iterative, participatory modeling process supported with traditional and advance data capture techniques that may be utilized to facilitate decision making, dispute resolution, and collaborative learning processes, and (3) Examine potential applications of this technology and process. The development of this decision support architecture included both the engineering of the technology and the development of a participatory method to build and apply the technology. Stakeholder interaction with the model and associated data capture was facilitated through two very different modes of engagement, one a standard interface involving radio buttons, slider bars, graphs and plots, while the other utilized an immersive serious gaming interface. The decision support architecture developed through this project was piloted in the Middle Rio Grande Basin to examine how these tools might be utilized to promote enhanced understanding and decision-making in the context of complex water resource management issues. Potential applications of this architecture and its capacity to lead to enhanced understanding and decision-making was assessed through qualitative interviews with study participants who represented key stakeholders in the basin.« less
Distributed utility technology cost, performance, and environmental characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Y; Adelman, S
1995-06-01
Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking informationmore » on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.« less
Must a Developed Democratic State Fully Resource Any Tertiary Education for Its Citizens?
ERIC Educational Resources Information Center
Scholes, Vanessa
2014-01-01
This article takes a parsimonious conception of a developed State operating under a minimalist conception of democracy and asks whether such a State must fully resource any tertiary (post-compulsory) education for its citizens A key public policy barrier to arguing an absolute obligation for the State to resource any tertiary education is…
Cockpit resource management training
NASA Technical Reports Server (NTRS)
Yocum, M.; Foushee, C.
1984-01-01
Cockpit resource management which is a multifaceted concept is outlined. The system involves the effective coordination of many resources: aircraft systems, company, air traffic control, equipment, navigational aids, documents, and manuals. The main concept, however, is group interaction. Problems which arise from lack of coordination, decision making, and lack of communication are pointed out. Implementation by the regional airline industry of cockpit resource management, designed to deal with human interactions problems in the most cost effective manner, is discussed.
Advanced binary geothermal power plants: Limits of performance
NASA Astrophysics Data System (ADS)
Bliem, C. J.; Mines, G. L.
1991-01-01
The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. The feasible limits on efficiency of a plant given practical limits on equipment performance is explored and the methods used in these advanced concept plants to achieve the maximum possible efficiency are discussed. (Here feasible is intended to mean reasonably achievable and not cost effective.) No direct economic analysis was made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, a standard is presented of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies.
[Utilization suitability of forest resources in typical forest zone of Changbai Mountains].
Hao, Zhanqing; Yu, Deyong; Xiong, Zaiping; Ye, Ji
2004-10-01
Conservation of natural forest does not simply equal to no logging. The Northeast China Forest Region has a logging quota of mature forest as part of natural forest conservation project. How to determine the logging spots rationally and scientifically is very important. Recent scientific theories of forest resources management advocate that the utilization of forest resources should stick to the principle of sustaining use, and pay attention to the ecological function of forest resources. According to the logging standards, RS and GIS techniques can be used to detect the precise location of forest resources and obtain information of forest areas and types, and thus, provide more rational and scientific support for space choice about future utilization of forest resources. In this paper, the Lushuihe Forest Bureau was selected as a typical case in Changbai Mountains Forest Region to assess the utilization conditions of forest resources, and some advices on spatial choice for future management of forest resources in the study area were offered.
The utilization of poisons information resources in Australasia.
Fountain, J S; Reith, D M; Holt, A
2014-02-01
To identify poisons information resources most commonly utilized by Australasian Emergency Department staff, and examine attitudes regarding the benefits and user experience of the electronic products used. A survey tool was mailed to six Emergency Departments each in New Zealand and Australia to be answered by medical and nursing staff. Eighty six (71.7%) responses were received from the 120 survey forms sent: 70 (81%) responders were medical staff, the remainder nursing. Electronic resources were the most accessed poisons information resource in New Zealand; Australians preferring discussion with a colleague; Poisons Information Centers were the least utilized resource in both countries. With regard to electronic resources, further differences were recognized between countries in: ease of access, ease of use, quality of information and quantity of information, with New Zealand better in all four themes. New Zealand ED staff favored electronic poisons information resources while Australians preferred discussion with a colleague. That Poisons Information Centers were the least utilized resource was surprising. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Obesogenic environment: a concept analysis and pediatric perspective.
Gauthier, Kristine I; Krajicek, Marilyn J
2013-07-01
A concept analysis was undertaken to examine the attributes, characteristics, and uses of the concept of obesogenic environment within a pediatric context. Utilizing a modified version of Walker and Avant's method, the attributes and characteristics of obesogenic environment were identified as it pertains to children. Based on the review of the literature and previous definitions applied to adults, a definition of the concept of obesogenic environment within a pediatric context was developed; examples of sample cases illustrate the concept further. Defining the concept of obesogenic environment has utility for nursing theory development, practice, research, and education. © 2013, Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischman, R.M.; Goldsmith, S.; Newman, D.F.
1981-09-01
The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less
Daniel R. Williams
2008-01-01
Place ideas are capturing increasing attention in recreation and natural resource management. But there are important and sometimes incompatible differences among the various concepts. In this paper I describe some of the reasons for the growing interest in place concepts and distinguish between four basic approaches: attitude, meaning, ethical, and political. My aim...
Fessler, Stephanie J; Simon, Harold K; Yancey, Arthur H; Colman, Michael; Hirsh, Daniel A
2014-03-01
The use of Emergency Medical Services (EMS) for low-acuity pediatric problems is well documented. Attempts have been made to curb potentially unnecessary transports, including using EMS dispatch protocols, shown to predict acuity and needs of adults. However, there are limited data about this in children. The primary objective of this study is to determine the pediatric emergency department (PED) resource utilization (surrogate of acuity level) for pediatric patients categorized as "low-acuity" by initial EMS protocols. Records of all pediatric patients classified as "low acuity" and transported to a PED in winter and summer of 2010 were reviewed. Details of the PED visit were recorded. Patients were categorized and compared based on chief complaint group. Resource utilization was defined as requiring any prescription medications, labs, procedures, consults, admission or transfer. "Under-triage" was defined as a "low-acuity" EMS transport subsequently requiring emergent interventions. Of the 876 eligible cases, 801 were included; 392/801 had no resource utilization while 409 of 801 had resource utilization. Most (737/801) were discharged to home; however, 64/801 were admitted, including 1 of 801 requiring emergent intervention (under-triage rate 0.12%). Gastroenterology and trauma groups had a significant increase in resource utilization, while infectious disease and ear-nose-throat groups had decreased resource utilization. While this EMS system did not well predict overall resource utilization, it safely identified most low-acuity patients, with a low under-triage rate. This study identifies subgroups of patients that could be managed without emergent transport and can be used to further refine current protocols or establish secondary triage systems. © 2013.
Youth Physical Activity Resources Use and Activity Measured by Accelerometry
Maslow, Andréa L.; Colabianchi, Natalie
2014-01-01
Objectives To examine whether utilization of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. Methods 111 adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported utilization of a physical activity resource (none/1+ resources). The main outcomes were total minutes spent in daily 1) moderate-vigorous physical activity and 2) vigorous physical activity. Results Utilizing a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African-Americans and males had significantly greater moderate-vigorous physical activity. Conclusions Results from this study support the development and use of physical activity resources. PMID:21204684
Concept Maps: An Alternative Methodology to Assess Young Children
ERIC Educational Resources Information Center
Atiles, Julia T.; Dominique-Maikell, Nikole; McKean, Kathleen
2014-01-01
The authors investigated the utility and efficacy of using concepts maps as a research tool to assess young children. Pre- and post- concept maps have been used as an assessment and evaluation tool with teachers and with older students, typically children who can read and write; this article summarizes an investigation into the utility of using…
Resources and training in outpatient substance abuse treatment facilities.
Lehman, Wayne E K; Becan, Jennifer E; Joe, George W; Knight, Danica K; Flynn, Patrick M
2012-03-01
The exposure to new clinical interventions through formalized training and the utilization of strategies learned through training are two critical components of the program change process. This study considers the combined influence of actual program fiscal resources and counselors' perceptions of workplace resources on two mechanisms of training: exposure and utilization. Data were collected from 323 counselors nested within 59 programs located in nine states. Multilevel analysis revealed that training exposure and training utilization represent two distinct constructs that are important at different stages in the Program Change Model. Training exposure is associated primarily with physical and financial resources, whereas utilization is associated with professional community and job burnout. These results suggest that financial resources are important in initial exposure to new interventions but that successful utilization of new techniques depends in part on the degree of burnout and collaboration experienced by counselors. Copyright © 2012 Elsevier Inc. All rights reserved.
Resources and Training in Outpatient Substance Abuse Treatment Facilities
Lehman, Wayne E. K.; Becan, Jennifer E.; Joe, George W.; Knight, Danica K.; Flynn, Patrick M.
2011-01-01
The exposure to new clinical interventions through formalized training and the utilization of strategies learned through training are two critical components of the program change process. The current study considers the combined influence of actual program fiscal resources and counselors’ perceptions of workplace resources on two mechanisms of training: exposure and utilization. Data were collected from 323 counselors nested within 59 programs located in 9 states. Multilevel analysis revealed that training exposure and training utilization represent two distinct constructs that are important at different stages in the Program Change Model. Training exposure is associated primarily with physical and financial resources, whereas utilization is associated with professional community and job burnout. These results suggest that financial resources are important in initial exposure to new interventions, but that successful utilization of new techniques depends in part on the degree of burnout and collaboration experienced by counselors. PMID:22154031
Processing of Space Resources to Enable the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2006-01-01
The NASA human exploration program as directed by the Vision for Exploration (G.W. Bush, Jan. 14,2004) includes developing methods to process materials on the Moon and beyond to enable safe and affordable human exploration. Processing space resources was first popularized (O Neill 1976) as a technically viable, economically feasible means to build city sized habitats and multi GWatt solar power satellites in Earth/Moon space. Although NASA studies found the concepts to be technically reasonable in the post Apollo era (AMES 1979), the front end costs the limits of national or corporate investment. In the last decade analysis of space on has shown it to be economically justifiable even on a relatively small mission or commercial scenario basis. The Mars Reference Mission analysis (JSC 1997) demonstrated that production of return propellant on Mars can enable an order of magnitude decrease in the costs of human Mars missions. Analysis (by M. Duke 2003) shows that production of propellant on the Moon for the Earth based satellite industries can be commercially viable after a human lunar base is established. Similar economic analysis (Rapp 2005) also shows large cost benefits for lunar propellant production for Mars missions and for the use of lunar materials for the production of photovoltaic power (Freundlich 2005). Recent technologies could enable much smaller initial costs, to achieve mass, energy, and life support self sufficiency, than were achievable in the 1970s. If the Exploration Vision program is executed with a front end emphasis on space resources, it could provide a path for human self reliance beyond Earth orbit. This path can lead to an open, non-zero-sum, future for humanity with safer human competition with limitless growth potential. This paper discusses extension of the analysis for space resource utilization, to determine the minimum systems necessary for human self sufficiency and growth off Earth. Such a approach can provide a more compelling and comprehensive path to space resource utilization.
ERIC Educational Resources Information Center
Sheare, Joseph B.
1978-01-01
Experimental group consisted of learning disabled children in regular classes with resource room interventions. Control group consisted of non-learning disabled children stratified by sex and classrooms. The resource based program did not result in significant changes in either self-concept or peer acceptance after one year for the LD group.…
Laboratory Directed Research and Development Program FY98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.; Chartock, M.
1999-02-05
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less
Maximizing Resource Utilization in Video Streaming Systems
ERIC Educational Resources Information Center
Alsmirat, Mohammad Abdullah
2013-01-01
Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…
18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...
18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...
18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...
18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...
Water transparency drives intra-population divergence in Eurasian Perch (Perca fluviatilis).
Bartels, Pia; Hirsch, Philipp E; Svanbäck, Richard; Eklöv, Peter
2012-01-01
Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.
Ecosystem services and integrated water resource management: different paths to the same end?
Cook, Brian R; Spray, Christopher J
2012-10-30
The two concepts that presently dominate water resource research and management are the Global Water Partnership's (GWP, 2000) interpretation of Integrated Water Resource Management (IWRM) and Ecosystem Services (ES) as interpreted by the Millennium Ecosystem Assessment (MA, 2005). Both concepts are subject to mounting criticism, with a significant number of critiques focusing on both their conceptual and methodological incompatibility with management and governance, what has come to be known as the 'implementation gap'. Emergent within the ES and IWRM literatures, then, are two parallel debates concerning the gap between conceptualisation and implementation. Our purpose for writing this review is to argue: 1) that IWRM and ES have evolved into nearly identical concepts, 2) that they face the same critical challenge of implementation, and 3) that, if those interested in water research and management are to have a positive impact on the sustainable utilisation of dwindling water resources, they must break the tendency to jump from concept to concept and confront the challenges that arise with implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.
2011-01-01
Background Organizational context has the potential to influence the use of new knowledge. However, despite advances in understanding the theoretical base of organizational context, its measurement has not been adequately addressed, limiting our ability to quantify and assess context in healthcare settings and thus, advance development of contextual interventions to improve patient care. We developed the Alberta Context Tool (the ACT) to address this concern. It consists of 58 items representing 10 modifiable contextual concepts. We reported the initial validation of the ACT in 2009. This paper presents the second stage of the psychometric validation of the ACT. Methods We used the Standards for Educational and Psychological Testing to frame our validity assessment. Data from 645 English speaking healthcare aides from 25 urban residential long-term care facilities (nursing homes) in the three Canadian Prairie Provinces were used for this stage of validation. In this stage we focused on: (1) advanced aspects of internal structure (e.g., confirmatory factor analysis) and (2) relations with other variables validity evidence. To assess reliability and validity of scores obtained using the ACT we conducted: Cronbach's alpha, confirmatory factor analysis, analysis of variance, and tests of association. We also assessed the performance of the ACT when individual responses were aggregated to the care unit level, because the instrument was developed to obtain unit-level scores of context. Results Item-total correlations exceeded acceptable standards (> 0.3) for the majority of items (51 of 58). We ran three confirmatory factor models. Model 1 (all ACT items) displayed unacceptable fit overall and for five specific items (1 item on adequate space for resident care in the Organizational Slack-Space ACT concept and 4 items on use of electronic resources in the Structural and Electronic Resources ACT concept). This prompted specification of two additional models. Model 2 used the 7 scaled ACT concepts while Model 3 used the 3 count-based ACT concepts. Both models displayed substantially improved fit in comparison to Model 1. Cronbach's alpha for the 10 ACT concepts ranged from 0.37 to 0.92 with 2 concepts performing below the commonly accepted standard of 0.70. Bivariate associations between the ACT concepts and instrumental research utilization levels (which the ACT should predict) were statistically significant at the 5% level for 8 of the 10 ACT concepts. The majority (8/10) of the ACT concepts also showed a statistically significant trend of increasing mean scores when arrayed across the lowest to the highest levels of instrumental research use. Conclusions The validation process in this study demonstrated additional empirical support for construct validity of the ACT, when completed by healthcare aides in nursing homes. The overall pattern of the data was consistent with the structure hypothesized in the development of the ACT and supports the ACT as an appropriate measure for assessing organizational context in nursing homes. Caution should be applied in using the one space and four electronic resource items that displayed misfit in this study with healthcare aides until further assessments are made. PMID:21767378
Tug fleet and ground operations schedules and controls. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
This study presents Tug Fleet and Ground Operations Schedules and Controls plan. This plan was developed and optimized out of a combination of individual Tug program phased subplans, special emphasis studies, contingency analyses and sensitivity analyses. The subplans cover the Tug program phases: (1) Tug operational, (2) Interim Upper Stage (IUS)/Tug fleet utilization, (3) and IUS/Tug payload integration, (4) Tug site activation, (5) IUS/Tug transition, (6) Tug acquisition. Resource requirements (facility, GSE, TSE, software, manpower, logistics) are provided in each subplan, as are appropriate Tug processing flows, active and total IUS and Tug fleet requirements, fleet management and Tug payload integration concepts, facility selection recommendations, site activation and IUS to Tug transition requirements. The impact of operational concepts on Tug acquisition is assessed and the impact of operating Tugs out of KSC and WTR is analyzed and presented showing WTR as a delta. Finally, cost estimates for fleet management and ground operations of the DDT&E and operational phases of the Tug program are given.
Lunar Contour Crafting: A Novel Technique for ISRU-Based Habitat Development
NASA Technical Reports Server (NTRS)
Khoshnevis, Behrokh; Bodiford, Melanie P.; Burks, Kevin H.; Ethridge, Ed; Tucker, Dennis; Kim, Won; Toutanji, Houssam; Fiske, Michael R.
2004-01-01
As the nation prepares to return to the Moon, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of Lunar structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. Contour Crafting is a USC-patented technique for automated development of terrestrial concrete-based structures. The process is relatively fast, completely automated, and supports the incorporation of various infrastructure elements such as plumbing and electrical wiring. This paper will present a conceptual design of a Lunar Contour Crafting system designed to autonomously fabricate integrated structures on the Lunar surface using high-strength concrete based on Lunar regolith, including glass reinforcement rods or fibers fabricated from melted regolith. Design concepts will be presented, as well as results of initial tests aimed at concrete and glass production using Lunar regolith simulant. Key issues and concerns will be presented, along with design concepts for an LCC testbed to be developed at MSFC's Prototype Development Laboratory (PDL).
Colt: an experiment in wormhole run-time reconfiguration
NASA Astrophysics Data System (ADS)
Bittner, Ray; Athanas, Peter M.; Musgrove, Mark
1996-10-01
Wormhole run-time reconfiguration (RTR) is an attempt to create a refined computing paradigm for high performance computational tasks. By combining concepts from field programmable gate array (FPGA) technologies with data flow computing, the Colt/Stallion architecture achieves high utilization of hardware resources, and facilitates rapid run-time reconfiguration. Targeted mainly at DSP-type operations, the Colt integrated circuit -- a prototype wormhole RTR device -- compares favorably to contemporary DSP alternatives in terms of silicon area consumed per unit computation and in computing performance. Although emphasis has been placed on signal processing applications, general purpose computation has not been overlooked. Colt is a prototype that defines an architecture not only at the chip level but also in terms of an overall system design. As this system is realized, the concept of wormhole RTR will be applied to numerical computation and DSP applications including those common to image processing, communications systems, digital filters, acoustic processing, real-time control systems and simulation acceleration.
Urban permeable pavement system design based on “sponge city” concept
NASA Astrophysics Data System (ADS)
Yu, M. M.; Zhu, J. W.; Gao, W. F.; Xu, D. P.; Zhao, M.
2017-08-01
Based on the “sponge city” concept, to implement the goal of building a city within the city to solve the sponge waterlogging, rational utilization of water resources, reduce water pollution this paper, combined with the city planning level in China, establishes the design system of city road flooding from the macro, medium and micro level, explore the design method of city water permeable pavement system, and has a practical significance the lower flood risk water ecological problems. On the macro level, we established an urban pavement sponge system under the regional ecological pattern by “spot permeable open space - low impact developing rain water road system - catchment area and catchment wetland”. On a medium level, this paper proposed the permeable suitability of pavement and the planning control indicators when combined with urban functional districts to conduct permeable pavement roads plans and controls. On micro level, the paper studied sponge technology design of permeable pavement from road structure, surface material, and other aspects aimed at the pavement permeability requirements.
Promoting Mental Health Help-Seeking Behavior Among First-Year College Students.
Pace, Kristin; Silk, Kami; Nazione, Samantha; Fournier, Laura; Collins-Eaglin, Jan
2018-02-01
Awareness and utilization of mental health services on college campuses is a salient issue, particularly for first-year students as they transition into college life. The current study uses focus groups and surveys to test help-seeking messages for first-year students. In this formative research, Phase 1 focus-group participants (N = 47) discussed four message concepts related to awareness of symptoms of mental health problems and services available to students. Phase 2 participants (N = 292) viewed one of three message concepts and then completed items that measured their perceptions of the message. Focus-group results helped prioritize likely effectiveness of messages based on responses to message features and provided an understanding of mental health help-seeking perceptions among college students. The quantitative results indicate the messages have potential for increasing awareness of mental health issues, as well as promoting availability of campus resources. Implications for tailoring campaign messages to first-year students are discussed.
Space Network Control Conference on Resource Allocation Concepts and Approaches
NASA Technical Reports Server (NTRS)
Moe, Karen L. (Editor)
1991-01-01
The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.
Eddy-Miller, Cheryl A.; Constantz, Jim; Wheeler, Jerrod D.; Caldwell, Rodney R.; Barlow, Jeannie R.B.
2012-01-01
Groundwater and surface water in many cases are considered separate resources, but there is growing recognition of a need to treat them as a single resource. For example, groundwater inflow during low streamflow is vitally important to the health of a stream for many reasons, including buffering temperature, providing good quality water to the stream, and maintaining flow for aquatic organisms. The U.S. Geological Survey (USGS) has measured stream stage and flow at thousands of locations since 1889 and has the ability to distribute the information to the public within hours of collection, but collecting shallow groundwater data at co-located measuring sites is a new concept. Recently developed techniques using heat as a tracer to quantify groundwater and surface-water exchanges have shown the value of coupling these resources to increase the understanding of the water resources of an area. In 2009, the USGS Office of Groundwater began a pilot study to examine the feasibility and utility of widespread use of real-time groundwater monitoring at streambank wells coupled with real-time surface-water monitoring at active streamgages to assist in understanding the exchange of groundwater and surface water in a cost effective manner.
NASA Astrophysics Data System (ADS)
Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua
2018-01-01
Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.
Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization
NASA Astrophysics Data System (ADS)
Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.
2016-06-01
Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.
Neutron probes for the Construction and Resource Utilization eXplorer (CRUX)
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hahn, S.; Lawrence, D. J.; Feldman, W. C.; Johnson, J. B.; Haldemann, A. F. C.
2006-01-01
The Construction and Resource Utilization eXplorer (CRUX) project is developing a flexible integrated suite of instruments with data fusion software and an executive controller for in situ regolith resource assessment and characterization.
Sabri, Bushra; Huerta, Julia; Alexander, Kamila A; St Vil, Noelle M; Campbell, Jacquelyn C; Callwood, Gloria B
2015-11-01
This study examined knowledge, access, utilization, and barriers to use of resources among Black women exposed to multiple types of intimate partner violence in Baltimore, Maryland and the U.S. Virgin Islands (USVI). We analyzed quantitative survey data collected by 163 women recruited from primary care, prenatal or family planning clinics in Baltimore and the USVI. In addition we analyzed qualitative data from in-depth interviews with 11 women. Quantitative data were analyzed using descriptive statistics and qualitative data were analyzed using thematic analysis. A substantial proportion of Black women with multiple types of violence experiences lacked knowledge of, did not have access to, and did not use resources. Barriers to resource use were identified at the individual, relationship, and community levels. There is need for programs to develop awareness, promote access and utilization of resources, and eliminate barriers to resource use among abused Black women.
Case Analysis Of The Joint High Speed Vessel Program: Defense Acquisition
2016-09-01
reviews resulted in a series of Advanced Concept Technology Demonstrations (ACTD) designed to explore the military utility of converted commercial...requirements into a final and unique materiel solution for a system capability that is fielded. 14. SUBJECT TERMS Advanced Concept and Technology ...Advanced Concept Technology Demonstrations (ACTD) designed to explore the military utility of converted commercial, high-speed, shallow-draft
Toward information management in corporations (12)
NASA Astrophysics Data System (ADS)
Fujii, Kunihiko
Within the information areas in which the technology has been highly advanced, the ability required for corporate personnel in charge of information has changed gradually. They need to promote activities in which computer science is incorporated, although they had been involved in only activities featured by information science. While information personnel is required to have interdisciplinary and inter-business abilities, they need to make use of inhouse and external information for the business activities effectively. Corresponding to the social trend the author describes guidelines for such action, the concept and the importance in rendering information high value addes toward more versatile utilization of information, and proposes how significant human resources act in information use.
Concepts for design of an energy management system incorporating dispersed storage and generation
NASA Technical Reports Server (NTRS)
Kirkham, H.; Koerner, T.; Nightingale, D.
1981-01-01
New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.
Surface Support Systems for Co-Operative and Integrated Human/Robotic Lunar Exploration
NASA Technical Reports Server (NTRS)
Mueller, Robert P.
2006-01-01
Human and robotic partnerships to realize space goals can enhance space missions and provide increases in human productivity while decreasing the hazards that the humans are exposed to. For lunar exploration, the harsh environment of the moon and the repetitive nature of the tasks involved with lunar outpost construction, maintenance and operation as well as production tasks associated with in-situ resource utilization, make it highly desirable to use robotic systems in co-operation with human activity. A human lunar outpost is functionally examined and concepts for selected human/robotic tasks are discussed in the context of a lunar outpost which will enable the presence of humans on the moon for extended periods of time.
Big data and ophthalmic research.
Clark, Antony; Ng, Jonathon Q; Morlet, Nigel; Semmens, James B
2016-01-01
Large population-based health administrative databases, clinical registries, and data linkage systems are a rapidly expanding resource for health research. Ophthalmic research has benefited from the use of these databases in expanding the breadth of knowledge in areas such as disease surveillance, disease etiology, health services utilization, and health outcomes. Furthermore, the quantity of data available for research has increased exponentially in recent times, particularly as e-health initiatives come online in health systems across the globe. We review some big data concepts, the databases and data linkage systems used in eye research-including their advantages and limitations, the types of studies previously undertaken, and the future direction for big data in eye research. Copyright © 2016 Elsevier Inc. All rights reserved.
On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg
2007-01-01
Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).
Janiak, Elizabeth; Rhodes, Elizabeth; Foster, Angel M
2013-12-01
Following state-level health care reform in Massachusetts, young women reported confusion over coverage of contraception and other sexual and reproductive health services under newly available health insurance products. To address this gap, a plain-language Web site titled "My Little Black Book for Sexual Health" was developed by a statewide network of reproductive health stakeholders. The purpose of this evaluation was to assess the health literacy demands and usability of the site among its target audience, women ages 18-26 years. We performed an evaluation of the literacy demands of the Web site's written content and tested the Web site's usability in a health communications laboratory. Participants found the Web site visually appealing and its overall design concept accessible. However, the Web site's literacy demands were high, and all participants encountered problems navigating through the Web site. Following this evaluation, the Web site was modified to be more usable and more comprehensible to women of all health literacy levels. To avail themselves of sexual and reproductive health services newly available under expanded health insurance coverage, young women require customized educational resources that are rigorously evaluated to ensure accessibility. To maximize utilization of reproductive health services under expanded health insurance coverage, US women require customized educational resources commensurate with their literacy skills. The application of established research methods from the field of health communications will enable advocates to evaluate and adapt these resources to best serve their targeted audiences. © 2013.
Teerawattananon, Yot; Russell, Steve
2008-01-01
Background This paper presents qualitative findings from an assessment of the acceptability of using economic evaluation among policy actors in Thailand. Using cost-utility data from two economic analyses a hypothetical case scenario was created in which policy actors had to choose between two competing interventions to include in a public health benefit package. The two competing interventions, laparoscopic cholecystectomy (LC) for gallbladder disease versus renal dialysis for chronic renal disease, were selected because they highlighted conflicting criteria influencing the allocation of healthcare resources. Methods Semi-structured interviews were conducted with 36 policy actors who play a major role in resource allocation decisions within the Thai healthcare system. These included 14 policy makers at the national level, five hospital directors, ten health professionals and seven academics. Results Twenty six out of 36 (72%) respondents were not convinced by the presentation of economic evaluation findings and chose not to support the inclusion of a proven cost-effective intervention (LC) in the benefit package due to ethical, institutional and political considerations. There were only six respondents, including three policy makers at national level, one hospital director, one health professional and one academic, (6/36, 17%) whose decisions were influenced by economic evaluation evidence. Conclusion This paper illustrates limitations of using economic evaluation information in decision making priorities of health care, perceived by different policy actors. It demonstrates that the concept of maximising health utility fails to recognise other important societal values in making health resource allocation decisions. PMID:18817579
2013-01-01
Background People who inject drugs (PWID) often encounter barriers when attempting to access health care and social services. In our previous study conducted to identify barriers to accessing care from the perspective of PWIDs in Saskatoon, Canada: poverty, lack of personal support, discrimination, and poor knowledge and coordination of service providers among other key barriers were identified. The purpose of the present investigation was to explore what service providers perceive to be the greatest barriers for PWIDs to receive optimal care. This study is an exploratory investigation with a purpose to enrich the literature and to guide community action. Methods Data were collected through focus groups with service providers in Saskatoon. Four focus groups were held with a total of 27 service providers. Data were transcribed and qualitative analysis was performed. As a result, concepts were identified and combined into major themes. Results Four barriers to care were identified by service providers: inefficient use of resources, stigma and discrimination, inadequate education and the unique and demanding nature of PWIDs. Participants also identified many successful services. Conclusion The results from this investigation suggest poor utilization of resources, lack of continuing education of health care providers on addictions and coping skills with such demanding population, and social stigma and disparity. We recommend improvements in resource utilization through, for example, case management. In addition, sensitivity training and more comprehensive service centers designed to meet PWID’s complex needs may improve care. However, community-wide commitment to addressing injection drug issues will also be required for lasting solutions. PMID:24079946
Bousfield, David; McEntyre, Johanna; Velankar, Sameer; Papadatos, George; Bateman, Alex; Cochrane, Guy; Kim, Jee-Hyub; Graef, Florian; Vartak, Vid; Alako, Blaise; Blomberg, Niklas
2016-01-01
Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry. We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications.
Bousfield, David; McEntyre, Johanna; Velankar, Sameer; Papadatos, George; Bateman, Alex; Cochrane, Guy; Kim, Jee-Hyub; Graef, Florian; Vartak, Vid; Alako, Blaise; Blomberg, Niklas
2016-01-01
Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry. We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications. PMID:27092246
RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization
NASA Technical Reports Server (NTRS)
2008-01-01
To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
Methylamine as a nitrogen source for microorganisms from a coastal marine environment.
Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Pratscher, Jennifer; Jehmlich, Nico; von Bergen, Martin; Richnow, Hans H; Chen, Yin; Murrell, J Colin
2017-06-01
Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mapping of Technological Opportunities-Labyrinth Seal Example
NASA Technical Reports Server (NTRS)
Clarke, Dana W., Sr.
2006-01-01
All technological systems evolve based on evolutionary sequences that have repeated throughout history and can be abstracted from the history of technology and patents. These evolutionary sequences represent objective patterns and provide considerable insights that can be used to proactively model future seal concepts. This presentation provides an overview of how to map seal technology into the future using a labyrinth seal example. The mapping process delivers functional descriptions of sequential changes in market/consumer demand, from today s current paradigm to the next major paradigm shift. The future paradigm is developed according to a simple formula: the future paradigm is free of all flaws associated with the current paradigm; it is as far into the future as we can see. Although revolutionary, the vision of the future paradigm is typically not immediately or completely realizable nor is it normally seen as practical. There are several reasons that prevent immediate and complete practical application, such as: 1) Some of the required technological or business resources and knowledge not being available; 2) Availability of other technological or business resources are limited; and/or 3) Some necessary knowledge has not been completely developed. These factors tend to drive the Total Cost of Ownership or Utilization out of an acceptable range and revealing the reasons for the high Total Cost of Ownership or Utilization which provides a clear understanding of research opportunities essential for future developments and defines the current limits of the immediately achievable improvements. The typical roots of high Total Cost of Ownership or Utilization lie in the limited availability or even the absence of essential resources and knowledge necessary for its realization. In order to overcome this obstacle, step-by-step modification of the current paradigm is pursued to evolve from the current situation toward the ideal future, i.e., evolution rather than revolution. A key point is that evolutionary stages are mapped to show step-by-step evolution from the current paradigm to the next major paradigm.
Information Technology and the Autonomous Control of a Mars In-Situ Propellant Production System
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Sridhar, K. R.; Larson, William E.; Clancy, Daniel J.; Peschur, Charles; Briggs, Geoffrey A.; Zornetzer, Steven F. (Technical Monitor)
1999-01-01
With the rapidly increasing performance of information technology, i.e., computer hardware and software systems, as well as networks and communication systems, a new capability is being developed that holds the clear promise of greatly increased exploration capability, along with dramatically reduced design, development, and operating costs. These new intelligent systems technologies, utilizing knowledge-based software and very high performance computer systems, will provide new design and development tools, scheduling mechanisms, and vehicle and system health monitoring capabilities. In addition, specific technologies such as neural nets will provide a degree of machine intelligence and associated autonomy which has previously been unavailable to the mission and spacecraft designer and to the system operator. One of the most promising applications of these new information technologies is to the area of in situ resource utilization. Useful resources such as oxygen, compressed carbon dioxide, water, methane, and buffer gases can be extracted and/or generated from planetary atmospheres, such as the Martian atmosphere. These products, when used for propulsion and life-support needs can provide significant savings in the launch mass and costs for both robotic and crewed missions. In the longer term the utilization of indigenous resources is an enabling technology that is vital to sustaining long duration human presence on Mars. This paper will present the concepts that are currently under investigation and development for mining the Martian atmosphere, such as temperature-swing adsorption, zirconia electrolysis etc., to create propellants and life-support materials. This description will be followed by an analysis of the information technology and control needs for the reliable and autonomous operation of such processing plants in a fault tolerant manner, as well as the approach being taken for the development of the controlling software. Finally, there will be a brief discussion of the verification and validation process so crucial to the implementation of mission-critical software.
Forest biological diversity interactions with resource utilization
S.T. Mok
1992-01-01
The most important forest resources of the Asia-Pacific region are the highly diverse rain forests. Utilization of the resource is a natural and inevitable consequence of the region's socio-economic development. The sustainable management and development of forest resources in the region can be achieved by implementing conservational forestry, which is based on...
Kohonen, Pekka; Benfenati, Emilio; Bower, David; Ceder, Rebecca; Crump, Michael; Cross, Kevin; Grafström, Roland C; Healy, Lyn; Helma, Christoph; Jeliazkova, Nina; Jeliazkov, Vedrin; Maggioni, Silvia; Miller, Scott; Myatt, Glenn; Rautenberg, Michael; Stacey, Glyn; Willighagen, Egon; Wiseman, Jeff; Hardy, Barry
2013-01-01
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or "gold compounds" for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spherical versus flat displays for communicating climate science concepts through stories
NASA Astrophysics Data System (ADS)
Schollaert Uz, S.; Storksdieck, M.; Duncan, B. N.
2016-12-01
One of the most compelling ways to display global Earth science data is through spherical displays. Museums around the world use Science On a Sphere for informal education of the general public, commonly for Earth science. An increasing number of universities and K-12 school systems are acquiring spheres to support formal education curriculum, but the use of spheres in education is relatively new and understanding of their advantages and best practices is still evolving. Many museums do not have the resources to staff their sphere with a facilitator or they have high turn-over of volunteer facilitators without a science background. Many K-12 teachers lack resources or training needed to utilize sphere technology to address global phenomena or Earth system science. One solution to this "facilitator-problem" has been the creation of "canned shows" for spheres, like ClimateBits. These are short videos that help people visualize Earth science concepts through global data sets and simple story-telling. To understand whether and when data driven story-telling works best on a sphere, we surveyed groups that saw identical Earth system science stories presented on a spherical display versus a flat screen. We also surveyed identical groups using live Earth science data story-telling compared to the ClimateBits videos. Some of the advantages of each format were most apparent in the qualitative comments at the end of the surveys
[Home health resource utilization measures using a case-mix adjustor model].
You, Sun-Ju; Chang, Hyun-Sook
2005-08-01
The purpose of this study was to measure home health resource utilization using a Case-Mix Adjustor Model developed in the U.S. The subjects of this study were 484 patients who had received home health care more than 4 visits during a 60-day episode at 31 home health care institutions. Data on the 484 patients had to be merged onto a 60-day payment segment. Based on the results, the researcher classified home health resource groups (HHRG). The subjects were classified into 34 HHRGs in Korea. Home health resource utilization according to clinical severity was in order of Minimum (C0) < 'Low (C1) < 'Moderate (C2) < 'High (C3), according to dependency in daily activities was in order of Minimum (F0) < 'High (F3) < 'Medium (F2) < 'Low (F1) < 'Maximum (F4). Resource utilization by HHRGs was the highest 564,735 won in group C0F0S2 (clinical severity minimum, dependency in daily activity minimum, service utilization moderate), and the lowest 97,000 won in group C2F3S1, so the former was 5.82 times higher than the latter. Resource utilization in home health care has become an issue of concern due to rising costs for home health care. The results suggest the need for more analytical attention on the utilization and expenditures for home care using a Case-Mix Adjustor Model.
System design in an evolving system-of-systems architecture and concept of operations
NASA Astrophysics Data System (ADS)
Rovekamp, Roger N., Jr.
Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.
Assessing the value of information for long-term structural health monitoring
NASA Astrophysics Data System (ADS)
Pozzi, Matteo; Der Kiureghian, Armen
2011-04-01
In the field of Structural Health Monitoring, tests and sensing systems are intended as tools providing diagnoses, which allow the operator of the facility to develop an efficient maintenance plan or to require extraordinary measures on a structure. The effectiveness of these systems depends directly on their capability to guide towards the most optimal decision for the prevailing circumstances, avoiding mistakes and wastes of resources. Though this is well known, most studies only address the accuracy of the information gained from sensors without discussing economic criteria. Other studies evaluate these criteria separately, with only marginal or heuristic connection with the outcomes of the monitoring system. The concept of "Value of Information" (VoI) provides a rational basis to rank measuring systems according to a utility-based metric, which fully includes the decision-making process affected by the monitoring campaign. This framework allows, for example, an explicit assessment of the economical justifiability of adopting a sensor depending on its precision. In this paper we outline the framework for assessing the VoI, as applicable to the ranking of competitive measuring systems. We present the basic concepts involved, highlight issues related to monitoring of civil structures, address the problem of non-linearity of the cost-to-utility mapping, and introduce an approximate Monte Carlo approach suitable for the implementation of time-consuming predictive models.
NASA Technical Reports Server (NTRS)
Roark, Walt; Cockrell, Dave; Coker, Cindy; Baugher, Charles
2001-01-01
The Microgravity Science Glovebox (MSG) is a versatile research facility designed to permit the flexibility of crew manipulated investigations on the International Space Station (ISS). The MSG configuration has been planned around the concept of an experimental workstation where a variety of experiments can be installed and operated in a fashion very similar to their operation in a ground-based laboratory. The approach has been to provide a large working volume with a significant set of power, data and imaging resources, all enclosed, but accessible by the crew through sealed glove ports. This arrangement allows the advantage of interactive experimentation without unduly compromising the experiment design with restrictions imposed by protective and containment challenges that normally arise in manned space-flight laboratories. In addition, the data and imaging resources allow cooperative monitoring of experiment progress between the crew and ground-based scientists. As ISS utilization evolves, the MSG is scheduled to become a major pathfinder for developing and exploiting the scientific advantages of truly enabling the coupling of experimentation in space with an evaluative response from the crew and investigators.
Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning
2015-04-01
Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.
Rouillard, Andrew D; Wang, Zichen; Ma'ayan, Avi
2015-12-01
With advances in genomics, transcriptomics, metabolomics and proteomics, and more expansive electronic clinical record monitoring, as well as advances in computation, we have entered the Big Data era in biomedical research. Data gathering is growing rapidly while only a small fraction of this data is converted to useful knowledge or reused in future studies. To improve this, an important concept that is often overlooked is data abstraction. To fuse and reuse biomedical datasets from diverse resources, data abstraction is frequently required. Here we summarize some of the major Big Data biomedical research resources for genomics, proteomics and phenotype data, collected from mammalian cells, tissues and organisms. We then suggest simple data abstraction methods for fusing this diverse but related data. Finally, we demonstrate examples of the potential utility of such data integration efforts, while warning about the inherit biases that exist within such data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tufts academic health information network: concept and scenario.
Stearns, N S
1986-04-01
Tufts University School of Medicine's new health sciences education building, the Arthur M. Sackler Center for Health Communications, will house a modern medical library and computer center, classrooms, auditoria, and media facilities. The building will also serve as the center for an information and communication network linking the medical school and adjacent New England Medical Center, Tufts' primary teaching hospital, with Tufts Associated Teaching Hospitals throughout New England. Ultimately, the Tufts network will join other gateway networks, information resource facilities, health care institutions, and medical schools throughout the world. The center and the network are intended to facilitate and improve the education of health professionals, the delivery of health care to patients, the conduct of research, and the implementation of administrative management approaches that should provide more efficient utilization of resources and save dollars. A model and scenario show how health care delivery and health care education are integrated through better use of information transfer technologies by health information specialists, practitioners, and educators.
Tufts academic health information network: concept and scenario.
Stearns, N S
1986-01-01
Tufts University School of Medicine's new health sciences education building, the Arthur M. Sackler Center for Health Communications, will house a modern medical library and computer center, classrooms, auditoria, and media facilities. The building will also serve as the center for an information and communication network linking the medical school and adjacent New England Medical Center, Tufts' primary teaching hospital, with Tufts Associated Teaching Hospitals throughout New England. Ultimately, the Tufts network will join other gateway networks, information resource facilities, health care institutions, and medical schools throughout the world. The center and the network are intended to facilitate and improve the education of health professionals, the delivery of health care to patients, the conduct of research, and the implementation of administrative management approaches that should provide more efficient utilization of resources and save dollars. A model and scenario show how health care delivery and health care education are integrated through better use of information transfer technologies by health information specialists, practitioners, and educators. PMID:3708191
Examining the potential exploitation of UNOS policies.
Zink, Sheldon; Wertlieb, Stacey; Catalano, John; Marwin, Victor
2005-01-01
The United Network for Organ Sharing (UNOS) waiting list was designed as a just and equitable system through which the limited number of organs is allocated to the millions of Americans in need of a transplant. People have trusted the system because of the belief that everyone on the list has an equal opportunity to receive an organ and also that allocation is blind to matters of financial standing, celebrity or political power. Recent events have revealed that certain practices and policies have the potential to be exploited. The policies addressed in this paper enable those on the list with the proper resources to gain an advantage over other less fortunate members, creating a system that benefits not the individual most in medical need, but the one with the best resources. These policies are not only unethical but threaten the balance and success of the entire UNOS system. This paper proposes one possible solution, which seeks to balance the concepts of justice and utility.
Student Misconceptions about Plants - A First Step in Building a Teaching Resource.
Wynn, April N; Pan, Irvin L; Rueschhoff, Elizabeth E; Herman, Maryann A B; Archer, E Kathleen
2017-01-01
Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available studies of misconceptions held on those topics show that many are formed at a very young age and persist throughout all educational levels. Our goal is to begin building a central resource of plant biology misconceptions that addresses these underrepresented topics, and here we provide a table of published misconceptions organized by topic. For greater utility, we report the age group(s) in which the misconceptions were found and then map them to the ASPB - BSA Core Concepts and Learning Objectives in Plant Biology for Undergraduates, developed jointly by the American Society of Plant Biologists and the Botanical Society of America.
Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker
2014-08-21
Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation.
The Mars In-Situ-Propellant-Production Precursor (MIP) Flight Demonstration
NASA Technical Reports Server (NTRS)
Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.
1999-01-01
Strategic planning for human missions of exploration to Mars has conclusively identified insitu propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Glenn Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware that are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to (1) uncertainties in our knowledge of the Mars environment, and (2) conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.
Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker
2014-01-01
Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165
Perceived resource support for chronic illnesses among diabetics in north-western China.
Zhong, Huiqin; Shao, Ya; Fan, Ling; Zhong, Tangshen; Ren, Lu; Wang, Yan
2016-06-01
A high level of social support can improve long-term diabetes self-management. Support from a single source has been evaluated. This study aims to analyze support from multiple and multilevel sources for diabetic patients by using the Chronic Illness Resources Survey (CIRS). Factors influencing the utilization of the CIRS were also evaluated. A total of 297 patients with diabetes were investigated using the CIRS and Perceived Diabetes Self-management Scale in Shihezi City, China. Descriptive statistics were used to explain demographic variables and scores of the scales. Factors affecting the utilization of chronic illness resources were determined through univariate analysis and then examined by multivariate logistic regression analysis. Of the 297 diabetic patients surveyed, 67% failed to reach the standard (more than 3 points) of utilizing chronic illness resources. Moreover, utilization of chronic illness resources was positively moderately correlated with self-management of diabetes (r = 0.75, P < 0.05). According to the multivariate logistic regression analysis, age (OR, 3.42; 95%CI, 1.19-9.84) and monthly income (OR, 5.27; 95%CI, 1.86-14.90) were significantly positively associated with the CIRS score. Individuals with high school (OR, 2.61; 95%CI, 1.13-6.05) and college (OR, 3.02; 95%CI, 1.13-8.04) degrees obtained higher scores in the survey than those with elementary school education. Results indicated that utilization of resources and support for chronic illness self-management, particularly personal adjustment and organization, were not ideal among diabetics in the communities of north-western China. Improved utilization of chronic illness resources was conducive for proper diabetes self-management. Furthermore, the level of utilization of chronic illness resources increased with age, literacy level, and monthly income.
The Ecological Model Web Concept: A Consultative Infrastructure for Decision Makers and Researchers
NASA Astrophysics Data System (ADS)
Geller, G.; Nativi, S.
2011-12-01
Rapid climate and socioeconomic changes may be outrunning society's ability to understand, predict, and respond to change effectively. Decision makers want better information about what these changes will be and how various resources will be affected, while researchers want better understanding of the components and processes of ecological systems, how they interact, and how they respond to change. Although there are many excellent models in ecology and related disciplines, there is only limited coordination among them, and accessible, openly shared models or model systems that can be consulted to gain insight on important ecological questions or assist with decision-making are rare. A "consultative infrastructure" that increased access to and sharing of models and model outputs would benefit decision makers, researchers, as well as modelers. Of course, envisioning such an ambitious system is much easier than building it, but several complementary approaches exist that could contribute. The one discussed here is called the Model Web. This is a concept for an open-ended system of interoperable computer models and databases based on making models and their outputs available as services ("model as a service"). Initially, it might consist of a core of several models from which it could grow gradually as new models or databases were added. However, a model web would not be a monolithic, rigidly planned and built system--instead, like the World Wide Web, it would grow largely organically, with limited central control, within a framework of broad goals and data exchange standards. One difference from the WWW is that a model web is much harder to create, and has more pitfalls, and thus is a long term vision. However, technology, science, observations, and models have advanced enough so that parts of an ecological model web can be built and utilized now, forming a framework for gradual growth as well as a broadly accessible infrastructure. Ultimately, the value of a model web lies in the increase in access to and sharing of both models and model outputs. By lowering access barriers to models and their outputs there is less reinvention, more efficient use of resources, greater interaction among researchers and across disciplines, as well as other benefits. The growth of such a system of models fits well with the concept and architecture of the Global Earth Observing System of Systems (GEOSS) as well as the Semantic Web. And, while framed here in the context of ecological forecasting, the same concept can be applied to any discipline utilizing models.
Tabatabaei-Malazy, Ozra; Nedjat, Saharnaz; Majdzadeh, Reza
2012-04-01
Little is known about the degree of utilization of information resources on diabetes by general practitioners (GPs) and its impact on their clinical behavior in developing countries. Such information is vital if GPs' diabetes knowledge is to be improved. This cross-sectional study recruited 319 GPs in the summer of 2008. Questions were about the updates on diabetes knowledge in the previous two years, utilization of information resources (domestic and foreign journals, congresses, the Internet, reference books, mass media, and peers), attitude toward the importance of each resource, and impact of each resource on clinical behavior. A total of 62% of GPs had used information resources for improving their knowledge on diabetes in the previous two years. Domestic journals accounted for the highest utilization (30%) and the highest importance score (83 points from 100); with the importance score not being affected by sex, years elapsed after graduation, and numbers of diabetic visits. Clinical behavior was not influenced by the information resources listed; whereas knowledge upgrade, irrespective of the sources utilized, had a significantly positive correlation with clinical behavior. Domestic journals constituted the main information resource utilized by the GPs; this resource, however, in tandem with the other information resources on diabetes exerted no significant impact on the GPs' clinical behavior. In contrast to the developed countries, clinical guidelines do not have any place as a source of information and or practice. Indubitably, the improvement of diabetes knowledge transfer requires serious interventions to improve information resources as well as the structure of scientific gatherings and collaborations.
Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.
Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco
2004-04-01
The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.
Geostationary platform study: Advanced ESGP/evolutionary SSF accommodation study
NASA Technical Reports Server (NTRS)
1990-01-01
The implications on the evolutionary space station of accommodating geosynchronous Earth Orbit (GEO) facilities including unmanned satellites and platforms, manned elements, and transportation and servicing vehicles/elements. The latest existing definitions of typical unmanned GEO facilities and transportation and servicing vehicles/elements are utilized. The physical design, functional design, and operations implications at the space station are determined. Various concepts of the space station from past studies are utilized ranging from the IOC Multifunction Space Station to a branched transportation node space station, and the implications of the accommodation the GEO infrastructure of each type are assessed. Where possible, parametric data are provided to show the implications of variations in sizes and quantities of elements, launch rates, crew sizes, etc. The use of advanced automation, robotics equipment, and an efficient mix of manned/automated support for accomplishing necessary activities at the space station are identified and assessed. The products of this study are configuration sketches, resource requirements, trade studies, and parametric data.
Towards a semantic lexicon for biological language processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verspoor, K.
It is well understood that natural language processing (NLP) applications require sophisticated lexical resources to support their processing goals. In the biomedical domain, we are privileged to have access to extensive terminological resources in the form of controlled vocabularies and ontologies, which have been integrated into the framework of the National Library of Medicine's Unified Medical Language System's (UMLS) Metathesaurus. However, the existence of such terminological resources does not guarantee their utility for NLP. In particular, we have two core requirements for lexical resources for NLP in addition to the basic enumeration of important domain terms: representation of morphosyntactic informationmore » about those terms, specifically part of speech information and inflectional patterns to support parsing and lemma assignment, and representation of semantic information indicating general categorical information about terms, and significant relations between terms to support text understanding and inference (Hahn et at, 1999). Biomedical vocabularies by and large commonly leave out morphosyntactic information, and where they address semantic considerations, they often do so in an unprincipled manner, for instance by indicating a relation between two concepts without indicating the type of that relation. But all is not lost. The UMLS knowledge sources include two additional resources which are relevant - the SPECIALIST lexicon, a lexicon addressing our morphosyntactic requirements, and the Semantic Network, a representation of core conceptual categories in the biomedical domain. The coverage of these two knowledge sources with respect to the full coverage of the Metathesaurus is, however, not entirely clear. Furthermore, when our goals are specifically to process biological text - and often more specifically, text in the molecular biology domain - it is difficult to say whether the coverage of these resources is meaningful. The utility of the UMLS knowledge sources for medical language processing (MLP) has been explored (Johnson, 1999; Friedman et al 2001); the time has now come to repeat these experiments with respect to biological language processing (BLP). To that end, this paper presents an analysis of ihe UMLS resources, specifically with an eye towards constructing lexical resources suitable for BLP. We follow the paradigm presented in Johnson (1999) for medical language, exploring overlap between the UMLS Metathesaurus and SPECIALIST lexicon to construct a morphosyntactic and semantically-specified lexicon, and then further explore the overlap with a relevant domain corpus for molecular biology.« less
NASA Technical Reports Server (NTRS)
Kalelkar, A. S.
1979-01-01
The analysis of risk presented by carbon fiber utilization in commercial aviation is reported. The discussion is presented in three parts: (1) general concepts; (2) overall approach; and (3) risk evaluation and perspective.
DOT National Transportation Integrated Search
2015-02-01
Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at : demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, inter...
The effect of participation in a weight loss programme on short-term health resource utilization.
van Walraven, Carl; Dent, Robert
2002-02-01
Obese people consume significantly greater amounts of health resources. This study set out to determine if health resource utilization by obese people decreases after losing weight in a comprehensive medically supervised weight management programme. Four hundred and fifty-six patients enrolled in a single-centred, multifaceted weight loss programme in a universal health care system were studied. Patient information was anonymously linked with administrative databases to measure health resource utilization for 1 year before and after the programme. Mean body mass index (BMI) decreased by more than 15%. The mean annual physician visits (pre = 9.6, post = 9.4) did not change significantly after the programme. However, patients saw a significantly fewer number of different physicians per year following the programme (pre = 4.5, post = 3.9; P < 0.001). Mean annual number of emergency visits (pre = 0.2; post = 0.2) and hospital admissions (pre = 0.05; post = 0.08) did not change. Neither baseline BMI, nor its change during the programme, influenced changes in health resource utilization. Our study suggests that weight loss in a supervised weight management programme does not necessarily decrease short-term health resource utilization. Further study is required to determine if patients who maintain their weight loss experience a decrease in health utilization.
Water Transparency Drives Intra-Population Divergence in Eurasian Perch (Perca fluviatilis)
Bartels, Pia; Hirsch, Philipp E.; Svanbäck, Richard; Eklöv, Peter
2012-01-01
Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization. PMID:22912895
Individualisation of Lean Concept in Companies Dealing with Mass Production
NASA Astrophysics Data System (ADS)
Bednár, Roman
2012-12-01
The methods of lean manufacturing primarily designed for businesses dealing with serial production, are also used in other types of production. However the concept of lean production was not designed for these types of businesses, they are utilized only partially. Paper focuses on applying methods of lean concept in companies which are dealing with mass production and their options of exchange for other methods in the event of disagreement. Basis of the article is a list of lean methods with its description and its utilization in practice. The questionnaire was utilized to identify information from the practice. Based on this survey were identified the critical methods that are no longer appropriate for companies dealing with mass production. However, there are alternative methods of describing the problem. It is possible to say that companies are trying to get closer to their goal by modification of the basic concepts. And the concept of Lean Enterprise serves as a standard.
Quinlan, M Megan; Birungi, Josephine; Coulibaly, Mamadou B; Diabaté, Abdoulaye; Facchinelli, Luca; Mukabana, Wolfgang Richard; Mutunga, James Mutuku; Nolan, Tony; Raymond, Peter; Traoré, Sékou F
2018-01-01
Genetic strategies for large scale pest or vector control using modified insects are not yet operational in Africa, and currently rely on import of the modified strains to begin preliminary, contained studies. Early involvement of research teams from participating countries is crucial to evaluate candidate field interventions. Following the recommended phased approach for novel strategies, evaluation should begin with studies in containment facilities. Experiences to prepare facilities and build international teams for research on transgenic mosquitoes revealed some important organizing themes underlying the concept of "facilities readiness," or the point at which studies in containment may proceed, in sub-Saharan African settings. First, "compliance" for research with novel or non-native living organisms was defined as the fulfillment of all legislative and regulatory requirements. This is not limited to regulations regarding use of transgenic organisms. Second, the concept of "colony utility" was related to the characteristics of laboratory colonies being produced so that results of studies may be validated across time, sites, and strains or technologies; so that the appropriate candidate strains are moved forward toward field studies. Third, the importance of achieving "defensible science" was recognized, including that study conclusions can be traced back to evidence, covering the concerns of various stakeholders over the long term. This, combined with good stewardship of resources and appropriate funding, covers a diverse set of criteria for declaring when "facilities readiness" has been attained. It is proposed that, despite the additional demands on time and resources, only with the balance of and rigorous achievement of each of these organizing themes can collaborative research into novel strategies in vector or pest control reliably progress past initial containment studies.
Exergy: its potential and limitations in environmental science and technology.
Dewulf, Jo; Van Langenhove, Herman; Muys, Bart; Bruers, Stijn; Bakshi, Bhavik R; Grubb, Geoffrey F; Paulus, D M; Sciubba, Enrico
2008-04-01
New technologies, either renewables-based or not, are confronted with both economic and technical constraints. Their development takes advantage of considering the basic laws of economics and thermodynamics. With respect to the latter, the exergy concept pops up. Although its fundamentals, that is, the Second Law of Thermodynamics, were already established in the 1800s, it is only in the last years that the exergy concept has gained a more widespread interest in process analysis, typically employed to identify inefficiencies. However, exergy analysis today is implemented far beyond technical analysis; it is also employed in environmental, (thermo)economic, and even sustainability analysis of industrial systems. Because natural ecosystems are also subjected to the basic laws of thermodynamics, it is another subject of exergy analysis. After an introduction on the concept itself, this review focuses on the potential and limitations of the exergy conceptin (1) ecosystem analysis, utilized to describe maximum storage and maximum dissipation of energy flows (2); industrial system analysis: from single process analysis to complete process chain analysis (3); (thermo)economic analysis, with extended exergy accounting; and (4) environmental impact assessment throughout the whole life cycle with quantification of the resource intake and emission effects. Apart from technical system analysis, it proves that exergy as a tool in environmental impact analysis may be the most mature field of application, particularly with respect to resource and efficiency accounting, one of the major challenges in the development of sustainable technology. Far less mature is the exergy analysis of natural ecosystems and the coupling with economic analysis, where a lively debate is presently going on about the actual merits of an exergy-based approach.
National Conference on Integrated Resource Planning: Proceedings
NASA Astrophysics Data System (ADS)
Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; and key regulatory issues facing gas utilities during the next five years.
ERIC Educational Resources Information Center
Beamish, Eric; And Others
This resource guide contains over 300 entries which are available through the Optimum Utilization of Resources (OUR's) exchange system. The entries describe learning materials, such as slides, video tapes, audio tapes, films, print material, and computer assisted instructional programs, which have been developed primarily by faculty of the…
Isaak, Robert Scott; Stiegler, Marjorie Podraza
2016-04-01
The practice of medicine is characterized by routine and typical cases whose management usually goes according to plan. However, the occasional case does arise which involves rare catastrophic emergencies, such as intraoperative malignant hyperthermia (MH), which require a comprehensive, coordinated, and resource-intensive treatment plan. Physicians are expected to provide expert quality care for routine, typical cases, but is it reasonable to expect the same standard of expertise and comprehensive management when the emergency involves a rare entity? Although physicians would like to say yes to this question, the reality is that no physician will ever amass the amount of experience in patient care needed to truly qualify as an expert in the management of a rare emergency entity, such as MH. However, physicians can become expert in the global process of managing emergencies by using the principles of crisis resource management (CRM). In this article, we review the key concepts of CRM, using a real life example of a team who utilized CRM principles to successfully manage an intraoperative MH crisis, despite there being no one on the team who had ever previously encountered a true MH crisis.
Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud.
Zia Ullah, Qazi; Hassan, Shahzad; Khan, Gul Muhammad
2017-01-01
Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.
Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud
Hassan, Shahzad; Khan, Gul Muhammad
2017-01-01
Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers. PMID:28811819
Systems evaluation of thermal bus concepts
NASA Technical Reports Server (NTRS)
Stalmach, D. D.
1982-01-01
Thermal bus concepts, to provide a centralized thermal utility for large, multihundred kilowatt space platforms, were studied and the results are summarized. Concepts were generated, defined, and screened for inclusion in system level thermal bus trades. Parametric trade studies were conducted in order to define the operational envelope, performance, and physical characteristics of each. Two concepts were selected as offering the most promise for thermal bus development. All of four concepts involved two phase flow in order to meet the required isothermal nature of the thermal bus. Two of the concepts employ a mechanical means to circulate the working fluid, a liquid pump in one case and a vapor compressor in another. Another concept utilizes direct osmosis as the driving force of the thermal bus. The fourth concept was a high capacity monogroove heat pipe. After preliminary sizing and screening, three of these concepts were selected to carry into the trade studies. The monogroove heat pipe concept was deemed unsuitable for further consideration because of its heat transport limitations. One additional concept utilizing capillary forces to drive the working fluid was added. Parametric system level trade studies were performed. Sizing and weight calculations were performed for thermal bus sizes ranging from 5 to 350 kW and operating temperatures in the range of 4 to 120 C. System level considerations such as heat rejection and electrical power penalties and interface temperature losses were included in the weight calculations.
Marketing new medical devices.
LoBuglio, R J
1988-01-01
The marketing concept says that a firm should focus all of its efforts on satisfying its customers, at a profit. This is really a a new philosophy of business, replacing a production-oriented philosophy which focused on organizing a firm's resources to make products and then selling them. The marketing concept calls for reorienting the firm's ways of doing things. Instead of trying to get customers to buy what the firm has produced, a marketing-oriented firm would try to sell what the customers want. The underlying principle of the marketing concept is that a firm should seek to meet the needs of customers, at a profit, rather than place its main emphasis on its own internal activities and utilization of its resources. These latter factors are also important, of course, but those who believe in the marketing concept feel that customers' needs should be the firm's primary focus and that resources should be organized to satisfy those needs. Give the customer what he needs--this may seem so obvious and logical that it is difficult to understand why the marketing concept is considered such a breakthrough. However, people haven't always done the logical and obvious. In a typical company, production men thought mainly about getting the product out. Accountants were only interested in balancing the books. Financial people were absorbed in the company's cash position. And salesmen were mainly concerned with getting orders. No one was particularly concerned with whether the whole system made sense. As long as the company made a profit, each department went merrily on its independent way, "doing its own thing." Unfortunately, they still do in the majority of companies today. Finding out customer's attitudes can avoid prejudices and stereotypes commonly found in the typical organization. The need for market research to avoid stereotypes can be dramatized by the following results from a large-scale survey of European adults: The average Frenchman uses almost twice as many cosmetics and beauty aids as his wife. The Germans and the French eat more spaghetti than the Italians. French and Italian housewives are not as interested in cooking as their counterparts in Luxembourg and Belgium. No firm can conduct its business successfully without trying to measure the actual size of markets, present and future. Quantitative measurements are essential for the analysis of market opportunity, the planning of marketing programs, and the control of marketing effort. The firm may make many measures of demand, varying in the level of product aggregation, the time dimension,a nd the space dimension.(ABSTRACT TRUNCATED AT 400 WORDS)
A strategic approach for Water Safety Plans implementation in Portugal.
Vieira, Jose M P
2011-03-01
Effective risk assessment and risk management approaches in public drinking water systems can benefit from a systematic process for hazards identification and effective management control based on the Water Safety Plan (WSP) concept. Good results from WSP development and implementation in a small number of Portuguese water utilities have shown that a more ambitious nationwide strategic approach to disseminate this methodology is needed. However, the establishment of strategic frameworks for systematic and organic scaling-up of WSP implementation at a national level requires major constraints to be overcome: lack of legislation and policies and the need for appropriate monitoring tools. This study presents a framework to inform future policy making by understanding the key constraints and needs related to institutional, organizational and research issues for WSP development and implementation in Portugal. This methodological contribution for WSP implementation can be replicated at a global scale. National health authorities and the Regulator may promote changes in legislation and policies. Independent global monitoring and benchmarking are adequate tools for measuring the progress over time and for comparing the performance of water utilities. Water utilities self-assessment must include performance improvement, operational monitoring and verification. Research and education and resources dissemination ensure knowledge acquisition and transfer.
The role of pharmacoeconomics in current Indian healthcare system.
Ahmad, Akram; Patel, Isha; Parimilakrishnan, Sundararajan; Mohanta, Guru Prasad; Chung, HaeChung; Chang, Jongwha
2013-01-01
Phamacoeconomics can aid the policy makers and the healthcare providers in decision making in evaluating the affordability of and access to rational drug use. Efficiency is a key concept of pharmacoeconomics, and various strategies are suggested for buying the greatest amount of benefits for a given resource use. Phamacoeconomic evaluation techniques such as cost minimization analysis, cost effectiveness analysis, cost benefit analysis, and cost utilization analysis, which support identification and quantification of cost of drugs, are conducted in a similar way, but vary in measurement of value of health benefits and outcomes. This article provides a brief overview about pharmacoeconomics, its utility with respect to the Indian pharmaceutical industry, and the expanding insurance system in India. Pharmacoeconomic evidences can be utilized to support decisions on licensing, pricing, reimbursement, and maintenance of formulary procedure of pharmaceuticals. For the insurance companies to give better facility at minimum cost, India must develop the platform for pharmacoeconomics with a validating methodology and appropriate training. The role of clinical pharmacists including PharmD graduates are expected to be more beneficial than the conventional pharmacists, as they will be able to apply the principles of economics in daily basis practice in community and hospital pharmacy.
The role of pharmacoeconomics in current Indian healthcare system
Ahmad, Akram; Patel, Isha; Parimilakrishnan, Sundararajan; Mohanta, Guru Prasad; Chung, HaeChung; Chang, Jongwha
2013-01-01
Phamacoeconomics can aid the policy makers and the healthcare providers in decision making in evaluating the affordability of and access to rational drug use. Efficiency is a key concept of pharmacoeconomics, and various strategies are suggested for buying the greatest amount of benefits for a given resource use. Phamacoeconomic evaluation techniques such as cost minimization analysis, cost effectiveness analysis, cost benefit analysis, and cost utilization analysis, which support identification and quantification of cost of drugs, are conducted in a similar way, but vary in measurement of value of health benefits and outcomes. This article provides a brief overview about pharmacoeconomics, its utility with respect to the Indian pharmaceutical industry, and the expanding insurance system in India. Pharmacoeconomic evidences can be utilized to support decisions on licensing, pricing, reimbursement, and maintenance of formulary procedure of pharmaceuticals. For the insurance companies to give better facility at minimum cost, India must develop the platform for pharmacoeconomics with a validating methodology and appropriate training. The role of clinical pharmacists including PharmD graduates are expected to be more beneficial than the conventional pharmacists, as they will be able to apply the principles of economics in daily basis practice in community and hospital pharmacy. PMID:24991597
Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint
NASA Astrophysics Data System (ADS)
Wang, Chengshuai; Xu, Lirong; Fu, Xin
2017-05-01
In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.
NASA Technical Reports Server (NTRS)
Tucker, Michael; Meredith, Oliver; Brothers, Bobby
1986-01-01
Several concepts of chemical-propulsion Space Vehicles (SVs) for manned Mars landing missions are presented. For vehicle sizing purposes, several specific missions were chosen from opportunities in the late 1990's and early 2000's, and a vehicle system concept is then described which is applicable to the full range of missions and opportunities available. In general, missions utilizing planetary opposition alignments can be done with smaller vehicles than those utilizing planetary opposition alignments. The conjunction missions have a total mission time of about 3 years, including a required stay-time of about 60 days. Both types of missions might be desirable during a Mars program, the opposition type for early low-risk missions and/or for later unmanned cargo missions, and the conjunction type for more extensive science/exploration missions and/or for Mars base activities. Since the opposition missions appeared to drive the SV size more severely, there were probably more cases examined for them. Some of the concepts presented utilize all-propulsive braking, some utilize and all aerobraking approach, and some are hybrids. Weight statements are provided for various cases. Most of the work was done on 0-g vehicle concepts, but partial-g and 1-g concepts are also provided and discussed. Several options for habitable elements are shown, such as large-diameter modules and space station (SS) types of modules.
NASA Astrophysics Data System (ADS)
Wenner, J. M.; Baer, E. M.
2007-12-01
Introductory geoscience courses are rife with quantitative concepts from graphing to rates to unit conversions. Recent research suggests that supplementary mathematical instruction increases post-secondary students' retention and performance in science courses. Nonetheless, many geoscience faculty feel that they do not have enough time to cover all the geoscience content, let alone covering the math they often feel students should have learned before reaching their classes. We present our NSF-funded effort to create web modules for students that address these concerns. Our web resources focus on both student performance and faculty time issues by building students' quantitative skills through web-based, self-paced modular tutorials. Each module can be assigned to individual students who have demonstrated on a pre-test that they are in need of supplemental instruction. The pre-test involves problems that place mathematical concepts in a geoscience context and determines the students who need the most support with these skills. Students needing support are asked to complete a three-pronged web-based module just before the concept is needed in class. The three parts of each tutorial include: an explanation of the mathematics, a page of practice problems and an on-line quiz that is graded and sent to the instructor. Each of the modules is steeped in best practices in mathematics and geoscience education, drawing on multiple contexts and utilizing technology. The tutorials also provide students with further resources so that they can explore the mathematics in more depth. To assess the rigor of this program, students are given the pre-test again at the end of the course. The uniqueness of this program lies in a rich combination of mathematical concepts placed in multiple geoscience contexts, giving students the opportunity to explore the way that math relates to the physical world. We present several preliminary modules dealing with topics common in introductory geoscience courses. We seek feedback from faculty teaching all levels of geoscience addressing several questions: In what math/geoscience topics do you feel students need supplemental instruction? Where do students come up against quantitative topics that make them drop the class or perform poorly? Would you be willing to review or help us to test these modules in your class?
Sabri, Bushra; Huerta, Julia; Alexander, Kamila A.; St.Vil, Noelle M.; Campbell, Jacquelyn C.; Callwood, Gloria B.
2016-01-01
Objective This study examined knowledge, access, utilization, and barriers to use of resources among Black women exposed to multiple types of intimate partner violence in Baltimore, Maryland and the U.S. Virgin Islands (USVI). Methods We analyzed quantitative survey data collected by 163 women recruited from primary care, prenatal or family planning clinics in Baltimore and the USVI. In addition we analyzed qualitative data from in-depth interviews with 11 women. Quantitative data were analyzed using descriptive statistics and qualitative data were analyzed using thematic analysis. Results A substantial proportion of Black women with multiple types of violence experiences lacked knowledge of, did not have access to, and did not use resources. Barriers to resource use were identified at the individual, relationship, and community levels. Conclusion There is need for programs to develop awareness, promote access and utilization of resources, and eliminate barriers to resource use among abused Black women. PMID:26548679
Translating the Science of Measuring Ecosystems at a National Scale: NEON's Online Learning Portal
NASA Astrophysics Data System (ADS)
Wasser, L. A.
2015-12-01
"Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will collect data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, working with big data is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data take time and resources to learn. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, resources that support learning these concepts and approaches, are distributed widely across multiple online spaces and may take time to find. This presentation will overview the development of NEON's collaborative University-focused online education portal. It will also cover content testing, community feedback and results from workshops using online content. Portal content is hosted in github to facilitate community input, accessibility version control. Content includes 1) videos and supporting graphics that explain key concepts related to NEON and related big spatio-temporal and 2) data tutorials that include subsets of spatio-temporal data that can be used to learn key big data skills in a self-paced approach, or that can be used as a teaching tool in the classroom or in a workshop. All resources utilize free and open data processing, visualization and analysis tools, techniques and scripts. All NEON materials are being developed in collaboration with the scientific community and are being tested via in-person workshops. Visit the portal online: www.neondataskills.org.
Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas
2014-01-01
Summary Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students’ understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference. PMID:25419016
Kibbe, Warren A; Arze, Cesar; Felix, Victor; Mitraka, Elvira; Bolton, Evan; Fu, Gang; Mungall, Christopher J; Binder, Janos X; Malone, James; Vasant, Drashtti; Parkinson, Helen; Schriml, Lynn M
2015-01-01
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years. These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. This will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kibbe, Warren A.; Arze, Cesar; Felix, Victor; ...
2014-10-27
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years.more » These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. In conclusion, this will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning.« less
Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas
2013-01-01
Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kibbe, Warren A.; Arze, Cesar; Felix, Victor
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years.more » These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. In conclusion, this will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning.« less
Transfer of adapted water supply technologies through a demonstration and teaching facility
NASA Astrophysics Data System (ADS)
Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.
2016-09-01
Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the University Gadjah Mada (UGM), Yogyakarta, Indonesia, is the content of this present paper.
The internet and the physician-patient relationship.
Sechrest, Randale C
2010-10-01
Since the emergence of the public Internet in the early 1990s, the healthcare industry has been struggling to understand how best to utilize this resource. During the last decade there has been an increase in both the interest and participation by healthcare providers in the Internet space, but many observers continue to push for more development of healthcare resources to better support the provider-patient relationship. This paper will review the historical development of the Internet, the core concepts that have driven the emergence and evolution of the Internet as a mass medium of information exchange, and how the healthcare industry can harness the Internet to improve the provider patient relationship. WHERE ARE WE NOW?: The healthcare industry continues to lag behind other industries that have been transformed by the Internet. Numerous industries including travel, real estate, retail sales, and banking have migrated both comprehensive information resources and transactions to the Internet in order to improve efficiency and customer satisfaction. That same process is occurring now in the healthcare industry. Credible and comprehensive Information resources are beginning to mature. Transactions are still in their infancy, reflecting a continued concern about privacy and security. WHERE DO WE NEED TO GO?: We need to improve information resources to educate and inform patients. Improving the availability and credibility of information resources will empower patients to make better healthcare decisions and I contend will ultimately reduce the cost of delivering care. HOW DO WE GET THERE?: Orthopaedists must first recognize the value of information resources to the patient. Effective communication with patients is a critical component of providing healthcare services. All healthcare providers should reflect on the importance of developing an effective communications strategy for their own practice and consider the benefits of participating in efforts by professional organizations to improve existing information resources.
Sun, Lijun; Wang, Fang; Liu, An; Xin, Ruolei; Zhu, Yunxia; Li, Jianwei; Shao, Ying; Ye, Jiangzhu; Chen, Danqing; Li, Zaicun
2015-01-01
Many HIV serodiscordant couples have a strong desire to have their own biological children. Natural conception may be the only choice in some resource limited settings but data about natural conception is limited. Here, we reported our findings of natural conception in HIV serodiscordant couples. Between January 2008 and June 2014, we retrospectively collected data on 91 HIV serodiscordant couples presenting to Beijing Youan Hospital with childbearing desires. HIV counseling, effective ART on HIV infected partners, pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) in negative female partners and timed intercourse were used to maximally reduce the risk of HIV transmission. Of the 91 HIV serodiscordant couples, 43 were positive in male partners and 48 were positive in female partners. There were 196 unprotected vaginal intercourses, 100 natural conception and 97 newborns. There were no cases of HIV seroconversion in uninfected sexual partners. Natural conception may be an acceptable option in HIV-serodiscordant couples in resource limited settings if HIV-positive individuals have undetectable viremia on HAART, combined with HIV counseling, PrEP, PEP and timed intercourse.
2006-06-01
Integrated Corrective Spectacles (OPTICS) concepts . The aim of the OPTICS project is to develop an integrated set of corrective eyewear inserts that...months, three different OPTICS concepts were designed, developed and delivered to DCIEM. An iterative design approach with user feedback was utilized...Each concept employed a different approach for meeting the aims of the device; Concept 0 utilized a Commercial Off the Shelf sports-style
18 CFR 401.2 - Concept of the plan.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of the plan. 401.2 Section 401.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... changing conditions, research results and new technology. The degree of detail described in particular...
Evidence-Based and Best Practice Addiction Treatment Resources: A Primer for Librarians.
ERIC Educational Resources Information Center
Lacroix, Sheila I.
2002-01-01
Introduces concepts, such as evidence-based medicine and best practices, explores these concepts in terms of addiction treatment, discusses practice guidelines, offers suggestions to find and select science-based resources, and explores the librarian's or information specialist's role in the dissemination of this information. (LRW)
IT Professionals' Competences: High School Students' Views
ERIC Educational Resources Information Center
Garcia-Crespo, Angel; Colomo-Palacios, Ricardo; Gomez-Berbis, Juan Miguel; Tovar-Caro, Edmundo
2009-01-01
During last few years, the competential paradigm has become a standard for modern Human Resources Management. The importance and the impact of this concept have led higher education institutions to adopt this concept in the definition of educational resources. In this scenario, knowing which competencies and characteristics define professionals in…
On the management and processing of earth resources information
NASA Technical Reports Server (NTRS)
Skinner, C. W.; Gonzalez, R. C.
1973-01-01
The basic concepts of a recently completed large-scale earth resources information system plan are reported. Attention is focused throughout the paper on the information management and processing requirements. After the development of the principal system concepts, a model system for implementation at the state level is discussed.
Evolution of specialization in resource utilization in structured metapopulations.
Nurmi, Tuomas; Geritz, Stefan; Parvinen, Kalle; Gyllenberg, Mats
2008-07-01
We study the evolution of resource utilization in a structured discrete-time metapopulation model with an infinite number of patches, prone to local catastrophes. The consumer faces a trade-off in the abilities to consume two resources available in different amounts in each patch. We analyse how the evolution of specialization in the utilization of the resources is affected by different ecological factors: migration, local growth, local catastrophes, forms of the trade-off and distribution of the resources in the patches. Our modelling approach offers a natural way to include more than two patch types into the models. This has not been usually possible in the previous spatially heterogeneous models focusing on the evolution of specialization.
NASA Astrophysics Data System (ADS)
Qiong, Wu; Yali, Wang
2018-05-01
With the proposal of the "Belt and Road Initiatives for Science and Technology Innovation" in May 2017, science and technology resources show great value in many areas along the Belt and Road. It is necessary to correctly describe the status and analyze utilization efficiency of science and technology resources in a region, then scientific suggestions for improvement can be put forward.This article choose Guangdong province and Jiangsu province as comparative objects,which are important areas along the Belt and Road.After collecting data from 2002 to 2013, this paper analyze the efficiency of input and output in sci-tech in these two provinces by using Data Envelopment Analysis. Problems in utilization of science and technology resources and suggestions are put forward in this paper. This article aims to offer great reference for improving the utilization of science and technology resources along the Belt and Road.
Role of genomics in promoting the utilization of plant genetic resources in genebanks
Wambugu, Peterson W; Ndjiondjop, Marie-Noelle
2018-01-01
Abstract Global efforts have seen the world’s plant genetic resources (PGRs) conserved in about 1625 germ plasm repositories. Utility of these resources is important in increasing the resilience and productivity of agricultural production systems. However, despite their importance, utility of these resources has been poor. This article reviews the real and potential application of the current advances in genomic technologies in improving the utilization of these resources. The actual and potential application of these genomic approaches in plant identification, phylogenetic analysis, analysing the genetic value of germ plasm, facilitating germ plasm selection in genebanks as well as instilling confidence in international germ plasm exchange system is discussed. We note that if genebanks are to benefit from this genomic revolution, there is need for fundamental changes in the way genebanks are managed, perceived, organized and funded. Increased collaboration between genebank managers and the user community is also recommended PMID:29688255
DOT National Transportation Integrated Search
1979-07-01
This report describes a concept for providing enhanced terminal information services (ETIS) to aircraft utilizing the ground-air-ground data link capability of the Discrete Address Beacon System (DABS). ETIS is envisioned as an eventual replacement f...
Surface and borehole neutron probes for the Construction and Resource Utilization eXplorer (CRUX)
NASA Technical Reports Server (NTRS)
Elphic, Richard C.; Hahn, Sangkoo; Lawrence, David J.; Feldman, William C.; Johnson, Jerome B.; Haldemann, Albert F. C.
2006-01-01
The Construction and Resource Utilization eXplorer (CRUX) project aims to develop an integrated, flexible suite of instruments with data fusion software and an executive controller for the purpose of in situ resource assessment and characterization for future space exploration.
1986-01-01
but is intended to I r Ii m provide a basic understanding of essentilal real estate I investment concepts. I l! I I 11 I I I ! I I I~i lllm m I...3,100 Utilities - Electric 5,000 Utilities - Water 15,000 Utilities - Gas/ Oil 1,200 Total Expenses $137,700 [ Net Operating Income $273,343 59 Figure
Henneman, Philip L; Nathanson, Brian H; Ribeiro, Kara; Balasubramanian, Hari
2014-10-01
To determine how age and gender impact resource utilization and profitability in patients seen and released from an Emergency Department (ED). Billing data for patients seen and released from an Emergency Department (ED) with >100,000 annual visits between 2003 and 2009 were collected. Resource utilization was measured by length of stay (placement in ED bed to leaving the bed) and direct clinical costs (e.g., ED nursing salary and benefits, pharmacy and supply costs, etc.) estimated using relative value unit cost accounting. The primary outcome of profitability was defined as contribution margin per hour. A patient's contribution margin by insurance type (excluding self-pay) was determined by subtracting direct clinical costs from facility contractual revenue. Results are expressed as medians and US dollars. In 523 882 outpatient ED encounters, as patients' aged, length of stay and direct clinical cost increased while the contribution margin and contribution margin by hour decreased. Women of childbearing age (15-44) had higher median length of stay (2.1 hours), direct clinical cost ($149), and contribution margin per hour ($103/hour) than men of same age (1.7, $131, $85/hour, respectively). Resource utilization and profitability by gender were similar in children and adults over 45. Resource utilization increased and profitability decreased with increasing age in patients seen and released from an ED. The care of women of childbearing age resulted in higher resource utilization and higher profitability than men of the same age. No differences in resource utilization or profitability by gender were observed in children and adults over 45. Copyright © 2014 Elsevier Inc. All rights reserved.
Working memory management and predicted utility
Chatham, Christopher H.; Badre, David
2013-01-01
Given the limited capacity of working memory (WM), its resources should be allocated strategically. One strategy is filtering, whereby access to WM is granted preferentially to items with the greatest utility. However, reallocation of WM resources might be required if the utility of maintained information subsequently declines. Here, we present behavioral, computational, and neuroimaging evidence that human participants track changes in the predicted utility of information in WM. First, participants demonstrated behavioral costs when the utility of items already maintained in WM declined and resources should be reallocated. An adapted Q-learning model indicated that these costs scaled with the historical utility of individual items. Finally, model-based neuroimaging demonstrated that frontal cortex tracked the utility of items to be maintained in WM, whereas ventral striatum tracked changes in the utility of items maintained in WM to the degree that these items are no longer useful. Our findings suggest that frontostriatal mechanisms track the utility of information in WM, and that these dynamics may predict delays in the removal of information from WM. PMID:23882196
Heart failure in primary care: co-morbidity and utilization of health care resources.
Carmona, Montserrat; García-Olmos, Luis M; García-Sagredo, Pilar; Alberquilla, Ángel; López-Rodríguez, Fernando; Pascual, Mario; Muñoz, Adolfo; Salvador, Carlos H; Monteagudo, José L; Otero-Puime, Ángel
2013-10-01
In order to ensure proper management of primary care (PC) services, the efficiency of the health professionals tasked with such services must be known. Patients with heart failure (HF) are characterized by advanced age, high co-morbidity and high resource utilization. To ascertain PC resource utilization by HF patients and variability in the management of such patients by GPs. Descriptive, cross-sectional study targeting a population attended by 129 GPs over the course of 1 year. All patients with diagnosis of HF in their clinical histories were included, classified using the Adjusted Clinical Group system and then grouped into six resource utilization bands (RUBs). Resource utilization and Efficiency Index were both calculated. One hundred per cent of patients with HF were ranked in RUBs 3, 4 and 5. The highest GP visit rate was 20 and the lowest in excess of 10 visits per year. Prescription drug costs for these patients ranged from €885 to €1422 per patient per year. Health professional efficiency varied notably, even after adjustment for co-morbidity (Efficiency Index Variation Ratio of 28.27 for visits and 404.29 for prescription drug cost). Patients with HF register a high utilization of resources, and there is great variability in the management of such patients by health professionals, which cannot be accounted for by the degree of case complexity.
Why Should I Use University Library Website Resources? Discipline Differences
ERIC Educational Resources Information Center
Kim, Yong-Mi
2011-01-01
Users across academic disciplines utilize different information sources based on the resource's usefulness and relevance. This study's findings show that users from arts and sciences disciplines are much more likely to utilize university library website resources and printed materials than business users who heavily rely on commercial websites.…
Ethnic Resources Utilization of Korean Immigrant Entrepreneurs in the Chicago Minority Area.
ERIC Educational Resources Information Center
Kim, Kwang Chung; Hurh, Won Moo
1985-01-01
Korean entrepreneurs rely heavily on their ethnic resources for both business formation and operation. While such resource utilization facilitates immigrants' business entry and gives them competitive advantage in the general marketplace, the same mechanism poses the problems of entra-ethnic business competition and precarious position as a…
44 CFR 206.34 - Request for utilization of Department of Defense (DOD) resources.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Department of Defense (DOD) resources. 206.34 Section 206.34 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The Declaration Process § 206.34 Request for utilization of Department of Defense (DOD) resources. (a...
44 CFR 206.34 - Request for utilization of Department of Defense (DOD) resources.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Department of Defense (DOD) resources. 206.34 Section 206.34 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The Declaration Process § 206.34 Request for utilization of Department of Defense (DOD) resources. (a...
44 CFR 206.34 - Request for utilization of Department of Defense (DOD) resources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Department of Defense (DOD) resources. 206.34 Section 206.34 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The Declaration Process § 206.34 Request for utilization of Department of Defense (DOD) resources. (a...
44 CFR 206.34 - Request for utilization of Department of Defense (DOD) resources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Department of Defense (DOD) resources. 206.34 Section 206.34 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The Declaration Process § 206.34 Request for utilization of Department of Defense (DOD) resources. (a...
44 CFR 206.34 - Request for utilization of Department of Defense (DOD) resources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Department of Defense (DOD) resources. 206.34 Section 206.34 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE The Declaration Process § 206.34 Request for utilization of Department of Defense (DOD) resources. (a...
Kant goes fishing: Kant and the right to property in environmental resources.
Breitenbach, Angela
2005-09-01
We can observe a connection between some serious environmental problems caused by the overexploitation of environmental resources and the particular conceptions of property rights that are claimed to hold with regard to these resources. In this paper, I investigate whether Kant's conception of property rights might constitute a basis for justifying property regimes that would overcome some of these environmental problems. Kant's argument for the right to property, put forward in his Doctrine of right, is complex. In Section , I attempt an interpretation. Section works out the defining characteristics of the conception of property rights that Kant's argument establishes and investigates their implications for determining property regimes in environmental resources. Kant proposes a minimalist notion of the right to property as a triadic relation between persons with regard to an object, justified only on the condition that it is universalizable in the given circumstances. I argue that this notion offers a promising account for determining property relations with regard to environmental resources. By way of illustration, in Section , I focus on an example of Kantian property rights in one type of environmental resource: the marine fisheries.
Association of unit size, resource utilization and occupancy with outcomes of preterm infants.
Shah, P S; Mirea, L; Ng, E; Solimano, A; Lee, S K
2015-07-01
Assess association of NICU size, and occupancy rate and resource utilization at admission with neonatal outcome. Retrospective cohort study of 9978 infants born at 23-32 weeks gestation and admitted to 23 tertiary-level Canadian NICUs during 2010-2012. Adjusted odds ratios (AOR) were estimated for a composite outcome of mortality/any major morbidity with respect to NICU size, occupancy rate and intensity of resource utilization at admission. A total of 2889 (29%) infants developed the composite outcome, the odds of which were higher for 16-29, 30-36 and >36-bed NICUs compared with <16-bed NICUs (AOR (95% CI): 1.47 (1.25-1.73); 1.49 (1.25-1.78); 1.55 (1.29-1.87), respectively) and for NICUs with higher resource utilization at admission (AOR: 1.30 (1.08-1.56), Q4 vs Q1) but not different according to NICU occupancy. Larger NICUs and more intense resource utilization at admission are associated with higher odds of a composite adverse outcome in very preterm infants.
Sun, Jian; Luo, Hongye
2017-07-14
China is faced with a daunting challenge to equality and efficiency in health resources allocation and health services utilization in the context of rapid economic growth. This study sought to evaluate the equality and efficiency of health resources allocation and health services utilization in China. Demographic, economic, and geographic area data was sourced from China Statistical Yearbook 2012-2016. Data related to health resources and health services was obtained from China Health Statistics Yearbook 2012-2016. Furthermore, we evaluated the equality of health resources allocation based on Gini coefficient. Concentration index was used to measure the equality in utilization of health services. Data envelopment analysis (DEA) was employed to assess the efficiency of health resources allocation. From 2011 to 2015, the Gini coefficients for health resources by population ranged between 0.0644 and 0.1879, while the Gini coefficients for the resources by geographic area ranged from 0.6136 to 0.6568. Meanwhile, the concentration index values for health services utilization ranged from -0.0392 to 0.2110. Moreover, in 2015, 10 provinces (32.26%) were relatively efficient in terms of health resources allocation, while 7 provinces (22.58%) and 14 provinces (45.16%) were weakly efficient and inefficient, respectively. There exist distinct regional disparities in the distribution of health resources in China, which are mainly reflected in the geographic distribution of health resources. Furthermore, the people living in the eastern developed areas are more likely to use outpatient care, while the people living in western underdeveloped areas are more likely to use inpatient care. Moreover, the efficiency of health resources allocation in 21 provinces (67.74%) of China was low and needs to be improved. Thus, the government should pay more attention to the equality based on geographic area, guide patients to choose medical treatment rationally, and optimize the resource investments for different provinces.
New concept of aging care architecture landscape design based on sustainable development
NASA Astrophysics Data System (ADS)
Xu, Ying
2017-05-01
As the aging problem becoming serious in China, Aging care is now one of the top issuer in front of all of us. Lots of private and public aging care architecture and facilities have been built. At present, we only pay attention to the architecture design and interior design scientific, ecological and sustainable design on aged care architecture landscape. Based on the social economy, population resources, mutual coordination and development of the environment, taking the elderly as the special group, this paper follows the principles of the sustainable development, conducts the comprehensive design planning of aged care landscape architecture and makes a deeper understanding and exploration through changing the form of architectural space, ecological landscape planting, new materials and technology, ecological energy utilization.
Evaluation of electrical power alternatives for the Pacific Northwest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This study evaluates the concept of implementation of large-scale energy conservation to reduce end-use demand for electrical energy as an alternative to the need for continued construction of new power plants to meet projected energy requirements for the Pacific Northwest. In particular, the numerical accuracy, economic feasibility, and institutional impact of a conservation-oriented scenario developed by the Natural Resources Defense Council, Inc., is assessed, relative to the energy forecast prepared by the Pacific Northwest Utilities Conference Commission. The results of this study are presented in four detailed sections following an introductory and summary section: Reconstruction and Numerical Evaluation of Alternativemore » Scenario; Economic Analysis; Institutional Impact; and Impact of New National Energy Policy.« less
Low Head, Vortex Induced Vibrations River Energy Converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernitsas, Michael B.; Dritz, Tad
2006-06-30
Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing andmore » utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.« less
The Bobath concept in contemporary clinical practice.
Graham, Julie Vaughan; Eustace, Catherine; Brock, Kim; Swain, Elizabeth; Irwin-Carruthers, Sheena
2009-01-01
Future development in neurorehabilitation depends upon bringing together the endeavors of basic science and clinical practice. The Bobath concept is widely utilized in rehabilitation following stroke and other neurological conditions. This concept was first developed in the 1950s, based on the neuroscience knowledge of those times. The theoretical basis of the Bobath concept is redefined based on contemporary neuroscience and rehabilitation science. The framework utilized in the Bobath concept for the analysis of movement and movement dysfunction is described. This framework focuses on postural control for task performance, the ability to move selectively, the ability to produce coordinated sequences of movement and vary movement patterns to fit a task, and the role of sensory input in motor behaviour and learning. The article describes aspects of clinical practice that differentiate this approach from other models of practice. Contemporary practice in the Bobath concept utilizes a problem-solving approach to the individual's clinical presentation and personal goals. Treatment is focused toward remediation, where possible, and guiding the individual towards efficient movement strategies for task performance. The aim of this article is to provide a theoretical framework on which future research into the Bobath concept can be based.
Semantic Mappings and Locality of Nursing Diagnostic Concepts in UMLS
Kim, Tae Youn; Coenen, Amy; Hardiker, Nicholas
2011-01-01
One solution for enhancing the interoperability between nursing information systems, given the availability of multiple nursing terminologies, is to cross-map existing nursing concepts. The Unified Medical Language System (UMLS) developed and distributed by the National Library of Medicine (NLM) is a knowledge resource containing cross-mappings of various terminologies in a unified framework. While the knowledge resource has been available for the last two decades, little research on the representation of nursing terminologies in UMLS has been conducted. As a first step, UMLS semantic mappings and concept locality were examined for nursing diagnostic concepts or problems selected from three terminologies (i.e., CCC, ICNP, and NANDA-I) along with corresponding SNOMED CT concepts. The evaluation of UMLS semantic mappings was conducted by measuring the proportion of concordance between UMLS and human expert mappings. The semantic locality of nursing diagnostic concepts was assessed by examining the associations of select concepts and the placement of the nursing concepts on the Semantic Network and Group. The study found that the UMLS mappings of CCC and NANDA-I concepts to SNOMED CT were highly concordant to expert mappings. The level of concordance in mappings of ICNP to SNOMED CT, CCC and NANDA-I within UMLS was relatively low, indicating the need for further research and development. Likewise, the semantic locality of ICNP concepts could be further improved. Various stakeholders need to collaborate to enhance the NLM knowledge resource and the interoperability of nursing data within the discipline as well as across health-related disciplines. PMID:21951759
Accounting utility for determining individual usage of production level software systems
NASA Technical Reports Server (NTRS)
Garber, S. C.
1984-01-01
An accounting package was developed which determines the computer resources utilized by a user during the execution of a particular program and updates a file containing accumulated resource totals. The accounting package is divided into two separate programs. The first program determines the total amount of computer resources utilized by a user during the execution of a particular program. The second program uses these totals to update a file containing accumulated totals of computer resources utilized by a user for a particular program. This package is useful to those persons who have several other users continually accessing and running programs from their accounts. The package provides the ability to determine which users are accessing and running specified programs along with their total level of usage.
Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2010-01-01
The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. The concept of lunar ISRU has been considered and studied for decades, and scientists and engineers were theorizing and even testing concepts for how to extract oxygen from lunar soil even before the Apollo 11 mission to the Moon. There are four main areas where ISRU can significantly impact how human missions to the Moon will be performed: mission consumable production, civil engineering and construction, energy production, storage, and transfer, and manufacturing and repair. The area that has the greatest impact on mission mass, hardware design and selection, and mission architecture is mission consumable production, in particular, the ability to make propellants, life support consumables, and fuel cell reagents. Mission consumable production allows for refueling and reuse of spacecraft, increasing power production and storage, and increased capabilities and failure tolerance for crew life support. The other three areas allow for decreased mission risk due to radiation and plume damage, alternative power systems, and failure recover capabilities while also enabling infrastructure growth over Earth delivered assets. However, while lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. The first step is to understand the resources available through orbital and surface exploration missions. Resources of particular interest are hydrogen, hydroxyl, water, and other polar volatile resources recently measured by Chandrayaan, Lunar Reconnaissance Orbiter (LRO), and the Lunar Crater Observation and Sensing Satellite (LCROSS). The second step is to demonstrate critical aspects of ISRU systems to prove ISRU is feasible under lunar environmental and resource conditions (ex. subscale oxygen extraction from regolith). The third step is to perform integrated missions with ISRU and other connected systems, such as power, consumable storage, surface mobility, and life support at a relevant mission scale to demonstrate ISRU capabilities as well as the critical interfaces with other exploration systems. If possible, the mission should demonstrate the use of ISRU products (ex. in a rocket engine or fuel cell). This dress rehearsal mission would be the final step before full implementation of ISRU into human missions, and may be performed during human lunar exploration activities. This stepwise approach is the most conservative approach, and may only be possible with international cooperation due to the limited number of robotic missions each nation/space agency can perform within their budget.
Concepts and Principles for State-Level Higher Education Budgeting. ASHE 1984 Annual Meeting Paper.
ERIC Educational Resources Information Center
Jones, Dennis P.
Basic concepts concerning state-level resource allocation to higher education are discussed. Attention is directed to principles of budgeting regardless of context, the pluralistic nature of higher education, characteristics of higher education production functions, and the typical form of the budget. In addition to the distribution of resources,…
The Child: Concepts of Self. A Resource Kit.
ERIC Educational Resources Information Center
J.B. Speed Art Museum, Louisville, KY.
This resource kit endeavors to help educators focus on particular aspects of the development of a child's self-concept by using selected artworks from the J. B. Speed Art Museum (Kentucky) collection as a starting point for discussion and examination of child development. Young people will explore the experiences that will affect future choices…
Self-Concepts, Locus of Control and Performance Expectations of Learning Disabled Children.
ERIC Educational Resources Information Center
Rogers, H.; Saklofski, D. H.
1985-01-01
Compared to 45 normally achieving students, 45 learning disabled six- to 12-year-olds had lower self-concepts, more external locus of control orientations, and lower performance expectations. Children new to the resource room had higher expectations for future success than Ss with experience in the resource room. (CL)
A Review of Extra-Terrestrial Mining Robot Concepts
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Van Susante, Paul J.
2011-01-01
Outer space contains a vast amount of resources that offer virtually unlimited wealth to the humans that can access and use them for commercial purposes. One of the key technologies for harvesting these resources is robotic mining of regolith, minerals, ices and metals. The harsh environment and vast distances create challenges that are handled best by robotic machines working in collaboration with human explorers. Humans will benefit from the resources that will be mined by robots. They will visit outposts and mining camps as required for exploration, commerce and scientific research, but a continuous presence is most likely to be provided by robotic mining machines that are remotely controlled by humans. There have been a variety of extra-terrestrial robotic mining concepts proposed over the last 100 years and this paper will attempt to summarize and review concepts in the public domain (government, industry and academia) to serve as an informational resource for future mining robot developers and operators. The challenges associated with these concepts will be discussed and feasibility will be assessed. Future needs associated with commercial efforts will also be investigated.
A Review of Extra-Terrestrial Mining Concepts
NASA Technical Reports Server (NTRS)
Mueller, R. P.; van Susante, P. J.
2012-01-01
Outer space contains a vast amount of resources that offer virtually unlimited wealth to the humans that can access and use them for commercial purposes. One of the key technologies for harvesting these resources is robotic mining of regolith, minerals, ices and metals. The harsh environment and vast distances create challenges that are handled best by robotic machines working in collaboration with human explorers. Humans will benefit from the resources that will be mined by robots. They will visit outposts and mining camps as required for exploration, commerce and scientific research, but a continuous presence is most likely to be provided by robotic mining machines that are remotely controlled by humans. There have been a variety of extra-terrestrial robotic mining concepts proposed over the last 40 years and this paper will attempt to summarize and review concepts in the public domain (government, industry and academia) to serve as an informational resource for future mining robot developers and operators. The challenges associated with these concepts will be discussed and feasibility will be assessed. Future needs associated with commercial efforts will also be investigated.
Sharma, Deepak; Bilotta, Federico; Moore, Laurel E; Bebawy, John F; Flexman, Alana M; Rochlen, Lauryn; Gorji, Reza; Avitsian, Rafi
2014-01-01
Web-based delivery of educational material by scientific societies appears to have increased recently. However, the utilization of such efforts by the members of professional societies is unknown. We report the experience with delivery of educational resources on the Web site of the Society for Neuroscience in Anesthesiology and Critical Care (SNACC), and utilization of those resources by members. Three web-based educational initiatives were developed over 1 year to be disseminated through the SNACC Web site (http://www.snacc.org) for society members: (1) The SNACC Bibliography; (2) "Chat with the Author"; and (3) Clinical Case Discussions. Content experts and authors of important new research publications were invited to contribute. Member utilization data were abstracted with the help of the webmaster. For the bibliography, there were 1175 page requests during the 6-month period after its launch by 122/664 (19%) distinct SNACC members. The bibliography was utilized by 107/553 (19%) of the active members and 15/91 (16.5%) of the trainee members. The "Chats with the Authors" were viewed by 56 (9%) members and the Clinical Case Discussions by 51 (8%) members. Educational resources can be developed in a timely manner utilizing member contributions without additional financial implications. However, the member utilization of these resources was lower than expected. These are first estimates of utilization of web-based educational resources by members of a scientific society. Further evaluation of such utilization by members of other societies as well as measures of the effectiveness and impact of such activities is needed.
Hu, Zhongkai; Hao, Shiying; Jin, Bo; Shin, Andrew Young; Zhu, Chunqing; Huang, Min; Wang, Yue; Zheng, Le; Dai, Dorothy; Culver, Devore S; Alfreds, Shaun T; Rogow, Todd; Stearns, Frank; Sylvester, Karl G; Widen, Eric; Ling, Xuefeng
2015-09-22
The increasing rate of health care expenditures in the United States has placed a significant burden on the nation's economy. Predicting future health care utilization of patients can provide useful information to better understand and manage overall health care deliveries and clinical resource allocation. This study developed an electronic medical record (EMR)-based online risk model predictive of resource utilization for patients in Maine in the next 6 months across all payers, all diseases, and all demographic groups. In the HealthInfoNet, Maine's health information exchange (HIE), a retrospective cohort of 1,273,114 patients was constructed with the preceding 12-month EMR. Each patient's next 6-month (between January 1, 2013 and June 30, 2013) health care resource utilization was retrospectively scored ranging from 0 to 100 and a decision tree-based predictive model was developed. Our model was later integrated in the Maine HIE population exploration system to allow a prospective validation analysis of 1,358,153 patients by forecasting their next 6-month risk of resource utilization between July 1, 2013 and December 31, 2013. Prospectively predicted risks, on either an individual level or a population (per 1000 patients) level, were consistent with the next 6-month resource utilization distributions and the clinical patterns at the population level. Results demonstrated the strong correlation between its care resource utilization and our risk scores, supporting the effectiveness of our model. With the online population risk monitoring enterprise dashboards, the effectiveness of the predictive algorithm has been validated by clinicians and caregivers in the State of Maine. The model and associated online applications were designed for tracking the evolving nature of total population risk, in a longitudinal manner, for health care resource utilization. It will enable more effective care management strategies driving improved patient outcomes.
Hu, Zhongkai; Hao, Shiying; Jin, Bo; Shin, Andrew Young; Zhu, Chunqing; Huang, Min; Wang, Yue; Zheng, Le; Dai, Dorothy; Culver, Devore S; Alfreds, Shaun T; Rogow, Todd; Stearns, Frank
2015-01-01
Background The increasing rate of health care expenditures in the United States has placed a significant burden on the nation’s economy. Predicting future health care utilization of patients can provide useful information to better understand and manage overall health care deliveries and clinical resource allocation. Objective This study developed an electronic medical record (EMR)-based online risk model predictive of resource utilization for patients in Maine in the next 6 months across all payers, all diseases, and all demographic groups. Methods In the HealthInfoNet, Maine’s health information exchange (HIE), a retrospective cohort of 1,273,114 patients was constructed with the preceding 12-month EMR. Each patient’s next 6-month (between January 1, 2013 and June 30, 2013) health care resource utilization was retrospectively scored ranging from 0 to 100 and a decision tree–based predictive model was developed. Our model was later integrated in the Maine HIE population exploration system to allow a prospective validation analysis of 1,358,153 patients by forecasting their next 6-month risk of resource utilization between July 1, 2013 and December 31, 2013. Results Prospectively predicted risks, on either an individual level or a population (per 1000 patients) level, were consistent with the next 6-month resource utilization distributions and the clinical patterns at the population level. Results demonstrated the strong correlation between its care resource utilization and our risk scores, supporting the effectiveness of our model. With the online population risk monitoring enterprise dashboards, the effectiveness of the predictive algorithm has been validated by clinicians and caregivers in the State of Maine. Conclusions The model and associated online applications were designed for tracking the evolving nature of total population risk, in a longitudinal manner, for health care resource utilization. It will enable more effective care management strategies driving improved patient outcomes. PMID:26395541
NASA Space Engineering Research Center for utilization of local planetary resources
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Lewis, John S.
1990-01-01
The University of Arizona and NASA have joined to form the UA/NASA Space Engineering Research Center. The purpose of the Center is to discover, characterize, extract, process, and fabricate useful products from the extraterrestrial resources available in the inner solar system (the moon, Mars, and nearby asteroids). Individual progress reports covering the center's research projects are presented and emphasis is placed on the following topics: propellant production, oxygen production, ilmenite, lunar resources, asteroid resources, Mars resources, space-based materials processing, extraterrestrial construction materials processing, resource discovery and characterization, mission planning, and resource utilization.
NASA Technical Reports Server (NTRS)
Grimaldi, Rebecca; Horvath, Tim; Morris, Denise; Willis, Emily; Stacy, Lamar; Shell, Mike; Faust, Mark; Norwood, Jason
2011-01-01
Payload science operations on the International Space Station (ISS) have been conducted continuously twenty-four hours per day, 365 days a year beginning February, 2001 and continuing through present day. The Payload Operations Integration Center (POIC), located at the Marshall Space Flight Center in Huntsville, Alabama, has been a leader in integrating and managing NASA distributed payload operations. The ability to conduct science operations is a delicate balance of crew time, onboard vehicle resources, hardware up-mass to the vehicle, and ground based flight control team manpower. Over the span of the last ten years, the POIC flight control team size, function, and structure has been modified several times commensurate with the capabilities and limitations of the ISS program. As the ISS vehicle has been expanded and its systems changed throughout the assembly process, the resources available to conduct science and research have also changed. Likewise, as ISS program financial resources have demanded more efficiency from organizations across the program, utilization organizations have also had to adjust their functionality and structure to adapt accordingly. The POIC has responded to these often difficult challenges by adapting our team concept to maximize science research return within the utilization allocations and vehicle limitations that existed at the time. In some cases, the ISS and systems limitations became the limiting factor in conducting science. In other cases, the POIC structure and flight control team size were the limiting factors, so other constraints had to be put into place to assure successful science operations within the capabilities of the POIC. This paper will present the POIC flight control team organizational changes responding to significant events of the ISS and Shuttle programs.
Research on Utilization of Geo-Energy
NASA Astrophysics Data System (ADS)
Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group
2013-04-01
The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field of growing economic and ecologic relevance.
MROrchestrator: A Fine-Grained Resource Orchestration Framework for MapReduce Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Bikash; Prabhakar, Ramya; Kandemir, Mahmut
2012-01-01
Efficient resource management in data centers and clouds running large distributed data processing frameworks like MapReduce is crucial for enhancing the performance of hosted applications and boosting resource utilization. However, existing resource scheduling schemes in Hadoop MapReduce allocate resources at the granularity of fixed-size, static portions of nodes, called slots. In this work, we show that MapReduce jobs have widely varying demands for multiple resources, making the static and fixed-size slot-level resource allocation a poor choice both from the performance and resource utilization standpoints. Furthermore, lack of co-ordination in the management of mul- tiple resources across nodes prevents dynamic slotmore » reconfigura- tion, and leads to resource contention. Motivated by this, we propose MROrchestrator, a MapReduce resource Orchestrator framework, which can dynamically identify resource bottlenecks, and resolve them through fine-grained, co-ordinated, and on- demand resource allocations. We have implemented MROrches- trator on two 24-node native and virtualized Hadoop clusters. Experimental results with a suite of representative MapReduce benchmarks demonstrate up to 38% reduction in job completion times, and up to 25% increase in resource utilization. We further show how popular resource managers like NGM and Mesos when augmented with MROrchestrator can hike up their performance.« less
Personalized-detailed clinical model for data interoperability among clinical standards.
Khan, Wajahat Ali; Hussain, Maqbool; Afzal, Muhammad; Amin, Muhammad Bilal; Saleem, Muhammad Aamir; Lee, Sungyoung
2013-08-01
Data interoperability among health information exchange (HIE) systems is a major concern for healthcare practitioners to enable provisioning of telemedicine-related services. Heterogeneity exists in these systems not only at the data level but also among different heterogeneous healthcare standards with which these are compliant. The relationship between healthcare organization data and different heterogeneous standards is necessary to achieve the goal of data level interoperability. We propose a personalized-detailed clinical model (P-DCM) approach for the generation of customized mappings that creates the necessary linkage between organization-conformed healthcare standards concepts and clinical model concepts to ensure data interoperability among HIE systems. We consider electronic health record (EHR) standards, openEHR, and HL7 CDA instances transformation using P-DCM. P-DCM concepts associated with openEHR and HL7 CDA help in transformation of instances among these standards. We investigated two datasets: (1) data of 100 diabetic patients, including 50 each of type 1 and type 2, from a local hospital in Korea and (2) data of a single Alzheimer's disease patient. P-DCMs were created for both scenarios, which provided the basis for deriving instances for HL7 CDA and openEHR standards. For proof of concept, we present case studies of encounter information for type 2 diabetes mellitus patients and monitoring of daily routine activities of an Alzheimer's disease patient. These reflect P-DCM-based customized mappings generation with openEHR and HL7 CDA standards. Customized mappings are generated based on the relationship of P-DCM concepts with CDA and openEHR concepts. The objective of this work is to achieve semantic data interoperability among heterogeneous standards. This would lead to effective utilization of resources and allow timely information exchange among healthcare systems.
Personalized-Detailed Clinical Model for Data Interoperability Among Clinical Standards
Khan, Wajahat Ali; Hussain, Maqbool; Afzal, Muhammad; Amin, Muhammad Bilal; Saleem, Muhammad Aamir
2013-01-01
Abstract Objective: Data interoperability among health information exchange (HIE) systems is a major concern for healthcare practitioners to enable provisioning of telemedicine-related services. Heterogeneity exists in these systems not only at the data level but also among different heterogeneous healthcare standards with which these are compliant. The relationship between healthcare organization data and different heterogeneous standards is necessary to achieve the goal of data level interoperability. We propose a personalized-detailed clinical model (P-DCM) approach for the generation of customized mappings that creates the necessary linkage between organization-conformed healthcare standards concepts and clinical model concepts to ensure data interoperability among HIE systems. Materials and Methods: We consider electronic health record (EHR) standards, openEHR, and HL7 CDA instances transformation using P-DCM. P-DCM concepts associated with openEHR and HL7 CDA help in transformation of instances among these standards. We investigated two datasets: (1) data of 100 diabetic patients, including 50 each of type 1 and type 2, from a local hospital in Korea and (2) data of a single Alzheimer's disease patient. P-DCMs were created for both scenarios, which provided the basis for deriving instances for HL7 CDA and openEHR standards. Results: For proof of concept, we present case studies of encounter information for type 2 diabetes mellitus patients and monitoring of daily routine activities of an Alzheimer's disease patient. These reflect P-DCM-based customized mappings generation with openEHR and HL7 CDA standards. Customized mappings are generated based on the relationship of P-DCM concepts with CDA and openEHR concepts. Conclusions: The objective of this work is to achieve semantic data interoperability among heterogeneous standards. This would lead to effective utilization of resources and allow timely information exchange among healthcare systems. PMID:23875730
Networking Micro-Processors for Effective Computer Utilization in Nursing
Mangaroo, Jewellean; Smith, Bob; Glasser, Jay; Littell, Arthur; Saba, Virginia
1982-01-01
Networking as a social entity has important implications for maximizing computer resources for improved utilization in nursing. This paper describes the one process of networking of complementary resources at three institutions. Prairie View A&M University, Texas A&M University and the University of Texas School of Public Health, which has effected greater utilization of computers at the college. The results achieved in this project should have implications for nurses, users, and consumers in the development of computer resources.
Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base
NASA Technical Reports Server (NTRS)
Breit, Terry J.; Elliott, George
1987-01-01
The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.
Siderophilic Cyanobacteria for the Development of Extraterrestrial Photoautotrophic Biotechnologies
NASA Technical Reports Server (NTRS)
Brown, I. I.; McKay, D. S.
2010-01-01
In-situ production of consumables (mainly oxygen) using local resources (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human exploration and settlement of the solar system, starting with the Moon. With few exceptions, nearly all technologies developed to date have employed an approach based on inorganic chemistry. None of these technologies include concepts for integrating the ISRU system with a bioregenerative life support system and a food production system. Therefore, a new concept based on the cultivation of cyanobacteria (CB) in semi-closed biogeoreactor, linking ISRU, a biological life support system, and food production, has been proposed. The key feature of the biogeoreactor is to use lithotrophic CB to extract many needed elements such as Fe directly from the dissolved regolith and direct them to any technological loop at an extraterrestrial outpost. Our studies showed that siderophilic (Fe-loving) CB are capable to corrode lunar regolith stimulants because they secrete chelating agents and can tolerate [Fe] up to 1 mM. However, lunar and Martian environments are very hostile (very high UV and gamma-radiation, extreme temperatures, deficit of water). Thus, the selection of CB species with high potential for extraterrestrial biotechnologies that may be utilized in 15 years must be sponsored by NASA as soon as possible. The study of the genomes of candidate CB species and the metagenomes of the terrestrial environments which they inhabit is critical to make this decision. Here we provide preliminary results about peculiarities of the genomes of siderophilic CB revealed by analyzing the genome of siderophilic cyanobacterium JSC-1 and the metagenome of iron depositing hot spring (IDHS) Chocolate Pots (Yellowstone National Park, Wyoming, USA). It has been found that IDHS are richer with ferrous iron than the majority of hot springs around the world. Fe2+ is known to increase the magnitude of oxidative stress in prokaryotes through so called Fenton reaction. It is not surprising therefore that the CB inhabiting IDHS have larger sets of the proteins involved in the maintenance of Fe homeostasis and oxidative stress protection than non-siderophilic CB. This finding combined with our earlier results about the ability of some siderophilic CB to utilize chemical elements released from analogs of lunar and Martian regolith make them the most advanced candidates to be employed in advanced extraterrestrial biotechnologies.
Utilization potential evaluation of plant resources in the dry-hot valley of Jinsha River
NASA Astrophysics Data System (ADS)
Xi, Rong; Xu, Naizhong; Liu, Shengxiang; Ren, Tingyan
2017-08-01
Plant resources in the dry-hot valley of Jinsha River are endemic to a class of district. The article adopts the analytic hierarchy process method to evaluate the exploitation and utilization potential of plant resources of thirty typical plant resources on the basis of their characteristics in the dry-hot valley of Jinsha River, which provide scientific evidence for quantitative evaluation of regional plant resources, and we also suggest pathways offering protection and development.
NASA Technical Reports Server (NTRS)
Hausz, W.; Berkowitz, B. J.; Hare, R. C.
1978-01-01
Over forty thermal energy storage (TES) concepts gathered from the literature and personal contacts were studied for their suitability for the electric utility application of storing energy off-peak discharge during peak hours. Twelve selections were derived from the concepts for screening; they used as storage media high temperature water (HTW), hot oil, molten salts, and packed beds of solids such as rock. HTW required pressure containment by prestressed cast-iron or concrete vessels, or lined underground cavities. Both steam generation from storage and feedwater heating from storage were studied. Four choices were made for further study during the project. Economic comparison by electric utility standard cost practices, and near-term availability (low technical risk) were principal criteria but suitability for utility use, conservation potential, and environmental hazards were considered.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume a resource with known capacity and where the tasks have varying utility. We consider problems in which the resource consumption and utility of each activity is described by probability distributions. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We first show that while some of these problems are NP-complete, others are only NP-Hard. We then describe various heuristic search algorithms to solve these problems and their drawbacks. Finally, we present empirical results that characterize the behavior of these heuristics over a variety of problem classes.
Roundwood markets and utilization in West Virginia and Ohio
Shawn T. Grushecky; Jan Wiedenbeck; Ben Spong
2011-01-01
West Virginia and Ohio have similar forest resources and extensive forest-based economies. Roundwood is harvested throughout this central Appalachian region and supports a diverse primary and secondary forest products sector. The objective of this research was to investigate the utilization of the forest resource harvested in West Virginia and Ohio. Utilization and...
Effects of meteorological droughts on agricultural water resources in southern China
NASA Astrophysics Data System (ADS)
Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang
2017-05-01
With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.
Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B
2016-02-01
Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.