Science.gov

Sample records for respirable suspended particles

  1. Real-time monitoring of polycyclic aromatic hydrocarbons and respirable suspended particles from environmental tobacco smoke in a home

    SciTech Connect

    Ott, W.; Wilson, N.K.; Klepeis, N.; Switzer, P.

    1994-01-01

    Real-time measurement of polycyclic aromatic hydrocarbons (PAH) on fine particles was evaluated in a home with environmental tobacco smoke (ETS) as a source. Respirable suspended particles (RSP) were also monitored. Comparison of PAH and RSP concentrations from these experiments suggests: (1) the PAH concentrations for the two types of cigarettes--a regular Marlboro filter cigarette and a University of Kentucky reference cigarette No. 2R1--were similar, but the RSP concentrations were different; (2) concentrations from the real-time PAH monitor were linearly related to RSP concentrations; (3) the slopes of the regression lines between PAH and RSP differed for the two types of cigarettes. The real-time PAH monitor appears to be a useful tool for evaluating mathematical models to predict the concentration time series in indoor microenvironments.

  2. Assessment of environmental tobacco smoke and respirable suspended particle exposures for nonsmokers in Basel by personal monitoring

    NASA Astrophysics Data System (ADS)

    Phillips, K.; Howard, D. A.; Bentley, M. C.; Alván, G.

    One hundred and ninety-six randomly selected nonsmoking subjects collected air samples close to their breathing zone by wearing personal monitors for 24 h. The study was centred in Basel, Switzerland, and comprised housewives in one group, primarily for assessing exposures in the home, and office workers in a second group to assess the contribution of the workplace to overall exposure. Samples collected were analysed for respirable suspended particles (RSP), nicotine, 3-ethenylpyridine and environmental tobacco smoke (ETS) particles by using ultraviolet absorbance, fluorescence and solanesol measurements. Saliva cotinine analyses were also undertaken to confirm the nonsmoking status of the subjects. Based upon median 24 h time weighted average concentrations, office workers who live and work with smokers were exposed to 39 μg m -3 RSP, 6.6 μg m -3 ETS particles and 0.90 μg m -3 nicotine. Housewives living with smokers were exposed to median concentrations of 34 μg m -3 RSP, 1.4 μg m -3 ETS particles and 0.60 μg m -3 nicotine. Workplaces where smoking occurred were estimated, on average, to contribute between 34 and 46% to annual exposure of ETS particles and nicotine. Based upon 90th percentile values the most highly exposed housewives, those living with smokers, would potentially inhale 18 cigarette equivalents per year whilst the most highly exposed office workers, both living and working with smokers, might inhale 61 cigarette equivalents. The rate at which subjects misreported their nonsmoking status varied between 9.7 and 12.2%.

  3. Identifying dominant sources of respirable suspended particulates in Guangzhou, China

    SciTech Connect

    Song, Y.; Dai, W.; Wang, X.S.; Cui, M.M.; Su, H.; Xie, S.D.; Zhang, Y.H.

    2008-09-15

    Respirable suspended particulates (RSP, i.e., particles with an aerodynamic diameter of 10 {mu} m or less) were measured in 2004 and 2005 at seven sites in the rapidly developing Guangzhou area of China. The average RSP concentration was 126 {mu} g m{sup -3}, a high level that could be very harmful to human health. The chemical species composition of the RSP, including organic and elemental carbon, water-soluble ions, and elemental compositions, was also analyzed. The organics and sulfate may be the major components of RSP mass concentrations. Positive matrix factorization (PMF) was used to identify the sources of RSP as secondary sulfates (32%), secondary nitrates (6%), biomass burning (15%), coal fly ash/cement (18%), sea salt (3%), crustal dust (5%), vehicle exhaust (6%), and coal-fired power plants (3%). Reducing coal combustion and controlling vehicle emissions would alleviate RSP pollution, as most of the precursors were components of coal burning emissions and vehicular exhaust.

  4. Macromodel for assessing residential concentrations of combustion-generated pollutants: Model development and preliminary predictions for CO, NO/sub 2/, and respirable suspended particles

    SciTech Connect

    Traynor, G.W.; Aceti, J.C.; Apte, M.G.; Smith, B.V.; Green, L.L.; Smith-Reiser, A.; Novak, K.M.; Moses, D.O.

    1989-01-01

    A simulation model (also called a ''macromodel'') has been developed to predict residential air pollutant concentration distributions for specified populations. The model inputs include the market penetration of pollution sources, pollution source characteristics (e.g., emission rates, source usage rates), building characteristics (e.g., house volume, air exchange rates), and meteorological parameters (e.g., outside temperature). Four geographically distinct regions of the US have been modeled using Monte Carlo and deterministic simulation techniques. Single-source simulations were also conducted. The highest predicted CO and NO/sub 2/ residential concentrations were associated with the winter-time use of unvented gas and kerosene space heaters. The highest predicted respirable suspended particulate concentrations were associated with indoor cigarette smoking and the winter-time use of non-airtight wood stoves, radiant kerosene heaters, convective unvented gas space heaters, and oil forced-air furnaces. Future field studies in this area should (1) fill information gaps identified in this report, and (2) collect information on the macromodel input parameters to properly interpret the results. It is almost more important to measure the parameters that affect indoor concentration than it is to measure the concentrations themselves.

  5. Sampling of respirable isocyanate particles.

    PubMed

    Gylestam, Daniel; Gustavsson, Marcus; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2014-04-01

    An advanced design of a denuder impactor (DI) sampler has been developed for characterization of possible airborne isocyanate exposure in different particle size fractions. The sampler is equipped with 12 different parallel denuder tubes, 4 impaction stages with the cut-off values (d50) of: 9.5, 4, 2.5 and 1 µm, and an end filter that collects particles < 1 µm. All collecting parts were impregnated with di-n-butylamine DBA as the reagent in a mixture with acetic acid. The performance of the DI sampler was studied on a standard atmosphere containing gas and particulate isocyanates. The isocyanate atmosphere was generated by liquid permeation of 2,4-, 2,6-Toluene Diisocyanate (TDI), 1,6-Hexamethylene Diisocyanate (HDI) and Isophorone Diisocyanate (IPDI). 4,4'-Methylene Diphenyl Diisocyanate (MDI) particles were generated by heating of technical MDI and condensing the mixture of gas and particle-borne MDI in an atmosphere containing mixed salt particles. The study was performed in a 0.85 m3 environmental chamber with stainless steel walls. With the advancement of the DI sampler it is now possible to collect isocyanate particle samples for up to 320 min. The performance of the DI sampler is essentially unaffected by the humidity. The DI sampler and the ASSET EZ4-NCO sampler (Sigma-Aldrich/Supelco, Bellefonte, PA, USA) gave similar results. Sample losses within the DI sampler are low. In the environmental chamber it was observed that the particle distribution may be affected by the humidity and ageing. A scanning mobility particle sizer (SMPS) was used to separate a flow of selected fractions containing MDI particles from mixed MDI and salt particles. The particle-size distribution had a maximum at about 300 nm, but later in the environmental chamber 1 µm dominated. The distribution was very different as compared to with only NaCl or MDI present. The biological relevance for studying isocyanate nano particles is significant as these have the possibility to reach the

  6. Characterization of suspended particles in Everglades wetlands

    USGS Publications Warehouse

    Noe, G.B.; Harvey, J.W.; Saiers, J.E.

    2007-01-01

    We report the concentration, phosphorus (P) and nitrogen (N) content, and size and chemical fractionation of fine suspended particles (0.2-100 ??m) and colloids (3 kilodalton [kDa]-0.1 ??m) in the surface water of Everglades wetlands along regional and P-enrichment gradients. Total suspended sediment concentrations ranged from 0.7 to 2.7 mg L-1. Total particulate P concentrations increased from 0.05 ??mol L-1 to 0.31 ??mol L -1 along the P-enrichment gradient. Particles contained from 20% to 43% of total P but <12% of total N in surface water. Dissolved (<0.2 ??m) organic N contained about 90% of total N, with the 3-100-kDa colloidal size class containing the most N of any size class. The 0.45-2.7-??m size fraction held the most particulate P at all sites, whereas particulate N was most abundant in the 2.7-10-??m size class at most sites. Standard chemical fractionation of particles identified acid-hydrolyzable P as the most abundant species of particulate P, with little reactive or refractory organic P. Sequential chemical extraction revealed that about 65% of total particulate P was microbial, while about 25% was associated with humic and fulvic organic matter. The size and chemical fractionation information suggested that P-rich particles mostly consisted of suspended bacteria. Suspended particles in Everglades wetlands were small in size and had low concentrations, yet they stored a large proportion of surface-water P in intermediately reactive forms, but they held little N. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  7. Pyrogenic effect of respirable road dust particles

    NASA Astrophysics Data System (ADS)

    Jayawardena, Umesh; Tollemark, Linda; Tagesson, Christer; Leanderson, Per

    2009-02-01

    Because pyrogenic (fever-inducing) compounds on ambient particles may play an important role for particle toxicity, simple methods to measure pyrogens on particles are needed. Here we have used a modified in vitro pyrogen test (IPT) to study the release of interleukin 1β (IL-1β) in whole human blood exposed to respirable road-dust particles (RRDP). Road dusts were collected from the roadside at six different streets in three Swedish cities and particles with a diameter less than 10 μm (RRDP) were prepared by a water sedimentation procedure followed by lyophilisation. RRDP (200 μl of 1 - 106 ng/ml) were mixed with 50 μl whole blood and incubated at 37 °C overnight before IL-1β was analysed with chemiluminescence ELISA in 384-well plates. Endotoxin (lipopolysaccharide from Salmonella minnesota), zymosan B and Curdlan (P-1,3-glucan) were used as positive controls. All RRDP samples had a pyrogenic effect and the most active sample produced 1.6 times more IL-1β than the least active. This formation was of the same magnitude as in samples with 10 ng LPS/ml and was larger than that evoked by zymosan B and Curdlan (by mass basis). The method was sensitive enough to determine formation of IL-1β in mixtures with 10 ng RRDP/ml or 0.01 ng LPS/ml. The endotoxin inhibitor, polymyxin B (10 μg/ml), strongly reduced the RRDP-induced formation of IL-1β at 1μg RRDP/ml (around 80 % inhibition), but had only marginal or no effects at higher RRDP-concentrations (10 and 100 μg /ml). In summary, all RRDP tested had a clear pyrogen effect in this in vitro model. Endotoxin on the particles but also other factors contributed to the pyrogenic effect. As opposed to the limulus amebocyte lysate (LAL) assay (which measures endotoxin alone), IPT measures a broad range of pyrogens that may be present on particulate matter. The IPT method thus affords a simple, sensitive and quantitative determination of the total pyrogenic potential of ambient particles.

  8. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume

    PubMed Central

    Pesch, Beate

    2012-01-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging. PMID:22539559

  9. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging. PMID:22539559

  10. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  11. Depth-resolved particle-associated microbial respiration in the northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Belcher, Anna; Iversen, Morten; Giering, Sarah; Riou, Virginie; Henson, Stephanie A.; Berline, Leo; Guilloux, Loic; Sanders, Richard

    2016-09-01

    Atmospheric levels of carbon dioxide are tightly linked to the depth at which sinking particulate organic carbon (POC) is remineralised in the ocean. Rapid attenuation of downward POC flux typically occurs in the upper mesopelagic (top few hundred metres of the water column), with much slower loss rates deeper in the ocean. Currently, we lack understanding of the processes that drive POC attenuation, resulting in large uncertainties in the mesopelagic carbon budget. Attempts to balance the POC supply to the mesopelagic with respiration by zooplankton and microbes rarely succeed. Where a balance has been found, depth-resolved estimates reveal large compensating imbalances in the upper and lower mesopelagic. In particular, it has been suggested that respiration by free-living microbes and zooplankton in the upper mesopelagic are too low to explain the observed flux attenuation of POC within this layer. We test the hypothesis that particle-associated microbes contribute significantly to community respiration in the mesopelagic, measuring particle-associated microbial respiration of POC in the northeast Atlantic through shipboard measurements on individual marine snow aggregates collected at depth (36-500 m). We find very low rates of both absolute and carbon-specific particle-associated microbial respiration (< 3 % d-1), suggesting that this term cannot solve imbalances in the upper mesopelagic POC budget. The relative importance of particle-associated microbial respiration increases with depth, accounting for up to 33 % of POC loss in the mid-mesopelagic (128-500 m). We suggest that POC attenuation in the upper mesopelagic (36-128 m) is driven by the transformation of large, fast-sinking particles to smaller, slow-sinking and suspended particles via processes such as zooplankton fragmentation and solubilisation, and that this shift to non-sinking POC may help to explain imbalances in the mesopelagic carbon budget.

  12. System for concentrating and analyzing particles suspended in a fluid

    DOEpatents

    Fiechtner, Gregory J.; Cummings, Eric B.; Singh, Anup K.

    2011-04-26

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  13. Respirable Particle Transport from Surfaces by Shock Waves

    NASA Astrophysics Data System (ADS)

    Truman, C. R.; Vorobieff, P.; Conroy, J.; Wayne, P.; White, R.; Anderson, M.; Kumar, S.

    2011-11-01

    Resuspension of particles from planar surfaces was studied in a shock tube. Respirable particles (aerodyn. diam. <=5 μm) and slightly larger non-respirable particles were tested on smooth and rough surfaces at Mach 1.2 to 2.0. Particles of specified size were deposited on substrates of prescribed roughness. Surface roughness and particle-surface adhesion forces were quantified by atomic force microscopy. Alkylthiol self assembled monolayers (SAMs) were applied to precisely control surface roughness and surface chemistry. The advection of particles initially at rest on the surface by the rapidly accelerated flow were measured by Mie scattering. An ultra-high-speed digital camera with pulsed laser sheet illumination enables time-resolved particle transport diagnostics. Although particles are initially swept off a smooth surface with greater ease, cloud propagation speed is higher for a rough surface. At late times the cloud height is greater for a rough surface so that particles end up in a faster region of the boundary layer. Because our respirable and non-respirable particle size distributions overlap, further study is required. Shear-driven Kelvin-Helmholtz vortices clearly visible in some images likely play a prominent role in particle transport. Supported by DTRA Threat Agent Science, Agent Characterization.

  14. IUTAM symposium on hydrodynamic diffusion of suspended particles

    SciTech Connect

    Davis, R.H.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. IUTAM symposium on hydrodynamic diffusion of suspended particles

    NASA Technical Reports Server (NTRS)

    Davis, R. H. (Editor)

    1995-01-01

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Suspended Particles: Their Role in Estuarine Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Turner, A.; Millward, G. E.

    2002-12-01

    Suspended particles are instrumental in controlling the reactivity, transport and biological impacts of substances in aquatic environments, and provide a crucial link for chemical constituents between the water column, bed sediment and food chain. This article reviews the role of suspended particles in the chemical and biological cycling of trace constituents (trace metals, organo-metallic compounds and hydrophobic organic micropollutants; HOMs) in estuaries, with particular emphasis on the effects of and changes to particle reactivity and composition. The partitioning (or distribution coefficient, KD ) and bioavailability of chemical constituents, and assimilation efficiency (AE) of such by bivalve suspension feeders, are identified as key parameters requiring definition for accurate biogeochemical modelling, and the discussion centres around the determination of and controls on these parameters. Particle-water interactions encompass a variety of physical, biological, electrostatic and hydrophobic effects, and are largely dependent on the character and concentration of suspended particles and salinity. The salinity-dependence results from the competing and complexing effects of seawater ions for trace metals, and the compression of water in the presence of dissolved seawater ions and consequent salting out of neutral solute (HOMs, organo-metallic compounds and some trace metal complexes). The extent of biological solubilization of chemical constituents from suspended particles is dependent on the nature of chemical components of the gastro-intestinal environment and their interactions with ingested particles, and the physiological (e.g. gut passage time) and chemical (e.g. redox conditions and pH) constraints imposed on these interactions. Generally, chemicals that associate with fine, organic-rich particles (or, for some HOMs, fine inorganic particles), and desorb at pH 5-6 and/or complex with digestive enzymes or surfactants are most readily solubilized in the

  17. Ultrafine and respirable particles in an automotive grey iron foundry.

    PubMed

    Evans, Douglas E; Heitbrink, William A; Slavin, Thomas J; Peters, Thomas M

    2008-01-01

    Ultrafine particle number and respirable particle mass concentrations were measured throughout an automotive grey iron foundry during winter, spring and summer using a particle concentration mapping procedure. Substantial temporal and spatial variability was observed in all seasons and attributed, in part, to the batch nature of operations, process emission variability and frequent work interruptions. The need for fine mapping grids was demonstrated, where elevations in particle concentrations were highly localized. Ultrafine particle concentrations were generally greatest during winter when incoming make-up air was heated with direct fire, natural gas burners. Make-up air drawn from roof level had elevated respirable mass and ultrafine number concentrations above ambient outdoor levels, suggesting inadvertent recirculation of foundry process emissions. Elevated respirable mass concentrations were highly localized on occasions (e.g. abrasive blasting and grinding), depended on the area within the facility where measurements were obtained, but were largely unaffected by season. Particle sources were further characterized by measuring their respective number and mass concentrations by particle size. Sources that contributed to ultrafine particles included process-specific sources (e.g. melting and pouring operations), and non-process sources (e.g. direct fire natural gas heating units, a liquid propane-fuelled sweeper and cigarette smoking) were additionally identified. PMID:18056626

  18. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The

  19. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The

  20. Ultrafine and respirable particle exposure during vehicle fire suppression

    PubMed Central

    Fent, Kenneth W.

    2015-01-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction

  1. Ratios of total suspended solids to suspended sediment concentrations by particle size

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  2. Method for relating suspended-chemical concentrations to suspended-sediment particle-size classes in storm-water runoff

    USGS Publications Warehouse

    Rinella, Joseph F.; McKenzie, Stuart W.

    1982-01-01

    A method has been developed to relate suspended-chemical concentrations (associated with suspended sediments) in storm-water runoff to suspended-sediment particle-size classes. These classes are based on settling velocities in quiescent native water. This method requires processing 20 liters of water having a suspended-sediment concentration greater than 500 milligrams per liter. However, samples with suspended-sediment concentrations as low as 250 milligrams per liter may be analyzed, if sample volumes are increased to 50 liters. The time required for one person to separate suspended sediments into particle-size classes ranges from 6 to 14 hours. This report outlines procedures for processing metal, nutrient, and organic samples.

  3. Release of simulated anthrax particles from disposable respirators.

    PubMed

    Kennedy, Nola J; Hinds, William C

    2004-01-01

    A preliminary study was undertaken to evaluate the potential for a disposable respirator that has been contaminated with anthrax spores to release spores in handling after use. The release of inert particles from disposable respirators was measured for masks dropped 3 feet onto a hard surface. Ten experimental runs were conducted for each of two N95 mask types, the Moldex 2200N95 and the 3M 8210. Anthrax spores were simulated with a test aerosol of single and double 1-micron polystyrene spheres. For the Moldex mask loaded with approximately 20 million spheres on it, an average of 0.16% was released; for the 3M mask an average of 0.29% was released. PMID:15202151

  4. Characterizing the kinetics of suspended cylindrical particles by polarization measurements

    NASA Astrophysics Data System (ADS)

    Liao, Ran; Ou, Xueheng; Ma, Hui

    2015-09-01

    Polarization has promising potential to retrieve the information of the steady samples, such as tissues. However, for the fast changing sample such as the suspended algae in the water, the kinetics of the particles also influence the scattered polarization. The present paper will show our recent results to extract the information about the kinetics of the suspended cylindrical particles by polarization measurements. The sample is the aqueous suspension of the glass fibers stirred by a magnetic stirrer. We measure the scattered polarization of the fibers by use of a simultaneous polarization measurement system and obtain the time series of two orthogonal polarization components. By use of correlation analysis, we obtain the time parameters from the auto-correlation functions of the polarization components, and observe the changes with the stirring speeds. Results show that these time parameters indicate the immigration of the fibers. After discussion, we find that they may further characterize the kinetics, including the translation and rotation, of the glass fibers in the fluid field.

  5. Thoracic and respirable particle definitions for human health risk assessment

    PubMed Central

    2013-01-01

    Background Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. Methods We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. Results Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm. Conclusions By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and

  6. Spectral absorption and backscatter measurements of suspended particles

    SciTech Connect

    Wouts, R.; Warnock, R.; Baker, S.; Kromkamp, J.

    1997-06-01

    Three different methods for determining light attenuation by suspended particles under laboratory conditions are compared. One method, a direct application of Gershun`s equation, by measuring scalar irradiance and the gradient of the net-vector irradiance, allows one to determine the spectral absorption by the particles. Another method, measuring radiance attenuation in an isotropic light field, measures the sum of absorption and backscatter by the particles. The difference gives an estimate for the backscatter. The results were compared with an estimate based on an adaptation of the filterpad method that measures absorption by particles. We found that the filterpad measurements depend heavily on the filter load and the scattering characteristics of the particles involved. Increasing backscatter makes the measurements less reliable. It is argued that the filterpad method should not be used to obtain sea truth data for remote sensing measurements in coastal areas. These measurements were performed in a laboratory scale enclosure (volume 250 liters) on samples of natural silt and/or algal cultures grown in the tank. In our laboratory setup we have put special emphasis on measuring inherent optical properties of natural ({open_quotes}Wester Scheldt{close_quotes} estuary, The Netherlands) silt. Together with available (non-spectral) measurements of the volume scattering function of silt, this information can be used to test models for radiative transfer.

  7. Accelerated algorithm for computing the motion of solid particles suspended in fluid.

    PubMed

    Ding, E J

    2009-08-01

    A fast algorithm for computing the motion of solid particles suspended in fluid is presented. The motion of solid particles suspended in Stokes flow can be calculated without fully calculating the fluid motion. When the steady-state simulation is sufficient, this algorithm can greatly accelerate the simulation of solid particle suspension in Stokes flow.

  8. Event-based total suspended sediment particle size distribution model

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  9. Relative Mesothelioma Potencies for Unregulated Respirable Elongated Mineral and Synthetic Particles

    EPA Science Inventory

    For decades uncertainties and contradictions have surrounded the issue of whether exposures to respirable elongated mineral and synthetic particles (REMPs and RESPs) present health risks such as those recognized for exposures to elongated asbestiform mineral particles from the fi...

  10. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  11. STABLE ISOTOPE VARIATIONS IN SUSPENDED PARTICLES IN A TEMPERATE NORTH PACIFIC ESTUARY, OREGON, USA

    EPA Science Inventory

    Spatial distributions of 13C and 15N in suspended particles were examined monthly over an annual cycle in the euphotic zone (0.5m) of the Yaquina River and Estuary, Oregon. Suspended organic matter in estuaries is a mixture of land-derived and oceanic carbon and nitrogen. In a...

  12. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles.

    PubMed

    Qian, Y; Willeke, K; Grinshpun, S A; Donnelly, J; Coffey, C C

    1998-02-01

    In 1995 the National Institute for Occupational Safety and Health issued new regulations for nonpowered particulate respirators (42 CFR Part 84). A new filter certification system also was created. Among the new particulate respirators that have entered the market, the N95 respirator is the most commonly used in industrial and health care environments. The filtration efficiencies of unloaded N95 particulate respirators have been compared with those of dust/mist (DM) and dust/fume/mist (DFM) respirators certified under the former regulations (30 CFR Part 11). Through laboratory tests with NaCl certification aerosols and measurements with particle-size spectrometers, N95 respirators were found to have higher filtration efficiencies than DM and DFM respirators and noncertified surgical masks. N95 respirators made by different companies were found to have different filtration efficiencies for the most penetrating particle size (0.1 to 0.3 micron), but all were at least 95% efficient at that size for NaCl particles. Above the most penetrating particle size the filtration efficiency increases with size; it reaches approximately 99.5% or higher at about 0.75 micron. Tests with bacteria of size and shape similar to Mycobacterium tuberculosis also showed filtration efficiencies of 99.5% or higher. Experimental data were used to calculate the aerosol mass concentrations inside the respirator when worn in representative work environments. The penetrated mass fractions, in the absence of face leakage, ranged from 0.02% for large particle distributions to 1.8% for submicrometer-size welding fumes. Thus, N95 respirators provide excellent protection against airborne particles when there is a good face seal. PMID:9487666

  13. Suspended micro-sized PVC particles impair the performance and decrease survival in the Asian green mussel Perna viridis.

    PubMed

    Rist, Sinja Elena; Assidqi, Khoirunnisa; Zamani, Neviaty Putri; Appel, Daniel; Perschke, Myriam; Huhn, Mareike; Lenz, Mark

    2016-10-15

    Marine bivalves are known to ingest microplastics, but information on the consequences for their physiological performance is limited. To investigate a potential exposure pathway that has not yet been addressed, we mimicked the resuspension of microplastics from the sediment in a laboratory exposure experiment. For this, we exposed the Asian green mussel Perna viridis to 4 concentrations (0mg/l, 21.6mg/l, 216mg/l, 2160mg/l) of suspended polyvinylchloride (PVC) particles (1-50μm) for two 2-hour-time-periods per day. After 44days, mussel filtration and respiration rates as well as byssus production were found to be a negative function of particle concentration. Furthermore, within 91days of exposure, mussel survival declined with increasing PVC abundance. These negative effects presumably go back to prolonged periods of valve closure as a reaction to particle presence. We suggest that microplastics constitute a new seston component that exerts a stress comparable to natural suspended solids.

  14. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  15. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'. PMID:26323505

  16. Remote sensing retrieval of inorganic suspended particle size in the Bohai Sea

    NASA Astrophysics Data System (ADS)

    Qing, Song; Zhang, Jie; Cui, Tingwei; Bao, Yuhai

    2014-02-01

    In situ data set in the Bohai Sea of China was collected to test a previous model for surface water inorganic suspended particle size developed by Bowers et al. Based on this, a simple empirical model was then established for estimating median particle size in the Bohai Sea. The median inorganic suspended particle size was retrieved from ratio of green (560 nm) to red (665 nm) band. The model produced retrieval of particle sizes which are in good agreement with in situ measurements with the average percent difference of 27.0% (N=40, R2=0.55) and root mean squared deviation of 4.311 μm. This model was quite insensitive to input noises. Then the model was applied to MERIS Level 2 data and MODIS Level 3 data (monthly climatology) to analyze the spatio-temporal pattern and seasonal variability of inorganic suspended particle size in the Bohai Sea. The size of inorganic suspended particles was expected to be related to water turbulence. Wind was idendified as an important influencing factor of particle size distribution. There was an onshore to offshore gradient in inorganic suspended particle size in the Bohai Sea. A significant seasonal cycle exits in particle sizes (large in summer and small in winter). More independent dataset was needed for further research.

  17. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding.

    PubMed

    Akbar-Khanzadeh, Farhang; Milz, Sheryl A; Wagner, Cynthia D; Bisesi, Michael S; Ames, April L; Khuder, Sadik; Susi, Pam; Akbar-Khanzadeh, Mahboubeh

    2010-12-01

    Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m³ using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the

  18. Thoracic and respirable particle definitions for human health risk assessment

    EPA Science Inventory

    Provides estimates of the thoracic and respirable fractions, for adults and children during typical activities during both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of evidence of health effects.

  19. Particle size distribution of suspended solids in the Chesapeake Bay entrance and adjacent shelf waters

    NASA Technical Reports Server (NTRS)

    Byrnes, M. R.; Oertel, G. F.

    1981-01-01

    Characteristics of suspended solids, including total suspended matter, total suspended inorganics, total suspended organics, particle size distribution, and the presence of the ten most prominent particle types were determined. Four research vessels simultaneously collected samples along four transects. Samples were collected within a 2-hour period that coincided with the maximum ebb penetration of Chesapeake Bay outwelling. The distribution of primary and secondary particle size modes indicate the presence of a surface or near-surface plume, possibly associated with three sources: (1) runoff, (2) resuspension of material within the Bay, and/or (3) resuspension of material in the area of shoals at the Bay mouth. Additional supportive evidence for this conclusion is illustrated with ocean color scanner data.

  20. Finite Element Modeling of Suspended Particle Migration in Non-Newtonian Fluids

    SciTech Connect

    Altobelli, S.; Baer, T.; Mondy, L.; Rao, R.; Stephens, T.

    1999-03-04

    Shear-induced migration of particles is studied during the slow flow of suspensions of spheres (particle volume fraction {phi} = 0.50) in an inelastic but shear-thinning, suspending fluid in flow between counterrotating concentric cylinders, The conditions are such that nonhydrodynamic effects are negligible. The movement of particles away from the high shear rate region is more pronounced than in a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al. (1992) by using shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model is compared with the experimental data gathered with nuclear magnetic resonance (NMR) imaging.

  1. Indoor-outdoor relationships of respirable sulfates and particles

    NASA Astrophysics Data System (ADS)

    Dockery, Douglas W.; Spengler, John D.

    Indoor and outdoor concentrations of respirable particulates and sulfates have been measured in 68 homes in six cities for at least 1 yr. A conservation of mass model was derived describing indoor concentrations in terms of outdoor concentrations, infiltration and indoor sources. The measured data were analysed to identify important building characteristics and to quantify their effect. The mean infiltration rate of outdoor fine particulates was found to be approximately 70%. Cigarette smoking was found to be the dominant indoor source of respirable particulates. Increased indoor concentrations of sulfates were found to be associated with smoking and also with gas stoves. The effect of full air conditioning of the building was to reduce infiltration of outdoor fine particulates by about one half, while preventing dilution and purging of internally generated pollutants. The model for indoor respirable particulate and sulfate levels was found to compare well with measurements.

  2. [Impacts of Sediment Disturbance on the Distribution of Suspended Particle Size and Phosphorus].

    PubMed

    Guo, Jun-rui; Li, Da-peng; Liu, Yan-jian

    2016-04-15

    To clarify the influence of the sediments disturbance on the particle size distribution of suspended solids, and the influence of particle distribution on the forms of dissolved phosphorous in the overlaying water, the sediments and overlying water from Meiliang Bay, Taihu Lake, were used to conduct the indoor simulation experiments to investigate the particle size of suspended solids according to the Ubbelobde particle size criteria and the distribution of phosphorus compounds in the overlying water under the disturbance circumstances. The results indicated that the average proportions of small (0-10 microm), middle (10-20 microm) and large (> or = 20 microm) diameter particles presented different trends of increasing, decreasing and staying stable, respectively. It indicated the possible transformation of particle size of suspended solids from small-middle diameter to large diameter. In addition, the data of DTP/TP and DIP/TP showed a periodical variation with the corresponding periodical variety of particle diameter in suspended solids, while ns obvious variety of DTP and DIP was observed. It suggested that disturbance enhanced the ability of phosphorus immobilization by suspended solids. On the other band, the percentages of DTP in TP and DIP in TP were 19% and 13% under the disturbance, respectively, and they were obviously lower than those (DTP/TP, 80% and DIP/TP, 69% ) in the control. It indicated that tbs transformation of particle size of suspended solids from small-middle diameter to large diameter due to disturbance was in favor of tbe adsorption and sedimentation of dissolved phosphorus. Accordingly, the formation of particle phosphorus was enhanced. Therefore, it delayed the development of eutrophication in the water body. PMID:27548964

  3. [Impacts of Sediment Disturbance on the Distribution of Suspended Particle Size and Phosphorus].

    PubMed

    Guo, Jun-rui; Li, Da-peng; Liu, Yan-jian

    2016-04-15

    To clarify the influence of the sediments disturbance on the particle size distribution of suspended solids, and the influence of particle distribution on the forms of dissolved phosphorous in the overlaying water, the sediments and overlying water from Meiliang Bay, Taihu Lake, were used to conduct the indoor simulation experiments to investigate the particle size of suspended solids according to the Ubbelobde particle size criteria and the distribution of phosphorus compounds in the overlying water under the disturbance circumstances. The results indicated that the average proportions of small (0-10 microm), middle (10-20 microm) and large (> or = 20 microm) diameter particles presented different trends of increasing, decreasing and staying stable, respectively. It indicated the possible transformation of particle size of suspended solids from small-middle diameter to large diameter. In addition, the data of DTP/TP and DIP/TP showed a periodical variation with the corresponding periodical variety of particle diameter in suspended solids, while ns obvious variety of DTP and DIP was observed. It suggested that disturbance enhanced the ability of phosphorus immobilization by suspended solids. On the other band, the percentages of DTP in TP and DIP in TP were 19% and 13% under the disturbance, respectively, and they were obviously lower than those (DTP/TP, 80% and DIP/TP, 69% ) in the control. It indicated that tbs transformation of particle size of suspended solids from small-middle diameter to large diameter due to disturbance was in favor of tbe adsorption and sedimentation of dissolved phosphorus. Accordingly, the formation of particle phosphorus was enhanced. Therefore, it delayed the development of eutrophication in the water body.

  4. An experimental and theoretical study of the seepage migration of suspended particles with different sizes

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Xu, Tao; Guo, Zhiguang

    2016-08-01

    This study experimentally investigates the effect of particle size, particle concentration and flow velocity on the migration of suspended particles of size 1.02-47 μm in porous media. The results show that at the same flow velocity, the peak values of the breakthrough curves decrease and corresponding pore volumes increase slightly with increasing particles size. The migration velocity of smaller suspended particles is even greater than water flow velocity, which is attributed to the size exclusion effect. With increase of the injected particle concentration, the deposition coefficients of small single particles increase at first and then tend to a steady state or even decrease slightly, explained by the maximum retention concentration. The dispersivity of small particles decreases with increasing velocity. However, at a high flow velocity, the hydrodynamic dispersivity becomes increasingly dominant with the increase of particle size. The deposition coefficients for large-sized particles are higher than those for small-sized particles, which is attributed to considerable mass removal due to straining. An analytical solution, considering the release effect of sorbed particles, is developed to account for the one-dimensional flow and dispersive effect using a source function method, and then three transport parameters—dispersivity, deposition coefficient and release coefficient—are fitted using the experimental results. Finally, suspended-particle migration is predicted by the proposed model for short-time constant-concentration injection and repeated three-pulse injection. Overall, particle size has a significant effect on the seepage migration parameters of suspended particles in porous media such as the particle velocity, dispersivity and deposition coefficient.

  5. Suspended particle capture by synthetic vegetation in a laboratory flume

    NASA Astrophysics Data System (ADS)

    Fauria, Kristen E.; Kerwin, Rachel E.; Nover, Daniel; Schladow, S. Geoffrey

    2015-11-01

    Vegetated floodplains and wetlands trap particles, a process that is important for water quality and wetland function and morphology. The rates of particle removal by vegetation remain poorly characterized, especially for small particles and vegetation coated with biofilm. In this study, we measured capture rates of road dust by arrays of grass-like synthetic vegetation in a laboratory flume. We performed 40 experiments in which stem density, flow velocity, the presence of biofilm, and initial particle concentration varied, and used an in situ particle size analyzer to measure the concentration of a continuous particle size distribution (1.25-250 µm diameter). We fit first-order decay models to the particle concentration measurements to determine particle capture rates and found that capture rates increased with particle size, stem density, and the presence of biofilm. Capture rates decreased with increasing flow velocity, which suggests that fast flows may resuspend particles from stems. We also calculated percent particle capture efficiencies and fit a new empirical model for capture efficiency to our results. We found that particle capture efficiency was highest for low stem density treatments and propose that stem density affects capture by altering turbulent kinetic energy.

  6. Manikin-based performance evaluation of elastomeric respirators against combustion particles.

    PubMed

    He, Xinjian; Yermakov, Michael; Reponen, Tiina; McKay, Roy T; James, Kelley; Grinshpun, Sergey A

    2013-01-01

    This study investigated the effects of faceseal leakage, breathing flow, and combustion material on the overall (non-size-selective) penetration of combustion particles into P-100 half and full facepiece elastomeric respirators used by firefighters. Respirators were tested on a breathing manikin exposed to aerosols produced by combustion of three materials (wood, paper, and plastic) in a room-size exposure chamber. Testing was performed using a single constant flow (inspiratory flow rate = 30 L/min) and three cyclic flows (mean inspiratory flow rates = 30, 85, and 135 L/min). Four sealing conditions (unsealed, nose-only sealed, nose and chin sealed, and fully sealed) were examined to evaluate the respirator faceseal leakage. Total aerosol concentration was measured inside (C(in)) and outside (C(out)) the respirator using a condensation particle counter. The total penetration through the respirator was determined as a ratio of the two (P = C(in) / C(out)). Faceseal leakage, breathing flow type and rate, and combustion material were all significant factors affecting the performance of the half mask and full facepiece respirators. The efficiency of P-100 respirator filters met the NIOSH certification criteria (penetration ≤0.03%); it was not significantly influenced by the challenge aerosol and flow type, which supports the current NIOSH testing procedure using a single challenge aerosol and a constant airflow. However, contrary to the NIOSH total inward leakage (TIL) test protocol assuming that the result is independent on the type of the tested aerosol, this study revealed that the challenge aerosol significantly affects the particle penetration through unsealed and partially sealed half mask respirators. Increasing leak size increased total particle penetration. The findings point to some limitations of the existing TIL test in predicting protection levels offered by half mask elastomeric respirators. PMID:23442086

  7. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater

    SciTech Connect

    Sholkovitz, E.R. ); Landing, W.M.; Lewis, B.L. )

    1994-03-01

    Sargasso Sea suspended particles were sequentially digested with three chemical treatments (acetic acid, mild HCl/HNO[sub 3], and HF/HNO[sub 3]/HCl in a bomb). The latter two treatments dissolve detrital minerals, while the acetic acid removes surface coatings (organic matter and Mn oxides). The rare earth element (REE) composition of the surface coatings, in marked contrast to the crust-like REE composition of the two detrital phases, is extensively fractionated with respect to both filtered seawater and the crust. Surface coatings are responsible for the removal and fractionation of REEs from seawater and, as such, play a key role in the marine geochemical cycles of trace elements. Relative to seawater, the surface coatings are systematically enriched tenfold across the trivalent REEs from Lu to La and develop large positive Ce-anomalies. The Ce-anomalies of the coatings switch from being negative (seawater-like) in the upper 100 m to being strongly positive at greater depths. The ingrowth of Ce and LREEs on particle surfaces reflects the in situ oxidation of dissolved Ce(III) to particulate Ce(IV), and the preferential removal of LREE(III)s over HREE(III)s. REEs(III) fractionation of this type is consistent with particle/solution models. Both processes appear to be related to the in situ formation of Mn oxide particles from the oxidation of dissolved Mn(II) in the upper 200 m of the water column. Preferential removal of LREEs in the upper waters is countered by their preferential release at depth due to remineralization of surface coatings on particles. A new method is explored for estimating the residence time of suspended particles by combining Ce concentration data of dissolved and surface-bound phases with the Ce(III) oxidation rate measurements of MOFFETT (1990). A Ce-based residence time of thirteen days is similar in magnitude to the value calculated from U-[sup 234]Th disequilibria in the Sargasso Sea.

  8. Apparatus and method for concentrating and filtering particles suspended in a fluid

    DOEpatents

    Fiechtner, Gregory J.; Cummings, Eric B.; Singh, Anup K.

    2009-05-19

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  9. Performance of N95 respirators: reaerosolization of bacteria and solid particles.

    PubMed

    Qian, Y; Willeke, K; Grinshpun, S A; Donnelly, J

    1997-12-01

    If a respirator does not contain an exhalation value, and the respirator wearer sneezes or coughs, one may expect previously collected particles to be reaerosolized. This may be of special concern in environments contaminated with airborne microorganisms. The percentages of reaerosolization were measured in a test setup where the number of reaerosolized particles were registered by dynamic aerosol size spectrometry relative to the number of previously collected particles or bacteria. Experiments at low relative humidity have shown that the reaerosolization of particles below 1 micron, including Mycobacterium tuberculosis surrogate bacteria, does not exceed 0.025%, even if the re-entrainment air velocity is as high as 300 cm/sec (i.e., 37 times the air velocity through the respirator during breathing under heavy workload conditions). The reaerosolization of larger particles into dry air was significant at the highest re-entrainment velocity of 300 cm/sec, which simulates violent sneezing or coughing: 0.1% for 3 microns and about 6% for 5-micron test particles. No reaerosolization was detected at relative humidity levels exceeding 35% at these conditions. Thus, it is concluded that the reaerosolization of particles and bacteria, collected on the fibrous filters of N95 respirators, is insignificant at conditions encountered in respirator wear. PMID:9425648

  10. Sub-10-Micron and Respirable Particles in Lunar Soils

    NASA Astrophysics Data System (ADS)

    Cooper, B. L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalez, C. P.

    2010-03-01

    Grain size analyses of Apollo 11 soil 10084 by a laser diffraction technique shows that this soil contains roughly 2% by volume in the respirable (2.5 µm and below) grain size, in agreement with our prior estimates based on extrapolation of sieve data.

  11. Single Particle Scattering Used for Characterization of Suspended Sediments

    NASA Astrophysics Data System (ADS)

    Bjørnø, Leif; Bjørnø, Irina

    The aim of this paper is to develop a theoretical model for description of ultrasound scattering from irregularly shaped individual particles. Investigations of sediment transport by use of ultrasound scattering technique demand a fundamental understanding of scattering by individual, irregularly shaped particles. Regularly shaped particles are frequently spheres, while irregularly shaped particles can be symmetrically particles with surface roughness or with angular facets and edges. A cube and a rough sphere have been used in the studies behind this paper. Laboratory experiments have been used for verification of theoretical and numerical results.

  12. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A.; den Toonder, Jaap M. J.; Anderson, Patrick D.

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.

  13. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.

    PubMed

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.

  14. Optical trapping of high-index particles suspended in high-index fluids

    NASA Astrophysics Data System (ADS)

    Harwell, Jennifer M.; Spahn, Olga B.; Grossetete, Grant G.; Howell, Stephen W.; Martin, Stephen J.; Martin, Jeffrey B.; Swartzlander, Grover A., Jr.

    2007-01-01

    Previous work has shown that single-beam gradient traps are unable to trap high index particles in fluids where the index contrast is large. However, by changing the refractive index of the surrounding medium to more closely match the index of refraction of the particle, trapping of high index particles is possible. We report preliminary efforts to trap high index glass particles having indices of about 1.9. The experimental trap stiffness data of polystyrene beads with radius 1.8 and 10 µm suspended in water is presented. The next step is to trap high index particles as well as determine the trap stiffness for those particles having diameters in the 3-10 μm range suspended in fluids having refractive indices in the range of 1.4 to 1.6.

  15. Changing shapes and implied viscosities of suspended submicron particles

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sanchez, M. S.; Douet, C.; Wang, Y.; Bateman, A. P.; Gong, Z.; Kuwata, M.; Renbaum-Wolff, L.; Sato, B. B.; Liu, P. F.; Bertram, A. K.; Geiger, F. M.; Martin, S. T.

    2015-07-01

    The change in shape of atmospherically relevant organic particles is used to estimate the viscosity of the particle material without the need for removal from aerosol suspension. The dynamic shape factors χ of particles produced by α-pinene ozonolysis in a flow tube reactor, under conditions of particle coagulation, were measured while altering the relative humidity (RH) downstream of the flow tube. As relative humidity was increased, the results showed that χ could change from 1.27 to 1.02, corresponding to a transition from aspherical to nearly spherical shapes. The shape change could occur at elevated RH because the organic material had decreased viscosity and was therefore able to flow to form spherical shapes, as favored by the minimization of surface area. Numerical modeling was used to estimate the particle viscosity associated with this flow. Based on particle diameter and RH exposure time, the viscosity dropped from 10(8.7±2.0) to 10(7.0±2.0) Pa s (two sigma) for an increase in RH from < 5 to 58 % at 293 K. These results imply that the equilibration of the chemical composition of the particle phase with the gas phase can shift from hours at mid-range RH to days at low RH.

  16. Rush hour for particles suspended in evaporating drops

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Márin, Álvaro G.; Snoeijer, Jacco H.; Lohse, Detlef

    2010-11-01

    In the late nineties Deegan et al. explained the formation contact-line deposits in a drying sessile droplet suspension of particles (Nature 389 (1997), Physical Review E 60, (2000)). It was found that if there is evaporation from the drop edge while the contact line is pinned, liquid and particles are dragged towards the contact line creating the well known coffee-stain ring. Here, we analyze this process in detail by measuring the velocity field inside an evaporating drop using μ-PIV. It was found that most of the particle transport occurs in the last moments of the droplet life-time. This rush explains the different characteristic packing of the particles in the layers of the ring, which is much more ordered in the thin outer part than in the thick inner one, since almost all particles arrive at the end. The rush-hour behavior of particles in evaporating drops can be attributed to the vanishing of the contact angle and follows from mass conservation.

  17. Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland.

    PubMed

    Mulling, Bram T M; van den Boomen, Rob M; van der Geest, Harm G; Kappelhof, Joost W N M; Admiraal, Wim

    2013-03-01

    Constructed wetlands (CWs) have been shown to improve the water quality of treated wastewater. The capacity of CWs to reduce nutrients, pathogens and organic matter and restore oxygen regime under normal operating conditions cannot be extrapolated to periods of incidental peak discharges. The buffering capacity of CWs during peak discharges is potentially a key factor for water quality in the receiving waters. Therefore, the aim of the present study was to investigate the behaviour of peak discharges of suspended particles, (associated) physiochemical parameters and pathogenic organisms from a wastewater treatment plant (WWTP) in a full scale constructed wetland (CW). By mixing clarified water and sludge rich water from the settlement tank of the WWTP, the suspended particle concentration was increased for 8 h from ± 3.5 to ± 230 mg L(-1), and discharged into a full scale horizontal surface flow constructed wetland. An increase of suspended particle concentration following the peak discharge concurred with increases in turbidity and oxygen demand, total nutrient load (nitrogen, phosphorus and carbon) and pathogens (Escherichia coli and Enterococci). Temperature, pH, conductivity and dissolved nutrient concentrations (nitrogen, phosphorus and carbon) were however unaffected by the initial peak discharge. After retention in the unvegetated ponds (the first CW compartment) the applied suspended particle peak with a total load of 86.2 kg was reduced by >99%. Similar peak buffering was observed for the turbidity, oxygen demand and settable volume. Simultaneously dissolved nutrient concentrations increased, indicating partial mineralization of the suspended particles during retention in the unvegetated ponds. The peak buffering of pathogens was lower (40-84%), indicating differences in removal processes between other suspended particles and pathogens. The results indicated that the suspended particles were probably mostly removed by sedimentation and mineralization

  18. Filter performance of n99 and n95 facepiece respirators against viruses and ultrafine particles.

    PubMed

    Eninger, Robert M; Honda, Takeshi; Adhikari, Atin; Heinonen-Tanski, Helvi; Reponen, Tiina; Grinshpun, Sergey A

    2008-07-01

    The performance of three filtering facepiece respirators (two models of N99 and one N95) challenged with an inert aerosol (NaCl) and three virus aerosols (enterobacteriophages MS2 and T4 and Bacillus subtilis phage)-all with significant ultrafine components-was examined using a manikin-based protocol with respirators sealed on manikins. Three inhalation flow rates, 30, 85, and 150 l min(-1), were tested. The filter penetration and the quality factor were determined. Between-respirator and within-respirator comparisons of penetration values were performed. At the most penetrating particle size (MPPS), >3% of MS2 virions penetrated through filters of both N99 models at an inhalation flow rate of 85 l min(-1). Inhalation airflow had a significant effect upon particle penetration through the tested respirator filters. The filter quality factor was found suitable for making relative performance comparisons. The MPPS for challenge aerosols was <0.1 mum in electrical mobility diameter for all tested respirators. Mean particle penetration (by count) was significantly increased when the size fraction of <0.1 mum was included as compared to particles >0.1 mum. The filtration performance of the N95 respirator approached that of the two models of N99 over the range of particle sizes tested ( approximately 0.02 to 0.5 mum). Filter penetration of the tested biological aerosols did not exceed that of inert NaCl aerosol. The results suggest that inert NaCl aerosols may generally be appropriate for modeling filter penetration of similarly sized virions.

  19. Filter performance of n99 and n95 facepiece respirators against viruses and ultrafine particles.

    PubMed

    Eninger, Robert M; Honda, Takeshi; Adhikari, Atin; Heinonen-Tanski, Helvi; Reponen, Tiina; Grinshpun, Sergey A

    2008-07-01

    The performance of three filtering facepiece respirators (two models of N99 and one N95) challenged with an inert aerosol (NaCl) and three virus aerosols (enterobacteriophages MS2 and T4 and Bacillus subtilis phage)-all with significant ultrafine components-was examined using a manikin-based protocol with respirators sealed on manikins. Three inhalation flow rates, 30, 85, and 150 l min(-1), were tested. The filter penetration and the quality factor were determined. Between-respirator and within-respirator comparisons of penetration values were performed. At the most penetrating particle size (MPPS), >3% of MS2 virions penetrated through filters of both N99 models at an inhalation flow rate of 85 l min(-1). Inhalation airflow had a significant effect upon particle penetration through the tested respirator filters. The filter quality factor was found suitable for making relative performance comparisons. The MPPS for challenge aerosols was <0.1 mum in electrical mobility diameter for all tested respirators. Mean particle penetration (by count) was significantly increased when the size fraction of <0.1 mum was included as compared to particles >0.1 mum. The filtration performance of the N95 respirator approached that of the two models of N99 over the range of particle sizes tested ( approximately 0.02 to 0.5 mum). Filter penetration of the tested biological aerosols did not exceed that of inert NaCl aerosol. The results suggest that inert NaCl aerosols may generally be appropriate for modeling filter penetration of similarly sized virions. PMID:18477653

  20. Particle release from respirators, part I: determination of the effect of particle size, drop height, and load.

    PubMed

    Birkner, Jeffrey S; Fung, David; Hinds, William C; Kennedy, Nola J

    2011-01-01

    In late 2001, some U.S. Postal Service workers and a few members of Congress were exposed to anthrax spores. This led to an increased effort to develop employable methods to protect workers from exposure to anthrax. Some investigations focused on selection and use of respirators to protect workers against airborne anthrax. The present study evaluated the potential for several types of half-mask respirators to release deposited particles. Four brands of the most commonly used filtering facepiece respirators (hereafter termed masks) were loaded with 0.59-μm, 1.0-μm, and 1.9-μm polystyrene latex (PSL) microspheres (nominally 0.6, 1.0, and 2.0 μm) and then dropped onto a rigid surface. The load conditions were 10, 20, or 40 million particles, and drop heights were 0.15, 0.76, and 1.37 m. For the average conditions of 0.76 m, 1.15 μm size and 22 million particles loaded, the average particle release was 0.604 particles per 10,000 (95% CI: .552, .662) particles loaded for all of the filtering facepieces tested. The averaging of conditions is a useful tool to provide generalized information and is also useful when making risk estimates. For most filtering facepiece respirators, particle release tended to increase with drop height and particle size, and there appeared to be a slight inverse relationship with particle load. Two brands of reusable elastomeric half-mask respirators with P100 high-efficiency particulate air (HEPA) filter cartridges were also evaluated. Results of these tests were inconclusive. Part II in this issue addresses the release of particles when simulating removal of a filtering facepiece from a wearer's head. PMID:21132594

  1. Elemental Spatiotemporal Variations of Total Suspended Particles in Jeddah City

    PubMed Central

    Kadi, Mohammad W.

    2014-01-01

    Elements associated with total suspended particulate matter (TSP) in Jeddah city were determined. Using high-volume samplers, TSP samples were simultaneously collected over a one-year period from seven sampling sites. Samples were analyzed for Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As, and Sr. Results revealed great dependence of element contents on spatial and temporal variations. Two sites characterized by busy roads, workshops, heavy population, and heavy trucking have high levels of all measured elements. Concentrations of most elements at the two sites exhibit strong spatial gradients and concentrations of elements at these sites are higher than other locations. The highest concentrations of elements were observed during June–August because of dust storms, significant increase in energy consumption, and active surface winds. Enrichment factors of elements at the high-level sites have values in the range >10~60 while for Cu and Zn the enrichment factors are much higher (~0–>700) indicating that greater percentage of TSP composition for these three elements in air comes from anthropogenic activities. PMID:24701161

  2. Apparatus and method for collection and concentration of respirable particles into a small fluid volume

    DOEpatents

    Simon, Jonathan N.; Brown, Steve B.

    2002-01-01

    An apparatus and method for the collection of respirable particles and concentration of such particles into a small fluid volume. The apparatus captures and concentrates small (1-10 .mu.m) respirable particles into a sub-millileter volume of fluid. The method involves a two step operation, collection and concentration: wherein collection of particles is by a wetted surface having small vertical slits that act as capillary channels; and concentration is carried out by transfer of the collected particles to a small volume (sub-milliliter) container by centrifugal force whereby the particles are forced through the vertical slits and contact a non-wetted wall surface, and are deflected to the bottom where they are contained for analysis, such as a portable flow cytometer or a portable PCR DNA analysis system.

  3. Viscous constraints on squirmer microswimmers approaching suspended particles

    NASA Astrophysics Data System (ADS)

    Jabbarzadeh, Mehdi; Fu, Henry C.

    2015-11-01

    Microscopic self-propelled organisms often approach other particles to capture food, mate, or find new environments. The viscous Stokes flow around these small organisms push away particles, severely hindering approach. Previously, we investigated approach hydrodynamics by modeling a swimming organism as a sphere pushed by a constant force towards a force-free spherical target particle. We measured approach efficiency by examining how far the swimmer must travel before getting close to the target. For targets which are of bigger or comparable size to the swimmer, the swimmer travels less than 1.5 times the initial separation distance; for smaller targets the swimmer must travel farther, making approach infeasible. The constant force reliably models propulsion by a flagellum, but many microorganisms feed by using cilia-coated surfaces for propulsion or generation of feeding currents. Therefore, here we consider a force-free spherical squirmer model for the swimmer approaching a spherical force-free target particle. For squirmers, the ``squirmer parameter'' distinguishes whether the swimmer is a puller or pusher. We find that pullers can always approach any size target and a larger squirmer parameter will generate a stronger feeding current leading to less traveled distance. On the other hand, pushers approach targets only when the squirmer parameter is less than 1; for values larger than 1, the swimmer cannot get close to the target.

  4. Precipitation of suspended particles in wet-film cyclones

    SciTech Connect

    Val'dberg, A.Y.; Kirsanova, N.S.

    1986-07-01

    The fact that wet and dry mechanical centrifugal dust collectors operate on the same principle allowed the authors to make the calculations for wet cyclones with an equation similar to one used previously. A figure shows that the efficiency of wet cyclones is much higher (20% higher on the average) than that of dry cyclones under the same operating conditions. This improvement is due to a decrease in the secondary discharge of dust particles from the wet wall of the device.

  5. Behavior of suspended particles in the Changjiang Estuary: Size distribution and trace metal contamination.

    PubMed

    Yao, Qingzhen; Wang, Xiaojing; Jian, Huimin; Chen, Hongtao; Yu, Zhigang

    2016-02-15

    Suspended particulate matter (SPM) samples were collected along a salinity gradient in the Changjiang Estuary in June 2011. A custom-built water elutriation apparatus was used to separate the suspended sediments into five size fractions. The results indicated that Cr and Pb originated from natural weathering processes, whereas Cu, Zn, and Cd originated from other sources. The distribution of most trace metals in different particle sizes increased with decreasing particle size. The contents of Fe/Mn and organic matter were confirmed to play an important role in increasing the level of heavy metal contents. The Cu, Pb, Zn, and Cd contents varied significantly with increasing salinity in the medium-low salinity region, thus indicating the release of Cu, Pb, Zn, and Cd particles. Thus, the transfer of polluted fine particles into the open sea is probably accompanied by release of pollutants into the dissolved compartment, thereby amplifying the potential harmful effects to marine organisms. PMID:26743609

  6. The effect of clay particles on the activity of suspended autotrophic nitrifying bacteria and on the performance of an air-lift reactor.

    PubMed

    Vieira, M J; Pacheco, A P; Pinho, I A; Melo, L F

    2001-02-01

    Clay minerals have some properties, namely a high surface area and the ability of ion exchange that may exert some effects on microbial systems. It is often difficult to know the way the clay is exerting its influence and whether its presence improves a given metabolic process. The present work concerns the study of the effect of the addition of powdered kaolin to autotrophic nitrification systems, and includes the study of the effects of the particles on the activity of a suspended nitrifying bacteria consortium and on the performance of an air-lift biofilm reactor used for tertiary nitrification. Concerning the suspended culture, kaolin particles produced stimulation on the specific endogenous and exogenous respiration rates of the bacteria, probably due to a nutritional effect supplied by the clay. This effect was more pronounced for the ammonia oxidation rates, although nitrite oxidation was also enhanced but to a lesser extent. In respect to the presence of kaolin particles in the air-lift reactor, the results obtained indicate that the clay particles become incorporated in the biofilm pellets, but do not change significantly their thickness or their shape. However, nitrate production decreased when the concentration of particles increased. The low adsorption of ammonia by the kaolin indicated that the clay particles embedded in the biofilm did not probably retain the ions. Although it was not proved, precipitation of salts may have occurred.

  7. Association of Cryptosporidium parvum with Suspended Particles: Impact on Oocyst Sedimentation

    PubMed Central

    Searcy, Kristin E.; Packman, Aaron I.; Atwill, Edward R.; Harter, Thomas

    2005-01-01

    The association of Cryptosporidium parvum oocysts with suspended particles can alter the oocysts' effective physical properties and influence their transport in aquatic systems. To assess this behavior, C. parvum oocysts were mixed with various suspended sediments under a variety of water chemical conditions, and the resulting settling of the oocysts was observed. Direct microscopic observations showed that oocysts attached to suspended sediments. Settling column and batch experiments demonstrated that oocysts are removed from suspension at a much higher rate when associated with sediments. The rate of oocyst sedimentation depended primarily on the type of sediment with which the oocysts were mixed. Changes in background water conditions had a relatively small impact on the extent of oocyst-particle association and the resulting oocyst deposition. We believe that the ubiquitous association of C. parvum oocysts with suspended particles enhances the sedimentation of oocysts in natural waters and that this interaction should generally be considered when predicting the migration of pathogens in the environment. PMID:15691968

  8. Different sources of suspended sediment according to particle size determined by natural radionuclides

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Ohtsuka, J.; Maruyama, M.; Hamamoto, S.; Murakami, Y.

    2012-12-01

    Extensive human activity and climate change have given great impacts on the sediment balance and connectivity between fluvial and coastal systems, causing sediment-related problems such as sedimentation in reservoir, coastal erosion and water pollution by prolonged turbid water. The dynamics of suspended sediment is one of the most important issues in watershed and coastal management. Suspended sediment load transported to ocean by a river commonly represents a mixture of sediments delivered from different locations and source types within the contributing catchment. In our previous study, we have found that the three natural radionuclides are available to discriminate the source areas of suspended sediment represented by six different bed rock type (sedimentary rock, accretionary sedimentary rock, accretionary basalt block, accretionary volcanic rock, plutonic rock and metamorphic rock), and that the contribution of each source areas to suspended sediment can be estimated (Mizugaki et al., 2012). To elucidate the sources of suspended sediment from mountain to coastal area, the fingerprinting was conducted using natural radionuclide tracers across a couple of adjacent watersheds, the Saru River and Mu River watersheds in central Hokkaido, northern Japan. We collected suspended sediments at outlets of the 13 sub-catchments (0.7-27.2 km2) and 12 stream channels with mid- to large-scaled watershed areas (17-1,333 km2), deposited sediments across a dam reservoir and coastal sediments, in total 389 samples. For collected sediment samples, grain size distributions were measured by laser-diffraction particle size analyzer. The specific surface areas of the samples were estimated using their grain size distribution and the spherical approximation of the particles in each class. For fingerprint the source of suspended sediment, three natural radionuclide activities, 212Pb, 228Ac and 40K, were measured by gamma-ray spectrometry. Specific surface area of the sediment showed

  9. Impact of suspended particles and enhancement techniques on ultraviolet disinfection of a secondary effluent

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Wang, Lin; Wang, Baozhen; Zhang, Jinsong; Zou, Qixian

    2006-10-01

    The concentration of suspended solids in the secondary effluent often varies widely, leading to frequent adjustment of the UV dosage to meet the disinfection criterion. In addition, a desired disinfection rate is difficult to achieve sometimes. The authors studied the particle size distribution, contribution of particle-associated Fecal Coliform (F.C.), and their influences on UV disinfection. A combined disinfection process (chlorination with a subsequent UV disinfection) was tested to improve the disinfection effect. The results indicated that the content of suspended solids, especially that of large particles, has a strong impact on UV disinfection efficiency; Dτ;10µm particles associated F.C. are difficult to be disinfected and are the main part of the tailings of F.C. inactivation curves. Pre-chlorination could decrease the number of particles in the secondary effluent and transform the large particles into small ones, reducing the influence of particles on UV disinfection and enhancing the resistance ability of the combined process to particle loading.

  10. What does respirator certification tell us about filtration of ultrafine particles?

    PubMed

    Eninger, Robert M; Honda, Takeshi; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2008-05-01

    Recent interest in exposures to ultrafine particles (less than 100 nm) in both environmental and occupational settings led the authors to question whether the protocols used to certify respirator filters provide adequate attention to ultrafine aerosols. The authors reviewed the particle size distribution of challenge aerosols and evaluated the aerosol measurement method currently employed in the National Institute for Occupational Safety and Health (NIOSH) particulate respirator certification protocol for its ability to measure the contribution of ultrafine particles to filter penetration. Also considered were the differences between mechanical and electrically charged (electret) filters in light of the most penetrating particle size. It was found that the sodium chloride (NaCl) and dioctylphthalate (DOP) aerosols currently used in respirator certification tests contain a significant fraction of particles in the ultrafine region. However, the photometric method deployed in the certification test is not capable of adequately measuring light scatter of particles below approximately 100 nm in diameter. Specifically, 68% (by count) and 8% (by mass) of the challenge NaCl aerosol particles and 10% (by count) and 0.3% (by mass) of the DOP particles below 100 nm do not significantly contribute to the filter penetration measurement. In addition, the most penetrating particle size for electret filters likely occurs at 100 nm or less under test conditions similar to those used in filter certification. The authors conclude, therefore, that the existing NIOSH certification protocol may not represent a worst-case assessment for electret filters because it has limited ability to determine the contribution of ultrafine aerosols, which include the most penetrating particle size for electret filters. Possible strategies to assess ultrafine particle penetration in the certification protocol are discussed. PMID:18322869

  11. What does respirator certification tell us about filtration of ultrafine particles?

    PubMed

    Eninger, Robert M; Honda, Takeshi; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2008-05-01

    Recent interest in exposures to ultrafine particles (less than 100 nm) in both environmental and occupational settings led the authors to question whether the protocols used to certify respirator filters provide adequate attention to ultrafine aerosols. The authors reviewed the particle size distribution of challenge aerosols and evaluated the aerosol measurement method currently employed in the National Institute for Occupational Safety and Health (NIOSH) particulate respirator certification protocol for its ability to measure the contribution of ultrafine particles to filter penetration. Also considered were the differences between mechanical and electrically charged (electret) filters in light of the most penetrating particle size. It was found that the sodium chloride (NaCl) and dioctylphthalate (DOP) aerosols currently used in respirator certification tests contain a significant fraction of particles in the ultrafine region. However, the photometric method deployed in the certification test is not capable of adequately measuring light scatter of particles below approximately 100 nm in diameter. Specifically, 68% (by count) and 8% (by mass) of the challenge NaCl aerosol particles and 10% (by count) and 0.3% (by mass) of the DOP particles below 100 nm do not significantly contribute to the filter penetration measurement. In addition, the most penetrating particle size for electret filters likely occurs at 100 nm or less under test conditions similar to those used in filter certification. The authors conclude, therefore, that the existing NIOSH certification protocol may not represent a worst-case assessment for electret filters because it has limited ability to determine the contribution of ultrafine aerosols, which include the most penetrating particle size for electret filters. Possible strategies to assess ultrafine particle penetration in the certification protocol are discussed.

  12. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

    SciTech Connect

    Chang, Shun-Wen; Theiss, Jesse; Hazra, Jubin; Aykol, Mehmet; Kapadia, Rehan; Cronin, Stephen B.

    2015-08-03

    We study photocurrent generation in individual, suspended carbon nanotube pn-junction diodes formed by electrostatic doping using two gate electrodes. Photocurrent spectra collected under various electrostatic doping concentrations reveal distinctive behaviors for free particle optical transitions and excitonic transitions. In particular, the photocurrent generated by excitonic transitions exhibits a strong gate doping dependence, while that of the free particle transitions is gate independent. Here, the built-in potential of the pn-junction is required to separate the strongly bound electron-hole pairs of the excitons, while free particle excitations do not require this field-assisted charge separation. We observe a sharp, well defined E{sub 11} free particle interband transition in contrast with previous photocurrent studies. Several steps are taken to ensure that the active charge separating region of these pn-junctions is suspended off the substrate in a suspended region that is substantially longer than the exciton diffusion length and, therefore, the photocurrent does not originate from a Schottky junction. We present a detailed model of the built-in fields in these pn-junctions, which, together with phonon-assistant exciton dissociation, predicts photocurrents on the same order of those observed experimentally.

  13. Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations

    USGS Publications Warehouse

    Gartner, J.W.; Cheng, R.T.; Wang, P.-F.; Richter, K.

    2001-01-01

    Advances in technology have resulted in a new instrument that is designed for in-situ determination of particle size spectra. Such an instrument that can measure undisturbed particle size distributions is much needed for sediment transport studies. The LISST-100 (Laser In-Situ Scattering and Transmissometry) uses the principle of laser diffraction to obtain the size distribution and volume concentration of suspended material in 32 size classes logarithmically spaced between 1.25 and 250 ??m. This paper describes a laboratory evaluation of the ability of LISST-100 to determine particle sizes using suspensions of single size, artificial particles. Findings show the instrument is able to determine particle size to within about 10% with increasing error as particle size increases. The instrument determines volume (or mass) concentration using a volume conversion factor Cv. This volume conversion factor is theoretically a constant. In the laboratory evaluation Cv is found to vary by a factor of about three over the particle size range between 5 and 200 ??m. Results from field studies in South San Francisco Bay show that values of mass concentration of suspended marine sediments estimated by LISST-100 agree favorably with estimates from optical backscatterance sensors if an appropriate value of Cv, according to mean size, is used and the assumed average particle (aggregate) density is carefully chosen. Analyses of size distribution of suspended materials in South San Francisco Bay over multiple tide cycles suggest the likelihood of different sources of sediment because of different size characteristics during flood and ebb cycles. ?? 2001 Elsevier Science B.V.

  14. Methods to retrieve the complex refractive index of aquatic suspended particles: going beyond simple shapes

    NASA Astrophysics Data System (ADS)

    Sánchez, Albert-Miquel; Piera, Jaume

    2016-07-01

    The scattering properties of aquatic suspended particles have many optical applications. Several data inversion methods have been proposed to estimate important features of particles, such as their size distribution or their refractive index. Most of the proposed methods are based on the Lorenz-Mie theory to solve Maxwell's equations, where particles are considered homogeneous spheres. A generalization that allows consideration of more complex-shaped particles is the T-matrix method. Although this approach imposes some geometrical restrictions (particles must be rotationally symmetrical) it is applicable to many life forms of phytoplankton. In this paper, three different scenarios are considered in order to compare the performance of several inversion methods for retrieving refractive indices. The error associated with each method is discussed and analyzed. The results suggest that inverse methods using the T-matrix approach are useful to accurately retrieve the refractive indices of particles with complex shapes, such as for many phytoplankton organisms.

  15. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    SciTech Connect

    Daniel Molloy

    2003-08-04

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.

  16. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.

    PubMed

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem. PMID:26986377

  17. Vanadium inhalation in a mouse model for the understanding of air-suspended particle systemic repercussion.

    PubMed

    Fortoul, T I; Rodriguez-Lara, V; Gonzalez-Villalva, A; Rojas-Lemus, M; Cano-Gutierrez, G; Ustarroz-Cano, M; Colin-Barenque, L; Montaño, L F; García-Pelez, I; Bizarro-Nevares, P; Lopez-Valdez, N; Falcon-Rodriguez, C I; Jimenez-Martínez, R S; Ruiz-Guerrero, M L; López-Zepeda, L S; Morales-Rivero, A; Muñiz-Rivera-Cambas, A

    2011-01-01

    There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature. PMID:21716674

  18. Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    PubMed Central

    Fortoul, T. I.; Rodriguez-Lara, V.; Gonzalez-Villalva, A.; Rojas-Lemus, M.; Cano-Gutierrez, G.; Ustarroz-Cano, M.; Colin-Barenque, L.; Montaño, L. F.; García-Pelez, I.; Bizarro-Nevares, P.; Lopez-Valdez, N.; Falcon-Rodriguez, C. I.; Jimenez-Martínez, R. S.; Ruiz-Guerrero, M. L.; López-Zepeda, L. S.; Morales-Rivero, A.; Muñiz-Rivera-Cambas, A.

    2011-01-01

    There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature. PMID:21716674

  19. Laser Particle Diffraction: A Novel Approach to Quantify In-Situ Suspended Sediment Particle Size Class Concentrations

    NASA Astrophysics Data System (ADS)

    Freeman, G. W.; Hubbart, J. A.; Chinnasamy, P.; Bulliner, E. A.; Schulz, J.

    2010-12-01

    Hydrologic modification exacted by development can variably increase or decreases diffuse pollution loads, and sediment particle class concentrations. For example, larger particle classes may originate primarily from agricultural and localized riparian development or in-stream hydrogeomorphological processes, while smaller particle size class concentrations may increase in urban environments. These distinctions are critical since fine sediments can transport greater quantities of adsorbed chemicals, nutrients and pollutants, fill interstitial spaces of gravel in spawning beds, and detrimentally affect aquatic biota (e.g. invertebrates and fish). Laser Diffraction (LD) instruments measure optical scattering with specially constructed detectors to detect light diffraction effects of particles of individual size classes. The Streamside Laser In-Situ Scattering and Transmissometry (LISST, Sequoia Scientific, Inc) LD instrument was designed for monitoring suspended sediment in shallow rivers, streams, and ponds sensing particle sizes ranging from 1.9 to 387 um (accuracy ± 10 to 20%). Multiple on-going studies in central Missouri, USA are utilizing LD instruments to better understand anthropogenic diffuse sediment pollution. Three LD units were deployed in a central Missouri stream during spring 2010. In an Urban environment, after a single precipitation event the largest particle class bin (356.79 um) comprised almost 50% of the total concentration of suspended sediments in pre-event flow conditions, whereas in the post-precipitation flow event conditions it comprised nearly 44%, a 12.5% difference. The smallest particle class (2.06 um) concentrations in pre and post-precipitation event conditions was 0.8 and 3.4% respectively reflecting more than 450% increased concentration in post flow conditions after a 13.2 mm (0.52 in) precipitation event. During the month of March 2010 average total concentration of sediment (μl/l) in forested, agricultural, and urban

  20. Tracking suspended particle transport via radium isotopes ((226)Ra and (228)Ra) through the Apalachicola-Chattahoochee-Flint River system.

    PubMed

    Peterson, Richard N; Burnett, William C; Opsahl, Stephen P; Santos, Isaac R; Misra, Sambuddha; Froelich, Philip N

    2013-02-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola-Chattahoochee-Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ((228)Ra and (226)Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ((40)K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  1. Tracking suspended particle transport via radium isotopes ((226)Ra and (228)Ra) through the Apalachicola-Chattahoochee-Flint River system.

    PubMed

    Peterson, Richard N; Burnett, William C; Opsahl, Stephen P; Santos, Isaac R; Misra, Sambuddha; Froelich, Philip N

    2013-02-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola-Chattahoochee-Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ((228)Ra and (226)Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ((40)K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  2. Study of Hydrophilic Electrospun Nanofiber Membranes for Filtration of Micro and Nanosize Suspended Particles

    PubMed Central

    Asmatulu, Ramazan; Muppalla, Harish; Veisi, Zeinab; Khan, Waseem S.; Asaduzzaman, Abu; Nuraje, Nurxat

    2013-01-01

    Polymeric nanofiber membranes of polyvinyl chloride (PVC) blended with polyvinylpyrrolidone (PVP) were fabricated using an electrospinning process at different conditions and used for the filtration of three different liquid suspensions to determine the efficiency of the filter membranes. The three liquid suspensions included lake water, abrasive particles from a water jet cutter, and suspended magnetite nanoparticles. The major goal of this research work was to create highly hydrophilic nanofiber membranes and utilize them to filter the suspended liquids at an optimal level of purification (i.e., drinkable level). In order to overcome the fouling/biofouling/blocking problems of the membrane, a coagulation process, which enhances the membrane’s efficiency for removing colloidal particles, was used as a pre-treatment process. Two chemical agents, Tanfloc (organic) and Alum (inorganic), were chosen for the flocculation/coagulation process. The removal efficiency of the suspended particles in the liquids was measured in terms of turbidity, pH, and total dissolved solids (TDS). It was observed that the coagulation/filtration experiments were more efficient at removing turbidity, compared to the direct filtration process performed without any coagulation and filter media. PMID:24957063

  3. Study of hydrophilic electrospun nanofiber membranes for filtration of micro and nanosize suspended particles.

    PubMed

    Asmatulu, Ramazan; Muppalla, Harish; Veisi, Zeinab; Khan, Waseem S; Asaduzzaman, Abu; Nuraje, Nurxat

    2013-01-01

    Polymeric nanofiber membranes of polyvinyl chloride (PVC) blended with polyvinylpyrrolidone (PVP) were fabricated using an electrospinning process at different conditions and used for the filtration of three different liquid suspensions to determine the efficiency of the filter membranes. The three liquid suspensions included lake water, abrasive particles from a water jet cutter, and suspended magnetite nanoparticles. The major goal of this research work was to create highly hydrophilic nanofiber membranes and utilize them to filter the suspended liquids at an optimal level of purification (i.e., drinkable level). In order to overcome the fouling/biofouling/blocking problems of the membrane, a coagulation process, which enhances the membrane's efficiency for removing colloidal particles, was used as a pre-treatment process. Two chemical agents, Tanfloc (organic) and Alum (inorganic), were chosen for the flocculation/coagulation process. The removal efficiency of the suspended particles in the liquids was measured in terms of turbidity, pH, and total dissolved solids (TDS). It was observed that the coagulation/filtration experiments were more efficient at removing turbidity, compared to the direct filtration process performed without any coagulation and filter media.

  4. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    SciTech Connect

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  5. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Reponen, Tiina; McKay, Roy; Shukla, Rakesh; Haruta, Hiroki; Sekar, Padmini; Grinshpun, Sergey A

    2010-01-01

    The aim of this study was to investigate respirator filter and faceseal penetration of particles representing bacterial and fungal spore size ranges (0.7-4 mum). First, field experiments were conducted to determine workplace protection factors (WPFs) for a typical N95 filtering facepiece respirator (FFR). These data (average WPF = 515) were then used to position the FFR on a manikin to simulate realistic donning conditions for laboratory experiments. Filter penetration was also measured after the FFR was fully sealed on the manikin face. This value was deducted from the total penetration (obtained from tests with the partially sealed FFR) to determine the faceseal penetration. All manikin experiments were repeated using three sinusoidal breathing flow patterns corresponding to mean inspiratory flow rates of 15, 30, and 85 l min(-1). The faceseal penetration varied from 0.1 to 1.1% and decreased with increasing particle size (P < 0.001) and breathing rate (P < 0.001). The fractions of aerosols penetrating through the faceseal leakage varied from 0.66 to 0.94. In conclusion, even for a well-fitting FFR respirator, most particle penetration occurs through faceseal leakage, which varies with breathing flow rate and particle size.

  6. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Reponen, Tiina; McKay, Roy; Shukla, Rakesh; Haruta, Hiroki; Sekar, Padmini; Grinshpun, Sergey A

    2010-01-01

    The aim of this study was to investigate respirator filter and faceseal penetration of particles representing bacterial and fungal spore size ranges (0.7-4 mum). First, field experiments were conducted to determine workplace protection factors (WPFs) for a typical N95 filtering facepiece respirator (FFR). These data (average WPF = 515) were then used to position the FFR on a manikin to simulate realistic donning conditions for laboratory experiments. Filter penetration was also measured after the FFR was fully sealed on the manikin face. This value was deducted from the total penetration (obtained from tests with the partially sealed FFR) to determine the faceseal penetration. All manikin experiments were repeated using three sinusoidal breathing flow patterns corresponding to mean inspiratory flow rates of 15, 30, and 85 l min(-1). The faceseal penetration varied from 0.1 to 1.1% and decreased with increasing particle size (P < 0.001) and breathing rate (P < 0.001). The fractions of aerosols penetrating through the faceseal leakage varied from 0.66 to 0.94. In conclusion, even for a well-fitting FFR respirator, most particle penetration occurs through faceseal leakage, which varies with breathing flow rate and particle size. PMID:19700488

  7. Monte Carlo simulations and dynamic field theory for suspended particles in liquid crystalline systems

    NASA Astrophysics Data System (ADS)

    Grollau, S.; Kim, E. B.; Guzmán, O.; Abbott, N. L.; de Pablo, J. J.

    2003-07-01

    Monte Carlo simulations and dynamic field theory are used to study spherical particles suspended in a nematic liquid crystal. Within these two approaches, we investigate the binding of the defects to the particles, the adsorption of a particle at a solid surface, and two particles interacting with each other. Quantitative comparisons indicate good agreement between the two approaches. A Monte Carlo method based on the combination of canonical expanded ensemble simulations with a density-of-state formalism is used to determine the potential of mean force between one particle and a hard wall. On the other hand, the potential of mean force is evaluated using a dynamic field theory, where the time-dependent evolution of the second rank tensor includes two major aspects of liquid crystalline materials, namely the excluded volume and the long-range order elasticity. The results indicate an effective repulsive force that acts between the particle and the wall. Layer formation at the surface of the hard wall gives rise to local minima in the potential of mean force. The director profile for a particle at contact with a solid surface is characterized by a disclination line distorted and attracted towards the wall. The structure of the nematic for two particles at short distances is also investigated. Our results indicate a structure where the two particles are separated by a circular disclination line. The potential of mean force associated with this configuration indicates an effective attractive interaction between the two particles.

  8. Determining suspended sediment particle size information from acoustical and optical backscatter measurements

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Sherwood, Christopher R.; Agrawal, Yogesh C.

    1994-08-01

    During the winter of 1990-1991 an Acoustic BackScatter System (ABSS), five Optical Backscatterance Sensors (OBSs) and a Laser In Situ Settling Tube (LISST) were deployed in 90 m of water off the California coast for 3 months as part of the Sediment Transport Events on Shelves and Slopes (STRESS) experiment. By looking at sediment transport events with both optical (OBS) and acoustic (ABSS) sensors, one obtains information about the size of the particles transported as well as their concentration. Specifically, we employ two different methods of estimating "average particle size". First, we use vertical scattering intensity profile slopes (acoustical and optical) to infer average particle size using a Rouse profile model of the boundary layer and a Stokes law fall velocity assumption. Secondly, we use a combination of optics and acoustics to form a multifrequency (two frequency) inverse for the average particle size. These results are compared to independent observations from the LISST instrument, which measures the particle size spectrum in situ using laser diffraction techniques. Rouse profile based inversions for particle size are found to be in good agreement with the LISST results except during periods of transport event initiation, when the Rouse profile is not expected to be valid. The two frequency inverse, which is boundary layer model independent, worked reasonably during all periods, with average particle sizes correlating well with the LISST estimates. In order to further corroborate the particle size inverses from the acoustical and optical instruments, we also examined size spectra obtained from in situ sediment grab samples and water column samples (suspended sediments), as well as laboratory tank experiments using STRESS sediments. Again, good agreement is noted. The laboratory tank experiment also allowed us to study the acoustical and optical scattering law characteristics of the STRESS sediments. It is seen that, for optics, using the cross

  9. Particle Size-Selective Assessment of Protection of European Standard FFP Respirators and Surgical Masks against Particles-Tested with Human Subjects.

    PubMed

    Lee, Shu-An; Hwang, Dong-Chir; Li, He-Yi; Tsai, Chieh-Fu; Chen, Chun-Wan; Chen, Jen-Kun

    2016-01-01

    This study was conducted to investigate the protection of disposable filtering half-facepiece respirators of different grades against particles between 0.093 and 1.61  μm. A personal sampling system was used to particle size-selectively assess the protection of respirators. The results show that about 10.9% of FFP2 respirators and 28.2% of FFP3 respirators demonstrate assigned protection factors (APFs) below 10 and 20, which are the levels assigned for these respirators by the British Standard. On average, the protection factors of FFP respirators were 11.5 to 15.9 times greater than those of surgical masks. The minimum protection factors (PFs) were observed for particles between 0.263 and 0.384  μm. No significant difference in PF results was found among FFP respirator categories and particle size. A strong association between fit factors and protection factors was found. The study indicates that FFP respirators may not achieve the expected protection level and the APFs may need to be revised for these classes of respirators.

  10. Particle Size-Selective Assessment of Protection of European Standard FFP Respirators and Surgical Masks against Particles-Tested with Human Subjects.

    PubMed

    Lee, Shu-An; Hwang, Dong-Chir; Li, He-Yi; Tsai, Chieh-Fu; Chen, Chun-Wan; Chen, Jen-Kun

    2016-01-01

    This study was conducted to investigate the protection of disposable filtering half-facepiece respirators of different grades against particles between 0.093 and 1.61  μm. A personal sampling system was used to particle size-selectively assess the protection of respirators. The results show that about 10.9% of FFP2 respirators and 28.2% of FFP3 respirators demonstrate assigned protection factors (APFs) below 10 and 20, which are the levels assigned for these respirators by the British Standard. On average, the protection factors of FFP respirators were 11.5 to 15.9 times greater than those of surgical masks. The minimum protection factors (PFs) were observed for particles between 0.263 and 0.384  μm. No significant difference in PF results was found among FFP respirator categories and particle size. A strong association between fit factors and protection factors was found. The study indicates that FFP respirators may not achieve the expected protection level and the APFs may need to be revised for these classes of respirators. PMID:27195721

  11. ELEMENTAL ANALYSIS OF RESPIRABLE TIRE PARTICLES AND ASSESSMENT OF CARDIO-PULMONARY TOXICITY IN RATS

    EPA Science Inventory

    Elemental Analysis of Respirable Tire Particles and Assessment of Cardio-pulmonary Toxicity in Rats

    R.R. Gottipolu, PhD1, E. Landa, PhD2, J.K. McGee, MS1, M.C. Schladweiler, BS1, J.G. Wallenborn, MS3, A.D. Ledbetter, BS1, J.E. Richards, MS1 and U.P. Kodavanti, PhD1. 1NHEER...

  12. From suspended particles to strata: The fate of terrestrial substances in the Gaoping (Kaoping) submarine canyon

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Hung, Jia-Jang; Lin, Hui-Ling; Huh, Chih-An; Lee, Chon-Lin; Hsu, Ray T.; Huang, Ya-Wen; Chu, Joel C.

    2009-03-01

    The river-sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pb ex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes. Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m 2/day, whose values are 2-7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in

  13. Impact of two particle measurement techniques on the determination of N95 class respirator filtration performance against ultrafine particles.

    PubMed

    Mostofi, Reza; Noël, Alexandra; Haghighat, Fariborz; Bahloul, Ali; Lara, Jaime; Cloutier, Yves

    2012-05-30

    The purpose of this experimental study was to compare two different particle measurement devices; an Electrical Low Pressure Impactor (ELPI) and a Scanning Mobility Particle Sizer (SMPS), to measure the number concentration and the size distribution of NaCl salt aerosols to determine the collection efficiency of filtering respirators against poly disperse aerosols. Tests were performed on NIOSH approved N95 filtering face-piece respirators (FFR), sealed on a manikin head. Ultrafine particles found in the aerosols were also collected and observed by transmission electron microscopy (TEM). According to the results, there is a systematic difference for the particle size distribution measured by the SMPS and the ELPI. It is largely attributed to the difference in the measurement techniques. However, in spite of these discrepancies, reasonably similar trends were found for the number concentration with both measuring instruments. The particle penetration, calculated based on mobility and aerodynamic diameters, never exceeded 5% for any size range measured at constant flow rate of 85 L/min. Also, the most penetrating particle size (MPPS), with the lowest filtration efficiency, would occur at a similar ultrafine size range <100 nm. With the ELPI, the MPPS was at 70 nm aerodynamic diameter, whereas it occurred at 40 nm mobility diameter with the SMPS. PMID:22464753

  14. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles.

  15. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles. PMID:24479508

  16. Individual particle analysis of suspended materials in Onondaga Lake, New York

    SciTech Connect

    Johnson, D.L.; Jiao, Jianfu; DosSantos, S.G. ); Effler, S.W. )

    1991-04-01

    The chemical and physical characteristics of the particles of the near-surface waters of polluted, hypereutrophic, Onondaga Lake, NY, were observed by individual particle analysis techniques for the spring to fall interval of 1987. Strong temporal variations were documented for the projected particle area per unit volume (PAV), and the relative contribution that six chemical groupings of particles made to the overall assemblage of particles. These dynamics were regulated largely by (1) the composition and level of phytoplankton growth, (2) tributary loading of particles, particularly after runoff events, and (3) the precipitation of calcium carbonate. Approximately 85% of the PAV was associated with in-lake processes and {approximately} 15% was derived from tributary transport. Approximately 25% of the internally produced PAV was related to calcium carbonate precipitation; the remainder was associated with biological production. A once in 7-year runoff event caused a 5-fold increase in the concentration of suspended particles. Much of the increase was due to calcium carbonate precipitation that coated various nuclei particles.

  17. Glider monitoring of shelf suspended particle dynamics and transport during storm and flooding conditions

    NASA Astrophysics Data System (ADS)

    Bourrin, François; Many, Gaël; Durrieu de Madron, Xavier; Martín, Jacobo; Puig, Pere; Houpert, Loic; Testor, Pierre; Kunesch, Stéphane; Mahiouz, Karim; Béguery, Laurent

    2015-10-01

    Transfers of particulate matter on continental margins primarily occur during energetic events. As part of the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) experiment, a glider equipped with optical sensors was deployed in the coastal area of the Gulf of Lions, NW Mediterranean in March 2011 to assess the spatio-temporal variability of hydrology, suspended particles properties and fluxes during energetic conditions. This deployment complemented a larger observational effort, a part of the MOOSE (Mediterranean Ocean Observing System of the Environment) network, composed of a coastal benthic station, a surface buoy and moorings on the continental slope. This set of observations permitted to measure the impact of three consecutive storms and a flood event across the entire continental shelf. Glider data showed that the sediment resuspension and transport observed at the coastal station during the largest storm (Hs>4 m) was effective down to a water depth of 80 m. The mid-shelf mud belt, located between 40 and 90 m depth, appears as the zone where the along-shelf flux of suspended sediment is maximum. Besides, the across-shelf flux of suspended sediment converges towards the outer limit of the mid-shelf mud belt, where deposition of suspended particles probably occurs and contributes to the nourishment of this area. Hydrological structures, suspended particles transport and properties changed drastically during stormy periods and the following flood event. Prior to the storms, the shelf waters were weakly stratified due in particular to the presence of cold dense water on the inner- and mid-shelf. The storms rapidly swept away this dense water, as well as the resuspended sediments, along the shelf and towards a downstream submarine canyon. The buoyant river plumes that spread along the shelf after the flooding period provoked a restratification of the water column on the inner- and mid-shelf. The analysis of glider's optical data at

  18. The effect of suspended particles on Jean's criterion for gravitational instability

    NASA Astrophysics Data System (ADS)

    Wollkind, David J.; Yates, Kemble R.

    1990-07-01

    The effect that the proper inclusion of suspended particles has on Jeans' criterion for the self-gravitational instability of an unbounded nonrotating adiabatic gas cloud is examined by formulating the appropriate model system, introducing particular physically plausible equations of state and constitutive relations, performing a linear stability analysis of a uniformly expanding exact solution to these governing equations, and exploiting the fact that there exists a natural small material parameter for this problem given by N1/n sub 1, the ratio of the initial number density for the particles to that for the gas. The main result of this investigation is the derivation of an altered criterion which can substantially reduce Jeans' original critical wavelength for instability. It is then shown that the existing discrepancy between Jeans' theoretical prediction using and actual observational data relevant to the Andromeda nebula M31 can be accounted for by this new criterion of assuming suspended particles of a reasonable grain size and distribution to be present.

  19. Evaluation of the surface roughness effect on suspended particle deposition near unpaved roads

    SciTech Connect

    Zhu, Dongzi; Gillies, J. A.; Etyemezian, V.; Nikolich, G.; Shaw, William J.

    2015-11-11

    The downwind transport and deposition of suspended dust raised by a vehicle driving on unpaved roads was studied for four differently vegetated surfaces in the USA states of Kansas and Washington, and one barren surface in Nevada. A 10 m high tower adjacent to the source (z10 m downwind) and an array of multi-channel optical particle counters at three positions downwind of the source measured the flux of particles and the particle size distribution in the advecting dust plumes in the horizontal and vertical directions. Aerodynamic parameters such as friction velocity (u*) and surface roughness length (z0) were calculated from wind speed measurements made on the tower. Particle number concentration, PM10 mass exhibited an exponential decay along the direction of transport. Coarse particles accounted for z95% of the PM10 mass, at least to a downwind distance of 200 m from the source. PM10 removed by deposition was found to increase with increasing particle size and increasing surface roughness under similar moderate wind speed conditions. The surface of dense, long grass (1.2 m high and complete surface cover) had the greatest reduction of PM10 among the five surfaces tested due to deposition induced by turbulence effects created by the rougher surface and by enhanced particle impaction/ interception effects to the grass blades.

  20. Biological flocculation of suspended particles in nutrient-rich aqueous ecosystems

    NASA Astrophysics Data System (ADS)

    Maggi, Federico

    2009-09-01

    SummaryWe describe the development and testing of a mechanistic model (BFLOC) to predict the average size of sediment aggregates in nutrient-rich aqueous ecosystems. The original capability of BFLOC is to couple turbulence-induced flocculation of suspended minerals and micro-organisms with the nutrient-related dynamics of aggregate-attached micro-organisms. The model, calibrated and validated against the average floc size recorded at two stations in the Belgian North Sea [Fettweis, M., Francken, F., Pison V., Ven den Eynde, D., 2006. Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Marine Geology 235, 63-74], closely captured site conditions and significantly clarified interpretation of field measurements. Modeling results indicated that an accurate prediction of time-varying floc sizes was possible only by taking into account the organic fraction of the suspended particle matter and the micro-organism colonization of the floc micro-environment. BFLOC showed that the floc excess density strongly correlated with the floc biomass volume, while the settling velocity strongly correlated with the floc mineral volume. We noticed that the settling velocity was poorly correlated with the total floc volume (and floc size), suggesting a revision of current methods that assess suspended matter deposition uniquely on the basis of the floc size. Additionally, various hypotheses tested with BFLOC suggested that the effect of aggregate-attached biomass on aggregation and breakup rates was very small when it was accounted for with a first-order description. More generally, the sediment and biomass parameters found here were nearly site independent suggesting that the mechanistic approach of BFLOC was relatively robust.

  1. Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects.

    PubMed

    Martin, S B; Moyer, E S

    2000-08-01

    New electrostatic filter media has been developed for use in 42 CFR 84 negative pressure particulate respirator filters. This respirator filter media was not available for evaluation prior to the change from 30 CFR 11 to 42 CFR 84. Thus, characterization of this filter media is warranted. In this study, the new 42 CFR 84 electrostatic respirator filters were investigated with respect to filter penetration and most penetrating particle size. Three different models of N95 filters, along with one model each of the N99, R95, and P100 class filters were used in this study. First, three of each filter were loaded with a sodium chloride (NaCl) aerosol, and three of each filter were loaded with a dioctyl phthalate (DOP) aerosol to obtain normal background penetration results for each filter. Then, two new filters of each type were dipped in isopropanol for 15 seconds and allowed to dry. This isopropanol dip should reduce or eliminate any electrostatic charge on the fibers of each filter, as reported in the technical literature. These dipped filters, along with controls of each filter type, were tested on a TSI 8160 filter tester to determine the most penetrating particle size. These same filters were then tested against a NaCl aerosol to get final penetration values. Electret filters rely heavily on their electrostatic charge to provide adequate filter efficiencies, and correlations between penetration and a filter's electrostatic characteristics are found in the technical literature. In all six of the filter models tested, filter penetration values increased considerably and the most penetrating particle size noticeably shifted toward larger particles. These results are important in better understanding how these new filter materials perform under various conditions, and they indicate the need for additional research to define environmental conditions that may affect electrostatic filter efficiency. PMID:10957816

  2. Pulmonary bioavailability and fine particle enrichment of 2,3,7,8-tetrachlorodibenzo-p-dioxin in respirable soil particles

    SciTech Connect

    Nessel, C.S.; Amoruso, M.A.; Umbreit, T.H.; Meeker, R.J.; Gallo, M.A. )

    1992-08-01

    The pulmonary bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the enrichment of polychlorinated dioxins (PCDDs) and furans (PCDFs) in fine particles were evaluated to assess the implications that these factors have on risk and exposure assessments. Respirable subfractions of PCDD-contaminated soil from a former 2,4,5-trichlorophenoxyacetic acid manufacturing site were isolated by chemical dispersion and gravity sedimentation. Analysis of the subfractions revealed that there was a size-dependent enrichment of PCDDs and PCDFs, with smaller particles more highly contaminated. TCDD was enriched up to 33-fold as compared to unfractionated soil. Soil and laboratory-recontaminated gallium oxide, which served as the positive control, were administered by intratracheal instillation to female Sprague-Dawley rats. Animals were terminated up to 28 days following treatment and pulmonary bioavailability of TCDD was assessed by hepatic enzyme induction and TCDD concentration. Enzyme induction was dependent on the duration of exposure with up to 56 and 918% increases in cytochrome P450 and aryl hydrocarbon hydroxylase (AHH) activity, respectively, following exposure to PCDD-contaminated soil. There was no significant difference in AHH induction between animals which received contaminated soil and those treated with the positive control. Hepatic concentration of TCDD in soil-exposed rats was 115, 101, and 179% of positive controls at 1, 7, and 28 days post-treatment, suggesting that the soil or cocontaminants influenced retention of TCDD in the liver. These data indicate that the relative pulmonary bioavailability of TCDD on respirable soil particles is 100% as compared to laboratory-recontaminated gallium oxide and that PCDDs and PCDFs are highly enriched on respirable particles.

  3. The fluctuation energy balance in non-suspended fluid-mediated particle transport

    SciTech Connect

    Pähtz, Thomas; Durán, Orencio; Ho, Tuan-Duc; Valance, Alexandre; Kok, Jasper F.

    2015-01-15

    Here, we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids (“saltation” and “bedload,” respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts (“splash”) in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to particle tracking velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small.

  4. Influence of neighboring particles on the drag of a particle suspended in laminar flows

    NASA Astrophysics Data System (ADS)

    Roig, Adam Vincent

    Understanding particle-fluid flows is very important for the areas of sedimentation in river beds, fluidized bed reactors, and other fields of multiphase flow. The effect of one particle on another in a fluid flow is not very well understood nor does a correlation exist to describe the behavior of the drag coefficient between particles. The use of Proteus was validated by comparison to previous studies to the result obtained through simulations in Proteus, including analysis of the wake structure of a single sphere. Two particles were then analyzed for various Reynolds numbers less than 250 but greater than 5 and for the dimensionless gap of L/D ≥ 2, where L is the distance between the two particle centers and D is the diameter of the particles. Two arrangements were used for simulation, with the particles spaced horizontally or vertically within the fluid flow. Both orientations were evaluated for the effects of the dimensionless gap on the drag coefficient. The wake structure at higher Reynolds numbers were also evaluated for effects due to neighboring particles. A correlation was developed for the case of the horizontal particles at a dimensionless gap, L/D ≥ 2 for the range of Reynolds numbers described. The orientation effect is then studied at a fixed distance for offsets of thirty, forty-five and sixty degrees from the horizontal. Results are also presented to evaluate the effect of the diameter of a neighboring particle. The current results are restricted to the case described in the work. Future studies may build on the current work to extend the work to other effects of neighboring particles and multiple particle influence.

  5. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    PubMed

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p < 0.05), raising a concern about applicability of the N95 filters performance obtained with the NaCl aerosol challenge to protection against combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p < 0.05) factors affecting the performance of the N95 FFR filter. In contrast to N95 filters, the penetration of combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles

  6. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    PubMed

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p < 0.05), raising a concern about applicability of the N95 filters performance obtained with the NaCl aerosol challenge to protection against combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p < 0.05) factors affecting the performance of the N95 FFR filter. In contrast to N95 filters, the penetration of combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles

  7. Assessing the health implications of turbidity and suspended particles in protected catchments.

    PubMed

    Cinque, K; Stevens, M A; Roser, D J; Ashbolt, N J; Leeming, R

    2004-01-01

    The supply of unfiltered disinfected drinking water from Melbourne's fully protected catchments means that the water-quality managers must ensure that the source water poses no public health risk. High turbidity is currently used as a surrogate of pathogens, and harvesting of water is based on its measurement. The work presented here summarises suspended particle and associated pathogen, microbial indicator and faecal biomarker concentrations collected to (a) quantify turbidity in an Australian water supply system and (b) assess the possibility of increasing water harvesting from selected tributaries. Pathogens and microbial indicators were present in low numbers in these source waters; increased turbidity during storm events was not associated with an increase in pathogen concentration. The results confirmed that protected catchments, along with good management, were effective barriers to pathogen contamination. Aesthetic issues still need to be addressed, but no measurable increase in microbiological risk was associated with storm-generated particles.

  8. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    SciTech Connect

    Gu, Baohua; Mishra, Bhoopesh; Miller, Carrie L; Wang, Wei; Lai, Barry; Brooks, Scott C; Kemner, Kenneth M; Liang, Liyuan

    2014-01-01

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied X-ray fluorescence (XRF) microprobes to directly visualize and quantify the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg contaminated freshwater system. Up to 175 g/g Hg is found on suspended particles. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM), possibly as Hg-NOM-iron oxide ternary complexes. The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of inorganic Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, is an important sink for Hg in natural aquatic environments.

  9. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    DOE PAGES

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-05-23

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied X-ray fluorescence (XRF) microprobes to directly visualize and quantify the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg contaminated freshwater system. Up to 175 μg g–1 Hg is found on suspended particles. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM), possibly as Hg-NOM-iron oxide ternary complexes. The diatom-bound Hg is mostly found on outer surfaces of themore » cells, suggesting passive sorption of inorganic Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, is an important sink for Hg in natural aquatic environments.« less

  10. Control of Respirable Particles in Indoor Air with Portable AirCleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Grimsrud, D.T.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-10-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 {micro}m and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h{sup -1}. Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was the most efficient air cleaner studied.

  11. Control of respirable particles in indoor air with portable air cleaners

    NASA Astrophysics Data System (ADS)

    Offermann, F. J.; Sextro, R. G.; Fisk, W. J.; Grimsrud, D. T.; Nazaroff, W. W.; Nero, A. V.; Revzan, K. L.; Yater, J.

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 μm and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h -1. Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was most efficient air cleaner studied.

  12. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    PubMed

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  13. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    PubMed

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  14. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    USGS Publications Warehouse

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  15. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    NASA Astrophysics Data System (ADS)

    Landers, Mark N.; Sturm, Terry W.

    2013-09-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC˜T) for single stormflow events was observed and quantified for a dataset of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009-2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine silt and smaller sizes (finer than 16 µm). This study shows that small changes in the often assumed stability of the PSD are significant to SSC˜T relations. Changes of only 5 µm in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC˜T rating that can increase error and produce bias. Observed SSC˜T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity limited for sand-sized sediment in the channel and supply limited for fine silt and smaller sediment from the hillslope.

  16. Hydrolytic ectoenzyme activity associated with suspended and sinking organic particles within the anoxic Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Taylor, Gordon T.; Thunell, Robert; Varela, Ramon; Benitez-Nelson, Claudia; Scranton, Mary I.

    2009-08-01

    Ectohydrolase activities of suspended microbiota were compared to those associated with sinking particles (sed-POM) retrieved from sediment traps deployed in the permanently anoxic Cariaco Basin. In shore-based assays, activities of aminopeptidase, β-glucosidase, chitinase and alkaline phosphatase were measured in samples obtained from oxic and anoxic depths using MUF- and MCA-labeled fluorogenic substrate analogs. Hydrolysis potentials for these enzymes in the seston varied widely over the nine cruises sampled (8 Nov 1996-3 May 2000) and among depths (15-1265 m); from <10 to over 1600 nM d -1 hydrolysate released, generally co-varying with one another and with suspended particulate organic carbon (POC) and particulate nitrogen (PN). Hydrolytic potentials, prokaryotic abundances and POC/PN concentrations in sinking debris were 400-1.3×10 7 times higher than in comparable volumes of seawater. However when normalized to PN, hydrolytic potentials in sediment trap samples were not demonstrably higher than in Niskin bottle samples. We estimate that PN pools in sediment trap samples were turned over 2-1400 times (medians=7-26 x) slower by hydrolysis than were suspended PN pools. Median prokaryotic growth rates (divisions d -1) in sinking debris were also ˜150 times slower than for bacterioplankton. Hydrolytic potentials in surface oxic waters were generally faster than in underlying anoxic waters on a volumetric basis (nM hydrolysate d -1), but were not significantly ( p>0.05) different when normalized to PN or prokaryote abundances. Alkaline phosphatase was consistently the most active ectohydrolase in both sample types, suggesting that Cariaco Basin assemblages were adapted to decomposing phosphate esters in organic polymers. However, phosphorus limitation was not evident from nutrient inventories in the water column. Results support the hypothesis that efficiencies of polymer hydrolysis in anoxic waters are not inherently lower than in oxic waters.

  17. Dust Library of Plasmonically Enhanced Infrared Spectra of Individual Respirable Particles.

    PubMed

    Luthra, Antriksh; Ravi, Aruna; Li, Sirui; Nystrom, Steven V; Thompson, Zechariah; Coe, James V

    2016-09-01

    This work characterizes collections of infrared spectra of individual dust particles of ∼4 µm size that were obtained from three very different environments: our lab air, a home air filter, and the 11 September 2001 World Trade Center event. Particle collection was done either directly from the air or by placing dust powder from various samples directly on the plasmonic mesh with 5 µm square holes as air is pumped through the mesh. This arrangement enables the recording of "scatter-free" infrared absorption spectra of individual particles of size comparable to the probing wavelengths whose vibrational signatures are otherwise dominated by scattering and dispersive line shape distortions. The spectra are sensitive to the amounts of various infrared active components and analysis using a Mie-Bruggeman model for mixed composition particles provides volume fractions of the components. Inhalation of dust particles of ∼4 µm size has significant health consequences as these are among the largest inhaled into people's lungs. The chemical composition of ∼4 µm respirable particles is of great interest from health, atmospheric, and environmental perspectives as different environments may pose different hazards and spectroscopic challenges. PMID:27440136

  18. Dust Library of Plasmonically Enhanced Infrared Spectra of Individual Respirable Particles.

    PubMed

    Luthra, Antriksh; Ravi, Aruna; Li, Sirui; Nystrom, Steven V; Thompson, Zechariah; Coe, James V

    2016-09-01

    This work characterizes collections of infrared spectra of individual dust particles of ∼4 µm size that were obtained from three very different environments: our lab air, a home air filter, and the 11 September 2001 World Trade Center event. Particle collection was done either directly from the air or by placing dust powder from various samples directly on the plasmonic mesh with 5 µm square holes as air is pumped through the mesh. This arrangement enables the recording of "scatter-free" infrared absorption spectra of individual particles of size comparable to the probing wavelengths whose vibrational signatures are otherwise dominated by scattering and dispersive line shape distortions. The spectra are sensitive to the amounts of various infrared active components and analysis using a Mie-Bruggeman model for mixed composition particles provides volume fractions of the components. Inhalation of dust particles of ∼4 µm size has significant health consequences as these are among the largest inhaled into people's lungs. The chemical composition of ∼4 µm respirable particles is of great interest from health, atmospheric, and environmental perspectives as different environments may pose different hazards and spectroscopic challenges.

  19. Chemical and Biological Composition of Suspended Particles and Aggregates in the Baltic Sea in Summer (1999)

    NASA Astrophysics Data System (ADS)

    Engel, A.; Meyerhöfer, M.; von Bröckel, K.

    2002-11-01

    Suspended particles and particle aggregates, which formed from concentrated field samples on the roller table, were characterized biologically and chemically along a transect through the Baltic Sea in summer 1999. Phytoplankton composition in field samples was dominated by cyanobacteria, including the filamentous diazotrophic cyanobacteria Aphanizomenon ' baltica', Nodularia spumigena and Anabaena spp. These species formed aggregates together with diatoms, mainly Skeletonema costatum and Chaetoceros spp. and with dinoflagellates, mainly withDinophysis norvegica . Compared to the Redfield ratio, concentration ratios of particulate organic carbon, nitrogen and phosphorus, [POC]:[PON]:[POP], indicated an enrichment of carbon, especially in aggregates. However, regression analysis indicated a higher production rate of PON relative to POP and POC and significant background concentrations of POC. In field samples the concentration of transparent exopolymer particles (TEP) varied around 200 μg Xanthan Equiv. l-1 and comprised a volume fraction of 2-7 ppm and an abundance of about 105 TEP ml-1. TEP were enriched in aggregates as inferred from volume ratios of TEP to conventional particles. It is suggested, that TEP contribute substantially to the background concentration of POC, while the high production rate of PON is attributed to nitrogen fixation of diazotrophic cyanobacteria.

  20. Control of respirable particles and radon progeny with portable air cleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr/sup -1/. Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr/sup -1/. The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables.

  1. Effects of hydrodynamic retardation and interparticle interactions on the self-assembly in a drying droplet containing suspended solid particles.

    PubMed

    Lebovka, N I; Khrapatiy, S; Melnyk, R; Vygornitskii, M

    2014-05-01

    Self-assembly of particles, suspended in a drying droplet, were studied by the Monte Carlo method. The Brownian diffusion of particles was simulated accounting for the effect of hydrodynamic retardation and interparticle interactions. The model allowed for explaining formation of the "coffee ring" patterns even without accounting for the radial flows towards the three-phase contact line. Morphologies of the drying patterns and their dependence on interparticle interactions and concentration of particles are discussed. PMID:25353800

  2. The oceanographic toolbox for the collection of sinking and suspended marine particles

    NASA Astrophysics Data System (ADS)

    McDonnell, Andrew M. P.; Lam, Phoebe J.; Lamborg, Carl H.; Buesseler, Ken O.; Sanders, Richard; Riley, Jennifer S.; Marsay, Chris; Smith, Helen E. K.; Sargent, Elizabeth C.; Lampitt, Richard S.; Bishop, James K. B.

    2015-04-01

    Marine particles play a central role in controlling the transport, cycling, and inventories of many major elements and trace elements and isotopes throughout the oceans. Studies seeking to elucidate the biogeochemical roles of marine particles often require reliable ways to collect them from the ocean. Here, we review the oceanographic toolbox of techniques and instrumentation that are employed to collect both suspended and sinking particles. With these tools, it is possible to determine both the concentrations and vertical fluxes of important elements and individual particle types. We describe the various methods for quantifying the concentrations of particulate matter with in situ pumps, towed sampling devices, bottle collectors, and large volume capture devices. The uses of various types of flux collection platforms are discussed including surface tethered, neutrally buoyant, and bottom moored devices. We address the issues of sediment trap collection biases and the apparent inconsistencies that can arise due to differences in the temporal and spatial scales sampled by the various methodologies. Special attention is given to collection considerations made for the analysis of trace metals and isotopes, as these methodologies are of high importance to the ongoing GEOTRACES program which seeks to identify the processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean. With the emergence of new particle collection methodologies and the continued reliance on traditional collection methods, it is imperative that we combine these multiple approaches in ways that will help improve their accuracy and precision while enhancing their utility in advancing understanding of the biogeochemical and ecological roles of marine particles.

  3. Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particles suspended in decaying isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Kaufmann, A.; Moreau, M.; Simonin, O.; Helie, J.

    2008-06-01

    The purpose of this paper is to evaluate the accuracy of the mesoscopic approach proposed by Février et al. [P. Février, O. Simonin, K.D. Squires, Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study, J. Fluid Mech. 533 (2005) 1-46] by comparison against the Lagrangian approach for the simulation of an ensemble of non-colliding particles suspended in a decaying homogeneous isotropic turbulence given by DNS. The mesoscopic Eulerian approach involves to solve equations for a few particle PDF moments: number density, mesoscopic velocity, and random uncorrelated kinetic energy (RUE), derived from particle flow ensemble averaging conditioned by the turbulent fluid flow realization. In addition, viscosity and diffusivity closure assumptions are used to compute the unknown higher order moments which represent the mesoscopic velocity and RUE transport by the uncorrelated velocity component. A detailed comparison between the two approaches is carried out for two different values of the Stokes number based on the initial fluid Kolmogorov time scale, St=0.17 and 2.2. In order to perform reliable comparisons for the RUE local instantaneous distribution and for the mesoscopic kinetic energy spectrum, the error due to the computation method of mesoscopic quantities from Lagrangian simulation results is evaluated and minimized. A very good agreement is found between the mesoscopic Eulerian and Lagrangian predictions for the small particle Stokes number case corresponding to the smallest particle inertia. For larger particle inertia, a bulk viscous term is included in the mesoscopic velocity governing equation to avoid spurious spatial oscillation that may arise due to the inability of the numerical scheme to resolve sharp number density gradients. As a consequence, for St=2.2, particle number density and RUE spatial distribution predicted by the

  4. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay

    SciTech Connect

    Moffett, J.W. )

    1994-01-01

    The oxidation kinetics of Ce(III) and Mn(II) were studied in Chesapeake Bay in March and July 1990 to establish the role of water column redox processes in contributing to Ce anomalies observed in this estuary (SHOLKOVITZ and ELDERFIELD, 1988; SHOLKOVITZ et al., 1992). Oxidation was measured by adding Mn(II) and Ce(III) to freshly collected water samples as radiotracers and measuring their uptake onto the ambient suspended particle assemblage. Mn(II) oxidation was measured by following the uptake of [sup 54]Mn(II) onto suspended particles and utilizing protocols established by other workers to distinguish oxidation from Mn(II) adsorption. The same protocols were applicable to Ce(III), using [sup 139]Ce(III), and were supported by the use of [sup 152]Eu(III) as a nonredox reactive control. Specific rates of Ce(III) and MN(II) oxidation measured at a station in the North Bay (depth = 4 m) in July were 2016% per day and 4032% per day, respectively. In March, at the same station, the specific rate of Mn(II) of oxidation was only 1-% per day, and Ce(III) oxidation was undetectable. Both Ce(III) and Mn(II) oxidation processes were inhibited by azide, indicating that they were microbially mediated. The seasonal differences probably reflect strong seasonal variation in the abundance of Mn oxidizing bacteria. No Ce(III) oxidation occured in samples collected below the oxic/anoxic interface in July. The specific rates of oxidation for both elements were over 1000 times higher than those measured in the Sargasso Sea. However, the specific rates for Ce(III) and Mn(II) were very similar to each other. This fact, coupled with similar spatial and temporal trends for specific oxidation rates, suggests a common mechanism of oxidation of both elements which may be significant in a wide range of marine environments.

  5. Laboratory faceseal leakage evaluation of n95 filtering facepiece respirators against nanoparticles and "all size" particles.

    PubMed

    Zhuang, Ziqing; Bergman, Michael S; Eimer, Benjamin C; Shaffer, Ronald E

    2013-01-01

    National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) are used for respiratory protection in some workplaces handling engineered nanomaterials. Previous NIOSH research has focused on filtration performance against nanoparticles. This article is the first NIOSH study using human test subjects to compare N95 FFR faceseal leakage (FSL) performance against nanoparticles and "all size" particles. In this study, estimates of FSL were obtained from fit factor (FF) measurements from nine test subjects who participated in previous fit-test studies. These data were analyzed to compare values obtained by: 1) using the PortaCount Plus (8020A, TSI, Inc., MN, USA) alone (measureable particle size range 20 nm to > 1,000 nm, hereby referred to as the "all size particles test"), and 2) using the PortaCount Plus with N95-Companion(TM) accessory (8095, TSI, Inc., Minn.) accessory (negatively charged particles, size range ∼40 to 60 nm, hereby referred to as the "nanoparticles test"). Log-transformed FF values were compared for the "all size particles test" and "nanoparticles test" using one-way analysis of variance tests (significant at P < 0.05). For individual FFR models, geometric mean (GM) FF using the "nanoparticles test" was the same or higher than the GM FFs using "all size particles test." For all three FFR models combined, GM FF using the "nanoparticles test" was significantly higher than the GM FF using "all size particles test" (P < 0.05). These data suggest that FSL for negatively charged ∼40-60 nm nanoparticles is not greater than the FSL for the larger distribution of charged and uncharged 20 to > 1,000 nm particles. PMID:23927376

  6. Characterization of the Particle Size Fraction associated with Heavy Metals in Suspended Sediments of the Yellow River

    PubMed Central

    Yao, Qingzhen; Wang, Xiaojing; Jian, Huimin; Chen, Hongtao; Yu, Zhigang

    2015-01-01

    Variations in the concentrations of particulate heavy metals and fluxes into the sea in the Yellow River were examined based on observational and measured data from January 2009 to December 2010. A custom-built water elutriation apparatus was used to separate suspended sediments into five size fractions. Clay and very fine silt is the dominant fraction in most of the suspended sediments, accounting for >40% of the samples. Cu, Pb, Zn, Cr, Fe and Mn are slightly affected by anthropogenic activities, while Cd is moderate affected. The concentrations of heavy metals increased with decrease in particle size. For suspended sediments in the Yellow River, on average 78%–82% of the total heavy metal loading accumulated in the <16 μm fraction. About 43% and 53% of heavy metal in 2009 and 2010 respectively, were readily transported to the Bohai Sea with “truly suspended” particles, which have potentially harmful effects on marine organisms. PMID:26083999

  7. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  8. Interaction of rising frazil with suspended particles: tank experiments with applications to nature

    USGS Publications Warehouse

    Reimnitz, E.; Clayton, J.R.; Kempema, E.W.; Payne, J.R.; Weber, W.S.

    1993-01-01

    Widespread occurrence of sediment-laden (turbid) sea ice and high concentrations of diatoms and foraminifers in ice have recently been reported from both polar regions. Many possible mechanisms of particle entrainment into ice have been postulated, among which scavenging by rising frazil ice and nucleation or adhesion of ice onto suspended particles appear to be the most likely ones. No reliable experimental data on the mechanisms, however, are available. Because of the importance of turbid ice for sediment transport, tanks for laboratory-scale experiments were constructed, in which frazil crystals produced at the base were monitored rising through water column laden with various types of particulate matter, including plankton. Observations made in salt water are reported here. Over a distance of 1.5 m, frazil < 1 mm in diameter grew to crystals or flocs several cm in diameter, rising at average velocities of 2 to 3 cm/s. Rise velocities were a function of frazil size, but varied greatly due to interactions of ice particles of different size and velocity and the resulting turbulence. Sand-size particles could be either trapped permanently by rising frazil, or were temporarily supported and again released. With live plankton, a several-fold enrichment of ice occurred, suggesting that their irregular shapes or appendages were caught by ice flocs. Diatom- and foram tests were also relatively effectively trapped. The concentration of silt- and clay-size terrigenous detritus in frazil tended to increase relative to the water. We found no preferential sorting by ice in this size range. Various kinds of evidence showed that ice does not nucleate onto foreign particles, and has no adhesive properties. Foreign material resided in the interstices of crystal aggregates, and particles denser than water could be released by agitation, suggesting that scavenging is a mechanical process. With rising frazil, the settling of particulate matter therefore is either retarded or

  9. Possible approach to cleaning 'problematic' LRW with large contents of suspended particles, oils and other organic substances

    SciTech Connect

    Ilin, V.; Karlin, Yu.; Laurson, A.; Volkov, Eu.; Dmitriev, S.

    2007-07-01

    A general structural scheme for cleaning 'problematic' liquid radioactive wastes (LRW) containing a large amount of suspended particles, oils and other organic substances has been proposed. The technological scheme includes two main stages: 1) separation of suspended particles, oil product emulsions and the larger part of colloidal particles from LRW by filtration, 2) purification of radioactive waters from radionuclides by membrane-sorption to the levels of radiation safety norms applied. The filtration stage is considered as a three-step process of 'problematic' LRW treatment including: 1) 'problematic' LRW extraction from storage tanks with a robot type device intended for washing out the bottom sediment (slurry), 2) separation of suspended particles, oil product emulsions and larger part of colloidal particles from LRW by filtration through porous or gauze diaphragms of 0.1 to 10 {mu}m pores (cells) in size, 3) concentration of separated slurry up to 100-200 g/l. Two main options of the membrane-sorption technologies, AQUA-EXPRESS and Reverse Osmosis, for LRW purification have been considered. Two possible options of porous or gauze diaphragms productivity and lifetime increase between their surface regenerations have been shown: 1) possibility of an oxidizer introduction into initial LRW, 2) possibility to rotate a filtering element (disk or cylinder type). (authors)

  10. Over time and space changing characteristics of estuarine suspended particles in the German Weser and Elbe estuaries

    NASA Astrophysics Data System (ADS)

    Papenmeier, Svenja; Schrottke, Kerstin; Bartholomä, Alexander

    2014-01-01

    Fine cohesive, suspended sediments appear in all estuarine environments in a predominately flocculated state. The transport and deposition of these flocs is influenced by their in-situ and primary particle size distribution. Especially the size of the inorganic particles influences the density and hence the settling velocity of the flocculated material. To describe both the changes in primary particle size of suspended particulate matter as well as the variability of floc sizes over time and space, the data of In-Situ Particle-Size Distributions (ISPSDs), Primary Particle Size Distributions (PPSDs) and Suspended Sediment Concentrations (SSCs) were collected. For this, Laser In-Situ Scattering and Transmissiometry (LISST) measurements as well as the water samples were collected in the German Elbe and Weser estuaries, covering seasonal variability of the SSC. The data of the ISPSDs show that the inorganic and organic Suspended Particulate Matter (SPM), as found in the Elbe and Weser estuaries, mostly appears in a flocculated state. The substrate for organic matter is mainly imported from the seaside and transported into the estuaries as indicated by an upstream decrease of the amount of fine particles. In winter, when the freshwater discharge is high, different PPSDs are found in the case of the Elbe estuary in the Turbidity Maximum Zone (TMZ) as well as in the landward and in the seaward sections close to the TMZ. In summer, the distance between the seaward and the landward section is too low to obtain an individual PPSD within the Elbe TMZ. A missing correlation between the PPSD and ISPSD shows that the inorganic constituents do not have an influence on the in-situ floc size. Although flocs aggregate and disaggregate over a tidal cycle and with changing SSC, they do not change their PPSD. The microflocs are therefore strong enough to withstand further breakage into their inorganic constituents.

  11. Protection of firefighters against combustion aerosol particles: simulated workplace protection factor of a half-mask respirator (pilot study).

    PubMed

    Dietrich, James; Yermakov, Michael; Reponen, Tiina; Kulkarni, Pramod; Qi, Chaolong; Grinshpun, Sergey A

    2015-01-01

    The present pilot study investigated the penetration of ultrafine particles originated by combustion of different materials into elastomeric half-mask respirators equipped with two P100 filters. We determined the Simulated Workplace Protection Factor (SWPF) for 11 firefighters wearing elastomeric half-mask respirators and performing activities simulating those conducted during fire overhaul operations. The tests were performed in a controlled laboratory setting. A newly-developed battery-operated Portable Aerosol Mobility Spectrometer (PAMS) was used to measure size-resolved aerosol particle concentrations outside (C(out)) and inside (Cin) of an air-purifying respirator donned on a firefighter, and the SWPF was calculated as C(out)/C(in). Based on the total aerosol concentration, the "total" SWPF ranged from 4,222 (minimum) to 35,534 (maximum) with values falling primarily in a range from 11,171 (25 percentile) to 26,604 (75 percentile) and a median value being ≈15,000. This is consistent with the recently reported fit factor (FF) data base.((1)) The size-resolved SWPF data revealed a dependency on the particle size. It was concluded that a portable device such as PAMS can be used on firefighters during overhaul operations (as well as on other workers wearing elastomeric half-mask respirators) to monitor the aerosol concentrations in real time and ultimately help prevent overexposure. PMID:25625543

  12. Biologically Induced Deposition of Fine Suspended Particles by Filter-Feeding Bivalves in Land-Based Industrial Marine Aquaculture Wastewater

    PubMed Central

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind−1•d−1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P<0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P<0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products. PMID:25250730

  13. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    PubMed

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm) and M. galloprovincialis (shell height: 4.43 ± 0.98 cm) was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1) • d(-1), respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products. PMID:25250730

  14. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    PubMed

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm) and M. galloprovincialis (shell height: 4.43 ± 0.98 cm) was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1) • d(-1), respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.

  15. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure.

    PubMed

    Rasmussen, Jes Jessen; Cedergreen, Nina; Kronvang, Brian; Andersen, Maj-Britt Bjergager; Nørum, Ulrik; Kretschmann, Andreas; Strobel, Bjarne Westergaard; Hansen, Hans Christian Bruun

    2016-04-01

    Current ecotoxicological research on particle-associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L(-1)). Mortality of G. pulex was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L(-1) adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments. MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration-response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity of pyrethroids to G. pulex and that passive uptake of pyrethroids can be significant even when pyrethroids are adsorbed to suspended particles. PMID:26831865

  16. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    DOE PAGES

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-09-30

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g−1 Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostly foundmore » on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments.« less

  17. Stability Of Superposed Fluids Through Magnetic Field With Suspended Particles Of Different Permeability Saturated Through Porous Layer

    NASA Astrophysics Data System (ADS)

    Singh, M.

    2015-12-01

    The instability of plane interface between two superposed Rivlin-Ericksen elastico-viscous fluids saturated through a porous medium has been studied to include the suspended (dust) particles effect. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves like Newtonian fluids. It found that for a potentially stable arrangement the Rivlin-Ericksen elastico-viscous fluid of different permeabilities in the presence of suspended particles in a porous medium is stable, whereas in a potentially unstable case instability of the system occurs. In the presence of a magnetic field for a potentially stable arrangement the system is always stable and for the potentially unstable arrangement, the magnetic field succeeds in stabilizing certain wave-number band which was unstable in the absence of the magnetic field.

  18. Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China.

    PubMed

    Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen

    2016-08-01

    The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary. PMID:27155833

  19. Comparison of Simulated Workplace Protection Factors Offered by N95 and P100 Filtering Facepiece and Elastomeric Half-Mask Respirators against Particles of 10 to 400 nm

    PubMed Central

    He, Xinjian; Vo, Evanly; Horvatin, M; Liu, Y; Bergman, M; Zhuang, Z

    2015-01-01

    This study compared the simulated workplace protection factors (SWPFs) between NIOSH-approved N95 respirators and P100 respirators, including two models of filtering facepiece respirator (FFR) and two models of elastomeric half-mask respirator (EHR), against sodium chloride particles (NaCl) in a range of 10 to 400 nm. Twenty-five human test subjects performed modified OSHA fit test exercises in a controlled laboratory environment with the N95 respirators (two FFR models and two EHR models) and the P100 respirators (two FFRs and two EHRs). Two Scanning Mobility Particle Sizers (SMPS) were used to measure aerosol concentrations (in the 10–400 nm size range) inside (Cin) and outside (Cout) of the respirator, simultaneously. SWPF was calculated as the ratio of Cout to Cin. The SWPF values obtained from the N95 respirators were then compared to those of the P100 respirators. SWPFs were found to be significantly different (P<0.05) between N95 and P100 class respirators. The 10th, 25th, 50th, 75th and 90th percentiles of the SWPFs for the N95 respirators were much lower than those for the P100 models. The N95 respirators had 5th percentiles of the SWPFs > 10. In contrast, the P100 class was able to generate 5th percentiles SWPFs > 100. No significant difference was found in the SWPFs when tested against nano-size (10 to 100 nm) and large-size (100 to 400 nm) particles. Overall, the findings suggest that the two FFRs and two EHRs with P100 class filters provide better performance than those with N95 filters against particles from 10 to 400 nm, supporting current OSHA and NIOSH recommendations. PMID:26273701

  20. Effect of particle size on respiratory protection provided by two types of N95 respirators used in agricultural settings.

    PubMed

    Cho, Kyungmin Jacob; Jones, Susan; Jones, Gordon; McKay, Roy; Grinshpun, Sergey A; Dwivedi, Alok; Shukla, Rakesh; Singh, Umesh; Reponen, Tiina

    2010-11-01

    This study compared size-selective workplace protection factors (WPFs) of an N95 elastomeric respirator (ER) and an N95 filtering facepiece respirator (FFR) in agricultural environments. Twenty-five healthy farm workers ranging in age from 20 to 30 years voluntarily participated in this study. Altogether, eight farms were included representing three different types: two horse farms, three pig barns, and three grain handling sites. Subjects wore the ER and FFR while performing their daily activities, such as spreading hay, feeding livestock, and shoveling. Aerosol concentrations in an optical particle size range of 0.7-10 μm were determined simultaneously inside and outside the respirator during the first and last 15 min of a 60-min experiment. For every subject, size-selective WPFs were calculated in 1-min intervals and averaged over 30 min. For the ER, geometric mean WPFs were 172, 321, 1013, 2097, and 2784 for particle diameters of 0.7-1.0, 1.0-2.0, 2.0-3.0, 3.0-5.0, and 5.0-10.0 μm, respectively. Corresponding values for the FFR were 67, 124, 312, 909, and 2089. The 5th percentiles for the ER and FFR were higher than the assigned protection factor of 10 and varied from 28 to 250 and from 16 to 223, respectively. Results show that the N95 ER and FFR tested in the study provided an expected level of protection for workers on agricultural farms against particles ranging from 0.7 to 10 μm. WPFs for the ER were higher than the FFR for all particle size ranges. WPFs for both respirator types increased with increasing particle size. PMID:20835946

  1. Probing of the Changing Shapes and Viscosity of Suspended Organic Particles as a Function of Relative Humidity

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sanchez, M. S.; Douet, C.; Wang, Y.; Bateman, A. P.; Gong, Z.; Kuwata, M.; Wolff, L. R.; Liu, P.; Sato, B. B.; Bertram, A. K.; Geiger, F.; Martin, S. T.

    2014-12-01

    Aerosol particles of secondary organic material (SOM) were produced by α-pinene ozonolysis in a flow tube reactor. The aerosol flow was passed into a chamber with a long residence time where coagulation of primary particles occurred. An experimental apparatus, consisting of a differential mobility analyzer coupled to a particle mass analyzer (DMA-APM), was used to classify coagulated particles by particle electric mobility diameter (52.4 to 190.0 nm) and then to measure associated particle mass. From these data, the dynamic shape factor was determined for particles of known material density. Experiments were conducted for variable relativity humidity (RH). The results showed that the dynamic shape factor depended on post-coagulation particle number concentration, particle diameter, and relative humidity. For some particle number concentrations, coagulation occurred between particles of similar diameters under dry conditions (< 5% RH), thereby forming non-spherical particles. The dynamic shape factors were observed to change from 1.24 to 1.02 between 5 and 35% RH, and 1.27 to 1.03 between 20% to 60% RH, implying a transformation from non-spherical to round shapes. The shape change arose from decreased viscosity at elevated RH, allowing the material to flow and thereby form a spherical shape (i.e., as favored by minimization of surface area). Numerical modeling was used to estimate the particle viscosity associated with this flow. Based on the particle size and exposure time to elevated RH, the viscosity was determined from 109 Pa s down to 107 Pa s from 3% RH to 65% RH. The experiments establish a method for estimating the viscosity of suspended submicron aerosol particles based on changes in particle shape.

  2. Determination of the residence time of suspended particles in the turbidity maximum of the Loire estuary by 7Be analysis

    NASA Astrophysics Data System (ADS)

    Ciffroy, Philippe; Reyss, Jean-Louis; Siclet, Françoise

    2003-07-01

    The aim of the present work was to evaluate the half life of suspended particles in the Loire estuarine turbidity maximum by analysis of 7Be budgets. The methodology was based on in situ sampling and further measurements aiming at quantifying 7Be sources (atmospheric deposition and river inputs) and 7Be stock in the water column of the turbidity maximum. 7Be river inputs were determined by monthly 7Be measurements performed upstream of the estuary. 7Be atmospheric deposition was estimated by using an empirical relation between 7Be deposition and rainfall. 7Be in particles of the estuarine turbidity maximum was measured at eight different dates corresponding to different tidal and hydrological conditions. 7Be sources and stocks thus determined have been compared to a mathematical model. Results allow to quantify the 'standard half life' of suspended particles in the Loire estuarine turbidity maximum and show that it depends on the season (6-10 months in summer and about 0.7 month during flood periods). Furthermore, a rather good linear correlation was observed between the standard half life of particles and the sum of flow rates in the Loire river during 60 days before each sampling date. The kinetic evolution of the mass of particles within the turbidity maximum could be estimated by this method and appeared to be consistent with previous studies. Moreover, the method proposed in this study could presumably be used for estimating 60Co concentrations in the estuarine turbidity maximum.

  3. The active surface of suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Neuberger, Manfred

    At a central elementary school in the capital of Upper Austria children aged 7-10 years underwent repeated respiratory health checkups (questionnaires, diaries, spirometry). Between March and May 2001 the daily means of the signals of a diffusion charging sensor, measuring the "active surface" of suspended particles, and a photoelectric aerosol sensor, measuring the particle-bound polycyclic aromatic hydrocarbons, were related to spirometric results of the total 164 children examined and to the daily symptom scores of a susceptible subgroup. Significant reductions of forced vital capacity ( p=0.006) and forced expiratory volume in the first second ( p=0.001) and significant increases of wheezing ( p=0.001), shortness of breath ( p=0.041), cough in the evening ( p=0.031) and at night ( p=0.018) were found with increase of "active surface" of suspended particles measured at the adjacent outdoor monitoring station, but not with the increase of particle-bound polycyclic aromatic hydrocarbons. Monitoring "active surface" of particles with diameters of about 10 nm-1 μm by means of a diffusion charging sensor might provide additional information in surveillance of particulate matter for prevention of acute effects on respiratory health.

  4. Application of a hollow-fiber, tangential-flow device for sampling suspended bacteria and particles from natural waters

    USGS Publications Warehouse

    Kuwabara, J.S.; Harvey, R.W.

    1990-01-01

    The design and application of a hollow-fiber tangential-flow filtration device has been used to concentrate bacteria and suspended particles from large volume surface water and groundwater samples (i.e., hundreds of liters). Filtrate tlux rates (4–8 L min−1) are equal to or faster than those of other devices that are based on continuous flow centrifugation and plate and frame filtration. Particle recovery efficiencies for inorganic particles (approximately 90%) were similar to other dewatering devices, but microbial cell recoveries (30–90%) were greatly improved by this technique relative to other currently available methods. Although requirements for operation and maintenance of the device are minimal, its size, as with other dewatering devices, limits its applicability at remote sample sites. Nevertheless, it has proven useful for sample collection in studies involving microbial transport and analysis of particle-associated trace inorganic solutes.

  5. Infrared spectral challenges of individual, respirable, micron-sized dust particles: Strong phonons and their distorted lineshapes

    NASA Astrophysics Data System (ADS)

    Coe, James

    2015-03-01

    Consideration of cluster properties as they grow through the nanosize regime and into the micron-sized regime, leads to expectations of bulk-like trends which are well understood. However, individual micron-sized particles are of comparable size to the wavelength of probing infrared (IR) light, so vibrational spectra will be dominated by scattering effects and lineshapes will have dispersion and saturation distortions. Airborne dust particles of ~ 4 micron widths are of particular health interest because they get past the nose, throat, and thorax and can be inhaled into people's lungs. This talk will describe the use of plasmonic metal mesh to obtain scatter-free, IR absorption spectra of single, ~ 4 micron respirable particles. A dust library of single particle IR spectra is being compiled to chemically characterize respirable dust and a Mie-Bruggeman model has been created to predict the IR spectra of collections of mixed-composition dust particles. Having dealt with scattering effects, the remaining difficulty involves the effect of strong phonons. Many of the most common mineral components of dust have strong phonons with intensity cross sections comparable to the size of the particle which leads to severe and interesting lineshape distortions. NSF CHE 1213293.

  6. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  7. Quantitative Effects of Large-Scale Convective Instabilities in Hydrothermal Plumes on the Sedimentation of Suspended Particles

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Carazzo, G.

    2009-12-01

    Seafloor hydrothermal systems may produce sustained turbulent plumes of hot water and solid particles rising a few tens to hundreds of meters above the sea floor. These flows contain also many metal-rich sulfides, sulfates and oxides that can be dispersed far from the hydrothermal vent when the plume reaches a neutral buoyancy depth and spreads out laterally into the ocean. Deep-water measurements of dissolved chemical species, particulate metals and suspended particles made at mid-ocean ridges reveal that the subsequent cloud can extend laterally up to 20 kilometers and remain stable for several months. However, dissolved chemical species precipitate upon mixing with seawater and modify the composition of particles promoting sedimentation at a much smaller time scale than the measured residence time of the suspension. This discrepancy motivated a series of laboratory experiments in order to understand the mechanisms responsible for sedimentation of hydrothermal plume particles. To this aim, we inject at a fixed rate a mixture of small particles and fresh water at the base of a chamber containing a fresh water layer overlying a salt water layer. Depending on the source conditions and the strength of density stratification in the tank, large-scale instabilities may develop due to the combined effect of salt diffusion and settling of suspended material. To understand this new regime, we present a theory suggesting that the occurrence of this mode of particle settling depends on the population of particles and the depth reached by the hydrothermal plume. We compare this theory with our experimental results and an exhaustive review of data on submarine eruptions available in the literature in order to estimate residence time of particles.

  8. Particle-area dependence of mineral dust in the immersion mode: investigations with freely suspended drops in an acoustic levitator

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-05-01

    The heterogeneous freezing temperatures of supercooled drops were measured by using an acoustic levitator. This technique allows to freely suspending single drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. Heterogeneous nucleation caused by several mineral dust particles (montmorillonite, two types of illite) was investigated in the immersion mode. Drops of 1 \\unit{mm} in radius were monitored by a video camera during cooling down to -28 °C to simulate the tropospheric temperature range. The surface temperature of the drops was remotely determined with an infra-red thermometer so that the onset of freezing was indicated. For comparisons, measurements with one particle type were additionally performed in the Mainz vertical wind tunnel with drops of 340 \\unit{{μ}m} radius freely suspended. The data were interpreted regarding the particle surfaces immersed in the drops. Immersion freezing was observed in a temperature range between -13 and -26 °C in dependence of particle type and surface area per drop. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model.

  9. Particle size distribution of river-suspended sediments determined by in situ measured remote-sensing reflectance.

    PubMed

    Zhang, Yuanzhi; Huang, Zhaojun; Chen, Chuqun; He, Yijun; Jiang, Tingchen

    2015-07-10

    Suspended sediments in water bodies are classified into organic and inorganic matter and have been investigated by remote-sensing technology for years. Focusing on inorganic matter, however, detailed information such as the grain size of this matter has not been provided yet. In this study, we present a new solution for estimating inorganic suspended sediments' size distribution in highly complex Case 2 waters by using a simple spectrometer sensor rather than a backscattering sensor. An experiment was carried out in the Pearl River Estuary (PRE) in the dry season to collect the remote-sensing reflectance (Rrs) and particle size distribution (PSD) of inorganic suspended sediments. Based on Mie theory, PSDs in the PRE waters were retrieved by Rrs, colored dissolved organic matter, and phytoplankton. The retrieved median diameters in 12 stations show good agreement with those of laboratory analysis at root mean square error of 2.604 μm (27.63%), bias of 1.924 μm (20.42%), and mean absolute error of 2.298 μm (24.37%). The retrieved PSDs and previous PSDs were compared, and the features of PSDs in the PRE waters were concluded.

  10. Influences of suspended particles on the runoff of pesticides from an agricultural field at Askim, SE-Norway.

    PubMed

    Wu, Q; Riise, G; Lundekvam, H; Mulder, J; Haugen, L E

    2004-01-01

    Field and laboratory experiments were conducted to study the loss of particles from agricultural fields, and the role of suspended particles in carrying pesticides in surface runoff and drainage water. Propiconazole, a widely used fungicide was applied to experimental fields located at Askim, SE-Norway. Samples from surface runoff and drainage water were collected and analyzed for sediment mass, pesticides, particulate and dissolved organic carbon through a whole year. The surface soil and the runoff material were characterized by its particle size distribution, organic carbon content in size fractions and its ability to bind propiconazole. The results show that (1) particle runoff mostly occurred during the rainfall event shortly after harrowing in autumn. The highest particle concentration observed in the surface runoff water was 4600 mg l(-1), and in the drainage water 1130 mg l(-1); (2) the erosion of surface soil is size selective. The runoff sediment contained finer particle/aggregates rich in organic matter compared to its original surface soil; (3) the distribution coefficient (Kd) of propiconazole was significantly higher in the runoff sediment than in the parent soil. According to our calculation, particle-bound propiconazole can represent up to 23% of the total amount of propiconazole in a water sample with a sediment concentration of 7600 mg l(-1), which will significantly influence the transport behavior of the pesticide.

  11. Determination of the concentration of mineral particles and suspended organic substance based on their spectral absorption

    NASA Astrophysics Data System (ADS)

    Konovalov, B. V.; Kravchishina, M. D.; Belyaev, N. A.; Novigatsky, A. N.

    2014-09-01

    A method to determine the concentrations of the particulate mineral matter ( C PMM) and the particulate organic matter ( C POM) is suggested. The values of C PMM and C POM are calculated from the measurements of the spectral coefficients of the light absorption a POM(440) and a PMM(750) using empirical equations. The latter have been obtained by comparing the concentrations of the suspended solids measured by means of the gravimetric method with the spectral values of the optical density of the suspended matter settled on membrane filters. The data used are typical of the coastal waters of inland and marginal seas and the open ocean and cover the range of three and two orders of magnitude for the concentrations of C PMM and C POM, respectively.

  12. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions.

    PubMed

    Stacey, Peter; Thorpe, Andrew; Echt, Alan

    2016-05-01

    It is thought that the performance of respirable samplers may vary when exposed to dust aerosols with different particle sizes and wind speeds. This study investigated the performance of the GK 4.16 (RASCAL), GK 2.69, PPI 8, and FSP 10, high flow rate personal samplers when exposed to aerosols of mineral dust in a wind tunnel at two different wind speeds (1 and 2 m s(-1)) and orientations (towards and side-on to the source of emission). The mass median aerodynamic diameter of four aerosolized test dusts ranged from 8 to 25 µm with geometric standard deviations from 1.6 to 2 µm. The performance of each sampler type was compared with that of the SIMPEDS (Higgins-Dewell design) sampler. There was slight evidence to suggest that the performance of the FSP 10 is affected by the direction of the inlet relative to the air flow, although this was not significant when most respirable dust concentrations were compared, possibly due to the variability of paired dust concentration results. The GK 2.69, RASCAL, and PPI 8 samplers had similar performances, although the results when side-on to the emission source were generally slightly lower than the SIMPEDS. Despite slight differences between respirable dust concentrations the respirable crystalline silica values were not significantly different from the SIMPEDS. The GK family of cyclones obtained most precise results and more closely matched the SIMPEDS. A comparison with dust concentration results from previous calm air chamber studies (where wind speeds were < 0.4 m s(-1)) found that the relative performance between samplers was similar to those observed in this work indicating consistent performance relative to the SIMPEDS in both calm and moving air. PMID:26865560

  13. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions

    PubMed Central

    Stacey, Peter; Thorpe, Andrew; Echt, Alan

    2016-01-01

    It is thought that the performance of respirable samplers may vary when exposed to dust aerosols with different particle sizes and wind speeds. This study investigated the performance of the GK 4.16 (RASCAL), GK 2.69, PPI 8, and FSP 10, high flow rate personal samplers when exposed to aerosols of mineral dust in a wind tunnel at two different wind speeds (1 and 2 m s−1) and orientations (towards and side-on to the source of emission). The mass median aerodynamic diameter of four aerosolized test dusts ranged from 8 to 25 µm with geometric standard deviations from 1.6 to 2 µm. The performance of each sampler type was compared with that of the SIMPEDS (Higgins–Dewell design) sampler. There was slight evidence to suggest that the performance of the FSP 10 is affected by the direction of the inlet relative to the air flow, although this was not significant when most respirable dust concentrations were compared, possibly due to the variability of paired dust concentration results. The GK 2.69, RASCAL, and PPI 8 samplers had similar performances, although the results when side-on to the emission source were generally slightly lower than the SIMPEDS. Despite slight differences between respirable dust concentrations the respirable crystalline silica values were not significantly different from the SIMPEDS. The GK family of cyclones obtained most precise results and more closely matched the SIMPEDS. A comparison with dust concentration results from previous calm air chamber studies (where wind speeds were < 0.4 m s−1) found that the relative performance between samplers was similar to those observed in this work indicating consistent performance relative to the SIMPEDS in both calm and moving air. PMID:26865560

  14. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow

    NASA Astrophysics Data System (ADS)

    Rosén, T.; Do-Quang, M.; Aidun, C. K.; Lundell, F.

    2015-05-01

    This work describes the inertial effects on the rotational behavior of an oblate spheroidal particle confined between two parallel opposite moving walls, which generate a linear shear flow. Numerical results are obtained using the lattice Boltzmann method with an external boundary force. The rotation of the particle depends on the particle Reynolds number, Rep=G d2ν-1 (G is the shear rate, d is the particle diameter, ν is the kinematic viscosity), and the Stokes number, St =α Rep (α is the solid-to-fluid density ratio), which are dimensionless quantities connected to fluid and particle inertia, respectively. The results show that two inertial effects give rise to different stable rotational states. For a neutrally buoyant particle (St =Rep ) at low Rep, particle inertia was found to dominate, eventually leading to a rotation about the particle's symmetry axis. The symmetry axis is in this case parallel to the vorticity direction; a rotational state called log-rolling. At high Rep, fluid inertia will dominate and the particle will remain in a steady state, where the particle symmetry axis is perpendicular to the vorticity direction and has a constant angle ϕc to the flow direction. The sequence of transitions between these dynamical states were found to be dependent on density ratio α , particle aspect ratio rp, and domain size. More specifically, the present study reveals that an inclined rolling state (particle rotates around its symmetry axis, which is not aligned in the vorticity direction) appears through a pitchfork bifurcation due to the influence of periodic boundary conditions when simulated in a small domain. Furthermore, it is also found that a tumbling motion, where the particle symmetry axis rotates in the flow-gradient plane, can be a stable motion for particles with high rp and low α .

  15. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.

    PubMed

    Rosén, T; Do-Quang, M; Aidun, C K; Lundell, F

    2015-05-01

    This work describes the inertial effects on the rotational behavior of an oblate spheroidal particle confined between two parallel opposite moving walls, which generate a linear shear flow. Numerical results are obtained using the lattice Boltzmann method with an external boundary force. The rotation of the particle depends on the particle Reynolds number, Re(p)=Gd(2)ν(-1) (G is the shear rate, d is the particle diameter, ν is the kinematic viscosity), and the Stokes number, St=αRe(p) (α is the solid-to-fluid density ratio), which are dimensionless quantities connected to fluid and particle inertia, respectively. The results show that two inertial effects give rise to different stable rotational states. For a neutrally buoyant particle (St=Re(p)) at low Re(p), particle inertia was found to dominate, eventually leading to a rotation about the particle's symmetry axis. The symmetry axis is in this case parallel to the vorticity direction; a rotational state called log-rolling. At high Re(p), fluid inertia will dominate and the particle will remain in a steady state, where the particle symmetry axis is perpendicular to the vorticity direction and has a constant angle ϕ(c) to the flow direction. The sequence of transitions between these dynamical states were found to be dependent on density ratio α, particle aspect ratio r(p), and domain size. More specifically, the present study reveals that an inclined rolling state (particle rotates around its symmetry axis, which is not aligned in the vorticity direction) appears through a pitchfork bifurcation due to the influence of periodic boundary conditions when simulated in a small domain. Furthermore, it is also found that a tumbling motion, where the particle symmetry axis rotates in the flow-gradient plane, can be a stable motion for particles with high r(p) and low α.

  16. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    USGS Publications Warehouse

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  17. Determination of the Density of Protein Particles Using a Suspended Microchannel Resonator.

    PubMed

    Folzer, Emilien; Khan, Tarik A; Schmidt, Roland; Finkler, Christof; Huwyler, Jörg; Mahler, Hanns-Christian; Koulov, Atanas V

    2015-12-01

    One of the analytical tools for characterization of subvisible particles, which gained popularity over the last years because of its unique capabilities, is the resonance mass measurement technique. However, a challenge that this technique presents is the need to know the exact density of the measured particles in order to obtain accurate size calculations. The density of proteinaceous subvisible particles has not been measured experimentally yet and to date researchers have been using estimated density values. In this paper, we report for a first-time experimental measurements of the density of protein particles (0.2-5 μm in size) using particles created by stressing three different proteins using four different types of stress conditions. Interestingly, the particle density values that were measured varied between 1.28 and 1.33 g/cm(3) and were lower than previous estimates. Furthermore, it was found that although the density of proteinaceous particles was affected to a very low degree by the stress conditions used to generate them, there is relatively larger difference between particles originating from different classes of proteins (e.g., monoclonal antibody vs. bovine serum albumin). PMID:26344825

  18. Determination of the Density of Protein Particles Using a Suspended Microchannel Resonator.

    PubMed

    Folzer, Emilien; Khan, Tarik A; Schmidt, Roland; Finkler, Christof; Huwyler, Jörg; Mahler, Hanns-Christian; Koulov, Atanas V

    2015-12-01

    One of the analytical tools for characterization of subvisible particles, which gained popularity over the last years because of its unique capabilities, is the resonance mass measurement technique. However, a challenge that this technique presents is the need to know the exact density of the measured particles in order to obtain accurate size calculations. The density of proteinaceous subvisible particles has not been measured experimentally yet and to date researchers have been using estimated density values. In this paper, we report for a first-time experimental measurements of the density of protein particles (0.2-5 μm in size) using particles created by stressing three different proteins using four different types of stress conditions. Interestingly, the particle density values that were measured varied between 1.28 and 1.33 g/cm(3) and were lower than previous estimates. Furthermore, it was found that although the density of proteinaceous particles was affected to a very low degree by the stress conditions used to generate them, there is relatively larger difference between particles originating from different classes of proteins (e.g., monoclonal antibody vs. bovine serum albumin).

  19. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  20. Nanoparticle filtration performance of NIOSH-certified particulate air-purifying filtering facepiece respirators: evaluation by light scattering photometric and particle number-based test methods.

    PubMed

    Rengasamy, Samy; Eimer, Benjamin C

    2012-01-01

    National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number

  1. Nanoparticle filtration performance of NIOSH-certified particulate air-purifying filtering facepiece respirators: evaluation by light scattering photometric and particle number-based test methods.

    PubMed

    Rengasamy, Samy; Eimer, Benjamin C

    2012-01-01

    National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number

  2. Separation of particles, suspended in a conducting liquid, with the help of an alternating electromagnetic field

    SciTech Connect

    Korovin, V.M.

    1986-01-01

    The author studies MHD flow at low Reynolds numbers past a spherical particle with conductivity ..cap alpha../sub 1/ greater than or equal to0, moving in a viscous fluid at rest with conductivity ..cap alpha../sub 2/ not = ..cap alpha../sub 1/, filling the interior space of a long solenoid fed by an alternating current. It is shown that aside from the electromagnetic force calculated from the analog of Archimedes' principle, and from the Lorentz force arising from the interaction of eddy currents flowing in th particle with the magnetic field, the particle is also subjected to an electromagnetic propulsive force. A formula relating the local characteristics of the electromagnetic field with the velocity of the particle put into motion by the field but neglecting inertial effects is obtained.

  3. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    NASA Technical Reports Server (NTRS)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  4. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    USGS Publications Warehouse

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  5. Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array

    NASA Astrophysics Data System (ADS)

    Du, Siqi; Drazer, German

    2016-08-01

    We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the axial direction of the solid posts (out-of-plane motion). We show that the (projected) in-plane motion of the particles is completely analogous to that observed in 2D-DLD systems. In fact, a theoretical model originally developed for force-driven, two-dimensional DLD systems accurately describes the experimental results. More importantly, we analyze the particles out-of-plane motion and observe, for certain orientations of the driving force, significant differences in the out-of-plane displacement depending on particle size. Therefore, taking advantage of both the in-plane and out-of-plane motion of the particles, it is possible to achieve the simultaneous fractionation of a polydisperse suspension into multiple streams.

  6. Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array.

    PubMed

    Du, Siqi; Drazer, German

    2016-01-01

    We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the axial direction of the solid posts (out-of-plane motion). We show that the (projected) in-plane motion of the particles is completely analogous to that observed in 2D-DLD systems. In fact, a theoretical model originally developed for force-driven, two-dimensional DLD systems accurately describes the experimental results. More importantly, we analyze the particles out-of-plane motion and observe, for certain orientations of the driving force, significant differences in the out-of-plane displacement depending on particle size. Therefore, taking advantage of both the in-plane and out-of-plane motion of the particles, it is possible to achieve the simultaneous fractionation of a polydisperse suspension into multiple streams. PMID:27526935

  7. Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array.

    PubMed

    Du, Siqi; Drazer, German

    2016-08-16

    We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the axial direction of the solid posts (out-of-plane motion). We show that the (projected) in-plane motion of the particles is completely analogous to that observed in 2D-DLD systems. In fact, a theoretical model originally developed for force-driven, two-dimensional DLD systems accurately describes the experimental results. More importantly, we analyze the particles out-of-plane motion and observe, for certain orientations of the driving force, significant differences in the out-of-plane displacement depending on particle size. Therefore, taking advantage of both the in-plane and out-of-plane motion of the particles, it is possible to achieve the simultaneous fractionation of a polydisperse suspension into multiple streams.

  8. Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array

    PubMed Central

    Du, Siqi; Drazer, German

    2016-01-01

    We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the axial direction of the solid posts (out-of-plane motion). We show that the (projected) in-plane motion of the particles is completely analogous to that observed in 2D-DLD systems. In fact, a theoretical model originally developed for force-driven, two-dimensional DLD systems accurately describes the experimental results. More importantly, we analyze the particles out-of-plane motion and observe, for certain orientations of the driving force, significant differences in the out-of-plane displacement depending on particle size. Therefore, taking advantage of both the in-plane and out-of-plane motion of the particles, it is possible to achieve the simultaneous fractionation of a polydisperse suspension into multiple streams. PMID:27526935

  9. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1). PMID:27215988

  10. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).

  11. Comparison of methods for developing contaminant-particle size distributions for suspended sediment

    SciTech Connect

    Moore, T.D.; Burgoa, B.B.; Fontaine, T.A.

    1994-10-01

    Relationships between contaminant concentration and particle size distribution are required for modeling the transport of contaminated sediment. Standard methods, including the pipette and bottom withdrawal techniques, are unsatisfactory because of the lack of homogeneous separations of each size fraction, which results in uncertainty in the contaminant-particle size relation. In addition, the size fractions produced with these techniques do not contain enough mass for accurate contaminant analyses. To avoid these problems, an alternative method using a settling column and withdrawal times based on Stokes Law has been developed. Tests have been conducted using sediment samples contaminated with Cs-137 from a waste area at Oak Ridge National Laboratory. The samples were separated into sand, coarse and fine silt, and clay-sized particles. The results for particle size distribution and associated contaminant concentrations were evaluated for the settling column, pipette, and bottom withdrawal methods. The settling column method provides homogeneous size fractions, larger aliquots of sediment for contaminant analysis, and is quicker in some cases and less complicated to perform than the other two methods.

  12. Sampling submicrometer particles suspended in near sonic and supersonic free jets. [from GTE exhaust

    NASA Technical Reports Server (NTRS)

    Martone, J. A.; Daley, P. S.; Boubel, R. W.

    1980-01-01

    Aerosols containing solid, spherical stearic acid particles with a mean diameter of 0.8 micron and a geometric standard deviation of 1.28 were sampled with small bore front-facing aspirating probes in near-sonic and supersonic unheated free jets. The results are compared to compute the sampling error associated with a high-speed jet sample.

  13. [Effect of suspended particles on biofilms formation in simulated potable distribution].

    PubMed

    Zheng, Dan; Liu, Wen-Jun; Xu, Hong-Fu

    2007-06-01

    The effluent of the granular activated carbon in the treatment process was divided into three parts, the first part through 2 microm microfiltration membrane, the second part through 8 microm micro-filtration membrane, and with the third part being remained itself as comparison. Disinfection assays were performed with chlorine (NaClO) 0.5 mg/L. Studying the biofilms formation process separately in the three parts was performed with the interesting in particles. Particles may transport bacteria which were highly resistant to disinfection by chlorine to the distribution system and became entrained in biofilms, and could make the biofilms instable and put off the maximal biomass of biofilms. During the experiment the time when the 2nd BAR reach maximal biomass of biofilms was later 4 days than that of the 1st BAR, and the time when the 3rd BAR reach maximal biomass of biofilms was later 8 days than that of the 2nd BAR. The size ranges and quantity of particles impacted the effluent biomass. The more and the bigger particles were, the more effluent biomass was. PMID:17674728

  14. [Decomposing total suspended particle absorption based on the spectral correlation relationship].

    PubMed

    Wang, Gui-Fen; Cao, Wen-Xi; Yang, Ding-Tian; Zhao, Jun

    2009-01-01

    A model for estimating the contributions of phytoplankton and nonalgal particles to the total particulate absorption coefficient was developed based on their separate spectral relationships, and a constrained nonlinear optimization code was used to realize the spectral decomposition. The spectral absorption of total particulate matter including phytoplankton and nonalgal particles was measured using the filter-pad method during two cruises in autumn in Northern South China Sea. Using the dataset collected in 2004, the spectral relationships of particle absorption coefficients were examined and the results showed that the phytoplankton absorption coefficients at various wavebands could be well expressed by aph (443) as the second-order quadratic equations; and the nonalgal particle absorption (aNAP(lambda)) could be successfully modeled with the simple exponential function. Based on these spectral relationships, we developed this partition model. The model was tested using the independently measured absorption by phytoplankton and nonalgal materials which were obtained in 2005 from the same area. The test results showed that the computed spectral absorption coefficients of phytoplankton and nonalgal particles were consistent with in situ measurement. Good correlations were fo und between the comput ed phytoplankton absorption coefficient and the measured value,with the determination coefficients (r2) being higher than 0.97 and slopes being around 1.0; and the RMSE values could be controlled within 17% over the main absorption wavebands such as 443, 490 and 683 nm. Compared with the other two existing models from Bricaud et al. and Oubelkheir et al., this method shows many advantages for local applications. Moreover, this model does not need any information about pigment concentrations and the selected spectral bands are consistent with the ocean color satellite sensor. This method could also be used in the total absorption coefficient decomposition which provides

  15. Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico

    NASA Astrophysics Data System (ADS)

    Piña, A. Aragón; Villaseñor, G. Torres; Fernández, M. Monroy; Luszczewski Kudra, A.; Leyva Ramos, R.

    Three hundred samples of urban aerosol were collected in high-volume samplers from five urban locations situated near an important metallurgical plant in the city of San Luis Potosi, Mexico. Whole samples were analyzed by atomic absorption (AA) for Pb, Cd, As, Cu, Ni, Fe and Cr. One hundred eighty of these samples were subjected to X-ray microanalysis (EDS) coupled with a scanning electron microscope to classify individual particles according to their chemical or mineralogical composition. The principal component analysis (PCA) obtained from the bulk sample analysis, and X-ray microanalysis from individual particles, confirmed chemical associations among elements directly and indirectly. PCA from bulk assays made the most effective use of X-ray microanalysis to characterize major particle types. Some chemical associations would be difficult to detect using microanalysis, alone, for example, in anthropogenic complex phases. In this work, the combined use of microanalysis and statistical methods permitted identification of associations among elements. We observed an association of Pb-As-Cd and Fe-Mn among the samples. In a second order, Pb-Fe, Pb-Mn, Fe-As, Fe-Cd, Cd-Mn and As-Mn showed a lower association. Only Ni and Cu appeared unassociated with any other element analyzed by AA. We characterized the mineral phases by size range, morphology and chemical composition using SEM-EDS to obtain a compositional approach of anthropogenic phases and peculiar morphology and size. A high percentage of heavy metal particles smaller than 2 μm were detected.

  16. Remote sensing the dynamics of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Doxaran, D.; Ehn, J.; Bélanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-04-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. A direct consequence is an increase in Arctic river discharge with an expectation of increased delivery of organic carbon sequestered in high-latitute soils since the last glacial maximum. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed to an operational stage. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC:SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is validated based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone within which terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future work require the validation of the developed SPM regional algorithm based

  17. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate

  18. Near-bottom suspended matter concentration on the Continental Shelf during storms: estimates based on in situ observations of light transmission and a particle size dependent transmissometer calibration

    USGS Publications Warehouse

    Moody, J.A.; Butman, B.; Bothner, Michael H.

    1987-01-01

    A laboratory calibration of Sea Tech and Montedoro-Whitney beam transmissometers shows a linear relation between light attenuation coefficient (cp) and suspended matter concentration (SMC) for natural sediments and for glass beads. However the proportionality constant between cp and SMC depends on the particle diameter and particle type. Thus, to measure SMC, observations of light attenuation must be used with a time-variable calibration when suspended particle characteristics change with time. Because of this variable calibration, time series of light attenuation alone may not directly reflect SMC and must be interpreted with care. The near-bottom concentration of suspended matter during winter storms on the U.S. East Coast Continental Shelf is estimated from light transmission measurements made 2 m above the bottom and from the size distribution of suspended material collected simultaneously in sediment traps 3 m above the bottom. The average concentrations during six storms between December 1979 and February 1980 in the Middle Atlantic Bight ranged from 2 to 4 mg l1 (maximum concentration of 7 mg l1) and 8 to 12 mg l1 (maximum concentration of 22 mg l1) on the south flank of Georges Bank. ?? 1987.

  19. Meteorological phenomena affecting the presence of solid particles suspended in the air during winter

    NASA Astrophysics Data System (ADS)

    Cariñanos, P.; Galán, C.; Alcázar, P.; Dominguez, E.

    Winter is not traditionally considered to be a risky season for people who suffer from pollen allergies. However, increasing numbers of people are showing symptoms in winter. This prompted our investigation into the levels of solid material in the air, and some of the meteorological phenomena that allow their accumulation. This study showed a possible relationship between the phenomenon of thermal inversion, which occurs when very low temperatures, cloudless skies and atmospheric calms coincide, and an increase in the concentration of solid material in the atmosphere. Frequently, this situation is associated with other predictable phenomena such as fog, dew and frost. This may allow a warning system to be derived for urban pollution episodes. The effect caused by parameters such as wind and rainfall was also analysed. Solid material was differentiated into non-biological material from natural and non-natural sources (e.g. soot, dust, sand, diesel exhaust particles, partially burnt residues) and biological material. The latter mainly comprises pollen grains and fungal spores. Owing to its abundance and importance as a causal agent of winter allergies, Cupressaceae pollen was considered separately.

  20. Meteorological phenomena affecting the presence of solid particles suspended in the air during winter.

    PubMed

    Cariñanos, P; Galán, C; Alcázar, P; Dominguez, E

    2000-05-01

    Winter is not traditionally considered to be a risky season for people who suffer from pollen allergies. However, increasing numbers of people are showing symptoms in winter. This prompted our investigation into the levels of solid material in the air, and some of the meteorological phenomena that allow their accumulation. This study showed a possible relationship between the phenomenon of thermal inversion, which occurs when very low temperatures, cloudless skies and atmospheric calms coincide, and an increase in the concentration of solid material in the atmosphere. Frequently, this situation is associated with other predictable phenomena such as fog, dew and frost. This may allow a warning system to be derived for urban pollution episodes. The effect caused by parameters such as wind and rainfall was also analysed. Solid material was differentiated into non-biological material from natural and non-natural sources (e.g. soot, dust, sand, diesel exhaust particles, partially burnt residues) and biological material. The latter mainly comprises pollen grains and fungal spores. Owing to its abundance and importance as a causal agent of winter allergies, Cupressaceae pollen was considered separately.

  1. Pattern recognition of respirable dust particles by a back-propagation artificial neural network.

    PubMed

    Wippel, R; Pichler-Semmelrock, F P; Köck, M; Kosmus, W

    2001-05-01

    A back-propagation neural network was used as a pattern recognition tool for LAMMA mass spectral data. Standard EPA source profiles were used as training and test data of the net. The elemental patterns (10 elements) of the sum of 100 mass spectra of fine dust particles were presented to the trained nets and satisfactory recognition (> 50%) was obtained.

  2. Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale

    NASA Astrophysics Data System (ADS)

    van der Lee, E. M.; Bowers, D. G.; Kyte, E.

    2009-05-01

    Suspended sediments form an integral part of shelf sea systems, determining light penetration for primary production through turbidity and dispersion of pollutants by adsorption and settling of particles. The settling speed of suspended particles depends on their size and on turbulence. Here a method of determining particle size via remote sensing measurements of ocean colour and brightness has been applied to a set of monthly satellite images of the Irish Sea covering a full year (2006). The suspended sediment concentration was calculated from the ratio between green (555 nm) and red (665 nm) wavelengths in MODIS imagery. Empirical formulae were employed to convert suspended sediment concentrations and irradiance reflectance in the red part of the spectrum into specific scattering by mineral particles and floc size. A geographical pattern was evident in all images with shallow areas with fast currents having high year-average suspended sediment concentrations (7.6 mg l -1), high specific scattering (0.225 m 2 g -1) and thus small particle sizes (143 μm). The reverse is true for deeper areas with slower currents, e.g. the Gyre southwest of the Isle of Man where turbidity levels are lower (3.3 mg l -1), specific scattering is lower (0.081 m 2 g -1) and thus particle sizes are larger (595 μm) on average over a year. Temporal signals are also seen over the year in these parameters with minimum seasonal amplitudes (a factor 3.5) in the Turbidity Maximum and maximum seasonal amplitudes twice as large (a factor 7) in the Gyre. In the Gyre heating overcomes mixing in summer and stratification occurs allowing suspended sediments to settle out and flocs to grow large. The size of aggregated flocs is theoretically proportional to the Kolmogorov scale. This scale was calculated using depth, current, and wind speed data and compared to the size of flocculated particles. The proportionality changes through the year, indicating the influence of biological processes in summer

  3. [Distributions and pollution status of heavy metals in the suspended particles of the estuaries and coastal area of eastern Hainan].

    PubMed

    Xin, Cheng-Lin; Ren, Jing-Ling; Zhang, Gui-Ling; Shao, Ya-Ping; Zhang, Guo-Ling; Liu, Su-Mei

    2013-04-01

    The distributions and pollution status of heavy metals in the suspended particles were investigated in the Wanquan and Wenchang/Wenjiao estuaries and the coastal area of eastern Hainan in July 2008. The concentrations of metal elements (Al, Fe, Mn, Cr, Cu, Ni, V, Zn) were determined by ICP-AES after microwave digestion. Multivariate statistical methods (e. g. correlation analysis and principal factor analysis) were used to discuss the major factors controlling the variability of heavy metal concentrations and the pollution status in those areas. There was an obvious variability in particulate metal concentrations from upstream to estuary of both rivers. The concentrations first increased with increasing salinity and then decreased with further increase of the salinity; the concentrations were slightly higher at the coastal area in the east. The variability of particulate metal concentrations reduced significantly after the normalization by Al, indicating the effects of grain size. Enrichment factor calculation results showed that there was heavy metal pollution (especially Cu, Ni) in the Wenchang/Wenjiao River and estuary, while the situation in Wanquan River remained at pristine level. Concentrations of particulate metals in the study area were mainly controlled by source geology and provenance, as well as contamination from the discharge of waste water and biological activity.

  4. Determination of buffering capacity of total suspended particle and its source apportionment using the chemical mass balance approach.

    PubMed

    Bi, Xiao-Hui; Feng, Yin-Chang; Zhu, Tan; Zhang, Yu-Fen; Wu, Jian-Hui; Li, Xiang

    2011-01-01

    The samples of total suspended particle (TSP) from sources and TSP in the ambient atmosphere were collected in 2006 at Tianjin, People's Republic of China and analyzed for 16 chemical elements, two water-soluble ions, total carbon, and organic carbon. On the basis of the chemical mass balance (CMB) model, the contributions of different TSP sources to the ambient TSP were identified. The results showed that resuspended dust has the biggest contributions to the concentration of ambient TSP. The buffering capacity of each TSP source was also determined by an analytical chemistry method, and the result showed that the constructive dust (the dust emitted from construction work) had the strongest buffering capacity among the measured sources, whereas the coal combustion dust had the weakest buffering capacity. A calculation formula of the source of buffering capacity of ambient TSP was developed based on the result of TSP source apportionment and the identification of the buffering capacity of each TSP source in this study. The results of the source apportionment of the buffering capacity of ambient TSP indicated that open sources (including soil dust, resuspended dust, and constructive dust) were the dominant sources of the buffering capacity of the ambient TSP. Acid rain pollution in cities in Northern China might become serious with a decrease of open source pollution without reducing acidic sources. More efforts must be made to evaluate this potential risk, and countermeasures should be proposed as early as possible.

  5. Seasonal and spatial changes of free and bound organic acids in total suspended particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Bi, Xinhui; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-12-01

    The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53. Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.

  6. Performance of an N95 filtering facepiece particulate respirator and a surgical mask during human breathing: two pathways for particle penetration.

    PubMed

    Grinshpun, Sergey A; Haruta, Hiroki; Eninger, Robert M; Reponen, Tiina; McKay, Roy T; Lee, Shu-An

    2009-10-01

    The protection level offered by filtering facepiece particulate respirators and face masks is defined by the percentage of ambient particles penetrating inside the protection device. There are two penetration pathways: (1) through the faceseal leakage, and the (2) filter medium. This study aimed at differentiating the contributions of these two pathways for particles in the size range of 0.03-1 microm under actual breathing conditions. One N95 filtering facepiece respirator and one surgical mask commonly used in health care environments were tested on 25 subjects (matching the latest National Institute for Occupational Safety and Health fit testing panel) as the subjects performed conventional fit test exercises. The respirator and the mask were also tested with breathing manikins that precisely mimicked the prerecorded breathing patterns of the tested subjects. The penetration data obtained in the human subject- and manikin-based tests were compared for different particle sizes and breathing patterns. Overall, 5250 particle size- and exercise-specific penetration values were determined. For each value, the faceseal leakage-to-filter ratio was calculated to quantify the relative contributions of the two penetration pathways. The number of particles penetrating through the faceseal leakage of the tested respirator/mask far exceeded the number of those penetrating through the filter medium. For the N95 respirator, the excess was (on average) by an order of magnitude and significantly increased with an increase in particle size (p < 0.001): approximately 7-fold greater for 0.04 microm, approximately 10-fold for 0.1 microm, and approximately 20-fold for 1 microm. For the surgical mask, the faceseal leakage-to-filter ratio ranged from 4.8 to 5.8 and was not significantly affected by the particle size for the tested submicrometer fraction. Facial/body movement had a pronounced effect on the relative contribution of the two penetration pathways. Breathing intensity and

  7. Performance of an N95 filtering facepiece particulate respirator and a surgical mask during human breathing: two pathways for particle penetration.

    PubMed

    Grinshpun, Sergey A; Haruta, Hiroki; Eninger, Robert M; Reponen, Tiina; McKay, Roy T; Lee, Shu-An

    2009-10-01

    The protection level offered by filtering facepiece particulate respirators and face masks is defined by the percentage of ambient particles penetrating inside the protection device. There are two penetration pathways: (1) through the faceseal leakage, and the (2) filter medium. This study aimed at differentiating the contributions of these two pathways for particles in the size range of 0.03-1 microm under actual breathing conditions. One N95 filtering facepiece respirator and one surgical mask commonly used in health care environments were tested on 25 subjects (matching the latest National Institute for Occupational Safety and Health fit testing panel) as the subjects performed conventional fit test exercises. The respirator and the mask were also tested with breathing manikins that precisely mimicked the prerecorded breathing patterns of the tested subjects. The penetration data obtained in the human subject- and manikin-based tests were compared for different particle sizes and breathing patterns. Overall, 5250 particle size- and exercise-specific penetration values were determined. For each value, the faceseal leakage-to-filter ratio was calculated to quantify the relative contributions of the two penetration pathways. The number of particles penetrating through the faceseal leakage of the tested respirator/mask far exceeded the number of those penetrating through the filter medium. For the N95 respirator, the excess was (on average) by an order of magnitude and significantly increased with an increase in particle size (p < 0.001): approximately 7-fold greater for 0.04 microm, approximately 10-fold for 0.1 microm, and approximately 20-fold for 1 microm. For the surgical mask, the faceseal leakage-to-filter ratio ranged from 4.8 to 5.8 and was not significantly affected by the particle size for the tested submicrometer fraction. Facial/body movement had a pronounced effect on the relative contribution of the two penetration pathways. Breathing intensity and

  8. Hydroclimatic influence on particle size distribution of suspended sediments evacuated from debris-covered Chorabari Glacier, upper Mandakini catchment, central Himalaya

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad

    2016-07-01

    Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of

  9. Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: distribution, possible sources, and cancer risks.

    PubMed

    Yang, Xiaoxia; Ren, Dong; Sun, Wenwen; Li, Xiaoman; Huang, Bin; Chen, Rong; Lin, Chan; Pan, Xuejun

    2015-05-01

    The concentrations, distribution, possible sources, and cancer risks of polycyclic aromatic hydrocarbons (PAHs) in total suspended particles (TSPs) and surface soils collected from the same sampling spots were compared in Kunming, China. The total PAH concentrations were 9.35-75.01 ng/m(3) and 101.64-693.30 ng/g dry weight (d.w.), respectively, in TSPs and surface soils. Fluoranthene (FLA), pyrene (PYR), chrysene (CHR), and phenanthrene (PHE) were the abundant compounds in TSP samples, and phenanthrene (PHE), fluorene (FLO), fluoranthene (FLA), benzo[b]fluoranthene (BbF), and benzo[g,h,i]perylene (BghiP) were the abundant compounds in surface soil samples. The spatial distribution of PAHs in TSPs is closely related to the surrounding environment, which varied significantly as a result of variations in source emission and changes in meteorology. However, the spatial distribution of PAHs in surface soils is supposed to correlate with a city's urbanization history, and high levels of PAHs were always observed in industry district, or central or old district of city. Based on the diagnostic ratios and principal component analysis (PCA), vehicle emissions (especially diesel-powered vehicles) and coal and wood combustion were the main sources of PAHs in TSPs, and the combustion of wood and coal, and spills of unburnt petroleum were the main sources of PAHs in the surface soils. The benzo[a]pyrene equivalent concentration (BaPeq) for the TSPs and surface soil samples were 0.16-2.57 ng/m(3) and 11.44-116.03 ng/g d.w., respectively. The incremental lifetime cancer risk (ILCR) exposed to particulate PAHs ranged from 10(-4) to 10(-3) indicating high potential of carcinogenic risk, and the ILCR exposed to soil PAHs was from 10(-7) to 10(-6) indicating virtual safety. These presented results showed that particle-bound PAHs had higher potential carcinogenic ability for human than soil PAHs. And, the values of cancer risk for children were always higher than for adults, which

  10. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile.

    PubMed

    Moeinaddini, Mazaher; Esmaili Sari, Abbas; Riyahi bakhtiari, Alireza; Chan, Andrew Yiu-Chung; Taghavi, Seyed Mohammad; Hawker, Darryl; Connell, Des

    2014-06-01

    The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m(3), respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: 'diesel' (56.3% of total PAHs on average), 'gasoline' (15.5%), 'wood combustion, and incineration' (13%), 'industry' (9.2%), and 'road soil particle' (6.0%). The four n-alkane source factors identified were: 'petrogenic' (65% of total n-alkanes on average), 'mixture of petrogenic and biomass burning' (15%), 'mixture of biogenic and fossil fuel' (11.5%), and 'biogenic' (8.5%). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4% of total PAHs and 5.0% of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area

  11. A new device to measure the settling properties of suspended particles : instrumental development and first applications during runoff events in small watersheds

    NASA Astrophysics Data System (ADS)

    Legoût, Cédric; Wendling, Valentin; Gratiot, Nicolas; Mercier, Bernard; Coulaud, Catherine; Nord, Guillaume; Droppo, Ian; Ribolzi, Olivier

    2016-04-01

    Most equations describing suspended particle transport balances the settling flux of particles against the turbulent flux of the flow. Although in-situ techniques have been developed to measure settling velocities of suspended particles in coastal areas, floodplain rivers and estuaries, they are not easily transferable to small and meso-scale watersheds. The main limitation lies in the range of concentrations frequently reaching several tens of grams per liter during runoff events. To overcome this instrumental limitation we developed an original System for the Characterization of Aggregates and Flocs (SCAF). An optical settling column, equipped with a vertical array of 16 optical sensors, was used to provide light transmission through a suspension during quiescent settling. It was specifically designed to be inserted in plastic bottles contained in classical sequential samplers, in order to obtain automatic measurements of the suspension immediately after its collection in the river. From the SCAF measurements, we calculate both the particle settling velocity distributions and the propensity of particles to flocculate. The prototypes were tested in laboratory conditions for a wide range of concentrations and material types, leading to consistent measurements with flocculation indices comprised between 0 and 80, respectively for non-cohesive and cohesive materials. First measurements in the field were achieved during runoff events at the outlet of small nested catchments in Lao PDR (MSEC network of environmental observatories) in order to explore the non-conservative behavior of the settling properties of eroded soil aggregates during their transfer.

  12. Capture of 0.1-μm aerosol particles containing viable H1N1 influenza virus by N95 filtering facepiece respirators.

    PubMed

    Harnish, Delbert A; Heimbuch, Brian K; Balzli, Charles; Choe, Melanie; Lumley, April E; Shaffer, Ronald E; Wander, Joseph D

    2016-01-01

    Nosocomial infections pose an escalating threat to both patients and healthcare workers (HCWs). A widely recommended device for individual respiratory protection, the N95 filtering facepiece respirator (FFR) has been shown to provide efficient filtration of inert particles larger and smaller than the nominal most-penetrating particle size (MPPS) range, 0.03-0.3 μm. Humans generate respiratory aerosols in the MPPS range, suggesting that short-range disease transmission could occur via small infectious particles. Data presented here show that the N95 FFR will afford a significant measure of protection against infectious particles as small as a bare H1N1 influenza virion, and that the capture mechanism does not discriminate in favor of, or against, biological particles. PMID:26554291

  13. Selective exposure and analysis of the sheep tracheal lobe as a model for toxicological studies of respirable particles

    SciTech Connect

    Begin, R.; Masse, S.; Rola-Pleszczynski, M.; Drapeau, G.; Dalle, D.

    1985-04-01

    A conscious sheep model, recently developed to study sequentially the bronchoalveolar milieu, was further refined to use in the rapid in vivo assessment of the biological effects of respirable particles. In this model, the anatomically isolated tracheal lobe was selectively exposed to either 100 ml phosphate buffered saline (PBS) (control group of 12 sheep), 100 mg of 0.1-..mu..m latex beads in 100 ml PBS (latex group of 12 sheep), or 100 mg of UICC Canadian chrysotile fibers in 100 ml PBS (asbestos group of 12 sheep). Bronchoalveolar lavages (BAL) of the tracheal lobe were obtained prior to exposure and at Days 1, 8, 15, 21, 29, 45, and 60 after exposure. Whole-lung detailed pulmonary function tests (PFT) were performed at the same times and the histopathology of the lobe was examined in six sheep in each group at Days 29 and 60. In the latex group, there was no significant change in PFT, the BAL analyses documented early transient increase in cellularity (macrophages and neutrophils at Day 1) and only macrophages after; lung histology documented an early macrophagic alveolitis which decreased to less than 10% of the initial inflammatory reaction at Day 60, without other distortion of the lung and airway architecture. In the asbestos sheep, the only change in whole-lung PFT was a 10-torr fall in arterial O/sub 2/ pressure. BAL analyses documented persistent increases in macrophages, neutrophils, and lactate dehydrogenase as well as increasing ..gamma..-globulins. Lung histology revealed a macrophagic and neutrophilic peribronchiolar alveolitis, early fibrosis, and severe distortion of the small airways, lesions comparable to those of early asbestosis in sheep or humans.

  14. Amino acid composition of suspended particles, sediment-trap material, and benthic sediment in the Potomac Estuary

    USGS Publications Warehouse

    Sigleo, A.C.; Shultz, D.J.

    1993-01-01

    Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. The amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and 7.9 m depths in the Potomac Estuary was determined in stratified summer waters, and in well-mixed oxygenated waters (DO) in late fall. The total vertical flow, or flux, of material into the top traps ranged from 3 g m-2 d-1 in August to 4.9 g m-2 d-1 in October. The carbon and nitrogen fluxes increased in the deepest traps relative to the surface traps during both sampling periods, along with that of the total material flux (up to 47.3 g m-2 d-1 in the deepest trap), although the actual weight percent of organic carbon and organic nitrogen decreased with depth. Amino acid concentrations ranged from 129 mg g-1 in surface water particulate material to 22 mg g-1 in particulate material in 9-m-deep waters and in the benthic sediment. Amino acid concentrations from 2.4-mg-depth sediment traps averaged 104??29 mg g-1 in stratified waters and 164??81 mg g-1 in well-mixed waters. The deep trap samples averaed, 77.3??4.8 mg g-1 amino acids in summer waters and 37??16 mg g-1 in oxygenated fall waters. Amino acids comprised 13% to 39% of the organic carbon and 12% to 89% of the orgnaic nitrogen in these samples. Analysis of the flux results suggest that resuspension combined with lateral advection from adjacent slopes can account for up to 27% of the material in the deep traps when the estuary was well-mixed and unstratified. When the estuary was stratified in late summer, the amino acid carbon produced by primary productivity in the euphotic zone decreased by 85% (86% for total organic carbon) at the pycnocline at 6 m depth, leaving up to 15% of the vertical organic flux available for benthic sediment deposition. ?? 1993 Estuarine Research Federation.

  15. Residence time of suspended particles in the Garonne River (SW France): indications derived from Th-234, Be-7 and Pb-210

    NASA Astrophysics Data System (ADS)

    Schmidt, Sabine; Saari, Hanna-Kaïsa

    2013-04-01

    Particulates that enter the ocean from rivers are the products of integrated basin-wide processes (soil erosion, sediment transport and deposition in watersheds). The fate of sediments in river is therefore challenging and generally analysed using hydrodynamics models. An alternative method relies on the use of fallout radioactive tracers to identify sediment source regions and/or to estimate suspended sediment age or the fraction of the suspended sediment recently eroded from the landscape. This work presents the application of naturally occurring radionuclides: Pb-210 (T1/2 = 22.3 years) and Be-7 (T1/2 = 53 days), both delivered by atmospheric fallout, and Th-234 (T1/2 = 24.1 days), to investigate residence times of particles in the lower Garonne River (South-West France). Th-234, produced continuously by decay of U-238, is widely used in marine sciences for studying particle dynamic on time-scales of days to weeks, but a major limitation to extend its application from the ocean to river is the activity (level, variability) of its parent, U-238, in contrast with the high and rather constant levels of oceanic uranium. The Garonne River has a watershed of 55 000 km2 with a mean discharge of 650 m3 s-1 (range: 12500 m3 s-1). It flows westward about 647 km from the Spanish Pyrenees, ending into the Gironde, its common estuary with the Dordogne River. To investigate suspended particle dynamic of the lower Garonne River, monthly samplings were performed from January 2006 to December 2007 at selected sites along this river system, including a site in its estuarine section. Dissolved and particulate activities of radionuclides were determined using a low-background, well-shaped gamma spectrometer. Additional data (river discharge, rain rate, suspended particulate concentrations) were also collected to better interpret radionuclide data. Whereas dissolved fractions are always negligible, particulate Th-234, Be-7 and Pb-210 activities present marked spatio

  16. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference

    SciTech Connect

    Li, Guang Schmidtlein, C. Ross; Humm, John L.; Burger, Irene A.; Ridge, Carole A.; Solomon, Stephen B.

    2014-09-15

    Purpose: To assess and account for the impact of respiratory motion on the variability of activity and volume determination of liver tumor in positron emission tomography (PET) through a comparison between free-breathing (FB) and respiration-suspended (RS) PET images. Methods: As part of a PET/computed tomography (CT) guided percutaneous liver ablation procedure performed on a PET/CT scanner, a patient's breathing is suspended on a ventilator, allowing the acquisition of a near-motionless PET and CT reference images of the liver. In this study, baseline RS and FB PET/CT images of 20 patients undergoing thermal ablation were acquired. The RS PET provides near-motionless reference in a human study, and thereby allows a quantitative evaluation of the effect of respiratory motion on PET images obtained under FB conditions. Two methods were applied to calculate tumor activity and volume: (1) threshold-based segmentation (TBS), estimating the total lesion glycolysis (TLG) and the segmented volume and (2) histogram-based estimation (HBE), yielding the background-subtracted lesion (BSL) activity and associated volume. The TBS method employs 50% of the maximum standardized uptake value (SUV{sub max}) as the threshold for tumors with SUV{sub max} ≥ 2× SUV{sub liver-bkg}, and tumor activity above this threshold yields TLG{sub 50%}. The HBE method determines local PET background based on a Gaussian fit of the low SUV peak in a SUV-volume histogram, which is generated within a user-defined and optimized volume of interest containing both local background and lesion uptakes. Voxels with PET intensity above the fitted background were considered to have originated from the tumor and used to calculate the BSL activity and its associated lesion volume. Results: Respiratory motion caused SUV{sub max} to decrease from RS to FB by −15% ± 11% (p = 0.01). Using TBS method, there was also a decrease in SUV{sub mean} (−18% ± 9%, p = 0.01), but an increase in TLG{sub 50%} (18%

  17. Particle surface area dependence of mineral dust in immersion freezing mode: investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-11-01

    The heterogeneous freezing temperatures of supercooled drops were measured using an acoustic levitator. This technique allows one to freely suspend single drops in the air without any wall contact. Heterogeneous nucleation by two types of illite (illite IMt1 and illite NX) and a montmorillonite sample was investigated in the immersion mode. Drops of 1 mm in radius were monitored by a video camera while cooled down to -28 °C to simulate freezing within the tropospheric temperature range. The surface temperature of the drops was contact-free, determined with an infrared thermometer; the onset of freezing was indicated by a sudden increase of the drop surface temperature. For comparison, measurements with one particle type (illite NX) were additionally performed in the Mainz vertical wind tunnel with drops of 340 μm radius freely suspended. Immersion freezing was observed in a temperature range between -13 and -26 °C as a function of particle type and particle surface area immersed in the drops. Isothermal experiments in the wind tunnel indicated that after the cooling stage freezing still proceeds, at least during the investigated time period of 30 s. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model. Although the wind tunnel results do not support the time-independence of the freezing process both models are applicable for comparing the results from the two experimental techniques.

  18. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8 to 415 μm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 data sets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-2012 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38-69,264 km2). An unrealistically low computed effective density (mass SSC/volumetric SSC) of 1.24 g/mL (95% confidence interval: 1.05-1.45 g/mL) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over two orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/mL (range: 2.56-2.87 g/mL, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  19. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    USGS Publications Warehouse

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2014-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  20. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River Delta plain, Louisiana, USA

    USGS Publications Warehouse

    Jaisi, D.P.; Ji, S.; Dong, H.; Blake, R.E.; Eberl, D.D.; Kim, J.

    2008-01-01

    River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88-89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO421 and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ??? 3.5 and their zeta potentials at the sediment-water interface pH (6.9-7.3) varied from -35 to -45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in native

  1. Development of a test system to apply virus-containing particles to filtering facepiece respirators for the evaluation of decontamination procedures.

    PubMed

    Fisher, Edward; Rengasamy, Samy; Viscusi, Dennis; Vo, Evanly; Shaffer, Ronald

    2009-03-01

    A chamber to apply aerosolized virus-containing particles to air-permeable substrates (coupons) was constructed and validated as part of a method to assess the virucidal efficacy of decontamination procedures for filtering facepiece respirators. Coliphage MS2 was used as a surrogate for pathogenic viruses for confirmation of the efficacy of the bioaerosol respirator test system. The distribution of virus applied onto and within the coupons was characterized, and the repeatability of applying a targeted virus load was examined. The average viable virus loaded onto 90 coupons over the course of 5 days was found to be 5.09 +/- 0.19 log(10) PFU/coupon (relative standard deviation, 4%). To determine the ability to differentiate the effectiveness of disinfecting procedures with different levels of performance, sodium hypochlorite and steam treatments were tested in experiments by varying the dose and time, respectively. The role of protective factors was assessed by aerosolizing the virus with various concentrations of the aerosol-generating medium. A sodium hypochlorite (bleach) concentration of 0.6% and steam treatments of 45 s and longer resulted in log reductions (>4 logs) which reached the detection limits for both levels of protective factors. Organic matter (ATCC medium 271) as a protective factor afforded some protection to the virus in the sodium hypochlorite experiments but was not a factor in the steam experiments. The evaluation of the bioaerosol respirator test system demonstrated a repeatable method for applying a targeted viral load onto respirator coupons and provided insight into the properties of aerosols that are of importance to the development of disinfection assays for air-permeable materials. PMID:19139225

  2. Development of a Test System To Apply Virus-Containing Particles to Filtering Facepiece Respirators for the Evaluation of Decontamination Procedures▿

    PubMed Central

    Fisher, Edward; Rengasamy, Samy; Viscusi, Dennis; Vo, Evanly; Shaffer, Ronald

    2009-01-01

    A chamber to apply aerosolized virus-containing particles to air-permeable substrates (coupons) was constructed and validated as part of a method to assess the virucidal efficacy of decontamination procedures for filtering facepiece respirators. Coliphage MS2 was used as a surrogate for pathogenic viruses for confirmation of the efficacy of the bioaerosol respirator test system. The distribution of virus applied onto and within the coupons was characterized, and the repeatability of applying a targeted virus load was examined. The average viable virus loaded onto 90 coupons over the course of 5 days was found to be 5.09 ± 0.19 log10 PFU/coupon (relative standard deviation, 4%). To determine the ability to differentiate the effectiveness of disinfecting procedures with different levels of performance, sodium hypochlorite and steam treatments were tested in experiments by varying the dose and time, respectively. The role of protective factors was assessed by aerosolizing the virus with various concentrations of the aerosol-generating medium. A sodium hypochlorite (bleach) concentration of 0.6% and steam treatments of 45 s and longer resulted in log reductions (>4 logs) which reached the detection limits for both levels of protective factors. Organic matter (ATCC medium 271) as a protective factor afforded some protection to the virus in the sodium hypochlorite experiments but was not a factor in the steam experiments. The evaluation of the bioaerosol respirator test system demonstrated a repeatable method for applying a targeted viral load onto respirator coupons and provided insight into the properties of aerosols that are of importance to the development of disinfection assays for air-permeable materials. PMID:19139225

  3. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

    NASA Astrophysics Data System (ADS)

    McClymer, J. P.

    2016-08-01

    Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

  4. How does breathing frequency affect the performance of an N95 filtering facepiece respirator and a surgical mask against surrogates of viral particles?

    PubMed

    He, Xinjian; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2014-01-01

    Breathing frequency (breaths/min) differs among individuals and levels of physical activity. Particles enter respirators through two principle penetration pathways: faceseal leakage and filter penetration. However, it is unknown how breathing frequency affects the overall performance of N95 filtering facepiece respirators (FFRs) and surgical masks (SMs) against viral particles, as well as other health-relevant submicrometer particles. A FFR and SM were tested on a breathing manikin at four mean inspiratory flows (MIFs) (15, 30, 55, and 85 L/min) and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). Filter penetration (Pfilter) and total inward leakage (TIL) were determined for the tested respiratory protection devices against sodium chloride (NaCl) aerosol particles in the size range of 20 to 500 nm. "Faceseal leakage-to-filter" (FLTF) penetration ratios were calculated. Both MIF and breathing frequency showed significant effects (p < 0.05) on Pfilter and TIL. Increasing breathing frequency increased TIL for the N95 FFR whereas no clear trends were observed for the SM. Increasing MIF increased Pfilter and decreased TIL resulting in decreasing FLTF ratio. Most of FLTF ratios were >1, suggesting that the faceseal leakage was the primary particle penetration pathway at various breathing frequencies. Breathing frequency is another factor (besides MIF) that can significantly affect the performance of N95 FFRs, with higher breathing frequencies increasing TIL. No consistent trend of increase or decrease of TIL with either MIF or breathing frequency was observed for the tested SM. To potentially extend these findings beyond the manikin/breathing system used, future studies are needed to fully understand the mechanism causing the breathing frequency effect on the performance of respiratory protection devices on human subjects. PMID:24521067

  5. Suspended microfluidics.

    PubMed

    Casavant, Benjamin P; Berthier, Erwin; Theberge, Ashleigh B; Berthier, Jean; Montanez-Sauri, Sara I; Bischel, Lauren L; Brakke, Kenneth; Hedman, Curtis J; Bushman, Wade; Keller, Nancy P; Beebe, David J

    2013-06-18

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics.

  6. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  7. Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico

    NASA Astrophysics Data System (ADS)

    Piña, A. Aragón; Villaseñor, G. Torres; Jacinto, P. Santiago; Fernández, M. Monroy

    In the city of San Luis Potosi exists an important metallurgical plant and is known that in the adjacent urban zone, there is a high concentration of lead in the air, it is also supposed that most of the particles with lead have an anthropogenic origin because these particles show morphological characteristics and chemical composition very different in comparison with common lead minerals. In this work it was proved that most of the airborne particles with lead present in this urban zone, effectively came from the copper smelter. The airborne particles with lead were compared with particles with lead obtained starting from samples of slag and lead calcine of the copper smelter. To perform the comparative study, these particles were studied with energy dispersive X-ray microanalysis (EDS) in conjunction with scanning electron microscope to obtain chemical composition and associated morphological characteristics. Results suggest that these particles, composed of only one phase, are chemically distinct from any crustal lead mineral. Because of the complexity of the chemical composition of these particles (Pb, S, Cu, As, Fe, Zn, Cd, Sb, O), some of the airborne particles were analyzed by transmission microscopy in order to associate crystalline structure with any particular chemical phase.

  8. Penetration of fiber versus spherical particles through filter media and faceseal leakage of N95 filtering facepiece respirators with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Turkevich, Leonid; Miller, Matthew; McKay, Roy; Grinshpun, Sergey A; Ha, KwonChul; Reponen, Tiina

    2013-01-01

    This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 μm and a median length of 4.9 μm (calculated aerodynamic diameter, d(ae) = 1.73 μm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 μm (PSI) and 1.54 μm (PSII) were used for comparison (calculated d(ae) = 1.05 and 1.58 μm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0-2.8 times higher penetration through faceseal leaks and 1.1-1.5 higher penetration through filter media than fibers, which can be attributed to

  9. Penetration of fiber versus spherical particles through filter media and faceseal leakage of N95 filtering facepiece respirators with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Turkevich, Leonid; Miller, Matthew; McKay, Roy; Grinshpun, Sergey A; Ha, KwonChul; Reponen, Tiina

    2013-01-01

    This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 μm and a median length of 4.9 μm (calculated aerodynamic diameter, d(ae) = 1.73 μm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 μm (PSI) and 1.54 μm (PSII) were used for comparison (calculated d(ae) = 1.05 and 1.58 μm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0-2.8 times higher penetration through faceseal leaks and 1.1-1.5 higher penetration through filter media than fibers, which can be attributed to

  10. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  11. Experimental and Theoretical Study on Circular Disk Particles Suspended in Centrifugal and Non-Centrifugal Force Environments

    SciTech Connect

    Torii, Shuichi; Watanabe, Yoshimi; Tanaka, Satoyuki; Yano, Toshiaki; Iino, Naoko

    2008-02-15

    Theoretical and experimental studies are performed on suspension particle motion in Centrifugal and Non-Centrifugal Force Environment, i.e., in both an axially rotating drum and a stable liquid tank. The particle velocity of circular disks is measured by PTV (Particle Tracking Velocimetry) method and is predicted by BBO (Basset-Boussinesq-Ossen) equation. It is found that (1) as time progresses, one side of the disk in the axially rotating drum is attracted toward the drum wall and its velocity is affected by the rotating speed, (2) when the particle moves in the Stokes' regime, its velocity is linearly increased with the distance from the center of the drum, (3) in contrast, the autorotation of the disk occurs in the non-centrifugal force field, and (4) the corresponding drag coefficient in the low Reynolds number region is in good agreement with the theoretical value of the sphere.

  12. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    PubMed Central

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos

    2009-01-01

    Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393

  13. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the

  14. Properties of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility.

    PubMed

    Basinska, Teresa; Slomkowski, Stanislaw; Kazmierski, Slawomir; Chehimi, Mohamed M

    2008-08-19

    Hydrodynamic and electrophoretic properties of core-shell poly(styrene/alpha- tert-butoxy-omega-vinylbenzyl-polyglycidol) (P(S/PGL)) microspheres suspended in water are described. The microspheres were obtained by surfactant-free emulsion copolymerization of styrene and alpha- tert-butoxy-omega-vinylbenzyl-polyglycidol macromonomer ( M n = 2800, M w/ M n = 1.05). The process yielded microspheres with number average diameter D n = 270 nm and with low diameter dispersity index D w/ D n = 1.01. Shells of P(S/PGL) microspheres were enriched in polyglycidol. Molar fraction of polyglycidol monomeric units in the shells (determined by X-ray photoelectron spectroscopy) was equal to 0.34, which is much higher than the average molar fraction of polyglycidol monomeric units in whole particles of 0.048. Influences of NaCl concentration and temperature on P(S/PGL) microsphere diameters and on their electrophoretic mobility were investigated. It was found that hydrodynamic diameter of P(S/PGL) microspheres, determined by photon correlation spectroscopy, decreased significantly when temperature did exceed a certain value (transition temperature, T t). It has been found that the decrease is more pronounced for higher concentrations of NaCl in the medium. For microspheres suspended in 10 (-1) M NaCl, the hydrodynamic diameter decreased by 8% whereas for the same particles in pure water the diameter decreased by 5.2%. The process of shrinkage was fully reversible. Values of T t for P(S/PGL) microspheres were lower for higher concentrations of NaCl. Adjustment of salt concentration allowed controlling T t in a range from 44.4 to 49.9 degrees C. 13C NMR relaxation time measurements (T 1) for carbon atoms in polyglycidol macromonomer revealed that T 1 did increase with increasing temperature (in temperature range from 25 to 75 degrees C) indicating higher motion of chains at higher temperature. Addition of NaCl did not induce a substantial change of T 1 in the mentioned temperature

  15. Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    NASA Technical Reports Server (NTRS)

    Doxaran, D.; Ehn, J.; Belanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-01-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future

  16. Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing

    NASA Astrophysics Data System (ADS)

    Doxaran, D.; Ehn, J.; Bélanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-08-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future

  17. Flocculation on a muddy intertidal flat in Willapa Bay, Washington, Part II: Observations of suspended particle size in a secondary channel and adjacent flat

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Newgard, J. P.; Law, B. A.; Milligan, T. G.

    2013-06-01

    During the last week of February and first week of March in 2010, instruments for measuring current speed and suspended particle size and concentration were placed in a secondary channel and on an adjacent intertidal mudflat at the southern end of Willapa Bay on the Pacific coast of Washington State. Observations show that during spring tides, flood-tide velocity pulses occurred in the channel as water rose above the level of the banks. These pulses resuspended flocs from the channel and advected them over the adjacent flat. During transport, there was some evidence of aggregation of resuspended flocs into larger flocs. As current speeds decreased after the flood pulses, flocs that had advected over the flat deposited quickly. Freshly deposited flocs were resuspended as water levels fell over the flat, with suspended concentrations peaking as water from the flat drained back into the channel. Flocs returning to the channel deposited as currents waned after the ebb pulse. In the channel, the more energetic ebb pulses were strong enough to cause floc breakup. Resuspension and transport of flocs were reduced significantly during neap tides. During periods with high winds, seabed stresses generated by waves limited the deposition of flocs on the seabed. These observations indicate that the floors and flanks of secondary channels as well as the flats surrounding them are the sites of floc deposition and, therefore, are the most likely locations for low-strength, high-water-content muds that contain large fractions of silt and clay. The observations also provide a mechanistic explanation for why deposition rates are typically observed to be reduced at higher elevations on tidal flats and on areas of the flats remote from secondary channels.

  18. Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River.

    PubMed

    Rivetti, Claudia; Gómez-Canela, Cristian; Lacorte, Silvia; Díez, Sergi; Lázaro, Wilkinson L; Barata, Carlos

    2015-04-01

    Identifying chemicals causing adverse effects in organisms present in water remains a challenge in environmental risk assessment. This study aimed to assess and identify toxic compounds bound to suspended solids re-suspended during a prolonged period of flushing flows in the lower part of Ebro River (NE, Spain). This area is contaminated with high amounts of organochlorine and mercury sediment wastes. Chemical characterization of suspended material was performed by solid phase extraction using a battery of non-polar and polar solvents and analyzed by GC-MS/MS and LC-MS/MS. Mercury content was also determined for all sites. Post-exposure feeding rates of Daphnia magna were used to assess toxic effects of whole and filtered water samples and of re-constituted laboratory water with re-suspended solid fractions. Organochlorine and mercury residues in the water samples increased from upstream to downstream locations. Conversely, toxic effects were greater at the upstream site than downstream of the superfund Flix reservoir. A further analysis of the suspended solid fraction identified a toxic component eluted within the 80:20 methanol:water fraction. Characterization of that toxic component fraction by LC-MS/MS identified the phytotoxin anatoxin-a, whose residue levels were correlated with observed feeding inhibition responses. Further feeding inhibition assays conducted in the lab using anatoxin-a produced from Planktothrix agardhii, a filamentous cyanobacteria, confirmed field results. This study provides evidence that in real field situation measured contaminant residues do not always agree with toxic effects.

  19. Suspended particulate matter in the Chesapeake Bay entrance and adjacent shelf waters

    NASA Technical Reports Server (NTRS)

    Gingerich, K. J.; Oertel, G. F.

    1981-01-01

    Approximately 400 samples were collected from the mouth of the Chesapeake Bay for various analyses, including 138 for suspended solids. Characteristics of suspended solids that were analyzed included: total suspended matter; total suspended inorganics, total suspended organics; percent organics; particle size distribution; and presence or absence of 11 of the most prominent particle types.

  20. Reversible electrically-driven magnetic domain wall rotation in multiferroic heterostructures to manipulate suspended on-chip magnetic particles

    NASA Astrophysics Data System (ADS)

    Nowakowski, Mark; Sohn, Hyunmin; Liang, Cheng-Yen; Hockel, Joshua; Wetzlar, Kyle; Keller, Scott; McLellan, Brenda; Marcus, Matthew; Doran, Andrew; Young, Anthony; Kläui, Mathias; Carman, Gregory; Bokor, Jeffrey; Candler, Robert

    2015-03-01

    We experimentally demonstrate reversible electrically-driven, strain-mediated domain wall (DW) rotation in Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3) O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. An electric field applied across the PMN-PT substrate induces a strain in the Ni rings producing DW rotation around the ring toward the dominant PMN-PT strain axis by inverse magnetostriction. We observe DWs reversibly cycled between their initial and rotated state as a function of the applied electric field with x-ray magnetic circular dichroism photo-emission electron microscopy. The DW rotation is analytically predicted using a fully coupled micromagnetic/elastodyanmic multi-physics simulation to verify that the experimental behavior is caused by the electrically-generated strain in this multiferroic system. Finally, this DW rotation is used to capture and manipulate magnetic particles in a fluidic environment to demonstrate a proof-of-concept energy-efficient pathway for multiferroic-based lab-on-a-chip applications. Supported by TANMS (NSF 11-537), E3S, US Dept of Energy (DE-AC02-05CH11231), EU, and DFG.

  1. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.

    PubMed

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-11-01

    Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.

  2. Removal of trace nonylphenol from water in the coexistence of suspended inorganic particles and NOMs by using a cellulose-based flocculant.

    PubMed

    Yang, Zhen; Ren, Kexin; Guibal, Eric; Jia, Shuying; Shen, Jiachun; Zhang, Xuntong; Yang, Weiben

    2016-10-01

    A flocculation method was used for the removal of trace nonylphenol (NP) from synthetic surface water containing natural organic matters (humic acid, HA) and suspended inorganic particles (kaolin). A polymeric flocculant (CMCND), with enhanced cationic property and unique switchable hydrophobic/hydrophilic characteristic, was specially designed for this application. CMCND showed a high efficiency for trace NP removal, turbidity and UV254 abatements: under optimized conditions (pH: 4; T: 35 °C; dosage: 40 mg/L), the removal of NP reached up to 79%. By using dosage-pH flocculation diagrams and correlation analyses as tools, kaolin and HA were found to exert synergistic effects on NP removal, with the aid of CMCND; the synergistic effect of HA is higher due to π-π stacking. Zeta potential-dosage profiles clearly demonstrated charge neutralization predominated at pH 4, due to the strong cationic groups in the flocculant. Floc size monitoring displayed that the delayed phase transformation process (from hydrophilicity to hydrophobicity) of CMCND at 35 °C enhanced NP removal. In addition, spectral analyses clarified the interactions among CMCND, NP, kaolin and HA: charge attraction and hydrophobic interaction between CMCND and NP played the key roles. The findings are of significance for removing endocrine-disrupting chemicals in environmental remediation. PMID:27459160

  3. Tomographic particle-image velocimetry and thermography in Rayleigh-Bénard convection using suspended thermochromic liquid crystals and digital image processing

    NASA Astrophysics Data System (ADS)

    Ciofalo, M.; Signorino, M.; Simiano, M.

    2003-02-01

    Steady-state flow and temperature fields in shallow rectangular enclosures heated from below were visualized and quantitatively characterized by using glycerol as the working fluid and suspended thermochromic liquid crystals as tracers. Couples of photographs taken on 120 transparency film for two orthogonal sets of vertical plane sections were digitized by a 1,200-dpi flatbed scanner and split into HSL (hue-saturation-lightness) components by using commercial general-purpose image processing software. Two-dimensional velocity fields were obtained from the lightness component by a two-frame cross-correlation technique using a commercial particle-image velocimetry (PIV) package. Temperature fields were obtained from the hue component on the basis of an in situ calibration procedure, conducted under conditions of stable thermal stratification. Finally, 2D flow and temperature distributions were interpolated by a purpose-written Fortran program to give 3D flow and thermal fields in the enclosure. Results are presented here for the case of a 1:2:4 aspect ratio cavity at a Rayleigh number of ˜ 14,500, for which a complex 3D flow and temperature distribution was observed.

  4. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.

    PubMed

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-11-01

    Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water. PMID:27348257

  5. Simultaneous determination of radiocesium ((135)Cs, (137)Cs) and plutonium ((239)Pu, (240)Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS.

    PubMed

    Cao, Liguo; Zheng, Jian; Tsukada, Hirofumi; Pan, Shaoming; Wang, Zhongtang; Tagami, Keiko; Uchida, Shigeo

    2016-10-01

    Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended

  6. Simultaneous determination of radiocesium ((135)Cs, (137)Cs) and plutonium ((239)Pu, (240)Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS.

    PubMed

    Cao, Liguo; Zheng, Jian; Tsukada, Hirofumi; Pan, Shaoming; Wang, Zhongtang; Tagami, Keiko; Uchida, Shigeo

    2016-10-01

    Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended

  7. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  8. Modeling Total Suspended Solids (TSS) Concentrations in Narragansett Bay.

    EPA Science Inventory

    This work covers mechanistic modeling of suspended particulates in estuarine systems with an application to Narragansett Bay, RI. Suspended particles directly affect water clarity and attenuate light in the water column. Water clarity affects both phytoplankton and submerged aqua...

  9. Using half-facepiece respirators for H1N1.

    PubMed

    Larson, Scott

    2009-11-01

    A respirator is a device designed to help provide the wearer with respiratory protection against inhalation of airborne contaminants. Increasing the filtration level of a particle respirator does not increase the respirator's ability to reduce a user's exposure to contaminants. The APF of a respirator, which is affected by the respirator style, determines the potential for exposure reduction. Surgical masks that are not approved as filtering facepiece half-mask respirators do not have an APF and should not be used for reducing workers' exposures to particles in the air. PMID:19927872

  10. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows.

    PubMed

    Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude

    2015-06-01

    It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed

  11. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows.

    PubMed

    Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude

    2015-06-01

    It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed

  12. Daily and seasonal dynamics of suspended particles in the Rhône River plume based on remote sensing and field optical measurements

    NASA Astrophysics Data System (ADS)

    Lorthiois, Thomas; Doxaran, David; Chami, Malik

    2012-04-01

    Satellite ocean colour remote sensing can serve as a powerful tool to assess river plume characteristics because it provides daily mapping of surface suspended particulate matter (SPM) concentration at high spatial resolution. This study's ultimate objective was to better understand daily and seasonal particle dynamics in a coastal area strongly influenced by freshwater discharge and wind—the Rhône River (France), this being the major source of terrestrial input to the Mediterranean Sea. SPM concentrations and biogenic composition (chlorophyll a, organic carbon) were investigated during several bio-optical field campaigns conducted in spring-autumn of 2010 both from aboard a research vessel and by means of an autonomous profiling float. Freshwater discharge and wind velocities varied significantly during the year, associated with marked fluctuations in surface SPM (upper 1 m), even within hours and not restricted to any specific season. Thus, the range was ca. 12-25 g m-3 (dry mass basis) on 9 April (spring), and ca. 3-39 g m-3 on 4-5 November (late autumn). Short-term variations were observed also in SPM composition in terms of POC (albeit not chl a), with POC/SPM ratios ranging between ca. 3 and 11% over ca. 3 weeks in spring. Nevertheless, the particulate backscattering coefficient ( b bp) proved to be a robust proxy of SPM concentration in the river plume ( b bp(770) = 0.0076 × SPM, R2 = 0.80, N = 56). It has recently been demonstrated that 80% of the Rhône's terrestrial discharge occurs during flood events. The results of the present study revealed that, under these conditions, SPM is constrained largely within surface waters (i.e. at depths <5 m), with only weak daily vertical variability. By implication, ocean colour satellite data are highly suitable in meaningfully estimating the overall SPM load exported by the Rhône River to the Mediterranean. These findings make a solid contribution to future improvements of three-dimensional sediment transport

  13. Short inhalation exposures of the isolated and perfused rat lung to respirable dry particle aerosols; the detailed pharmacokinetics of budesonide, formoterol, and terbutaline.

    PubMed

    Ewing, Per; Eirefelt, Stefan J; Andersson, Paul; Blomgren, Anders; Ryrfeldt, Ake; Gerde, Per

    2008-06-01

    There is an increasing interest in using the lung as a route of entry for both local and systemic administration of drugs. However, because adequate technologies have been missing in the preclinical setting, few investigators have addressed the detailed disposition of drugs in the lung following short inhalation exposures to highly concentrated dry powder aerosols. New methods are needed to explore the disposition of drugs after short inhalation exposures, thus mimicking a future clinical use. Our aim was to study the pulmonary disposition of budesonide, formoterol, and terbutaline, which are clinically used for the treatment of bronchial asthma. Using the recently developed DustGun aerosol technology, we exposed by inhalation for approximately 1 min the isolated and perfused rat lung (IPL) to respirable dry particle aerosols of the three drugs at high concentrations. The typical aerosol concentration was 1 mug/mL, and the particle size distribution of the tested substances varied with a MMAD ranging from 2.3 to 5.3 mum. The IPL was perfused in single pass mode and repeated samples of the perfusate were taken for up to 80 min postexposure. The concentration of drug in perfusate and in lung extracts was measured using LC-MS/MS. The deposited dose was determined by adding the amounts of drug collected in perfusate to the amount extracted from the tissues at 80 min. Deposited amounts of budesonide, formoterol fumarate, and terbutaline sulphate were 23 +/- 17, 36 +/- 8, and 60 +/- 3.2 mug (mean +/- SD, n = 3), respectively. Retention in lung tissues at the end of the perfusion period expressed as fraction of deposited dose was 0.19 +/- 0.05, 0.19 +/- 0.06, and 0.04 +/- 0.01 (mean +/- SD, n = 3) for budesonide, formoterol, and terbutaline, respectively. Each short inhalation exposure to the highly concentrated aerosols consumed 1-3 mg powder. Hence, this system can be particularly useful for obtaining a detailed pharmacokinetic characterization of inhaled compounds in

  14. Assessment of suspended dust from pipe rattling operations

    NASA Astrophysics Data System (ADS)

    Park, Ju-Myon

    Six types of aerosol samplers were evaluated experimentally in a test chamber with polydisperse fly ash. The Andersen sampler overestimates the mass of small particles due to particle bounce between stages and therefore provides a conservative estimate of respirable particulate mass and thoracic particulate mass. The TSP sampler provides an unbiased estimate of total particulate mass. TSP/CCM provides no information below ESD 2 mum and therefore underestimates respirable particulate mass. The PM10 sampler provides a reasonable estimate of the thoracic particulate fraction. The RespiCon sampler provides an unbiased estimate of respirable, thoracic, and inhalable fractions. DustTrak and SidePak monitors provide relative particle concentrations instead of absolute concentrations because it could not be calibrated for absolute particle concentrations with varying particle shape, composition, and density. Six sampler technologies were used to evaluate airborne dust concentrations released from oilfield pipe rattling operations. The task sampled was the removal of scale deposited on the inner wall of the pipe before it was removed from service in a producing well. The measured mass concentrations of the aerosol samplers show that a Gaussian plume model is applicable to the data of pipe rattling operations for finding an attainment area. It is estimated that workers who remain within 1 m of the machine centerline and directly downwind have an 8-hour TWA exposure opportunity of (13.3 +/- 9.7) mg/m3 for the Mud Lake pipe scale and (11.4 +/- 9.7) mg/m3 for the Lake Sand pipe scale at 95% confidence. At distances more than 4 m downwind from the machine centerline, dust concentrations are below the TWA-TLV of 10 mg/m3 for the worker in both scales. At positions crosswind or upwind from the machine centerline there is no measurable exposure. Available data suggest that the attainment area for the public starts at about 9 m downwind from the machine centerline in both scales, as

  15. LABORATORY REPORT ON IODINE ({sup 129}I AND {sup 127}I) SPECIATION, TRANSFORMATION AND MOBILITY IN HANFORD GROUNDWATER, SUSPENDED PARTICLES AND SEDIMENTS

    SciTech Connect

    Kaplan, D.; Santschi, P.; Xu, C.; Zhang, S.; Ho, Y.; Li, H.; Schwehr, K.

    2012-09-30

    than iodide K{sub d} values, and the K{sub d} values for both species tended to increase with the amount of organic carbon (OC) present in the sediment. It is especially noteworthy that this trend existed at the very low OC concentrations that naturally exist in the Hanford sediments. Iodine and OC can form essentially irreversible covalent bonds, thereby providing a yet unstudied {sup 129}I retardation reaction at the Hanford Site. In addition to the transformation of iodine species, the sediment collected from the vadose zone also released stable iodide into the aqueous phase. It was found that the three sediments all took up the ambient iodate from the groundwater and slowly transformed it into iodide under the laboratory conditions, likely dependent on the abundance of reducing agents such as organic matter and Fe{sup 2+}. Therefore two competitive iodine processes were identified, the tendency for the sediment to reduce iodate to iodide, and the groundwater chemistry to maintain the iodine as iodate, presumably it is largely the result of natural pH and dissolved O{sub 2}/Eh levels. Suspended carbonate (and silica) particles collected from Hanford groundwater contained elevated amounts of iodine (142 ± 8 μg/g iodine), consisting mainly of iodate (>99%). Iodate was likely incorporated into the carbonate structure during calcite precipitation upon degasing of CO{sub 2} as the groundwater samples were removed from the subsurface. This concentration of groundwater iodate in precipitated carbonate has implication to long-term fate and transport of 129I and on active in-situ {sup 129}I groundwater remediation. This study provides some of the first groundwater radioiodine speciation studies conducted in arid environments and provides much needed mechanistic descriptions to permit making informed decisions about low-cost/high intellectual input remediation options, such as monitored natural attenuation, or long-term stewardship of nuclear waste disposal sites.

  16. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  17. Source tracing of fluvial suspended sediments by magnetic and geochemical particle characterization: example of the Canche watershed (Nord-Pas-de-Calais, France)

    NASA Astrophysics Data System (ADS)

    Patault, Edouard; Alary, Claire; Franke, Christine; Gauthier, Arnaud; Abriak, Nor-Edine

    2016-04-01

    In France, erosion by water run-off is estimated to 1.5 t ha-1yr-1 and can exceed 10 t ha-1yr-1 in large growing areas, such as the North of France (Nord-Pas-de-Calais). In this region, the Canche watershed (1294 km2) sustains heavy loss of fertile soils. The land use is mainly dominated by arable lands (80%) and in 2013, 104 kt of suspended sediment transited to the estuary. As demonstrated in literature, agricultural soil erosion leads to the gradual disappearance and depletion of fertile soil, which constitute a non-renewable resource at human time scale. Additionally, water erosion can significantly damage the aquatic habitat and can be responsible for the input of nutrients, bacteria, pesticides, heavy metals and radionuclides into surface waters. Conscious of these effects, many programs have emerged in the Nord-Pas-de-Calais to reduce erosion. This study presents a combination of environmental magnetic proxy parameters and geochemical analyses on sediments and suspended particulate matter. The aim is to develop effective tools to trace erosion by water run-off and quantify this process. In order to identify the respective sediment sources in the Canche watershed, sediment trap samples of suspended particulate matter were recovered at key positions along the Canche watershed. The preliminary results show that magnetic concentration (Mrs) shows typical values for the agricultural soils in the region, but these variations in magnetic concentrations and total irons concentrations are not always correlated, which may be explained by the iron speciation. In calculating the so-called S-ratio for each sample we can distinguish changes in magneto-mineralogy (and thus iron speciation) from magnetite-dominated assemblages in the mainstream Canche (naturel background signal) to high-coercivity-dominated assemblages in the tributaries, typical for soil erosion material rich in hematite/goethite. In combination with the element concentrations from ICP analyses, this proxy

  18. Source tracing of fluvial suspended sediments by magnetic and geochemical particle characterization: example of the Canche watershed (Nord-Pas-de-Calais, France)

    NASA Astrophysics Data System (ADS)

    Patault, Edouard; Alary, Claire; Franke, Christine; Gauthier, Arnaud; Abriak, Nor-Edine

    2016-04-01

    In France, erosion by water run-off is estimated to 1.5 t ha‑1yr‑1 and can exceed 10 t ha‑1yr‑1 in large growing areas, such as the North of France (Nord-Pas-de-Calais). In this region, the Canche watershed (1294 km2) sustains heavy loss of fertile soils. The land use is mainly dominated by arable lands (80%) and in 2013, 104 kt of suspended sediment transited to the estuary. As demonstrated in literature, agricultural soil erosion leads to the gradual disappearance and depletion of fertile soil, which constitute a non-renewable resource at human time scale. Additionally, water erosion can significantly damage the aquatic habitat and can be responsible for the input of nutrients, bacteria, pesticides, heavy metals and radionuclides into surface waters. Conscious of these effects, many programs have emerged in the Nord-Pas-de-Calais to reduce erosion. This study presents a combination of environmental magnetic proxy parameters and geochemical analyses on sediments and suspended particulate matter. The aim is to develop effective tools to trace erosion by water run-off and quantify this process. In order to identify the respective sediment sources in the Canche watershed, sediment trap samples of suspended particulate matter were recovered at key positions along the Canche watershed. The preliminary results show that magnetic concentration (Mrs) shows typical values for the agricultural soils in the region, but these variations in magnetic concentrations and total irons concentrations are not always correlated, which may be explained by the iron speciation. In calculating the so-called S-ratio for each sample we can distinguish changes in magneto-mineralogy (and thus iron speciation) from magnetite-dominated assemblages in the mainstream Canche (naturel background signal) to high-coercivity-dominated assemblages in the tributaries, typical for soil erosion material rich in hematite/goethite. In combination with the element concentrations from ICP analyses

  19. [Research on the Content Characteristics and Pollution Evaluation of Heavy Metals in Filtered Water and Suspended Particles from Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season Using HR-ICP-MS].

    PubMed

    Ma, Xiao-ling; Liu, Jing-jun; Deng, Feng-yu; Zuo, Hang; Huang, Fang; Zhang, Li-yang; Liu, Ying

    2015-10-01

    The content characteristics, pollution evaluation and source identification of 6 heavy Metals (Cd, Pb, Cr, As, Cu and Zn) in filtered water and 9 heavy Metals (Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn) in suspended particles from 10 sampling sites such as Zhaojunfuqiao (S1) and Baotoufuqiao (S2), etc. from Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 Wet Season were studied to understand the condition of the heavy metal pollution in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River by using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Multivariate geochemical approaches and statistical analysis were also exploited for assessing the level of heavy metals in filtered water and suspended particles from studied area. The results showed that in filtering water, only the concentrations of Cr exceeded the standard value of Environmental Quality Standard for Surface Water (GB3838-2002) and were the highest (74.8-94.7 μg x L(-1)) among all elements in 10 sampling sites; Single factor pollution index (I(i)) results suggested that the water quality in all sampling sites were contaminated by both Cr and total nitrogen (TN), with the exception of TN in Baotoufuqiao (S2); Integrated Nemerow pollution index (I) indicated that the I values in all sampling sites were between 1-2 (light pollution), which implied that the water quality in Gansu, Ningxia and Inner Mongolia sections, especially downstream sections (S1-S6) of the Yellow River wasn't an ideal source for drinking and using in aquaculture any more. In suspended particles, concentrations of heavy metals were relatively higher than their soil background values in 10 sampling sites, except Ni in S10 (34.7 μg x L(-1)). Index of geo-accumulation (I(geo)) indicated that the I(geo) values of Pb, Cr, Ni, Cu, V, Co, Zn and Mn in all sampling sites were less than 1 (unpolluted or unpolluted-moderately polluted), respectively, while I(geo)Cd were the highest in 10

  20. Respirator Performance against Nanoparticles under Simulated Workplace Activities.

    PubMed

    Vo, Evanly; Zhuang, Ziqing; Horvatin, Matthew; Liu, Yuewei; He, Xinjian; Rengasamy, Samy

    2015-10-01

    Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10-400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10-100 nm), larger size particles (100-400 nm), and the 'all size' range (10-400 nm). All respirators provided better or similar performance levels for 10-100 nm particles as compared to larger 100-400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P < 0.05) for both FFR and EHR types. All respirators provided expected performance (i.e. fifth percentile SWPF > 10) against all particle size ranges tested.

  1. Respirator Performance against Nanoparticles under Simulated Workplace Activities.

    PubMed

    Vo, Evanly; Zhuang, Ziqing; Horvatin, Matthew; Liu, Yuewei; He, Xinjian; Rengasamy, Samy

    2015-10-01

    Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10-400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10-100 nm), larger size particles (100-400 nm), and the 'all size' range (10-400 nm). All respirators provided better or similar performance levels for 10-100 nm particles as compared to larger 100-400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P < 0.05) for both FFR and EHR types. All respirators provided expected performance (i.e. fifth percentile SWPF > 10) against all particle size ranges tested. PMID:26180261

  2. Particle-associated contaminants in street dust, parking lot dust, soil, lake-bottom sediment, and suspended and streambed sediment, Lake Como and Fosdic Lake watersheds, Fort Worth, Texas, 2004

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.; Werth, Charles J.; Yang, Yanning

    2006-01-01

    A previous study by the U.S. Geological Survey of impaired water bodies in Fort Worth, Texas, reported elevated but variable concentrations of particle-associated contaminants (PACs) comprising chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and trace elements in suspended and bed sediment of lakes and streams affected by urban land use. The U.S. Geological Survey, in cooperation with the City of Fort Worth, collected additional samples during October 2004 to investigate sources of PACs in the watersheds of two impaired lakes: Lake Como and Fosdic Lake. Source materials and aquatic sediment were sampled and analyzed for PACs. Source materials sampled consisted of street dust and soil from areas with residential and commercial land use and parking lot dust from sealed and unsealed parking lots. Aquatic sediment sampled consisted of bottom-sediment cores from the two lakes and suspended and streambed sediment from the influent stream of each lake. Samples were analyzed for chlorinated hydrocarbons (organochlorine pesticides and polychlorinated biphenyls), polycyclic aromatic hydrocarbons, major and trace elements, organic carbon, grain size, and radionuclides.

  3. Carbon sources in suspended particles and surface sediments from the Beaufort Sea revealed by molecular lipid biomarkers and compound-specific isotope analysis

    NASA Astrophysics Data System (ADS)

    Tolosa, I.; Fiorini, S.; Gasser, B.; Martín, J.; Miquel, J. C.

    2013-03-01

    Molecular lipid biomarkers (hydrocarbons, alcohols, sterols and fatty acids) and compound-specific isotope analysis of suspended particulate organic matter (SPM) and surface sediments of the Mackenzie Shelf and slope (southeast Beaufort Sea, Arctic Ocean) were studied in summer 2009. The concentrations of the molecular lipid markers, characteristic of known organic matter sources, were grouped and used as proxies to evaluate the relative importance of fresh algal, detrital algal, fossil, C3 terrestrial plants, bacterial and zooplankton material in the organic matter (OM) of this area. Fossil and detrital algal contributions were the major fractions of the freshwater SPM from the Mackenzie River with ~34% each of the total molecular biomarkers. Fresh algal, C3 terrestrial, bacterial and zooplanktonic components represented much lower percentages, 17, 10, 4 and <1%, respectively. In marine SPM from the Mackenzie slope, the major contributions were fresh and detrital algal components (>80%), with a minor contribution of fossil and C3 terrestrial biomarkers. Characterization of the sediments revealed a major sink of refractory algal material mixed with some fresh algal material, fossil hydrocarbons and a small input of C3 terrestrial sources. In particular, the sediments from the shelf and at the mouth of the Amundsen Gulf presented the highest contribution of detrital algal material (60-75%), whereas those from the slope contained the highest proportion of fossil (40%) and C3 terrestrial plant material (10%). Overall, considering that the detrital algal material is marine derived, autochthonous sources contributed more than allochthonous sources to the OM lipid pool. Using the ratio of an allochthonous biomarker (normalized to total organic carbon, TOC) found in the sediments to those measured at the river mouth water, we estimated that the fraction of terrestrial material preserved in the sediments accounted for 30-40% of the total carbon in the inner shelf sediments

  4. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential..., usually smaller than silt, and organic particles. Suspended particulates may enter water bodies as a..., and man's activities including dredging and filling. Particulates may remain suspended in the...

  5. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential..., usually smaller than silt, and organic particles. Suspended particulates may enter water bodies as a..., and man's activities including dredging and filling. Particulates may remain suspended in the...

  6. The use of a new laser particle sizer and shape analyser to detect and evaluate gelatinous microparticles suspended in reconstituted anthracycline infusion solutions.

    PubMed

    Confalonieri, C; Cristina, G; Farina, M

    1991-01-01

    The anthracyclines are an important group of antitumour drugs: the best known anthracyclines are doxorubicin (Adriamycin) and epirubicin (Pharmorubicin), both of which are very active against a wide range of solid tumours and haematological malignancies. They are marketed as lyophilized formulations that need to be reconstituted for administration with water for injections or sodium chloride injection. With the aim of reducing the risks of contamination during reconstitution (spillage, spray formation, etc.) and of enhancing the rate of dissolution (that is otherwise slow because of the formation of conglomerates and gelatinous masses), a new formulation (rapid dissolution formula, RDF) containing parabens (hydroxybenzoate esters) as anti-aggregants has been developed; the formulation is a freeze-dried product and is characterized by a practically instantaneous and complete reconstitution. A valid estimate of the completeness of dissolution has been objectively achieved by means of an instrument (Galai CIS-1) that acts both as a particle sizer and a shape analyser; the instrument is equipped with a rotating laser system that defines a toroidal-cylindrical space inside the solution in which every moving particle is measured and, at the same time, visualized on a monitor by an electronically driven video microscope. The instrument has been applied with very satisfactory results to the visualization of the reconstitutional behaviour of commercial lots of Adriamycin and Pharmorubicin lyophilized products, reconstituted at a concentration of 2 mg ml-1 with sodium chloride injection. PMID:2043716

  7. Composition, size distribution, optical properties and radiative effects of re-suspended local mineral dust of Rome area by individual-particle microanalysis and radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Pietrodangelo, A.; Salzano, R.; Bassani, C.; Pareti, S.; Perrino, C.

    2015-05-01

    New information on the PM10 mineral dust from site-specific (Rome area, Latium) outcropped rocks, and on the microphysics, optical properties and radiative effects of mineral dust at local level were gained in this work. A multi-disciplinary approach was used, based on individual-particle scanning electron microscopy with X-ray energy-dispersive microanalysis (SEM XEDS), X-ray diffraction (XRD) analysis of dust, size distribution of mineral particles, and radiative transfer modelling (RTM).The mineral composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals and one exclusively composed of calcite. The first is obtained from volcanic lithotypes, the second from travertine or limestones; lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones of Rome area. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are evidenced by the diversity of volume distributions, within either dust types, or mineral species. Further differences are observed between volume distributions of calcite from travertine (natural source) and from road dust (anthropic source), specifically on the width, shape and enrichment of the fine fraction (unimodal at 5 μm a.d. for travertine, bimodal at 3.8 and 1.8 μm a.d. for road dust). Log-normal probability density functions of volcanics and travertine dusts affect differently the single scattering albedo (SSA) and the asymmetry parameter (g) in the VISible and Near Infrared (NIR) regions, depending also on the absorbing/non-absorbing character of volcanics and travertine, respectively. The downward component of the BOA solar irradiance simulated by RTM for a volcanics-rich or travertine-rich atmosphere shows that volcanics contribution to the solar

  8. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  9. Cable suspended windmill

    SciTech Connect

    Farmer, M.G.

    1990-01-16

    This patent describes a windmill apparatus. It comprises: an airframe having an upwind end and a downwind end; a first rotor rotatably mounted on the airframe; a generator supported by the airframe and being operatively connected to the rotor; ground based support means for supporting the airframe in a vertically elevated disposition; and suspension means for suspending the airframe from the support means.

  10. Ariad suspends ponatinib sales.

    PubMed

    2014-01-01

    Because of concerns about serious cardiovascular side effects, the U.S. Food and Drug Administration asked Ariad Pharmaceuticals to temporarily suspend sales and marketing of ponatinib to treat chronic myeloid leukemia in patients resistant to first-line therapy. PMID:24402926

  11. Performance of dust respirators with facial seal leaks. I. Experimental

    SciTech Connect

    Hinds, W.C.; Kraske, G.

    1987-10-01

    The ability of representative half-mask and single-use respirators with facial seal leaks to provide protection against aerosols was evaluated by experimental measurement. Respirators were mounted on a manikin in a test chamber and operated at seven steady flow rates over the range of 2 to 150 L/min. Samples of polydisperse and monodisperse aerosols were taken from inside and outside the respirator and analyzed by a calibrated optical particle counter over the particle-size range 0.1 to 11.3 ..mu..m. Measurements were made separately for filter performance as a function of particle size and flow rate, and simulated leak performance as a function of particle size, pressure drop, and leak size. Flow rate vs. pressure drop measurements were made for all filters and leaks tested. For a given leak condition the percentage of the total flow traversing the leak varied several fold over the usual range of airflow rates through a respirator. Aerosol penetration was found to depend strongly on particle size and flow rate for filters, and to depend strongly on particle size and less strongly on pressure drop for leaks. One can conclude from these measurements that the aerosol-size distribution inside a respirator will nearly always be significantly different from that outside the respirator.

  12. Cable suspended windmill

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  13. Suspended sediment transport under estuarine tidal channel conditions

    USGS Publications Warehouse

    Sternberg, R.W.; Kranck, K.; Cacchione, D.A.; Drake, D.E.

    1988-01-01

    A modified version of the GEOPROBE tripod has been used to monitor flow conditions and suspended sediment distribution in the bottom boundary layer of a tidal channel within San Francisco Bay, California. Measurements were made every 15 minutes over three successive tidal cycles. They included mean velocity profiles from four electromagnetic current meters within 1 m of the seabed; mean suspended sediment concentration profiles from seven miniature nephelometers operated within 1 m of the seabed; near-bottom pressure fluctuations; vertical temperature gradient; and bottom photographs. Additionally, suspended sediment was sampled from four levels within 1 m of the seabed three times during each successive flood and ebb cycle. While the instrument was deployed, STD-nephelometer measurements were made throughout the water column, water samples were collected each 1-2 hours, and bottom sediment was sampled at the deployment site. From these measurements, estimates were made of particle settling velocity (ws) from size distributions of the suspended sediment, friction velocity (U*) from the velocity profiles, and reference concentration (Ca) was measured at z = 20 cm. These parameters were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle size in the 4-11 ?? (62.5-0.5 ??m) range with the reference concentration Ca at z = 20 cm (C??), (2) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf), and (3) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. In addition, computations of particle flux were made in order to show vertical variations

  14. Pulmonary toxicology of respirable particles. [Lead abstract

    SciTech Connect

    Sanders, C.L.; Cross, F.T.; Dagle, G.E.; Mahaffey, J.A.

    1980-09-01

    Separate abstracts were prepared for the 44 papers presented in these proceedings. The last paper (Stannard) in the proceedings is an historical review of the field of inhalation toxicology and is not included in the analytics. (DS)

  15. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    PubMed

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  16. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    PubMed

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  17. Particle concentration in exhaled breath

    SciTech Connect

    Fairchild, C.I.; Stampfer, J.F.

    1987-11-01

    Measurements were made of the number of concentration of particles in exhaled breath under various conditions of exercise. A laser light scattering particle spectrometer was used to count particles exhaled by test subjects wearing respirators in a challenge environment of clean, dry air. Precautions were taken to ensure that particles were not generated by the respirators and that no extraneous water or other particles were produced in the humid exhaled air. The number of particles detected in exhales air varied over a range from <0.10 to approx. 4 particles/cm/sup 3/ depending upon the test subject and his activity. Subjects at rest exhaled the lowest concentration of particles, whereas exercises producing a faster respiration rate caused increased exhalation of particles. Exhaled particle concentration can limit the usefulness of nondiscriminating, ambient challenge aerosols for the fit testing of highly protective respirators.

  18. [Suspended particulates and lung health].

    PubMed

    Neuberger, Manfred; Moshammer, Hanns

    2004-01-01

    Based on several severe air pollution episodes, a temporal correlation between high concentrations of particulate matter (PM) and SO2 pollution and acute increases in respiratory and cardiopulmonary mortality had been established in Vienna for the 1970's. After air pollution had decreased in Austria in the 1980's--as documented by data on SO2, and total suspended particles (TSP)--no such associations between day-to-day changes of SO2 and TSP and mortality have been documented any more, however, traffic related pollutants like fine particles and NO2 remained a problem. Therefore, short term effects of PM on lung function, morbidity and mortality were investigated in Vienna, Linz, Graz and a rural control area. Long-term exposure and chronic disease--even more important for public health--were studied in repeated cross-sectional, a mixed longitudinal and a birth cohort study on school children in the city of Linz. Lung function growth was found impaired from long-term exposure to air pollutants and improved in districts where ambient air pollution had decreased. Where only TSP and SO2 had decreased, no continuous improvement of small airway function was found and end-expiratory flow rates stayed impaired where NO2-reduction from technical improvements of cars and industry was counterbalanced by increase of motorized (diesel) traffic. Remaining acute effects of ambient air pollution in 2001 from PM, NO2 and co-pollutants found in a time series study also show that continuing efforts are necessary. Active surface of particles inhaled several hours to days before spirometry was found related to short-term reductions in forced vital capacity-FVC (p<0.01), forced expiratory volume in one second-FEV1 (p<0.01) and maximal expiratory flow rate at 50% of vital capacity-MEF50 (p<0.05). In pupils with asthma or previous airway obstruction 4-week-diaries proved that the following symptoms increased with acute exposure to higher active surface of particles: wheezing (p<0

  19. Dispersive suspended microextraction.

    PubMed

    Yang, Zhong-Hua; Liu, Yu; Lu, Yue-Le; Wu, Tong; Zhou, Zhi-Qiang; Liu, Dong-Hui

    2011-11-14

    A novel sample pre-treatment technique termed dispersive suspended microextraction (DSME) coupled with gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of eight organophosphorus pesticides (ethoprophos, malathion, chlorpyrifos, isocarbophos, methidathion, fenamiphos, profenofos, triazophos) in aqueous samples. In this method, both extraction and two phases' separation process were performed by the assistance of magnetic stirring. After separating the two phases, 1 μL of the suspended phase was injected into GC for further instrument analysis. Varieties of experiment factors which could affect the experiment results were optimized and the following were selected: 12.0 μL p-xylene was selected as extraction solvent, extraction speed was 1200 rpm, extraction time was 30 s, the restoration speed was 800 rpm, the restoration time was 8 min, and no salt was added. Under the optimum conditions, limits of detections (LODs) varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSDs, n=6) ranged from 4.6% to 12.1%. The linearity was obtained by five points in the concentration range of 0.1-100.0 μg L(-1). Correlation coefficients (r) varied from 0.9964 to 0.9995. The enrichment factors (EFs) were between 206 and 243. In the final experiment, the developed method has been successfully applied to the determination of organophosphorus pesticides in wine and tap water samples and the obtained recoveries were between 83.8% and 101.3%. Compared with other pre-treatment methods, DSME has its own features and could achieve satisfied results for the analysis of trace components in complicated matrices. PMID:22023861

  20. Filtration of respired gases: theoretical aspects.

    PubMed

    Thiessen, Ron J

    2006-06-01

    The filtration of aerosols and the behavior of aerosolized particles are less intuitive and more complex than commonly indicated in the medical literature, but once the basic principles are presented, they are not difficult to understand or apply. Particles with diameters close to the most penetrating particle size are clearly the particles of greatest concern, interest, and value in considering the performance of different filtration devices, and this size has been identified as the standard particle size for testing respirators and breathing system filters. Although almost every level of health care now mandates the N95 (NIOSH rating) as the minimum rating for medical respirators, there is no such mandate regarding minimum efficiencies of breathing system filters. At least in North America, it still falls to each individual purchaser to ensure that these standardized tests are performed, because manufacturers adhere to these standards only on a voluntary basis. Government regulations similar to NIOSH 42 CFR 84 are needed for breathing system filters and should include a rating system such as N95, N99, or N100. For breathing system filters, the BFE and VFE tests are misleading and should be abandoned (or even better, banned) in favor of internationally recognized sodium chloride tests. Until then, manufacturers will be hesitant to abandon their BFE and VFE data, which give the appearance of vastly better performance than does the sodium chloride test. PMID:16828690

  1. On Suspended matter grain size in Baltic sea

    NASA Astrophysics Data System (ADS)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  2. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  3. Aerosol penetration behavior of respirator valves.

    PubMed

    Brosseau, L M

    1998-03-01

    Exhalation and inhalation valves from half-facepiece negative pressure respirators were evaluated for leakage during an 8-hour cyclic breathing test period using two work rates (415 and 622 kg-m/min) and two particle sizes (0.3 and 0.8 micron). Three different models (manufacturers) of exhalation valves were tested, with two lots for each model. Exhalation valve leakage ranged from 0.0 to 0.03%; no failure of exhalation valves occurred. No differences in lot or manufacturer were found. Differences in particle size did not lead to differences in penetration at the lower work rate; at the higher work rate 0.3-micron particles were less penetrating than 0.8-micron particles (0.03 versus 0.06%). When tested for air leakage at a pressure of 2.54 cm H2O, following the National Institute for Occupational Safety and Health certification method, exhalation valves exhibited no leakage either before or after the experiments. Inhalation valves averaged 20% leakage for all experiments; 0.3-micron particles were again less penetrating (13%) than 0.8-micron particles (27%). No inhalation valve failure occurred. No differences in lot (within manufacturer) were found; there were, however, significant differences in particle penetration among the three manufacturers' inhalation valves. Airflow leakage through the inhalation valves did not change during the experimental period, but differed among the three manufacturers. Measurements using airflow leakage and particle penetration produced the same ranking for the three manufacturers' inhalation valves.

  4. 7 CFR 1206.21 - Suspend.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means...

  5. 7 CFR 1206.21 - Suspend.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means...

  6. 7 CFR 1206.21 - Suspend.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means...

  7. 7 CFR 1206.21 - Suspend.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means...

  8. 7 CFR 1206.21 - Suspend.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means...

  9. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  10. Aerosol penetration through respirator exhalation valves.

    PubMed

    Bellin, P; Hinds, W C

    1990-10-01

    Exhalation valves are a critical component of industrial respirators. They are designed to permit minimal inward leakage of air contaminants during inhalation and provide low resistance during exhalation. Under normal conditions, penetration of aerosol through exhalation valves is minimal. The exhalation valve is, however, a vulnerable component of a respirator and under actual working conditions may become dirty or damaged to the point of causing significant leakage. Aerosol penetration was measured for normal exhalation valves and valves compromised by paint or fine copper wires on the valve seat. Penetration increased with increasing wire diameter. A wire 250 microns in diameter allowed greater than 1% penetration into the mask cavity. Dirt or paint accumulated on the exhalation valve allowed a similar level of penetration. Work rate had little effect on observed penetration. Penetration decreased significantly with increasing aerosol particle size. The amount of material on the valve or valve seat necessary for significant (greater than 0.5%) inward leakage in a half-mask respirator could be readily observed by careful inspection of the exhalation valve and its seat in good lighting conditions.

  11. Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity

    PubMed Central

    Lindsley, William G.; Martin, Stephen B.; Thewlis, Robert E.; Sarkisian, Khachatur; Nwoko, Julian O.; Mead, Kenneth R.; Noti, John D.

    2015-01-01

    The ability to disinfect and reuse disposable N95 filtering facepiece respirators (FFRs) may be needed during a pandemic of an infectious respiratory disease such as influenza. Ultraviolet germicidal irradiation (UVGI) is one possible method for respirator disinfection. However, UV radiation degrades polymers, which presents the possibility that UVGI exposure could degrade the ability of a disposable respirator to protect the worker. To study this, we exposed both sides of material coupons and respirator straps from four models of N95 FFRs to UVGI doses from 120–950 J/cm2. We then tested the particle penetration, flow resistance, and bursting strengths of the individual respirator coupon layers, and the breaking strength of the respirator straps. We found that UVGI exposure led to a small increase in particle penetration (up to 1.25%) and had little effect on the flow resistance. UVGI exposure had a more pronounced effect on the strengths of the respirator materials. At the higher UVGI doses, the strength of the layers of respirator material was substantially reduced (in some cases, by >90%). The changes in the strengths of the respirator materials varied considerably among the different models of respirators. UVGI had less of an effect on the respirator straps; a dose of 2360 J/cm2 reduced the breaking strength of the straps by 20–51%. Our results suggest that UVGI could be used to effectively disinfect disposable respirators for reuse, but the maximum number of disinfection cycles will be limited by the respirator model and the UVGI dose required to inactivate the pathogen. PMID:25806411

  12. Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity.

    PubMed

    Lindsley, William G; Martin, Stephen B; Thewlis, Robert E; Sarkisian, Khachatur; Nwoko, Julian O; Mead, Kenneth R; Noti, John D

    2015-01-01

    The ability to disinfect and reuse disposable N95 filtering facepiece respirators (FFRs) may be needed during a pandemic of an infectious respiratory disease such as influenza. Ultraviolet germicidal irradiation (UVGI) is one possible method for respirator disinfection. However, UV radiation degrades polymers, which presents the possibility that UVGI exposure could degrade the ability of a disposable respirator to protect the worker. To study this, we exposed both sides of material coupons and respirator straps from four models of N95 FFRs to UVGI doses from 120-950 J/cm(2). We then tested the particle penetration, flow resistance, and bursting strengths of the individual respirator coupon layers, and the breaking strength of the respirator straps. We found that UVGI exposure led to a small increase in particle penetration (up to 1.25%) and had little effect on the flow resistance. UVGI exposure had a more pronounced effect on the strengths of the respirator materials. At the higher UVGI doses, the strength of the layers of respirator material was substantially reduced (in some cases, by >90%). The changes in the strengths of the respirator materials varied considerably among the different models of respirators. UVGI had less of an effect on the respirator straps; a dose of 2360 J/cm(2) reduced the breaking strength of the straps by 20-51%. Our results suggest that UVGI could be used to effectively disinfect disposable respirators for reuse, but the maximum number of disinfection cycles will be limited by the respirator model and the UVGI dose required to inactivate the pathogen. PMID:25806411

  13. Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity.

    PubMed

    Lindsley, William G; Martin, Stephen B; Thewlis, Robert E; Sarkisian, Khachatur; Nwoko, Julian O; Mead, Kenneth R; Noti, John D

    2015-01-01

    The ability to disinfect and reuse disposable N95 filtering facepiece respirators (FFRs) may be needed during a pandemic of an infectious respiratory disease such as influenza. Ultraviolet germicidal irradiation (UVGI) is one possible method for respirator disinfection. However, UV radiation degrades polymers, which presents the possibility that UVGI exposure could degrade the ability of a disposable respirator to protect the worker. To study this, we exposed both sides of material coupons and respirator straps from four models of N95 FFRs to UVGI doses from 120-950 J/cm(2). We then tested the particle penetration, flow resistance, and bursting strengths of the individual respirator coupon layers, and the breaking strength of the respirator straps. We found that UVGI exposure led to a small increase in particle penetration (up to 1.25%) and had little effect on the flow resistance. UVGI exposure had a more pronounced effect on the strengths of the respirator materials. At the higher UVGI doses, the strength of the layers of respirator material was substantially reduced (in some cases, by >90%). The changes in the strengths of the respirator materials varied considerably among the different models of respirators. UVGI had less of an effect on the respirator straps; a dose of 2360 J/cm(2) reduced the breaking strength of the straps by 20-51%. Our results suggest that UVGI could be used to effectively disinfect disposable respirators for reuse, but the maximum number of disinfection cycles will be limited by the respirator model and the UVGI dose required to inactivate the pathogen.

  14. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  15. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components

    PubMed Central

    Housley, D; Berube, K; Jones, T; Anderson, S; Pooley, F; Richards, R

    2002-01-01

    Background: The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. Aims: To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Methods: Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Results: Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Conclusion: Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation. PMID:12107295

  16. Respiration signals from photoplethysmography.

    PubMed

    Nilsson, Lena M

    2013-10-01

    respiratory modulation of the pulse oximeter waveform and has been shown to predict fluid responsiveness in mechanically ventilated patients including infants. The pleth variability index value depends on the size of the tidal volume and on positive end-expiratory pressure. In conclusion, the respiration modulation of the PPG signal can be used to monitor respiratory rate. It is probable that improvements in neural network technology will increase sensitivity and specificity for detecting both central and obstructive apnea. The size of the PPG respiration variation can predict fluid responsiveness in mechanically ventilated patients. PMID:23449854

  17. Anxiety during respirator use: comparison of two respirator types.

    PubMed

    Wu, Samantha; Harber, Philip; Yun, David; Bansal, Siddharth; Li, Yuan; Santiago, Silverio

    2011-03-01

    Anxiety may interfere with proper respirator use. This study directly compares the effect of two types of respirators--elastomeric half-face mask with dual-cartridges (HFM) and N95 filtering facepiece--on anxiety levels. Twelve volunteers with normal or mildly impaired respiratory conditions performed a series of simulated work tasks using the HFM and N95 on different days. The State-Trait Anxiety Inventory (STAI) measured state anxiety (SA) before and during respirator use. STAI also measured trait anxiety (TA), a stable personal characteristic. The effect of the respirator was measured as the difference between SA pre-use and during use. Work with HFM was associated with an increase in SA (2.92 units, p < .01), whereas work with the N95 had no observed effect. Anxiety should be considered in the selection of the best respirator for a user. Impact on anxiety should be considered for respirator design and certification purposes, particularly if the device is to be widely used in workplace and community settings. PMID:21318920

  18. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  19. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. PMID:25532022

  20. Respiration in spiders (Araneae).

    PubMed

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well. PMID:26820263

  1. Wettability of partially suspended graphene

    PubMed Central

    Ondarçuhu, Thierry; Thomas, Vincent; Nuñez, Marc; Dujardin, Erik; Rahman, Atikur; Black, Charles T.; Checco, Antonio

    2016-01-01

    The dependence of the wettability of graphene on the nature of the underlying substrate remains only partially understood. Here, we systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Further, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquid interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle. PMID:27072195

  2. Wettability of partially suspended graphene

    DOE PAGES

    Ondarçuhu, Thierry; Thomas, Vincent; Nuñez, Marc; Dujardin, Erik; Rahman, Atikur; Black, Charles T.; Checco, Antonio

    2016-04-13

    Dependence on the wettability of graphene on the nature of the underlying substrate remains only partially understood. We systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Moreover, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquidmore » interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle.« less

  3. Production and turnover of suspended organic detritus in the coastal water of the southeastern continental shelf. Progress report

    SciTech Connect

    Pomeroy, L.R.

    1984-12-01

    Data processing from the GABEX II study of 1981 have been completed, and manuscripts are nearing completion at this time. In April, 1985, we will participate in the study of removal of coastal water from the continental shelf (SPREX). Our role will be to follow the movement and degradation of particulate organic matter as it is transported across the shelf by wind-driven mixing events. Total suspended C and N will be measured, as well as production of bacteria and numbers of bacteria and protozoa. In preparation from SPREX, we are developing a sensitive method for measuring microbial respiration in the water. Beginning in the summer of 1985, we will participate in a series of studies of the biological processes in the coastal water off the coast of Georgia (BIOTRANS). In preparation for that we are developing a system for following production and degradation of particles in a large water sample under laboratory conditions. This will, of course, be supplemented by field observations. To evaluate the suspension of particulate matter of benthic origin we are constructing an annular flume in which box cores of bottom sediment will be inserted to measure the shear stress necessary to resuspend naturally produced materials. We are continuing field and laboratory studies of the roles of bacteria in the production, as well as the utilization of particulate organic materials. The production of macroflocs has been shown by us to involve the adherence of bacteria to particles and to each other. The macroflocs do not develop in sterile conditions.

  4. Paint spray tests for respirators: aerosol characteristics.

    PubMed

    Ackley, M W

    1980-05-01

    Liquid paint is sprayed from an atomizing nozzle to form an aerosol for testing paint spray respirators. The generated aerosol conditions are dependent upon liguid properties, spray-nozzle flow conditions and droplet evaporation. A technique was developed for controlling the aerosol concentrations reliably. Particle-size distributions of lacquer and enamel have been measured. The lacquer distribution was found to be multi-modal. Aerosol concentration dradients arise when the nozzle is not properly positioned. Filter loading resistance is significantly affected by these concentration variations. With regard to selection of standard aerosol test be improved by modifying the current NIOSH criteria to include a description of the particle-size distribution, a more precise definition of the paint and paint thinner chemical compositions, and a narrower concentration range. PMID:6932174

  5. Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles.

    PubMed

    Balazy, Anna; Toivola, Mika; Reponen, Tiina; Podgórski, Albert; Zimmer, Anthony; Grinshpun, Sergey A

    2006-04-01

    Protection of the human respiratory system from exposure to nanoparticles is becoming an emerging issue in occupational hygiene. The potential adverse health effects associated with particles of approximately 1-100 nm are probably greater than submicron or micron-sized particles. The performance of two models of N95 half-facepiece-filtering respirators against nano-sized particles was evaluated at two inhalation flow rates, 30 and 85 l min(-1), following a manikin-based protocol. The aerosol concentration was measured outside and inside the facepiece using the Wide-Range Particle Spectrometer. Sodium chloride particles, conventionally used to certify N-series respirators under NIOSH 42 CFR 84 regulations, were utilized as the challenge aerosol. The targeted particle sizes ranged from 10 to 600 nm, although the standard certification tests are performed with particles of approximately 300 nm, which is assumed to be the most penetrating size. The results indicate that the nanoparticle penetration through a face-sealed N95 respirator may be in excess of the 5% threshold, particularly at high respiratory flow rates. Thus, N95 respirators may not always provide the expected respiratory protection for workers. The highest penetration values representing the poorest respirator protection conditions were observed in the particle diameter range of approximately 30-70 nm. Based on the theoretical simulation, we have concluded that for respirators utilizing mechanical filters, the peak penetration indeed occurs at the particle diameter of approximately 300 nm; however, for pre-charged fiber filters, which are commonly used for N95 respirators, the peak shifts toward nano-sizes. This study has confirmed that the neutralization of particles is a crucial element in evaluating the efficiency of a respirator. The variability of the respirator's performance was determined for both models and both flow rates. The analysis revealed that the coefficient of variation of the penetration

  6. Magnetically suspended reaction wheel assembly

    NASA Technical Reports Server (NTRS)

    Stocking, G.

    1984-01-01

    The magnetically suspended reaction wheel assembly (MSRWA) is the product of a development effort funded by the Air Force Materials Laboratory (AFML) at Wright Patterson AFB. The specific objective of the project was to establish the manufacturing processes for samarium cobalt magnets and demonstrate their use in a space application. The development was successful on both counts. The application portion of the program, which involves the magnetically suspended reaction wheel assembly, is emphasized. The requirements for the reaction wheel were based on the bias wheel requirements of the DSP satellite. The tasks included the design, fabrication, and test of the unit to the DSP program qualification requirements.

  7. In-mask aerosol sampling for powered air purifying respirators

    SciTech Connect

    Liu, B.Y.U.; Sega, K.; Rubow, K.L.; Lenhart, S.W.; Myers, W.R.

    1984-04-01

    A system for sampling aerosols in the facepiece of a powered air purifying respirator has been described. The system consists of a sampling inlet mounted on the respiratory facepiece, a filter cassette and a personal sampling pump. The theoretical and practical considerations leading to the design of the sampling inlet have been discussed and experimental data presented showing the efficiency of the inlet as a function of particle size and sampling flow rate. The in-mask sampling system has been designed for powered air purifying respirators.

  8. Mechanical oscillations enhance gene delivery into suspended cells

    PubMed Central

    Zhou, Z. L.; Sun, X. X.; Ma, J.; Man, C. H.; Wong, A. S. T.; Leung, A. Y.; Ngan, A. H. W.

    2016-01-01

    Suspended cells are difficult to be transfected by common biochemical methods which require cell attachment to a substrate. Mechanical oscillations of suspended cells at certain frequencies are found to result in significant increase in membrane permeability and potency for delivery of nano-particles and genetic materials into the cells. Nanomaterials including siRNAs are found to penetrate into suspended cells after subjecting to short-time mechanical oscillations, which would otherwise not affect the viability of the cells. Theoretical analysis indicates significant deformation of the actin-filament network in the cytoskeleton cortex during mechanical oscillations at the experimental frequency, which is likely to rupture the soft phospholipid bilayer leading to increased membrane permeability. The results here indicate a new method for enhancing cell transfection. PMID:26956215

  9. Laboratory experiments on stratified flow through a suspended porous fence

    NASA Astrophysics Data System (ADS)

    Delavan, Sarah; Nokes, Roger; Plew, David

    2012-11-01

    This study explores stratified flow through a suspended, porous, fence-like obstacle to simulate flow through fish farm cages, mussel farm rope suspensions, flow through suspended aquatic vegetation, underwater energy production structures, or windbreak and wave break fencing. Laboratory experiments were performed in a density stratified, stationary flume with a suspended porous fence model using a particle tracking velocimetry (PTV) system. Experiments explored the effect on the fluid of the fence depth to total depth ratio, the system Richardson number, and the porosity of the fence. Preliminary results suggest that the density stratification of the fluid inhibits vertical fluid motion, that fence porosity greatly controls the vertical mixing of the fluid, and that there may be an optimal fence depth to total depth ratio for full development of the system flow structures.

  10. Relationships between microbial extracellular enzymatic activity and suspended and sinking particulate organic matter: seasonal transformations in the North Water

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Deming, J. W.

    Despite the importance of hydrolytic activities by bacterial extracellular enzymes (EE) in the temperate ocean, little is known about the role of extracellular enzymatic activity (EEA) in determining the fate of particulate organic matter (POM) in polar seas. To explore the issue further, we measured various chemical and bacterial parameters in the near-0°C waters of the North Water during the months of May and July of 1998. Seawater (SW) samples were collected by Niskin bottle at the depth of the chlorophyll fluorescence maximum (8-90 m), while samples of sinking particles and aggregates were collected in short-term (0.5-1.2 d), unpoisoned, floating sediment traps deployed at depths typically below the mixed layer (50-136 m). Samples were analyzed for POC, PON, and abundance of total and actively respiring bacteria. They were also incubated with fluorescently tagged substrate analogs to measure potential maximal rates of three classes of EE (leucine-aminopeptidase, chitobiase, and β-glucosidase) at -1°C. The percentage of actively respiring bacteria was always higher in sediment trap samples than in SW (medians of 38% and 24% versus 10% and 12% in May and July, respectively). Cell-specific rates of EEA were also higher in the trap samples and, for both sample types, similar to published rates from temperate waters. Rates of EEA when scaled to the abundance of actively respiring bacteria, however, did not differ between sample types, suggesting that the elevated EEA associated with sinking material is due to the greater abundance of metabolically active cells supported by such material and not due to enhanced enzyme expression in general, as suggested by previous studies. In this study, leucine-aminopeptidase activity was always much higher than the other classes of EEA, becoming even more dominant later in the season; it always correlated positively with the abundance of both total and actively respiring bacteria. Enzyme ratios indicating protease dominance

  11. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    PubMed

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. PMID:20006439

  12. Plutonium hazard in respirable dust on the surface of soil.

    PubMed

    Johnson, C J; Tidball, R R; Severson, R C

    1976-08-01

    Plutonium-239 in the fine particulate soil fraction of surface dust is subject to suspension by air currents and is a potential health hazard to humans who may inhale it. This respirable particulate fraction is defined as particles less than or equal to 5 micrometers. The respirable fraction of surface dust was separated by ultrasonic dispersion and a standard water-sedimentation procedure. Plutonium concentration in this fraction of off-site soils located downwind from the Rocky Flats Nuclear Weapons Plant (Jefferson County, Colorado) were as much as 380 times the background concentration. It is prposed that this method of evaluation defines more precisely the potential health hazard from the respirable fraction of plutonium-contaminated soils. PMID:941018

  13. Microbial growth on respirator filters from improper storage.

    PubMed

    Pasanen, A L; Keinänen, J; Kalliokoski, P; Martikainen, P I; Ruuskanen, J

    1993-12-01

    Microbiological contamination and particle penetration were studied in two respirator filters with high efficiency. Microbial growth in filter materials during storage under conditions and the passing of microorganisms through the filters were particularly examined. Filters with different fiberglass and cellulose proportions were loaded in environments containing high microbial levels and incubated at a relative humidity of 98%. Particle penetration through loaded and incubated filters and carbon, nitrogen and microbial content were measured. After incubation, considerable particle penetration and the passing of fungal spores were observed for filters composed mainly of cellulose, probably because of humid conditions, which stimulated fungi to grow and extend mycelia and spores through the filter. Microbial activity, microorganism concentrations, and the chemical properties of the filter materials also supported this hypothesis. Storing used respirators in humid environments may result in heavy microbial contamination of the filters, especially if the filter material is biodegradable by microorganisms. PMID:8153595

  14. Advanced testing method to evaluate the performance of respirator filter media.

    PubMed

    Wang, Qiang; Golshahi, Laleh; Chen, Da-Ren

    2016-10-01

    Filter media for respirator applications are typically exposed to the cyclic flow condition, which is different from the constant flow condition adopted in filter testing standards. To understand the real performance of respirator filter media in the field it is required to investigate the penetration of particles through respirator filters under cyclic flow conditions representing breathing flow patterns of human beings. This article reports a new testing method for studying the individual effect of breathing frequency (BF) and peak inhalation flow rate (PIFR) on the particle penetration through respirator filter media. The new method includes the use of DMA (Differential Mobility Analyzer)-classified particles having the most penetrating particle size, MPPS (at the constant flowrate of equivalent mean inhalation flow rate, MIFR) as test aerosol. Two condensation particle counters (CPCs) are applied to measure the particle concentrations at the upstream and downstream of test filter media at the same time. Given the 10 Hz sampling time of CPCs, close-to-instantaneous particle penetration could be measured. A pilot study was performed to demonstrate the new testing method. It is found that the effect of BF on the particle penetration of test respirator filter media is of importance at all the tested peak inhalation flow rates (PIFRs), which is different from those reported in the previous work.

  15. Advanced testing method to evaluate the performance of respirator filter media.

    PubMed

    Wang, Qiang; Golshahi, Laleh; Chen, Da-Ren

    2016-10-01

    Filter media for respirator applications are typically exposed to the cyclic flow condition, which is different from the constant flow condition adopted in filter testing standards. To understand the real performance of respirator filter media in the field it is required to investigate the penetration of particles through respirator filters under cyclic flow conditions representing breathing flow patterns of human beings. This article reports a new testing method for studying the individual effect of breathing frequency (BF) and peak inhalation flow rate (PIFR) on the particle penetration through respirator filter media. The new method includes the use of DMA (Differential Mobility Analyzer)-classified particles having the most penetrating particle size, MPPS (at the constant flowrate of equivalent mean inhalation flow rate, MIFR) as test aerosol. Two condensation particle counters (CPCs) are applied to measure the particle concentrations at the upstream and downstream of test filter media at the same time. Given the 10 Hz sampling time of CPCs, close-to-instantaneous particle penetration could be measured. A pilot study was performed to demonstrate the new testing method. It is found that the effect of BF on the particle penetration of test respirator filter media is of importance at all the tested peak inhalation flow rates (PIFRs), which is different from those reported in the previous work. PMID:27104915

  16. Study on interactions between suspended matter and biofouling formed by treated sewage.

    PubMed

    Yang, Qianpeng; Chang, Siyuan; Shi, Lin

    2015-01-01

    Heat exchangers used for treated sewage energy recovery usually suffer from the composite fouling problem, which seriously impairs the heat transfer efficiency. Treated sewage heat exchanger composite fouling is mostly composed of biofouling and is notably affected by interactions between the biofouling and suspended matter. Experiments were performed using simulated treated sewage and two kinds of simulated suspended matter, silicon dioxide particles and polyamide filaments, to model the interactions. Different flow velocities, particle sizes and concentrations were tested with their influences presented by the fouling wet weight changes. Empirical equation and threshold were developed based on the results to predict whether the suspended matter promotes or impedes fouling growth. The results indicate that proper control of the flow velocities, particle sizes and concentrations of suspended matter using empirical equation and threshold can inhibit fouling by reducing unwanted positive interactions and promoting beneficial negative interactions. The filament interactions were analysed and the unique attachment mechanisms of filaments were discussed for the first time.

  17. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols.

  18. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols. PMID:25846360

  19. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle.

  20. ENDOGENOUS RESPIRATION OF STAPHYLOCOCCUS AUREUS

    PubMed Central

    Ramsey, H. H.

    1962-01-01

    Ramsey, H. H. (Stanford University, Palo Alto, Calif.). Endogenous respiration of Staphylococcus aureus. J. Bacteriol. 83:507–514. 1962.—The endogenous respiration of Staphylococcus aureus is dependent upon the medium used to grow the cell suspension. Within wide ranges, the concentration of glucose in the medium has no effect upon subsequent endogenous respiration of the cells, but the concentration of amino acids in the medium, within certain limits, has a very marked effect. The total carbohydrate content of the cells does not decrease during endogenous respiration. As endogenous respiration proceeds, ammonia appears in the supernatant, and the concentration of glutamic acid in the free amino acid pool decreases. Organisms grown in the presence of labeled glutamic acid liberate labeled CO2 when allowed to respire without added substrate. The principal source of this CO2 is the free glutamate in the metabolic pool; its liberation is not suppressed by exogenous glucose or glutamate. With totally labeled cells, the free pool undergoes a rapid, but not total, depletion and remains at a low level for a long time. Activity of the protein fraction declines with time and shows the largest net decrease of all fractions. Exogenous glucose does not inhibit the release of labeled CO2 by totally labeled cells. Other amino acids in the free pool which can serve as endogenous substrates are aspartic acid and, to much lesser extents, glycine and alanine. The results indicate that both free amino acids and cellular protein may serve as endogenous substrates of S. aureus. PMID:14490204

  1. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle. PMID:23178842

  2. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out.

  3. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    SciTech Connect

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  4. Normal use levels of respirable cosmetic talc: preliminary study.

    PubMed

    Aylott, R I; Byrne, G A; Middleton, J D; Roberts, M E

    1979-06-01

    Synopsis This preliminary study was undertaken to provide data from which a more comprehensive investigation to establish the safety in-use of cosmetic talcs could be designed. Methods for collecting and analysing respirable talc generated during the use of loose face powder and adult and baby dusting powders were established. Respirable particles in the air were separated from larger size particles by means of a cyclone and were collected on membrane filters. The collected dust was dissolved in acid and the solution was analysed for magnesium by atomic absorption spectroscopy. From the results the concentrations of talc in the air samples were calculated. The method was used to monitor the in-use levels of a range of cosmetic talcs. Mean concentrations in air sampled for 5 min from the start of use of Chinese grades and Italian 00000 grades of talc formulated for use as loose face powder, adult dusting powder and baby dusting powder were 0.48, 1.13 and 0.21 mg m(-3), respectively. Higher levels were found with micronised adult dusting powder (mean concentration 1.9 mg m(-3)). There was no evidence that the presence of perfume in the talc or the ambient relative humidity in the range 54-74% during use affected the levels of respirable talc, but high relative humidity <90% reduced the amount of respirable talc.

  5. 29 CFR 98.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Suspending official. 98.1010 Section 98.1010 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.1010 Suspending official. (a) Suspending official means an agency official who is authorized to impose...

  6. 34 CFR 85.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designated by the agency head. (b) Authority: E.O. 12549 (3 CFR, 1986 Comp., p. 189); E.O 12689 (3 CFR, 1989... 34 Education 1 2010-07-01 2010-07-01 false Suspending official. 85.1010 Section 85.1010 Education...) Definitions § 85.1010 Suspending official. (a) Suspending official means an agency official who is...

  7. 31 CFR 19.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Suspending official. 19.1010 Section 19.1010 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 19.1010 Suspending official. (a) Suspending...

  8. 22 CFR 208.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Suspending official. 208.1010 Section 208.1010 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 208.1010 Suspending official. (a) Suspending official means an agency official...

  9. 21 CFR 1404.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Suspending official. 1404.1010 Section 1404.1010 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.1010 Suspending official. (a) Suspending official means an agency official...

  10. 2 CFR 180.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Suspending official. 180.1010 Section 180.1010 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND...) Definitions § 180.1010 Suspending official. (a) Suspending official means an agency official who is...

  11. 29 CFR 1471.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Suspending official. 1471.1010 Section 1471.1010 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1471.1010 Suspending official. (a) Suspending...

  12. Suspended Solids Profiler Shop Test Report

    SciTech Connect

    STAEHR, T.W.

    2000-01-19

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly.

  13. Electromechanically Tunable Suspended Optical Nanoantenna.

    PubMed

    Chen, Kai; Razinskas, Gary; Feichtner, Thorsten; Grossmann, Swen; Christiansen, Silke; Hecht, Bert

    2016-04-13

    Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nanoantenna acting like a nanoelectrometer. The antenna wires are supported and electrically connected via thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and the restoring elastic bending force enables us to precisely control the gap size. As a result the resonance wavelength and the field enhancement of the suspended optical nanoantenna can be reversibly tuned. Our experiments highlight the potential to realize large bandwidth optical nanoelectromechanical systems. PMID:27002492

  14. The distribution of suspended matter in the Dutch coastal zone

    NASA Astrophysics Data System (ADS)

    Visser, M.; de Ruijter, W. P. M.; Postma, L.

    Results are presented of suspended matter observations taken at bi-weekly intervals during the period 1975-1983, in a strip 70 km wide along the Dutch coast. The average distribution showed a (weak) minimum zone located north of Noordwijk at a distance of about 30 km from and parallel to the Dutch coast, between the salinity maximum and the coast. Variability was large between different years, seasons and individual cruises. A clear seasonal cycle emerged from the observed suspended-matter patterns: in winter a pronounced minimum existed, while in summer generally a monotonically decreasing concentration was measured, to open-sea values much lower than in winter. This seasonal cycle may be explained by a combination of variation in wind, river discharge and the activity of suspended-matter sources. The Flemish Banks and Channel waters are the main sources supplying suspended matter to the Dutch coastal area. Especially the varying transport through the Strait of Dover, large in winter, small in summer, determines the seasonal variation in the total amount of suspended matter. The existence of a localized turbidity minimum is tied to relatively large discharges from the Rhine and associated steep salinity gradients, also occurring mainly in winter and early spring. A simple model of cross-shore density-driven circulation shows the possible influence of the strong salinity gradients on the sedimentation of suspended matter. Particles with a settling rate comparable to the vertical velocity component of the circulation are forced to move offshore until they reach an area they sink out of the surface layer. The strength of this circulation is determined by the cross-shore density gradient due to the inflow of fresh water from the Rhine-Meuse estuary.

  15. Total inward leakage of nanoparticles through filtering facepiece respirators.

    PubMed

    Rengasamy, Samy; Eimer, Benjamin C

    2011-04-01

    Nanoparticle (<100 nm size) exposure in workplaces is a major concern because of the potential impact on human health. National Institute for Occupational Safety and Health (NIOSH)-approved particulate respirators are recommended for protection against nanoparticles based on their filtration efficiency at sealed conditions. Concerns have been raised on the lack of information for face seal leakage of nanoparticles, compromising respiratory protection in workplaces. To address this issue, filter penetration and total inward leakage (TIL) through artificial leaks were measured for NIOSH-approved N95 and P100 and European certified Conformit'e Europe'en-marked FFP2 and FFP3 filtering facepiece respirator models sealed to a breathing manikin kept inside a closed chamber. Monodisperse sucrose aerosols (8-80 nm size) generated by electrospray or polydisperse NaCl aerosols (20-1000 nm size) produced by atomization were passed into the chamber. Filter penetration and TIL were measured at 20, 30, and 40 l min(-1) breathing flow rates. The most penetrating particle size (MPPS) was ∼50 nm and filter penetrations for 50 and 100 nm size particles were markedly higher than the penetrations for 8 and 400 nm size particles. Filter penetrations increased with increasing flow rates. With artificially introduced leaks, the TIL values for all size particles increased with increasing leak sizes. With relatively smaller size leaks, the TIL measured for 50 nm size particles was ∼2-fold higher than the values for 8 and 400 nm size particles indicating that the TIL for the most penetrating particles was higher than for smaller and larger size particles. The data indicate that higher concentration of nanoparticles could occur inside the breathing zone of respirators in workplaces where nanoparticles in the MPPS range are present, when leakage is minimal compared to filter penetration. The TIL/penetration ratios obtained for 400 nm size particles were larger than the ratios obtained for

  16. Soil Respiration - A Geochemist's Perspective

    NASA Astrophysics Data System (ADS)

    Van Cappellen, P.

    2015-12-01

    Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.

  17. Persistence of respirator use learning.

    PubMed

    Harber, Philip; Su, Jing; Hu, Cheng Cheng

    2014-01-01

    Although retraining and repeat fit-testing are needed for respirator users, the optimal frequency is uncertain. The persistence of proper respirator donning/doffing techniques and changes in quantitative fit factor over 6 months after initial training were measured in this study. Initial training was designed for rapid rollout situations in which direct contact with well-trained occupational health professionals may be infeasible. Subjects (n = 175) were assigned randomly to use either a filtering facepiece N95 (FFR) or dual cartridge half facemask (HFM) respirator. Each was assigned randomly to one of three training methods-printed brochure, video, or computer-based training. Soon after initial training, quantitative fit and measures of proper technique were determined. These measurements were repeated 6 months later. In the six-month followup, subjects were randomized to receive either a brief reminder card or a placebo card. Total performance score, major errors, and quantitative fit all became significantly worse at 6 months. An individual's result soon after training was the most important predictor of performance 6 months later. There was a marginal not statistically significant tendency for those initially trained by video to have better protection 6 months later. The study suggests that persons who use respirators intermittently should be thoroughly retrained and reevaluated periodically. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: Additional statistical analyses. PMID:24847912

  18. Quantitative suspended sediment mapping using aircraft remotely sensed multispectral data. [in Virginia

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1975-01-01

    Suspended sediment is an important environmental parameter for monitoring water quality, water movement, and land use. Quantitative suspended sediment determinations were made from analysis of aircraft remotely sensed multispectral digital data. A statistical analysis and derived regression equation were used to determine and plot quantitative suspended sediment concentration contours in the tidal James River, Virginia, on May 28, 1974. From the analysis, a single band, Band 8 (0.70-0.74 microns), was adequate for determining suspended sediment concentrations. A correlation coefficient of 0.89 was obtained with a mean inaccuracy of 23.5 percent for suspended sediment concentrations up to about 50 mg/l. Other water quality parameters - secchi disc depth and chlorophyll - also had high correlations with the remotely sensed data. Particle size distribution had only a fair correlation with the remotely sensed data.

  19. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  20. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  1. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  2. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  3. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  4. The Source of Carbon for Root Respiration

    NASA Astrophysics Data System (ADS)

    Cisneros-Dozal, L.; Trumbore, S.; Zheng, S.

    2004-12-01

    In the Enriched Background Isotope Study (EBIS) that took advantage of a whole-ecosystem radiocarbon label that occurred in the temperate forest near Oak Ridge, Tennessee, we measured the radiocarbon signature of total soil respiration, heterotrophic respiration and root respiration, at different times during the last 3 growing seasons (2002-2004). By applying a mass balance approach, the relative and absolute contributions of heterotrophic and root respiration to total soil respiration were estimated. In contrast to heterotrophic respiration, root respiration seemed to be less affected by changes in soil moisture and temperature but rather showed a link to photosynthetic activity with a very similar pattern during the growing season as that of leaf area index. The radiocarbon signature of root respiration was very dynamic with low values in spring compared to the summer. The sources of variation can include changes in the local atmospheric signature and/or changes in the source of C being respired. Two different sites with different values and patterns of local atmospheric radiocarbon signature showed the same pattern in radiocarbon signatures of root respiration indicating that the source of variation was phenological. Low values during the spring could indicate the use of stored carbohydrates switching to more recent photosynthetic products as the summer progresses. As a first attempt to elucidate the source of C respired by roots, we will compare the radiocarbon content of starch, cellulose and soluble sugars in roots to that of bulk root material and root respired CO2. These radiocarbon signatures can help us identify the pool of C that is most likely being respired by roots during the growing season. A better understanding of the source of C for root respiration has implications for understanding the role of root respiration in C cycling in temperate forests, specifically the timescale over which carbon is fixed through photosynthesis and returned to the

  5. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  6. Does training in performing a fit check enhance N95 respirator efficacy?

    PubMed

    Or, Peggy; Chung, Joanne; Wong, Thomas

    2012-12-01

    Fit testing of respirators has been recommended, legislated, and implemented in many countries. In the United States, the National Institute for Occupational Safety and Health advocates a fit check, or seal check, before donning a respirator for each fit test. The aim of this study was to investigate the relationship between respirator fitness and performance of the fit check upon donning a respirator. Eighty-four first-year undergraduate nursing students were selected for this study; they were divided randomly into four groups. None had performed a fit test or fit check before being recruited for this study. The real-time self-developed fit test method was used to measure the ambient air particle concentration outside and inside the respirator. Results showed significant differences between groups trained to perform the fit check and those untrained. The overall fit factors were higher in the two groups trained to perform the fit check. The overall fit factors were lower in the two groups not trained to do the fit check. N95 respirators are designed to form a tight seal against wearers' faces. Each time workers don respirators, they should evaluate proper fit. Training wearers in how to fit check increases the likelihood that they will adjust respirators to proper fit. PMID:23210700

  7. Direction-dependent freezing of diamagnetic colloidal tracers suspended in paramagnetic ionic liquids.

    PubMed

    Passow, Christopher; Fischer, Birgit; Sprung, Michael; Köckerling, Martin; Wagner, Joachim

    2014-07-01

    The dynamic behavior of an inverse ferrofluid consisting of diamagnetic, spherical silica particles suspended in the paramagnetic ionic liquid (EMIm)2[Co(NCS)4] is investigated by means of x-ray photon correlation spectroscopy in the presence of an external magnetic field. Dipole-dipole interactions between the diamagnetic holes in the paramagnetic continuum of the suspending medium induce a direction-dependence of the diffusive motion of the colloidal particles: due to a magnetic repulsion perpendicular to the direction of an external field the diffusive motion of the colloidal particles is selectively frozen in this direction. PMID:24940991

  8. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  9. Physicochemical properties of respirable-size lunar dust

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.

    2015-02-01

    We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.

  10. Simulated workplace performance of N95 respirators.

    PubMed

    Coffey, C C; Campbell, D L; Zhuang, Z

    1999-01-01

    During July 1995 the National Institute for Occupational Safety and Health (NIOSH) began to certify nine new classes of particulate respirators. To determine the level of performance of these respirators, NIOSH researchers conducted a study to (1) measure the simulated workplace performance of 21 N95 respirator models, (2) determine whether fit-testing affected the performance, and (3) investigate the effect of varying fit-test pass/fail criteria on respirator performance. The performance of each respirator model was measured by conducting 100 total penetration tests. The performance of each respirator model was then estimated by determining the 95th percentile of the total penetration through the respirator (i.e., 95% of wearers of that respirator can expect to have a total penetration value below the 95th percentile penetration value). The 95th percentile of total penetrations for each respirator without fit-testing ranged from 6 to 88%. The 95th percentile of total penetrations for all the respirators combined was 33%, which exceeds the amount of total penetration (10%) normally expected of a half-mask respirator. When a surrogate fit test (1% criterion) was applied to the data, the 95th percentile of total penetrations for each respirator decreased to 1 to 16%. The 95th percentile of total penetrations for all the respirators combined was only 4%. Therefore, fit-testing of N95 respirators is necessary to ensure that the user receives the expected level of protection. The study also found that respirator performance was dependent on the value of the pass/fail criterion used in the surrogate fit-test. PMID:10529991

  11. Turbidity - a Semi-Continuous Monitoring Option for Suspended Solids

    NASA Astrophysics Data System (ADS)

    Lendvay, J. M.; Rosasco, M. V.; David, K. E.

    2012-12-01

    Redwood Creek, a third order coastal stream flowing through Muir Woods National Monument and Golden Gate National Recreation Area in Marin County, California, was once the spawning grounds for a relatively large population of Coho Salmon (Oncorhynchus kisutch). In recent years less than 1% of historic populations have been returning to the stream. Redwood creek is currently undergoing extensive ecological restoration in an attempt to improve the spawning habitat for the salmon. The original stream path has been altered in the past to make way for development and the National Park Service has been working towards restoring much of the stream's natural functionality with the hope that the salmon population will increase. The restoration process has altered the surrounding riparian landscape in the Redwood Creek watershed. Riparian disturbance caused by vegetation and levee removal as a part of the restoration process followed by installation of seedlings raises concern about the concentration of sediments in the water. Throughout 2011-2012 three parameters for water quality were monitored at Redwood Creek. Suspended sediment concentration (SSC) and total suspended solids (TSS) measurements to determine the concentration of suspended particles in the water column at a given point in time. Turbidity, measured in Nephelometric Turbidity Units (NTU) is a measure of the water's cloudiness caused by suspended particles. Turbidity measurements are favored as they provide a semi-automated monitoring option. Therefore, development of a relationship between turbidity and SSC and TSS is desired. Water samples were analyzed for TSS and SSC using the EPA standard methods, and Turbidity was measured using a Hach 2100Q portable turbidimeter. Additional semi-continuous monitoring of turbidity was completed in situ using Hydrolab DS5X datasondes (with self-cleaning turbidity sensor). The relationship between TSS, SSC and turbidity was determined using a linear regression model for

  12. Suspended sediment transport in an estuarine tidal channel within San Francisco Bay, California

    USGS Publications Warehouse

    Sternberg, R.W.; Cacchione, D.A.; Drake, D.E.; Kranck, K.

    1986-01-01

    Size distributions of the suspended sediment samples, estimates of particle settling velocity (??s), friction velocity (U*), and reference concentration (Ca) at z = 20 cm were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle sizes in the 4-11 ?? (62.5-0.5 ??m) size range with the reference concentration Ca at z = 20 cm (C??); (2) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf); and (3) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. An analysis was also carried out on the sensitivity of the suspended sediment distribution equation to deviations in the primary variables ??s, U*, and Ca. In addition, computations of mass flux were made in order to show vertical variations in mass flux for varying flow conditions. ?? 1986.

  13. Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge.

    PubMed

    Wang, Zijia; Du, Xinqiang; Yang, Yuesuo; Ye, Xueyan

    2012-01-01

    Aquifer recharge, which uses urban stormwater, is an effective technique to control the negative effects of groundwater over-exploitation, while clogging problems in infiltration systems remain the key restricting factor in broadening its practice. Quantitative understanding of the clogging process is still very poor. A laboratory study was conducted to understand surface physical clogging processes, with the primary aim of developing a model for predicting suspended solid clogging processes before aquifer recharge projects start. The experiments investigated the clogging characteristics of different suspended solid sizes in recharge water by using a series of one-dimensional fine quartz sand columns. The results showed that the smaller the suspended particles in recharge water, the farther the distance of movement and the larger the scope of clogging in porous media. Clogging extents in fine sand were 1 cm, for suspended particle size ranging from 0.075 to 0.0385 mm, and 2 cm, for particles less than 0.0385 mm. In addition, clogging development occurred more rapidly for smaller suspended solid particles. It took 48, 42, and 36 hr respectively, for large-, medium-, and small-sized particles to reach pre-determined clogging standards. An empirical formula and iteration model for the surface clogging evolution process were derived. The verification results obtained from stormwater recharge into fine sand demonstrated that the model could reflect the real laws of the surface clogging process.

  14. Measuring suspended sediment: Chapter 10

    USGS Publications Warehouse

    Gray, J.R.; Landers, M.N.

    2013-01-01

    Suspended sediment in streams and rivers can be measured using traditional instruments and techniques and (or) surrogate technologies. The former, as described herein, consists primarily of both manually deployed isokinetic samplers and their deployment protocols developed by the Federal Interagency Sedimentation Project. They are used on all continents other than Antarctica. The reliability of the typically spatially rich but temporally sparse data produced by traditional means is supported by a broad base of scientific literature since 1940. However, the suspended sediment surrogate technologies described herein – based on hydroacoustic, nephelometric, laser, and pressure difference principles – tend to produce temporally rich but in some cases spatially sparse datasets. The value of temporally rich data in the accuracy of continuous sediment-discharge records is hard to overstate, in part because such data can often overcome the shortcomings of poor spatial coverage. Coupled with calibration data produced by traditional means, surrogate technologies show considerable promise toward providing the fluvial sediment data needed to increase and bring more consistency to sediment-discharge measurements worldwide.

  15. Dynamics and yielding of binary self-suspended nanoparticle fluids

    SciTech Connect

    Agrawal, Akanksha; Yu, Hsiu-Yu; Srivastava, Samanvaya; Choudhury, Snehashis; Narayanan, Suresh; Archer, Lynden A.

    2015-01-01

    Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of the materials is that the nanoparticles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smaller ones is found to soften the suspensions, and in the limit of large size disparities, completely fluidizes the material. We show that these behaviors coincide with a speeding-up of de-correlation dynamics of all particles in the suspensions and are accompanied by a reduction in the energy dissipated at the yielding transition. We discuss our findings in terms of ligand-mediated jamming and un-jamming of hairy particle suspensions.

  16. Thixotropic particles suspensions and method for their formation

    DOEpatents

    Garino, Terry J.

    1997-01-01

    Thixotropic particle suspensions are prepared by controlling the quantity of dispersant composition used for particle coating to an amount which is less than that quantity that would provide a full coating of dispersant on all particles suspended.

  17. Thixotropic particles suspensions and method for their formation

    DOEpatents

    Garino, T.J.

    1997-06-17

    Thixotropic particle suspensions are prepared by controlling the quantity of dispersant composition used for particle coating to an amount which is less than that quantity that would provide a full coating of dispersant on all particles suspended. 5 figs.

  18. Wind barriers suppress fugitive dust and soil-derived airborne particles in arid regions

    SciTech Connect

    Grantz, D.A.; Vaughn, D.L.; Farber, R.J.; Kim, B.; Ashbaugh, L.; Van Curen, T.; Campbell, R.

    1998-07-01

    Areas of abandoned agricultural land in the Antelope Valley, western Mojave (high) desert of California have proven in the previous studies to be recalcitrant to conventional tillage and revegetation strategies designed to suppress wind erosion of soil and transport of sediment and fugitive dust. These areas represented a continuing source of drifting sand and of coarse and respirable suspended particulate matter. The traditional techniques failed because furrows collapsed and the water holding capacity of the overburden was too low to support seed germination and transplant survival. In this study a variety of wind barriers were evaluated for suppression of sediment transport. Airborne particles were measured with an array of coarse particle samplers at heights of 0.2, 1.0, and 2.0 m above the soil surface. Discrete artificial wind barriers, consisting of widely spaced roughness elements were effective in suppressing fugitive emissions. Wind fences established along the leeward edge of an area of blowing sand, perpendicular to the prevailing wind, significantly decreased fugitive emissions. Control was greatest and precision of the measurements was highest under high wind conditions. These techniques provide rapid and effective suppression of fugitive emissions of soil-derived particles under conditions that resist conventional tillage and revegetation techniques. A simple, indirect procedure for determining local wind velocity erosion thresholds requiring only sampling of wind run and suspended particulate mass compared favorably with direct measurement of saltation as a function of wind velocity.

  19. 7 CFR 1216.27 - Suspend.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.27 Suspend....

  20. 7 CFR 1216.27 - Suspend.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.27 Suspend....

  1. 7 CFR 1221.30 - Suspend.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.30 Suspend....

  2. 7 CFR 1221.30 - Suspend.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.30 Suspend....

  3. 7 CFR 1221.30 - Suspend.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.30 Suspend....

  4. 7 CFR 1221.30 - Suspend.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.30 Suspend....

  5. 7 CFR 1221.30 - Suspend.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.30 Suspend....

  6. 7 CFR 1218.20 - Suspend.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.20 Suspend....

  7. 7 CFR 1218.20 - Suspend.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.20 Suspend....

  8. 7 CFR 1218.20 - Suspend.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.20 Suspend....

  9. 7 CFR 1218.20 - Suspend.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.20 Suspend....

  10. 7 CFR 1218.20 - Suspend.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.20 Suspend....

  11. 7 CFR 1216.27 - Suspend.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.27 Suspend....

  12. 7 CFR 1216.27 - Suspend.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.27 Suspend....

  13. 7 CFR 1216.27 - Suspend.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.27 Suspend....

  14. Suspended matter in surface waters of the Atlantic continental margin from Cape Cod to the Florida keys

    USGS Publications Warehouse

    Manheim, F. T.; Meade, R.H.; Bond, G.C.

    1970-01-01

    Appreciable amounts of suspended matter (> 1.0 milligram per liter) in surface waters are restricted to within a few kilometers of the Atlantic coast. Particles that escape estuaries or are discharged by rivers into the shelf region tend to travel longshoreward rather than seaward. Suspended matter farther offshore, chiefly amorphous organic particles, totals 0.1 milligram per liter or less. Soot, fly ash, processed cellulose, and other pollutants are widespread.

  15. Effect of Rocking Movements on Respiration

    PubMed Central

    Omlin, Ximena; Crivelli, Francesco; Heinicke, Lorenz; Zaunseder, Sebastian; Achermann, Peter; Riener, Robert

    2016-01-01

    For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not

  16. Droplet Suspended on a Wire Begins Ignition

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Fiber Supported Droplet Combustion Experiment completing a number of successful burns on STS-94, July 11, 1997, MET:9/17:40 (approximate). The photo shows a droplet of 95% heptane and 5% hexadecane, suspended and positioned by the fiber wire, just as it is being ignited by the glowing coil beneath. Study of the physical properties of burning fuel from this experiment is expected to contribute to more efficient use of fossil fuels and reduction of combustion by-products on Earth. The sequence is from a time-lapse movie (34 seconds condensed to 12 seconds), and clearly shows particles emanating from the droplet during the burn. The droplet shrank to nothing as it was consumed. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.2 MB, 11-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300180.html.

  17. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids.

    PubMed

    Gordon, Andrew K; Palmer, Carolyn G

    2015-04-01

    Water quality guidelines for suspended solids generally rely on the percentage departure from reference condition, an approach that has been criticized. Attempts to develop a biological effects-base guideline have, however, been confounded by low data availability. Furthermore, the high biological response variability to suspended solids exposure suggests that organisms are responding not only to exposure concentration and duration but also to other mechanisms of effect associated with suspended particles (e.g., size, shape, and geochemical composition). An alternative option is to develop more situation and site specific guidelines by generating biological effects data to suspended particles of a particular geochemistry and restricted size range. With this in mind, aquatic organism responses to kaolin clay particle exposure were collated from the literature and incorporated into 2 exposure-response relationship approaches. The species sensitivity distribution approach produced a hazardous concentration affecting 5% of species estimate of 58 mg/L for mortality responses, and 36 mg/L for sublethal data. The severity-of-ill-effect approach produced similar estimates for lethal and sublethal data. These results suggest that aquatic organisms are slightly more tolerant of kaolin clay particles than particles from barite or bentonite clays, based on results from previous studies on these clay types. This type of information can enable better estimates of the risk faced by aquatic organisms exposed to suspended solids. For example, when the sediments of a particular water body are dominated by a particular type of clay particle, then the most appropriate exposure-response relationship can be applied. PMID:25711545

  18. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids.

    PubMed

    Gordon, Andrew K; Palmer, Carolyn G

    2015-04-01

    Water quality guidelines for suspended solids generally rely on the percentage departure from reference condition, an approach that has been criticized. Attempts to develop a biological effects-base guideline have, however, been confounded by low data availability. Furthermore, the high biological response variability to suspended solids exposure suggests that organisms are responding not only to exposure concentration and duration but also to other mechanisms of effect associated with suspended particles (e.g., size, shape, and geochemical composition). An alternative option is to develop more situation and site specific guidelines by generating biological effects data to suspended particles of a particular geochemistry and restricted size range. With this in mind, aquatic organism responses to kaolin clay particle exposure were collated from the literature and incorporated into 2 exposure-response relationship approaches. The species sensitivity distribution approach produced a hazardous concentration affecting 5% of species estimate of 58 mg/L for mortality responses, and 36 mg/L for sublethal data. The severity-of-ill-effect approach produced similar estimates for lethal and sublethal data. These results suggest that aquatic organisms are slightly more tolerant of kaolin clay particles than particles from barite or bentonite clays, based on results from previous studies on these clay types. This type of information can enable better estimates of the risk faced by aquatic organisms exposed to suspended solids. For example, when the sediments of a particular water body are dominated by a particular type of clay particle, then the most appropriate exposure-response relationship can be applied.

  19. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.

  20. Surface tension of Nanofluid-type fuels containing suspended nanomaterials

    PubMed Central

    2012-01-01

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039

  1. Surface tension of Nanofluid-type fuels containing suspended nanomaterials.

    PubMed

    Tanvir, Saad; Qiao, Li

    2012-04-18

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  2. Suspending and Reinstating Joint Activities with Dialogue

    ERIC Educational Resources Information Center

    Chevalley, Eric; Bangerter, Adrian

    2010-01-01

    Interruptions are common in joint activities like conversations. Typically, interrupted participants suspend the activity, address the interruption, and then reinstate the activity. In conversation, people jointly commit to interact and to talk about a topic, establishing these commitments sequentially. When a commitment is suspended, face is…

  3. Controls of suspended sediment concentration, nutrient content, and transport in a subtropical wetland

    USGS Publications Warehouse

    Noe, G.B.; Harvey, J.W.; Schaffranek, R.W.; Larsen, L.G.

    2010-01-01

    Redistribution of largely organic sediment from low elevation sloughs to higher elevation ridges is a leading hypothesis for the formation and maintenance of the native ridge and slough landscape pattern found in peat wetlands of the Florida Everglades. We tested this redistribution hypothesis by measuring the concentration and characteristics of suspended sediment and its associated nutrients in the flowpaths of adjacent ridge and slough plant communities. Over two wet seasons we found no sustained differences in suspended sediment mass concentrations, particle-associated P and N concentrations, or sizes of suspended particles between ridge and slough sites. Discharge of suspended sediment, particulate nutrients, and solutes were nearly double in the slough flowpath compared to the ridge flowpath due solely to deeper and faster water flow in sloughs. Spatial and temporal variations in suspended sediment were not related to water velocity, consistent with a hypothesis that the critical sheer stress causing entrainment is not commonly exceeded in the present-day managed Everglades. The uniformity in the concentrations and characteristics of suspended sediment at our research site suggests that sediment and particulate nutrient redistribution between ridges and sloughs does not occur, or rarely occurs, in the modern Everglades.

  4. Scrolling of Suspended CVD Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Martynov, Oleg; Yeom, Sinchul; Bockrath, Marc; UC: Riverside Team

    Carbon Nanoscrolls, one dimensional spiral forms of graphitic carbon, have attracted recent interest due to their novel proposed properties. Although various production methods and studies of carbon nanoscrolls have been performed, low yield and poor controllability of their synthesis have slowed progress in this field. Suspended graphene membranes and carbon nanotubes have been predicted as promising systems for the formation of graphene scrolls. We have suspended chemical vapor deposition (CVD)-grown graphene over large holes in a Si/SiO2 substrate to make suspended membranes upon which nanotubes are placed. Initial experiments have been performed showing that tears or cuts of the suspended sheet can initiate scrolling. Our latest progress towards carbon nanotube initiated formation of graphene scrolls and suspended CVD graphene scrolling, along with measurements of these novel structures will be presented.

  5. Cyanide-insensitive Respiration in Pea Cotyledons.

    PubMed

    James, T W; Spencer, M S

    1979-09-01

    Mitochondria isolated by a zonal procedure from the cotyledons of germinating peas possessed a cyanide-resistant respiration. This respiration was virtually absent in mitochondria isolated during the first 24 hours of germination but thereafter increased gradually until the 6th or 7th day of seedling development. At this time between 15 and 20% of the succinate oxidation was not inhibited by cyanide. The activity of the cyanide-resistant respiration was also determined in the absence of cyanide. Relationships among mitochondrial structure, cyanide-resistant respiration, and seedling development are discussed.

  6. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed. PMID:22571884

  7. Correlation of ERTS multispectral imagery with suspended matter and chlorophyll in lower Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.; Fleischer, P.; Gosink, T. A.; Hanna, W. J.; Ludwick, J. C.

    1973-01-01

    The feasibility of using multispectral satellite imagery to monitor the characteristics of estuarine waters is being investigated. Preliminary comparisons of MSS imagery with suspended matter concentrations, particle counts, chlorophyll, transmittance and bathymetry have been made. Some visual correlation of radiance with particulates and chlorophyll has been established. Effects of bathymetry are present, and their relation to transmittance and radiance is being investigated. Greatest detail in suspended matter is revealed by MSS band 5. Near-surface suspended sediment load and chlorophyll can be observed in bands 6 and 7. Images received to date have partially defined extent and location of high suspensate concentrations. Net quantity of suspended matter in the lower Bay has been decreasing since the inception of the study, and represents the diminution of turbid flood waters carried into the Bay in late September, 1972. The results so far point to the utility of MSS imagery in monitoring estuarine water character for the assessment of siltation, productivity, and water types.

  8. Respirator protection factors: Part II-protection factors of supplied-air respirators.

    PubMed

    Hack, A L; Bradley, O D; Trujillo, A

    1980-05-01

    Protection Factors provided by 25 NIOSH approved supplied-air respirators were determined while the devices were worn by a panel of test subjects anthropometrically selected to represent adult facial sizes. Polydispersed DOP aerosol was used for respirator fit tests on continuous flow, demand, and pressure-demand respirators. Based on facepiece leakage measurements it appears that demand-type respirators should neither be used nor approved. The highest level of protection was provided by pressure-demand devices.

  9. Methodology for assessing respiration and cellular incorporation of radiolabeled substrates by soil microbial communities (journal version)

    SciTech Connect

    Dobbins, D.C.; Pfaender, F.K.

    1988-01-01

    A method is described for determining biodegradation kinetics of both naturally occurring and xenobiotic compounds in surface and subsurface soil samples. The method measures both respiration and uptake into cellular biomass of 14C-labeled substrates. After separation of the cells and the soil particles by centrifugation, the cells were trapped on membrane filters for liquid scintillation counting. Mass balances were easily obtained. The technique was used to measure metabolic activity in soil profiles, including unsaturated and saturated zones. First-order rate constants were determined for amino acid metabolism and for m-cresol metabolism. Saturation kinetics were observed for amino acids and m-cresol. m-Cresol values for uptake often exceeded those for respiration by greater than a factor of ten. Saturation was not observed in many horizons. Frequently, respiration obeyed saturation kinetics, whereas uptake was first order. It is concluded that measuring only kinetics of respiration may lead to severe underestimations of biodegradation rates.

  10. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped... commercial designation of the respirator it contains and all appropriate approval labels....

  11. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all completely assembled respirators which are designed for use as respiratory protection during entry into...

  12. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped... commercial designation of the respirator it contains, and all appropriate approval labels....

  13. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all completely assembled respirators which are designed for use as respiratory protection during entry into...

  14. Fitting Characteristics of N95 Filtering-Facepiece Respirators Used Widely in China

    PubMed Central

    Zhuang, Ziqing; Liu, Yuewei; Wang, Xinyan; Liu, Juyuan; Yang, Mingna; Chen, Weihong

    2014-01-01

    Background Millions of people rely on N95 filtering facepiece respirators to reduce the risk of airborne particles and prevent them from respiratory infections. However, there are no respirator fit testing and training regulations in China. Meanwhile, no study has been conducted to investigate the fit of various respirators. The objective of this study was to investigate whether people obtained adequate fit when wearing N95 filtering facepiece respirators (FFRs) used widely in China. Methods Fifty adult participants selected using the Chinese respirator fit test panel donned 10 common models of N95 FFRs. Fit factors (FF) and inward leakage were measured using the TSI PortaCount Plus. Each subject was tested with three replications for each model. A subject was considered to pass the fit test when at least two of the three FFs were greater than 100. Two models were conducted fit tests before and after training to assess the role of training. Results The geometric mean FFs for each model and trained subjects ranged from <10 to 74.0. The fifth percentile FFs for only two individual respirator models were greater than 10 which is the expected level of performance for FFRs. The passing rates for these two models of FFRs were 44.7% and 20.0%. The passing rates were less than 10.0% for the other eight models. There were 27 (54%) participants who passed none of the 10 FFRs. The geometric mean FFs for both models when the subjects received training (49.7 and 74.0) were significantly larger than those when the same group of subjects did not receive any training (29.0 and 30.9) (P<0.05). Conclusions FFRs used widely in China should be improved according to Chinese facial dimensions. Respirator users could benefit from respirator training and fit testing before using respirators. PMID:24465528

  15. Mucous Secretion and Cilia Beating Defend Developing Coral Larvae from Suspended Sediments

    PubMed Central

    Jones, Ross J.; Clode, Peta L.; Negri, Andrew P.

    2016-01-01

    Suspended sediments produced from dredging activities, or added to the sediment budget via river runoff, are a concern for marine resource managers. Understanding the impact of suspended sediments on critical life history stages of keystone species like corals is fundamental to effective management of coastlines and reefs. Coral embryos (Acropora tenuis and A. millepora) and larvae (A. tenuis, A. millepora and Pocillopora acuta) were subjected to a range of suspended sediment concentrations of different sediment types (siliciclastic and carbonate) to assess concentration-response relationships on ecologically relevant endpoints, including survivorship and ability to metamorphose. Embryos were subjected to short (12 h) suspended sediment exposures from ages of 3–12 hours old or a long (30 h) exposure at 6 hours old. Neither the survivorship nor metamorphosis function of embryos were significantly affected by realistic sediment exposures to ~1000 mg L-1. However, some embryos exhibited a previously undescribed response to dynamically suspended sediments, which saw 10% of the embryos form negatively buoyant cocoons at siliciclastic suspended sediment concentrations ≥35 mg L-1. Scanning electron and optical microscopy confirmed the presence of a coating on these embryos, possibly mucus with incorporated sediment particles. Cocoon formation was common in embryos but not in larvae, and occurred more often after exposure to siliciclastic rather than carbonate sediments. Once transferred into sediment-free seawater, functional ~36-h-old embryos began emerging from the cocoons, coinciding with cilia development. Ciliated (> 36-h-old) larvae exposed to suspended sediments for 60 h were also observed to secrete mucus and were similarly unaffected by suspended sediment concentrations to ~800 mg L-1. This study provides evidence that mucous secretion and cilia beating effectively protect coral embryos and larvae from suspended sediment and that these mechanisms may enhance

  16. Correlation study between suspended particulate matter and DOAS data

    NASA Astrophysics Data System (ADS)

    Si, Fuqi; Liu, Jianguo; Xie, Pinghua; Zhang, Yujun; Liu, Wenqing; Kuze, Hiroaki; Lagrosas, Nofel; Takeuchi, Nobuo

    2006-05-01

    Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6 13.7 m2 g-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.

  17. Continuous measurement of suspended-sediment discharge in rivers by use of optical backscatterance sensors

    USGS Publications Warehouse

    Schoellhamer, D.H.; Wright, S.A.

    2003-01-01

    Optical sensors have been used to measure turbidity and suspended-sediment concentration by many marine and estuarine studies, and optical sensors can provide automated, continuous time series of suspended-sediment concentration and discharge in rivers. Three potential problems with using optical sensors are biological fouling, particle-size variability, and particle-reflectivity variability. Despite varying particle size, output from an optical backscatterance sensor in the Sacramento River at Freeport, California, USA, was calibrated successfully to discharge-weighted, cross-sectionally averaged suspended-sediment concentration, which was measured with the equal discharge-, or width-increment, methods and an isokinetic sampler. A correction for sensor drift was applied to the 3-year time series. However, the calibration of an optical backscatterance sensor used in the Colorado River at Cisco, Utah, USA, was affected by particle-size variability. The adjusted time series at Freeport was used to calculate hourly suspended-sediment discharge that compared well with daily values from a sediment station at Freeport. The appropriateness of using optical sensors in rivers should be evaluated on a site-specific basis and measurement objectives, potential particle size effects, and potential fouling should be considered.

  18. Technological advances in suspended-sediment surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Gray, John R.; Gartner, Jeffrey W.

    2009-04-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  19. Technological advances in suspended-sediment surrogate monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  20. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  1. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  2. Method for measuring the spatial variability of aerosol penetration through respirator filters.

    PubMed

    Huang, C; Willeke, K; Qian, Y; Grinshpun, S; Ulevicius, V

    1998-07-01

    Fibrous filter media are widely used in respirators to remove airborne particulate matter from the inhaled airflow of workers. The N95 half-mask particulate respirator appears to be the most frequently used respirator under the new NIOSH regulation, 42 CFR 84. Considerable spatial variability in light penetration through the fibrous filter medium of an N95 respirator can be seen by visual observation when it is held to the light. This variability is due to the way in which the fibers are manufactured and laid down to form the filter medium. Similar spatial variability is expected in the aerosol penetration through the filters. Therefore, a test method has been developed for measuring the spatial variability in aerosol penetration. The main components of this method are an aerosol generator, a filter test stand with a movable sampling inlet, an aerosol size spectrometer, and an aerosol photometer. Measurements with the filter media of N95 respirators, tested at average filtration velocities corresponding to light, moderate, and heavy work loads, have shown spatial variations in aerosol penetration in excess of 100% relative to the average aerosol penetration for the entire respirator. N95 respirators are required to be at least 95% efficient (i.e., less than 5% penetrating) at the most penetrating particle size, when tested at 85 L/min. Tests with the new method have shown that the aerosol penetration of the most penetrating particles of about 0.1 micron diameter may locally be higher than 5%, while the average aerosol penetration of 0.1 micron particles is less than 5%. PMID:9697293

  3. A Novel Device for Measuring Respirable Dustiness Using Low Mass Powder Samples

    PubMed Central

    O’Shaughnessy, Patrick T.; Kang, Mitchell; Ellickson, Daniel

    2013-01-01

    Respirable dustiness represents the tendency of a powder to generate respirable airborne dust during handling and therefore indicates the propensity for a powder to become an inhalation hazard. The dustiness of fourteen powders, including ten different nanopowders, was evaluated with the use of a novel low mass dustiness tester (LMDT) designed to minimize the use of the test powder. The aerosol created from 15-mg powder samples falling down a tube were measured with an aerodynamic particle sizer (APS). Particle counts integrated throughout the pulse of aerosol created by the falling powder were used to calculate a respirable dustiness mass fraction (D, mg/kg). An amorphous silicon dioxide nanopowder produced a respirable D of 121.4 mg/kg which was significantly higher than all other powders (p<0.001). Many nanopowders produced D values of that were not significantly different from large-particle powders such as Arizona Road Dust and Bentonite clay. In general, fibrous nanopowders and powders with primary particles > 100 nm are not as dusty as those containing granular, nano-sized primary particles. The method used here, incorporating an APS, represents a deviation from a standard method but resulted in dustiness values comparable to other standard methods. PMID:22335240

  4. Modelling Soil respiration in agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth

    2013-04-01

    A soil respiration model was developed to simulate soil respiration in crops on a daily time step. The soil heterotrophic respiration component was derived from Century (Parton et al., 1987). Soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition rate coefficient. Carbon flows between these pools are controlled by carbon inputs (crop residues), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To model the soil autotrophic respiration component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence (Ryan et al., 1991). Growth respiration is calculated assuming a dependence on both growth rate and construction cost of the considered organ (MacCree et al., 1982) A database, made of four different soil and climate conditions in mid-latitude was used to study the two components of the soil respiration model in wheat fields. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to

  5. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows: Quarterly technical progress report No. 1. [Silica gel particles suspended in mixture of 70. 3% Stoddard solvent (saturated hydrocarbon) and 29. 7% Exxon 150 (aromatic hydrocarbon)

    SciTech Connect

    Park, J.T.; Mannheimer, R.J.; Grimley, T.A.; Morrow, T.B.

    1987-01-26

    An experimental evaluation of the structure of non-Newtonian slurries in laminar, transitional, and turbulent flow regimes in pipes is the primary objective of this research. Experiments will be conducted in a large scale pipe slurry flow facility with an inside pipe diameter of 50 mm (2 inches). Detailed flow measurements including turbulence quantities such as Reynolds stress will be taken with a two-component laser Doppler velocimeter (LDV) in a transparent test section with a transparent model slurry. During the past quarter, a transparent model slurry was developed with non-Newtonian rheological properties. Silica gel particles with diameters less than one micron were suspended in a mixture of 70.3% Stoddard Solvent (a saturated hydrocarbon) and 29.7% Exxon 150 (an aromatic hydrocarbon) by weight. The refractive index was measured as 1.4543, and the difference in refractive indices between the solids and the liquid was estimated to be less than 0.001. In rheological measurements with a concentric cylinder viscometer, a slurry with 5.6% solids by weight exhibited both slip and power law behavior. Qualitative results also indicate that the model slurry has a yield value. An adequate signal-to-noise ratio was measured in the model slurry with a two-component LDV system during bench scale tests. Several other items of significance were also completed. A Plexiglas dye injector was fabricated for the flow visualization experiments. The device contains a circumferential injector slot for visualization of wall phenomena. Test section design has been completed and fabrication is in progress. Flow visualization experiments will be initiated during the next quarter. 15 refs., 7 figs., 1 tab.

  6. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  7. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  8. Basic hydraulic experiment on the saturated concentration of suspended load due to tsunamis

    NASA Astrophysics Data System (ADS)

    Takahashi, Tomoyuki; Somekawa, Shiho

    2016-04-01

    When tsunamis arrive in the shallow sea, a huge amount of suspended load is generated by large velocity and strong turbulence. The suspended load causes the geomorphic processes of erosion and deposition. Because the suspended load cannot be increased endlessly, it should have the saturated concentration. Many numerical models of sediment transport due to tsunamis have assumed a constant value of 1% for the saturated concentration empirically. However, it is supposed as a function of velocity. In this study, a hydraulic experiment was carried out to investigate a relationship between velocity and the saturated concentration of suspended load when tsunamis attack. A water circulation pipe used in the experiment was 10 cm in a diameter, 260 cm in length and 50 cm in width. A velocity of water flow in the pipe had been controlled by two pumps and two valves. It was changed from 0.24 to 1.22 m/s. Various amounts of sand was spread on the bottom of pipe. The amount of sand was changed from 0.1 to 10% as converted in the concentration of suspended load if all sand suspended. A diameter and a density of the sand were 0.267 mm and 2.64 x 103 kg/m^3. A condition of sediment transport in the pipe was recorded by video camera from a transparent window at the side of pipe. The condition was judged as all sand particles were suspended or not. The former condition indicates that the concentration of suspended load is saturated and the latter does it is not saturated. When velocity was smaller than 0.47 m/s, there was no suspended load because of a weak tractive force. When velocity became larger, the suspended load was generated and the concentration also became higher. However, the concentration had the upper limit and surplus sand appeared on the bed of pipe when velocity became much larger. The condition gave the saturated concentration of suspended load. When velocity was 0.665 m/s, the saturated concentration was smaller than 1% which is used in many numerical simulations

  9. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone

    NASA Astrophysics Data System (ADS)

    McDonnell, A. M. P.; Boyd, P. W.; Buesseler, K. O.

    2015-02-01

    The attenuation of sinking particle fluxes through the mesopelagic zone is an important process that controls the sequestration of carbon and the distribution of other elements throughout the oceans. Case studies at two contrasting sites, the oligotrophic regime of the Bermuda Atlantic Time-series Study (BATS) and the mesotrophic waters of the west Antarctic Peninsula (WAP) sector of the Southern Ocean, revealed large differences in the rates of particle-attached microbial respiration and the average sinking velocities of marine particles, two parameters that affect the transfer efficiency of particulate matter from the base of the euphotic zone into the deep ocean. Rapid average sinking velocities of 270 ± 150 m d-1 were observed along the WAP, whereas the average velocity was 49 ± 25 m d-1 at the BATS site. Respiration rates of particle-attached microbes were measured using novel RESPIRE (REspiration of Sinking Particles In the subsuRface ocEan) sediment traps that first intercepts sinking particles then incubates them in situ. RESPIRE experiments yielded flux-normalized respiration rates of 0.4 ± 0.1 day-1 at BATS when excluding an outlier of 1.52 day-1, while these rates were undetectable along the WAP (0.01 ± 0.02 day-1). At BATS, flux-normalized respiration rates decreased exponentially with respect to depth below the euphotic zone with a 75% reduction between the 150 and 500 m depths. These findings provide quantitative and mechanistic insights into the processes that control the transfer efficiency of particle flux through the mesopelagic and its variability throughout the global oceans.

  10. Stability of suspended graphene under Casimir force

    NASA Astrophysics Data System (ADS)

    Chudnovsky, E. M.; Zarzuela, R.

    2016-08-01

    We consider a graphene sheet suspended above a conducting surface. Treating graphene as an elastic membrane subjected to Casimir force, we study its stability against sagging towards the conductor. There exists a critical elevation at the edges below which the central part of the suspended graphene nucleates a trunk that sinks under the action of the Casimir force. The dependence of the critical elevation on temperature, dimensions, and the elastic stress applied to the graphene sheet is computed.

  11. Observations on the use of acoustic Doppler velocimeters over rough beds with suspended sediment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimeters provide a means for measuring velocities and turbulence in challenging circumstances, such as in flows with suspended particles, which are difficult or impossible with laser-based techniques. The relatively non-intrusive measurement resulting from the offset sampling v...

  12. Comparison of two quantitative fit-test methods using N95 filtering facepiece respirators.

    PubMed

    Sietsema, Margaret; Brosseau, Lisa M

    2016-08-01

    Current regulations require annual fit testing before an employee can wear a respirator during work activities. The goal of this research is to determine whether respirator fit measured with two TSI Portacount instruments simultaneously sampling ambient particle concentrations inside and outside of the respirator facepiece is similar to fit measured during an ambient aerosol condensation nuclei counter quantitative fit test. Sixteen subjects (ten female; six male) were recruited for a range of facial sizes. Each subject donned an N95 filtering facepiece respirator, completed two fit tests in random order (ambient aerosol condensation nuclei counter quantitative fit test and two-instrument real-time fit test) without removing or adjusting the respirator between tests. Fit tests were compared using Spearman's rank correlation coefficients. The real-time two-instrument method fit factors were similar to those measured with the single-instrument quantitative fit test. The first four exercises were highly correlated (r > 0.7) between the two protocols. Respirator fit was altered during the talking or grimace exercise, both of which involve facial movements that could dislodge the facepiece. Our analyses suggest that the new real-time two-instrument methodology can be used in future studies to evaluate fit before and during work activities.

  13. Comparison of two quantitative fit-test methods using N95 filtering facepiece respirators.

    PubMed

    Sietsema, Margaret; Brosseau, Lisa M

    2016-08-01

    Current regulations require annual fit testing before an employee can wear a respirator during work activities. The goal of this research is to determine whether respirator fit measured with two TSI Portacount instruments simultaneously sampling ambient particle concentrations inside and outside of the respirator facepiece is similar to fit measured during an ambient aerosol condensation nuclei counter quantitative fit test. Sixteen subjects (ten female; six male) were recruited for a range of facial sizes. Each subject donned an N95 filtering facepiece respirator, completed two fit tests in random order (ambient aerosol condensation nuclei counter quantitative fit test and two-instrument real-time fit test) without removing or adjusting the respirator between tests. Fit tests were compared using Spearman's rank correlation coefficients. The real-time two-instrument method fit factors were similar to those measured with the single-instrument quantitative fit test. The first four exercises were highly correlated (r > 0.7) between the two protocols. Respirator fit was altered during the talking or grimace exercise, both of which involve facial movements that could dislodge the facepiece. Our analyses suggest that the new real-time two-instrument methodology can be used in future studies to evaluate fit before and during work activities. PMID:26963561

  14. Respirator physiological effects under simulated work conditions.

    PubMed

    Bansal, Siddharth; Harber, Philip; Yun, David; Liu, David; Liu, Yihang; Wu, Samantha; Ng, David; Santiago, Silverio

    2009-04-01

    This study compared the physiological impacts of two respirator types in simulated work conditions. Fifty-six subjects included normal volunteers and persons with mild respiratory impairments (chronic rhinitis, mild COPD, and mild asthma). Respiratory parameters and electrocardiogram were measured using respiratory inductive plethysmography while performing eight work tasks involving low to moderate exertion using two respirators: (1) a dual cartridge half face mask (HFM) respirator, and (2) the N95. Mixed model regression analyses evaluating the effect of task and respirator type showed that task affected tidal volume, minute ventilation, breathing frequency and heart rate; all were greater in heavier tasks. Although respirator type did not affect respiratory volume parameters and flow rates, the HFM led to increase in the inspiratory time, reduction of the expiratory time, and increase in the duty cycle in comparison with the N95. The magnitude of differences was relatively small. The results suggest that most individuals, including persons with mild respiratory impairments, will physiologically tolerate either type of respirator at low to moderate exertion tasks. However, because effective protection depends on proper use, differences in subjective effect may have greater impact than physiological differences. Using respirators may be feasible on a widespread basis if necessary for maintaining essential services in the face of widespread concern about an infectious or terrorist threat. PMID:19180375

  15. Distribution and dispersal of suspended particulate matter on the Ebro continental shelf, northwestern Mediterranean Sea

    USGS Publications Warehouse

    Palanques, A.; Drake, D.E.

    1990-01-01

    Hydrographic data, water and bottom-sediment samples, and a GEOPROBE tripod experiment were used to examine the distribution and dynamics of suspended particulate matter on the Ebro shelf in the northwestern Mediterranean Sea. In the absence of strong winds and storms, primary sediment supply from the Ebro River is dispersed along the shelf by a general southward flow. In such calm conditions, suspended-matter concentrations on the shelf are lower than 3 mg/l and transfer of material from the shelf to the slope takes place principally over the shelf edge north of the Columbretes Islands. Very fine sediment deposited in a mid-shelf mud belt (30-80 m deep) is cohesive and resistant to erosion. Only relatively rare, strong storms are able to resuspend particles from the deeper, central region of this cohesive deposit. When resuspension takes place, suspended-particulate-matter concentration increases and the general dispersal pattern of suspended matter is altered. Near the seafloor, distribution of suspended matter is greatly influenced by the distribution of the mid-shelf muds from which particles are resuspended. Resuspension occurs more intensively and frequently along the shallower (20-40 m) edge of the cohesive deposit and near the delta. ?? 1990.

  16. Impact of Mining Waste on Airborne Respirable Particulates in Northeastern Oklahoma, United States

    EPA Science Inventory

    Atmospheric dispersion of particles from mine waste is potentially an important route of human exposure to metals in communities close to active and abandoned mining areas. In this study, we assessed sources of mass and metal concentrations in two size fractions of respirable pa...

  17. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  18. 7 CFR 61.37 - License may be suspended.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false License may be suspended. 61.37 Section 61.37... Cottonseed Samplers § 61.37 License may be suspended. The Director may, without a hearing, suspend or revoke... as to why his license should not be suspended or revoked. After the expiration of the aforesaid...

  19. 7 CFR 61.37 - License may be suspended.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false License may be suspended. 61.37 Section 61.37... Cottonseed Samplers § 61.37 License may be suspended. The Director may, without a hearing, suspend or revoke... as to why his license should not be suspended or revoked. After the expiration of the aforesaid...

  20. 7 CFR 61.37 - License may be suspended.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false License may be suspended. 61.37 Section 61.37... Cottonseed Samplers § 61.37 License may be suspended. The Director may, without a hearing, suspend or revoke... as to why his license should not be suspended or revoked. After the expiration of the aforesaid...

  1. 7 CFR 61.37 - License may be suspended.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false License may be suspended. 61.37 Section 61.37... Cottonseed Samplers § 61.37 License may be suspended. The Director may, without a hearing, suspend or revoke... as to why his license should not be suspended or revoked. After the expiration of the aforesaid...

  2. The effect of subject characteristics and respirator features on respirator fit.

    PubMed

    Zhuang, Ziqing; Coffey, Christopher C; Ann, Roland Berry

    2005-12-01

    A recent study was conducted to compare five fit test methods for screening out poor-fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were used to assess the fit test methods by using a simulated workplace protection factor (SWPF) test. The purpose of this companion study was to investigate the effect of subject characteristics (gender and face dimensions) and respirator features on respirator fit. The respirator features studied were design style (folding and cup style) and number of sizes available (one size fits all, two sizes, and three sizes). Thirty-three subjects participated in this study. Each was measured for 12 face dimensions using traditional calipers and tape. From this group, 25 subjects with face size categories 1 to 10 tested each respirator. The SWPF test protocol entailed using the PortaCount Plus to determine a SWPF based on total penetration (face-seal leakage plus filter penetration) while the subject performed six simulated workplace movements. Six tests were conducted for each subject/respirator model combination with redonning between tests. The respirator design style (folding style and cup style) did not have a significant effect on respirator fit in this study. The number of respirator sizes available for a model had significant impact on respirator fit on the panel for cup-style respirators with one and two sizes available. There was no significant difference in the geometric mean fit factor between male and female subjects for 16 of the 18 respirator models. Subsets of one to six face dimensions were found to be significantly correlated with SWPFs (p < 0.05) in 16 of the 33 respirator model/respirator size combinations. Bigonial breadth, face width, face length, and nose protrusion appeared the most in subsets (five or six) of face dimensions and their multiple linear regression coefficients were significantly different from zero (p < 0.05). Lip length was found in

  3. Ordering of Fine Particles in a Planar Magnetron Plasma

    SciTech Connect

    Hayashi, Y.; Takahashi, K.; Totsuji, H.; Ishihara, O.; Sato, N.; Watanabe, Y.; Adachi, S.

    2008-09-07

    Fine particles injected in a planar magnetron were pushed upward by diffusible plasma, leading to being suspended by the force balance with the gravity and forming three-dimensional structures on the two-dimensional structure formed by particle strings.

  4. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults. PMID:17258487

  5. Evaluation of the filtration performance of NIOSH-approved N95 filtering facepiece respirators by photometric and number-based test methods.

    PubMed

    Rengasamy, Samy; Miller, Adam; Eimer, Benjamin C

    2011-01-01

    N95 particulate filtering facepiece respirators are certified by measuring penetration levels photometrically with a presumed severe case test method using charge neutralized NaCl aerosols at 85 L/min. However, penetration values obtained by photometric methods have not been compared with count-based methods using contemporary respirators composed of electrostatic filter media and challenged with both generated and ambient aerosols. To better understand the effects of key test parameters (e.g., particle charge, detection method), initial penetration levels for five N95 model filtering facepiece respirators were measured using NaCl aerosols with the aerosol challenge and test equipment employed in the NIOSH respirator certification method (photometric) and compared with an ultrafine condensation particle counter method (count based) for the same NaCl aerosols as well as for ambient room air particles. Penetrations using the NIOSH test method were several-fold less than the penetrations obtained by the ultrafine condensation particle counter for NaCl aerosols as well as for room particles indicating that penetration measurement based on particle counting offers a more difficult challenge than the photometric method, which lacks sensitivity for particles < 100 nm. All five N95 models showed the most penetrating particle size around 50 nm for room air particles with or without charge neutralization, and at 200 nm for singly charged NaCl monodisperse particles. Room air with fewer charged particles and an overwhelming number of neutral particles contributed to the most penetrating particle size in the 50 nm range, indicating that the charge state for the majority of test particles determines the MPPS. Data suggest that the NIOSH respirator certification protocol employing the photometric method may not be a more challenging aerosol test method. Filter penetrations can vary among workplaces with different particle size distributions, which suggests the need for the

  6. A New Simple Suspended-Load Sampler: Continuous Particulate Matter Collection from Rivers with Low and High Suspended Matter Load

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Miesbauer, Hermann; Humer, Franko; Oberndorfer, Hermann

    2010-05-01

    Please fill in your abstract text. Suspended particulate matter (SPM) or suspended load in waters is the part of the stream load that is carried for a considerable period of time in suspension. Long term suspended sediment monitoring is hampered by the limited sample size or enormous investments in equipment and/or working hours. In addition many samplers are limited to easily accessible sampling points equipped with electric power supply or to certain types of streams and cannot operate unattended in case of floods. The sorption characteristics of the suspended particulate matter (wash load) have been recognized as important transporters of natural and anthropogenic trace constituents. To allow repeated analyses sometimes several grams of dried SPM are needed. All parts of the sediment sampler are available as spare parts in hardware stores and made of polyvinylchloride (PVC). The inlet device is connected with the sampler by a tubing of several meter length. Without a pump the sampler can be positioned at a safe place lower than the inlet device to allow a continuous flow. Only a small portion (0.001-0.002 l/s) of the river water flows down through the central pipe by gravitational force to the bottom of the container. Due to the considerable larger diameter of the container the water rises very slowly (1-3 hours) and leaves the container at a small overflow-pipe allowing a nearly complete settling and/or flocculation (80-90%) of the suspended load in the container. The sampler was tested in an alpine torrent and two rivers in flat areas. The newly developed sampler offers following advantages. The sampler (1) is inexpensive and robust, (2) operates in case of small cascade or cataracts (>0.5 m) without power supply, (3) can be used singly or in lateral or vertical nests, (4) allows continuous settling and flocculation without perturbation by vibrating movements of the sampler (5) is resistant to plugging and clogging by coarser particles and plant debris, (6

  7. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    PubMed

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P < 0.05), which could explain 35%-75% variability of soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  8. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  9. Study of fifteen respirable aerosol samplers used in occupational hygiene.

    PubMed

    Görner, P; Wrobel, R; Micka, V; Skoda, V; Denis, J; Fabriès, J F

    2001-01-01

    European and international standards lay down criteria for the size-selective aerosol sampling in occupational hygiene. Aerosol samplers are supposed to match these target sampling criteria. This study focused on 15 aerosol samplers used to sample the conventional respirable fraction. An aerodynamic particle sizer (APS) method was used to measure the sampling efficiency of the samplers in a low-velocity wind tunnel. Polydisperse coal dust was generated as the test aerosol. The data were fitted by an appropriate mathematical model. For some instruments the results show serious deviations from the conventional target curve, whereas other devices meet the convention quite well. The flow rate of certain cyclone-separator-based instruments was optimized to adjust their sampling efficiency. The mass concentration bias and accuracy of the samplers were calculated for a number of ranges of particle size distributions of aerosols commonly found in industrial workplaces. Finally, the performance of each sampler was evaluated using bias and accuracy maps. Most of these samplers are suitable for sampling the CEN-ISO-ACGIH respirable fraction of aerosols, but several require modification of the flow rate. For real industrial situations, the rough knowledge of the aerosol size distribution can guide the choice of an appropriate sampling technique.

  10. Suspended two-dimensional electron and hole gases

    SciTech Connect

    Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.

    2013-12-04

    We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.

  11. Snorkel tracheotomy tube for respirator use.

    PubMed

    LEBO, C P

    1954-07-01

    The Snorkel tracheotomy tube, a simple modification of the standard tube, overcomes many of the mechanical inconveniences usually encountered in the care of patients with tracheotomy who have to be kept in respirators. With it in place, it is not necessary to use special devices to hold the collar of the respirator away from the site of the tracheal incision. Nursing care of the patient is made easier.

  12. THE TEMPERATURE CHARACTERISTIC OF RESPIRATION OF AZOTOBACTER.

    PubMed

    Lineweaver, H; Burk, D; Horner, C K

    1932-05-20

    The temperature characteristic of respiration of Azotobacter vinelandii possesses a constant value of 19,330 +/- 165 over the temperature range 20-30 degrees C. This value is independent of pH, oxygen tension, age of culture, and other factors within the limits studied. The optimum temperature of respiration is 34-35 degrees C., with limits at about 10 degrees and 50 degrees C.

  13. A study of metal ion adsorption at low suspended-solid concentrations

    USGS Publications Warehouse

    Chang, Cecily C.Y.; Davis, J.A.; Kuwabara, J.S.

    1987-01-01

    A procedure for conducting adsorption studies at low suspended solid concentrations in natural waters (<50 mg l-1) is described. Methodological complications previously associated with such experiments have been overcome. Adsorption of zinc ion onto synthetic colloidal titania (TiO2) was studied as a function of pH, supporting electrolyte (NaCl) concentration (0??1-0??002 m) and particle concentration (2-50 mg l-1). The lack of success of the Davis Leckie site bonding model in describing Zn(II) adsorption emphasizes the need for further studies of adsorption at low suspended-solid concentrations. ?? 1987.

  14. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  15. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  16. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  17. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  18. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it...

  19. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  20. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  1. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  2. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  3. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  4. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  5. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  6. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a...

  7. 42 CFR 84.1131 - Respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirators; required components. 84.1131 Section..., and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1131 Respirators; required components. (a) Each respirator described in § 84.1130...

  8. 42 CFR 84.1131 - Respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirators; required components. 84.1131 Section..., and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1131 Respirators; required components. (a) Each respirator described in § 84.1130...

  9. Dispersal of suspended matter in Makasar Strait and the Flores Basin

    NASA Astrophysics Data System (ADS)

    Eisma, D.; Kalf, J.; Karmini, M.; Mook, W. G.; van Put, A.; Bernard, P.; van Grieken, R.

    In November 1984 in Makasar and the Flores Basin water samples were collected (T, S, dissolved O 2, total CO 2), bottom samples (sediment composition) and suspended matter (particle composition, particle size). A sediment trap was moored in the Flores Basin at 4600 m depth for nearly four months, covering the dry season. In the Flores Basin there are indications for bottom flow resuspending bottom material or preventing suspended material from settling; in Makasar Strait there is probably inflow of deep water both from the south and from the north, resulting in a very slow bottom water flor. Bottom deposits in Makasar Strait and the Flores Basin are predominantly terrigenous, with an admixture of organic carbonate and silica (mostly coccoliths). Volcanic material is primarily present near to the volcanoes in the south and reaches the deeper basins by slumping. In the suspended matter no volcanic particles and little planktonic material were found, although the latter form 10 to 15% of the top sediment and of the material deposited in the sediment trap. In suspension particles with a large concentration of tin (Sn) were found associated mainly with iron. They probably come from northern Kalimantan or northern Sulawesi. Suspended matter concentrations were mainly less than 0.5 mg·dm -3, only off the Mahakam river mouth were concentrations higher than 1 mg·dm -3. Particle size was erratic because of the variable composition of the coarser particles in suspension. Organic matter concentrations in suspension (in mg·dm -3) roughly follow the distribution of total suspended matter but organic content (in %) of the suspended matter does not show any trends. All organic matter in suspension is of marine origin except in the Mahakam river and estuary. Deposition rates, as estimated from the sediment trap results, are 150 mg·cm -2·a -1 for the total sediment, 26 mg·cm -2·a -1 for carbonate and 13 mg·cm -2·a -1 for organic matter. Flocs and fibres in suspension were

  10. Study on interactions between suspended matter and biofouling formed by treated sewage.

    PubMed

    Yang, Qianpeng; Chang, Siyuan; Shi, Lin

    2015-01-01

    Heat exchangers used for treated sewage energy recovery usually suffer from the composite fouling problem, which seriously impairs the heat transfer efficiency. Treated sewage heat exchanger composite fouling is mostly composed of biofouling and is notably affected by interactions between the biofouling and suspended matter. Experiments were performed using simulated treated sewage and two kinds of simulated suspended matter, silicon dioxide particles and polyamide filaments, to model the interactions. Different flow velocities, particle sizes and concentrations were tested with their influences presented by the fouling wet weight changes. Empirical equation and threshold were developed based on the results to predict whether the suspended matter promotes or impedes fouling growth. The results indicate that proper control of the flow velocities, particle sizes and concentrations of suspended matter using empirical equation and threshold can inhibit fouling by reducing unwanted positive interactions and promoting beneficial negative interactions. The filament interactions were analysed and the unique attachment mechanisms of filaments were discussed for the first time. PMID:25950118

  11. X-38 Suspended in Hangar

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The X-38 lifting body research vehicle is shown here suspended in a hangar at NASA's Dryden Flight Research Center in 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International

  12. Suspending superconducting qubits by silicon micromachining

    NASA Astrophysics Data System (ADS)

    Chu, Y.; Axline, C.; Wang, C.; Brecht, T.; Gao, Y. Y.; Frunzio, L.; Schoelkopf, R. J.

    2016-09-01

    We present a method for relieving aluminum 3D transmon qubits from a silicon substrate using micromachining. Our technique is a high yield, one-step deep reactive ion etch that requires no additional fabrication processes and results in the suspension of the junction area and edges of the aluminum film. The drastic change in the device geometry affects both the dielectric and the flux noise environment experienced by the qubit. In particular, the participation ratios of various dielectric interfaces are significantly modified, and suspended qubits exhibited longer T1's than non-suspended ones. We also find that the suspension increases the flux noise experienced by tunable SQUID-based qubits.

  13. Suspended polymer nanobridge on a quartz resonator

    NASA Astrophysics Data System (ADS)

    Yun, Minhyuk; Lee, Seongjae; Yim, Changyong; Jung, Namchul; Thundat, Thomas; Jeon, Sangmin

    2013-07-01

    A chemical vapor sensor based on a free-standing polystyrene (PS) nanofilm suspended between the tines of a quartz tuning fork (QTF) is demonstrated. Exposure to ethanol vapor decreased the modulus of the PS membrane, which resulted in a decrease in the resonance frequency of the QTF as a function of ethanol concentration. The suspended PS membrane structure on the QTF allowed gas molecules to diffuse into the membrane from both the top and bottom allowing faster response. The QTF response time was found to be 6.5 times faster than the response time of a conventional PS film-coated resonator sensor.

  14. Suspended sediment control and water quality conservation through riparian vegetation:

    NASA Astrophysics Data System (ADS)

    Pavanelli, D.; Cavazza, C.; Correggiari, S.

    2009-04-01

    Soil erosion and Suspended Sediment River are strongly related in the Apennines catchments which are generally characterised by a clayey lithology and impermeable soils and extensive and severe erosion and slope stability problems. In fact the suspended sediment yield represents one of the most reliable tools to assess real basin soil loss (Pavanelli and Pagliarani, 2002; Pavanelli and Rigotti, 2007) from the surface rain erosive features in a mountain watershed, as rills and interrills erosion, gullies, bad-lands (calanchi basins). Suspended sediment yield is known to imply several detrimental consequences: soil losses from agricultural land, worsening of the quality of the water, clogging of water supply filters and reservoir siltation. In addition, suspended sediment yield is also one of the main vector for pollutants and nutrients: various studies have already proved how nitrogen content has been constantly rising in aquifers and surface waters [Böhlke and Denver, 1995]. Finer particles and their aggregates have been proved to be the preferential vehicle for particulate nitrogen [Droppo et al., 1997; Ongley et al., 1992]. In one research [Pavanelli and al. 2006] four Apennines torrents (Gaiana, Sillaro, Savena and Lavino) with mountain basins ranging from 8.7 to 139 Km2 were monitored via automatic sampling devices, the samples of water collected were analysed to characterise suspended solids in terms of their grain size distribution and total nitrogen with respect to the source of eroded area in the catchment. Preliminary results [Pavanelli and al. 2007] seem to show the existence of a direct relationship between nitrogen concentration and finer particle concentration (<20 μm), with the maximum nitrogen loss values being related to factors like the presence of clayey formations, their position within the catchment and the availability of suspended particles. The results seem to indicate hillsides as main sources of suspended sediment to the torrents

  15. Suspended sediment control and water quality conservation through riparian vegetation:

    NASA Astrophysics Data System (ADS)

    Pavanelli, D.; Cavazza, C.; Correggiari, S.

    2009-04-01

    Soil erosion and Suspended Sediment River are strongly related in the Apennines catchments which are generally characterised by a clayey lithology and impermeable soils and extensive and severe erosion and slope stability problems. In fact the suspended sediment yield represents one of the most reliable tools to assess real basin soil loss (Pavanelli and Pagliarani, 2002; Pavanelli and Rigotti, 2007) from the surface rain erosive features in a mountain watershed, as rills and interrills erosion, gullies, bad-lands (calanchi basins). Suspended sediment yield is known to imply several detrimental consequences: soil losses from agricultural land, worsening of the quality of the water, clogging of water supply filters and reservoir siltation. In addition, suspended sediment yield is also one of the main vector for pollutants and nutrients: various studies have already proved how nitrogen content has been constantly rising in aquifers and surface waters [Böhlke and Denver, 1995]. Finer particles and their aggregates have been proved to be the preferential vehicle for particulate nitrogen [Droppo et al., 1997; Ongley et al., 1992]. In one research [Pavanelli and al. 2006] four Apennines torrents (Gaiana, Sillaro, Savena and Lavino) with mountain basins ranging from 8.7 to 139 Km2 were monitored via automatic sampling devices, the samples of water collected were analysed to characterise suspended solids in terms of their grain size distribution and total nitrogen with respect to the source of eroded area in the catchment. Preliminary results [Pavanelli and al. 2007] seem to show the existence of a direct relationship between nitrogen concentration and finer particle concentration (<20 μm), with the maximum nitrogen loss values being related to factors like the presence of clayey formations, their position within the catchment and the availability of suspended particles. The results seem to indicate hillsides as main sources of suspended sediment to the torrents

  16. Distribution and elemental composition of suspended matter in Alaskan coastal waters

    SciTech Connect

    Feely, R.A.; Massoth, G.J.; Paulson, A.J.; Lamb, M.F.

    1980-09-01

    The distribution of suspended matter in the northeastern Gulf of Alaska is affected by a number of parameters which combine to form a unique distribution pattern. East of Kayak Island the surface particulate matter distributions are dominated by the discharge of sedimentary material from the coastal streams which drain the Beering, Guyot and Malaspina Glaciers. The major source of sedimentary material to the Gulf of Alaska is the Copper River. In general, concentrations of suspended matter in the northeast Gulf of Alaska are high at the surface with an average concentration of approximately 1.0 mg/l. Recent studies of oil spills in coastal waters containing high suspended loads have indicated rapid dispersal and removal of the oil by sorption onto particles along frontal zones.

  17. Overview of selected surrogate technologies for continuous suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, J.R.; Gartner, J.W.

    2006-01-01

    Surrogate technologies for inferring selected characteristics of suspended sediments in surface waters are being tested by the U.S. Geological Survey and several partners with the ultimate goal of augmenting or replacing traditional monitoring methods. Optical properties of water such as turbidity and optical backscatter are the most commonly used surrogates for suspended-sediment concentration, but use of other techniques such as those based on acoustic backscatter, laser diffraction, digital photo-optic, and pressure-difference principles is increasing for concentration and, in some cases, particle-size distribution and flux determinations. The potential benefits of these technologies include acquisition of automated, continuous, quantifiably accurate data obtained with increased safety and at less expense. When suspended-sediment surrogate data meet consensus accuracy criteria and appropriate sediment-record computation techniques are applied, these technologies have the potential to revolutionize the way fluvial-sediment data are collected, analyzed, and disseminated.

  18. Hydrodynamics of Inclusions in Freely Suspended Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyuan

    Hydrodynamic interaction of pairs of circular inclusions in two-dimensional (2D), fluid smectic membranes suspended in air has been studied systematically. By analyzing their Brownian motion, it is found that the radial mutual mobilities of identical inclusions are independent of their size but that the angular coupling becomes strongly size-dependent when their radius exceeds a characteristic hydrodynamic length. These observations are described well for arbitrary inclusion separations by a model that generalizes the Levine/MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. Beyond that, 2D flow fields generated by a rigid, oscillating post inserted in the film have been measured by analyzing the motion of tracer particles and provide a detailed understanding of the hydrodynamic behavior in the film/gas system. The Brownian diffusion of micron-scale inclusions in freely suspended smectic A liquid crystal films a few nanometers thick and several millimeters in diameter depends strongly on the air surrounding the film. Near atmospheric pressure, the three-dimensionally coupled film/gas system is well described by Hughes/Pailthorpe/White hydrodynamic theory but at lower pressure, the diffusion coefficient increases substantially, tending in high vacuum toward the two-dimensional limit where it is determined by film size. In the absence of air, the films are found to be a nearly ideal physical realization of a two-dimensional, incompressible Newtonian fluid.

  19. A parameterization of respiration in frozen soils based on substrate availability

    NASA Astrophysics Data System (ADS)

    Schaefer, Kevin; Jafarov, Elchin

    2016-04-01

    Respiration in frozen soils is limited to thawed substrate within the thin water films surrounding soil particles. As temperatures decrease and the films become thinner, the available substrate also decreases, with respiration effectively ceasing at -8 °C. Traditional exponential scaling factors to model this effect do not account for substrate availability and do not work at the century to millennial timescales required to model the fate of the nearly 1100 Gt of carbon in permafrost regions. The exponential scaling factor produces a false, continuous loss of simulated permafrost carbon in the 20th century and biases in estimates of potential emissions as permafrost thaws in the future. Here we describe a new frozen biogeochemistry parameterization that separates the simulated carbon into frozen and thawed pools to represent the effects of substrate availability. We parameterized the liquid water fraction as a function of temperature based on observations and use this to transfer carbon between frozen pools and thawed carbon in the thin water films. The simulated volumetric water content (VWC) as a function of temperature is consistent with observed values and the simulated respiration fluxes as a function of temperature are consistent with results from incubation experiments. The amount of organic matter was the single largest influence on simulated VWC and respiration fluxes. Future versions of the parameterization should account for additional, non-linear effects of substrate diffusion in thin water films on simulated respiration. Controlling respiration in frozen soils based on substrate availability allows us to maintain a realistic permafrost carbon pool by eliminating the continuous loss caused by the original exponential scaling factors. The frozen biogeochemistry parameterization is a useful way to represent the effects of substrate availability on soil respiration in model applications that focus on century to millennial timescales in permafrost regions.

  20. Evaluation of the method of collecting suspended sediment from large rivers by discharge-weighted pumping and separation by continuous- flow centrifugation

    USGS Publications Warehouse

    Moody, J.A.; Meade, R.H.

    1994-01-01

    The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (>63 ??m) but to collect a representative sample of the suspended silt and clay sized particles (<63??m). The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (<63 ??m) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. -from Authors

  1. An evaluation of suspended sediments and turbidity in Cow Creek, Oregon

    USGS Publications Warehouse

    Curtiss, D.A.

    1982-01-01

    During a 6-month period from December 1980 through May 1981, samples were collected from Cow Creek near Azalea, Oreg., and analyzed for suspended sediment, particle-size distribution, and turbidity. Of the estimated suspended-sediment discharge of 4,270 tons for the 1981 water year, 95 percent (4,050 tons) was transported during a major storm event, December 2-4, 1980. The 1981 water year suspended-sediment discharge of 4,270 tons is well below the average annual suspended-sediment discharge of 22,000 tons reported earlier by Curtiss (1974). A clay-sediment transport curve was used in conjunction with the flow-duration curve to estimate average annual clay discharge of 3,700 tons for Cow Creek near Azalea. Turbidity in Cow Creek near Azalea is estimated to be equal to or less than 15 NTU (nephelometric turbidity units) 90 percent of the time. A method for predicting turbidity values in a hypothetical impoundment is presented in this report. This method utilizes a suspended-sediment transport curve of the fine (<0.002 mm) material and measures residual-turbidity values. This method probably could be used to assess the impact of proposed reservoirs on stream turbidities in basins similar to that of Cow Creek basin.

  2. 5 CFR 919.1010 - Suspending official.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Suspending official. 919.1010 Section 919.1010 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 919.1010...

  3. 30 CFR 57.9317 - Suspended loads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Suspended loads. 57.9317 Section 57.9317 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling,...

  4. 30 CFR 57.9317 - Suspended loads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Suspended loads. 57.9317 Section 57.9317 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling,...

  5. 30 CFR 57.9317 - Suspended loads.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Suspended loads. 57.9317 Section 57.9317 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling,...

  6. 30 CFR 57.9317 - Suspended loads.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Suspended loads. 57.9317 Section 57.9317 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling,...

  7. 30 CFR 57.9317 - Suspended loads.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Suspended loads. 57.9317 Section 57.9317 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling,...

  8. A Successful Retention Program for Suspended Students

    ERIC Educational Resources Information Center

    Dill, Anna L.; Gilbert, Jerome A.; Hill, Jennifer P.; Minchew, Sue S.; Sempier, Tracie A.

    2011-01-01

    Traditionally at Mississippi State University (MSU), students who are placed on academic suspension are required to stay out of school one regular semester. As an alternative, the university designed a program for early readmission for suspended students who agree to follow the requirements outlined in the "Learning Skills Support Program" (LSSP).…

  9. Modeling vertical carbon flux from zooplankton respiration

    NASA Astrophysics Data System (ADS)

    Packard, Theodore T.; Gómez, May

    2013-03-01

    The transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux is currently thought to support the respiration of all the organisms in the water column below the surface, the respiration of the organisms in the benthos, as well as the carbon lost to deep burial. Accordingly, for conditions where the benthic respiration and the carbon burial are small relative to the respiration in the water column, and where horizontal fluxes are known or negligible, the carbon flux can be calculated by integrating the vertical profile of the water-column plankton respiration rate. Here, this has been done for the zooplankton component of the vertical carbon flux from measurements of zooplankton ETS activity south of the Canary Island Archipelago. From zooplankton ETS activity depth profiles, zooplankton respiration depth profiles were calculated and using the equations for the profiles as models, the epipelagic (3.05 μmol CO2 m-3 h-1), mesopelagic (112.82 nmol CO2 m-3 h-1), and bathypelagic (27.89 nmol CO2 m-3 h-1) zooplankton respiration for these waters were calculated. Then, by integration of the depth-normalized respiration profiles, zooplankton-associated carbon flux profiles below 150 m were calculated. These had an uncertainty of ±40%. At the station level (local regional variation) the variability was ±114% (n = 16). At 150 m and 500 m the average passive carbon flux associated with the zooplankton was 36 (±114%) and 20 (±113%) μmol C m-2 h-1. The carbon transfer efficiency (Teff) from the 150 to the 500 m levels averaged 51 ± 21% and a new metric, the nutrient retention efficiency (NRE), averaged 49 ± 21%. This metric is an index of the efficiency with which nutrients are maintained in the epipelagic zone and is directly related to the respiration in the water column. The carbon flux equation describing the pooled data (n = 16) was 131.14Z-0.292. Using

  10. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    PubMed

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-01

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens. PMID:27327938

  11. Suspended solids from industrial and municipal origins.

    PubMed

    Rosenwinkel, K H; Weichgrebe, D; Meyer, H; Wendler, D

    2001-10-01

    The origins of suspended solids are the effluents of municipal and industrial wastewater treatment plants and storm sewage treatment. This paper deals with the sources of industrial and municipal wastewater treatment and the single treatment of side streams. An overview of the common treatment processes is given and the main sinks for suspended solids are named and described. The food industry is based on the processing of organic matter (fruits, etc.). During the single processing steps three main fractions occur, inorganic material (e.g., from the washing step), organic residues (e.g., the peel), and suspended solids (SS) in the wastewater. Today higher rates of recycling (water and raw materials) can be found in all kinds of industrial processes. The principle is that avoidance should take precedence over utilization which should take precedence over disposal. Numerous possibilities of production-integrated measures exist, e.g., conveyance of production circuits, product recovery, and stepped cleaning. Despite and/or due to these efforts, huge amounts of residues occur. They are the main sink for suspended solids. Only seldom is landfilling used to treat these residues. Usually utilization as animal nourishment or biological (aerobic or anaerobic) or thermal (incineration) treatment methods are used. Huge capacities for a codigestion of agroindustrial residues (substrates) and wastewater sludge can be found in municipal digesters. As most of the food processing factories are indirect dischargers, the largest amount of the SS fraction in the wastewater is led to municipal wastewater treatment plants. Rarely, a connection between the SS concentrations in the influent and those in the effluent can be observed in conventional wastewater treatment. As a polishing step, filtration methods gain more and more importance with regard to suspended solids removal. PMID:11689029

  12. Suspended solids from industrial and municipal origins.

    PubMed

    Rosenwinkel, K H; Weichgrebe, D; Meyer, H; Wendler, D

    2001-10-01

    The origins of suspended solids are the effluents of municipal and industrial wastewater treatment plants and storm sewage treatment. This paper deals with the sources of industrial and municipal wastewater treatment and the single treatment of side streams. An overview of the common treatment processes is given and the main sinks for suspended solids are named and described. The food industry is based on the processing of organic matter (fruits, etc.). During the single processing steps three main fractions occur, inorganic material (e.g., from the washing step), organic residues (e.g., the peel), and suspended solids (SS) in the wastewater. Today higher rates of recycling (water and raw materials) can be found in all kinds of industrial processes. The principle is that avoidance should take precedence over utilization which should take precedence over disposal. Numerous possibilities of production-integrated measures exist, e.g., conveyance of production circuits, product recovery, and stepped cleaning. Despite and/or due to these efforts, huge amounts of residues occur. They are the main sink for suspended solids. Only seldom is landfilling used to treat these residues. Usually utilization as animal nourishment or biological (aerobic or anaerobic) or thermal (incineration) treatment methods are used. Huge capacities for a codigestion of agroindustrial residues (substrates) and wastewater sludge can be found in municipal digesters. As most of the food processing factories are indirect dischargers, the largest amount of the SS fraction in the wastewater is led to municipal wastewater treatment plants. Rarely, a connection between the SS concentrations in the influent and those in the effluent can be observed in conventional wastewater treatment. As a polishing step, filtration methods gain more and more importance with regard to suspended solids removal.

  13. Suspended hybrid films assembled from thiol-capped gold nanoparticles.

    PubMed

    Zhang, Yu Xin; Huang, Ming; Hao, Xiao Dong; Dong, Meng; Li, Xin Lu; Huang, Jia Mu

    2012-01-01

    In this work, we explored the formation processes of suspended hybrid thin films of thiol-capped Au nanoparticles (AuNPs) inside metal oxide tubular structures. We found that a balance between in-film interactions of the AuNPs and boundary interactions with metal oxides is a key in making these special organic-inorganic thin films. The hybrid films process many processing advantages and flexibilities, such as controllable film thickness, interfacial shape and inter-AuNPs distance, tuning of particle sizes, thiol population, chain lengths, and other new properties by introducing functional groups to thiol chains. Among their many unique features, the assembly-disassembly property may be useful for future on-off or store-release applications.

  14. Soil respiration partition and its components in the total agro-ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  15. Development and evaluation of personal respirable particulate sampler (PRPS)

    NASA Astrophysics Data System (ADS)

    Lee, Seung Joo; Demokritou, Philip; Koutrakis, Petros; Delgado-Saborit, Juana M.

    This paper presents the development, laboratory evaluation, and field tests of a personal respirable particulate sampler (PRPS). The PRPS is designed as a personal sampling system to collect particulate matter (PM 0.5, PM 1.0, PM 2.5, PM 4.5, and PM 10) and gaseous pollutants, including O 3, SO 2, and NO 2. It operates at a flow rate of 5.0 LPM and consists of five selectable impaction stages (with cutpoints of 10, 4.5, 2.5, 1.0, and 0.5 μm), a backup filter, and two diffusion passive samplers. In each impaction stage, particles are collected onto a polyurethane foam (PUF) substrate. This substrate, using no adhesive, was shown to have minimum particle bounce and re-entrainment. A backup 37 mm Teflon membrane filter is used downstream to collect particles smaller than the cutoff diameter of the final impaction stage. The impaction stage cutpoints were characterized in the laboratory using artificially generated polydisperse aerosols. Particle losses for each stage were found to be acceptably low. The performance of the PRPS was also compared with that of a collocated micro-orifice cascade impactor (MOI) and real-time particle sizing instruments (SMPS/APS) in laboratory experiments using artificially generated particles. The size distributions measured by the PRPS were found to be much closer to those measured by the real-time particle sizing instruments than to those measured by the MOI. A field PM intercomparison study was also conducted using the PRPS and three reference samplers, the Harvard Impactor (HI), the USEPA PM 2.5 Well Impactor Ninety Six (WINS), and the Harvard Personal Environmental Monitor (Harvard PEM) sampler. The PM 10, PM 2.5, and sulfate concentrations measured by PRPS were in a very good agreement with those obtained from the reference samplers.

  16. Component analysis of respirator user training.

    PubMed

    Harber, Philip; Boumis, Robert J; Su, Jing; Barrett, Sarah; Alongi, Gabriela

    2013-01-01

    Respirators must be properly used to be effective. In an experimental protocol, 145 subjects were trained and then observed donning and doffing respirators. Filtering facepiece and dual cartridge half face mask types were studied. Subjects were then tested for knowledge and for proper performance using video recording analysis. Knowledge tests showed adequate learning, but performance was often poor. Inspection, strap tension (half mask), seal checking, and avoiding mask contact during doffing were particularly problematic. Mask positioning was generally well done. Correlation between knowledge and performance for specific items was generally poor, although there was a weak correlation between overall knowledge and overall performance (rho = 0.32) for the half mask users. Actual unprompted performance as well as knowledge and fit-testing should be assessed for user certification. Respirator design approval should consider users' ability to learn proper technique. PMID:24011265

  17. Clarification of colloidal and suspended material in water using triethanolamine modified maize tassels.

    PubMed

    Kinyua, Esther Mbuci; Mwangi, Isaac W; Wanjau, Ruth N; Ngila, J C

    2016-03-01

    Suspended particles in water are a major concern in global pollution management. They affect the appreciation of water due to clarity, photosynthesis, and poor oxygen environment rendering water unsuitable for aquatic animals. Some suspended materials contain functional groups capable of forming complex compounds with metals making them available for poisoning. Such material promotes the growth of bacteria and fouling that give rise to unpleasant taste and odor of the water and thus requires removal. Removal of suspended solids is normally achieved through sedimentation or filtration. However, some suspended colloidal particles are very stable in water and cannot settle while others are able to pass through the filter due to small size, hence difficult to remove. This study investigated the use of triethanolamine-modified maize tassels to form a flocculent for their removal. The modified maize tassels were characterized using Fourier transform infrared (FTIR), and it was found that the triethanolamine was anchored within the cellulose structure of the maize tassels. Clarification parameters such as settling time, reagent dosage, and pH were investigated. The best clarification was at a pH of 6.0 with clearance being less than in 30 min. The optimal flocculent dosage was found to be 3.5 ml of the material, showing that the material has a potential of enhancing clarity in polluted water. PMID:26561324

  18. The external respiration and gas exchange in space missions

    NASA Astrophysics Data System (ADS)

    Baranov, V. M.; Tikhonov, M. A.; Kotov, A. N.

    both and its individual systems including an external respiration function. In this case, it should be remembered that the external respiration system has some physiological and morphological properties due to which the body systems are particularly subjected to environmental effects. Thus, according to figurative comparison by Evald Veible a contact area of the lungs with an external environment i.e. an alveolar surface is large and equaled approximately to tennis-court size, as the alveolocapillary membrane thickness is negligible and amounts to one fiftieth of a writing-paper sheet [1]. From this it follows that such a fine and highly organized structure must be extremely dependent upon any external exposures including gravitational ones since from the physical viewpoint of physics the lungs represent a quasiconical three-dimensional elastic body suspended in the thoracic cavity and in which there occur the gravity-induced internal tensions incrementing in a base-to-apices direction. As a result of these tensions, in the lungs various physical gradients: hydrostatic, pleural and transpulmonary pressures, pulmonary time constant, vertical gradient of the volume and structure of alveoli, etc. are developed.

  19. Comparison of Dissolved and Suspended Matter Transport in the Mica Creek Experimental Watershed, Northern Idaho

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Saiers, J. E.; Gravelle, J. A.

    2006-12-01

    Transport of suspended particulate material (SPM) plays a fundamental role in biogeochemical cycling within forested watershed and is a primary water quality concern in managed forests. When present in excess, SPM can degrade aquatic habitat for fish communities and disrupt the connection between surface and ground water. Although monthly and annual suspended loads are often monitored, little is known about the hydrologic transport of these particles from suspension to monitoring location. The downstream transport of suspended particles can be influenced by transient storage mechanisms, such as settling and resuspension, stagnation in side pools, exchange with the streambed or hyporheic zone, and entrapment on stream vegetation and coarse woody debris. A tracer injection experiment was performed in order to compare transport and transient storage of suspended clay-sized particles, comprised of titanium dioxide (1 - 2 μm diameter), with that of a conservative solute, bromide, under baseflow conditions. The solute and particle tracers were applied to a second-order North Idaho stream for four hours and water samples were collected at four locations downstream before, during, and after the tracer injections for analysis of bromide and TiO2 concentrations. A one- dimensional numerical model was applied in inverse mode to the measured breakthrough curve data to quantify the processes that governed solute and particle transport. The results of this analysis indicate that transient- storage processes exerted only a minor influence on the advective-dispersive transport of bromide, while TiO2 transport was influenced by advection, dispersion, sedimentation (on the stream bed and on aquatic vegetation), and slow resuspension. Results of our analysis illustrate the mechanisms and timescale of SPM transport in this watershed and provide insight into the potential response of SPM concentrations to elevated sediment inputs.

  20. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  1. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. BOREAS TE-2 Continuous Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. BOREAS TE-2 Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. BOREAS TE-2 Foliage Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Hall, Forrest G. (Editor); Lavigne, Michael; Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of foliar respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. 17. Truss suspended column, industrial loft building, looking at southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Truss suspended column, industrial loft building, looking at southeast corner. Note open floor plan as a result of the floor beams being suspended from above. - Dry Dock Engine Works, 1801 Atwater Street, Detroit, MI

  6. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    DOE PAGES

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; Huang, Wenjuan; Zhou, Guoyi

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our resultsmore » showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.« less

  7. Proper use of surgical n95 respirators and surgical masks in the OR.

    PubMed

    Benson, Stacey M; Novak, Debra A; Ogg, Mary J

    2013-04-01

    Proper adherence to infection control precautions, including appropriate selection and use of personal protective equipment (PPE), is of significant importance to the health and well-being of perioperative personnel. Surgical masks are intended for use as a barrier to protect the wearer's face from large droplets and splashes of blood and other body fluids; however, surgical and high-filtration surgical laser masks do not provide enough protection to be considered respiratory PPE. Potential exposure to airborne contaminants and infectious agents, including those present in surgical smoke, necessitates the use of respiratory PPE, such as a surgical N95 particulate filtering facepiece respirator. Filtering facepiece respirators greatly reduce a wide size range of particles from entering the wearer's breathing zone and are designed to protect the user from both droplet and airborne particles. Every health care worker who must use a respirator to control hazardous exposures in the workplace must be trained to properly use the respirator and pass a fit test before using it in the workplace. PMID:23531312

  8. Characteristics of suspended solids affect bifenthrin toxicity to the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi.

    PubMed

    Parry, Emily; Lesmeister, Sarah; Teh, Swee; Young, Thomas M

    2015-10-01

    Bifenthrin is a pyrethroid pesticide that is highly toxic to aquatic invertebrates. The dissolved concentration is generally thought to be the best predictor of acute toxicity. However, for the filter-feeding calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, ingestion of pesticide-bound particles could prove to be another route of exposure. The present study investigated bifenthrin toxicity to E. affinis and P. forbesi in the presence of suspended solids from municipal wastewater effluent and surface water of the San Francisco (CA, USA) Estuary. Suspended solids mitigated the toxicity of total bifenthrin to E. affinis and P. forbesi, but mortality was higher than what would be predicted from dissolved concentrations alone. The results indicate that the toxicity and bioavailability of particle-associated bifenthrin was significantly correlated with counts of 0.5-µm to 2-µm particle sizes. Potential explanations could include direct ingestion of bifenthrin-bound particles, changes in food consumption and feeding behavior, and physical contact with small particles. The complex interactions between pesticides and particles of different types and sizes demonstrate a need for future ecotoxicological studies to investigate the role of particle sizes on aquatic organisms.

  9. Barium in twilight zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    NASA Astrophysics Data System (ADS)

    Dehairs, F.; Jacquet, S.; Savoye, N.; Van Mooy, B. A. S.; Buesseler, K. O.; Bishop, J. K. B.; Lamborg, C. H.; Elskens, M.; Baeyens, W.; Boyd, P. W.; Casciotti, K. L.; Monnin, C.

    2008-07-01

    rates calculated from twilight zone excess particulate Ba contents also compared well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps, except in one case (out of four). This discrepancy could indicate that differences in sinking velocities cause an uncoupling of the processes occurring in the fine suspended particle pool from those affecting the larger particle pool which sustains the vertical flux, thus rendering comparison between both approaches risky.

  10. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion.

    PubMed

    Periáñez, R

    2005-01-01

    A model to simulate the transport of suspended particulate matter by the Rhone River plume has been developed. The model solves the 3D hydrodynamic equations, including baroclinic terms and a 1-equation turbulence model, and the suspended matter equations including advection/diffusion of particles, settling and deposition. Four particle classes are considered simultaneously according to observations in the Rhone. Computed currents, salinity and particle distributions are, in general, in good agreement with observations or previous calculations. The model also provides sedimentation rates and the distribution of different particle classes over the sea bed. It has been found that high sedimentation rates close to the river mouth are due to coarse particles that sink rapidly. Computed sedimentation rates are also similar to those derived from observations. The model has been applied to simulate the transport of radionuclides by the plume, since suspended matter is the main vector for them. The radionuclide transport model, previously described and validated, includes exchanges of radionuclides between water, suspended matter and bottom sediment described in terms of kinetic rates. A new feature is the explicit inclusion of the dependence of kinetic rates upon salinity. The model has been applied to 137Cs and 239,240Pu. Results are, in general, in good agreement with observations. PMID:15519466

  11. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended particulates persist. The biological and the chemical content of the suspended material may react..., pathogens, and viruses absorbed or adsorbed to fine-grained particulates in the material may become... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Suspended particulates/turbidity....

  12. Thermoacoustic transduction in individual suspended carbon nanotubes.

    PubMed

    Mason, Blake J; Chang, Shun-Wen; Chen, Jihan; Cronin, Stephen B; Bushmaker, Adam W

    2015-05-26

    We report an experimental measurement of the acoustic signal emitted from an individual suspended carbon nanotube (CNT) approximate 2 μm in length, 1 nm in diameter, and 10(-21) kg in mass. This system represents the smallest thermoacoustic system studied to date. By applying an AC voltage of 1.4 V at 8 kHz to the suspended CNT, we are able to detect the acoustic signal using a commercial microphone. The acoustic power detected is found to span a range from 0.1 to 2.4 attoWatts or 0.2 to 1 μPa of sound pressure. This corresponds to thermoacoustic efficiencies ranging from 0.007 to 0.6 Pa/W for the seven devices that were measured in this study. Here, the small lateral dimensions of these devices cause large heat losses due to thermal conduction, which result in the relatively small observed thermoacoustic efficiencies. PMID:25961803

  13. Molybdenum-rhenium superconducting suspended nanostructures

    SciTech Connect

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  14. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    PubMed

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  15. Central San Francisco Bay suspended-sediment transport processes and comparison of continuous and discrete measurements of suspended-solids concentrations

    USGS Publications Warehouse

    Schoellhamer, David H.

    1996-01-01

    Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles (Kuwabara and others, 1989; Domagalski and Kuivila, 1993). Sediments on the bottom of the bay provide the habitat for benthic communities that can ingest these substances and introduce them into the food web (Luoma and others, 1985). Nutrients, metals, and other substances are stored in bottom sediments and pore water in which chemical reactions occur and which provide an important source and/or sink to the water column (Hammond and others, 1985; Flegal and others, 1991). The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Seasonal changes in sediment erosion and deposition patterns contribute to seasonal changes in the abundance of benthic macroinvertebrates (Nichols and Thompson, 1985). Tidal marshes are an ecologically important habitat that were created and are maintained by sedimentation processes (Atwater and others, 1979). In Suisun Bay, the maximum suspended-sediment concentration marks the position of the turbidity maximum, which is a crucial ecological region in which suspended sediment, nutrients, phytoplankton, zooplankton, larvae, and juvenile fish accumulate (Peterson and others, 1975; Arthur and Ball, 1979; Kimmerer, 1992; Jassby and Powell, 1994). Suspended sediments confine the photic zone to the upper part of the water column, and this limitation on light availability is a major control on phytoplankton production in San Francisco Bay (Cloern, 1987; Cole and Cloern, 1987). Suspended sediments also deposit in ports and shipping channels, which must be dredged to maintain navigation (U.S. Environmental Protection Agency, 1992).

  16. Facial hair policy in a respirator program

    SciTech Connect

    Steinmeyer, P.R. )

    1989-10-01

    In this paper the prohibition against facial hair for respirator users is explored. Reasons for the prohibition are given, along with suggestions for establishing or reviewing a policy. Recommendations are given for properly wording a facial hair policy, and the issue of facial hair on female workers is also addressed.

  17. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  18. Estimating Canopy Dark Respiration for Crop Models

    NASA Technical Reports Server (NTRS)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  19. Respiration patterns of resting wasps (Vespula sp.)

    PubMed Central

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-01-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9–42.4 °C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst–burst type at low ambient temperatures (Ta < 5 °C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31 °C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7 °C to 74 mHz at 39.7 °C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g−1 cycle−1. A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements. PMID:23399474

  20. Development of conformal respirator monitoring technology

    SciTech Connect

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  1. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  2. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  3. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  4. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  5. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  6. Microbial iron respiration: impacts on corrosion processes.

    PubMed

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control.

  7. Respiration patterns of resting wasps (Vespula sp.).

    PubMed

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-04-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9-42.4°C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst-burst type at low ambient temperatures (Ta<5°C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31°C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7°C to 74 mHz at 39.7°C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g(-1)cycle(-1). A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements.

  8. Suspended Sediment Monitoring Strategies Reduce Model Uncertainties

    NASA Astrophysics Data System (ADS)

    Eads, R.; O'Connor, M.

    2007-12-01

    Regulatory agencies require development and implementation of Total Maximum Daily Loads for watersheds listed under section 303d of the Clean Water Act. For rivers identified as sediment impaired, methods are required to identify sediment sources and to estimate loading capacities, and models, such as sediment budgets, are often employed. Models can be tested and improved when stream monitoring provides accurate estimates of sediment loads. Motivated by proposed vineyard development on forested ridges in a sediment-listed watershed in the Coast Range of northern California, four tributaries to Gualala River ranging in size from 300 to 800 ha2 were monitored over two winter seasons. More than 1850 samples were analyzed for suspended sediment concentration. Inter- annual variability of sediment loads from wet and dry years is compared. Traditional methods for estimating suspended sediment loads often rely on measurements, such as water discharge, that are not well correlated to sediment concentration due to the highly variable routing of sediment to the channel from hillslopes, roads, and landslides. A method, such as Turbidity Threshold Sampling, that employs a parameter well correlated to suspended sediment concentration can improve sampling efficiency by collecting samples that are distributed over a range of rising and falling concentrations. The resulting set of samples can be used to estimate sediment loads by establishing a relationship between concentration and turbidity for any sampled period and applying it to the continuous turbidity record.

  9. Suspended sediments limit coral sperm availability.

    PubMed

    Ricardo, Gerard F; Jones, Ross J; Clode, Peta L; Humanes, Adriana; Negri, Andrew P

    2015-01-01

    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L(-1)), with 2-37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water's surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water's surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment. PMID:26659008

  10. Freely Suspended Smectic Films in Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Peddireddy, Karthik; Bahr, Christian

    2012-02-01

    Smectic liquid crystals easily form thin films which are freely suspended on a solid frame in air. These systems have been thoroughly studied for various purposes such as structural studies of smectic phases, investigating phase transitions in two-dimensional systems, and studying various physical properties of liquid crystals. In the present study, we explore the preparation of freely suspended smectic films in water. A prerequisite is the presence of a surfactant which accumulates at the liquid-crystal/water interface and induces a homeotropic anchoring of the director, so that the smectic layers align parallel to the two film surfaces. The presence of the surfactant might also serve as a handle to tune properties such as the surface tension of the films (which is hardly possible for freely suspended films in air). We study the formation of films in water using different frames and different surfactants, and we focus especially on the thinning behaviour which occurs when the temperature is increased towards the smectic - nematic or smectic - isotropic transition.

  11. Suspended sediments limit coral sperm availability

    PubMed Central

    Ricardo, Gerard F.; Jones, Ross J.; Clode, Peta L.; Humanes, Adriana; Negri, Andrew P.

    2015-01-01

    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L−1), with 2–37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water’s surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water’s surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment. PMID:26659008

  12. How to Properly Put On, Take Off a Disposable Respirator

    MedlinePlus

    ... the nose piece at your fingertips. Checking Your Seal 2 Cup the respirator in your hand allowing ... quick breath in to check whether the respirator seals tightly to the face. Place both hands completely ...

  13. Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing

    NASA Astrophysics Data System (ADS)

    Han, Lihui; Zhuang, Guoshun; Cheng, Shuiyuan; Wang, Ying; Li, Juan

    A sampling campaign of re-suspended road dust samples from 53 sites that could cover basically the entire Beijing, soil samples from the source regions of dust storm in August 2003, and aerosol samples from three representative sites in Beijing from December 2001 to September 2003, was carried out to investigate the characteristics of re-suspended road dust and its impact on the atmospheric environment. Ca, S, Cu, Zn, Ni, Pb, and Cd were far higher than its crustal abundances and Ca 2+, SO 42-, Cl -, K +, Na +, NO 3- were major ions in re-suspended road dust. Al, Ti, Sc, Co, and Mg in re-suspended road dust were mainly originated from crustal source, while Cu, Zn, Ni, and Pb were mainly derived from traffic emissions and coal burning, and Fe, Mn, and Cd were mainly from industrial emissions, coal combustion and oil burning. Ca 2+ and SO 42- mainly came from construction activities, construction materials and secondary gas-particle conversions, Cl - and Na + were derived from industrial wastewater disposal and chemical industrial emissions, and NO 3- and K + were from vehicle emissions, photochemical reactions of NO X, biomass and vegetable burning. The contribution of mineral aerosol from inside Beijing to the total mineral aerosols was ˜30% in spring of 2002, ˜70% in summer of 2002, ˜80% in autumn of 2003, ˜20% in PM 10 and ˜50% in PM 2.5, in winter of 2002. The pollution levels of the major pollution species, Ca, S, Cu, Zn, Ni, Pb, Fe, Mn, and Cd in re-suspended road dust reached ˜76%, ˜87%, ˜75%, ˜80%, ˜82%, ˜90%, ˜45%, ˜51%, and ˜94%, respectively. Re-suspended road dust from the traffic and construction activities was one of the major sources of pollution aerosols in Beijing.

  14. Factors Controlling Respiration Rates and Respired Carbon Dioxide Signatures in Riverine Ecosystems of the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ellis, E. E.; Richey, J. E.; Aufdenkampe, A. K.; Quay, P. D.; Krusche, A. V.; Alin, S. R.

    2006-12-01

    This study examined the processes controlling respiration rates observed in streams and rivers throughout the Amazon basin during the dry season by substituting spatial coverage for experimental manipulation. Throughout the Brazilian states of Amazonas and Acre, respiration rates ranged from 0.066 to 1.45 μM/hr of O2 consumed. In situ respiration was positively correlated with pH (r2=0.60), with pH values ranging from 3.95 to 8.57. Although the concentration of bulk size fractions of organic matter(dissolved organic carbon (DOC), fine particulate organic carbon, and coarse particulate organic carbon) were uncorrelated with both pH and respiration, respiration was positively correlated with the percentage of DOC that was less than 5 kDa as determined by centrifuge ultrafiltration (r2=0.52). No correlation was observed for the less than 100 kDa fraction. Further, pH was also correlated with the percentage of DOC in the <5 kDa fraction (r2=0.86), as the <5 kDa fraction increased from 34% in acidic blackwater streams to 91% in more basic whitewater rivers. These results suggest that low molecular weight organic matter (LMWOM, <5 kDa) is labile and supports higher respiration rates as compared to high molecular weight organic matter, and that pH may control the size distribution of dissolved organic matter. Further, at high pH sites with high respiration rates, net primary production ranged from 3.54 to 13.5 μM/hr of O2 produced. These rates suggest that higher pH sites are dominated by in situ production, resulting in high yields of LMWOM, which is rapidly consumed during the dry season. The 13C of respired CO2 was monitored during bottle incubations to characterize the source of organic matter being respired. Values ranged from -15.2 to -27.0‰, similar to the 13C of DIC at each site, indicating that respiration is a key process controlling the δ13C of the DIC. Furthermore, there is a positive correlation between the δ13C of respired CO2 and respiration rate (r2

  15. Method for non-contact particle manipulation and control of particle spacing along an axis

    SciTech Connect

    Goddard, Gregory R; Kaduchak, Gregory; Jett, James H; Graves, Steven W

    2015-01-13

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  16. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOEpatents

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2012-09-11

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  17. Central San Francisco Bay suspended-sediment transport processes study and comparison of continuous and discrete measurements of suspended-solids concentrations

    USGS Publications Warehouse

    Schoellhamer, David H.

    1994-01-01

    Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles. The sediments on the bottom of the Bay provide the habitat for benthic communities which can ingest these substances and introduce them into the food web. The bottom sediments are also a reservoir of nutrients. The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Suspended sediments also limit light availability in the bay, which limits photosynthesis and primary production, and deposit in ports and shipping channels, which require dredging. Dredged materials are disposed in Central San Francisco Bay.

  18. Particle analyzing method and apparatus

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Griffin, C. E.; Norris, D. D.; Friedlander, S. K. (Inventor)

    1980-01-01

    The rapid chemical analysis of particles in aerosols can be accomplished using an apparatus which produces a controlled stream of individual particles from an environment, and another apparatus which vaporizes and ionizes the particles moving in free flight, for analysis by a mass spectrometer. The device for producing the stream of particles includes a capillary tube through which the air with suspended particles moves, a skimmer with a small opening spaced from an end of the capillary tube to receive particles passing through the tube, and a vacuum pump which removes air from between the tube and skimmer and creates an inflow of air and particles through the tube. The particles passing through the skimmer opening can be simultaneously vaporized and ionized while in free flight, by a laser beam of sufficient intensity that is directed across the path of the free flying particles.

  19. [Regulation of respiration in assisted ventilation].

    PubMed

    Waurick, S; König, F

    1984-02-01

    Based on knowledge of the control of external respiration, the physiological reactions are discussed which should be evoked proprioceptively and chemoreceptively by an assisting respirator's disturbances of spontaneous breathing movements. The following possible states are discriminated: 1. "no adaption": the respiratory motor system does not remain passive during the machine's stroke; 2. "passive adaption": the respiratory motor system remains passive during the respirator's stroke; to changes of the blood gas-status, only the breathing frequency responds, but in just the same manner as during spontaneous ventilation; 3. "active adaption": the ventilatory motor apparatus remains passive during the respirator's operation; changes of the blood gases are responded to by the breathing frequency only, but in a manner different to spontaneous breathing and which compensates for the invariability of the fixed stroke-volume. - Related to these 3 states, consequences concerning the efficiency of chemical respiratory control can be derived which should reveal themselves during experimental manipulation of the blood gas partial pressures. Accordingly, the CO2-response curves of minute ventilation, breathing frequency and tidal-volume generated in 9 healthy, awake and cooperative subjects during spontaneous breathing and assisted (stroke-volume controlled) respiration with gas mixtures of 0, 3 and 6% CO2 were investigated and compared. (In each subject assisted ventilation with 2 or 3 different stroke-volumes was performed. The smallest stroke-volume equalled the medium tidal-volume of spontaneous ventilation. Every stroke-volume produced its particular CO2-response curve). Hence it follows that with assisted ventilation, using a stroke-volume larger than the spontaneous tidal-volume, the subjects maintain a state between "passive" and "active adaption".(ABSTRACT TRUNCATED AT 250 WORDS)

  20. [Stem respiration of Pinus koraiensis in Changbai Mountains].

    PubMed

    Wang, Miao; Ji, Lanzhu; Li, Qiurong; Xiao, Dongmei; Liu, Hailiang

    2005-01-01

    In this paper, soil respiration chamber, a simple and precise method, was used to measure the stem respiration of trees. LI-6400-09 respiration chamber serving as a system is usually used in soil respiration, but we made polyvinyl chloride (PVC) collar and fixed it on the stem surface to measure the stem respiration. From May to October 2003, the stem respiration of Pinus koraiensis, the dominant tree species in Changbai Mountain, was measured in different time and different places using this technique. Meanwhile, the temperatures in the stems and in the forests were measured. The results showed that the stem respiration rate had a remarkably seasonal tendency with a single peak, the maximum was in August and the minimum was in February. The stem respiration rate had an exponential relationship with stem temperature, and the curve exponential regressions for stem respiration rate and temperature factor of trees with big DBH were better than those with small DBH. The stem respiration in different DBH trees was higher in the south stem face than that in the north stem face, and the variance of respiration rate between south and north decreased with a decrease of DBH trees. During the growing season from May to October, the average maintenance respiration accounted for 63.63% in different DBH trees, and the maintenance respiration contribution to total respiratory consumption increased with increasing DBH, which was 66.76, 73.29% and 50.84%, respectively. The stem respiration Q10 values ranged from 2.56-3.32 in different DBH of trees, and the seasonal tendency for stem R, and Rm in different DBH of trees was obtained by using respiration Q10. Therefore, the differences between different parts of stem and different DBH of trees should be considered in estimating the respiration model in ecosystem. PMID:15852948