Science.gov

Sample records for respiratory arsenate reductase

  1. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  2. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  3. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  4. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    PubMed

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  5. Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana.

    PubMed

    Sánchez-Bermejo, Eduardo; Castrillo, Gabriel; del Llano, Bárbara; Navarro, Cristina; Zarco-Fernández, Sonia; Martinez-Herrera, Dannys Jorge; Leo-del Puerto, Yolanda; Muñoz, Riansares; Cámara, Carmen; Paz-Ares, Javier; Alonso-Blanco, Carlos; Leyva, Antonio

    2014-01-01

    The enormous amount of environmental arsenic was a major factor in determining the biochemistry of incipient life forms early in the Earth's history. The most abundant chemical form in the reducing atmosphere was arsenite, which forced organisms to evolve strategies to manage this chemical species. Following the great oxygenation event, arsenite oxidized to arsenate and the action of arsenate reductases became a central survival requirement. The identity of a biologically relevant arsenate reductase in plants nonetheless continues to be debated. Here we identify a quantitative trait locus that encodes a novel arsenate reductase critical for arsenic tolerance in plants. Functional analyses indicate that several non-additive polymorphisms affect protein structure and account for the natural variation in arsenate reductase activity in Arabidopsis thaliana accessions. This study shows that arsenate reductases are an essential component for natural plant variation in As(V) tolerance. PMID:25099865

  6. Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut

    USGS Publications Warehouse

    Herbel, M.J.; Switzer, Blum J.; Hoeft, S.E.; Cohen, S.M.; Arnold, L.L.; Lisak, J.; Stolz, J.F.; Oremland, R.S.

    2002-01-01

    Bovine rumen fluid and slurried hamster feces completely reduced millimolar levels of arsenate to arsenite upon incubation under anoxic conditions. This activity was strongly inhibited by autoclaving or aerobic conditions, and partially inhibited by tungstate or chloramphenicol. The rate of arsenate reduction was faster in feces from a population of arsenate-watered (100 ppm) hamsters compared to a control group watered without arsenate. Using radioisotope methods, arsenate reductase activity in hamster feces was also detected at very low concentrations of added arsenate (???10 ??M). Bacterial cultures were isolated from these materials, as well as from the termite hindgut, that grew using H2 as their electron donor, acetate as their carbon source, and arsenate as their respiratory electron acceptor. The three cultures aligned phylogenetically either with well-established enteric bacteria, or with an organism associated with feedlot fecal wastes. Because arsenite is transported across the gut epithelium more readily than arsenate, microbial dissimilatory reduction of arsenate in the gut may promote the body's absorption of arsenic and hence potentiate its toxicity. ?? 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  7. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  8. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  9. Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii.

    PubMed

    Yin, Xixiang; Wang, Lihong; Duan, Guilan; Sun, Guoxin

    2011-01-01

    Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in freshwater aquatic systems. Arsenic metabolism processes of this alga through arsenate reduction and sequent store and efflux were investigated. When supplied with 10 micromol/L arsenate, arsenic speciation analysis showed that arsenite concentration increased from 5.7 to 15.7 mg/kg dry weight during a 7-day period, accounting for 18%-24% of the total As in alga. When treated with different levels of arsenate (10, 20, 30, 40, 50 micromol/L) for 7 days, the arsenite concentration increased with increasing external arsenate concentrations, the proportion of arsenite was up to 23%-28% of the total As in alga. In efflux experiments, both arsenate and arsenite could be found in the efflux solutions. Additionally, the efflux of arsenate was more than that of arsenite. Furthermore, two arsenate reductase genes of C. reinhardtii (CrACR2s) were cloned and expressed in Escherichia coli strain WC3110 (deltaarsC) for the first time. The abilities of both CrACR2s genes to complement the arsenate-sensitive strain were examined. CrACR2.1 restored arsenate resistance at 0.8 mmol/L. However, CrACR2.2 showed much less ability to complement. The gene products were demonstrated to reduce arsenate to arsenite in vivo. In agreement with the complementation results, CrACR2.1 showed higher reduction ability than CrACR2.2, when treated with 0.4 mmol/L arsenate for 16 hr incubation.

  10. Response to Arsenate Treatment in Schizosaccharomyces pombe and the Role of Its Arsenate Reductase Activity

    PubMed Central

    Matia-González, Ana M.; Sotelo, Jael; Zarco-Fernández, Sonia; Muñoz-Olivas, Riansares; Cámara, Carmen; Rodríguez-Gabriel, Miguel A.

    2012-01-01

    Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast. PMID:22912829

  11. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  12. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.

    PubMed

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M; Zhao, Fang-Jie; Salt, David E

    2014-12-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice. PMID:25464340

  13. Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants

    PubMed Central

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M.; Zhao, Fang-Jie; Salt, David E.

    2014-01-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice. PMID:25464340

  14. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  15. The cytochrome bd respiratory oxygen reductases.

    PubMed

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated.

  16. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.

    PubMed

    Kumari, Nisha; Jagadevan, Sheeja

    2016-11-01

    Arsenic (As) contamination in water is a cause of major concern to human population worldwide, especially in Bangladesh and West Bengal, India. Arsenite (As(III)) and arsenate (As(V)) are the two common forms in which arsenic exists in soil and groundwater, the former being more mobile and toxic. A large number of arsenic metabolising microorganisms play a crucial role in microbial transformation of arsenic between its different states, thus playing a key role in remediation of arsenic contaminated water. This review focuses on advances in biochemical, molecular and genomic developments in the field of arsenic metabolising bacteria - covering recent developments in the understanding of structure of arsenate reductase and arsenite oxidase enzymes, their gene and operon structures and their mechanism of action. The genetic and molecular studies of these microbes and their proteins may lead to evolution of successful strategies for effective implementation of bioremediation programs. PMID:27565307

  17. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.

    PubMed

    Kumari, Nisha; Jagadevan, Sheeja

    2016-11-01

    Arsenic (As) contamination in water is a cause of major concern to human population worldwide, especially in Bangladesh and West Bengal, India. Arsenite (As(III)) and arsenate (As(V)) are the two common forms in which arsenic exists in soil and groundwater, the former being more mobile and toxic. A large number of arsenic metabolising microorganisms play a crucial role in microbial transformation of arsenic between its different states, thus playing a key role in remediation of arsenic contaminated water. This review focuses on advances in biochemical, molecular and genomic developments in the field of arsenic metabolising bacteria - covering recent developments in the understanding of structure of arsenate reductase and arsenite oxidase enzymes, their gene and operon structures and their mechanism of action. The genetic and molecular studies of these microbes and their proteins may lead to evolution of successful strategies for effective implementation of bioremediation programs.

  18. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    PubMed

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  19. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil.

    PubMed

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  20. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil

    PubMed Central

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  1. Molecular characterization of Alr1105 a novel arsenate reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli.

    PubMed

    Pandey, Sarita; Shrivastava, Alok K; Rai, Rashmi; Rai, Lal Chand

    2013-11-01

    This paper constitutes the first report on the Alr1105 of Anabaena sp. PCC7120 which functions as arsenate reductase and phosphatase and offers tolerance against oxidative and other abiotic stresses in the alr1105 transformed Escherichia coli. The bonafide of 40.8 kDa recombinant GST+Alr1105 fusion protein was confirmed by immunoblotting. The purified Alr1105 protein (mw 14.8 kDa) possessed strong arsenate reductase (Km 16.0 ± 1.2 mM and Vmax 5.6 ± 0.31 μmol min⁻¹ mg protein⁻¹) and phosphatase activity (Km 27.38 ± 3.1 mM and Vmax 0.077 ± 0.005 μmol min⁻¹ mg protein⁻¹) at an optimum temperature 37 °C and 6.5 pH. Native Alr1105 was found as a monomeric protein in contrast to its homologous Synechocystis ArsC protein. Expression of Alr1105 enhanced the arsenic tolerance in the arsenate reductase mutant E. coli WC3110 (∆arsC) and rendered better growth than the wild type W3110 up to 40 mM As (V). Notwithstanding above, the recombinant E. coli strain when exposed to CdCl₂, ZnSO₄, NiCl₂, CoCl₂, CuCl₂, heat, UV-B and carbofuron showed increase in growth over the wild type and mutant E. coli transformed with the empty vector. Furthermore, an enhanced growth of the recombinant E. coli in the presence of oxidative stress producing chemicals (MV, PMS and H₂O₂), suggested its protective role against these stresses. Appreciable expression of alr1105 gene as measured by qRT-PCR at different time points under selected stresses reconfirmed its role in stress tolerance. Thus the Alr1105 of Anabaena sp. PCC7120 functions as an arsenate reductase and possess novel properties different from the arsenate reductases known so far.

  2. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil

    PubMed Central

    Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  3. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil.

    PubMed

    Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  4. Characterization, real-time quantification and in silico modeling of arsenate reductase (arsC) genes in arsenic-resistant Herbaspirillum sp. GW103.

    PubMed

    Govarthanan, Muthusamy; Lee, Sang-Myeong; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2015-04-01

    This study investigated the mechanism of arsenic resistance in the diazotrophic bacterium Herbaspirillum sp. GW103 isolated from rhizosphere soil of Phragmites austrails. The isolate Herbaspirillum sp. GW103 exhibited maximum tolerance to arsenic (550 mg/L). Four different arsenate reductase (arsC) genes (arsC1, arsC2, arsC3 and arsC4) were located in the genome of the isolate Herbaspirillum sp. GW103. The expression pattern of the arsC1 differed from other genes. All four types of arsC genes had different protein secondary structures and stereochemical properties. Molecular modeling and structural analysis of arsC genes revealed close structural homology with arsC family proteins from Escherichia coli (PDB ID: 1I9D) and Pseudomonas aeruginosa (PDB ID: 1RW1). PMID:25744778

  5. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    SciTech Connect

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken . E-mail: aposhian@u.arizona.edu

    2006-11-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.

  6. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major

    SciTech Connect

    Bisacchi, Davide; Zhou, Yao; Rosen, Barry P.; Mukhopadhyay, Rita; Bordo, Domenico

    2006-10-01

    LmACR2 from L. major is the first rhodanese-like enzyme directly involved in the reduction of arsenate and antimonate to be crystallized. Diffraction data have been collected to 1.99 Å resolution using synchrotron X-rays. Arsenic is present in the biosphere owing either to the presence of pesticides and herbicides used in agricultural and industrial activities or to leaching from geological formations. The health effects of prolonged exposure to arsenic can be devastating and may lead to various forms of cancer. Antimony(V), which is chemically very similar to arsenic, is used instead in the treatment of leishmaniasis, an infection caused by the protozoan parasite Leishmania sp.; the reduction of pentavalent antimony contained in the drug Pentostam to the active trivalent form arises from the presence in the Leishmania genome of a gene, LmACR2, coding for the protein LmACR2 (14.5 kDa, 127 amino acids) that displays weak but significant sequence similarity to the catalytic domain of Cdc25 phosphatase and to rhodanese enzymes. For structural characterization, LmACR2 was overexpressed, purified to homogeneity and crystallized in a trigonal space group (P321 or P3{sub 1}21/P3{sub 2}21). The protein crystallized in two distinct trigonal crystal forms, with unit-cell parameters a = b = 111.0, c = 86.1 Å and a = b = 111.0, c = 175.6 Å, respectively. At a synchrotron beamline, the diffraction pattern extended to a resolution limit of 1.99 Å.

  7. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective

    PubMed Central

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang

    2014-01-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694

  8. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.

    PubMed

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J; Nitschke, Wolfgang

    2014-09-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes.

  9. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.

    PubMed

    Ohtsuka, Toshihiko; Yamaguchi, Noriko; Makino, Tomoyuki; Sakurai, Kazuhiro; Kimura, Kenta; Kudo, Keitaro; Homma, Eri; Dong, Dian Tao; Amachi, Seigo

    2013-06-18

    Dissimilatory As(V) (arsenate)-reducing bacteria may play an important role in arsenic release from anoxic sediments in the form of As(III) (arsenite). Although respiratory arsenate reductase genes (arrA) closely related to Geobacter species have been frequently detected in arsenic-rich sediments, it is still unclear whether they directly participate in arsenic release, mainly due to lack of pure cultures capable of arsenate reduction. In this study, we isolated a novel dissimilatory arsenate-reducing bacterium, strain OR-1, from Japanese paddy soil, and found that it was phylogenetically closely related to Geobacter pelophilus. OR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, and fumarate as electron acceptors. OR-1 catalyzed dissolution of arsenic from arsenate-adsorbed ferrihydrite, while Geobacter metallireducens GS-15 did not. Furthermore, inoculation of washed cells of OR-1 into sterilized paddy soil successfully restored arsenic release. Arsenic K-edge X-ray absorption near-edge structure analysis revealed that strain OR-1 reduced arsenate directly on the soil solid phase. Analysis of putative ArrA sequences from paddy soils suggested that Geobacter-related bacteria, including those closely related to OR-1, play an important role in arsenic release from paddy soils. Our results provide direct evidence for arsenic dissolution by Geobacter species and support the hypothesis that Geobacter species play a significant role in reduction and mobilization of arsenic in flooded soils and anoxic sediments. PMID:23668621

  10. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes.

    PubMed

    Tosha, Takehiko; Shiro, Yoshitsugu

    2013-03-01

    Respiration is an essential biological process to get bioenergy, ATP, for all kingdoms of life. Cytochrome c oxidase (COX) plays central role in aerobic respiration, catalyzing the reduction of O(2) coupled with pumping proton across the biological membrane. Nitric oxide reductase (NOR) involved in anaerobic nitrate respiration is suggested to be evolutionary related to COX and share the same progenitor with COX, on the basis of the amino acid sequence homology. Contrary to COX, NOR catalyzes the reduction of nitric oxide and shows no proton pumping ability. Thus, the respiratory enzyme acquires (or loses) proton pumping ability in addition to the conversion of the catalytic property along with the environmental change on earth. Recently, we solved the structures of two types of NORs, which provides novel insights into the functional conversion of the respiratory enzymes. In this review, we focus on the structural similarities and differences between COXs and NORs and discuss possible mechanism for the functional conversion of these enzymes during molecular evolution.

  11. Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7.

    PubMed

    Romanowska, Irena; Kwapisz, Ewa; Mitka, Magdalena; Bielecki, Stanisław

    2010-06-01

    Gordonia alkanivorans S7 is an efficient degrader of fuel oil hydrocarbons that can simultaneously utilize oxygen and nitrate as electron acceptors. The respiratory nitrate reductase (Nar) from this organism has been isolated using ion exchange chromatography and gel filtration, and then preliminarily characterized. PAGE, SDS-PAGE and gel filtration chromatography revealed that Nar consisted of three subunits of 103, 53 and 25 kDa. The enzyme was optimally active at pH 7.9 and 40 degrees C. K(m) values for NO(3)(-) (110 microM) and for ClO(3)(-) (138 microM) were determined for a reduced viologen as an electron donor. The purified Nar did not use NADH as the electron donor to reduce nitrate or chlorate. Azide was a strong inhibitor of its activity. Our results imply that enzyme isolated from G. alkanivorans S7 is a respiratory membrane-bound nitrate reductase. This is the first report of purification of a nitrate reductase from Gordonia species.

  12. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.

  13. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  14. Novel Channel Enzyme Fusion Proteins Confer Arsenate Resistance*

    PubMed Central

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-01-01

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H2AsVO4−/HAsVO42−) to arsenite (AsIII(OH)3) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  15. Development of a gene expression vector for Thermus thermophilus based on the promoter of the respiratory nitrate reductase.

    PubMed

    Moreno, Renata; Zafra, Olga; Cava, Felipe; Berenguer, José

    2003-01-01

    A specific expression system for Thermus spp. is described. Plasmid pMKE1 contains replicative origins for Escherichia coli and Thermus spp., a selection gene encoding a thermostable resistance to kanamycin, and a 720 bp DNA region containing the promoter (Pnar), and the regulatory sequences of the respiratory nitrate reductase operon of Thermus thermophilus HB8. Two genes, encoding a thermophilic beta-galactosidase and an alkaline phosphatase were cloned in pMKE1 as cytoplasmic and periplasmic reporters, respectively. The expression of the reporters was specifically induced by the combined action of nitrate and anoxia in facultative anaerobic derivatives of T. thermophilus HB27 to which the gene cluster for nitrate respiration was transferred by conjugation. Overexpressions in the range of approximately 200-fold were obtained for the cytoplasmic reporter, whereas that of the periplasmic reporter was limited to approximately 20-fold, with respect to their intrinsic respective activities.

  16. An Alternate Pathway of Arsenate Resistance in E. coli Mediated by the Glutathione S-Transferase GstB

    PubMed Central

    2015-01-01

    Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase. PMID:25517993

  17. An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.

    PubMed

    Chrysostomou, Constantine; Quandt, Erik M; Marshall, Nicholas M; Stone, Everett; Georgiou, George

    2015-03-20

    Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase.

  18. Acute lead arsenate poisoning.

    PubMed

    Tallis, G A

    1989-12-01

    Three cases of acute lead arsenate poisoning which occurred in South Australia during a 12 month interval are described. The case reports demonstrate a number of features of the characteristic clinical syndrome which may follow ingestion of lead arsenate. The recommended management is immediate gastric lavage and subsequent chelation therapy with calcium EDTA and dimercaprol. Early gastric lavage may prevent significant lead absorption. However, arsenic acid (produced in the stomach when lead arsenate reacts with hydrochloric acid) is relatively water soluble and prompt gastric lavage is unlikely to prevent extensive arsenic absorption. It remains controversial as to whether chelation with dimercaprol prevents arsenical neuropathy.

  19. The Glutathione/Glutaredoxin System Is Essential for Arsenate Reduction in Synechocystis sp. Strain PCC 6803▿ †

    PubMed Central

    López-Maury, Luis; Sánchez-Riego, Ana María; Reyes, José Carlos; Florencio, Francisco J.

    2009-01-01

    Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by an operon of three genes in which arsC codes for an arsenate reductase with unique characteristics. Here we describe the identification of two additional and nearly identical genes coding for arsenate reductases in Synechocystis sp. strain PCC 6803, which we have designed arsI1 and arsI2, and the biochemical characterization of both ArsC (arsenate reductase) and ArsI. Functional analysis of single, double, and triple mutants shows that both ArsI enzymes are active arsenate reductases but that their roles in arsenate resistance are essential only in the absence of ArsC. Based on its biochemical properties, ArsC belongs to a family that, though related to thioredoxin-dependent arsenate reductases, uses the glutathione/glutaredoxin system for reduction, whereas ArsI belongs to the previously known glutaredoxin-dependent family. We have also analyzed the role in arsenate resistance of the three glutaredoxins present in Synechocystis sp. strain PCC 6803 both in vitro and in vivo. Only the dithiolic glutaredoxins, GrxA (glutaredoxin A) and GrxB (glutaredoxin B), are able to donate electrons to both types of reductases in vitro, while GrxC (glutaredoxin C), a monothiolic glutaredoxin, is unable to donate electrons to either type. Analysis of glutaredoxin mutant strains revealed that only those lacking the grxA gene have impaired arsenic resistance. PMID:19304854

  20. RNA-seq analyses reveal insights into the function of respiratory nitrate reductase of the diazotroph Herbaspirillum seropedicae.

    PubMed

    Bonato, Paloma; Batista, Marcelo B; Camilios-Neto, Doumit; Pankievicz, Vânia C S; Tadra-Sfeir, Michelle Z; Monteiro, Rose Adele; Pedrosa, Fabio O; Souza, Emanuel M; Chubatsu, Leda S; Wassem, Roseli; Rigo, Liu Un

    2016-09-01

    Herbaspirillum seropedicae is a nitrogen-fixing β-proteobacterium that associates with roots of gramineous plants. In silico analyses revealed that H. seropedicae genome has genes encoding a putative respiratory (NAR) and an assimilatory nitrate reductase (NAS). To date, little is known about nitrate metabolism in H. seropedicae, and, as this bacterium cannot respire nitrate, the function of NAR remains unknown. This study aimed to investigate the function of NAR in H. seropedicae and how it metabolizes nitrate in a low aerated-condition. RNA-seq transcriptional profiling in the presence of nitrate allowed us to pinpoint genes important for nitrate metabolism in H. seropedicae, including nitrate transporters and regulatory proteins. Additionally, both RNA-seq data and physiological characterization of a mutant in the catalytic subunit of NAR (narG mutant) showed that NAR is not required for nitrate assimilation but is required for: (i) production of high levels of nitrite, (ii) production of NO and (iii) dissipation of redox power, which in turn lead to an increase in carbon consumption. In addition, wheat plants showed an increase in shoot dry weight only when inoculated with H. seropedicae wild type, but not with the narG mutant, suggesting that NAR is important to H. seropedicae-wheat interaction.

  1. Inhibition of microbial arsenate reduction by phosphate.

    PubMed

    Slaughter, Deanne C; Macur, Richard E; Inskeep, William P

    2012-03-20

    The ratio of arsenite (As(III)) to arsenate (As(V)) in soils and natural waters is often controlled by the activity of As-transforming microorganisms. Phosphate is a chemical analog to As(V) and, consequently, may competitively inhibit microbial uptake and enzymatic binding of As(V), thus preventing its reduction to the more toxic, mobile, and bioavailable form - As(III). Five As-transforming bacteria isolated either from As-treated soil columns or from As-impacted soils were used to evaluate the effects of phosphate on As(V) reduction and As(III) oxidation. Cultures were initially spiked with various P:As ratios, incubated for approximately 48 h, and analyzed periodically for As(V) and As(III) concentration. Arsenate reduction was inhibited at high P:As ratios and completely suppressed at elevated levels of phosphate (500 and 1,000 μM; P inhibition constant (K(i))∼20-100 μM). While high P:As ratios effectively shut down microbial As(V) reduction, the expression of the arsenate reductase gene (arsC) was not inhibited under these conditions in the As(V)-reducing isolate, Agrobacterium tumefaciens str. 5B. Further, high phosphate ameliorated As(V)-induced cell growth inhibition caused by high (1mM) As pressure. These results indicate that phosphate may inhibit As(V) reduction by impeding As(V) uptake by the cell via phosphate transport systems or by competitively binding to the active site of ArsC. PMID:21741807

  2. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

    USGS Publications Warehouse

    Zargar, Kamrun; Conrad, Alison; Bernick, David L.; Lowe, Todd M.; Stolc, Viktor; Hoeft, Shelley; Oremland, Ronald S.; Stolz, John; Saltikov, Chad W.

    2012-01-01

    Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

  3. Cytochrome c Biogenesis Genes Involved in Arsenate Respiration by Shewanella trabarsenatis ANA-3

    NASA Astrophysics Data System (ADS)

    Newman, D. K.

    2002-12-01

    Arsenate can be used as a terminal electron acceptor in anaerobic respiration by diverse bacteria. The detection of these bacteria in numerous contaminated environments suggests that they are widespread and metabolically active in nature. Arsenate-respiring bacteria have been implicated in the mobilization of arsenic from arsenic-contaminated sediments. However, the enzymatic mechanisms supporting arsenate respiration are largely unknown. Here, we describe c-type cytochromes that are involved in arsenate respiration by the bacterium Shewanella trabarsenatis strain ANA-3, a facultative anaerobe that is able to use a variety of electron acceptors for growth. We performed transposon mutagenesis to study the electron transport pathway in ANA-3 during arsenate respiration. 10 arsenate-respiration deficient mutants were found after screening up to 7,000 mutants, and 4 were shown to have unique transposon insertions through Southern Blot analysis. The physiological properties of these mutants were determined, including characterization of their growth on different electron acceptors. The genes flanking the transposon insertions were sequenced for each mutant, and several were found to encode c-type cytochrome biogenesis genes. UV/VIS spectra and SDS/PAGE were used to confirm the absence of c-type cytochromes in the mutants. Based on these findings, we proposed a model for respiratory electron transport to arsenate.

  4. ARSENATE REDUCTION BY ORGANIC COMPOUNDS

    EPA Science Inventory

    Arsenic is found in a variety of forms and oxidation states depending on soil pH and redox conditions. Under oxic conditions, arsenate is thermodynamically favored but arsenite, the more toxic and mobile form of arsenic, is favored under mildly reducing conditions. In many soil...

  5. Release of Arsenic from Soil by a Novel Dissimilatory Arsenate-Reducing Bacterium, Anaeromyxobacter sp. Strain PSR-1

    PubMed Central

    Kudo, Keitaro; Yamaguchi, Noriko; Makino, Tomoyuki; Ohtsuka, Toshihiko; Kimura, Kenta; Dong, Dian Tao

    2013-01-01

    A novel arsenate-reducing bacterium, designated strain PSR-1, was isolated from arsenic-contaminated soil. Strain PSR-1 was phylogenetically closely related to Anaeromyxobacter dehalogenans 2CP-1T with 16S rRNA gene similarity of 99.7% and coupled the oxidation of acetate with the reduction of arsenate. Arsenate reduction was inhibited almost completely by respiratory inhibitors such as dicumarol and 2-heptyl-4-hydroxyquinoline N-oxide. Strain PSR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, oxygen, and fumarate as electron acceptors. Strain PSR-1 catalyzed the release of arsenic from arsenate-adsorbed ferrihydrite. In addition, inoculation of washed cells of strain PSR-1 into sterilized soil successfully reproduced arsenic release. Arsenic K-edge X-ray absorption near-edge structure (XANES) analysis revealed that the proportion of arsenite in the soil solid phase actually increased from 20% to 50% during incubation with washed cells of strain PSR-1. These results suggest that strain PSR-1 is capable of reducing not only dissolved arsenate but also arsenate adsorbed on the soil mineral phase. Arsenate reduction by strain PSR-1 expands the metabolic versatility of Anaeromyxobacter dehalogenans. Considering its distribution throughout diverse soils and anoxic sediments, Anaeromyxobacter dehalogenans may play a role in arsenic release from these environments. PMID:23709511

  6. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  7. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus.

    PubMed

    Hartley-Whitaker, J; Ainsworth, G; Vooijs, R; Ten Bookum, W; Schat, H; Meharg, A A

    2001-05-01

    Arsenate tolerance is conferred by suppression of the high-affinity phosphate/arsenate uptake system, which greatly reduces arsenate influx in a number of higher plant species. Despite this suppressed uptake, arsenate-tolerant plants can still accumulate high levels of As over their lifetime, suggesting that constitutive detoxification mechanisms may be required. Phytochelatins are thiol-rich peptides, whose production is induced by a range of metals and metalloids including arsenate. This study provides evidence for the role of phytochelatins in the detoxification of arsenate in arsenate-tolerant Holcus lanatus. Elevated levels of phytochelatin were measured in plants with a range of tolerance to arsenate at equivalent levels of arsenate stress, measured as inhibition of root growth. The results suggest that arsenate tolerance in H. lanatus requires both adaptive suppression of the high-affinity phosphate uptake system and constitutive phytochelatin production. PMID:11351093

  8. Definition of cytochrome c binding domains by chemical modification: kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain.

    PubMed

    Speck, S H; Ferguson-Miller, S; Osheroff, N; Margoliash, E

    1979-01-01

    An assay has been developed to study the steady-state kinetics of the reduction of cytochrome c by purified beef heart mitochondrial cytochrome c reductase (cytochrome bc(1) complex, complex III). An analogue of coenzyme Q(2) (2,3-dimethoxy-5-methyl-6-decylhydroquinone) was employed as an antimycin-sensitive reductant. The kinetics of reaction of ten different mono(4-carboxy-2,6-dinitrophenyl) derivatives of horse cytochrome c were determined. The modified proteins showed higher apparent K(m) values than the native protein and greater sensitivity to ionic strength, defining an interaction domain on cytochrome c for purified cytochrome c reductase. This interaction site is located on the front surface of the molecule (which contains the exposed heme edge) and surrounds the point at which the positive end of the dipole axis crosses the surface of the protein. The site is similar to that previously determined for mitochondrial cytochrome c oxidase and yeast cytochrome c peroxidase, suggesting that the primary interaction with redox partners is directed by the dipolar charge distribution on cytochrome c. The extensive overlapping of the interaction domains for the mitochondrial cytochrome c oxidase and reductase indicates that cytochrome c must be mobile in order to transfer electrons between them, depending on their relative positions in the membrane. Whether such mobility is necessary in intact mitochondria depends on whether the interactions with the complete membrane-bound system are the same as with the purified components.

  9. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus.

    PubMed

    Bleeker, Petra M; Hakvoort, Henk W J; Bliek, Mattijs; Souer, Erik; Schat, Henk

    2006-03-01

    Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.

  10. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    PubMed Central

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes. PMID:24724102

  11. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    PubMed

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  12. Arsenate Resistance in the Unicellular Marine Diazotroph Crocosphaera watsonii

    PubMed Central

    Dyhrman, Sonya T.; Haley, Sheean T.

    2011-01-01

    The toxic arsenate ion can behave as a phosphate analog, and this can result in arsenate toxicity especially in areas with elevated arsenate to phosphate ratios like the surface waters of the ocean gyres. In these systems, cellular arsenate resistance strategies would allow phytoplankton to ameliorate the effects of arsenate transport into the cell. Despite the potential coupling between arsenate and phosphate cycling in oligotrophic marine waters, relatively little is known about arsenate resistance in the nitrogen-fixing marine cyanobacteria that are key components of the microbial community in low nutrient systems. The unicellular diazotroph, Crocosphaera watsonii WH8501, was able to grow at reduced rates with arsenate additions up to 30 nM, and estimated arsenate to phosphate ratios of 6:1. The genome of strain WH8501 contains homologs for arsA, arsH, arsB, and arsC, allowing for the reduction of arsenate to arsenite and the pumping of arsenite out of the cell. The short-term addition of arsenate to the growth medium had no effect on nitrogen fixation. However, arsenate addition did result in the up-regulation of the arsB gene with increasing arsenate concentrations, indicating the induction of the arsenate detoxification response. The arsB gene was also up-regulated by phosphorus stress in concert with a gene encoding the high-affinity phosphate binding protein pstS. Both genes were down-regulated when phosphate was re-fed to phosphorus-stressed cells. A field survey of surface water from the low phosphate western North Atlantic detected expression of C. watsonii arsB, suggestive of the potential importance of arsenate resistance strategies in this and perhaps other systems. PMID:22046174

  13. Interactions of arsenate and phenols in aqueous media

    SciTech Connect

    Huyck, K.A.; Daniel, S.R.; Macalady, D.L. )

    1989-01-01

    Arsenate is used in a number of environmental applications, including as an herbicide and in wood treatment. Phenols such as pentachlorophenol are also used in certain pesticide and herbicide applications and as wood preservatives. Although phenols in general are only slightly soluble in water at natural pH, arsenates are very soluble. They have investigated the interaction between arsenate and phenols with particular attention to adducts or complexes which may be significant under environmental conditions. Arsenate has been reported to form esters analogous to phosphate esters with sugars. Arsenate-phenol interactions were studied using UV spectrophotometry, potentiometry and liquid chromatography.

  14. Arsenolysis and Thiol-Dependent Arsenate Reduction

    EPA Science Inventory

    Conversion of arsenate to arsenite is a critical event in the pathway that leads from inorganic arsenic to a variety of methylated metabolites. The formation of methylated metabolites influences distribution and retention of arsenic and affects the reactivity and toxicity of thes...

  15. Understanding Arsenate Reaction Kinetics with Ferric Hydroxides

    PubMed Central

    Farrell, James; Chaudhary, Binod K.

    2015-01-01

    Understanding arsenic reactions with ferric hydroxides is important in understanding arsenic transport in the environment and in designing systems for removing arsenic from potable water. Many experimental studies have shown that the kinetics of arsenic adsorption on ferric hydroxides is biphasic, where a fraction of the arsenic adsorption occurs on a time scale of seconds while full equilibrium may require weeks to attain. This research employed density functional theory modeling in order to understand the mechanisms contributing to biphasic arsenic adsorption kinetics. The reaction energies and activation barriers for three modes of arsenate adsorption to ferric hydroxides were calculated. Gibbs free energies of reaction depended on the net charge of the complexes, which is a function of the system pH value. Physical adsorption of arsenate to ferric hydroxide proceeded with no activation barrier, with Gibbs free energies of reaction ranging from −21 to −58 kJ/mol. The highest Gibbs free energies of reaction for physical adsorption resulted from negative charge assisted hydrogen bonding between H atoms on the ferric hydroxide and O atoms in arsenate. The conversion of physically adsorbed arsenate into monodentate surface complexes had Gibbs free energies of activation ranging from 62 to 73 kJ/mol, and Gibbs free energies of reaction ranging from −23 to −38 kJ/mol. The conversion of monodentate surface complexes to bidentate, binuclear complexes had Gibbs free energies of activation ranging from 79 to 112 kJ/mol, and Gibbs free energies of reaction ranging from −11 to −55 kJ/mol. For release of arsenate from uncharged bidentate complexes, energies of activation as high as 167 kJ/mol were encountered. Increasingly negative charges on the complexes lowered the activation barriers for desorption of arsenate, and in complexes with −2 charges, the highest activation barrier was 65 kJ/mol. This study shows that the slow kinetics associated with arsenic

  16. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California

    USGS Publications Warehouse

    Kulp, T.R.; Hoeft, S.E.; Miller, L.G.; Saltikov, C.; Murphy, J.N.; Han, S.; Lanoil, B.; Oremland, R.S.

    2006-01-01

    A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (???90 g/liter) and Searles Lake (???340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As] arsenate occurred at all depth intervals in the cores from Mono Lake (rate constant [k] = 0.103 to 0.04 h-1) and Searles Lake (k = 0.012 to 0.002 h-1), and the highest activities occurred in the top sections of each core. In contrast, [35S] sulfate reduction was measurable in Mono Lake (k = 7.6 ?? 104 to 3.2 ?? 10-6 h-1) but not in Searles Lake. Sediment DNA was extracted, PCR amplified, and separated by denaturing gradient gel electrophoresis (DGGE) to obtain phylogenetic markers (i.e., 16S rRNA genes) and a partial functional gene for dissimilatory arsenate reduction (arrA). The amplified arrA gene product showed a similar trend in both lakes; the signal was strongest in surface sediments and decreased to undetectable levels deeper in the sediments. More arrA gene signal was observed in Mono Lake and was detectable at a greater depth, despite the higher arsenate reduction activity observed in Searles Lake. A partial sequence (about 900 bp) was obtained for a clone (SLAS-3) that matched the dominant DGGE band found in deeper parts of the Searles Lake sample (below 3 cm), and this clone was found to be closely related to SLAS-1, a novel extremophilic arsenate respirer previously cultivated from Searles Lake. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

  17. Life cycle exposure of the frog Silurana tropicalis to arsenate: Steroid- and thyroid hormone-related genes are differently altered throughout development.

    PubMed

    Gibson, Laura A; Koch, Iris; Reimer, Kenneth J; Cullen, William R; Langlois, Valerie S

    2016-08-01

    Arsenic contaminates water surface and groundwater worldwide. Several studies have suggested that arsenic acts as an endocrine disruptor in mammalian and non-mammalian species, although its chronic effect during development remains largely unknown. To address this question, life cycle exposures to 0, 0.3 and 0.8ppm of arsenate (pentavalent arsenic; As(V)) were performed in the Western clawed frog (Silurana tropicalis) from the gastrulae stage (developmental stage Nieuwkoop-Faber; NF12) until metamorphosis (NF66). Tissue samples were collected at the beginning of feeding (NF46; whole body), sexual development (NF56; liver), and at metamorphosis completion (NF66; liver and gonadal mesonephros complex). Real-time RT-PCR analysis quantified decreases in mRNA levels of genes related to estrogen- (estrogen receptor alpha and aromatase), androgen- (androgen receptor and steroid 5-alpha-reductase type 2), and cholesterol metabolism- (steroidogenic acute regulatory protein) at stage NF46. Similarly, arsenate decreased steroid 5-alpha-reductase type 2 expression in stage NF56 livers, but transcript increases were observed for both estrogen receptor alpha and steroidogenic acute regulatory protein at this stage. Given the changes observed in the expression of genes essential for proper sexual development, gonadal histological analysis was carried out in stage NF66 animals. Arsenate treatments did not alter sex ratio or produce testicular oocytes. On the other hand, arsenate interfered with thyroid hormone-related transcripts at NF66. Specifically, thyroid hormone receptor beta and deiodinase type 2 mRNA levels were significantly reduced after arsenate treatment in the gonadal mesonephros complex. This reduction in thyroid hormone-related gene expression, however, was not accompanied by any morphological changes measured. In summary, environmentally relevant concentrations of As(V) altered steroidogenesis-, sex steroid signaling- and thyroid hormone-related gene expression

  18. Life cycle exposure of the frog Silurana tropicalis to arsenate: Steroid- and thyroid hormone-related genes are differently altered throughout development.

    PubMed

    Gibson, Laura A; Koch, Iris; Reimer, Kenneth J; Cullen, William R; Langlois, Valerie S

    2016-08-01

    Arsenic contaminates water surface and groundwater worldwide. Several studies have suggested that arsenic acts as an endocrine disruptor in mammalian and non-mammalian species, although its chronic effect during development remains largely unknown. To address this question, life cycle exposures to 0, 0.3 and 0.8ppm of arsenate (pentavalent arsenic; As(V)) were performed in the Western clawed frog (Silurana tropicalis) from the gastrulae stage (developmental stage Nieuwkoop-Faber; NF12) until metamorphosis (NF66). Tissue samples were collected at the beginning of feeding (NF46; whole body), sexual development (NF56; liver), and at metamorphosis completion (NF66; liver and gonadal mesonephros complex). Real-time RT-PCR analysis quantified decreases in mRNA levels of genes related to estrogen- (estrogen receptor alpha and aromatase), androgen- (androgen receptor and steroid 5-alpha-reductase type 2), and cholesterol metabolism- (steroidogenic acute regulatory protein) at stage NF46. Similarly, arsenate decreased steroid 5-alpha-reductase type 2 expression in stage NF56 livers, but transcript increases were observed for both estrogen receptor alpha and steroidogenic acute regulatory protein at this stage. Given the changes observed in the expression of genes essential for proper sexual development, gonadal histological analysis was carried out in stage NF66 animals. Arsenate treatments did not alter sex ratio or produce testicular oocytes. On the other hand, arsenate interfered with thyroid hormone-related transcripts at NF66. Specifically, thyroid hormone receptor beta and deiodinase type 2 mRNA levels were significantly reduced after arsenate treatment in the gonadal mesonephros complex. This reduction in thyroid hormone-related gene expression, however, was not accompanied by any morphological changes measured. In summary, environmentally relevant concentrations of As(V) altered steroidogenesis-, sex steroid signaling- and thyroid hormone-related gene expression

  19. An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.

    PubMed

    Sundaram, Sabarinath; Rathinasabapathi, Bala; Ma, Lena Q; Rosen, Barry P

    2008-03-01

    To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism.

  20. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate

    USGS Publications Warehouse

    Zobrist, J.; Dowdle, P.R.; Davis, J.A.; Oremland, R.S.

    2000-01-01

    Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite, a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was influenced by the method in which arsenate became associated with the mineral phases and may have been strongly coupled with arsenate desorption rates. The extent of release of arsenite into solution was governed by adsorption of arsenite onto the ferrihydrite or alumina phases. The results of these experiments have interpretive significance to the mobilization of arsenic in large alluvial aquifers, such as those of the Ganges in India and Bangladesh, and in the hyporheic zones of contaminated streams.Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was

  1. Investigation of biochemical responses of Bacopa monnieri L. upon exposure to arsenate.

    PubMed

    Mishra, Seema; Srivastava, Sudhakar; Dwivedi, Sanjay; Tripathi, Rudra Deo

    2013-08-01

    Widespread contamination of arsenic (As) is recognized as a global problem due to its well-known accumulation by edible and medicinal plants and associated health risks for the humans. In this study, phytotoxicity imposed upon exposure to arsenate [As(V); 0-250 μM for 1-7 days] and ensuing biochemical responses were investigated in a medicinal herb Bacopa monnieri L. vis-à-vis As accumulation. Plants accumulated substantial amount of As (total 768 μg g(-1) dw at 250 μM As(V) after 7 days) with the maximum As retention being in roots (60%) followed by stem (23%) and leaves (17%). The level of cysteine and total nonprotein thiols (NP-SH) increased significantly at all exposure concentrations and durations. Besides, the level of metalloid binding ligands viz., glutathione (GSH) and phytochelatins (PCs) increased significantly at the studied concentrations [50 and 250 μM As(V)] in both roots and leaves. The activities of various enzymes viz., arsenate reductase (AR), glutathione reductase (GR), superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and catalase (CAT) showed differential but coordinated stimulation in leaves and roots to help plants combat As toxicity up to moderate exposure concentrations (50 μM). However, beyond 50 μM, biomass production was found to decrease along with photosynthetic pigments and total soluble proteins, whereas lipid peroxidation increased. In conclusion, As accumulation potential of Bacopa may warrant its use as a phytoremediator but if Bacopa growing in contaminated areas is consumed by humans, it may prove to be toxic for health.

  2. WRKY6 Transcription Factor Restricts Arsenate Uptake and Transposon Activation in Arabidopsis[W

    PubMed Central

    Castrillo, Gabriel; Sánchez-Bermejo, Eduardo; de Lorenzo, Laura; Crevillén, Pedro; Fraile-Escanciano, Ana; TC, Mohan; Mouriz, Alfonso; Catarecha, Pablo; Sobrino-Plata, Juan; Olsson, Sanna; Leo del Puerto, Yolanda; Mateos, Isabel; Rojo, Enrique; Hernández, Luis E.; Jarillo, Jose A.; Piñeiro, Manuel; Paz-Ares, Javier; Leyva, Antonio

    2013-01-01

    Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here, we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing. PMID:23922208

  3. Phytochelatins Are Involved in Differential Arsenate Tolerance in Holcus lanatus1

    PubMed Central

    Hartley-Whitaker, Jeanette; Ainsworth, Gillian; Vooijs, Riet; Bookum, Wilma Ten; Schat, Henk; Meharg, Andrew A.

    2001-01-01

    Arsenate tolerance is conferred by suppression of the high-affinity phosphate/arsenate uptake system, which greatly reduces arsenate influx in a number of higher plant species. Despite this suppressed uptake, arsenate-tolerant plants can still accumulate high levels of As over their lifetime, suggesting that constitutive detoxification mechanisms may be required. Phytochelatins are thiol-rich peptides, whose production is induced by a range of metals and metalloids including arsenate. This study provides evidence for the role of phytochelatins in the detoxification of arsenate in arsenate-tolerant Holcus lanatus. Elevated levels of phytochelatin were measured in plants with a range of tolerance to arsenate at equivalent levels of arsenate stress, measured as inhibition of root growth. The results suggest that arsenate tolerance in H. lanatus requires both adaptive suppression of the high-affinity phosphate uptake system and constitutive phytochelatin production. PMID:11351093

  4. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis

    SciTech Connect

    Thiel, T.

    1988-03-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells.Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of P/sub i/. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent K/sub i/ values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.

  5. Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters.

    PubMed

    Liu, Guojing; Talley, Jeffrey W; Na, Chongzheng; Larson, Steve L; Wolfe, Lawrence G

    2010-02-15

    Hydroxyapatite (HAP) has been widely used to immobilize many cationic heavy metals in water and soils. Compared with its strong sorption for metal cations, the abilities of HAP to sorb metal anions, such as arsenic, are less significant. Improving HAP sorption for anionic arsenic species is important for expanding its application potential because the presence of arsenic in the environment has raised serious health concerns and there is need for cost-effective remediation methods. In this work, we report an innovative method of copper doping to improve a synthetic HAP sorption for arsenate, which is a primary aqueous arsenic species, in simulated groundwaters. The undoped HAP and copper doped HAP (CuHAP) were characterized with XRD, FTIR, N(2) adsorption, and SEM, and then evaluated as sorbents for arsenate removal tests. The experimental results suggest that copper doping changed the morphology and increased the surface area of HAP. The CuHAP sorbed 1.6-9.1x more arsenate than the undoped HAP did in a simulated groundwater at pH of 7.7-8.0. The improved arsenate sorption is presumably due to the increase in surface area of HAP as a result of copper doping. In addition to the copper doping level, the arsenate sorption to HAP and CuHAP can also be increased with increasing water pH and calcium concentration. The experimental data indicate that sorbent dissolution is an important factor governing arsenate sorption to HAP and CuHAP.

  6. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    PubMed Central

    2010-01-01

    Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH) approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown novel proteins serve as

  7. Structural characterization and vibrational spectroscopy of the arsenate mineral wendwilsonite.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Belotti, Fernanda Maria; Xi, Yunfei

    2014-01-24

    In this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2⋅2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2⋅2H2O (where B may be Co, Fe(2+), Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)(3-) stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)(3-) clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm(-1) are assigned to ν4 bending modes. Multiple bands in the 350-300 cm(-1) region assigned to ν2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm(-1) are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

  8. Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L.

    PubMed

    Mishra, Seema; Srivastava, Sudhakar; Tripathi, Rudra D; Trivedi, Prabodh K

    2008-01-31

    Ceratophyllum demersum L. is known to be a potential accumulator of arsenic (As), but mechanisms of As detoxification have not been investigated so far. In the present study, we analyzed the biochemical responses of Ceratophyllum plants to arsenate (As(V); 0-250 microM) exposure to explore the underlying mechanisms of As detoxification. Plants efficiently tolerated As toxicity up to concentrations of 50 microM As(V) and durations of 4 d with no significant effect on growth by modulating various pathways in a coordinated and complementary manner and accumulated about 76 microg As g(-1)dw. Significant increases were observed in the levels of various thiols including phytochelatins (PCs), the activities of enzymes of thiolic metabolism as well as arsenate reductase (AR). These primary responses probably enabled plants to detoxify at least some part of As(V) through its reduction and subsequent complexation. The maximum proportion of As chelated by PCs was found to be about 30% (at 50 microM As(V) after 2 d). Simultaneously, a significant increase in the activities of antioxidant enzymes was observed and hence plants did not experience oxidative stress when exposed to 50 microM As(V) for 4 d. Exposure of plants to higher concentrations (250 microM As(V)) and/or for longer durations (7 d) resulted in a significant increase in the level of As (maximum 525 microgg(-1)dw at 250 microM after 7 d) and an inverse relationship between As accumulation and various detoxification strategies was observed that lead to enhanced oxidative stress and hampered growth.

  9. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  10. ARSENATE CARRIER PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM NEUTRON IRRADIATED URANIUM AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Thompson, S.G.; Miller, D.R.; James, R.A.

    1961-06-20

    A process is described for precipitating Pu from an aqueous solution as the arsenate, either per se or on a bismuth arsenate carrier, whereby a separation from uranium and fission products, if present in solution, is accomplished.

  11. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic

    PubMed Central

    Drewniak, Lukasz; Stasiuk, Robert; Uhrynowski, Witold; Sklodowska, Aleksandra

    2015-01-01

    The purpose of this study was a detailed characterization of Shewanella sp. O23S, a strain involved in arsenic transformation in ancient gold mine waters contaminated with arsenic and other heavy metals. Physiological analysis of Shewanella sp. O23S showed that it is a facultative anaerobe, capable of growth using arsenate, thiosulfate, nitrate, iron or manganite as a terminal electron acceptor, and lactate or citrate as an electron donor. The strain can grow under anaerobic conditions and utilize arsenate in the respiratory process in a broad range of temperatures (10–37 °C), pH (4–8), salinity (0%–2%), and the presence of heavy metals (Cd, Co, Cr, Cu, Mn, Mo, Se, V and Zn). Under reductive conditions this strain can simultaneously use arsenate and thiosulfate as electron acceptors and produce yellow arsenic (III) sulfide (As2S3) precipitate. Simulation of As-removal from water containing arsenate (2.5 mM) and thiosulfate (5 mM) showed 82.5% efficiency after 21 days of incubation at room temperature. Based on the obtained results, we have proposed a model of a microbially mediated system for self-cleaning of mine waters contaminated with arsenic, in which Shewanella sp. O23S is the main driving agent. PMID:26121297

  12. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic.

    PubMed

    Drewniak, Lukasz; Stasiuk, Robert; Uhrynowski, Witold; Sklodowska, Aleksandra

    2015-06-25

    The purpose of this study was a detailed characterization of Shewanella sp. O23S, a strain involved in arsenic transformation in ancient gold mine waters contaminated with arsenic and other heavy metals. Physiological analysis of Shewanella sp. O23S showed that it is a facultative anaerobe, capable of growth using arsenate, thiosulfate, nitrate, iron or manganite as a terminal electron acceptor, and lactate or citrate as an electron donor. The strain can grow under anaerobic conditions and utilize arsenate in the respiratory process in a broad range of temperatures (10-37 °C), pH (4-8), salinity (0%-2%), and the presence of heavy metals (Cd, Co, Cr, Cu, Mn, Mo, Se, V and Zn). Under reductive conditions this strain can simultaneously use arsenate and thiosulfate as electron acceptors and produce yellow arsenic (III) sulfide (As2S3) precipitate. Simulation of As-removal from water containing arsenate (2.5 mM) and thiosulfate (5 mM) showed 82.5% efficiency after 21 days of incubation at room temperature. Based on the obtained results, we have proposed a model of a microbially mediated system for self-cleaning of mine waters contaminated with arsenic, in which Shewanella sp. O23S is the main driving agent.

  13. Sorptive removal of arsenate using termite mound.

    PubMed

    Fufa, Fekadu; Alemayehu, Esayas; Lennartz, Bernd

    2014-01-01

    Long-term consumption of arsenic results in severe and permanent health damages. The aim of the study was to investigate arsenate (As(V)) sorption capacity of termite mound (TM), containing mainly silicon, aluminum, iron and titanium oxides, under batch adsorption setup. The pattern of As(V) removal with varying contact time, solution pH, adsorbent dose, As(V) concentration and competing anions was investigated. Dissolution of the adsorbent was insignificant under the equilibrium conditions. Equilibrium was achieved within 40 min of agitation time. Kinetic data of As(V) adsorption followed well the pseudo-second order equation (R(2) > 0.99). High As(V) removal efficiency (∼ 99%) was observed over a pH range ∼ 3-∼ 10, which is of great importance in the practical application. The Freundlich and Dubinin-Radushkevich isotherms well described (R(2) > 0.99, χ(2) ∼ 0.05) the equilibrium As(V) adsorption, giving a coefficient of adsorption 1.48 mg(1-1/n)L(1/n)/g and a saturation capacity 13.50 mg/g respectively. The obtained value of mean sorption energy (EDR = 13.32 kJ/mol) suggested the chemisorption mechanism of As(V) adsorption on TM. The removal of As(V) was significantly decreased in the presence of phosphate ions. The As(V) loaded adsorbent was successfully regenerated using NaOH solution with insignificant loss of metals. Therefore, the results of the study demonstrated that TM could be considered as a promising adsorbent for the treatment of As(V) in drinking water. PMID:24309232

  14. Dissimilatory arsenate reduction with sulfide as electron donor: Experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer

    USGS Publications Warehouse

    Hoeft, S.E.; Kulp, T.R.; Stolz, J.F.; Hollibaugh, J.T.; Oremland, R.S.

    2004-01-01

    Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3- into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the ??-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.

  15. Uptake, transport and transformation of arsenate in radishes (Raphanus sativus).

    PubMed

    Smith, Paula G; Koch, Iris; Reimer, Kenneth J

    2008-02-01

    The localization and identification of arsenic compounds in terrestrial plants are important for the understanding of arsenic uptake, transformation and translocation within these organisms, and contributes to our understanding of arsenic cycling in the environment. High performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and X-ray absorption near-edge structure (XANES) analysis identified arsenite, arsenate and arsenic(III)-sulphur compounds in leaf, stem and root sections of Rhaphanus sativus (radish) plants grown in both arsenic contaminated mine waste, and arsenic amended liquid cultures. The total arsenic distribution was similar between the plants grown in mine waste and those grown hydroponically. Arsenate was the predominant form of arsenic available in the growth mediums, and after it was taken up by roots, X-ray absorption spectroscopy (XAS) imaging indicated that some of the arsenate was transported to the shoots via the xylem. Additionally, arsenate was reduced by the plant and arsenic(III)-sulphur compound(s) accounted for the majority of arsenic in the leaf and stem of living plants. In this study the application of synchrotron techniques permitted the identification of arsenic(III)-sulphur species which were "invisible" to conventional HPLC-ICP-MS analysis.

  16. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.

    PubMed

    Norton, Gareth J; Lou-Hing, Daniel E; Meharg, Andrew A; Price, Adam H

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

  17. Lowered dietary phosphate increases oral bioavailability of arsenate in mice

    EPA Science Inventory

    Arsenate (iAsv), an inorganic oxyanionic species, has physicochemical properties similar to inorganic phosphate (iP). There is evidence that iAsv competes with iP for transmembrane carriers that mediate iP uptake. Thus, it is possible that altered dietary intake of iP could modif...

  18. Dielectric and structural properties of ferroelectric betaine arsenate films

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Zaitseva, N. V.; Yurko, E. I.; Svinarev, F. B.

    2014-12-01

    Ferroelectric films of betaine arsenate and partially deuterated betaine arsenate have been grown by evaporation on LiNbO3, α-Al2O3, and NdGaO3 substrates with a preliminarily deposited structure of interdigitated electrodes, as well as on the Al/glass substrate. This paper presents the results of the examination of the block structure of the films in a polarizing microscope, the X-ray diffraction analysis of their crystal structure, and the investigation of the dielectric properties in a measuring field oriented both parallel and perpendicular to the plane of the film. The transition of the films to the ferroelectric state at T = T c is accompanied by anomalies of the capacitance of the structure, an increase in the dielectric loss, and the appearance of dielectric hysteresis loops. The growth of the films from a solution of betaine arsenate in a heavy water leads to an increase in the ferroelectric transition temperature from T c = 119 K in the films without deuterium to T c = 149 K, which corresponds to the degree of deuteration of approximately 60-70%. The dielectric and structural properties of the films are compared with those of the betaine arsenate single crystals and the previously studied films of betaine phosphite and glycine phosphite.

  19. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  20. Arsenate removal from water using sand--red mud columns.

    PubMed

    Genç-Fuhrman, Hülya; Bregnhøj, Henrik; McConchie, David

    2005-08-01

    This study describes experiments in which sorption filters, filled with chemically modified red mud (Bauxsol) or activated Bauxsol (AB) coated sand, are used to remove As(V) (arsenate) from water. Bauxsol-coated sand (BCS) and AB-coated sand (ABCS) are prepared by mixing Bauxsol or AB with wet sand and drying. Samples of the BCS and ABCS are also used in batch experiments to obtain isotherm data. The observed adsorption data fit the Langmuir model well, with adsorption maxima of 3.32 and 1.64 mgg(-1) at pH values of 4.5 and 7.1, respectively for BCS; and of 2.14 mgg(-1) for ABCS at a pH of 7.1. Test results show that higher arsenate adsorption capacities can be achieved for both BCS and ABCS when using the columns compared to results for batch experiments; the difference is greater for BCS. Additional batch tests, carried out for 21 days using BCS to explain the observed discrepancy, show that the equilibrium time previously used in batch experiments was too short because adsorption continued for at least 21 days and reached 87% after 21 days compared to only 35% obtained after 4h. Fixed bed column tests, used to investigate the effects of flow rate and initial arsenate concentration indicate that the process is sensitive to both parameters, with lower flow rates (longer effective residence times in the columns) and initial arsenate concentrations providing better column performance. An examination of the combined effect of potential competing anions (i.e. silicate, phosphate, sulphate and bicarbonate) on the column performance showed that the presence of these anions in tap water slightly decreases arsenate removal. Each breakthrough curve is compared to the Thomas model, and it is found that the model may be applied to estimate the arsenate sorption capacity in columns filled with BCS and ABCS. The data obtained from both batch and column studies indicate that BCS and ABCS filtration could be effectively used to remove arsenate from water, with the latter being

  1. Use of drinking water treatment solids for arsenate removal from desalination concentrate.

    PubMed

    Xu, Xuesong; Lin, Lu; Papelis, Charalambos; Myint, Maung; Cath, Tzahi Y; Xu, Pei

    2015-05-01

    Desalination of impaired water can be hindered by the limited options for concentrate disposal. Selective removal of specific contaminants using inexpensive adsorbents is an attractive option to address the challenges of concentrate management. In this study, two types of ferric-based drinking water treatment solids (DWTS) were examined for arsenate removal from reverse osmosis concentrate during continuous-flow once-through column experiments. Arsenate sorption was investigated under different operating conditions including pH, arsenate concentration, hydraulic retention time, loading rate, temperature, and moisture content of the DWTS. Arsenate removal by the DWTS was affected primarily by surface complexation, electrostatic interactions, and arsenate speciation. Results indicated that arsenate sorption was highly dependent on initial pH and initial arsenate concentration. Acidic conditions enhanced arsenate sorption as a result of weaker electrostatic repulsion between predominantly monovalent H2AsO4(-) and negatively charged particles in the DWTS. High initial arsenate concentration increased the driving force for arsenate sorption to the DWTS surface. Tests revealed that the potential risks associated with the use of DWTS include the leaching of organic contaminants and ammonia, which can be alleviated by using wet DWTS or discarding the initially treated effluent that contains high organic concentration.

  2. Lead arsenate poisoning in a herd of beef cattle.

    PubMed

    Stair, E L; Kirkpatrick, J G; Whitenack, D L

    1995-08-01

    Lead arsenate poisoning was diagnosed in 2 beef heifers and was suspected in 6 other cattle from the same herd that had died previously and were not examined. Clinical signs in affected cattle included staggering, dehydration, hemorrhage, acidemia, and shock. Diagnosis was by arsenic and lead analysis of urine samples and kidney and liver tissue digests. Both examined heifers died within 4 days of onset of clinical signs. These cattle had been moved from an area with poor grazing conditions to a pasture with abundant forage. This pasture had an open shed that contained an open sack of lead arsenate insecticide. Old stores of this inorganic insecticide may still exist on farms or ranches, and are a hazard to livestock.

  3. Microbial Reduction of Ferrous Arsenate: Biogeochemical Implications for Arsenic Mobilization

    SciTech Connect

    Babechuk, M.; Weisener, C.G.; Fryer, B.; Paktunc, D.; Maunders, C.

    2010-11-12

    In reduced aqueous environments, the presence of As in solution is a function of both biotic and abiotic mechanisms. Recent studies have demonstrated a significant release of As(III) through the microbial reduction of dissolved and mineral-bound As(V), which raises health concerns when the greater comparative mobility and toxicity of As(III) is considered. These release mechanisms do not operate in isolation but occur in concert with a number of removal processes, including secondary mineralization and sorption to other natural substrates. Thermodynamic and applied experimental studies have shown that ferrous arsenates, such as symplesite [Fe(II){sub 3}(As(V)O{sub 4}){sub 2} {center_dot} 8H{sub 2}O], may provide a significant sink for Fe(II) and As(V). In this study, the stability of a representative ferrous arsenate phase in the presence of the arsenate-reducing bacterium Shewanella sp. strain ANA-3 is examined. The reduction of ferrous arsenate by ANA-3 results in the release of aqueous As(III) and, subsequently, the progressive nucleation of a biogenic ferrous arsenite phase proximal to the microbial cells. The valence states of secondary solid-phase products were verified using X-ray absorption spectroscopy (XAS). Electron microscopy reveals that nucleation occurs on cellular exudates which may imply a role of extracellular reduction through c-type cytochromes as investigated in recent literature. These observations provide new insights into the reduction mechanisms of ANA-3 and the biogeochemical cycling of As(III) in natural systems.

  4. Molecular Recognition and Scavenging of Arsenate from Aqueous Solution Using Dimetallic Receptors

    PubMed Central

    Moffat, Chris D; Weiss, Dominik J; Shivalingam, Arun; White, Andrew J P; Salaün, Pascal; Vilar, Ramon

    2014-01-01

    A series of copper(II), nickel(II) and zinc(II) dimetallic complexes were prepared and their affinities towards arsenate investigated. Indicator displacement assays (IDAs) were carried out to establish the complexes with best affinities towards arsenate. A di-zinc complex (3) was selected and its arsenate-binding abilities investigated by isothermal titration calorimetry (ITC). The X-ray crystal structure of this metallo-receptor bound to arsenate is also reported, which allowed us to establish the binding mode between 3 and this oxyanion. Immobilising 3 onto HypoGel resin yielded a novel adsorbent (Zn–HypoGel) with high affinity for arsenate. Adsorption of arsenate from competitive solutions and natural groundwater was greater than that of the commercially used iron oxide Bayoxide E33. Zn–HypoGel could be efficiently and simply regenerated by washing with sodium acetate solution. PMID:25338508

  5. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.

    PubMed

    Wang, Ning-Xin; Li, Yan; Deng, Xi-Hai; Miao, Ai-Jun; Ji, Rong; Yang, Liu-Yan

    2013-05-01

    In the present study, the toxicity and bioaccumulation kinetics of arsenate in two green algae Chlamydomonas reinhardtii and Scenedesmus obliquus under phosphate-enriched (+P) and limited (-P) conditions were investigated. P-limitation was found to aggravate arsenate toxicity and S. obliquus was more tolerant than C. reinhardtii. Such phosphate-condition-dependent or algal-species-specific toxicity difference was narrowed when the relative inhibition of cell growth was plotted against intracellular arsenate content instead of its extracellular concentration. The discrepance was further reduced when the intracellular ratio of arsenic to phosphorus was applied. It suggests that both arsenate bioaccumulation and intracellular phosphorus played an important role in arsenate toxicity. On the other hand, arsenate uptake was induced by P-limitation and its variation with ambient arsenate concentration could be well fitted to the Michaelis-Menten model. Arsenate transporters of S. obliquus were found to have a higher affinity but lower capacity than those of C. reinhardtii, which explains its better regulation of arsenate accumulation than the latter species in the toxicity experiment. Further, arsenate depuration was facilitated and more was transformed to arsenite in C. reinhardtii or under -P condition. Intracellular proportion of arsenite was also increased after the algae were transferred from the long-term uptake media to a relatively clean solution in the efflux experiment. Both phenomena imply that algae especially the sensitive species could make physiological adjustments to alleviate the adverse effects of arsenate. Overall, our findings will facilitate the application of algae in arsenate remediation. PMID:23497978

  6. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate.

    PubMed

    Most, Parvin; Papenbrock, Jutta

    2015-01-14

    Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys)2-11-Gly (PCs). Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS), which directly or indirectly influence metabolic processes. Reduced glutathione (GSH) attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str), also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF) of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR) and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  7. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate.

    PubMed

    Most, Parvin; Papenbrock, Jutta

    2015-01-01

    Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys)2-11-Gly (PCs). Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS), which directly or indirectly influence metabolic processes. Reduced glutathione (GSH) attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str), also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF) of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR) and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism. PMID:25594348

  8. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    SciTech Connect

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-08-15

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-{alpha}-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  9. Effect of arsenate As (V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions.

    PubMed

    Krayem, M; Deluchat, V; Rabiet, M; Cleries, K; Lenain, J F; Saad, Z; Kazpard, V; Labrousse, P

    2016-03-01

    Alternate watermilfoil, Myriophyllum alterniflorum is an aquatic macrophyte found in the Limousin rivers (France) whose potential for biomonitoring of metal pollution has been demonstrated. The objective of the present study carried out in vitro was to identify biomarkers for an early detection of the pollution by a metalloid As (V) in eutrophic and oligotrophic conditions. A synthetic medium of similar composition to the waters of the River Vienne was prepared. The morphological development of watermilfoil was monitored for 30 days, with or without contamination by 100 μg L(-1) As (V). In addition, the mineralization of plants and the analysis of biomarkers (chlorophylls, photosynthetic and respiratory intensities …) were investigated after 21 days. Our results indicated that eutrophic medium, induced a decrease in chlorophyll pigments, in growth and an increase in H2O2 compared to the oligotrophic medium. While, the presence of As (V), led to a decrease in the osmotic potential, pigment content, photosynthesis and respiration rates and an inhibition of shoot branching of plants in both conditions. However, a significant increase in H2O2 content was noted in the eutrophic medium. Finally, As (V) was found to be more accumulated in roots than shoots in both conditions but was more accumulated in oligotrophic one. Therefore, we can conclude that the water trophic level modifies the response of M. alterniflorum in presence of arsenate. Thus, M. alterniflorum shows a great promise in water-quality biomonitoring. PMID:26766024

  10. Effect of arsenate As (V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions.

    PubMed

    Krayem, M; Deluchat, V; Rabiet, M; Cleries, K; Lenain, J F; Saad, Z; Kazpard, V; Labrousse, P

    2016-03-01

    Alternate watermilfoil, Myriophyllum alterniflorum is an aquatic macrophyte found in the Limousin rivers (France) whose potential for biomonitoring of metal pollution has been demonstrated. The objective of the present study carried out in vitro was to identify biomarkers for an early detection of the pollution by a metalloid As (V) in eutrophic and oligotrophic conditions. A synthetic medium of similar composition to the waters of the River Vienne was prepared. The morphological development of watermilfoil was monitored for 30 days, with or without contamination by 100 μg L(-1) As (V). In addition, the mineralization of plants and the analysis of biomarkers (chlorophylls, photosynthetic and respiratory intensities …) were investigated after 21 days. Our results indicated that eutrophic medium, induced a decrease in chlorophyll pigments, in growth and an increase in H2O2 compared to the oligotrophic medium. While, the presence of As (V), led to a decrease in the osmotic potential, pigment content, photosynthesis and respiration rates and an inhibition of shoot branching of plants in both conditions. However, a significant increase in H2O2 content was noted in the eutrophic medium. Finally, As (V) was found to be more accumulated in roots than shoots in both conditions but was more accumulated in oligotrophic one. Therefore, we can conclude that the water trophic level modifies the response of M. alterniflorum in presence of arsenate. Thus, M. alterniflorum shows a great promise in water-quality biomonitoring.

  11. Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin.

    PubMed

    Osborne, Thomas H; McArthur, John M; Sikdar, Pradip K; Santini, Joanne M

    2015-04-01

    Natural pollution of groundwater by arsenic adversely affects the health of tens of millions of people worldwide, with the deltaic aquifers of SE Asia being particularly polluted. The pollution is caused primarily by, or as a side reaction of, the microbial reduction of sedimentary Fe(III)-oxyhydroxides, but the organism(s) responsible for As release have not been isolated. Here we report the first isolation of a dissimilatory arsenate reducer from sediments of the Bengal Basin in West Bengal. The bacterium, here designated WB3, respires soluble arsenate and couples its reduction to the oxidation of acetate; WB3 is therefore implicated in the process of arsenic pollution of groundwater, which is largely by arsenite. The bacterium WB3 is also capable of reducing dissolved Fe(III) citrate, solid Fe(III)-oxyhydroxide, and elemental sulfur, using acetate as the electron donor. It is a member of the Desulfuromonas genus and possesses a dissimilatory arsenate reductase that was identified using degenerate polymerase chain reaction primers. The sediment from which WB3 was isolated was brown, Pleistocene sand at a depth of 35.2 m below ground level (mbgl). This level was some 3 cm below the boundary between the brown sands and overlying reduced, gray, Holocene aquifer sands. The color boundary is interpreted to be a reduction front that releases As for resorption downflow, yielding a high load of labile As sorbed to the sediment at a depth of 35.8 mbgl and concentrations of As in groundwater that reach >1000 μg/L.

  12. Arsenate adsorption mechanisms at the allophane - Water interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  13. SORPTION OF ARSENITE AND ARSENATE ON A HIGH AFFINITY OXIDE: MACROSCOPIC AND MICROSCOPIC STUDIES

    EPA Science Inventory

    Sorption of arsenate and arsenite was examined on a Ru compound using macroscopic and microscopic techniques. Isotherms were constructed from batch studies at pH 4 through 8. Solution As was measured by ICAP. Samples of the Ru compound were equilibrated with arsenite and arsenate...

  14. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    EPA Science Inventory

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...

  15. Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite

    NASA Astrophysics Data System (ADS)

    Catalano, Jeffrey G.; Park, Changyong; Fenter, Paul; Zhang, Zhan

    2008-04-01

    The ability to predict the fate and transport of arsenic in aquatic environments, its impact on water quality and human health, and the performance and cost-effectiveness of water treatment systems relies on understanding how it interacts with solid surfaces. In situ resonant surface X-ray scattering measurements of arsenate adsorption at pH 5 in 0.01 M NaCl on corundum and hematite (012) surfaces demonstrate that arsenate surface complexation is unexpectedly bimodal, adsorbing simultaneously as inner- and outer-sphere species. In addition, this bimodal behavior is found to be independent of the total arsenate solution concentration, and thus surface coverage, over the range of 10 -6 to 10 -3 M. Alternative mechanisms to produce the observed As distributions, such as arsenate dimerization or surface precipitation of an aluminum or ferric arsenate, are inconsistent with the experimentally-determined total and As-specific density profiles. Based on the location of the outer-sphere arsenate in relation to the surfaces studied, possible binding mechanisms include electrostatic attraction, hydrogen bonding to surface oxygen functional group, and configurational stabilization by interfacial water. Although the observation of outer-sphere arsenate surface complexes on a metal oxide surface is unprecedented, it is unclear if such species were absent in previous molecular-scale studies, as it is difficult for methods commonly used to investigate the mechanisms of arsenate adsorption to conclusively identify or rule out the presence of outer-sphere species when inner-sphere species are also present.

  16. Leaching of chromated copper arsenate wood preservatives: a review.

    PubMed

    Hingston, J A; Collins, C D; Murphy, R J; Lester, J N

    2001-01-01

    Recent studies have generated conflicting data regarding the bioaccumulation and toxicity of leachates from preservative-treated wood. Due to the scale of the wood preserving industry, timber treated with the most common preservative, chromated copper arsenate (CCA), may form a significant source of metals in the aquatic environment. The existing literature on leaching of CCA is reviewed, and the numerous factors affecting leaching rates, including pH, salinity, treatment and leaching test protocols are discussed. It is concluded from the literature that insufficient data exists regarding these effects to allow accurate quantification of leaching rates, and also highlights the need for standardised leaching protocols. PMID:11202715

  17. Respiratory papillomas

    PubMed Central

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas.

  18. Respiratory papillomas.

    PubMed

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas.

  19. Respiratory papillomas

    PubMed Central

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas. PMID:27625447

  20. Subchronic dispositional and toxicological effects of arsenate administered in drinking water to mice

    SciTech Connect

    Hughes, M.F.; Thompson, D.J.

    1996-10-11

    Exposure to the drinking water contaminant arsenate is a daily occurrence and there are concerns that this exposure may lead to cancer. Although the acute dispositional effects of arsenate have been studied in detail, there is minimal information on the disposition and toxicological effects of it after continuous exposure. The objective of this study was to examine in mice the effect of a 4-wk treatment with arsenate administered in drinking water. Female B6C3F1 mice were housed in metabolism cages and given water and food ad libitum. Two groups (A,B) of mice were treated with distilled water or water containing 0.025 mg/L (L) or 2.5 mg/L (H) arsenate. Several toxicological effects were observed in animals administered arsenate in drinking water, but no changes in the disposition of this arsenical were detected at the doses used in this study. 86 refs., 4 figs., 7 tabs.

  1. Respiratory Failure

    MedlinePlus

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  2. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  3. Comparative proteomic analysis of rice shoots exposed to high arsenate.

    PubMed

    Liu, Yanli; Li, Ming; Han, Chao; Wu, Fengxia; Tu, Bingkun; Yang, Pingfang

    2013-10-01

    Consumption of arsenic contaminated water and cereals is a serious threat to humans all over the world. Rice (Oryza sativa "Nipponbare"), as a main cereal crop, can accumulate arsenic more than 10-fold that of in other cereals. To gain a comprehensive understanding of the response of rice subjected to 100 µM arsenate stress, a comparative proteomic analysis of rice shoots in combination with morphological and biochemical investigations have been performed in this study. The results demonstrated that arsenate suppressed the growth of rice seedlings, destroyed the cellular ultra-structure and changed the homeostasis of reactive oxygen species. Moreover, a total of 38 differentially displayed proteins, which were mainly involved in metabolism, redox and protein-metabolism, were identified. The data suggest the arsenic can inhibit rice growth through negatively affecting chloroplast structure and photosynthesis. In addition, upregulation of the proteins involved in redox and protein metabolism might help the rice to be resistant or tolerant to arsenic toxicity. In general, this study improves our understanding about the rice arsenic responsive mechanism.

  4. Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite

    SciTech Connect

    N Bhandari; R Reeder; D Strongin

    2011-12-31

    The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.

  5. Fast removal of high quantities of toxic arsenate via cationic p(APTMACl) microgels.

    PubMed

    Rehman, Saif Ur; Siddiq, Mohammed; Al-Lohedan, Hamad; Aktas, Nahit; Sahiner, Mehtap; Demirci, Sahin; Sahiner, Nurettin

    2016-01-15

    Hydrogels are resourceful materials and can be prepared in different morphology, size, surface charge and porosity adopting different polymerization techniques and reaction conditions. The cationic poly(3-acrylamidopropyl)trimethylammonium chloride (p(APTMACl)) microgels were synthesized by photo-initiated inverse suspension polymerization technique. These microgels were utilized as absorbents for the removal of toxic arsenate (As) from different aqueous environments. The experimental parameters affecting absorption efficiency were investigated, and it was demonstrated that these types of microgels are highly efficient in removing arsenate anions from different aqueous environments compared to the previously reported bulk hydrogel, and cryogel of the same material. A removal efficiency of approximately 97.25% was obtained by immersing 0.5 g microgel in 250 ppm 100 mL solution of arsenate anions for 60 min. Both Langmuir and Freundlich adsorption isotherms were applied to adsorption of arsenate anions by p(APTMACl) microgels, and the Langmuir isotherm was a better representation of the adsorption of arsenate with a high value of R(2) (0.9982). Furthermore, mag-p(APTMACl) microgels were synthesized for the adsorption of arsenate anions to provide easy removal of the microgel composite by using an externally applied magnetic field. Furthermore, re-usability of the p(APTMACl) microgels was also investigated for the adsorption of arsenate anions.

  6. Sorption of arsenate and arsenite anions by iron(III)-poly(hydroxamic acid) complex.

    PubMed

    Haron, M J; Wan Yunus, W M; Yong, N L; Tokunaga, S

    1999-12-01

    Iron(III)-poly(hydroxamic acid) resin complex has been studied for its sorption abilities with respect to arsenate and arsenite anions from an aqueous solution. The complex was found effective in removing the arsenate anion in the pH range of 2.0 to 5.5. The maximum sorption capacity was found to be 1.15 mmol/g. The sorption selectivity showed that arsenate sorption was not affected by chloride, nitrate and sulphate. The resin was tested and found effective for removal of arsenic ions from industrial wastewater samples.

  7. Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure.

    PubMed

    Ge, Ying; Ning, Zhibin; Wang, Ya; Zheng, Yanheng; Zhang, Chunhua; Figeys, Daniel

    2016-02-01

    Dunaliella salina is resistant to arsenic (As) and can accumulate a large amount of this highly toxic metalloid in cells. To study the mechanisms of As tolerance, a label-free, LC-MS/MS-based proteomic approach was applied for the first time to identify and quantify differentially expressed proteins from D. salina exposed to 11.2 mg L(-1) arsenate (As(V)) for 72 h. The intracellular As content reached 19.8 mg kg(-1), leading to a significant increase of lipid peroxidation in cells and a 7.4% growth reduction of this microalga. Sixty-five proteins were differentially expressed (p < 0.05), with 45 significantly induced and 20 declined. These proteins were involved in energy metabolism, protein synthesis and folding, ROS scavenging and defense, phosphate transport and membrane trafficking, and amino acid synthesis. Taken together, this study provides novel insights on the As(V) detoxification in D. salina.

  8. Mechanism of arsenate activation of mammalian phosphoglycerate mutase

    SciTech Connect

    Rea, D.W.; McWilliams, A.D.; Hass, L.F.

    1987-05-01

    Towne demonstrated that arsenate (As/sub i/) can replace D-glycerate-2,3-P/sub 2/ (2,3-DPG) as an activator for cofactor-dependent phosphoglycerate mutase (PGM). Arsenate activation was found to be accompanied by a lag phase which, over a period of several minutes, gradually evolved into a region of steady-state kinetics. The authors have verified and expanded Towne's findings through isotope exchange studies and kinetic analysis. In the absence of 2,3-DPG, reciprocal plots of PGM-catalyzed steady-state velocities versus As/sub i/ concentrations at different D-glycerate-3-P (3-PGA) levels yield a family of curves which suggest a ping-pong mechanism accompanied by double competitive substrate inhibition. Other experiments show that incubation of doubly-labelled 0.25 mM (U-/sup 14/C, /sup 32/P)-3-PGA with 20 mM As/sub i/ and PGM for several hrs. promotes the release of P/sub i/ with the concomitant formation of D-glycerate. Addition of 0.2 mM glycolate-2-P to the reaction medium accelerates the process. P/sub i/, but not vanadate, also promotes hydrolysis of 3-PGA, but to a much lesser extent than As/sub i/, even in the presence of glycolate-2-P. The pH optimum for 3-PGA phosphatase activity is 6.0-6.2. These and other findings suggest that As/sub i/ accelerates PGM catalysis by first forming 2-As-3-PGA which in turn forms phosphoenzyme (EP). Previous studies have shown that EP is the active form of PGM.

  9. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major.

    PubMed

    Bisacchi, Davide; Zhou, Yao; Rosen, Barry P; Mukhopadhyay, Rita; Bordo, Domenico

    2006-10-01

    Arsenic is present in the biosphere owing either to the presence of pesticides and herbicides used in agricultural and industrial activities or to leaching from geological formations. The health effects of prolonged exposure to arsenic can be devastating and may lead to various forms of cancer. Antimony(V), which is chemically very similar to arsenic, is used instead in the treatment of leishmaniasis, an infection caused by the protozoan parasite Leishmania sp.; the reduction of pentavalent antimony contained in the drug Pentostam to the active trivalent form arises from the presence in the Leishmania genome of a gene, LmACR2, coding for the protein LmACR2 (14.5 kDa, 127 amino acids) that displays weak but significant sequence similarity to the catalytic domain of Cdc25 phosphatase and to rhodanese enzymes. For structural characterization, LmACR2 was overexpressed, purified to homogeneity and crystallized in a trigonal space group (P321 or P3(1)21/P3(2)21). The protein crystallized in two distinct trigonal crystal forms, with unit-cell parameters a = b = 111.0, c = 86.1 A and a = b = 111.0, c = 175.6 A, respectively. At a synchrotron beamline, the diffraction pattern extended to a resolution limit of 1.99 A. PMID:17012788

  10. Homology among arsenate resistance determinants of R factors in Escherichia coli.

    PubMed Central

    Mobley, H L; Silver, S; Porter, F D; Rosen, B P

    1984-01-01

    Escherichia coli bearing R factors R773 or R46 or hybrid recombinant plasmids carrying the arsenic resistance determinants derived from these plasmids synthesized inducible polypeptides of similar apparent molecular weights when exposed to arsenite salts (R773 derivative, 64,000 and 16,000; R46 derivative, 62,000, 16,500, and 13,500). In addition, both plasmids encoded energy-dependent arsenate efflux systems and demonstrated DNA sequence homology by filter blot hybridization. Human isolates of arsenate- and arsenite-resistant enterobacteria were tested for homology with the arsenate operon of R773 by colony blot hybridization. Approximately one-third of the isolates hybridized strongly, and two-thirds showed little or no evidence of homology, suggesting the presence of two or more genetically distinct arsenate resistant determinants. Images PMID:6370124

  11. Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration.

    PubMed

    Arnetoli, Miluscia; Vooijs, Riet; ten Bookum, Wilma; Galardi, Francesca; Gonnelli, Cristina; Gabbrielli, Roberto; Schat, Henk; Verkleij, Jos A C

    2008-04-01

    Arsenate tolerance, As accumulation and As-induced phytochelatin accumulation were compared in populations of Silene paradoxa, one from a mine site enriched in As, Cu and Zn, the other from an uncontaminated site. The mine population was significantly more arsenate-tolerant. Arsenate uptake and root-to-shoot transport were slightly but significantly higher in the non-mine plants. The difference in uptake was quantitatively insufficient to explain the difference in tolerance between the populations. As accumulation in the roots was similar in both populations, but the mine plants accumulated much less phytochelatins than the non-mine plants. The mean phytochelatin chain length, however, was higher in the mine population, possibly due to a constitutively lower cellular glutathione level. It is argued that the mine plants must possess an arsenic detoxification mechanism other than arsenate reduction and subsequent phytochelatin-based sequestration. This alternative mechanism might explain at least some part of the superior tolerance in the mine plants.

  12. ASSESSING CHILDREN'S EXPOSURES TO THE WOOD PRESERVATIVE CCA (CHROMATED COPPER ARSENATE) ON TREATED PLAYSETS AND DECKS

    EPA Science Inventory

    Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for re...

  13. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    NASA Astrophysics Data System (ADS)

    Khan, Taimur; Chaudhuri, Malay

    2013-06-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants Kf and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  14. Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: Implications for arsenic mobility

    NASA Astrophysics Data System (ADS)

    Paktunc, Dogan; Dutrizac, John; Gertsman, Valery

    2008-06-01

    Scorodite, ferric arsenate and arsenical ferrihydrite are important arsenic carriers occurring in a wide range of environments and are also common precipitates used by metallurgical industries to control arsenic in effluents. Solubility and stability of these compounds are controversial because of the complexities in their identification and characterization in heterogeneous media. To provide insights into the formation of scorodite, ferric arsenate and ferrihydrite, series of synthesis experiments were carried out at 70 °C and pH 1, 2, 3 and 4.5 from 0.2 M Fe(SO 4) 1.5 solutions also containing 0.02-0.2 M Na 2HAsO 4. The precipitates were characterized by transmission electron microscopy, X-ray diffraction and X-ray absorption fine structure techniques. Ferric arsenate, characterized by two broad diffuse peaks on the XRD pattern and having the structural formula of FeAsO 4·4-7H 2O, is a precursor to scorodite formation. As defined by As XAFS and Fe XAFS, the local structure of ferric arsenate is profoundly different than that of scorodite. It is postulated that the ferric arsenate structure is made of single chains of corner-sharing Fe(O,OH) 6 octahedra with bridging arsenate tetrahedra alternating along the chains. Scorodite was precipitated from solutions with Fe/As molar ratios of 1 over the pH range of 1-4.5. The pH strongly controls the kinetics of scorodite formation and its transformation from ferric arsenate. The scorodite crystallite size increased from 7 to 33 nm by ripening and aggregation. Precipitates, resulting from continuous synthesis at pH 4.5 from solutions having Fe/As molar ratios ranging from 1 to 4 and resembling the compounds referred to as ferric arsenate, arsenical ferrihydrite and As-rich hydrous ferric oxide in the literature, represent variable mixtures of ferric arsenate and ferrihydrite. When the Fe/As ratio increases, the proportion of ferrihydrite increases at the expense of ferric arsenate. Arsenate adsorption appears to retard

  15. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  16. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  17. Concentration and chemical status of arsenic in the early placentas of arsenate-dosed hamsters

    SciTech Connect

    Hanlon, D.P.; Ferm, V.H.

    1987-04-01

    The authors determined the concentration and chemical status of arsenic in the placentas of hamsters following continuous exposure via the osmotic minipump to minimally and frankly teratogenic doses of arsenate. Close to 70% of the placental arsenic is bound to macromolecules, two-thirds of which is dialyzable. The remaining 30% of arsenic consists of low molecular weight species, predominantly inorganic arsenic. This mix is the same for minimally teratogenic and frankly teratogenic doses of arsenate.

  18. Simultaneous inner-and outer-sphere arsenate adsorption on corundum and hematite.

    SciTech Connect

    Catalano, J. G.; Park, C.; Fenter, P.; Zhang, Z.; X-Ray Science Division

    2008-01-01

    The ability to predict the fate and transport of arsenic in aquatic environments, its impact on water quality and human health, and the performance and cost-effectiveness of water treatment systems relies on understanding how it interacts with solid surfaces. In situ resonant surface X-ray scattering measurements of arsenate adsorption at pH 5 in 0.01 M NaCl on corundum and hematite (012) surfaces demonstrate that arsenate surface complexation is unexpectedly bimodal, adsorbing simultaneously as inner- and outer-sphere species. In addition, this bimodal behavior is found to be independent of the total arsenate solution concentration, and thus surface coverage, over the range of 10{sup -6} to 10{sup -3} M. Alternative mechanisms to produce the observed As distributions, such as arsenate dimerization or surface precipitation of an aluminum or ferric arsenate, are inconsistent with the experimentally-determined total and As-specific density profiles. Based on the location of the outer-sphere arsenate in relation to the surfaces studied, possible binding mechanisms include electrostatic attraction, hydrogen bonding to surface oxygen functional group, and configurational stabilization by interfacial water. Although the observation of outer-sphere arsenate surface complexes on a metal oxide surface is unprecedented, it is unclear if such species were absent in previous molecular-scale studies, as it is difficult for methods commonly used to investigate the mechanisms of arsenate adsorption to conclusively identify or rule out the presence of outer-sphere species when inner-sphere species are also present.

  19. Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono Lake, California

    USGS Publications Warehouse

    Hoeft, S.E.; Lucas, F.; Hollibaugh, J.T.; Oremland, R.S.

    2002-01-01

    Dissimilatory reduction of arsenate (DAsR) occurs in the arsenic-rich, anoxic water column of Mono Lake, California, yet the microorganisms responsible for this observed in situ activity have not been identified. To gain insight as to which microorganisms mediate this phenomenon, as well as to some of the biogeochemical constraints on this activity, we conducted incubations of arsenate-enriched bottom water coupled with inhibition/amendment studies and Denaturing Gradient Gel Electrophoresis (DGGE) characterization techniques. DAsR was totally inhibited by filter-sterilization and by nitrate, partially inhibited (~50%) by selenate, but only slightly (~25%) inhibited by oxyanions that block sulfate-reduction (molybdate and tungstate). The apparent inhibition by nitrate, however, was not due to action as a preferred electron acceptor to arsenate. Rather, nitrate addition caused a rapid, microbial re-oxidation of arsenite to arsenate, which gave the overall appearance of no arsenate loss. A similar microbial oxidation of As(III) was also found with Fe(III), a fact that has implications for the recycling of As(V) in Mono Lake's anoxic bottom waters. DAsR could be slightly (10%) stimulated by substrate amendments of lactate, succinate, malate, or glucose, but not by acetate, suggesting that the DAsR microflora is not electron donor limited. DGGE analysis of amplified 16S rDNA gene fragments from incubated arsenate-enriched bottom waters revealed the presence of two bands that were not present in controls without added arsenate. The resolved sequences of these excised bands indicated the presence of members of the epsilon (Sulfurospirillum) and delta (Desulfovibrio) subgroups of the Proteobacteria, both of which have representative species that are capable of anaerobic growth using arsenate as their electron acceptor.

  20. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III)

    USGS Publications Warehouse

    Ritter, K.; Aiken, G.R.; Ranville, J.F.; Bauer, M. E.; Macalady, D.L.

    2006-01-01

    Dialysis experiments with arsenate and three different NOM samples amended with Fe(III) showed evidence confirming the formation of aquatic arsenate-Fe(III)-NOM associations. A linear relationship was observed between the amount of complexed arsenate and the Fe(III) content of the NOM. The dialysis results were consistent with complex formation through ferric iron cations acting as bridges between the negatively charged arsenate and NOM functional groups and/or a more colloidal association, in which the arsenate is bound by suspended Fe(III)-NOM colloids. Sequential filtration experiments confirmed that a significant proportion of the iron present at all Fe/C ratios used in the dialysis experiments was colloidal in nature. These colloids may include larger NOM species that are coagulated by the presence of chelated Fe(III) and/or NOM-stabilized ferric (oxy)hydroxide colloids, and thus, the solution-phase arsenate-Fe(III)-NOM associations are at least partially colloidal in nature. ?? 2006 American Chemical Society.

  1. A mechanistic study of arsenate removal from artificially contaminated clay soils by electrokinetic remediation.

    PubMed

    Suzuki, Tasuma; Moribe, Mai; Okabe, Yohhei; Niinae, Masakazu

    2013-06-15

    Batch desorption experiments and bench-scale electrokinetic experiments were performed to elucidate the electrokinetic remediation mechanisms of arsenate from artificially contaminated kaolinite. The electrokinetic experiments in which a constant voltage was applied demonstrated that high soil pH favored arsenate remediation with respect to both the remediation time and electricity consumption. It was also demonstrated that applying a pulse voltage (1 h ON, 1 h OFF) significantly improved the electricity consumption efficiency when the soil pH was maintained at the initial value during the experiments; this trend was not observed when the soil pH was gradually increased from the cathode side. These electrokinetic experimental results, with the support of arsenate desorption data obtained from batch experiments, indicate that the remediation rate-limiting step varied with soil pH. When the soil pH was maintained at the initial value of 7.2 during the experiments, arsenate desorption was the remediation rate-limiting step rather than the migration of dissolved arsenate toward the anode. Conversely, when the cathode pH was not controlled and the soil pH was correspondingly increased gradually from the cathode side, the migration of hydroxyl and desorbed arsenate ions toward the anode played a more important role in the control of the overall remediation efficiency. PMID:23643955

  2. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... gene provides instructions for making an enzyme called steroid 5-alpha reductase 2. This enzyme is involved ... external genitalia. Mutations in the SRD5A2 gene prevent steroid 5-alpha reductase 2 from effectively converting testosterone ...

  3. Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron(III) precipitates.

    PubMed

    Violante, Antonio; Del Gaudio, Stefania; Pigna, Massimo; Ricciardella, Mariarosaria; Banerjee, Dipanjan

    2007-12-15

    Coprecipitation of arsenic with iron or aluminum occurs in natural environments and is a remediation technology used to remove this toxic metalloid from drinking water and hydrometallurgical solutions. In this work, we studied the nature, mineralogy, and reactivity toward phosphate of iron-arsenate coprecipitates formed at As(V)/Fe(III) molar ratios (R) of 0, 0.01, or 0.1 and at pH 4.0, 7.0, and 10.0 aged for 30 or 210 days at 50 degrees C and studied the desorption of arsenate. At R = 0, goethite and hematite (with ferrihydrite at pH 4.0 and 7.0) crystallized, whereas at R = 0.01, the formation of ferrihydrite increased and hematite crystallization was favored over goethite. In some samples, the morphology of hematite changed from rounded platy crystals to ellipsoids. At R = 0.1, ferrihydrite formed in all the coprecipitates and remained unchanged even after 210 days of aging. The surface area and chemical composition of the precipitates were affected by pH, R, and aging. Chemical dissolution of the samples showed that arsenate was present mainly in ferrihydrite, but at R = 0.01, it was partially incorporated into the structures of crystalline Fe oxides. The sorption of phosphate on to the coprecipitates was affected not only by the mineralogy and surface area of the samples but also by the amounts of arsenate present in the oxides. The samples formed at pH 4.0 and 7.0 and at R = 0.1 sorbed lower amounts of phosphate than the precipitates obtained at R = 0 or 0.01, despite the former having a larger surface area and showing only a presence of short-range ordered materials. This is mainly due to the fact that in the coprecipitates at R = 0.1 arsenate occupied many sorption sites, thus preventing phosphate sorption. Less than 20% of the arsenate present in the coprecipitates formed at R = 0.1 was removed by phosphate and more from the samples synthesized at pH 7.0 or 10.0 than at pH 4.0. Moreover, we found that more arsenate was desorbed by phosphate from a

  4. Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes.

    PubMed

    Gong, Yan; Song, Lirong; Wu, Xingqiang; Xiao, Bangding; Fang, Tao; Liu, Jiantong

    2009-02-01

    Both arsenic pollution and eutrophication are prominent environmental issues when considering the problem of global water pollution. It is important to reveal the effects of arsenic species on cyanobacterial growth and toxin yields to assess ecological risk of arsenic pollution or at least understand naturally occurring blooms. The sensitivity of cyanobacteria to arsenate has often been linked to the structural similarities of arsenate and phosphate. Thus, we approached the effect of arsenate with concentrations from 10(-8) to 10(-4) M on Microcystis strain PCC7806 under various phosphate regimes. The present study showed that Microcystis strain PCC7806 was arsenate tolerant up to 10(-4) M. And such tolerance was without reference to both content of intra- and extra-cellular phosphate. It seems that arsenate involved the regulation of microcystin synthesis and cellular polyphosphate contributed to microcystin production of Microcystis responding to arsenate, since there was a positive linear correlation of the cellular microcystin quota with the exposure concentration of arsenate when the cells were not preconditioned to phosphate starvation. It is presumed that arsenate could help to actively export microcystins from living Microcystis cells when preconditioned to phosphate starvation and incubated with the medium containing 1 microM phosphate. This study firstly provided evidence that microcystin content and/or release of Microcystis might be impacted by arsenate if it exists in harmful algal blooms. PMID:18442067

  5. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate

    NASA Astrophysics Data System (ADS)

    Waychunas, G. A.; Rea, B. A.; Fuller, C. C.; Davis, J. A.

    1993-05-01

    EXAFS spectra were collected on both the As and Fe K-edges from samples of two-line ferrihydrite with adsorbed (ADS) and coprecipitated (CPT) arsenate prepared over a range of conditions and arsenate surface coverages. Spectra also were collected for arsenate adsorbed on the surfaces of three FeOOH crystalline polymorphs, α (goethite), β (akaganeite), and γ (lepidocrocite), and as a free ion in aqueous: solution. Analyses of the As EXAFS show clear evidence for inner sphere bidentate (bridging) arsenate complexes on the ferrihydrite surface and on the surfaces of the crystalline FeOOH polymorphs. The bridging arsenate is attached to adjacent apices of edge-sharing Fe oxyhydroxyl octahedra. The arsenic-iron distance at the interface ( 3.28 ±0.01 Å) is close to that expected for this geometry on the FeOOH polymorph surfaces, but is slightly shorter on the ferrihydrite surfaces ( 3.25 ± 0.02 Å). Mono-dentate arsenate linkages ( 3.60 ± 0.03 Å) also occur on the ferrihydrite, but are not generally observed on the crystalline FeOOH polymorphs. The proportion of monodentate bonds appears largest for adsorption samples with the smallest As/Fe molar ratio. In all cases the arsenate tetrahedral complex is relatively undistorted with As-O bonds of 1.66 ± 0.01 Å. Precipitation of arsenate or scorodite-like phases was not observed for any samples, all of which were prepared at a pH value of 8. The Fe EXAFS results confirm that the Fe-Fe correlations in the ferrihydrite are progressively disrupted in the CPT samples as the As/Fe ratio is increased. Coherent crystallite size is probably no more than 10 Å in diameter and no Fe oxyhydroxyl octahedra corner-sharing linkages (as would be present in FeOOH polymorphs) are observed at the largest As/Fe ratios. Comparison of the number and type of Fe-Fe neighbors with the topological constraints imposed by the arsenate saturation limit in the CPT samples (about 0.7 As/Fe) indicates ferrihydrite units consisting mainly of Fe

  6. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate

    USGS Publications Warehouse

    Waychunas, G.A.; Rea, B.A.; Fuller, C.C.; Davis, J.A.

    1993-01-01

    EXAFS spectra were collected on both the As and Fe K-edges from samples of two-line ferrihydrite with adsorbed (ADS) and coprecipitated (CPT) arsenate prepared over a range of conditions and arsenate surface coverages. Spectra also were collected for arsenate adsorbed on the surfaces of three FeOOH crystalline polymorphs, ?? (goethite), ?? (akaganeite), and ?? (lepidocrocite), and as a free ion in aqueous: solution. Analyses of the As EXAFS show clear evidence for inner sphere bidentate (bridging) arsenate complexes on the ferrihydrite surface and on the surfaces of the crystalline FeOOH polymorphs. The bridging arsenate is attached to adjacent apices of edge-sharing Fe oxyhydroxyl octahedra. The arsenic-iron distance at the interface (3.28 ??0.01 A ??) is close to that expected for this geometry on the FeOOH polymorph surfaces, but is slightly shorter on the ferrihydrite surfaces (3.25 ?? 0.02 A ??). Mono-dentate arsenate linkages (3.60 ?? 0.03 A ??) also occur on the ferrihydrite, but are not generally observed on the crystalline FeOOH polymorphs. The proportion of monodentate bonds appears largest for adsorption samples with the smallest As Fe molar ratio. In all cases the arsenate tetrahedral complex is relatively undistorted with As-O bonds of 1.66 ?? 0.01 A ??. Precipitation of arsenate or scorodite-like phases was not observed for any samples, all of which were prepared at a pH value of 8. The Fe EXAFS results confirm that the Fe-Fe correlations in the ferrihydrite are progressively disrupted in the CPT samples as the As Fe ratio is increased. Coherent crystallite size is probably no more than 10 A?? in diameter and no Fe oxyhydroxyl octahedra corner-sharing linkages (as would be present in FeOOH polymorphs) are observed at the largest As Fe ratios. Comparison of the number and type of Fe-Fe neighbors with the topological constraints imposed by the arsenate saturation limit in the CPT samples (about 0.7 As Fe) indicates ferrihydrite units consisting mainly

  7. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  8. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  9. Effects of arsenate on growth and physiology in mallard ducklings

    USGS Publications Warehouse

    Camardese, M.B.; Hoffman, D.J.; LeCaptain, L.J.; Pendleton, G.W.

    1990-01-01

    Arsenic (As) has been found at elevated concentrations in irrigation drainwater and in aquatic plants utilized by waterfowl. Mallard (Anas platyrhynchos) duckings received an untreated diet (controls) or diets containing 30, 100 or 300 ppm As added as sodium arsenate. After 10 weeks blood and tissue samples were collected for biochemical and histological examination. Arsenic accumulated significantly in brain and liver of ducklings fed 100 or 300 ppm but did not result in histopathological lesions. The 300-ppm dietary As concentration decreased overall growth (weight gain) in males, whereas all concentrations of As decreased overall growth and rate of growth in females. Food consumption was less during the first three weeks in all 300-ppm group and during the second week for the 100-ppm compared to controls. Plasma sorbitol dehydrogenase activity and plasma glucose concentration were higher in the 300-ppm group compared to controls. Plasma triglyceride concentration increased in all As-treated groups. Brain ATP was lower in the 300-ppm group and sodium/potassium-dependent ATPase activity was higher in the 30- and 100-ppm groups. Hepatic glutathione peroxidase activity was lower in the 300-ppm group and malondialdehyde lower in all treatment groups. All treatment levels caused elevation in hepatic glutathione and ATP concentrations. These findings, in combination with altered duckling behavior (increased resting time) suggesting that concentrations of As that have been found in aquatic plants (up to 430 ppm dry weight) could adversely affect normal duckling development.

  10. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake.

    PubMed

    Lee, David A; Chen, Alice; Schroeder, Julian I

    2003-09-01

    Arsenic is one of the most toxic pollutants at contaminated sites, yet little is known about the mechanisms by which certain plants survive exposure to high arsenic levels. To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of a mutant arsenic resisant 1 (ars1) with increased tolerance to arsenate. ars1 germinates and develops under conditions that completely inhibit growth of wild-type plants and shows a semi-dominant arsenic resistance phenotype. ars1 accumulates levels of arsenic similar to that accumulated by wild-type plants, suggesting that ars1 plants have an increased ability to detoxify arsenate. However, ars1 plants produce phytochelatin levels similar to levels produced by the wild type, and the enhanced resistance of ars1 is not abolished by the gamma-glutamylcysteine synthetase inhibitor l-buthionine sulfoxime (BSO). Furthermore, ars1 plants do not show resistance to arsenite or other toxic metals such as cadmium and chromium. However, ars1 plants do show a higher rate of phosphate uptake than that shown by wild-type plants, and wild-type plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and consequently on the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 could be due to a new mechanism mediated by increased phosphate uptake in ars1. Models discussing how increased phosphate uptake could contribute to arsenate tolerance are discussed.

  11. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans.

    PubMed

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2015-01-01

    Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans. Although mutants impaired in the Hog1 or Mkc1-mediated pathways did not show significant sensitivity to this compound, both Hog1 and Mkc1 became phosphorylated upon addition of sodium arsenate to growing cells. Hog1 phosphorylation upon arsenate challenge was shown to be Ssk1-dependent. A screening designed for the identification of transcription factors involved in the arsenate response identified Pho4, a transcription factor of the myc-family, as pho4 mutants were susceptible to As (V). The expression of PHO4 was shortly induced in the presence of sodium arsenate in a Hog1-independent manner. Pho4 level affects Hog1 phosphorylation upon As (V) challenge, suggesting an indirect relationship between Pho4 activity and signaling in C. albicans. Pho4 also mediates the response to arsenite as revealed by the fact that pho4 defective mutants are sensitive to arsenite and Pho4 becomes phosphorylated upon sodium arsenite addition. Arsenite also triggers Hog1 phosphorylation by a process that is, in this case, independent of the Ssk1 kinase. These results indicate that the HOG pathway mediates the response to arsenate and arsenite in C. albicans and that the Pho4 transcription factor can differentiate among As (III), As (V) and Pi, triggering presumably specific responses. PMID:25717325

  12. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans

    PubMed Central

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2015-01-01

    Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans. Although mutants impaired in the Hog1 or Mkc1-mediated pathways did not show significant sensitivity to this compound, both Hog1 and Mkc1 became phosphorylated upon addition of sodium arsenate to growing cells. Hog1 phosphorylation upon arsenate challenge was shown to be Ssk1-dependent. A screening designed for the identification of transcription factors involved in the arsenate response identified Pho4, a transcription factor of the myc-family, as pho4 mutants were susceptible to As (V). The expression of PHO4 was shortly induced in the presence of sodium arsenate in a Hog1-independent manner. Pho4 level affects Hog1 phosphorylation upon As (V) challenge, suggesting an indirect relationship between Pho4 activity and signaling in C. albicans. Pho4 also mediates the response to arsenite as revealed by the fact that pho4 defective mutants are sensitive to arsenite and Pho4 becomes phosphorylated upon sodium arsenite addition. Arsenite also triggers Hog1 phosphorylation by a process that is, in this case, independent of the Ssk1 kinase. These results indicate that the HOG pathway mediates the response to arsenate and arsenite in C. albicans and that the Pho4 transcription factor can differentiate among As (III), As (V) and Pi, triggering presumably specific responses. PMID:25717325

  13. Respiratory acidosis

    MedlinePlus

    ... obesity, which restricts how much the lungs can expand Obstructive sleep apnea Chronic respiratory acidosis occurs over ... Tests that may be done include: Arterial blood gas , which measures oxygen and carbon dioxide levels in ...

  14. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction and the consequent impact on arsenic mobilisation

    NASA Astrophysics Data System (ADS)

    Huang, Jen-How

    2014-05-01

    Mobilisation of solid phase arsenic under reducing conditions involves a combination of microbial arsenate and iron reduction and is affected by secondary reactions of released products. A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔGrxn for arsenate and ferrihydrite reduction in non-growth conditions at pH 7. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. Thus, the mobilisation of adsorbed As(V) can be regarded as the rate determining step of microbial reduction of As(V) sorbed to ferrihydrite. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. Reductive dissolution of ferrihydrite may cause additional releases of adsorbed As(V) into solution, which is especially effective at high As(V) to ferrihydrite ratios. In comparison, formation of Fe(II) secondary minerals during microbial Fe(III) reduction were responsible for trapping solution As(V) in the systems with high ferrihydrite but low As

  15. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  16. Evaluating the performance of iron nanoparticle resin in removing arsenate from water.

    PubMed

    Boldaji, Maryam Rahmani; Nabizadeh, Ramin; Dehghani, Mohammad Hadi; Nadafi, Kazem; Mahvi, Amir Hossein

    2010-01-01

    This research was undertaken to evaluate the effectiveness of a hybrid sorbent resin (Lewatit FO36) with goethite structure for removing arsenate from water. Column experiments (with constant flow rate of 8 mL/min, corresponding to 2 min empty bed contact time (EBCT)) were conducted to evaluate the adsorption capacity of resin before and after regeneration and effects of chloride, sulfate, bicarbonate and combined competing ions for arsenate removal from water. The adsorption capacity was approximately 3.229 mg/g that was reduced to 2.826 mg/g after regeneration with 12.48% decrease, which indicates to a successful regeneration procedure. Chloride and sulfate ions had no significant effects on arsenate removal but arsenic removal decreased in the presence of bicarbonate and combined ions. This reduction may be due to the ability of bicarbonate ions in extracting and mobilizing the arsenate ions from iron oxyhydroxides. Results of this study showed that Lewatit FO36 could be developed as a suitable sorbent for arsenate removal. PMID:20473804

  17. Monomethylarsonate (MMAv) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers.

    PubMed

    Suwalsky, Mario; Rivera, Cecilia; Sotomayor, Carlos P; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2008-01-01

    Methylation of inorganic arsenic has been regarded as a detoxification mechanism because its metabolites monomethylarsonic acid (MMA(v)) and dimethylarsinic acid (DMA(v)) are supposed to be less toxic than inorganic arsenite and arsenate. In recent years, however, this interpretation has been questioned. Additionally, there are insufficient reports concerning the effects of arsenic compounds on cell membrane structure and functions. With the aim to better understand the molecular mechanisms of the interaction of MMA(v) and arsenate with cell membranes, we have utilized molecular models consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of many cell membranes including that of the human erythrocyte. The capacity of MMA(v) and arsenate to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction; the modifications of their thermotropic behavior were followed by differential scanning calorimetry (DSC), while DMPC large unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. It was found that MMA(v) and arsenate did not structurally perturb DMPC bilayers; however, DMPE bilayers did suffer structural perturbations by MMA(v). DSC measurements also revealed that DMPE's thermotropic properties were significantly affected by arsenicals, where MMA(v) was more effective than arsenate, whilst only slight modifications were observed in the case of DMPC-MMA(v) system. PMID:17961907

  18. Edaphic factors affecting the toxicity and accumulation of arsenate in the earthworm Lumbricus terrestris

    SciTech Connect

    Meharg, A.A.; Shore, R.F.; Broadgate, K.

    1998-06-01

    The toxicity and accumulation of arsenate was determined in the earthworm Lumbricus terrestris in soil from different layers of a forest profile. Toxicity increased fourfold between 2 and 10 d. Edaphic factors (pH, soil organic matter, and depth in soil profile) also affected toxicity with a three fold decrease in the concentration that causes 50% mortality with increasing depth in soil. In a 4-d exposure study, there was no evidence of arsenic bioconcentration in earthworm tissue, although bioaccumulation was occurring. There was a considerable difference in tissue residues between living and dead earthworms, with dead worms having higher concentrations. This difference was dependent on both soil arsenate concentration and on soil type. Over a wide range of soil arsenate concentrations, earthworm arsenic residues are homeostatically maintained in living worms, but this homeostasis breaks down during death. Alternatively, equilibration with soil residues may occur via accumulation after death. In long-term accumulation studies in soils dosed with a sublethal arsenate concentration, bioconcentration of arsenate did not occur until day 12, after which earthworm concentrations rose steadily above the soil concentration, with residues in worms three fold higher than soil concentrations by the termination of the study. This bioconcentration only occurred in depurated worms over the time period of the study. Initially, depurated worms had lower arsenic concentrations than undepurated until tissue concentrations were equivalent to the soil concentration. Once tissue concentration was greater than soil concentration, depurated worms had higher arsenic residues than undepurated.

  19. Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions.

    PubMed

    Sahu, Ramesh Chandra; Patel, Rajkishore; Ray, Bankim Chandra

    2010-07-15

    A laboratory study was conducted to investigate the ability of activated CO(2)-neutralized red mud (ANRM) for the removal of arsenate from the aqueous solutions. The batch adsorption experiments were conducted with respect to adsorbent dose, equilibrium pH, contact time, initial arsenate concentration, kinetics, Langmuir isotherms. The mechanisms involved in adsorption of arsenate ions on ANRM were characterized by using XRD, FT-IR, UV-vis, SEM/EDX, and chemical methods. The percentage removal was found to increase gradually with decrease of pH and maximum removal was achieved at pH approximately 4. Adsorption kinetic studies revealed that the adsorption process followed pseudo-second-order kinetics and equilibrates within 24 h. FT-IR spectra of ANRM before and after adsorption reveals the binding of arsenate to the adsorbent. The adsorption data were fitted to linearly transformed Langmuir isotherm with R(2) (correlation coefficient)>0.99. Arsenate adsorbed ANRM can be regenerated using NaOH solution at pH 12.0.

  20. Ribonucleotide Reductase-- a Radical Enzyme

    NASA Astrophysics Data System (ADS)

    Reichard, Peter; Ehrenberg, Anders

    1983-08-01

    Ribonucleotide reductases catalyze the enzymatic formation of deoxyribonucleotides, an obligatory step in DNA synthesis. The native form of the enzyme from Escherichia coli or from mammalian sources contains as part of its polypeptide structure a free tyrosyl radical, stabilized by an iron center. The radical participates in all probability in the catalytic process during the substitution of the hydroxyl group at C-2 of ribose by a hydrogen atom. A second, inactive form of the E. coli reductase lacks the tyrosyl radical. Extracts from E. coli contain activities that interconvert the two forms. The tyrosyl radical is introduced in the presence of oxygen, while anaerobiosis favors its removal, suggesting a regulatory role in DNA synthesis for oxygen.

  1. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  2. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  3. Evidence of hormesis on human neuronal SK-N-BE cells treated with sodium arsenate: impact at the mitochondrial level.

    PubMed

    Kharroubi, Wafa; Ahmed, Samia Haj; Nury, Thomas; Andreoletti, Pierre; Haouas, Zohra; Zarrouk, Amira; Sakly, Rachid; Hammami, Mohamed; Lizard, Gérard

    2016-05-01

    Exposure of human neuronal SK-N-BE cells to sodium arsenate (AsV 0.1-400 μM; 48 h) induced a biphasic toxic effect evoking hormesis. Indeed, at low concentrations, AsV stimulates cell proliferation visualized by phase contrast microscopy, whereas at high concentrations, an induction of cell death associated with a loss of cell adhesion was observed. These side effects were confirmed with crystal violet test, cell cycle analysis, evaluation of the percentage of Ki67 positive cells, and staining with propidium iodide. The impact of AsV on mitochondrial functions, which was determined by the MTT assay, the measurement of mitochondrial transmembrane potential with DiOC6(3), and the rate of mitochondrial ATP, also support an hormesis process. In addition, in the presence of high concentrations of AsV, a significant decrease of the protein expression of OXPHOS complexes of the respiratory chain was observed by western blot supporting that AsV-induced cell death is associated with mitochondrial alterations. Therefore, there are some evidences of hormesis on AsV-treated SK-N-BE cells, and at high concentrations, the mitochondria are a target of toxicity induced by AsV.

  4. Evidence of hormesis on human neuronal SK-N-BE cells treated with sodium arsenate: impact at the mitochondrial level.

    PubMed

    Kharroubi, Wafa; Ahmed, Samia Haj; Nury, Thomas; Andreoletti, Pierre; Haouas, Zohra; Zarrouk, Amira; Sakly, Rachid; Hammami, Mohamed; Lizard, Gérard

    2016-05-01

    Exposure of human neuronal SK-N-BE cells to sodium arsenate (AsV 0.1-400 μM; 48 h) induced a biphasic toxic effect evoking hormesis. Indeed, at low concentrations, AsV stimulates cell proliferation visualized by phase contrast microscopy, whereas at high concentrations, an induction of cell death associated with a loss of cell adhesion was observed. These side effects were confirmed with crystal violet test, cell cycle analysis, evaluation of the percentage of Ki67 positive cells, and staining with propidium iodide. The impact of AsV on mitochondrial functions, which was determined by the MTT assay, the measurement of mitochondrial transmembrane potential with DiOC6(3), and the rate of mitochondrial ATP, also support an hormesis process. In addition, in the presence of high concentrations of AsV, a significant decrease of the protein expression of OXPHOS complexes of the respiratory chain was observed by western blot supporting that AsV-induced cell death is associated with mitochondrial alterations. Therefore, there are some evidences of hormesis on AsV-treated SK-N-BE cells, and at high concentrations, the mitochondria are a target of toxicity induced by AsV. PMID:26782323

  5. Effect of Aqueous Fe(II) on Arsenate Sorption on Goethite and Hematite

    SciTech Connect

    Catalano, Jeffrey G.; Luo, Yun; Otemuyiwa, Bamidele

    2011-11-17

    Biogeochemical iron cycling often generates systems where aqueous Fe(II) and solid Fe(III) oxides coexist. Reactions between these species result in iron oxide surface and phase transformations, iron isotope fractionation, and redox transformations of many contaminant species. Fe(II)-induced recrystallization of goethite and hematite has recently been shown to cause the repartitioning of Ni(II) at the mineral-water interface, with adsorbed Ni incorporating into the iron oxide structure and preincorporated Ni released back into aqueous solution. However, the effect of Fe(II) on the fate and speciation of redox inactive species incompatible with iron oxide structures is unclear. Arsenate sorption to hematite and goethite in the presence of aqueous Fe(II) was studied to determine whether Fe(II) causes substantial changes in the sorption mechanisms of such incompatible species. Sorption isotherms reveal that Fe(II) minimally alters macroscopic arsenate sorption behavior except at circumneutral pH in the presence of elevated concentrations (10{sup -3} M) of Fe(II) and at high arsenate loadings, where a clear signature of precipitation is observed. Powder X-ray diffraction demonstrates that the ferrous arsenate mineral symplesite precipitates under such conditions. Extended X-ray absorption fine structure spectroscopy shows that outside this precipitation regime arsenate surface complexation mechanisms are unaffected by Fe(II). In addition, arsenate was found to suppress Fe(II) sorption through competitive adsorption processes before the onset of symplesite precipitation. This study demonstrates that the sorption of species incompatible with iron oxide structure is not substantially affected by Fe(II) but that such species may potentially interfere with Fe(II)-iron oxide reactions via competitive adsorption.

  6. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.

    PubMed

    Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao

    2016-01-01

    In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment. PMID:26818806

  7. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.

    PubMed

    Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao

    2016-01-01

    In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment.

  8. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    PubMed Central

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  9. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  10. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes.

    PubMed

    Sevcenco, Ana-Maria; Paravidino, Monica; Vrouwenvelder, Johannes S; Wolterbeek, Hubert Th; van Loosdrecht, Mark C M; Hagen, Wilfred R

    2015-06-01

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes (32)P and (76)As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water.

  11. Lead in tissue of cats fed pine voles from lead arsenate-treated orchards

    SciTech Connect

    Gilmartin, J.E.; Alo, D.K.; Richmond, M.E.; Bache, C.A.; Lisk, D.J.

    1985-02-01

    Lead arsenate has been used for many years for control of insects in apple orchards in the United States. In an earlier study, it was shown that such orchard soils may contain very high concentrations of lead and that orchards voles and mice inhibating such soils accumulate inordinately high levels of lead. It is of interest to learn the possible extent of deposition of lead in higher carnivores that may consume such orchard animals. In the work reported, cats were fed pine voles (Microtus pinetorum) captured in lead arsenate-treated orchards located in the vicinity of New Paltz, New York. Following sacrifice, the lead content of cat tissues was determined.

  12. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    PubMed

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust.

  13. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    PubMed

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. PMID:25855615

  14. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells.

    PubMed

    Sakai, Chika; Tomitsuka, Eriko; Esumi, Hiroyasu; Harada, Shigeharu; Kita, Kiyoshi

    2012-05-01

    Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010. PMID:22226661

  15. Non-linear optical titanyl arsenates: Crystal growth and properties

    NASA Astrophysics Data System (ADS)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic

  16. Characteristics of chromated copper arsenate-treated wood ash.

    PubMed

    Solo-Gabriele, Helena M; Townsend, Timothy G; Messick, Brian; Calitu, Vandin

    2002-01-28

    The combustion of recovered wood from construction and demolition waste as biomass fuel is a common practice. When chromated copper arsenate (CCA)-treated wood is present as part of the wood fuel mix, concentrations of arsenic, chromium, and copper become elevated in the ash. The objectives of this study were to estimate the fraction of CCA-treated wood needed to cause the ash to fail regulatory guidelines and to test a series of solvents for the purpose of extracting the metals from the ash. Ash samples were prepared in an industrial furnace using samples of CCA-treated wood, mixtures of CCA-treated wood and untreated wood, and recycled wood waste collected at construction and demolition recycling facilities. Regulatory guidelines were evaluated by measuring total metals concentrations (using neutron activation analysis) and by conducting standardized leaching tests (toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP)) on the ash. Ten different solvents, ranging from distilled water to strong acids, were also tested for their ability to extract metals. Results of this study indicate that metal concentrations (chromium plus copper plus arsenic) can be as high as 36% of the ash by weight for treated wood samples containing high retention levels (40 kg/m(3)) of CCA. All ash samples from the combustion of 100% CCA-treated wood and mixtures containing 5% CCA-treated wood leached enough arsenic (and sometimes chromium) to be characterized as a hazardous waste under US regulations. Concentrated nitric acid, which was the most effective solvent tested, was capable of removing between 70 and 100% of the copper, between 20 and 60% of the chromium, and 60 and 100% of the arsenic for samples characterized by low retention levels. A particular finding of interest was the efficiency of distilled water and other weak solvents to extract measurable amounts of chromium, especially for ash samples containing low retention levels

  17. Respiratory Home Health Care

    MedlinePlus

    ... Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition ... Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at home can contribute to improved ...

  18. Relative Activities and Characteristics of Some Oxidative Respiratory Enzymes from Conidia of Verticillium albo-atrum

    PubMed Central

    Throneberry, G. O.

    1967-01-01

    Conidia of Verticillium albo-atrum Reinke and Berthold, collected from shake cultures grown in Czapek broth, were sonified for 4 or 8 minutes or ground frozen in a mortar to obtain cell-free homogenates. These were assayed for certain enzymes associated with respiratory pathways. Malic dehydrogenase was the most active, glucose-6-P and NADH dehydrogenase were less active, NADH-cytochrome c reductase, NADPH dehydrogenase, and cytochrome oxidase were low in activity, and succinic dehydrogenase and succinic cytochrome c reductase were very low to negligible in activity. No NADH oxidase activity was detected. With the exception of NADH-cytochrome c reductase and possibly succinic dehydrogenase and cytochrome c reductase, there was no evident increase in specific activity of the enzymes during germination. Some NADH-cytochrome c reductase and a small amount of succinic-dehydrogenase and cytochrome c reductase were associated with the particulate fraction from 105,000 × g centrifugation. The other enzymes, including cytochrome oxidase, almost completely remained in the supernatant fraction. Menadione and vitamin K-S(II) markedly stimulated NADH-cytochrome c reductase activity in the supernatant fraction but had much less effect on NADPH-cytochrome c reductase in this fraction or on either of these enzyme systems in the particulate fraction. Electron transport inhibitors affected particulate NADH- and NADPH-cytochrome c reductase activity but had no effect on these in the supernatant fraction. PMID:16656681

  19. SORPTION OF ARSENATE AND ARSENITE ON RUO2.XH2O: A SPECTROSCOPIC AND MACROSCOPIC STUDY

    EPA Science Inventory

    The sorption of arsenate (As(V)) and arsenite (As(III)) on RuO2 xH2O was examined using macroscopic and microscopic techniques. Constant solid:solution ratio isotherms were constructed from batch sorption experiments to study the sorption of the inorganic arsenic species on RuO2...

  20. [Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron].

    PubMed

    Zhu, Hui-jie; Jia, Yong-feng; Yao, Shu-hu; Wu, Xing; Wang, Shu-ying

    2009-12-01

    A new adsorbent, activated carbon impregnated with nano zero-valent iron was prepared, which size of the needle-shaped iron particles in the pores of carbon was (30-500) nm x (1000-3000) nm and approximately 8.2% of iron was loaded onto it. The arsenate removal percentage was 99.5% by 1.5 g/L NZVI/AC in the 2 mg/L arsenic solution at pH 6.5 and (25 +/- 2) degrees C. The adsorption capacity was about 15.4 mg/g when equilibrium concentration was 1.0 mg/L. Kinetics revealed that uptake of arsenate ion by NZVI/AC was 91.4% in the first 12 h and equilibrium time was about 72 h. The intraparticle diffusion model was applied to study the mechanics of arsenate in the activated carbon. The presence of phosphate and silicate could significantly decrease arsenate removal while the effects of the other anions and cations on the arsenic removal were neglectable. NZVI/AC can be effectively regenerated when elution is done with 0.1 mol/L NaOH solution. Our results suggest that NZVI/AC is a suitable candidate for drinking water treatment due to its high reactivity.

  1. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii.

    PubMed

    Kobayashi, Isao; Fujiwara, Shoko; Saegusa, Hirotaka; Inouhe, Masahiro; Matsumoto, Hiroko; Tsuzuki, Mikio

    2006-01-01

    In most photosynthetic organisms, inorganic arsenic taken up into the cells inhibits photosynthesis and cellular growth. In a green alga, Chlamydomonas reinhardtii, 0.5 mM arsenate inhibited photosynthesis almost completely within 30 min. However, in cells acclimated with a sublethal concentration (0.05 to 0.1 mM) of Cd, the inhibition of photosynthesis at 30 min after the addition of arsenate was relieved by more than 50%. The concentrations of arsenic incorporated into the cells were not significantly different between the Cd-acclimated and the non-acclimated cells. The Cd-acclimated cells accumulated Cd and synthesized phytochelatin (PC) peptides, which are known to play an important role in detoxification of heavy metals in plants. By the addition of an inhibitor of glutathione (an intermediate in the PC biosynthetic pathway) biosynthesis, buthionine sulfoximine, cells lost not only Cd tolerance but also arsenate tolerance. These results suggest that glutathione and/or PCs synthesized in Cd-acclimated cells are involved in mechanisms of arsenate tolerance.

  2. Accumulation of lead and arsenic by lettuce grown on lead-arsenate contaminated orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead-arsenate was one of the preferred insecticides used as foliar spray to control codling moth (Cydia pomonella) in apple (Malus sylvestris Mill) orchards from the 1900's to the 1960’s. Lead and arsenic are generally immobile and remain in the surface soil. Some of these contaminated lands are now...

  3. Accumulation of lead and arsenic by potato grown on lead-arsenate contaminated orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns have been raised about the potential food chain transfer of metals in crops grown on historic orchard soils where lead arsenate pesticide was used. The objective of this study was to evaluate the uptake of lead and arsenic (As) by four potato (Solanum tuberosum L.) cultivars (Atlantic, Dar...

  4. WASTE REDUCTION PRACTICES AT TWO CHROMATED COPPER ARSENATE WOOD-TREATING PLANTS

    EPA Science Inventory

    Two chromated copper arsenate (CCA) wood-treating plants were assessed for their waste reduction practices. The objectives of this study were to estimate the amount of hazardous wastes that a well-designed and well-main- tained CCA treatment facility would generate and to iden- t...

  5. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    PubMed

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate.

  6. Effects of sodium arsenate and arsenite on male reproductive functions in Wistar rats.

    PubMed

    Souza, Ana Cláudia Ferreira; Marchesi, Sarah Cozzer; Ferraz, Rafael Penha; Lima, Graziela Domingues de Almeida; de Oliveira, Juraci Alves; Machado-Neves, Mariana

    2016-01-01

    Arsenic (As), in the form of trivalent arsenite or pentavalent arsenate, is a ubiquitous toxic compound naturally occurring in the environment. This study aimed to evaluate the impact of two different forms of inorganic As on reproductive parameters following oral exposure. Adult Wistar male rats were exposed to sodium arsenite or arsenate at concentrations of 0.01 mg/L or 10 mg/L for 56 d in drinking water. Sodium arsenite at both concentrations and sodium arsenate at 10 mg/L produced reduction in daily sperm production, in number of spermatids in the testis, and in sperm in the epididymal caput/corpus regions. Changes in epididymal morphometry were variable and region specific. Total and progressive sperm motility and sperm morphology did not differ markedly between controls and animals exposed to As. The body and reproductive organs weights, as well as testosterone concentration, remained unchanged among all groups. In conclusion, As exposure in drinking water over 56 d produced damage in male reproductive functions in adult rats, suggesting that fertility problems might occur. Therefore, additional studies need to be undertaken to investigate potential mechanisms underlying sodium arsenite- and arsenate-induced disturbances in fertility and reproductive performance.

  7. ACCUMULATION AND METABOLISM OF ARSENIC IN MICE AFTER REPEATED ADMINISTRATION OF ARSENATE

    EPA Science Inventory

    Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate, Hughes, M. F., Kenyon, E. M., Edwards, B. C., Mitchell, C. T., Del Razo, L. M., and Thomas,
    D. J.

    The human carcinogen inorganic arsenic (iAs) is a pervasive environmental ...

  8. COMPARATIVE METABOLISM OF ARSENIC IN MICE AFTER A SINGLE OR REPEATED ORAL ADMINISTRATION OF ARSENATE

    EPA Science Inventory

    COMPARATIVE METABOLISM OF ARSENIC IN MICE AFTER A SINGLE OR REPEATED ORAL ADMINISTRATION OF ARSENATE
    Michael F. Hughes*1, Elaina M. Kenyon1, Brenda C. Edwards1, Carol T. Mitchell1, Luz Maria Del Razo2 and David J. Thomas1
    1US EPA, ORD, NHEERL, ETD, PKB, Research Triangle Pa...

  9. SORPTION OF ARSENATE AND ARSENITE ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY

    EPA Science Inventory

    Sorption of arsenate and arsenite was examined on a ruthenium compound using macroscopic and microscopic techniques. Batch sorption experiments at pH 4,5,6, 7 and 8 were employed to construct constant solid solution ratio isotherms (CSI). After equilibration at the appropriate pH...

  10. Effects of sodium arsenate and arsenite on male reproductive functions in Wistar rats.

    PubMed

    Souza, Ana Cláudia Ferreira; Marchesi, Sarah Cozzer; Ferraz, Rafael Penha; Lima, Graziela Domingues de Almeida; de Oliveira, Juraci Alves; Machado-Neves, Mariana

    2016-01-01

    Arsenic (As), in the form of trivalent arsenite or pentavalent arsenate, is a ubiquitous toxic compound naturally occurring in the environment. This study aimed to evaluate the impact of two different forms of inorganic As on reproductive parameters following oral exposure. Adult Wistar male rats were exposed to sodium arsenite or arsenate at concentrations of 0.01 mg/L or 10 mg/L for 56 d in drinking water. Sodium arsenite at both concentrations and sodium arsenate at 10 mg/L produced reduction in daily sperm production, in number of spermatids in the testis, and in sperm in the epididymal caput/corpus regions. Changes in epididymal morphometry were variable and region specific. Total and progressive sperm motility and sperm morphology did not differ markedly between controls and animals exposed to As. The body and reproductive organs weights, as well as testosterone concentration, remained unchanged among all groups. In conclusion, As exposure in drinking water over 56 d produced damage in male reproductive functions in adult rats, suggesting that fertility problems might occur. Therefore, additional studies need to be undertaken to investigate potential mechanisms underlying sodium arsenite- and arsenate-induced disturbances in fertility and reproductive performance. PMID:27029432

  11. Differential Pair Distribution Function Study of the Structure of Arsenate Adsorbed on Nanocrystalline [gamma]-Alumina

    SciTech Connect

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D.; Aryanpour, Masoud; Reeder, Richard J.; Parise, John B.; Phillips, Brian L.

    2012-03-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on {gamma}-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on {gamma}-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on {gamma}-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 {angstrom} and 3.09 {angstrom}, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 {+-} 0.01 {angstrom} with a coordination number of 4 and a second shell of As-Al at 3.13 {+-} 0.04 {angstrom} with a coordination number of 2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of {gamma}-alumina as predicted by density functional theory (DFT) calculation.

  12. Genotoxic effects of sodium arsenite and sodium arsenate after chronic exposure of Drosophila melanogaster larvae

    SciTech Connect

    Ramos-Morales, P.; Ordaz, M.G.; Munoz, A.

    1995-11-01

    Two arsenic compounds, namely: NaAsO{sub 2} (Sodium Arsenite) and Na{sub 2}HAsO{sub 4} (Sodium Arsenate) were tested for its chronic effect in somatic cells of Drosophila melanogaster. In a previous study in Drosophila we found that both compounds induced SLRL mutations, but failed to induce sex chromosome loss. In the SMART, after acute exposure, only sodium arsenite was positive when cells of the wings were used; however, both were positives in cells of the eyes of Drosophila. The genotoxicity of both compounds localized mainly on somatic cells, in agreement with reports on the carcinogenicity potential of arsenical compounds. The Somatic mutation and recombination test (SMART) was run employing cells of the wing imaginal discs from flr{sup 3}/mwh larvae. First instar larvae (24 {plus_minus} 4 h) were treated during 96 hours with sodium arsenite [0.015-4.0 ppm], and sodium arsenate [0.2-10 ppm], negative control was treated with distilled water. The frequency of spots by wing induced by the two arsenic salts were compared with control according with Frei and Wuergler procedure. Data show that sodium arsenite tested negative at all concentrations, but sodium arsenate tested positive at 0.8, 2 and 10 ppm (P<0.05). This results were consistent with the co-mutagenic role of sodium arsenite, but show that sodium arsenate was mutagenic in Drosophila test system under chronic exposure.

  13. Respiratory Distress

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.

  14. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  15. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    NASA Astrophysics Data System (ADS)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus; Larsen, Flemming

    2012-09-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7-8.3) and covered a wide span in the activity of Ca2+ and CO32-. The results show that the adsorption of arsenate onto calcite is strongly reduced by the presence of phosphate, whereas phosphate adsorption is only slightly reduced by arsenate addition. Simultaneous and sequential addition (3 h apart) yields the same reduction in adsorption, underlining the high reversibility of the system. The reduction in adsorption of both arsenate and phosphate is most likely due to competition for the same sorption sites at the calcite surface, considering the similarity in sorption edges, pKa's and geometry of the two anions. The strong reduction in arsenate adsorption by competition with phosphate suggests that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately. By combining the models for single sorbate systems the competitive adsorption of phosphate and arsenate onto calcite in the binary system could be predicted. This is in contrast to the constant capacitance model (CCM) which under-predicted the competition when combining the models for single sorbate systems. This study clearly shows the importance of performing competitive adsorption studies for validation of multi-component models and for estimating the mobility of an ion in the environment.

  16. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.

    PubMed

    Kilianová, Martina; Prucek, Robert; Filip, Jan; Kolařík, Jan; Kvítek, Libor; Panáček, Aleš; Tuček, Jiří; Zbořil, Radek

    2013-11-01

    Arsenates, when present in water resources, constitute a risk to human health. In order to remove them, various technologies have been developed; out of them, sorption approach is widely adopted employing a wide spectrum of suitable sorbent materials. Nanoparticles of iron oxide are frequently used due to a high surface area and ability to control them by external magnetic field. In this work, we report on a simple and cheap synthesis of ultrafine iron(III) oxide nanoparticles with a narrow size distribution and their exploitation in the field of arsenate removal from aqueous environment. It is shown that the adsorption capacity is enhanced by a mesoporous nature of nanoparticle arrangement in their system due to strong magnetic interactions they evolve between nanoparticles. A complete arsenate removal is achieved at Fe/As ratio equal to ∼20/1 and at pH in the range from 5 to 7.6. Under these conditions, the arsenates are completely removed within several minutes of treatment. Among iron-oxide-based nanosystems synthesized and employed in arsenate remediation issues so far, our assembly of iron(III) oxide nanoparticles shows the highest Freundlich adsorption coefficient and equilibrium sorption capacity under conditions maintained. Taking into account simple and low-cost preparation procedure, product high yields, almost monodispersed character, room-temperature superparamagnetic behavior, and strong magnetic response under small applied magnetic fields, the synthesized iron(III) oxide nanoparticles can be regarded as a promising candidate for exploitation in the field of removing undesired toxic pollutants from various real water systems.

  17. Effects of sodium arsenate exposure on liver fatty acid profiles and oxidative stress in rats.

    PubMed

    Kharroubi, Wafa; Dhibi, Madiha; Haouas, Zohra; Chreif, Imed; Neffati, Fadoua; Hammami, Mohamed; Sakly, Rachid

    2014-02-01

    The present study aimed to evaluate the effect of arsenic on liver fatty acids (FA) composition, hepatotoxicity and oxidative status markers in rats. Male rats were randomly devised to six groups (n=10 per group) and exposed to sodium arsenate at a dose of 1 and 10 mg/l for 45 and 90 days. Arsenate exposure is associated with significant changes in the FA composition in liver. A significant increase of saturated fatty acids (SFA) in all treated groups (p<0.01) and trans unsaturated fatty acids (trans UFA) in rats exposed both for short term for 10 mg/l (p<0.05) and long term for 1 and 10 mg/l (p<0.001) was observed. However, the cis UFA were significantly decreased in these groups (p<0.05). A markedly increase of indicator in cell membrane viscosity expressed as SFA/UFA was reported in the treated groups (p<0.001). A significant increase in the level of malondialdehyde by 38.3 % after 90 days of exposure at 10 mg/l was observed. Compared to control rats, significant liver damage was observed at 10 mg/l of arsenate by increasing plasma marker enzymes after 90 days. It is through the histological investigations in hepatic tissues of exposed rats that these damage effects of arsenate were confirmed. The antioxidant perturbations were observed to be more important at groups treated by the high dose (p<0.05). An increase in the level of protein carbonyls was observed in all treated groups (p<0.05). The present study provides evidence for a direct effect of arsenite on FA composition disturbance causing an increase of SFA and TFAs isomers, liver dysfunction and oxidative stress. Therefore, arsenate can lead to hepatic damage and propensity towards liver cancer. PMID:23949113

  18. Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(III)-aluminum precipitates.

    PubMed

    Violante, Antonio; Pigna, Massimo; Del Gaudio, Stefania; Cozzolino, Vincenza; Banerjee, Dipanjan

    2009-03-01

    Coprecipitation involving arsenic with aluminum or iron has been studied because this technique is considered particularly efficient for removal of this toxic element from polluted waters. Coprecipitation of arsenic with mixed iron-aluminum solutions has received scant attention. In this work we studied (i)the mineralogy, surface properties, and chemical composition of mixed iron-aluminum oxides formed at initial Fe/Al molar ratio of 1.0 in the absence or presence of arsenate [As/ Fe+Al molar ratio (R) of 0, 0.01, or 0.1] and at pH 4.0, 7.0, and 10.0 and aged for 30 and 210 days at 50 degrees C and (ii) the removal of arsenate from the coprecipitates after addition of phosphate. The amounts of short-range ordered precipitates (ferrihydrite, aluminous ferrihydrite and/or poorly crystalline boehmite) were greater than those found in iron and aluminum systems (studied in previous works), due to the capacity of both aluminum and arsenate to retard or inhibitthe transformation of the initially formed precipitates into well-crystallized oxides (gibbsite, bayerite, and hematite). As a consequence, the surface areas of the iron-aluminum oxides formed in the absence or presence of arsenate were usually much larger than those of aluminum or iron oxides formed under the same conditions. Arsenate was found to be associated mainly into short-range ordered materials. Chemical composition of all samples was affected by pH, initial R, and aging. Phosphate sorption was facilitated by the presence of short-range ordered materials, mainly those richer in aluminum, but was inhibited by arsenate present in the samples. The quantities of arsenate replaced by phosphate, expressed as percentages of its total amount present in the samples, were particularly low, ranging from 10% to 26%. A comparison of the desorption of arsenate by phosphate from aluminum-arsenate and iron-arsenate (studied in previous works) and iron-aluminum-arsenate coprecipitates evidenced that phosphate has a greater

  19. Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate.

    PubMed

    Lindsay, Emma R; Maathuis, Frans J M

    2016-03-01

    The Arabidopsis aquaglyceroporin NIP7;1 is involved in uptake and tolerance to the trivalent arsenic species arsenite. Here, we show that NIP7;1 is also involved in the response to pentavalent arsenate. Loss of function of NIP7;1 improved tolerance to arsenate and reduced arsenic levels in both the phloem and xylem, resulting in altered arsenic distribution between tissues. There was no clear correlation between growth and shoot arsenic concentration. This is the first report detailing the involvement of a NIP transporter in response to arsenate. The data suggest that these proteins are relevant targets for breeding and engineering arsenic tolerance in crops.

  20. Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate.

    PubMed

    Lindsay, Emma R; Maathuis, Frans J M

    2016-03-01

    The Arabidopsis aquaglyceroporin NIP7;1 is involved in uptake and tolerance to the trivalent arsenic species arsenite. Here, we show that NIP7;1 is also involved in the response to pentavalent arsenate. Loss of function of NIP7;1 improved tolerance to arsenate and reduced arsenic levels in both the phloem and xylem, resulting in altered arsenic distribution between tissues. There was no clear correlation between growth and shoot arsenic concentration. This is the first report detailing the involvement of a NIP transporter in response to arsenate. The data suggest that these proteins are relevant targets for breeding and engineering arsenic tolerance in crops. PMID:26898223

  1. Microbial arsenic metabolism: New twists on an old poison

    USGS Publications Warehouse

    Stolz, J.F.; Basu, P.; Oremland, R.S.

    2010-01-01

    Phylogenetically diverse microorganisms metabolize arsenic despite its toxicity and are part of its robust iogeochemical cycle. Respiratory arsenate reductase is a reversible enzyme, functioning in some microbes as an arsenate reductase but in others as an arsenite oxidase. As(III) can serve as an electron donor for anoxygenic photolithoautotrophy and chemolithoautotrophy. Organoarsenicals, such as the feed additive roxarsone, can be used as a source of energy, releasing inorganic arsenic.

  2. Biliverdin reductase isozymes in metabolism.

    PubMed

    O'Brien, Luke; Hosick, Peter A; John, Kezia; Stec, David E; Hinds, Terry D

    2015-04-01

    The biliverdin reductase (BVR) isozymes BVRA and BVRB are cell surface membrane receptors with pleiotropic functions. This review compares, for the first time, the structural and functional differences between the isozymes. They reduce biliverdin, a byproduct of heme catabolism, to bilirubin, display kinase activity, and BVRA, but not BVRB, can act as a transcription factor. The binding motifs present in the BVR isozymes allow a wide range of interactions with components of metabolically important signaling pathways such as the insulin receptor kinase cascades, protein kinases (PKs), and inflammatory mediators. In addition, serum bilirubin levels have been negatively associated with abdominal obesity and hypertriglyceridemia. We discuss the roles of the BVR isozymes in metabolism and their potential as therapeutic targets. PMID:25726384

  3. An electrogenic nitric oxide reductase.

    PubMed

    Al-Attar, Sinan; de Vries, Simon

    2015-07-22

    Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N₂O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c₅₅₁ as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa₃, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor. PMID:26149211

  4. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

    PubMed Central

    Stewart, Valley; Lu, Yiran; Darwin, Andrew J.

    2002-01-01

    Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme. PMID:11844760

  5. 5 alpha-reductase deficiency without hypospadias.

    PubMed Central

    Ng, W K; Taylor, N F; Hughes, I A; Taylor, J; Ransley, P G; Grant, D B

    1990-01-01

    A boy aged 4 with penoscrotal hypospadias and his brother aged 12 with micropenis had typical changes of homozygous 5 alpha-reductase deficiency. After three injections of chorionic gonadotrophin there was a trivial rise in plasma dihydrotestosterone with a normal increase in plasma testosterone. Urine steroid chromatography showed abnormally high 5 beta: 5 alpha ratios and 5 alpha-reductase activity was appreciably reduced in genital skin fibroblasts. The results indicate that 5 alpha-reductase deficiency is not invariably associated with genital ambiguity. PMID:2248513

  6. Preabsorptive Metabolism of Sodium Arsenate by Anaerobic Microbiota of Mouse Cecum Forms a Variety of Methylated and Thiolated Arsenicals

    EPA Science Inventory

    The conventional scheme for arsenic methylation accounts for methylated oxyarsenical production but not for thioarsenical formation. Here, we report that in vitro anaerobic microbiota of mouse cecum converts arsenate into oxy- and thio- arsenicals. Besides methylarsonic acid (MMA...

  7. Genetics Home Reference: sepiapterin reductase deficiency

    MedlinePlus

    ... reductase enzyme. This enzyme is involved in the production of a molecule called tetrahydrobiopterin (also known as ... is responsible for the last step in the production of tetrahydrobiopterin. Tetrahydrobiopterin helps process several building blocks ...

  8. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model

    NASA Astrophysics Data System (ADS)

    Salazar-Camacho, Carlos; Villalobos, Mario

    2010-04-01

    We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in

  9. Growth of strain SES-3 with arsenate and other diverse electron acceptors

    USGS Publications Warehouse

    Laverman, A.M.; Blum, J.S.; Schaefer, J.K.; Phillips, E.J.P.; Lovley, D.R.; Oremland, R.S.

    1995-01-01

    The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.

  10. Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal.

    PubMed

    Torres-Perez, Jonatan; Gerente, Claire; Andres, Yves

    2012-01-01

    The conversion of two agricultural wastes, sugar beet pulp and peanut hulls, into sustainable activated carbons is presented and their potential application for the treatment of arsenate solution is investigated. A direct and physical activation is selected as well as a simple chemical treatment of the adsorbents. The material properties, such as BET surface areas, porous volumes, elemental analysis, ash contents and pH(PZC), of these alternative carbonaceous porous materials are determined and compared with a commercial granular activated carbon. An adsorption study based on experimental kinetic and equilibrium data is conducted in a batch reactor and completed by the use of different models (intraparticle diffusion, pseudo-second-order, Langmuir and Freundlich) and by isotherms carried out in natural waters. It is thus demonstrated that sugar beet pulp and peanut hulls are good precursors to obtain activated carbons for arsenate removal.

  11. Effects of arsenate and arsenite on germination and some physiological attributes of barley Hordeum vulgare L.

    PubMed

    Sanal, Filiz; Seren, Gülay; Güner, Utku

    2014-04-01

    Arsenic (As) is toxic to plants and animals. We tested the effects of arsenite and arsenate (0-16 mg/L) on seed germination, and on relative root and shoot length, α-amylase activity, reducing sugars and soluble total protein contents, and malondialdehyde content in barley seedlings. We also measured As accumulation in barley stems and roots. The α-amylase activity, relative root and shoot length, and seed germination decreased with increasing concentrations of arsenate and arsenite. The reducing sugars content in barley seedlings increased after 4 days of growth on media containing As. In general, the protein content in roots and seedlings decreased with increasing doses of As. Arsenic in the tissues was quantified by hydride generation-atomic absorption spectrophotometry. To confirm the accuracy of the method, we analyzed the certified reference material WEPAL-IPE-168. The limit of detection was 1.2 μg/L and the relative standard deviation was <2.0 %.

  12. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  13. Dynamic subcellular localization of a respiratory complex controls bacterial respiration.

    PubMed

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria.

  14. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  15. Quantitative trace-level speciation of arsenite and arsenate in drinking water by ion chromatography.

    PubMed

    Johnson, Rebecca L; Aldstad, Joseph H

    2002-10-01

    We describe an improved method for the determination of inorganic arsenic in drinking water. The method is based on comprehensive optimization of the anion-exchange ion chromatographic (IC) separation of arsenite and arsenate with post-column generation and detection of the arsenate-molybdate heteropoly acid (AMHPA) complex ion. The arsenite capacity factor was improved from 0.081 to 0.13 by using a mobile phase (2.0 mL min(-1)) composed of 2.5 mM Na2CO3 and 0.91 mM NaHCO3 (pH 10.5). A post-column photo-oxidation reactor (2.5 m x 0.7 mm) was optimized (0.37 microM potassium persulfate at 0.50 mL min(-1)) such that arsenite was converted to arsenate with 99.8 +/- 4.2% efficiency. Multi-variate optimization of the complexation reaction conditions yielded the following levels: 1.3 mM ammonium molybdate, 7.7 mM ascorbic acid, 0.48 M nitric acid, 0.17 mM potassium antimony tartrate, and 1.0% (v/v) glycerol. A long-path length flow cell (Teflon AF, 100-cm) was used to measure the absorption of the AMHPA complex (818 +/- 2 nm). Figures of merit for arsenite/arsenate include: limit of detection (1.6/0.40 microg L(-1)): standard error in absorbance (5.1 x 10(-3)/3.5 x 10(-3)); and sensitivity (2.9 x 10(-3)/2.2 x 10(-3) absorbance units per ppb). Successful application of the method to fortified surface and ground waters (100 microL samples) is also described.

  16. Understanding Regeneration of Arsenate-Loaded Ferric Hydroxide-Based Adsorbents

    PubMed Central

    Chaudhary, Binod Kumar; Farrell, James

    2015-01-01

    Abstract Adsorbents comprising ferric hydroxide loaded on a variety of support materials are commonly used to remove arsenic from potable water. Although several studies have investigated the effects of support properties on arsenic adsorption, there have been no investigations of their effects on adsorbent regeneration. Furthermore, the effect of regenerant solution composition and the kinetics of regeneration have not been investigated. This research investigated the effects of adsorbent and regenerant solution properties on the kinetics and efficiency of regeneration of arsenate-loaded ferric hydroxide-based adsorbents. Solutions containing only 0.10–5.0 M NaOH or 0.10–1.0 M NaCl, as well as solutions containing both compounds, were used as regenerants. On all media, >99% of arsenate was adsorbed through complexation with ferric hydroxide. Arsenate recovery was controlled by both equilibrium and kinetic limitations. Adsorbents containing support material with weak base anion-exchange functionality or no anion-exchange functionality could be regenerated with NaOH solutions alone. Regeneration of media containing strong base anion (SBA)-exchange functionality was greatly enhanced by addition of 0.10 M NaCl to the NaOH regenerant solutions. Adsorbed silica had a significant effect on NaOH regeneration of media containing type I SBA-exchange functionality, but on other media, adsorbed silica had little impact on regeneration. On all media, 5–25% of arsenate was resistant to desorption in 1.0 M NaOH solutions. However, the use of 2.5–5.0 M NaOH solutions significantly reduced the desorption-resistant fraction. PMID:25873779

  17. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    NASA Astrophysics Data System (ADS)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  18. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents.

    PubMed

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-10-26

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m²/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3-11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water.

  19. Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite

    NASA Astrophysics Data System (ADS)

    Saalfield, Samantha L.; Bostick, Benjamin C.

    2010-09-01

    Many groundwater systems contain anomalously high arsenic concentrations, associated with less than expected retention of As by adsorption to iron (hydr)oxides. Although carbonates are ubiquitous in aquifers, their relationship to arsenate mobilization is not well characterized. This research examines arsenate release from poorly crystalline iron hydroxides in abiotic systems containing calcium and magnesium with bicarbonate under conditions of static and dynamic flow (pH 7.5-8). Aqueous arsenic levels remained low when arsenate-bearing ferrihydrite was equilibrated with artificial groundwater solution containing Ca, Mg, and HCO 3-. In batch titrations in which a solution of Ca and HCO 3- was added repeatedly, the ferrihydrite surface became saturated with adsorbed Ca and HCO 3-, and aqueous As levels increased by 1-2 orders of magnitude. In columns containing Ca or Mg and HCO 3-, As solubility initially mimicked titrations, but then rapidly increased by an additional order of magnitude (reaching 12 μM As). Separately, calcium chloride and other simple salts did not induce As release, although sodium bicarbonate and lactate facilitated minor As release under flow. Results indicate that adsorption of calcium or magnesium with bicarbonate leads to As desorption from ferrihydrite, to a degree greater than expected from competitive effects alone, especially under dynamic flow. This desorption may be an important mechanism of As mobilization in As-impacted, circumneutral aquifers, especially those undergoing rapid mineralization of organic matter, which induces calcite dissolution and the production of dissolved calcium and bicarbonate.

  20. Arsenate-induced Apoptosis in Murine Embryonic Maxillary Mesenchymal Cells via Mitochondrial Mediated Oxidative Injury

    PubMed Central

    Singh, Saurabh; Greene, Robert M.; Pisano, M. Michele

    2009-01-01

    Background Arsenic is a ubiquitous element that is a potential carcinogen and teratogen and can cause adverse developmental outcomes. Arsenic exerts its toxic effects through the generation of reactive oxygen species (ROS) that include hydrogen peroxide (H2O2), superoxide-derived hydroxyl ion, and peroxyl radicals. However, the molecular mechanisms by which arsenic induces cytotoxicity in murine embryonic maxillary mesenchymal (MEMM) cells are undefined. Methods MEMM cells in culture were treated with different concentrations of pentavalent sodium arsenate [As (V)] for 24 or 48 hours and various end points measured. Results We show that treatment of MEMM cells with the pentavalent form of inorganic arsenic resulted in caspase-mediated apoptosis, accompanied by generation of ROS and disruption of mitochondrial membrane potential. Treatment with caspase inhibitors markedly blocked apoptosis. In addition, the free radical scavenger N-acetylcysteine dramatically attenuated arsenic-mediated ROS production and apoptosis, and exposure to arsenate increased Bax and decreased Bcl protein levels in MEMM cells. Conclusions Taken together, these findings suggest that in MEMM cells, arsenate-mediated oxidative injury acts as an early and upstream initiator of the cell death cascade, triggering cytotoxicity, mitochondrial dysfunction, altered Bcl/Bax protein ratios, and activation of caspase-9. PMID:19739150

  1. Novel phytase from Pteris vittata resistant to arsenate, high temperature, and soil deactivation.

    PubMed

    Lessl, Jason T; Ma, Lena Q; Rathinasabapathi, Bala; Guy, Charles

    2013-03-01

    Arsenate interferes with enzymatic processes and inhibits inorganic phosphorus (Pi) uptake in many plants. This study examined the role of phytase and phosphatase in arsenate tolerance and phosphorus (P) acquisition in the arsenic hyperaccumulator Pteris vittata . Enzyme-mediated hydrolysis of phytate in P. vittata extracts was not inhibited by arsenate at 5 mM or by heating at 100 °C for 10 min. Root exudates of P. vittata exhibited the highest phytase activity (18 nmol Pi mg(-1) protein min(-1)) when available P was low, allowing its growth on media amended with phytate as the sole source of P. Phosphorus concentration in P. vittata gametophyte tissue grown on phytate was equivalent to plants grown with inorganic phosphate at 2208 mg kg(-1), and arsenic was increased from 1777 to 2630 mg kg(-1). After 2 h of mixing with three soils, P. vittata phytase retained more activity, decreasing from ∼ 26 to ∼ 25 nmol Pi mg(-1) protein min(-1), whereas those from Pteris ensiformis and wheat decreased from ∼ 18 to ∼ 1 nmol Pi mg(-1) protein min(-1). These results suggest P. vittata has a uniquely stable phytase enabling its P acquisition in P-limiting soil environments. Furthermore, the P. vittata phytase has potential use as a soil amendment, a transgenic tool, or as a feed additive supplement, reducing the need for nonrenewable, polluting P fertilizers.

  2. Uptake and biotransformation of arsenate in the lichen Hypogymnia physodes (L.) Nyl.

    PubMed

    Mrak, Tanja; Slejkovec, Zdenka; Jeran, Zvonka; Jaćimović, Radojko; Kastelec, Damijana

    2008-01-01

    The uptake and metabolism of arsenate, As(V), as a function of time and concentration were examined in the lichen Hypogymnia physodes (L.) Nyl. Lichen thalli were exposed to As(V) in the form of a solution. Exponential uptake of As(V) from 4 microg mL(-1) As(V) solution was accompanied by constant arsenite, As(III), excretion back into the solution. Arsenate taken up into the lichens from 0, 0.1, 1, 10 microg mL(-1) As(V) solutions was partially transformed into As(III), dimethylarsinic acid (DMA) and (mono)methylarsonic acid (MA). 48 h after exposure, the main arsenic compound in the lichens was DMA in 0.1, As(III) in 1 and As(V) in 10 microg mL(-1) treatment. The proportion of methylated arsenic compounds decreased with increasing arsenate concentration in the exposure solution. These results suggest that at least two types of As(V) detoxification exist in lichens; arsenite excretion and methylation.

  3. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs).

    PubMed

    Li, Jie; Wu, Yi-nan; Li, Zehua; Zhu, Miao; Li, Fengting

    2014-01-01

    Contamination of arsenic in groundwater and surface water occurs frequently across the globe, requiring an effective purification technology. Among the common technologies, the adsorption method is widely used for the merits of low cost and easy operation. Nevertheless, the development of efficient adsorbents remains one of the central challenges in this field. In this article, one kind of typical porous metal-organic framework material (MIL-53(Al)) was explored for the removal of arsenate from water. MIL-53(Al) has a maximum removal capacity of 105.6 mg/g and a conditional capacity of 15.4 mg/g at a low equilibrium concentration (10 μg/L). The optimum initial pH value is 8.0. Except for PO4(3-), other coexisting anions do not show a notable influence on the adsorption capacity of MIL-53(Al). In general, MIL-53(Al) is a promising new material for arsenate removal from water. Investigation of the effects of electrical charges, Fourier transform infrared spectroscopy spectra, and X-ray photoelectron spectroscopy (XPS) spectra revealed that electrostatic attraction and hydrogen bond might be involved in the adsorption process of arsenate onto MIL-53(Al).

  4. [Occurrence Characteristics of Pyrene and Arsenate and Their Interaction in Pteris vittata L].

    PubMed

    Zhang, Yu-xiu; Ma, Xu; Liao, Xiao-yong; Yan, Xiu-lan; Ma, Dong; Gong, Xue-gang

    2015-12-01

    Pteris vittata L. can absorb and accumulate high arsenic levels in soil. To clarify the occurrence characteristics of pyrene (PYR) and arsenate (As) as well as their interaction in P. vittata L., the hosting and distribution rules of PYR were determined via two-photon laser scanning confocal microscopy (TPLSCM). The results showed that PYR addition resulted in obviously lower concentrations of total As in various parts of P. vittata, with a largest decrease of about 35% in the leaves and stem, and 20. 5% in the roots. PYR addition could also decrease the proportion of trivalent arsenic and increased that of pentavalent arsenate in different parts of P. vittata. The concentrations of trivalent and pentavalent arsenic in the leaves of P. vittata showed the largest decrement, which were 42.2% and 32.49%, respectively. Arsenate addition increased the accumulation of PYR in the root and stem of P. vittata by 9.8 µg and 139 ng per plant, respectively, while no obvious influence was found on the PYR in the leaves. Pyrene mainly attached to the cell membrane and other membrane structure such as nuclear membrane and organelle membrane, and there was less pyrene in the cytoplasm. There was little PYR in the phloem and cortex in the stem as well as palisade tissue and spongy tissue in leaves. PMID:27012002

  5. Adsorption and desorption properties of arsenate onto nano-sized iron-oxide-coated quartz.

    PubMed

    Mostafa, M G; Chen, Yen-Hua; Jean, Jiin-Shuh; Liu, Chia-Chuan; Teng, Hsisheng

    2010-01-01

    This study was conducted to investigate the adsorption and desorption properties of arsenate [As(V)] on nano-sized iron-oxide-coated quartz (IOCQ) through batch experiments. The coating of nano-sized iron oxide on the quartz surface was performed using the heat treatment process which aimed to utilize the adsorption properties of the nano-sized iron oxide and the filtration properties of the quartz. Environmental SEM-EDAX and BET techniques were used to analyze the surface morphology, elemental composition, surface area and the porosity of the adsorbent. SEM-EDAX analyses confirmed that arsenate was adsorbed on the IOCQ surface. BET results showed that the IOCQ adsorbent had higher pore volumes and high specific surface areas compared with the pure quartz. The study revealed that the adsorption rate of As(V) ion was very rapid and reached the equilibrium within 5 min. This study also revealed that almost 100% of As(V) removal was achieved within 5 minutes of adsorption reaction from the initial solution containing 1,000 microg-As(V)/L. The Langmuir adsorption isotherm model suitably explained the sorption characteristics of As(V) onto IOCQ. This desorption study showed that the adsorbent could be reused after reacting with mild HCl solution but the concentration of acid eluant or pH has a great impact on the coated adsorbent surface. The results indicate that the nano-sized iron oxide-coated adsorbent is potentially suitable for removal of arsenate from drinking water.

  6. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents.

    PubMed

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-10-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m²/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3-11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  7. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents

    PubMed Central

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-01-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m2/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3–11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  8. Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement.

    PubMed

    Jing, Chuanyong; Korfiatis, George P; Meng, Xiaoguang

    2003-11-01

    Leaching tests, Fourier transform infrared spectroscopy (FTIR), extended X-ray absorption fine structure (EXAFS) spectroscopy, and thermodynamic modeling were performed to investigate arsenate [As(V)] immobilization mechanisms in iron hydroxide sludge stabilized with cement. The sludge from a groundwater remediation site in Tacoma, WA was mixed and immobilized with premixed cement to reach cement-to-sludge ratios of 2.5, 3.3, 5, 10, and 20 (wt premixed cement/wt dry sludge). The EXAFS analysis determined that As(V) formed bidentate mononuclear complexes on the iron hydroxide surface in the sludge. The adsorbed As(V) had a characteristic FTIR band at 830 cm(-1). Cement treatment converted the adsorbed As(V) to calcium arsenate precipitate with a FTIR peak at 860 cm(-1). The chemical forms of the As(V) were incorporated in an adsorption triple layer model (TLM) to describe the leaching behavior of As(V) in a pH range between 3 and 12. Cement treatment significantly reduced arsenic mobility because of the formation of the sparingly soluble calcium arsenate.

  9. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  10. Sodium arsenate induce changes in fatty acids profiles and oxidative damage in kidney of rats.

    PubMed

    Kharroubi, Wafa; Dhibi, Madiha; Mekni, Manel; Haouas, Zohra; Chreif, Imed; Neffati, Fadoua; Hammami, Mohamed; Sakly, Rachid

    2014-10-01

    Six groups of rats (n = 10 per group) were exposed to 1 and 10 mg/l of sodium arsenate for 45 and 90 days. Kidneys from treated groups exposed to arsenic showed higher levels of trans isomers of oleic and linoleic acids as trans C181n-9, trans C18:1n-11, and trans C18:2n-6 isomers. However, a significant decrease in eicosenoic (C20:1n-9) and arachidonic (C20:4n-6) acids were observed in treated rats. Moreover, the "Δ5 desaturase index" and the saturated/polyunsaturated fatty acids ratio were increased. There was a significant increase in the level of malondialdehyde at 10 mg/l of treatment and in the amount of conjugated dienes after 90 days (p < 0.05). Significant kidney damage was observed at 10 mg/l by increase of plasma marker enzymes. Histological studies on the ultrastructure changes of kidney supported the toxic effect of arsenate exposure. Arsenate intoxication activates significantly the superoxide dismutase at 10 mg/l for 90 days, whereas the catalase activity was markedly inhibited in all treated groups (p < 0.05). In addition, glutathione peroxidase activity was significantly increased at 45 days and dramatically declined after 90 days at 10 mg/l (p < 0.05). A significant increase in the level of glutathione was marked for the groups treated for 45 and 90 days at 1 mg/l followed by a significant decrease for rats exposed to 10 mg/l for 90 days. An increase in the level of protein carbonyl was observed in all treated groups (p < 0.05). In conclusion, the present study provides evidence for a direct effect of arsenate on fatty acid (FA) metabolism which concerns the synthesis pathway of n-6 polyunsaturated fatty acids and leads to an increase in the trans FAs isomers. Therefore, FA-induced arsenate kidney damage could contribute to trigger kidney cancer. PMID:24920263

  11. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  12. Role of the Tat Transport System in Nitrous Oxide Reductase Translocation and Cytochrome cd1 Biosynthesis in Pseudomonas stutzeri

    PubMed Central

    Heikkilä, Mari P.; Honisch, Ulrike; Wunsch, Patrick; Zumft, Walter G.

    2001-01-01

    By transforming N2O to N2, the multicopper enzyme nitrous oxide reductase provides a periplasmic electron sink for a respiratory chain that is part of denitrification. The signal sequence of the enzyme carries the heptameric twin-arginine consensus motif characteristic of the Tat pathway. We have identified tat genes of Pseudomonas stutzeri and functionally analyzed the unlinked tatC and tatE loci. A tatC mutant retained N2O reductase in the cytoplasm in the unprocessed form and lacking the metal cofactors. This is contrary to viewing the Tat system as specific only for fully assembled proteins. A C618V exchange in the electron transfer center CuA rendered the enzyme largely incompetent for transport. The location of the mutation in the C-terminal domain of N2O reductase implies that the Tat system acts on a completely synthesized protein and is sensitive to a late structural variation in folding. By generating a tatE mutant and a reductase-overproducing strain, we show a function for TatE in N2O reductase translocation. Further, we have found that the Tat and Sec pathways have to cooperate to produce a functional nitrite reductase system. The cytochrome cd1 nitrite reductase was found in the periplasm of the tatC mutant, suggesting export by the Sec pathway; however, the enzyme lacked the heme D1 macrocycle. The NirD protein as part of a complex required for heme D1 synthesis or processing carries a putative Tat signal peptide. Since NO reduction was also inhibited in the tatC mutant, the Tat protein translocation system is necessary in multiple ways for establishing anaerobic nitrite denitrification. PMID:11160097

  13. Structural and mechanistic insights on nitrate reductases.

    PubMed

    Coelho, Catarina; Romão, Maria João

    2015-12-01

    Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data. PMID:26362109

  14. Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach.

    PubMed

    Gao, Xiaodong; Root, Robert A; Farrell, James; Ela, Wendell; Chorover, Jon

    2013-11-01

    The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7-9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8 - 9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As

  15. Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al-Mg and Fe-Mg layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Caporale, A. G.; Pigna, M.; Dynes, J. J.; Cozzolino, V.; Zhu, J.; Violante, A.

    2012-04-01

    In recent decades, a class of anionic clays known as layered double hydroxides (LDHs) has attracted substantial attention due to the potential use in many applications, such as photochemistry, electrochemistry, polymerization, magnetization and biomedical science. There has also been considerable interest in using LDHs as adsorbents to remove environmental contaminants due to their large surface area, high anion exchange capacity and good thermal stability. We studied the sorption of arsenate on Al-Mg and Fe-Mg layered double hydroxides (easily reproducible at low-cost) as affected by pH and varying concentrations of inorganic (nitrate, nitrite, phosphate, selenite and sulphate) and organic (oxalate and tartrate) ligands, ii) the effect of residence time on the arsenate desorption by these ligands, and iii) the kinetics of arsenate desorption by phosphate. The Fe-Mg-LDH sorbed nearly twice the amount of arsenate compared to the Al-Mg-LDH, due, in part, to its greater surface area and lower degree of crystallinity. Moreover, the Fe-Mg-LDH sorbed more arsenate than phosphate, in contrast to the Al-Mg-LDH, which adsorbed more phosphate than arsenate, probably because of the greater affinity of arsenate than phosphate for Fe sites and, vice versa, the greater affinity of phosphate than arsenate for Al sites. Arsenate sorption onto samples decreased by increasing pH, due, maybe, to the high affinity of hydroxyl ions for LDHs and/or to the value of zero point charge of two sorbents. The rate of decline in the amount of arsenate sorbed was, however, relatively constant, decreasing the fastest for the Fe-Mg-LDH compared to the Al-Mg-LDH. The capacity of ligands to inhibit the fixation of arsenate followed the sequence: nitrate < nitrite < sulphate < selenite < tartrate < oxalate << phosphate on Al-Mg-LDH and nitrate < sulphate ≈ nitrite < tartrate < oxalate < selenite << phosphate on Fe-Mg-LDH. The inhibition of arsenate sorption increased by increasing the initial

  16. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

    PubMed

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G

    1999-03-12

    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  17. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  18. Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al-Mg and Fe-Mg layered double hydroxides.

    PubMed

    Caporale, A G; Pigna, M; Dynes, J J; Cozzolino, V; Zhu, J; Violante, A

    2011-12-30

    This paper describes the sorption of arsenate on Al-Mg and Fe-Mg layered double hydroxides as affected by pH and varying concentrations of inorganic and organic ligands, and the effect of residence time on the desorption of arsenate by ligands. The capacity of ligands to inhibit the fixation of arsenate followed the sequence: nitratearsenate sorption increased by increasing the initial ligand concentration and was greater on Al-Mg-LDH than on Fe-Mg-LDH. The longer the arsenate residence time on the LDH surfaces the less effective the competing ligands were in desorbing arsenate from sorbents. A greater percentage of arsenate was removed by phosphate from Al-Mg-LDH than from Fe-Mg-LDH, due to the higher affinity of arsenate for iron than aluminum. PMID:22071258

  19. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin.

    PubMed Central

    Correll, C. C.; Ludwig, M. L.; Bruns, C. M.; Karplus, P. A.

    1993-01-01

    The structure of phthalate dioxygenase reductase (PDR), a monomeric iron-sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin-NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe-2S] are very similar in the two systems. Alignment of the X-ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P-450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel beta-barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide-binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753-3759). Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2' phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN. The midpoint potentials for reduction of the flavin and [2Fe-2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant

  20. Extended triple layer modeling of arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Green, Peter G; Darby, Jeannie L

    2010-05-01

    The extended triple layer model (ETLM), which is consistent with spectroscopic and theoretical molecular evidence, is first systematically tested for its capability to model adsorption of arsenate and phosphate, a strong competitor, on a common goethite-based granular porous adsorptive media (Bayoxide E33 (E33)) in water treatment systems under a wide range of solution conditions. Deprotonated bidentate-binuclear, protonated bidentate-binuclear, and deprotonated monodentate complexes are chosen as surface species for both arsenate and phosphate. The estimated values of the ETLM parameters of arsenate for the adsorbent are close to those for pure goethite minerals previously determined by others. The ETLM predictions for arsenate and phosphate adsorption basically agree with experimental results over a wide range of pH, surface coverage, and solid concentrations. High background electrolyte concentration (i.e., I = 0.1 M), however, was found to strongly impact arsenate and phosphate adsorption on E33 probably because of the porous structure of the adsorbent, which cannot be observed for pure goethite minerals and could not be completely modeled by the ETLM. Prediction of phosphate adsorption isotherms at higher pH were relatively poor, and this may suggest searching for alternative surface species for phosphate. Since adsorption equilibrium constants of major coexisting ions encountered in water treatment systems for goethite minerals have been estimated by others, the application of ETLM theory to this common goethite-based adsorptive media will enable us to understand how those coexisting ions macroscopically and thermodynamically interact with arsenate and phosphate in the environment of adsorptive water treatment system in a way consistent with molecular and spectroscopic evidence.

  1. Promiscuity and diversity in 3-ketosteroid reductases

    PubMed Central

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  2. Promiscuity and diversity in 3-ketosteroid reductases.

    PubMed

    Penning, Trevor M; Chen, Mo; Jin, Yi

    2015-07-01

    Many steroid hormones contain a Δ(4)-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1-AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1-AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.

  3. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  4. Synthesis of Nitrate Reductase in Chlorella

    PubMed Central

    Funkhouser, Edward A.; Shen, Teh-Chien; Ackermann, Renate

    1980-01-01

    Synthesis of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris was studied under inducing conditions, i.e. with cells grown on ammonia and then transferred to nitrate medium. Cycloheximide (but not chloramphenicol) completely inhibited synthesis of the enzyme, but only if it was added at the start (i.e. at the time of nitrate addition) of the induction period. Cycloheximide inhibition became less effective as induction by nitrate proceeded. Enzyme from small quantities of culture (1 to 3 milliliters of packed cells) was purified to homogeneity with the aid of blue dextran-Sepharose chromatography. Incorporation of radioactivity from labeled arginine into nitrate reductase was measured in the presence and absence of cycloheximide. Conditions were found under which the inhibitor completely blocked the incorporation of labeled amino acid, but only slightly decreased the increase in nitrate reductase activity. The results indicate that synthesis of nitrate reductase from amino acids proceeds by way of a protein precursor which is inactive enzymically. PMID:16661310

  5. Neonatal respiratory distress syndrome

    MedlinePlus

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... Neonatal RDS occurs in infants whose lungs have not yet fully ... disease is mainly caused by a lack of a slippery substance in ...

  6. Avian respiratory system disorders

    USGS Publications Warehouse

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  7. MSFC Respiratory Protection Services

    NASA Technical Reports Server (NTRS)

    CoVan, James P.

    1999-01-01

    An overview of the Marshall Space Flight Center Respiratory Protection program is provided in this poster display. Respiratory protection personnel, building, facilities, equipment, customers, maintenance and operational activities, and Dynatech fit testing details are described and illustrated.

  8. Removing heavy metals in water: the interaction of cactus mucilage and arsenate (As (V)).

    PubMed

    Fox, Dawn I; Pichler, Thomas; Yeh, Daniel H; Alcantar, Norma A

    2012-04-17

    High concentrations of arsenic in groundwater continue to present health threats to millions of consumers worldwide. Particularly, affected communities in the developing world need accessible technologies for arsenic removal from drinking water. We explore the application of cactus mucilage, pectic polysaccharide extracts from Opuntia ficus-indica for arsenic removal. Synthetic arsenate (As (V)) solutions were treated with two extracts, a gelling extract (GE) and a nongelling extract (NE) in batch trials. The arsenic concentration at the air-water interface was measured after equilibration. The GE and NE treated solutions showed on average 14% and 9% increases in arsenic concentration at the air-water interface respectively indicating that the mucilage bonded and transported the arsenic to the air-water interface. FTIR studies showed that the -CO groups (carboxyl and carbonyl groups) and -OH (hydroxyl) functional groups of the mucilage were involved in the interaction with the arsenate. Mucilage activity was greater in weakly basic (pH 9) and weakly acidic (pH 5.5) pH. This interaction can be optimized and harnessed for the removal of arsenic from drinking water. This work breaks the ground for the application of natural pectic materials to the removal of anionic metallic species from water. PMID:22401577

  9. Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs.

    PubMed

    Lopez, Adeline R; Hesterberg, Dean R; Funk, David H; Buchwalter, David B

    2016-06-21

    Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important.

  10. Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption.

    PubMed

    Yu, Yang; Yu, Ling; Sun, Min; Paul Chen, J

    2016-07-15

    A novel hydrated yttrium oxide adsorbent with high capacity towards the arsenate (As(V)) adsorption was fabricated by a one-step hydrothermal process. Structure analysis identified the hydrated yttrium oxide to be Y2O(OH)4·1.5H2O, which displayed as irregular rods in the range of tens to hundreds of nanometers. The adsorbent exhibited favorable As(V) adsorption efficiency in a wide pH range from 4.0 to 7.0, with the maximum adsorption capacity of 480.2mg-As/g obtained at pH 5.0. Both the kinetics and isotherm studies demonstrated that the adsorption of the As(V) was a monolayer chemical adsorption process, in which the ion exchange between the hydroxyl groups on the hydrated yttrium oxide and arsenate anions played a key role in the uptake of the As(V). During the adsorption, the As(V) anions were replaced the hydroxyl groups and bound to the hydrated yttrium oxide via the linkage of AsOY. The presence of fluoride and phosphate greatly hindered the As(V) uptake on the hydrated yttrium oxide, whereas the bicarbonate, sulfate and humic acid showed insignificant impacts on the removal. PMID:27135142

  11. Characterization of arsenic compounds formed by Daphnia magna and Tetraselmis chuii from inorganic arsenate.

    PubMed Central

    Irgolic, K J; Woolson, E A; Stockton, R A; Newman, R D; Bottino, N R; Zingaro, R A; Kearney, P C; Pyles, R A; Maeda, S; McShane, W J; Cox, E R

    1977-01-01

    Experiments to grow Tetraselmis chuii (a marine alga) and Daphnia magna in the presence of inorganic arsenate are described. The algae incorporate arsenic rather efficiently and form a lipid-soluble organic arsenic compound. T. chuii has been successfully mass cultured in a medium containing 10 ppm arsenic as arsenate. Daphnia magna was cultured in a medium containing 74As-labeled H3AsO4 and 1 ppm Na2HAsO4 expressed as arsenic. The arsenic metabolites were extracted with a chloroform-methanol solution and isolated by using column and thin-layer chromatography. TLC analysis of the metabolites revealed the presence of a 74As-containing product which migrated with phosphatidylethanolamine. This product was hydrolyzed with the phospholipases A, C, and D. The experimental results are not inconsistent with the presence of an arsenocholine moiety in the lipids. Arsenocholine, arsenobetaine, and acetylarsenocholine have been synthesized and will serve as reference substances in the chromatography experiments. The preparation of arsenocholine-containing lipids is in progress. PMID:908314

  12. Chemical Speciation and Bioaccessibility of Arsenic and Chromiumin Chromated Copper Arsenate-Treated Wood and Soils

    SciTech Connect

    Nico, Peter S.; Ruby, Michael V.; Lowney, Yvette W.; Holm,Stewart E.

    2005-10-12

    This research compares the As and Cr chemistry ofdislodgeable residues from Chromated Copper Arsenate (CCA)-treated woodcollected by two different techniques (directly from the board surfaceeither by rubbing with a soft bristle brush or from human hands aftercontact with CCA-treated wood), and demonstrates that these materials areequivalent in terms of the chemical form and bonding of As and Cr and interms of the As leaching behavior. This finding links the extensivechemical characterization and bioavailability testing that has been donepreviously on the brush-removed residue to a material that is derivedfrom human skin contact with CCA-treated wood. Additionally, thisresearch characterizes the arsenic present in biological fluids (sweatand simulated gastric fluid) following contact with these residues. Thedata demonstrate that in biological fluids, the arsenic is presentprimarily as free arsenate ions.Arsenic-containing soils were alsoextracted into human sweat to evaluate the potential for arsenicdissolution from soils at the skin surface. For soils from field sites,only a small fraction of the total arsenic is soluble in sweat. Based oncomparisons to reference materials that have been used in in vivo dermalabsorption studies, these findings suggest that the actual relativebioavailability via dermal absorption of As from CCA-residues and soilmay be well below the current default value of 3 percent used by U.S.EPA.

  13. Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption.

    PubMed

    Yu, Yang; Yu, Ling; Sun, Min; Paul Chen, J

    2016-07-15

    A novel hydrated yttrium oxide adsorbent with high capacity towards the arsenate (As(V)) adsorption was fabricated by a one-step hydrothermal process. Structure analysis identified the hydrated yttrium oxide to be Y2O(OH)4·1.5H2O, which displayed as irregular rods in the range of tens to hundreds of nanometers. The adsorbent exhibited favorable As(V) adsorption efficiency in a wide pH range from 4.0 to 7.0, with the maximum adsorption capacity of 480.2mg-As/g obtained at pH 5.0. Both the kinetics and isotherm studies demonstrated that the adsorption of the As(V) was a monolayer chemical adsorption process, in which the ion exchange between the hydroxyl groups on the hydrated yttrium oxide and arsenate anions played a key role in the uptake of the As(V). During the adsorption, the As(V) anions were replaced the hydroxyl groups and bound to the hydrated yttrium oxide via the linkage of AsOY. The presence of fluoride and phosphate greatly hindered the As(V) uptake on the hydrated yttrium oxide, whereas the bicarbonate, sulfate and humic acid showed insignificant impacts on the removal.

  14. Na₃Co₂(AsO₄)(As₂O₇): a new sodium cobalt arsenate.

    PubMed

    Guesmi, Abderrahmen; Driss, Ahmed

    2012-07-01

    In the title compound, tris-odium dicobalt arsenate diarsenate, Na₃Co₂AsO₄As₂O₇, the two Co atoms, one of the two As and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the As, and 2 and twice m for the O atoms. The two Na atoms are disordered over two general and special positions [occupancies 0.72 (3):0.28 (3) and 0.940 (6):0.060 (6), respectively]. The main structural feature is the association of the CoO₆ octa-hedra in the ab plane, forming Co₄O₂₀ units, which are corner- and edge-connected via AsO₄ and As₂O₇ arsenate groups, giving rise to a complex polyhedral connectivity with small tunnels, such as those running along the b- and c-axis directions, in which the Na⁺ ions reside. The structural model is validated by both bond-valence-sum and charge-distribution methods, and the distortion of the coordination polyhedra is analyzed by means of the effective coordination number.

  15. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  16. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae.

    PubMed

    Chang, Qing; Griest, Terry A; Harter, Theresa M; Petrash, J Mark

    2007-03-01

    We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  17. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae*

    PubMed Central

    Chang, Qing; Griest, Terry A.; Harter, Theresa M.; Petrash, J. Mark

    2007-01-01

    SUMMARY We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  18. Augmentation of CFTR maturation by S-nitrosoglutathione reductase.

    PubMed

    Zaman, Khalequz; Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J; Lewis, Stephen J; Gaston, Benjamin

    2016-02-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o(-)) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o(-) cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions.

  19. Atypical features of Thermus thermophilus succinate:quinone reductase.

    PubMed

    Kolaj-Robin, Olga; Noor, Mohamed R; O'Kane, Sarah R; Baymann, Frauke; Soulimane, Tewfik

    2013-01-01

    The Thermus thermophilus succinate:quinone reductase (SQR), serving as the respiratory complex II, has been homologously produced under the control of a constitutive promoter and subsequently purified. The detailed biochemical characterization of the resulting wild type (wt-rcII) and His-tagged (rcII-His(8)-SdhB and rcII-SdhB-His(6)) complex II variants showed the same properties as the native enzyme with respect to the subunit composition, redox cofactor content and sensitivity to the inhibitors malonate, oxaloacetate, 3-nitropropionic acid and nonyl-4-hydroxyquinoline-N-oxide (NQNO). The position of the His-tag determined whether the enzyme retained its native trimeric conformation or whether it was present in a monomeric form. Only the trimer exhibited positive cooperativity at high temperatures. The EPR signal of the [2Fe-2S] cluster was sensitive to the presence of substrate and showed an increased rhombicity in the presence of succinate in the native and in all recombinant forms of the enzyme. The detailed analysis of the shape of this signal as a function of pH, substrate concentration and in the presence of various inhibitors and quinones is presented, leading to a model for the molecular mechanism that underlies the influence of succinate on the rhombicity of the EPR signal of the proximal iron-sulfur cluster.

  20. EXAFS Analyses of Innersphere Surface Complexations of Arsenate and Silicate on Natural Hydrous Ferric Oxides

    NASA Astrophysics Data System (ADS)

    Tommaseo, C. E.; Kersten, M.

    2002-12-01

    X-ray absorption spectroscopy (EXAFS) was used to determine the near range order of three elements (Fe, As, Si) on the surface of hydrous ferric oxide (HFO) from thermal water scales. Fe K-edge EXAFS analyses of the 2nd shell show a better fit including Si as backscattering neighbor. Validation of the Si-Fe bond was obtained by Si K-edge EXAFS spectra, where the light absorber element is surrounded favourably by much heavier second-shell elements. Least-squares fitting of the second-shell Fourier-filtered EXAFS spectrum in the k-range of 5-11 Å-1 yields in a Si-Fe distance of 3.10-3.13Å, and a Si-Si distance of 3.00Å. Both these interatomic distances and the coordination number N = 2 obtained for the Si-Fe shell are consistent with the formation of a corner-bridging bidentate binuclear (2C) surface complex on the HFO surface. The Si-Si bonds and existance of a vibrational band at 964 cm-1 in the infrared spectrum indicate polymerisation of the silicate on the HFO surface (Tommaseo and Kersten). As K-edge XANES analyses showed the As present in form of arsenate scavenged by the HFO phase. As and Si K-edge EXAFS analyses revealed both elements to compete for 2C surface complexation sites. A mean As-Fe distance of 3.03Å indicate an approx. equal distribution of arsenate between 2C (3.24Å) and another 1E (bidentate mononuclear surface complexation) sites (2.84Å). The average Fe-(O,OH) bond length of 2.09Å is compatible with a high proportion of distorted surficial FeIII(O,OH)6 octahedra in the colloidal HFO precipitates of the scale deposits. The slight distortion of the FeIII(O,OH)6 octahedra is consistent with the apparent strong binding of the 1E arsenate surface complexes (Manceau, 1995). The adverse effect of silicate would therefore be overpredicted without surface complexation models constructed to account for both surface functional groups. The Si K-edge EXAFS data provide also a basis for explaining at the molecular level the poisoning of HFO particle

  1. Immunological studies on beef-heart ubiquinol--cytochrome c reductase (complex III)

    PubMed

    Nelson, B D; Mendel-Hartvig, I

    1977-10-17

    Antibodies against isolated beef-heart ubiquinol--cytochrome c reductase (complex III) have been characterized. Antibodies to complex III react strongly with isolated beef heart complex III and intact beef heart mitochondria, as shown by immunodiffusion and rocket electrophoresis experiments. The complex III content of intact mitochondria can be quantitated with rocket electrophoresis using isolated complex III as a standard. Antibodies to complex III also react with beef liver mitochondria and with both heart and liver mitochondria from rats. The latter are very weak antigens compared to beef heart material. Antibodies to complex III do not react with respiratory chain complexes I and IV, or F1-ATPase from beef heart mitochondria, but gives a slight, but variable, reaction with complex II and the membrane fraction isolated from complex V (oligomycin-sensitive ATPase). Antigenic sites are located on at least five of the seven peptides of complex III. These peptides are presumably lacking in respiratory chain complexes which do not react with antibodies to complex III, and are assumed to be uniquely located in complex III. Antiserum against complex III inhibitis duroquinol--cytochrome c reductase activity in isolated complex III and in complex III incorporated into phospholipid vesicles. Oxidation of NADH and succinate is not affected in submitochondrial particles treated with 6-times more antibody than required for complete inhibition of enzyme activity in free complex III or in complex III-phospholipid vesicles.

  2. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California

    USGS Publications Warehouse

    Blum, Jodi Switzer; Kulp, Thomas R.; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad W.; Stolz, John F.; Miller, Laurence G.; Oremland, Ronald S.

    2012-01-01

    A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50–330 g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.

  3. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater Arsenic Treatment Using Zerovalent Iron and Natural Attenuation

    EPA Science Inventory

    Magnetite (Fe3O4) is a zerovalent iron corrosion product; it is also formed in natural soil and sediment. Sorption of arsenate (As(V)) and arsenite (As(III)) on magnetite is an important process of arsenic removal from groundwater using zerovalent iron-based permeable reactive ba...

  4. Tissue Distribution and Urinary Excretion of Dimethylated Arsenic and Its Metabolites in Dimethylarsinic acid- or Arsenate-treated Rats - MCEARD

    EPA Science Inventory

    Adult female Fisher 344 rats received drinking water containing 0, 4, 40, 100, or 200 parts per million of dimethylarsinic acid or 100 parts per million of arsenate for 14 days. Urine was collected during the last 24 h of exposure. Tissues were then taken for analysis of dimethy...

  5. A green sorbent of esterified egg-shell membrane for highly selective uptake of arsenate and speciation of inorganic arsenic.

    PubMed

    Chen, Ming-Li; Gu, Cui-Bo; Yang, Ting; Sun, Yan; Wang, Jian-Hua

    2013-11-15

    Egg-shell membrane (ESM) is a promising adsorbent for heavy metal uptake. However, carboxylic groups on ESM surface barrier arsenic adsorption. Herein, ESM is modified by esterification and the methyl esterified egg-shell membrane (MESM) possesses positive charge within pH 1-9. As a novel green sorbent material, MESM exhibits 200-fold improvement on sorption capacity of arsenate with respect to bare ESM. It presents an ultra-high selectivity of 256:1 toward arsenate against arsenite. At pH 6, 100% sorption efficiency is achieved for 2 μg L(-1) As(V) by 10 mg MESM, while virtually no adsorption of As(III) is observed. This provides great potential for selective sorption of arsenate in the presence of arsenite. By loading 4.0 mL sample within 0.05-5.00 μg L(-1) As(V) followed by elution with 300 μL HCl (1.5 mol L(-1)), a detection limit of 15 ng L(-1) is obtained along with a RSD of 3.5% at 0.5 μg L(-1). Total inorganic arsenic is achieved by converting As(III) to As(V) and following the same sorption process. This procedure is applied for arsenate determination and inorganic arsenic speciation in Hijiki and water samples. The results are confirmed by graphite furnace atomic absorption spectrometry and spiking recovery.

  6. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    EPA Science Inventory

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  7. Facile synthesis of size-tunable gold nanoparticles by pomegranate (Punica granatum) leaf extract: Applications in arsenate sensing

    SciTech Connect

    Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok; Srikanth, Rapole; Kumar, Ameeta Ravi; Gosavi, Suresh; Zinjarde, Smita

    2013-03-15

    Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphous layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.

  8. Effects of meso-2,3-dimercaptosuccinic acid (DMSA) on the teratogenicity of sodium arsenate in mice

    SciTech Connect

    Bosque, M.A.; Domingo, J.L.; Llobet, J.M. ); Corbella, J. )

    1991-11-01

    Although the effects of arsenic on mammalian development are now well established, very few data on the protective activity of different chelators against embryotoxicity and teratogenicity of arsenic are available. Chelating agents may interact with teratogen metals to augment or ameliorate their actions. Researchers demonstrated that a single dose of 2,3-dimercaptopropanol (BAL) was capable of affording a degree of protection to arsenate exposed fetal mice. Subcutaneous treatment with 50 mg/kg of BAL 4 hr after arsenate reduced the frequency or severity of malformations compared with the effects of arsenate alone. However, BAL has several drawbacks. In recent years dimercaptosuccinic acid (DMSA) is receiving growing attention in the USA and Western Europe. Results of a number of different investigations in rodents have led to the conclusion that DMSA is much less toxic than BAL. Moreover, DMSA has been reported to be effective in inducing arsenic excretion. In the present study, the protective effects of DMSA in alleviating the embryotoxic and teratogenic effects of sodium arsenate were evaluated in mice.

  9. Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga Phaeodactylum tricornutum in response to arsenate exposure.

    PubMed

    Morelli, Elisabetta; Mascherpa, Marco Carlo; Scarano, Gioacchino

    2005-12-01

    The arsenate-induced synthesis of phytochelatins (PC), intracellular cysteine-rich metal-binding peptides, and its relationship with toxicity and with As accumulation in the cell have been studied in laboratory cultures of the marine microalga Phaeodactylum tricornutum. The time course of cellular PC and As in short-term exposures showed that the involvement of PC in the As detoxification as well as the pathway of cellular As depend on the extent of As accumulation and on the rate of PC synthesis. At arsenate concentrations causing As accumulation at a rate exceeding that of PC synthesis, cells seem to activate a mechanism of release of As mainly in a chemical form not complexed with PC. At arsenate concentrations at which the synthesis of PC occurs at a rate sufficient to allow a significant portion of As accumulated in the cell to be bound, the fate of cellular As seems to be mainly controlled by PC. The occurrence of these different pathways of As detoxification was discussed to explain the pattern of cellular As and PC in cells grown for three days at growth-inhibitory and at no growth-inhibitory concentration of arsenate.

  10. Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water.

    PubMed

    Martin, Maria; Violante, Antonio; Barberis, Elisabetta

    2007-10-01

    In Bangladesh and West Bengal, India, tons of arsenic are added every year to wide extensions of agricultural soils after irrigation with arsenic polluted groundwater, and the fate of the added arsenic in these water-soil environments is not yet clear. This work was aimed to investigate the accumulation and potential release of arsenite [As(III)] and arsenate [As(V)] in two adjacent soils of Bangladesh, irrigated with arsenic contaminated groundwater and cultivated under flooded or not flooded conditions. Both soils showed a scarce As accumulation, in spite of a good adsorption capacity, higher for As(III) than for As(V). The poorly ordered Fe oxides dominated As adsorption in the topsoil of the flooded soil, whereas the crystalline forms were more important in the well aerated soil. A high percentage of the native arsenic was exchangeable with phosphate and the freshly added arsenate or arsenite were even much more mobile. In our experimental conditions, the high As mobility was not dependent on the surface coverage, and, in the flooded soil, 60-70% of the freshly added arsenite or arsenate were desorbed with an infinite sink method, while in the not flooded soil arsenate was less desorbed than arsenite. Depending on their characteristics, some soils, in particular when cultivated under flooded conditions, can represent only a temporary sink for the added As, that can be easily released to waters and possibly enter the food chain from the water-soil system. PMID:17952778

  11. TISSUE DISTRIBUTION OF INORGANIC ARSENIC (AS) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (ASV)

    EPA Science Inventory

    TISSUE DISTRIBUTION OF INORGANIC ARSENIC (iAs) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (AsV). E M Kenyon1, L M Del Razo2, and M F Hughes1. 1NHEERL, ORD, US EPA, RTP, NC, USA; 2CINVESTAV-IPN, Mexico City, Mexico.

    The relationship o...

  12. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.

    PubMed

    Simon, Jörg; Sänger, Monica; Schuster, Stephan C; Gross, Roland

    2003-07-01

    The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from

  13. Structure of aldose reductase from Giardia lamblia

    PubMed Central

    Ferrell, M.; Abendroth, J.; Zhang, Y.; Sankaran, B.; Edwards, T. E.; Staker, B. L.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.

    2011-01-01

    Giardia lamblia is an anaerobic aerotolerant eukaryotic parasite of the intestines. It is believed to have diverged early from eukarya during evolution and is thus lacking in many of the typical eukaryotic organelles and biochemical pathways. Most conspicuously, mitochondria and the associated machinery of oxidative phosphorylation are absent; instead, energy is derived from substrate-level phosphorylation. Here, the 1.75 Å resolution crystal structure of G. lamblia aldose reductase heterologously expressed in Escherichia coli is reported. As in other oxidoreductases, G. lamblia aldose reductase adopts a TIM-barrel conformation with the NADP+-binding site located within the eight β-strands of the interior. PMID:21904059

  14. Steroid 5α-reductase 2 deficiency.

    PubMed

    Mendonca, Berenice B; Batista, Rafael Loch; Domenice, Sorahia; Costa, Elaine M F; Arnhold, Ivo J P; Russell, David W; Wilson, Jean D

    2016-10-01

    Dihydrotestosterone is a potent androgen metabolite formed from testosterone by action of 5α-reductase isoenzymes. Mutations in the type 2 isoenzyme cause a disorder of 46,XY sex development, termed 5α-reductase type 2 deficiency and that was described forty years ago. Many mutations in the encoding gene have been reported in different ethnic groups. In affected 46,XY individuals, female external genitalia are common, but Mullerian ducts regress, and the internal urogenital tract is male. Most affected males are raised as females, but virilization occurs at puberty, and male social sex develops thereafter with high frequency. Fertility can be achieved in some affected males with assisted reproduction techniques, and adults with male social sex report a more satisfactory sex life and quality of life as compared to affected individuals with female social sex. PMID:27224879

  15. Tissue distribution and urinary excretion of dimethylated arsenic and its metabolites in dimethylarsinic acid- or arsenate-treated rats

    SciTech Connect

    Adair, Blakely M.; Moore, Tanya; Conklin, Sean D.; Creed, John T.; Wolf, Douglas C.; Thomas, David J. . E-mail: thomas.david@epa.gov

    2007-07-15

    Adult female Fisher 344 rats received drinking water containing 0, 4, 40, 100, or 200 parts per million of dimethylarsinic acid or 100 parts per million of arsenate for 14 days. Urine was collected during the last 24 h of exposure. Tissues were then taken for analysis of dimethylated and trimethylated arsenicals; urines were analyzed for these arsenicals and their thiolated derivatives. In dimethylarsinic acid-treated rats, highest concentrations of dimethylated arsenic were found in blood. In lung, liver, and kidney, concentrations of dimethylated arsenic exceeded those of trimethylated species; in urinary bladder and urine, trimethylated arsenic predominated. Dimethylthioarsinic acid and trimethylarsine sulfide were present in urine of dimethylarsinic acid-treated rats. Concentrations of dimethylated arsenicals were similar in most tissues of dimethylarsinic acid- and arsenate-treated rats, including urinary bladder which is the target for dimethylarsinic acid-induced carcinogenesis in the rat. Mean concentration of dimethylated arsenic was significantly higher (P < 0.05) in urine of dimethylarsinic acid-treated rats than in arsenate-treated rats, suggesting a difference between treatment groups in the flux of dimethylated arsenic through urinary bladder. Concentrations of trimethylated arsenic concentrations were consistently higher in dimethylarsinic acid-treated rats than in arsenate-treated rats; these differences were significant (P < 0.05) in liver, urinary bladder, and urine. Concentrations of dimethylthioarsinic acid and trimethylarsine sulfide were higher in urine from dimethylarsinic acid-treated rats than from arsenate-treated rats. Dimethylarsinic acid is extensively metabolized in the rat, yielding significant concentrations of trimethylated species and of thiolated derivatives. One or more of these metabolites could be the species causing alterations of cellular function that lead to tumors in the urinary bladder.

  16. Discovery of pinoresinol reductase genes in sphingomonads.

    PubMed

    Fukuhara, Y; Kamimura, N; Nakajima, M; Hishiyama, S; Hara, H; Kasai, D; Tsuji, Y; Narita-Yamada, S; Nakamura, S; Katano, Y; Fujita, N; Katayama, Y; Fukuda, M; Kajita, S; Masai, E

    2013-01-10

    Bacterial genes for the degradation of major dilignols produced in lignifying xylem are expected to be useful tools for the structural modification of lignin in plants. For this purpose, we isolated pinZ involved in the conversion of pinoresinol from Sphingobium sp. strain SYK-6. pinZ showed 43-77% identity at amino acid level with bacterial NmrA-like proteins of unknown function, a subgroup of atypical short chain dehydrogenases/reductases, but revealed only 15-21% identity with plant pinoresinol/lariciresinol reductases. PinZ completely converted racemic pinoresinol to lariciresinol, showing a specific activity of 46±3 U/mg in the presence of NADPH at 30°C. In contrast, the activity for lariciresinol was negligible. This substrate preference is similar to a pinoresinol reductase, AtPrR1, of Arabidopsis thaliana; however, the specific activity of PinZ toward (±)-pinoresinol was significantly higher than that of AtPrR1. The role of pinZ and a pinZ ortholog of Novosphingobium aromaticivorans DSM 12444 were also characterized.

  17. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase.

    PubMed

    Wei, Yifeng; Li, Bin; Prakash, Divya; Ferry, James G; Elliott, Sean J; Stubbe, JoAnne

    2015-12-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism.

  18. Role of the Dinitrogenase Reductase Arginine 101 Residue in Dinitrogenase Reductase ADP-Ribosyltransferase Binding, NAD Binding, and Cleavage

    PubMed Central

    Ma, Yan; Ludden, Paul W.

    2001-01-01

    Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria. Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of the nifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding. PMID:11114923

  19. Rubidium titanyl arsenate difference-frequency generation and validation of new Sellmeier coefficients

    NASA Astrophysics Data System (ADS)

    Fenimore, D. L.; Schepler, K. L.; Zelmon, D.; Kück, S.; Ramabadran, U. B.; von Richter, P.; Small, D.

    1996-09-01

    Rubidium titanyl arsenate (RTA), a crystallographic isomorph of potassium titanyl phosphate, shows promise for nonlinear-frequency generation throughout the 1-5- mu m spectral region. Difference-frequency generation in an RTA crystal produced tunable output in the 3.2-4.2- mu m wavelength range. A single 1.064- mu m Nd:YAG laser pumped both a LiNbO3 optical parametric oscillator used to generate a tunable signal beam and the RTA crystal used for difference-frequency generation. Conversion efficiencies were limited to 4% primarily by the large beam divergence of the signal beam. Phase-matching measurements were in excellent agreement with new IR-corrected RTA Sellmeier equations based on refractive-index measurements. .

  20. [Lead arsenate as an underestimated cause of polyneuropathy in rural environment: description of two cases].

    PubMed

    Foà, V; Gilioli, R; Rizzi, B; Merluzzi, F

    1976-01-01

    Two cases of lead arsenate polyneuropathy are described in two farmers from the same rural area; the etiology of the neurologic al disorder was ascertained only after repeated hospital admissions. It was a neuropathy of the radial nerve associated with signs of peripheral impairment of the lower limbs with pains and paresthesias. Abdominal colies, arterial hipertension, anaemia and signs of renal impairment were also present. Specific therapy was undertaken which was soon followed by nearly full recovery. Lead and arsenic toxicology are discussed with particular focusing on the necessity emphasis on commun occupational hazards both in terms of diagnostic and therapeutic procedures. The differential diagnosis is considered between the observed clinical picture and other polyneuropathies of different etiology i.e. dysmetabolic (porphyria) or toxic (insecticides, T.O.C.P., etc).

  1. Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber.

    PubMed

    Imyim, Apichat; Sirithaweesit, Thitayati; Ruangpornvisuti, Vithaya

    2016-01-15

    Waste tyre rubber (WTR) granulate was modified with a cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (p(APTMACl)). The resulting WTR/p(APTMACl) was utilized for the adsorption of arsenite, As(III) and arsenate, As(V) from aqueous medium in both batch and column methods. The level of adsorption increased gradually with increasing monomer concentration and contact time. The adsorption behavior obeyed the Freundlich model, and the rate of adsorption could be predicted by employing the pseudo-second order model. In the column method, As(V) could be adsorbed onto the sorbent more effectively than As(III). Remarkable desorption of As(III) and As(V) (99 and 92%, respectively) from the adsorbent was achieved using 0.10 M HCl as eluent. An approach of evaluation of adsorption capacity uncertainty is proposed.

  2. Rice-arsenate interactions in hydroponics: a three-gene model for tolerance.

    PubMed

    Norton, Gareth J; Nigar, Meher; Williams, Paul N; Dasgupta, Tapash; Meharg, Andrew A; Price, Adam H

    2008-01-01

    In this study, the genetic mapping of the tolerance of root growth to 13.3 muM arsenate [As(V)] using the BalaxAzucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice.

  3. Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber.

    PubMed

    Imyim, Apichat; Sirithaweesit, Thitayati; Ruangpornvisuti, Vithaya

    2016-01-15

    Waste tyre rubber (WTR) granulate was modified with a cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (p(APTMACl)). The resulting WTR/p(APTMACl) was utilized for the adsorption of arsenite, As(III) and arsenate, As(V) from aqueous medium in both batch and column methods. The level of adsorption increased gradually with increasing monomer concentration and contact time. The adsorption behavior obeyed the Freundlich model, and the rate of adsorption could be predicted by employing the pseudo-second order model. In the column method, As(V) could be adsorbed onto the sorbent more effectively than As(III). Remarkable desorption of As(III) and As(V) (99 and 92%, respectively) from the adsorbent was achieved using 0.10 M HCl as eluent. An approach of evaluation of adsorption capacity uncertainty is proposed. PMID:26607568

  4. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California

    USGS Publications Warehouse

    Oremland, R.S.; Dowdle, P.R.; Hoeft, S.; Sharp, J.O.; Schaefer, J.K.; Miller, L.G.; Switzer, Blum J.; Smith, R.L.; Bloom, N.S.; Wallschlaeger, D.

    2000-01-01

    The stratified (meromictic) water column of alkaline and hypersaline Mono Lake, California, contains high concentrations of dissolved inorganic arsenic (~200 ??mol/L). Arsenic speciation changes from arsenate [As (V)] to arsenite [As (III)] with the transition from oxic surface waters (misolimnion) to anoxic bottom waters (monimolimnion). A radioassay was devised to measure the reduction of 73As (V) to 73As (III) and tested using cell suspensions of the As (V)-respiring Bacillus selenitireducens, which completely reduced the 73As (V). In field experiments, no significant activity was noted in the aerobic mixolimnion waters, but reduction of 73As (V) to 73As (III) was observed in all the monimolimnion samples. Rate constants ranged from 0.02 to 0.3/day, with the highest values in the samples from the deepest depths (24 and 28 m). The highest activities occurred between 18 and 21 m, where As (V) abundant (rate, ~5.9 ??mol/L per day). In contrast, sulfate reduction occurred at depths below 21 m, with the highest rates attained at 28 m (rate, ~2.3 ??mol/L per day). These results indicate that As (V) ranks second in importance, after sulfate, as an electron acceptor for anaerobic bacterial respiration in the water column. Annual arsenate respiration may mineralize as much as 14.2% of the pelagic photosynthetic carbon fixed during meromixis. When combined with sulfate-reduction data, anaerobic respiration in the water column can mineralize 32-55% of this primary production. As lakes of this type approach salt saturation, As (V) can become the most important electron acceptor for the biogeochemical cycling of carbon. Copyright (C) 2000 Elsevier Science Ltd.

  5. Can arsenates replace phosphates in natural biochemical processes? A computational study.

    PubMed

    Jissy, A K; Datta, Ayan

    2013-07-18

    A bacterial strain, GFAJ-1 was recently proposed to be substituting arsenic for phosphorus to sustain its growth. We have performed theoretical calculations for analyzing this controversial hypothesis by examining the addition of phosphate to ribose and glucose. Dispersion corrected Density Functional Theory (DFT) calculations in small molecules and QM/MM calculations on clusters derived from crystal structure are performed on structures involved in phosphorylation, considering both phosphates and arsenates. The exothermicity as well as the activation barriers for phosphate and arsenate transfer were examined. Quantum mechanical studies reveal that the relative stability of the products decrease marginally with successive substitution of P with As. However, simultaneously, the transition state barriers decrease with P replacement. This indicates that, kinetically, addition of As is more facile. Pseudorotation barriers for the pentavalent intermediates formed during the nucleophilic attack are also analyzed. A monotonic increase in barriers is observed for pseudorotation with the successive replacement of phosphorus with arsenic in methyl-DHP. A glucokinase crystal structure was chosen to construct a model system for QM/MM calculations. Free energy of the reaction (ΔG) reduces by less than 2.0 kcal/mol and the activation barrier (ΔG(‡)) decreases by ∼1 kcal/mol on arsenic incorporation. Thus, both DFT and QM/MM calculations show that arsenic can readily substitute phosphorus in key biomolecules. Secondary kinetic isotope effects for phosphorylation mechanism obtained by QM/MM calculations are also reported. The solvent kinetic isotopic effects (SKIE) for ATP and ATP (As) are calculated to be 5.81 and 4.73, respectively. A difference of ∼1.0 in SKIE suggests that it should be possible to experimentally determine the As-phosphorylation process.

  6. Gallium Arsenate Dihydrate under Pressure: Elastic Properties, Compression Mechanism, and Hydrogen Bonding.

    PubMed

    Spencer, Elinor C; Soghomonian, Victoria; Ross, Nancy L

    2015-08-01

    Gallium arsenate dihydrate is a member of a class of isostructural compounds, with the general formula M(3+)AsO4·2H2O (M(3+) = Fe, Al, In, or Ga), which are being considered as potential solid-state storage media for the sequestration of toxic arsenic cations. We report the first high-pressure structural analysis of a metal arsenate dihydrate, namely, GaAsO4·2H2O. This compound crystallizes in the orthorhombic space group Pbca with Z = 8. Accurate unit cell parameters as a function of pressure were obtained by high-pressure single-crystal X-ray diffraction, and a bulk modulus of 51.1(3) GPa for GaAsO4·2H2O was determined from a third-order Birch-Murnaghan equation of state fit to the P-V data. Assessment of the pressure dependencies of the unit cell lengths showed that the compressibility of the structure along the axial directions increases in the order of [010] < [100] < [001]. This order was found to correlate well with the proposed compression mechanism for GaAsO4·2H2O, which involves deformation of the internal channel void spaces of the polyhedral helices that lie parallel to the [010] direction, and increased distortion of the GaO6 octahedra. The findings of the high-pressure diffraction experiment were further supported by the results from variable-pressure Raman analysis of GaAsO4·2H2O. Moreover, we propose a revised and more complex model for the hydrogen-bonding scheme in GaAsO4·2H2O, and on the basis of this revision, we reassigned the peaks in the OH stretching regions of previously published Raman spectra of this compound.

  7. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.

    PubMed

    Zhuang, J M; Hobenshield, E; Walsh, T

    2008-04-01

    A simple and effective method was developed using phenol formaldehyde (PF) resins to immobilize hydrous ferric oxide (HFO) onto granular activated carbon (GAC). The resulting sorbent possesses advantages for both the ferric oxide and the GAC, such as a great As-affinity of ferric oxide, large surface area of GAC, and enhanced physical strength. The studies showed that within one hour this sorbent was able to remove 85% of As(V) from water containing an initial As(V) concentration of 1.74 mg l(-1). The As(V) adsorption onto the sorbent was found to follow a pseudo-second order kinetics model. The adsorption isotherms were interpreted in terms of the Langmuir and Freundlich models. The equilibrium data fitted very well to both models. Column tests showed that this sorbent was able to achieve residual concentrations of As(V) in a range of 0.1-2.0 microg l(-1) while continuously treating about 180 bed volume (BV, 130 ml-BV) of arsenate water with an initial As(V) concentration of 1886 microg l(-1) at a filtration rate of 13.5 ml min(-1), i.e., an empty bed contact time (EBCT) of 9.6 min and a gram sorbent contact time (GSCT) of 0.15 min. After passing 635 BV of arsenate water, the exhausted sorbent was then tested by the Toxicity Characteristic Leaching Procedure (TCLP, US EPA Method 1311) test, and classified as non-hazardous for disposal. Hence, this HFO-PF-coated GAC has the capability to remove As(V) from industrial wastewater containing As(V) levels of about 2 mg l(-1). PMID:18619145

  8. Dissolved Calcium and Magnesium Carbonates Promote Arsenate Release From Ferrihydrite in Flow Systems

    NASA Astrophysics Data System (ADS)

    Saalfield, S. L.; Bostick, B. C.

    2007-12-01

    Field data from water systems around the world have shown that arsenic can reach toxic concentrations in dynamic groundwater systems. This is generally in contrast to analogous static systems at circumneutral pH, where arsenic is strongly retained by sorption to iron (hydr)oxides. Our research examines the effect of calcium and magnesium carbonates on As(V) mobility. In both dynamic flow and static experiments, arsenate was pre- sorbed to poorly crystalline iron hydroxides (1-10% sorption capacity), with varying aqueous compositions including calcium, magnesium, carbonate, sulfate, lactate, and other common groundwater species (pH 7.5-8). Thus we investigated how the dissolution of common carbonate minerals, specifically CaCO3 and MgCO3, affect arsenic behavior in the context of groundwater solutions. Under static (batch) conditions, no measurable arsenic (<10 μg/L) is released into solutions containing alkaline earth metals (AEMs) and carbonates. When elevated concentrations of AEMs and carbonate are introduced by dynamic flow, however, arsenic is mobilized at up to 500 μg/L, releasing significant proportions the total arsenic present. This is only the case when both of these species are present; with other common ion pairs, little to no arsenic is released. These results indicate that arsenate adsorption is kinetically controlled under flow conditions, resulting in very different mobility relative to otherwise equivalent static systems. Furthermore, the combination of alkaline earth metals and carbonates promotes As(V) mobility in column-based systems. We propose that these phenomena indicate a combination of physical and chemical effects by which diffusion limitation becomes dominant in limiting arsenic sorption in flow systems. Many carbonate-buffered aquifers, as well as those undergoing rapid mineralization of organic matter, could be affected by these processes of AEM-carbonate-limited sorption and increased arsenic mobility.

  9. The respiratory system.

    PubMed

    Zifko, U; Chen, R

    1996-10-01

    Neurological disorders frequently contribute to respiratory failure in critically ill patients. They may be the primary reason for the initiation of mechanical ventilation, or may develop later as a secondary complication. Disorders of the central nervous system leading to respiratory failure include metabolic encephalopathies, acute stroke, lesions of the motor cortex and brain-stem respiratory centres, and their descending pathways. Guillan-Barré syndrome, critical illness polyneuropathy and acute quadriplegic myopathy are the more common neuromuscular causes of respiratory failure. Clinical observations and pulmonary function tests are important in monitoring respiratory function. Respiratory electrophysiological studies are useful in the investigation and monitoring of respiratory failure. Transcortical and cervical magnetic stimulation can assess the central respiratory drive, and may be useful in determining the prognosis in ventilated patients, with cervical cord dysfunction. It is also helpful in the assessment of failure to wean, which is often caused by a combination of central and peripheral nervous system disorders. Phrenic nerve conduction studies and needle electromyography of the diaphragm and chest wall muscles are useful to characterize neuropathies and myopathies affecting the diaphragm. Repetitive phrenic nerve stimulation can assess neuromuscular transmission defects. It is important to identify patients at risk of respiratory failure. They should be carefully monitored and mechanical ventilation should be initiated before the development of severe hypoxaemia.

  10. The human respiratory gate

    PubMed Central

    Eckberg, Dwain L

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this ‘respiratory gating’ is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R–R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R–R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms. PMID:12626671

  11. The human respiratory gate

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.

  12. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply.

    PubMed

    Quaghebeur, Mieke; Rengel, Zdenko

    2003-07-01

    The recent discovery that phytochelatins are important for arsenic (As) detoxification in terrestrial plants results in the necessity to understand As speciation and metabolism in plant material. A hydroponic study was therefore conducted to examine the effects of different levels of phosphate and arsenate [As(V)] on As speciation and distribution in tolerant and non-tolerant clones of Holcus lanatus. Speciation of As in tissue (using high-performance liquid chromatography-inductively coupled plasma mass spectrometry) revealed that the predominant species present were the inorganic As species (As(V) and arsenite [As(III)]), although small levels (<1%) of organic As species (dimethylarsinic acid and monomethylarsonic acid) were detected in shoot material. In roots, the proportion of total As present as As(III) generally increased with increasing levels of As(V) in the nutrient solution, whereas in shoots, the proportion of total As present as As(III) generally decreased with increasing levels of As(V). H. lanatus plants growing in the high-phosphorus (P) (100 micro M) solution contained a higher proportion of As(V) (with regard to total As) in both roots and shoots than plants supplied with low P (10 micro M); in addition, tolerant clones generally contained a higher proportion of As(V) with regard to total As than non-tolerant clones. The study further revealed that As(V) can be reduced to As(III) in both roots and shoots. Although the reduction capacity was limited, the reduction was closely regulated by As influx for all treatments. The results therefore provide a new understanding about As metabolism in H. lanatus.

  13. The Distribution of Arsenate and Arsenite in Shoots and Roots of Holcus lanatus is Influenced by Arsenic Tolerance and Arsenate and Phosphate Supply

    PubMed Central

    Quaghebeur, Mieke; Rengel, Zdenko

    2003-01-01

    The recent discovery that phytochelatins are important for arsenic (As) detoxification in terrestrial plants results in the necessity to understand As speciation and metabolism in plant material. A hydroponic study was therefore conducted to examine the effects of different levels of phosphate and arsenate [As(V)] on As speciation and distribution in tolerant and non-tolerant clones of Holcus lanatus. Speciation of As in tissue (using high-performance liquid chromatography-inductively coupled plasma mass spectrometry) revealed that the predominant species present were the inorganic As species (As(V) and arsenite [As(III)]), although small levels (<1%) of organic As species (dimethylarsinic acid and monomethylarsonic acid) were detected in shoot material. In roots, the proportion of total As present as As(III) generally increased with increasing levels of As(V) in the nutrient solution, whereas in shoots, the proportion of total As present as As(III) generally decreased with increasing levels of As(V). H. lanatus plants growing in the high-phosphorus (P) (100 μm) solution contained a higher proportion of As(V) (with regard to total As) in both roots and shoots than plants supplied with low P (10 μm); in addition, tolerant clones generally contained a higher proportion of As(V) with regard to total As than non-tolerant clones. The study further revealed that As(V) can be reduced to As(III) in both roots and shoots. Although the reduction capacity was limited, the reduction was closely regulated by As influx for all treatments. The results therefore provide a new understanding about As metabolism in H. lanatus. PMID:12857839

  14. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  15. Myopathy with abnormal mitochondria, transient low electron transport capacity in the respiratory chain, and absence of energy transduction at sites 1 and 2 in vitro.

    PubMed Central

    Trockel, U; Scholte, H R; Toyka, K V; Busch, H F; Luyt-Houwen, I E; Berden, J A

    1986-01-01

    A male adult with exercise-related myalgia and weakness from the age of 17 years, developed contractions after moderate exertion which were electrically silent. Triglyceride loading or prolonged fasting provoked excessive ketosis. His isolated muscle mitochondria had severe blockade of the respiratory chain, particularly of NADH-CoQ reductase. After 1.5 years a second biopsy was performed. The electron transport capacity of the respiratory chain was much improved, but now a lesion was observed in energy transduction of sites 1 and 2 of the respiratory chain. The unexpected abolishment of respiratory chain blockade was paralleled by only mild clinical improvement. PMID:3016196

  16. Salinity Effects on the Biogeochemical Cycles of Sulfate, Arsenate, Nitrate, and Methane in Anoxic Sediments of Mono Lake and Searles Lake, California.

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Oremland, R. S.

    2005-12-01

    Mono Lake and Searles Lake are two members of a chain of hypersaline and alkaline soda lakes that occur in closed basins along the arid eastern escarpment of the Sierra Nevada in California. These lakes are alkaline (pH = 9.8), highly saline, and As-rich due to hydrothermal input and evaporative concentration. Mono Lake is characterized by a salinity of 90 g/L and contains 200μM dissolved As. Searles Lake, a partially-dry residual playa, exhibits salt concentrations >300 g/L (near saturation) and 3.9 mM dissolved As. We utilized 35SO4 and 73As(V) as radioactive tracers to compare sulfate and arsenate [As(V)] reductase activities at in-situ concentrations in sediment cores (25 cm depth) from Mono and Searles Lakes. Sulfate reduction activity was detected in sediments from Mono Lake, with the highest rates occurring in the upper 2 cm sediment depth. No sulfate reduction activity was observed in Searles Lake sediments, suggesting that this metabolic process may not provide sufficient energy to cope with the demands of osmoadaptation at saturated salt concentrations. Anaerobic pathways that utilize As(V) or nitrate as terminal electron acceptors are bioenergetically more favorable than sulfate reduction. Dissimilatory reduction of As(V) occurred in sediments from both lakes, with the fastest rates of As(V) reduction occurring at 3 cm sediment depth. We conducted additional experiments with As- or nitrate-amended slurries of Searles Lake sediment prepared in artificial media that mimicked lake water chemistry over a range of total salinities. Slurries were sampled periodically and analyzed to determine the rate of As(V) reduction or denitrification at each salinity. Methane production was also monitored in the headspace of As(V)-amended and non-amended slurries. As(V) and nitrate reduction rates, as well as methane production, demonstrated an inverse relationship with total salinity over the range of 50 - 346 g/L. These data suggest that halophilic bacteria capable of

  17. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide.

    PubMed

    Singh, Vijay Pratap; Singh, Samiksha; Kumar, Jitendra; Prasad, Sheo Mohan

    2015-06-01

    In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress.

  18. Respiratory Care Therapist.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of respiratory care therapist, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general as well as those specific to the occupation of respiratory care therapist. The following…

  19. Respiratory Syncytial Virus

    MedlinePlus

    ... Palsy: Shannon's Story" 5 Things to Know About Zika & Pregnancy Respiratory Syncytial Virus KidsHealth > For Parents > Respiratory Syncytial Virus Print A ... often get it when older kids carry the virus home from school and pass it to ... often happen in epidemics that last from late fall through early spring. ...

  20. Radical scavengers as ribonucleotide reductase inhibitors.

    PubMed

    Basu, Arijit; Sinha, Barij Nayan

    2012-01-01

    This paper compiled all the previous reports on radical scavengers, an interesting class of ribonucleotide reductase inhibitors. We have highlighted three key research areas: chemical classification of radical scavengers, structural and functional aspects of the radical site, and progress in drug designing for radical scavengers. Under the chemical classification section, we have recorded the discovery of hydroxyurea followed by discussions on hydroxamic acids, amidoximes, hydroxyguanidines, and phenolic compounds. In the next section, we have compiled the structural information for the radical site obtained from different crystallographic and theoretical studies. Finally, we have included the reported ligand based and structure based drug-designing studies.

  1. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.

    PubMed

    Tolonen, Emma-Tuulia; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2016-10-01

    The aim of this research was to investigate sulphate removal from mine water by precipitation as ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and the utilisation of the precipitate as a sorbent for arsenate removal. The mine water sulphate concentration was reduced by 85-90% from the initial 1400 mg/L during ettringite precipitation depending on the treatment method. The precipitation conditions were also simulated with MINEQL + software, and the computational results were compared with the experimental results. The precipitated solids were characterised with X-ray diffraction and a scanning electron microscope. The precipitated solids were tested as sorbents for arsenate removal from the model solution. The arsenic(V) model solution concentration reduced 86-96% from the initial 1.5 mg/L with a 1 g/L sorbent dosage. The effect of initial arsenate concentration on the sorption of arsenate on the precipitate was studied and Langmuir, Freundlich, and Langmuir-Freundlich sorption isotherm models were fitted to the experimental data. The maximum arsenate sorption capacity (qm = 11.2 ± 4.7 mg/g) of the precipitate was obtained from the Langmuir-Freundlich isotherm. The results indicate that the precipitate produced during sulphate removal from mine water by precipitation as ettringite could be further used as a sorbent for arsenate removal.

  2. Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Sverjensky, Dimitri A; Green, Peter G; Darby, Jeannie L

    2011-01-15

    Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (∼1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.

  3. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase*

    PubMed Central

    Wu, Sheng-Yi; Rothery, Richard A.; Weiner, Joel H.

    2015-01-01

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser719, NarG-His1163, and NarG-His1184); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His1092 and NarG-His1098). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of −88 and −36 mV, respectively). Ala variants of His1092 and His1098 also elicit large ΔEm values of −143 and −101 mV, respectively. An Arg variant of His1092 elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis. PMID:26297003

  4. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.

    PubMed

    Wu, Sheng-Yi; Rothery, Richard A; Weiner, Joel H

    2015-10-01

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of -88 and -36 mV, respectively). Ala variants of His(1092) and His(1098) also elicit large ΔEm values of -143 and -101 mV, respectively. An Arg variant of His(1092) elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis.

  5. Nosocomial viral respiratory infections.

    PubMed

    Graman, P S; Hall, C B

    1989-12-01

    Nosocomial infections with respiratory tract viruses, particularly influenza and respiratory syncytial viruses, account for the majority of serious nosocomial viral disease. Chronically ill, immunocompromised, elderly, and very young hosts are especially vulnerable to potentially life-threatening involvement of the lower respiratory tract. Effective preventive strategies are based upon early accurate viral diagnosis and an appreciation of the epidemiology and mechanisms of transmission for each viral agent. Influenza viruses spread via airborne dispersion of small particle aerosols, resulting in explosive outbreaks; control measures emphasize immunization and chemoprophylaxis of susceptible patients and personnel, and isolation of those already infected. Transmission of respiratory syncytial virus, in contrast, seems to require closer contact, with virus passed on hands, fomites, or in large droplets inoculated into the eyes and nose at close range. Strategies for control of nosocomial respiratory syncytial virus are designed to interrupt hand carriage and inoculation of virus onto mucous membranes.

  6. American Association for Respiratory Care

    MedlinePlus

    ... search AARC Respiratory Care Marketplace Search for respiratory companies and products to meet your needs through the all new AARC Respiratory Care Marketplace. Search with a Purpose Education Webcasts Online Courses CRCE Lookup AARC Store Shop ...

  7. Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: Arsenate on hematite (0001) and (10-12)

    USGS Publications Warehouse

    Waychunas, G.; Trainor, T.; Eng, P.; Catalano, J.; Brown, G.; Davis, J.; Rogers, J.; Bargar, J.

    2005-01-01

    X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c(0001) and r(10-12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of "edge-sharing" bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. ?? Springer-Verlag 2005.

  8. Different Arsenate and Phosphate Incorporation Effects on the Nucleation and Growth of Iron(III) (Hydr)oxides on Quartz

    SciTech Connect

    Neil, Chelsea W.; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration ( R g ) of heterogeneously formed precipitates grew from 1.5 to 2.5 ( ± 1.0) nm within 1 h. For the system containing 10-5 M arsenate, R g grew from 3.6 to 6.1 ( ± 0.5) nm, and for the system containing 10-5 M phosphate, R g grew from 2.0 to 4.0 ( ± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new fi ndings are important because di ff erences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  9. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    PubMed

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  10. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    PubMed

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants. PMID:25232994

  11. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  12. Biliverdin reductase: a target for cancer therapy?

    PubMed Central

    Gibbs, Peter E. M.; Miralem, Tihomir; Maines, Mahin D.

    2015-01-01

    Biliverdin reductase (BVR) is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s) of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1, and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ, and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation. PMID:26089799

  13. Ageing of glutathione reductase in the lens.

    PubMed

    Zhang, W Z; Augusteyn, R C

    1994-07-01

    The distribution of glutathione reductase activity in concentric layers from the lens has been determined as a function of age for 16 species. Primate lenses have almost ten times the level of glutathione reductase found in other species. Comparison with the activity of hexokinase revealed that this is not due to a higher overall rate of metabolism in these lenses. By contrast, the higher activity found in bird and fish lenses reflects a higher metabolic activity in these tissues. In all species, a gradient of activity was observed with the highest specific activity in the outermost cortical fibres, decreasing to virtually no activity in the inner parts of the tissue. No alterations were found in this gradient with increasing age, other than an increase in the amount of nuclear tissue essentially devoid of activity. The maximum activity in the outer cortical fibres was the same, regardless of the age of the lens. The time taken, in different species, for the specific activity to decrease by half, was estimated from the rate of protein accumulation. This time was found to vary from a few days to several years, indicating that the decrease in activity is not due to ageing but rather, it is related to the maturation of fibre cells. These observations are discussed in terms of current concepts of lens ageing and cataract formation. PMID:7835401

  14. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    PubMed

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  15. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.

    PubMed

    Couture, R-M; Rose, J; Kumar, N; Mitchell, K; Wallschläger, D; Van Cappellen, P

    2013-06-01

    Sorption to iron (Fe) minerals determines the fate of the toxic metalloid arsenic (As) in many subsurface environments. Recently, thiolated As species have been shown to dominate aqueous As speciation under a range of environmentally relevant conditions, thus highlighting the need for a quantitative understanding of their sorption behavior. We conducted batch experiments to measure the time-dependent sorption of two S-substituted arsenate species, mono- and tetrathioarsenate, and compared it to the sorption of arsenite and arsenate, in suspensions containing 2-line ferrihydrite, goethite, mackinawite, or pyrite. All four As species strongly sorbed to ferrihydrite. For the other sorbents, binding of the thiolated As species was generally lower compared to arsenate and arsenite, with the exception of the near instantaneous and complete sorption of monothioarsenate to pyrite. Analysis of the X-ray absorption spectroscopy (XAS) spectra of sorbed complexes implied that monothioarsenate binds to Fe oxides as a monodentate, inner-sphere complex. In the presence of Fe sulfides, mono- and tetrathioarsenate were both unstable and partially reduced to arsenite. Adsorption of the thiolated As species to the Fe sulfide minerals also caused the substitution of surface sulfur (S) atoms by As and the formation of As-Fe bonds.

  16. Effects of Phosphate on Arsenate Uptake and Translocation in Nonmetallicolous and Metallicolous Populations of Pteris Vittata L. Under Solution Culture.

    PubMed

    Wu, Fuyong; Wu, Shengchun; Deng, Dan; Wong, Ming Hung

    2015-01-01

    An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1-24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata.

  17. Effects of Phosphate on Arsenate Uptake and Translocation in Nonmetallicolous and Metallicolous Populations of Pteris Vittata L. Under Solution Culture.

    PubMed

    Wu, Fuyong; Wu, Shengchun; Deng, Dan; Wong, Ming Hung

    2015-01-01

    An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1-24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata. PMID:26083716

  18. Arsenate tolerance mechanism of Oenothera odorata from a mine population involves the induction of phytochelatins in roots.

    PubMed

    Kim, Dae-Yeon; Park, Hyun; Lee, Sang-Hwan; Koo, Namin; Kim, Jeong-Gyu

    2009-04-01

    We investigated the arsenate tolerance mechanisms of Oenothera odorata by comparing two populations [i.e., one population from the mine site (MP) and the other population from an uncontaminated site (UP)] via the exposure of hydroponic solution containing arsenate (i.e., 0-50 microM). The MP plants were significantly more tolerant to arsenate than UP plants. The UP plants accumulated more As in their shoots and roots than did the MP plants. The UP plants translocated up to 21 microg g(-1) of As into shoots, whereas MP plants translocated less As (up to 4.5 microg g(-1)) to shoots over all treatments. The results of lipid peroxidation indicated that MP plants were less damaged by oxidative stress than were UP plants. Phytochelatin (PC) content correlated linearly with root As concentration in the MP (i.e., [PCs](root)=1.69x[As](root), r(2)=0.945) and UP (i.e., [PCs](root)=0.89x[As](root), r(2)=0.979) plants. This relationship means that increased PC to As ratio may be associated with increased tolerance. Our results suggest that PC induction in roots plays a critical role in As tolerance of O. odorata.

  19. Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem.

    PubMed

    Martínez-Villegas, Nadia; Briones-Gallardo, Roberto; Ramos-Leal, José A; Avalos-Borja, Miguel; Castañón-Sandoval, Alan D; Razo-Flores, Elías; Villalobos, Mario

    2013-05-01

    An As-contaminated perched aquifer under an urban area affected by mining was studied over a year to determine the contamination source species and the mechanism of As mobilization. Results show that the dissolution of calcium arsenates in residues disposed on an inactive smelter has caused high levels of As pollution in the adjoining downgradient 6-km perched aquifer, reaching up to 158 mg/L of dissolved As, and releasing a total of ca. 7.5 tons of As in a year. Furthermore, free calcium ion availability was found to control As mobility in the aquifer through the diagenetic precipitation of calcium arsenates (Ca5H2(AsO4)4·cH2O) preventing further mobilization of As. Results shown here represent a model for understanding a highly underreported mechanism of retention of arsenate species likely to dominate in calcium-rich environments, such as those in calcareous sediments and soils, where the commonly reported mechanism of adsorption to iron(III) oxyhydroxides is not the dominant process.

  20. Newborn Respiratory Distress.

    PubMed

    Hermansen, Christian L; Mahajan, Anand

    2015-12-01

    Newborn respiratory distress presents a diagnostic and management challenge. Newborns with respiratory distress commonly exhibit tachypnea with a respiratory rate of more than 60 respirations per minute. They may present with grunting, retractions, nasal flaring, and cyanosis. Common causes include transient tachypnea of the newborn, respiratory distress syndrome, meconium aspiration syndrome, pneumonia, sepsis, pneumothorax, persistent pulmonary hypertension of the newborn, and delayed transition. Congenital heart defects, airway malformations, and inborn errors of metabolism are less common etiologies. Clinicians should be familiar with updated neonatal resuscitation guidelines. Initial evaluation includes a detailed history and physical examination. The clinician should monitor vital signs and measure oxygen saturation with pulse oximetry, and blood gas measurement may be considered. Chest radiography is helpful in the diagnosis. Blood cultures, serial complete blood counts, and C-reactive protein measurement are useful for the evaluation of sepsis. Most neonates with respiratory distress can be treated with respiratory support and noninvasive methods. Oxygen can be provided via bag/mask, nasal cannula, oxygen hood, and nasal continuous positive airway pressure. Ventilator support may be used in more severe cases. Surfactant is increasingly used for respiratory distress syndrome. Using the INSURE technique, the newborn is intubated, given surfactant, and quickly extubated to nasal continuous positive airway pressure. Newborns should be screened for critical congenital heart defects via pulse oximetry after 24 hours but before hospital discharge. Neonatology consultation is recommended if the illness exceeds the clinician's expertise and comfort level or when the diagnosis is unclear in a critically ill newborn. PMID:26760414

  1. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    USGS Publications Warehouse

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at

  2. Predicting Arsenate Adsorption by Soils Using Soil Chemical Parameters in the Constant Capacitance Model

    NASA Astrophysics Data System (ADS)

    Goldberg, S. R.; Lesch, S. M.; Suarez, D. L.

    2004-12-01

    Prediction of arsenate, As(V), adsorption and transport in soils requires detailed studies of As(V) adsorption and subsequent determination of model parameters. Arsenate adsorption on 49 soil samples belonging to six different soil orders was investigated as a function of solution pH (3-10). The set of soils consisted of two subgroups: one from the Midwestern U.S. and one primarily from the southwestern U.S. For most soils, As(V) adsorption increased with increasing solution pH, reached a maximum around pH 6-7, and decreased with further increases in solution pH. The constant capacitance model, a chemical surface complexation model, was well able to describe As(V) adsorption on the soil samples as a function of solution pH by simultaneously optimizing three As(V) surface complexation constants. The ability to describe As(V) adsorption as a function of pH represents an advancement over the Langmuir and Freundlich adsorption isotherm approaches. A general regression model was developed for predicting soil As(V) surface complexation constants from easily measured soil chemical characteristics using the As(V) adsorption data for 44 of the soils. These chemical properties were: cation exchange capacity (CEC), surface area (SA), inorganic carbon content (IOC), organic carbon content (OC), and iron oxide content (Fe). A preliminary analysis determined that the mean surface complexation constant values for the two soil subgroups were statistically different. For this reason, while the regression model equations for each soil subgroup contained common intercepts and ln(CEC) terms, the ln(IOC), ln(OC), ln(Fe), and ln(SA) terms were different. The constant capacitance model was able to predict As(V) adsorption on most of the 44 soils using the As(V) surface complexation constants predicted from the regression equations. The prediction equations were used to obtain values for As(V) surface complexation constants for the remaining five soils that had not been used to obtain the

  3. Significance of respirasomes for the assembly/stability of human respiratory chain complex I.

    PubMed

    Schägger, Hermann; de Coo, René; Bauer, Matthias F; Hofmann, Sabine; Godinot, Catherine; Brandt, Ulrich

    2004-08-27

    We showed that the human respiratory chain is organized in supramolecular assemblies of respiratory chain complexes, the respirasomes. The mitochondrial complexes I (NADH dehydrogenase) and III (cytochrome c reductase) form a stable core respirasome to which complex IV (cytochrome c oxidase) can also bind. An analysis of the state of respirasomes in patients with an isolated deficiency of single complexes provided evidence that the formation of respirasomes is essential for the assembly/stability of complex I, the major entry point of respiratory chain substrates. Genetic alterations leading to a loss of complex III prevented respirasome formation and led to the secondary loss of complex I. Therefore, primary complex III assembly deficiencies presented as combined complex III/I defects. This dependence of complex I assembly/stability on respirasome formation has important implications for the diagnosis of mitochondrial respiratory chain disorders.

  4. Pediatric Respiratory Emergencies.

    PubMed

    Richards, Amber M

    2016-02-01

    Respiratory emergencies are 1 of the most common reasons parents seek evaluation for the their children in the emergency department (ED) each year, and respiratory failure is the most common cause of cardiopulmonary arrest in pediatric patients. Whereas many respiratory illnesses are mild and self-limiting, others are life threatening and require prompt diagnosis and management. Therefore, it is imperative that emergency clinicians be able to promptly recognize and manage these illnesses. This article reviews ED diagnosis and management of foreign body aspiration, asthma exacerbation, epiglottitis, bronchiolitis, community-acquired pneumonia, and pertussis. PMID:26614243

  5. In situ characterization of green rust in the presence of arsenate and phosphate in simulated oxidized and reduced environments.

    NASA Astrophysics Data System (ADS)

    Root, R. A.; O'Day, P. A.

    2008-12-01

    Nano- to micron-scale particles of mixed-valent iron hydroxide, specifically green rust (GR [FeII6- x(OH)y FeIIIx(OH)12-y]x+[Anionx- + H2O]x-), have been identified and studied as corrosion products of steel, and recently rediscovered in hydromorphic soils and sediments. Green rusts are intermediate phases produced by biotic and abiotic reductive dissolution of ferric oxyhydroxides, or by oxidation of dissolved ferrous iron. Adsorbed oxyanions can stabilize GR phases and inhibit the formation of thermodynamically favored iron phases such as magnetite or lepidocrocite in subsurface environments. This study used synchrotron XRD to characterize iron (hydr)oxide minerals precipitated from solution and subsequent aging products under different environmental conditions of pH and Eh. Here we show the in situ abiotic development of green rust and its stabilization by the addition of adsorbed oxyanions or alternatively, subsequent rapid transformation to magnetite or lepidocrocite in the absence of added anions. A closed batch reactor with an in-line capillary was used to expose the reaction products to continuous synchrotron radiation. Laue patterns were collected at time intervals of 3-5 minutes and used to detect the formation of crystalline iron (hydr)oxide minerals that precipitate as a function time and chemical perturbations to the system, i.e. changing the pH, redox potential, ratio of Fe2+ to OH- , and addition of an oxyanion, arsenate or phosphate. The reactions were monitored by observing the development of diagnostic green rust XRD d-spacing peak at 10.9 Å (300), the 3.29 Å (210) d- spacing for lepidocrocite, and the 2.53 Å (100) d-spacing for magnetite, with continuous in-line measurement of pH and ORP. We found that green rust was stabilized by the adsorption of arsenate and phosphate. In the presence of arsenate or phosphate at pH =7, green rust transformed to lepidocrocite after several hours when anoxic controls were removed. When pH and Eh were constant

  6. The aldo-keto reductases (AKRs): Overview.

    PubMed

    Penning, Trevor M

    2015-06-01

    The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using

  7. Respiratory Syncytial Virus Infections

    MedlinePlus

    Respiratory syncytial virus (RSV) causes mild, cold-like symptoms in adults and older healthy children. It can cause serious problems in ... tests can tell if your child has the virus. There is no specific treatment. You should give ...

  8. What Causes Respiratory Failure?

    MedlinePlus

    ... easily move oxygen into your blood and remove carbon dioxide from your blood (gas exchange). This can cause a low oxygen level or high carbon dioxide level, or both, in your blood. Respiratory failure ...

  9. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  10. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  11. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  12. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  13. Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity.

    PubMed

    Rodriguez Castro, Ma Carolina; Urrea, Gemma; Guasch, Helena

    2015-01-15

    Periphyton communities grown in microcosms were studied under the exposure to different arsenate (As) and phosphate (P) regimes with the aim of revealing the effect of chronic exposure to As on periphyton physiological and structural characteristics. Also, we aimed to study periphyton changes on sensitivity to As, exposed to different P and As regimes. As affected structural and functional parameters of periphyton communities starved of P, inhibiting algal growth, photosynthetic capacity, changing community composition and reducing the ability of the community to retain P. The effects of As on these parameters were only detected in P starved communities, showing that chronic exposure to As led to changes in the photosynthetic apparatus under the conditions of P-limitation, but not when P-availability was higher. This fact reveals a lower toxicity and/or a higher adaptation of the P-amended community. Intracellular As contents were higher in communities starved of P. However, As tolerance was only induced by the combination of As and P but not by As or P alone indicating that tolerance induction may be an ATP-dependent mechanism. This study reveals that chronic exposure of natural communities to environmentally realistic As concentrations will damage periphyton communities affecting key ecosystem processes, as P uptake, leading to changes in stream ecosystems, as these organisms play a key role in nutrient cycling through nutrient uptake and transfer to higher trophic levels. PMID:25005240

  14. Characterization of adsorption of aqueous arsenite and arsenate onto charred dolomite in microcolumn systems.

    PubMed

    Salameh, Yousef; Al-Muhtaseb, Ala'a H; Mousa, Hasan; Walker, Gavin M; Ahmad, Mohammad N M

    2014-01-01

    In this work, the removal of arsenite, As(III), and arsenate, As(V), from aqueous solutions onto thermally processed dolomite (charred dolomite) via microcolumn was evaluated. The effects of mass of adsorbent (0.5-2 g), initial arsenic concentration (50-2000 ppb) and particle size (<0.355-2 mm) on the adsorption capacity of charred dolomite in a microcolumn were investigated. It was found that the adsorption of As(V) and As(III) onto charred dolomite exhibited a characteristic 'S' shape. The adsorption capacity increased as the initial arsenic concentration increased. A slow decrease in the column adsorption capacity was noted as the particle size increased from>0.335 to 0.710-2.00 mm. For the binary system, the experimental data show that the adsorption of As(V) and As(III) was independent of both ions in solution. The experimental data obtained from the adsorption process were successfully correlated with the Thomas Model and Bed Depth Service Time Model. PMID:25244130

  15. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  16. Evolution of arsenate toxicity in nodulated white lupine in a long-term culture.

    PubMed

    Vázquez, Saúl; Esteban, Elvira; Carpena, Ramón O

    2008-09-24

    White lupine is an As-resistant legume that is of interest for phytoremediation of As-contaminated soils. To achieve successful phytoremediation, monitoring of the nutritional status of the selected plant species during the entire culture cycle is required to maintain a plant cover with high biomass production. A long-term pot experiment was carried out with nodulated lupine grown on perlite with 10 and 100 microM As concentrations. The reproductive period (from 10 weeks) was the most sensitive phenologic stage of white lupine to long-term As exposure. The 10 microM As treatment increased the uptake and translocation of micronutrients, except for Cu, mainly at flowering with As levels in pods below the statutory limit (1 mg kg (-1) fresh weight). However, the 100 microM As treatment induced significant differences compared to the control. These findings confirm the relatively high resistance of white lupine to arsenate and support the use of this species in phytoremediation and/or revegetation of As-contaminated sites, with special attention on P and Cu nutrition at flowering. PMID:18795759

  17. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  18. Arsenate (As V) in water: quantitative sensitivity relationships among biomarker, ecotoxicity and genotoxicity endpoints.

    PubMed

    Silva, Valéria C; Almeida, Sônia M; Resgalla, Charrid; Masfaraud, Jean-François; Cotelle, Sylvie; Radetski, Claudemir M

    2013-06-01

    It is useful to test ecotoxicity and genotoxicity endpoints in the environmental impact assessment. Here, we compare and discuss ecotoxicity and genotoxicity effects in organisms in response to exposure to arsenate (As V) in solution. Eco(geno)toxicity responses in Aliivibrio fischeri, Lytechinus variegatus, Daphnia magna, Skeletonema costatum and Vicia faba were analyzed by assessing different endpoints: biomass growth, peroxidase activity, mitotic index, micronucleus frequency, and lethality in accordance with the international protocols. Quantitative sensitivity relationships (QSR) between these endpoints were established in order to rank endpoint sensitivity. The results for the QSR values based on the lowest observed effect concentration (LOEC) ratios varied from 2 (for ratio of root peroxidase activity to leaf peroxidase activity) to 2286 (for ratio of higher plant biomass growth to root peroxidase activity). The QSR values allowed the following sensitivity ranking to be established: higher plant enzymatic activity>daphnids≈echinoderms>bacteria≈algae>higher plant biomass growth. The LOEC values for the mitotic index and micronucleus frequency (LOEC=0.25mgAsL(-1)) were similar to the lowest LOEC values observed in aquatic organisms. This approach to the QSR of different endpoints could form the basis for monitoring and predicting early effects of pollutants before they give rise to significant changes in natural community structures. PMID:23597676

  19. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties. PMID:27131303

  20. Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.).

    PubMed

    Geng, Chun-Nu; Zhu, Yong-Guan; Tong, Yi-Ping; Smith, Sally E; Smith, F A

    2006-01-01

    Two cultivars of winter wheat (Triticum aestivum L.) (Jing 411 and Lovrin 10) were used to investigate arsenate (As) uptake and distribution in plants grown in hydroponic culture and in the soil. Results showed that without As addition, Lovrin 10 had higher biomass than Jing 411 in the soil pot experiment; in the hydroponic experiment Lovrin 10 had similar root biomass to and lower shoot biomass than Jing 411. Increasing P supply from 32 to 161 microM resulted in lower tissue As concentrations, and increasing As supply from 0 to 2,000 microM resulted in lower tissue P concentrations. Increasing P supply tended to increase shoot-to-root ratios of As concentrations, and increasing As supply tended to decrease shoot-to-root ratios of As concentrations. Both cultivars invested more in root production under P deficient conditions than under P sufficient conditions. Lovrin 10 invested more biomass production to roots than Jing 411, which might be partly responsible for higher shoot P and As concentrations and higher shoot-to-root ratios of As concentrations. Moreover, Lovrin 10 allocated less As to roots than Jing 411 and the difference disappeared with decreasing P supply.

  1. Arsenic and chromium partitioning in a podzolic soil contaminated by chromated copper arsenate

    SciTech Connect

    Nico, Peter; Hopp, Luisa; Nico, Peter S.; Marcus, Matthew A.; Peiffer, Stefan

    2008-06-01

    This research combined the use of selective extractions and x-ray spectroscopy to examine the fate of As and Cr in a podzolic soil contaminated by chromated copper arsenate (CCA). Iron was enriched in the upper 30 cm due to a previous one-time treatment of the soil with Fe(II). High oxalate-soluble Al concentrations in the Bs horizon of the soil and micro-XRD data indicated the presence of short-range ordered aluminosilicates (i.e. proto-imogolite allophane, PIA). In the surface layers, Cr, as Cr(III), was partitioned between a mixed Fe(III)/Cr(III) solid phase that formed upon the Fe(II) application (25-50%) and a recalcitrant phase (50-75%) likely consisting of organic material such as residual CCA-treated wood. Deeper in the profile Cr appeared to be largely in the form of extractable (hydr)oxides. Throughout the soil, As was present as As(V). In the surface layers a considerable fraction of As was also associated with a recalcitrant phase, probably CCA-treated woody debris, and the remainder was associated with (hydr)oxide-like solid phases. In the Bs horizon, however, XAS and XRF findings strongly pointed to the presence of PIA acting as an effective adsorbent for As. This research shows for the first time the relevance of PIA for the adsorption of As in natural soils.

  2. Tolerance, arsenic uptake, and oxidative stress in Acacia farnesiana under arsenate-stress.

    PubMed

    Alcantara-Martinez, Nemi; Guizar, Sandra; Rivera-Cabrera, Fernando; Anicacio-Acevedo, Blanca E; Buendia-Gonzalez, Leticia; Volke-Sepulveda, Tania

    2016-01-01

    Acacia farnesiana is a shrub widely distributed in soils heavily polluted with arsenic in Mexico. However, the mechanisms by which this species tolerates the phytotoxic effects of arsenic are unknown. This study aimed to investigate the tolerance and bioaccumulation of As by A. farnesiana seedlings exposed to high doses of arsenate (AsV) and the role of peroxidases (POX) and glutathione S-transferases (GST) in alleviating As-stress. For that, long-period tests were performed in vitro under different AsV treatments. A. farnesiana showed a remarkable tolerance to AsV, achieving a half-inhibitory concentration (IC50) of about 2.8 mM. Bioaccumulation reached about 940 and 4380 mg As·kg(-1) of dry weight in shoots and roots, respectively, exposed for 60 days to 0.58 mM AsV. Seedlings exposed to such conditions registered a growth delay during the first 15 days, when the fastest As uptake rate (117 mg kg(-1) day(-1)) occurred, coinciding with both the highest rate of lipid peroxidation and the strongest up-regulation of enzyme activities. GST activity showed a strong correlation with the As bioaccumulated, suggesting its role in imparting AsV tolerance. This study demonstrated that besides tolerance to AsV, A. farnesiana bioaccumulates considerable amounts of As, suggesting that it may be useful for phytostabilization purposes.

  3. Arsenic and Chromium Partitioning in a Podzolic Soil Contaminated by Chromated Copper Arsenate

    SciTech Connect

    Hopp, L.; Nico, P.S.; Marcus, M.A.; Peiffer, S.

    2008-10-14

    This research combined the use of selective extractions and X-ray spectroscopy to examine the fate of As and Cr in a podzolic soil contaminated by chromated copper arsenate (CCA). Iron was enriched in the upper 30 cm due to a previous one-time treatment of the soil with Fe(II). High oxalate-soluble Al concentrations in the Bs horizon of the soil and micro-XRD data indicated the presence of short-range ordered aluminosilicates (i.e., proto-imogolite allophane, PIA). In the surface layers, Cr, as Cr(III), was partitioned between a mixed Fe(III)/Cr(III) solid phase that formed upon the Fe(II) application (25--50%) and a recalcitrant phase (50--75%) likely consisting of organic material such as residual CCA-treated wood. Deeper in the profile Cr appeared to be largely in the form of extractable (hydr)oxides. Throughout the soil, As was present as As(V). In the surface layers a considerable fraction of As was also associated with a recalcitrant phase, probably CCA-treated woody debris, and the remainder was associated with (hydr)oxide-like solid phases. In the Bs horizon, however, XAS and XRF findings strongly pointed to the presence of PIA acting as an effective adsorbent for As. This research shows for the first time the relevance of PIA for the adsorption of As in natural soils.

  4. A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes.

    PubMed

    Wang, Ya; Zhang, Chun Hua; Lin, Man Man; Ge, Ying

    2016-11-15

    In this study, we investigated the effects of a symbiotic bacterium and phosphate (PO4(3-)) nutrition on the toxicity and metabolism of arsenate (As(V)) in Dunaliella salina. The bacterium was identified as Alteromonas macleodii based on analysis of its 16S rRNA gene sequence. When no As(V) was added, A. macleodii significantly enhanced the growth of D. salina, irrespective of PO4(3-) nutrition levels, but this effect was reversed after As(V)+PO4(3-) treatment (1.12mgL(-1)) for 3 days. Arsenic (As) absorption by the non-axenic D. salina was significantly higher than that by its axenic counterpart during incubation with 1.12mgL(-1) PO4(3-). However, when the culture was treated with 0.112mgL(-1) PO4(3-), As(V) reduction and its subsequent arsenite (As(III)) excretion by non-axenic D. salina were remarkably enhanced, which, in turn, contributed to lower As absorption in non-axenic algal cells from days 7 to 9. Moreover, dimethylarsinic acid was synthesized by D. salina alone, and the rates of its production and excretion were accelerated when the PO4(3-) concentration was 0.112mgL(-1). Our data demonstrate that A. macleodii strongly affected As toxicity, uptake, and speciation in D. salina, and these impacts were mediated by PO4(3-) in the cultures.

  5. Batch study of arsenate (V) adsorption using Akadama mud: Effect of water mineralization

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhi; Zhang, Zhenya; Feng, Chuanping; Lei, Zhongfang; Li, Yuan; Li, Miao; Shimizu, Kazuya; Sugiura, Norio

    2010-02-01

    Akadama mud, consisting mainly of different forms of iron and aluminum oxide minerals, was used for arsenate (V) adsorption from aqueous solutions. The adsorption process fitted the first-order kinetic equation and the Langmuir monolayer model well. The adsorption capacity, estimated by the Langmuir isotherm model, was 5.30 mg/g at 20 ± 0.5 °C. The effects of the solution properties (initial concentration of As (V), pH, temperature, and mineralization degree) on As (V) removal were investigated. Various mineralization degrees in underground water were simulated by adjusting the ionic strength of the solution or adding coexisting ions to the contaminated solution. It was found that mineralization of the water significantly influenced the arsenic adsorption. The existence of multivalent metallic cations significantly enhanced the As (V) adsorption ability, whereas competing anions such as fluoride and phosphate greatly decreased the As (V) adsorption. This result suggests that Akadama mud is more suitable for arsenic adsorption in low-level phosphate and fluoride solutions. The loaded Akadama mud could be desorbed at polar pH conditions, especially in acidic conditions, and more than 65% As (V) sorption has been achieved at pH 1.

  6. Growth, morphology, structure and characterization of L-histidinium dihydrogen arsenate orthoarsenic acid single crystal.

    PubMed

    Tyagi, Nidhi; Sinha, Nidhi; Yadav, Harsh; Kumar, Binay

    2016-08-01

    L-Histidinium dihydrogen arsenate orthoarsenic acid (LHAS) crystals were grown by the slow evaporation method. Single-crystal X-ray diffraction confirms monoclinic structure. The growth rates of various planes of LHAS crystals were estimated by morphological study. Hirshfeld surface and fingerprint plots were analyzed to investigate the intermolecular interactions at 0.002 a.u. present in the crystal structure. The functional groups and phase behavior of the compound are studied by FTIR spectroscopy and differential scanning calorimetry (DSC). A ferroelectric to paraelectric phase transition at 307 K was observed in dielectric studies. The piezoelectric charge coefficients of the grown crystal were found to be 2 pC/N. The values of coercive field (Ec), remnant polarization (Pr) and spontaneous polarization (Ps) in the hysteresis loop are found to be 5.236 kV cm(-1), 0.654 µC cm(-2) and 2.841 µC cm(-2), respectively. Piezoelectricity and ferroelectricity are reported for the first time in LHAS crystals. The mechanical strength was confirmed from microhardness study and void volume. Due to the low value of the dielectric constant, and good piezoelectric and ferroelectric properties, LHAS crystals can be used in microelectronics, sensors and advanced electronic devices.

  7. Interactive effects of arsenate, selenium, and dietary protein on survival, growth, and physiology in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Sanderson, C.J.; LeCaptain, L.J.; Cromartie, E.; Pendleton, G.W.

    1992-01-01

    High concentrations of arsenic (As) and selenium (Se) have been found in aquatic food chains associated with irrigation drainwater. Total biomass of invertebrates, a maJor source of protein for wild ducklings, may vary in environments that are contaminated with selenium. Dayold mallard (Anas platyrhynchos) ducklings received an untreated diet (controls) containing 22% protein or diets containing 15 ppm Se (as selenomethionine), 60 ppm Se, 200 ppm As (as sodium arsenate), 15 ppm Se with 200 ppm As, or 60 ppm Se with 200 ppm As. In a concurrent experiment, the same sequence was repeated with a proteinrestricted (7%) but isocaloric diet. After 4 weeks, blood and tissue samples were collected for biochemical and histological examination. With 22% protein and 60 ppm Se in the diet, duckling survival and growth was reduced and livers had histopathological lesions. Arsenic alone caused some reduction in growth. Antagonistic interactive effects occurred between As and Se, including complete to partial alleviation of the following Se effects: mortality, impaired growth, hepatic lesions and lipid peroxidation, and altered glutathione and thiol status. With 7% protein, survival and growth of controls was less than that with 22% protein, Se (60 ppm) caused 100% mortality, and As (200 ppm) caused mortality, decreased growth, and liver histopathology. These findings suggest the potential for antagonistic effects of Se and As on duckling survival, growth, and physiology with adequate dietary protein but more severe toxicological effects when dietary protein is diminished.

  8. Growth, morphology, structure and characterization of L-histidinium dihydrogen arsenate orthoarsenic acid single crystal.

    PubMed

    Tyagi, Nidhi; Sinha, Nidhi; Yadav, Harsh; Kumar, Binay

    2016-08-01

    L-Histidinium dihydrogen arsenate orthoarsenic acid (LHAS) crystals were grown by the slow evaporation method. Single-crystal X-ray diffraction confirms monoclinic structure. The growth rates of various planes of LHAS crystals were estimated by morphological study. Hirshfeld surface and fingerprint plots were analyzed to investigate the intermolecular interactions at 0.002 a.u. present in the crystal structure. The functional groups and phase behavior of the compound are studied by FTIR spectroscopy and differential scanning calorimetry (DSC). A ferroelectric to paraelectric phase transition at 307 K was observed in dielectric studies. The piezoelectric charge coefficients of the grown crystal were found to be 2 pC/N. The values of coercive field (Ec), remnant polarization (Pr) and spontaneous polarization (Ps) in the hysteresis loop are found to be 5.236 kV cm(-1), 0.654 µC cm(-2) and 2.841 µC cm(-2), respectively. Piezoelectricity and ferroelectricity are reported for the first time in LHAS crystals. The mechanical strength was confirmed from microhardness study and void volume. Due to the low value of the dielectric constant, and good piezoelectric and ferroelectric properties, LHAS crystals can be used in microelectronics, sensors and advanced electronic devices. PMID:27484380

  9. Hydrogen thresholds and steady-state concentrations associated with microbial arsenate respiration.

    PubMed

    Heimann, Axel C; Blodau, Christian; Postma, Dieke; Larsen, Flemming; Viet, Pham H; Nhan, Pham Q; Jessen, Søren; Duc, Mai T; Hue, Nguyen T M; Jakobsen, Rasmus

    2007-04-01

    H2 thresholds for microbial respiration of arsenate (As(V)) were investigated in a pure culture of Sulfurospirillum arsenophilum. H2 was consumed to threshold concentrations of 0.03-0.09 nmol/L with As(V) as terminal electron acceptor, allowing for a Gibbs free-energy yield of 36-41 kJ per mol of reaction. These thresholds are among the lowest measured for anaerobic respirers and fall into the range of denitrifiers or Fe(III)-reducers. In sediments from an arsenic-contaminated aquifer in the Red River flood plain, Vietnam, H2 levels decreased to 0.4-2 nmol/L when As(V) was added under anoxic conditions. When As-(V) was depleted, H2 concentrations rebounded by a factor of 10, a level similar to that observed in arsenic-free controls. The sediment-associated microbial population completely reduced millimolar levels of As(V) to arsenite (As-(III)) within a few days. The rate of As(V)-reduction was essentially the same in sediments amended with a pure culture of S. arsenophilum. These findings together with a review of observed H2 threshold and steady-state values suggest that microbial As(V)-respirers have a competitive advantage over several other anaerobic respirers through their ability to thrive at low H2 levels. PMID:17438780

  10. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles.

    PubMed

    Liang, Qiqi; Zhao, Dongye

    2014-04-30

    This study investigated effectiveness of starch-stabilized magnetite nanoparticles for in situ enhanced sorption and immobilization of arsenate, As(V), in a model sandy loam soil. Batch tests showed that the nanoparticles offered an As(V) distribution coefficient of 10,000 L/g, which is >3 orders of magnitude greater than that for the soil. Batch and column experimental results revealed that the nanoparticle treatment greatly reduced water-leachable As(V) and the leachability of As(V) remaining in the soil per TCLP (Toxicity Characteristic Leaching Procedure) analysis. Column tests showed that water-leachable As(V) from the As(V)-laden soil containing 31.45 mg/kg was reduced by ∼93% and the TCLP leachability by >83% when the soil was treated with 34 pore volumes of a 0.1g-Fe/L of the nanoparticle suspension. While the nanoparticles are deliverable in the soil, the effective travel distance of the nanoparticles can be manipulated by controlling the injection flow rate. Under natural groundwater flow conditions (velocity ≤ 2.4 × 10(-4)cm/s), the delivered nanoparticles are confined within a limited distance (<6.1cm).

  11. Tolerance, arsenic uptake, and oxidative stress in Acacia farnesiana under arsenate-stress.

    PubMed

    Alcantara-Martinez, Nemi; Guizar, Sandra; Rivera-Cabrera, Fernando; Anicacio-Acevedo, Blanca E; Buendia-Gonzalez, Leticia; Volke-Sepulveda, Tania

    2016-01-01

    Acacia farnesiana is a shrub widely distributed in soils heavily polluted with arsenic in Mexico. However, the mechanisms by which this species tolerates the phytotoxic effects of arsenic are unknown. This study aimed to investigate the tolerance and bioaccumulation of As by A. farnesiana seedlings exposed to high doses of arsenate (AsV) and the role of peroxidases (POX) and glutathione S-transferases (GST) in alleviating As-stress. For that, long-period tests were performed in vitro under different AsV treatments. A. farnesiana showed a remarkable tolerance to AsV, achieving a half-inhibitory concentration (IC50) of about 2.8 mM. Bioaccumulation reached about 940 and 4380 mg As·kg(-1) of dry weight in shoots and roots, respectively, exposed for 60 days to 0.58 mM AsV. Seedlings exposed to such conditions registered a growth delay during the first 15 days, when the fastest As uptake rate (117 mg kg(-1) day(-1)) occurred, coinciding with both the highest rate of lipid peroxidation and the strongest up-regulation of enzyme activities. GST activity showed a strong correlation with the As bioaccumulated, suggesting its role in imparting AsV tolerance. This study demonstrated that besides tolerance to AsV, A. farnesiana bioaccumulates considerable amounts of As, suggesting that it may be useful for phytostabilization purposes. PMID:26618535

  12. Method to recover and reuse chromated copper arsenate wood preservative from spent treated wood

    SciTech Connect

    Kazi, Feroz Kabir M.; Cooper, Paul A. . E-mail: p.cooper@utoronto.ca

    2006-07-01

    The volume of chromated copper arsenate (CCA) treated wood products coming out of service is expected to increase dramatically during the next decade. There is a need for an alternative waste management approach to landfilling. This paper investigates the variables affecting extraction of CCA components from wood particles and the potential to oxidize and reuse the recovered chemicals. Most of the CCA components could be extracted by 10% H{sub 2}O{sub 2} at 50 deg. C in 6 h with an average extraction efficiency of 95% for Cr, 94% for Cu and 98% for As. The extract containing Cr{sup III}, Cu{sup II} and As{sup V} could be oxidized in several stages by aqueous 2.5% w/w H{sub 2}O{sub 2} in less than 2 h to a condition where it was compatible with CCA treating solutions and could be reused for treating new wood. When the recovered extract was mixed with fresh CCA solution in different ratios, the mixed CCA-C solutions had similar solution stability as freshly prepared CCA-C solution and treated wood had similar leaching properties as wood treated with fresh solution.

  13. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite.

    PubMed

    Mostafa, M G; Chen, Yen-Hua; Jean, Jiin-Shuh; Liu, Chia-Chuan; Lee, Yao-Chang

    2011-03-15

    This study discussed the adsorption kinetics of As(V) onto nanosized iron oxide-coated perlite. The effects of pH, initial concentration of As(V) and common anions on the adsorption efficiency were also investigated. It was observed that a 100% As(V) adsorption was achieved at pH value of 4-8 from the initial concentration containing 1.0 mg-As(V)L(-1) and the adsorption percentage depended on the initial concentration; the phosphate and silicate ions would not interfere with the adsorption efficiency. Furthermore, nanosized iron oxide-coated perlite (IOCP) has been shown to be an effective adsorbent for the removal of arsenate from water. The adsorption kinetics were studied using pseudo-first- and pseudo-second-order models, and the experimental data fitted well with the pseudo-second-order model. Moreover, it suggests that the Langmuir isotherm is more adequate than the Freundlich isotherm in simulating the adsorption isotherm of As(V). The adsorption rate constant is 44.84 L mg(-1) and the maximum adsorption capacity is 0.39 mg g(-1). These findings indicate that the adsorption property of IOCP gives the compound a great potential for applications in environmental remediation.

  14. Ribonucleotide reductases: essential enzymes for bacterial life

    PubMed Central

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  15. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  16. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.

  17. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    PubMed

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target.

  18. Nitrate Reductase-Deficient Mutants in Barley 1

    PubMed Central

    Somers, David A.; Kuo, Tsung-Min; Kleinhofs, Andris; Warner, Robert L.

    1983-01-01

    Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate. Images Fig. 1 Fig. 3 PMID:16662774

  19. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Mucci, Alfonso

    2001-07-01

    Potentiometric titrations of the goethite-water interface were carried out at 25°C in 0.1, 0.3 and 0.7 M NaCl solutions. The acid/base properties of goethite at pH > 4 in a 0.7 M NaCl solution can be reproduced successfully using either the Constant Capacitance (CCM), the Basic Stern (BSM) or the Triple Layer models (TLM) when two surface acidity constants are considered. Phosphate and arsenate complexation at the surface of goethite was studied in batch adsorption experiments. The experiments were conducted in 0.7 mol/L NaCl solutions at 25°C in the pH range of 3.0 to 10.0. Phosphate shows a strong affinity for the goethite surface and the amount of phosphate adsorbed decreases with increasing pH. Phosphate complexation is described using a model consisting of three monodentate surface complexes. Arsenate shows a similar adsorption pattern on goethite but a higher affinity than phosphate. A model including three surface complexation constants describes the arsenate adsorption at [AsO 4] init = 23 and 34 μmol/L. The model prediction, however, overestimates arsenate adsorption at [AsO 4] init = 8.8 μmol/L. The goethite surface acidity constants as well as the preceding phosphate and arsenate surface complexation constants were evaluated by the CCM and BSM with the aid of the computer program FITEQL, version 2.0. The experimental investigation of phosphate and arsenate competitive adsorption in 0.7 mol/L NaCl was performed at [PO 4]/[AsO 4] ratios of 1:1, 2.5:1 and 5:1 with [AsO 4] init = 9.0 μmol/L and at a [PO 4]/[AsO 4] ratio of 1:1 with [AsO 4] init = 22 μmol/L. The surface complexation of arsenate decreases significantly in competitive adsorption experiments and the decrease is proportional to the amount of phosphate present. Phosphate adsorption is also reduced but less drastically in competitive adsorption and is not affected significantly by incremental additions of arsenate at pH > 7. The equilibrium model derived by combining the single oxyanion

  20. No laughing matter: the unmaking of the greenhouse gas dinitrogen monoxide by nitrous oxide reductase.

    PubMed

    Schneider, Lisa K; Wüst, Anja; Pomowski, Anja; Zhang, Lin; Einsle, Oliver

    2014-01-01

    The gas nitrous oxide (N₂O) is generated in a variety of abiotic, biotic, and anthropogenic processes and it has recently been under scrutiny for its role as a greenhouse gas. A single enzyme, nitrous oxide reductase, is known to reduce N₂O to uncritical N₂, in a two-electron reduction process that is catalyzed at two unusual metal centers containing copper. Nitrous oxide reductase is a bacterial metalloprotein from the metabolic pathway of denitrification, and it forms a 130 kDa homodimer in which the two metal sites CuA and CuZ from opposing monomers are brought into close contact to form the active site of the enzyme. CuA is a binuclear, valence-delocalized cluster that accepts and transfers a single electron. The CuA site of nitrous oxide reductase is highly similar to that of respiratory heme-copper oxidases, but in the denitrification enzyme the site additionally undergoes a conformational change on a ligand that is suggested to function as a gate for electron transfer from an external donor protein. CuZ, the tetranuclear active center of nitrous oxide reductase, is isolated under mild and anoxic conditions as a unique [4Cu:2S] cluster. It is easily desulfurylated to yield a [4Cu:S] state termed CuZ (*) that is functionally distinct. The CuZ form of the cluster is catalytically active, while CuZ (*) is inactive as isolated in the [3Cu(1+):1Cu(2+)] state. However, only CuZ (*) can be reduced to an all-cuprous state by sodium dithionite, yielding a form that shows higher activities than CuZ. As the possibility of a similar reductive activation in the periplasm is unconfirmed, the mechanism and the actual functional state of the enzyme remain under debate. Using enzyme from anoxic preparations with CuZ in the [4Cu:2S] state, N2O was shown to bind between the CuA and CuZ sites, suggesting direct electron transfer from CuA to the substrate after its activation by CuZ. PMID:25416395

  1. Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

    PubMed Central

    Lim, K. T.; Shukor, M. Y.; Wasoh, H.

    2014-01-01

    Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment. PMID:24696853

  2. New functional sulfide oxidase-oxygen reductase supercomplex in the membrane of the hyperthermophilic bacterium Aquifex aeolicus.

    PubMed

    Prunetti, Laurence; Infossi, Pascale; Brugna, Myriam; Ebel, Christine; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2010-12-31

    Aquifex aeolicus, a hyperthermophilic and microaerophilic bacterium, obtains energy for growth from inorganic compounds alone. It was previously proposed that one of the respiratory pathways in this organism consists of the electron transfer from hydrogen sulfide (H(2)S) to molecular oxygen. H(2)S is oxidized by the sulfide quinone reductase, a membrane-bound flavoenzyme, which reduces the quinone pool. We have purified and characterized a novel membrane-bound multienzyme supercomplex that brings together all the molecular components involved in this bioenergetic chain. Our results indicate that this purified structure consists of one dimeric bc(1) complex (complex III), one cytochrome c oxidase (complex IV), and one or two sulfide quinone reductases as well as traces of the monoheme cytochrome c(555) and quinone molecules. In addition, this work strongly suggests that the cytochrome c oxidase in the supercomplex is a ba(3)-type enzyme. The supercomplex has a molecular mass of about 350 kDa and is enzymatically functional, reducing O(2) in the presence of the electron donor, H(2)S. This is the first demonstration of the existence of such a respirasome carrying a sulfide oxidase-oxygen reductase activity. Moreover, the kinetic properties of the sulfide quinone reductase change slightly when integrated in the supercomplex, compared with the free enzyme. We previously purified a complete respirasome involved in hydrogen oxidation and sulfur reduction from Aquifex aeolicus. Thus, two different bioenergetic pathways (sulfur reduction and sulfur oxidation) are organized in this bacterium as supramolecular structures in the membrane. A model for the energetic sulfur metabolism of Aquifex aeolicus is proposed.

  3. Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence.

    PubMed

    Buettner, Falk F R; Bendallah, Ibrahim M; Bosse, Janine T; Dreckmann, Karla; Nash, John H E; Langford, Paul R; Gerlach, Gerald-F

    2008-06-01

    The ability of the bacterial pathogen Actinobacillus pleuropneumoniae to grow anaerobically allows the bacterium to persist in the lung. The ArcAB two-component system is crucial for metabolic adaptation in response to anaerobic conditions, and we recently showed that an A. pleuropneumoniae arcA mutant had reduced virulence compared to the wild type (F. F. Buettner, A. Maas, and G.-F. Gerlach, Vet. Microbiol. 127:106-115, 2008). In order to understand the attenuated phenotype, we investigated the ArcA regulon of A. pleuropneumoniae by using a combination of transcriptome (microarray) and proteome (two-dimensional difference gel electrophoresis and subsequent mass spectrometry) analyses. We show that ArcA negatively regulates the expression of many genes, including those encoding enzymes which consume intermediates during fumarate synthesis. Simultaneously, the expression of glycerol-3-phosphate dehydrogenase, a component of the respiratory chain serving as a direct reduction equivalent for fumarate reductase, was upregulated. This result, together with the in silico analysis finding that A. pleuropneumoniae has no oxidative branch of the citric acid cycle, led to the hypothesis that fumarate reductase might be crucial for virulence by providing (i) energy via fumarate respiration and (ii) succinate and other essential metabolic intermediates via the reductive branch of the citric acid cycle. To test this hypothesis, an isogenic A. pleuropneumoniae fumarate reductase deletion mutant was constructed and studied by using a pig aerosol infection model. The mutant was shown to be significantly attenuated, thereby strongly supporting a crucial role for fumarate reductase in the pathogenesis of A. pleuropneumoniae infection.

  4. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  5. Substrate induction of nitrate reductase in barley aleurone layers.

    PubMed

    Ferrari, T E; Varner, J E

    1969-01-01

    Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of alpha-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce alpha-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of alpha-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.

  6. Arsenic Retention in Foliage and Soil after Monosodium Methyl Arsenate (MSMA) Application to Turfgrass.

    PubMed

    Matteson, Audrey R; Gannon, Travis W; Jeffries, Matthew D; Haines, Stephanie; Lewis, Dustin F; Polizzotto, Matthew L

    2014-01-01

    Monosodium methyl arsenate (MSMA) is a commonly used herbicide for weed control in turfgrass systems. There is concern that arsenic from applied MSMA could leach to groundwater or run off into surface water, thereby threatening human and ecosystem health. The USEPA has proposed a phase-out of the herbicide but is seeking additional research about the toxicity and environmental impacts of MSMA before establishing a final ruling. Little research has systematically investigated MSMA in field-based settings; instead, risks have been inferred from isolated field measurements or model-system studies. Accordingly, the overall goal of this study was to quantify the fate of arsenic after MSMA application to a managed turfgrass system. After MSMA application to turfgrass-covered and bareground lysimeters, the majority of arsenic was retained in turfgrass foliage and soils throughout year-long experiments, with 50 to 101% of the applied arsenic recovered in turfgrass systems and 55 to 66% recovered in bareground systems. Dissolved arsenic concentrations from 76.2-cm-depth pore water in the MSMA-treated soils were consistently <2 μg L, indistinguishable from background concentrations. As measured by adsorption isotherm experiments, MSMA retention by the sandy soil from our field site was markedly less than retention by a washed sand and a clay loam. Collectively, these results suggest that under aerobic conditions, minimal arsenic leaching to groundwater would occur after a typical application of MSMA to turfgrass. However, repeated MSMA application may pose environmental risks. Additional work is needed to examine arsenic cycling near the soil surface and to define arsenic speciation changes under different soil conditions. PMID:25602572

  7. Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water

    NASA Astrophysics Data System (ADS)

    Min, Ling-Li; Zhong, Lu-Bin; Zheng, Yu-Ming; Liu, Qing; Yuan, Zhi-Huan; Yang, Li-Ming

    2016-08-01

    An environment-friendly iron functionalized chitosan elctrospun nanofiber (ICS-ENF) was synthesized for trace arsenate removal from water. The ICS-ENF was fabricated by electrospinning a mixture of chitosan, PEO and Fe3+ followed by crosslinking with ammonia vapor. The physicochemical properties of ICS-ENF were characterized by FESEM, TEM-EDX and XRD. The ICS-ENF was found to be highly effective for As(V) adsorption at neutral pH. The As(V) adsorption occurred rapidly and achieved equilibrium within 100 min, which was well fitted by pseudo-second-order kinetics model. The As(V) adsorption decreased with increased ionic strength, suggesting an outer-sphere complexation of As(V) on ICS-ENF. Freundlich model well described the adsorption isotherm, and the maximum adsorption capacity was up to 11.2 mg/g at pH 7.2. Coexisting anions of chloride and sulfate showed negligible influence on As(V) removal, but phosphate and silicate significantly reduced As(V) adsorption by competing for adsorption sites. FTIR and XPS analysis demonstrated –NH, –OH and C–O were responsible for As(V) uptake. ICS-ENF was easily regenerated using 0.003 M NaOH, and the removal rate remained above 98% after ten successively adsorption-desorption recycles. This study extends the potential applicability of electrospun nanofibers for water purification and provides a promising approach for As(V) removal from water.

  8. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.

    PubMed

    Usman, Adel R A; Lee, Sang Soo; Awad, Yasser M; Lim, Kyoung Jae; Yang, Jae E; Ok, Yong Sik

    2012-05-01

    In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAF(shoots) and BAF(roots)) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg(-1), 27.78-120.83 mg kg(-1), and 0.13-9.43 mg kg(-1), respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg(-1)) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAF(shoot) (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAF(root) values>1 and TF values<1 were suitable; however, Typha orientalis was the best for Cr.

  9. Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water

    PubMed Central

    Min, Ling-Li; Zhong, Lu-Bin; Zheng, Yu-Ming; Liu, Qing; Yuan, Zhi-Huan; Yang, Li-Ming

    2016-01-01

    An environment-friendly iron functionalized chitosan elctrospun nanofiber (ICS-ENF) was synthesized for trace arsenate removal from water. The ICS-ENF was fabricated by electrospinning a mixture of chitosan, PEO and Fe3+ followed by crosslinking with ammonia vapor. The physicochemical properties of ICS-ENF were characterized by FESEM, TEM-EDX and XRD. The ICS-ENF was found to be highly effective for As(V) adsorption at neutral pH. The As(V) adsorption occurred rapidly and achieved equilibrium within 100 min, which was well fitted by pseudo-second-order kinetics model. The As(V) adsorption decreased with increased ionic strength, suggesting an outer-sphere complexation of As(V) on ICS-ENF. Freundlich model well described the adsorption isotherm, and the maximum adsorption capacity was up to 11.2 mg/g at pH 7.2. Coexisting anions of chloride and sulfate showed negligible influence on As(V) removal, but phosphate and silicate significantly reduced As(V) adsorption by competing for adsorption sites. FTIR and XPS analysis demonstrated –NH, –OH and C–O were responsible for As(V) uptake. ICS-ENF was easily regenerated using 0.003 M NaOH, and the removal rate remained above 98% after ten successively adsorption-desorption recycles. This study extends the potential applicability of electrospun nanofibers for water purification and provides a promising approach for As(V) removal from water. PMID:27572634

  10. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions.

    PubMed

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A

    2014-12-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (As(V)) and sulfate (SO4(2-)). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO4(2-) and As(V) by an anaerobic biofilm mixed culture in a range of pH conditions (6.1-7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  11. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    SciTech Connect

    Nemeti, Balazs; Gregus, Zoltan

    2009-09-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished by ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.

  12. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions.

    PubMed

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A

    2014-12-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (As(V)) and sulfate (SO4(2-)). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO4(2-) and As(V) by an anaerobic biofilm mixed culture in a range of pH conditions (6.1-7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions.

  13. Biomineralization of Arsenate to Arsenic Sulfides is Greatly Enhanced at Mildly Acidic Conditions

    PubMed Central

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A.

    2014-01-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (AsV) and sulfate (SO42−). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO42− and AsV by an anaerobic biofilm mixed culture in a range of pH conditions (6.1–7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  14. Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water.

    PubMed

    Min, Ling-Li; Zhong, Lu-Bin; Zheng, Yu-Ming; Liu, Qing; Yuan, Zhi-Huan; Yang, Li-Ming

    2016-01-01

    An environment-friendly iron functionalized chitosan elctrospun nanofiber (ICS-ENF) was synthesized for trace arsenate removal from water. The ICS-ENF was fabricated by electrospinning a mixture of chitosan, PEO and Fe(3+) followed by crosslinking with ammonia vapor. The physicochemical properties of ICS-ENF were characterized by FESEM, TEM-EDX and XRD. The ICS-ENF was found to be highly effective for As(V) adsorption at neutral pH. The As(V) adsorption occurred rapidly and achieved equilibrium within 100 min, which was well fitted by pseudo-second-order kinetics model. The As(V) adsorption decreased with increased ionic strength, suggesting an outer-sphere complexation of As(V) on ICS-ENF. Freundlich model well described the adsorption isotherm, and the maximum adsorption capacity was up to 11.2 mg/g at pH 7.2. Coexisting anions of chloride and sulfate showed negligible influence on As(V) removal, but phosphate and silicate significantly reduced As(V) adsorption by competing for adsorption sites. FTIR and XPS analysis demonstrated -NH, -OH and C-O were responsible for As(V) uptake. ICS-ENF was easily regenerated using 0.003 M NaOH, and the removal rate remained above 98% after ten successively adsorption-desorption recycles. This study extends the potential applicability of electrospun nanofibers for water purification and provides a promising approach for As(V) removal from water. PMID:27572634

  15. Equine respiratory pharmacology.

    PubMed

    Foreman, J H

    1999-12-01

    Differentiation of diseases of the equine respiratory tract is based on history, clinical signs, auscultation, endoscopy, imaging, and sampling of airway exudate. Upper respiratory therapies include surgical correction of airway obstructions; flushing of localized abscesses (strangles), guttural pouch disease, or sinusitis; and oral or parenteral antibiotic and anti-inflammatory therapy if deemed necessary. Pneumonia usually is treated with antimicrobials, anti-inflammatories, and bronchodilators. Pleural drainage is indicated if significant pleural effusion is present. The most commonly used therapies for early inflammatory and chronic allergic obstructive conditions include bronchodilators and anti-inflammatories. Acute respiratory distress, particularly acute pulmonary edema, is treated with diuretics (usually furosemide), intranasal oxygen, bronchodilators, corticosteroids, and alleviation of the underlying cause. Furosemide also had been used in North America as a race-day preventative for exercise-induced pulmonary hemorrhage (EIPH), but recent data have shown that furosemide may be a performance-enhancing agent itself.

  16. Equine respiratory pharmacology.

    PubMed

    Foreman, J H

    1999-12-01

    Differentiation of diseases of the equine respiratory tract is based on history, clinical signs, auscultation, endoscopy, imaging, and sampling of airway exudate. Upper respiratory therapies include surgical correction of airway obstructions; flushing of localized abscesses (strangles), guttural pouch disease, or sinusitis; and oral or parenteral antibiotic and anti-inflammatory therapy if deemed necessary. Pneumonia usually is treated with antimicrobials, anti-inflammatories, and bronchodilators. Pleural drainage is indicated if significant pleural effusion is present. The most commonly used therapies for early inflammatory and chronic allergic obstructive conditions include bronchodilators and anti-inflammatories. Acute respiratory distress, particularly acute pulmonary edema, is treated with diuretics (usually furosemide), intranasal oxygen, bronchodilators, corticosteroids, and alleviation of the underlying cause. Furosemide also had been used in North America as a race-day preventative for exercise-induced pulmonary hemorrhage (EIPH), but recent data have shown that furosemide may be a performance-enhancing agent itself. PMID:10589473

  17. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  18. Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide.

    PubMed

    Hristovski, Kiril; Westerhoff, Paul; Möller, Teresia; Sylvester, Paul; Condit, Wendy; Mash, Heath

    2008-03-21

    Hybrid ion-exchange (HIX) media for simultaneous removal of arsenate and perchlorate were prepared by impregnation of non-crystalline iron (hydr)oxide nanoparticles onto strong base ion-exchange (IX) resins using two different chemical treatment techniques. In situ precipitation of Fe(III) (M treatment) resulted in the formation of sphere-like clusters of nanomaterials with diameters of approximately 5nm, while KMnO4/Fe(II) treatments yielded rod-like nanomaterials with diameters of 10-50nm inside the pores of the media. The iron content of most HIX media was >10% of dry weight. The HIX media prepared via the M treatment method consistently exhibited greater arsenate adsorption capacity. The fitted Freundlich adsorption intensity parameters (q=K x C(E)(1/n)) for arsenate (1/n<0.6) indicated favorable adsorption trends. The K values ranged between 2.5 and 34.7mgAs/gdry resin and were generally higher for the M treated media in comparison to the permanganate treated media. The separation factors for perchlorate over chloride (alpha(Cl-)(ClO4-)) for the HIX media were lower than its untreated counterparts. The HIX prepared via the M treatment, had higher alpha(Cl-)(ClO4-) than the HIX obtained by the KMnO(4)/Fe(II) treatments suggesting that permanganate may adversely impact the ion-exchange base media. Short bed adsorber (SBA) tests demonstrated that the mass transport kinetics for both ions are adequately rapid to permit simultaneous removal using HIX media in a fixed bed reactor.

  19. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake.

    PubMed

    Xu, Pengliang; Christie, Peter; Liu, Yu; Zhang, Junling; Li, Xiaolin

    2008-11-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg(-1)) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.

  20. Regulation of the Neurospora crassa assimilatory nitrate reductase.

    PubMed Central

    Ketchum, P A; Zeeb, D D; Owens, M S

    1977-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase from Neurospora crassa was purified and found to be stimulated by certain amino acids, citrate, and ethylenediaminetetraacetic acid (EDTA). Stimulation by citrate and the amino acids was dependent upon the prior removal of EDTA from the enzyme preparations, since low quantities of EDTA resulted in maximal stimulation. Removal of EDTA from enzyme preparations by dialysis against Chelex-containing buffer resulted in a loss of nitrate reductase activity. Addition of alanine, arginine, glycine, glutamine, glutamate, histidine, tryptophan, and citrate restored and stimulated nitrate reductase activity from 29- to 46-fold. The amino acids tested altered the Km of NADPH-nitrate reductase for NADPH but did not significantly change that for nitrate. The Km of nitrate reductase for NADPH increased with increasing concentrations of histidine but decreased with increasing concentrations of glutamine. Amino acid modulation of NADPH-nitrate reductase activity is discussed in relation to the conservation of energy (NADPH) by Neurospora when nitrate is the nitrogen source. PMID:19423

  1. An overview on 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Verma, Abhilasha; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-02-01

    Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of 5alpha-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and hence suppression of androgen action by 5alpha-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5alpha-reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the prostatic DHT level by 70-90% and reduces the prostatic size. Dutasteride (27) another related analogue has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5alpha-reductase type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number of classes of non-steroidal inhibitors of 5alpha-reductase have also been synthesized generally by removing one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261). In this review all categories of inhibitors of 5alpha-reductase have been covered. PMID:19879888

  2. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome

    PubMed Central

    Bondareva, Alla A.; Capecchi, Mario R.; Iverson, Sonya V.; Li, Yan; Lopez, Nathan I.; Lucas, Olivier; Merrill, Gary F.; Prigge, Justin R.; Siders, Ashley M.; Wakamiya, Maki; Wallin, Stephanie L.; Schmidt, Edward E.

    2007-01-01

    Thioredoxin reductases (Txnrd)1 maintain intracellular redox homeostasis in most organisms. Metazoans Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1−/− cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd−/− and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells. PMID:17697936

  3. Aldose Reductase, Oxidative Stress, and Diabetic Mellitus

    PubMed Central

    Tang, Wai Ho; Martin, Kathleen A.; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  4. Aldose reductase, oxidative stress, and diabetic mellitus.

    PubMed

    Tang, Wai Ho; Martin, Kathleen A; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  5. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. PMID:27033597

  6. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy.

  7. Neuroplasticity in respiratory motor control.

    PubMed

    Mitchell, Gordon S; Johnson, Stephen M

    2003-01-01

    Although recent evidence demonstrates considerable neuroplasticity in the respiratory control system, a comprehensive conceptual framework is lacking. Our goals in this review are to define plasticity (and related neural properties) as it pertains to respiratory control and to discuss potential sites, mechanisms, and known categories of respiratory plasticity. Respiratory plasticity is defined as a persistent change in the neural control system based on prior experience. Plasticity may involve structural and/or functional alterations (most commonly both) and can arise from multiple cellular/synaptic mechanisms at different sites in the respiratory control system. Respiratory neuroplasticity is critically dependent on the establishment of necessary preconditions, the stimulus paradigm, the balance between opposing modulatory systems, age, gender, and genetics. Respiratory plasticity can be induced by hypoxia, hypercapnia, exercise, injury, stress, and pharmacological interventions or conditioning and occurs during development as well as in adults. Developmental plasticity is induced by experiences (e.g., altered respiratory gases) during sensitive developmental periods, thereby altering mature respiratory control. The same experience later in life has little or no effect. In adults, neuromodulation plays a prominent role in several forms of respiratory plasticity. For example, serotonergic modulation is thought to initiate and/or maintain respiratory plasticity following intermittent hypoxia, repeated hypercapnic exercise, spinal sensory denervation, spinal cord injury, and at least some conditioned reflexes. Considerable work is necessary before we fully appreciate the biological significance of respiratory plasticity, its underlying cellular/molecular and network mechanisms, and the potential to harness respiratory plasticity as a therapeutic tool. PMID:12486024

  8. Middle East respiratory syndrome.

    PubMed

    Zumla, Alimuddin; Hui, David S; Perlman, Stanley

    2015-09-01

    Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel single-stranded, positive-sense RNA betacoronavirus (MERS-CoV). Dromedary camels, hosts for MERS-CoV, are implicated in direct or indirect transmission to human beings, although the exact mode of transmission is unknown. The virus was first isolated from a patient who died from a severe respiratory illness in June, 2012, in Jeddah, Saudi Arabia. As of May 31, 2015, 1180 laboratory-confirmed cases (483 deaths; 40% mortality) have been reported to WHO. Both community-acquired and hospital-acquired cases have been reported with little human-to-human transmission reported in the community. Although most cases of MERS have occurred in Saudi Arabia and the United Arab Emirates, cases have been reported in Europe, the USA, and Asia in people who travelled from the Middle East or their contacts. Clinical features of MERS range from asymptomatic or mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. No specific drug treatment exists for MERS and infection prevention and control measures are crucial to prevent spread in health-care facilities. MERS-CoV continues to be an endemic, low-level public health threat. However, the virus could mutate to have increased interhuman transmissibility, increasing its pandemic potential.

  9. Textbook of respiratory medicine

    SciTech Connect

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis.

  10. Respiratory Diseases of Poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new Respiratory Diseases of Poultry CRIS will be established effective October 1, 2006. Initially, the disease agents to be studied will include Ornithobacterium rhinotracheale (ORT), Bordetella avium (BART) and Pasteurella multocida. The research will focus on development of more effective vacc...

  11. [Respiratory complications after transfusion].

    PubMed

    Bernasinski, M; Mertes, P-M; Carlier, M; Dupont, H; Girard, M; Gette, S; Just, B; Malinovsky, J-M

    2014-05-01

    Respiratory complications of blood transfusion have several possible causes. Transfusion-Associated Circulatory Overload (TACO) is often the first mentioned. Transfusion-Related Acute Lung Injury (TRALI), better defined since the consensus conference of Toronto in 2004, is rarely mentioned. French incidence is low. Non-hemolytic febrile reactions, allergies, infections and pulmonary embolism are also reported. The objective of this work was to determine the statistical importance of the different respiratory complications of blood transfusion. This work was conducted retrospectively on transfusion accidents in six health centers in Champagne-Ardenne, reported to Hemovigilance between 2000 and 2009 and having respiratory symptoms. The analysis of data was conducted by an expert committee. Eighty-three cases of respiratory complications are found (316,864 blood products). We have counted 26 TACO, 12 TRALI (only 6 cases were identified in the original investigation of Hemovigilance), 18 non-hemolytic febrile reactions, 16 cases of allergies, 5 transfusions transmitted bacterial infections and 2 pulmonary embolisms. Six new TRALI were diagnosed previously labeled TACO for 2 of them, allergy and infection in 2 other cases and diagnosis considered unknown for the last 2. Our study found an incidence of TRALI 2 times higher than that reported previously. Interpretation of the data by a multidisciplinary committee amended 20% of diagnoses. This study shows the imperfections of our system for reporting accidents of blood transfusion when a single observer analyses the medical records.

  12. Middle East respiratory syndrome.

    PubMed

    Zumla, Alimuddin; Hui, David S; Perlman, Stanley

    2015-09-01

    Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel single-stranded, positive-sense RNA betacoronavirus (MERS-CoV). Dromedary camels, hosts for MERS-CoV, are implicated in direct or indirect transmission to human beings, although the exact mode of transmission is unknown. The virus was first isolated from a patient who died from a severe respiratory illness in June, 2012, in Jeddah, Saudi Arabia. As of May 31, 2015, 1180 laboratory-confirmed cases (483 deaths; 40% mortality) have been reported to WHO. Both community-acquired and hospital-acquired cases have been reported with little human-to-human transmission reported in the community. Although most cases of MERS have occurred in Saudi Arabia and the United Arab Emirates, cases have been reported in Europe, the USA, and Asia in people who travelled from the Middle East or their contacts. Clinical features of MERS range from asymptomatic or mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. No specific drug treatment exists for MERS and infection prevention and control measures are crucial to prevent spread in health-care facilities. MERS-CoV continues to be an endemic, low-level public health threat. However, the virus could mutate to have increased interhuman transmissibility, increasing its pandemic potential. PMID:26049252

  13. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  14. Role of 5 alpha-reductase in health and disease.

    PubMed

    Randall, V A

    1994-04-01

    The mechanism of androgen action varies in different tissues, but in the majority of androgen target tissues either testosterone or 5 alpha-dihydrotestosterone (DHT) binds to a specific androgen receptor to form a complex that can regulate gene expression. Testosterone is metabolized to DHT by the enzyme 5 alpha-reductase. The autosomal recessive genetic disorder of 5 alpha-reductase deficiency has clearly shown that the requirement for DHT formation varies with different tissues. In this syndrome genetic males contain normal male internal structures including testes, but exhibit ambiguous or female external genitalia at birth; at puberty they undergo partial virilization which includes development of a male gender identity even if brought up as females. Their development suggests that testosterone itself is able to stimulate psychosexual behaviour, development of the embryonic wolffian duct, muscle development, voice deepening, spermatogenesis, and axillary and pubic hair growth; DHT seems to be essential for prostate development and growth, the development of the external genitalia and male patterns of facial and body hair growth or male-pattern baldness. How different hormones operate to regulate genes via the same receptor is currently unknown, but appears to involve cell-specific factors. The 5-alpha-reductase enzyme has proved difficult to isolate biochemically, but recently at least two human isoenzymes have been identified using molecular biological methods. All the various 5 alpha-reductase-deficient kindreds have been shown to have mutations in 5 alpha-reductase 2, the predominant form in the prostate. The biological role of 5 alpha-reductase 1 has not yet been ascertained, but at present it cannot be ruled out that some of the actions ascribed to testosterone are indeed in cells producing DHT via this enzyme. The activity of 5 alpha-reductase is also implicated in benign prostatic hypertrophy, hirsutism and possibly male-pattern baldness; recent evidence

  15. Respiratory Resistance In Family Therapy

    ERIC Educational Resources Information Center

    Beck, Michael J.

    1975-01-01

    Patients' respiratory problems may interfere with their talking in therapy sessions. Interventions by the therapist must be based on an understanding of the underlying dynamics which produced the respiratory problem. (Author)

  16. Respiratory failure in diabetic ketoacidosis

    PubMed Central

    Konstantinov, Nikifor K; Rohrscheib, Mark; Agaba, Emmanuel I; Dorin, Richard I; Murata, Glen H; Tzamaloukas, Antonios H

    2015-01-01

    Respiratory failure complicating the course of diabetic ketoacidosis (DKA) is a source of increased morbidity and mortality. Detection of respiratory failure in DKA requires focused clinical monitoring, careful interpretation of arterial blood gases, and investigation for conditions that can affect adversely the respiration. Conditions that compromise respiratory function caused by DKA can be detected at presentation but are usually more prevalent during treatment. These conditions include deficits of potassium, magnesium and phosphate and hydrostatic or non-hydrostatic pulmonary edema. Conditions not caused by DKA that can worsen respiratory function under the added stress of DKA include infections of the respiratory system, pre-existing respiratory or neuromuscular disease and miscellaneous other conditions. Prompt recognition and management of the conditions that can lead to respiratory failure in DKA may prevent respiratory failure and improve mortality from DKA. PMID:26240698

  17. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS): Frequently Asked Questions and Answers. Updated ...

  18. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla.

    PubMed

    Efiok, B J; Webster, D A

    1990-05-15

    Vitreoscilla is a Gram-negative bacterium with unique respiratory physiology in which Na+ was implicated as a coupling cation for the generation of a transmembrane electrical gradient (delta psi). Thus, cells respiring in the presence of 110 mM Na+ generated a delta psi of -142 mV compared to only -42 and -56 mV for Li+ and choline, respectively, and even the -42 and -56 mV were insensitive to the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (DTHB). The kinetics of delta psi formation and collapse correlated well with the kinetics of Na+ fluxes but not with those of H+ fluxes. Cyanide inhibited respiration, Na+ extrusion, and delta psi formation 81% or more, indicating that delta psi formation and Na+ extrusion were coupled to respiration. Experiments were performed to distinguish among three possible transport systems for this coupling: (1) a Na(+)-transporting ATPase; (2) an electrogenic Na+/H+ antiport system; (3) a primary Na+ pump directly driven by the free energy of electron transport. DCCD and arsenate decreased cellular ATP up to 86% but had no effect on delta psi, evidence against a Na(+)-transporting ATPase. Low concentrations of DTHB had no effect on delta psi; high concentrations transiently collapsed delta psi, but led to a stimulation of Na+ extrusion, the opposite of that expected for a Na+/H+ antiport system. Potassium ion, which collapses delta psi, also stimulated Na+ extrusion. The experimental evidence is against Na+ extrusion by mechanisms 1 and 2 and supports the existence of a respiratory-driven primary Na+ pump for generating delta psi in Vitreoscilla. PMID:2372555

  19. Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase.

    PubMed

    Lancaster, C Roy D

    2003-11-27

    The three-dimensional structure of Wolinella succinogenes quinol:fumarate reductase (QFR), a dihaem-containing member of the superfamily of succinate:quinone oxidoreductases (SQOR), has been determined at 2.2 A resolution by X-ray crystallography [Lancaster et al., Nature 402 (1999) 377-385]. The structure and mechanism of W. succinogenes QFR and their relevance to the SQOR superfamily have recently been reviewed [Lancaster, Adv. Protein Chem. 63 (2003) 131-149]. Here, a comparison is presented of W. succinogenes QFR to the recently determined structure of the mono-haem containing succinate:quinone reductase from Escherichia coli [Yankovskaya et al., Science 299 (2003) 700-704]. In spite of differences in polypeptide and haem composition, the overall topology of the membrane anchors and their relative orientation to the conserved hydrophilic subunits is strikingly similar. A major difference is the lack of any evidence for a 'proximal' quinone site, close to the hydrophilic subunits, in W. succinogenes QFR.

  20. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  1. Limited Practice Respiratory Care Course.

    ERIC Educational Resources Information Center

    Anderson, Amy L.

    This 36-46 hour basic respiratory care course has been designed to enhance the skills of health professionals in providing limited respiratory care during those hours when a respiratory care practitioner is not available. Persons taking the course are assumed to have a basic knowledge of anatomy and physiology, administration of medications, and…

  2. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies. PMID:27466384

  3. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies.

  4. Comparative effects of single intraperitoneal or oral doses of sodium arsenate or arsenic trioxide during in utero development.

    PubMed

    Stump, D G; Holson, J F; Fleeman, T L; Nemec, M D; Farr, C H

    1999-11-01

    Numerous studies have suggested that single-day intraperitoneal (IP) injection of inorganic arsenic results in failure of neural tube closure and other malformations in rats, hamsters, and mice. Most of these studies involved treatment of limited numbers of animals with maternally toxic doses of arsenic (generally As(V)), without defining a dose-response relationship. In the present Good Laboratory Practice-compliant study, sodium arsenate (As(V)) was administered IP and arsenic trioxide (As(III)) was administered either IP or orally (by gavage) on gestational day 9 to groups of 25 mated Crl:CD(R)(SD)BR rats. Only at dose levels that caused severe maternal toxicity, including lethality, did IP injection of arsenic trioxide produce neural tube and ocular defects; oral administration of higher doses of arsenic trioxide caused some maternal deaths but no treatment-related fetal malformations. In contrast, IP injection of similar amounts of sodium arsenate (based on the molar amount of arsenic) caused mild maternal toxicity but a large increase in malformations, including neural tube, eye, and jaw defects. In summary, neural tube and craniofacial defects were observed after IP injection of both As(V) and As(III); however, no increase in malformations was seen following oral administration of As(III), even at maternally lethal doses. These results demonstrate that the frequently cited association between prenatal exposure to inorganic arsenic and malformations in laboratory animals is dependent on a route of administration that is not appropriate for human risk assessment.

  5. Urinary arsenic speciation profiles in mice subchronically exposed to low concentrations of sodium arsenate in drinking water.

    PubMed

    Wu, Huijie; Krishnamohan, Manonmanii; Lam, Paul Kwan Sing; Ng, Jack Chakmeng

    2011-09-01

    Arsenic is a proven human carcinogen. Although the mechanism of its carcinogenicity is still largely unknown, methylation is thought to have an important role to play in arsenic toxicity. In this study, urinary methylation profiles were investigated in female C57BL/6J black mice given drinking water containing 500 μg arsenate (As(V))/L, 250 μg As(V)/L, or 100 μg As(V)/L as sodium arsenate for 2 months. The concentrations of arsenic chosen reflected those in the drinking water often encountered in arsenic-endemic areas. Urine samples were collected from the mice at the end of the exposure period, and the arsenic species were analyzed by high performance liquid chromatography-inductively coupled plasma-mass spectrometry. All detectable arsenic species showed strong linear correlation with the administered dosage. The methylation patterns were similar in all three groups with a slight decrease of dimethylarsinic acid/As(V) ratio in the 500-μg/L group, which corresponded to the significantly higher arsenic retention in the tissue. The results indicate that urinary arsenic could be used as a good biomarker for internal dose and potential biological effects. Different doses of arsenic exposure could result in different degrees of methylation, excretion, and tissue retention, and this may contribute to the understanding of arsenic carcinogenicity.

  6. Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization.

    PubMed

    Wei, Yu-Ting; Zheng, Yu-Ming; Paul Chen, J

    2011-04-01

    Arsenic contamination in water, especially in groundwater, has been recognized as an important issue of concern because of its high mobility and toxicity. In this study, N-methylglucamine was immobilized onto crosslinked chitosan beads via atom transfer radical polymerization for an efficient adsorption of arsenic. It was demonstrated that the immobilization significantly enhanced the adsorption capacity. The uptake onto the adsorbent was highly pH dependent, and a maximum adsorption capacity as high as 69.28 mg/g was obtained at the optimum pH of 5. Most of arsenate was rapidly adsorbed in the first 5h, and the adsorption equilibrium was established in 16 h, which was well described by an intraparticle diffusion model. The adsorbent exhibited a great uptake of the humic acid, which led to a decrease in the adsorption of arsenate. The effects of competitive anions on the adsorption exhibited the following descending sequence: sulfate ≫ phosphate>fluoride (negligible effect). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that the arsenic adsorption resulted from the presence of tertiary amine and hydroxyl functional groups grafted on the crosslinked chitosan.

  7. Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation.

    PubMed

    Troyer, Lyndsay D; Tang, Yuanzhi; Borch, Thomas

    2014-12-16

    Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 μM U(VI) at concentrations ranging from 0 to 640 μM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 μM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions. PMID:25383895

  8. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

    PubMed

    Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza

    2013-10-01

    In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.

  9. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  10. Arsenate Reduction of Sediment is a Critical Step for Arsenic Release in Bangladesh Aquifers

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Silvern, R. F.; Kim, C.; Sun, J.; Ahmed, K.; van Geen, A.; Choudhury, I.; Bostick, B. C.

    2013-12-01

    Long-term exposure to trace levels of arsenic (As) in shallow groundwater puts millions of people at risk for chronic diseases in Bangladesh. Though the arsenic is naturally occurring in the shallow aquifers, the mobilization of arsenic from the sediment to the groundwater is predominantly driven by the coupling of microbial metabolism to the reduction of iron (Fe) oxides. However, it is unknown whether the reduction of arsenate, As(V), to arsenite, As(III), is a critical part of the mobilization process. The goal of this work was to determine the mineral phase speciation of arsenic in sediment across two arsenic gradients in shallow aquifers. Sediment cores were collected from two well-characterized sites in Araihazar, Bangladesh located about 25km east of the capital, Dhaka. Site B, a high arsenic, slow recharge, shallow aquifer, was located in the village of Baylakandi, and site F, a low arsenic, fast recharge, shallow aquifer, was located in the village of Lashkardi. Samples were collected from drill cuttings and cores taken every five feet from the surface to 60 feet at site B and 88 feet at site F and preserved in glycerol for analysis. The sediment was characterized for arsenic speciation using x-ray absorption near edge structure (XANES) on beamline 11-2 at the Stanford Synchrotron Radiation Lightsource which in bulk mode can determine As speciation on samples with less than 1 mg/kg As in the solid phase. Arsenic XANES linear combination fits were described by As(V), As(III) and As2S3 standards for each depth. At both sites, at depths with low concentrations of aqueous As the sediment was dominated by As(V). In contrast, at depths with elevated concentrations of aqueous As the sediment was dominated by As(III). These changes in solid phase As speciation cannot be accounted for by changes in aqueous As concentrations and indicate a bulk change occurs in the As speciation of the sediment in zones of elevated aqueous As concentrations. Therefore, reduction of

  11. Arsenate Accumulation, Distribution, and Toxicity Associated with Titanium Dioxide Nanoparticles in Daphnia magna.

    PubMed

    Li, Mengting; Luo, Zhuanxi; Yan, Yameng; Wang, Zhenhong; Chi, Qiaoqiao; Yan, Changzhou; Xing, Baoshan

    2016-09-01

    Titanium dioxide nanoparticles (nano-TiO2) are widely used in consumer products. Nano-TiO2 dispersion could, however, interact with metals and modify their behavior and bioavailability in aquatic environments. In this study, we characterized and examined arsenate (As(V)) accumulation, distribution, and toxicity in Daphnia magna in the presence of nano-TiO2. Nano-TiO2 acts as a positive carrier, significantly facilitating D. magna's ability to uptake As(V). As nano-TiO2 concentrations increased from 2 to 20 mg-Ti/L, total As increased by a factor of 2.3 to 9.8 compared to the uptake from the dissolved phase. This is also supported by significant correlations between arsenic (As) and titanium (Ti) signal intensities at concentrations of 2.0 mg-Ti/L nano-TiO2 (R = 0.676, P < 0.01) and 20.0 mg-Ti/L nano-TiO2 (R = 0.776, P < 0.01), as determined by LA-ICP-MS. Even though As accumulation increased with increasing nano-TiO2 concentrations in D. magna, As(V) toxicity associated with nano-TiO2 exhibited a dual effect. Compared to the control, the increased As was mainly distributed in BDM (biologically detoxified metal), but Ti was mainly distributed in MSF (metal-sensitive fractions) with increasing nano-TiO2 levels. Differences in subcellular distribution demonstrated that adsorbed As(V) carried by nano-TiO2 could dissociate itself and be transported separately, which results in increased toxicity at higher nano-TiO2 concentrations. Decreased As(V) toxicity associated with lower nano-TiO2 concentrations results from unaffected As levels in MSFs (when compared to the control), where several As components continued to be adsorbed by nano-TiO2. Therefore, more attention should be paid to the potential influence of nano-TiO2 on bioavailability and toxicity of cocontaminants. PMID:27485179

  12. Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings.

    PubMed

    Singh, Madhulika; Pratap Singh, Vijay; Dubey, Gunjan; Mohan Prasad, Sheo

    2015-07-01

    Hydroponic experiments were conducted to investigate an effect of exogenous application of proline (Pro; 25 µM) in alleviating arsenate (As(V); 5 and 25 µM) toxicity in Solanum melongena L. (eggplant) seedlings. Exposure of As(V) declined growth of eggplant, which was coincided with an enhanced accumulation of As. However, exogenous Pro application alleviated As(V) toxicity in eggplant seedlings by reducing the accumulation of As. The fluorescence characteristics (JIP-test): φP0, Ψ0, φE0, PIABS, ABS/RC, TR0/RC, ET0/RC, DI0/RC, NPQ and qP were also affected by As(V). However, the effects of As(V) were more prominent on PIABS DI0/RC and NPQ. In Pro treated seedlings, following parameters viz. φP0, Ψ0, φE0 and PIABS were stimulated, while, energy flux parameters (ABS/RC, TR0/RC, ET0/RC and DI0/RC) were inhibited. Toxic effects of As(V) on photochemistry of photosystem II (PS II) were ameliorated by an exogenous application of Pro. Oxidative stress markers: superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) were enhanced by As(V) exposure, however, their levels were significantly diminished by an exogenous application of Pro. Treatment of As(V) stimulated the activities of superoxide dismutase, peroxidase and catalase except that of glutathione-S-transferase. Exogenous Pro application improved the activities of enzymatic antioxidants. The level of endogenous Pro was higher in As(V) treated as well as in Pro fed seedlings. The activity of a key enzyme of Pro biosynthesis: Δ(1)-pyrroline-5-carboxylate synthetase was higher in Pro fed seedlings. The activity of Pro dehydrogenase was inhibited under As(V) stress, and its activity was minimum in case of Pro+As(V) combination. These results indicate that Pro metabolism could play a key role in regulating the accumulation of As and levels of antioxidants, which concomitantly result into a better growth of eggplant seedlings when compared to the As(V) treatments alone.

  13. Arsenate toxicity and metabolism in the halotolerant microalga Dunaliella salina under various phosphate regimes.

    PubMed

    Wang, Ya; Zheng, Yanheng; Liu, Cong; Xu, Pingping; Li, Hao; Lin, Qiaoyun; Zhang, Chunhua; Ge, Ying

    2016-06-15

    Microalgae play an important role in arsenic (As) biogeochemical cycles as they are capable of accumulating and metabolizing this metalloid efficiently. This study aimed to investigate the toxicity, accumulation and transformation of arsenate (As(v)) in Dunaliella salina, an exceptionally halotolerant microalga, under various phosphate (PO4(3-)) regimes. The results of the 72-h toxicity test showed that D. salina was tolerant to As(v). In addition, the toxicity of As(v) was mitigated by an increased PO4(3-) supply. D. salina resisted the adverse effects of As(v) through the suppression of As uptake, enhancement of As reduction, methylation in the cell and excretion from the cell. Our study revealed that D. salina reduced As(v) toxicity using different strategies, i.e., reduction of As uptake upon acute As stress (24 h) and increase of As efflux following chronic As exposure (9 day). Moreover, PO4(3-) strongly affected the adsorption, uptake and transformation of As(v) in D. salina. As(v) reduction, DMA production and As excretion were enhanced under P-limited conditions (0.112 mg L(-1)) or upon higher As(v) exposure (1120 μg L(-1)). Furthermore, PO4(3-) had a significant influence on the As removal ability of D. salina. A high As removal efficiency (>95.6%) was observed in the 5-day cultures at an initial As concentration of 11.2 μg L(-1) and PO4(3-) of 0.112 and 1.12 mg L(-1). However, only 10.9% of total As was removed under 11.2 mg L(-1) PO4(3-) after 9 days of incubation. The findings of this study illustrate the pivotal roles of extracellular PO4(3-) in As(v) toxicity and metabolism, and the results may be relevant for future research on the minimization of As contamination in algal products as well as on the enhancement of As removal from the environment.

  14. DNA damage induction of ribonucleotide reductase.

    PubMed

    Elledge, S J; Davis, R W

    1989-11-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous. PMID:2513480

  15. Climate change and respiratory disease: European Respiratory Society position statement.

    PubMed

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  16. Climate change and respiratory disease: European Respiratory Society position statement.

    PubMed

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement. PMID:19251790

  17. Evaluation of respiratory pattern during respiratory-gated radiotherapy.

    PubMed

    Dobashi, Suguru; Mori, Shinichiro

    2014-12-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  18. [Rapid diagnosis of respiratory infection].

    PubMed

    Hashimoto, Toru

    2012-08-01

    The identification of pathogens is very important for the diagnosis and treatment of respiratory infectious disease. Bacterial culture is a basic method to identify various pathogens, but it takes several days to get the final results. Many new methods for the rapid diagnosis of respiratory infection have been developed in recent years. This has changed the treatment of respiratory infection. Broad-spectrum antibiotics were often used to treat respiratory infection previously, but rapid diagnosis has changed the choice of antibiotics from broad-spectrum to specific ones. New methods of rapid diagnosis are very useful and powerful tools in the treatment of respiratory infection.

  19. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis.

    PubMed

    Tchobanov, Iavor; Gal, Laurent; Guilloux-Benatier, Michèle; Remize, Fabienne; Nardi, Tiziana; Guzzo, Jean; Serpaggi, Virginie; Alexandre, Hervé

    2008-07-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. The reasons are the production of ethylphenols that lead to an unpleasant taint described as 'phenolic odour'. Despite its economic importance, Brettanomyces has remained poorly studied at the metabolic level. The origin of the ethylphenol results from the conversion of vinylphenols in ethylphenol by Brettanomyces hydroxycinnamate decarboxylase. However, no information is available on the vinylphenol reductase responsible for the conversion of vinylphenols in ethylphenols. In this study, a vinylphenol reductase was partially purified from Brettanomyces bruxellensis that was active towards 4-vinylguaiacol and 4-vinylphenol only among the substrates tested. First, a vinylphenol reductase activity assay was designed that allowed us to show that the enzyme was NADH dependent. The vinylphenol reductase was purified 152-fold with a recovery yield of 1.77%. The apparent K(m) and V(max) values for the hydrolysis of 4-vinylguaiacol were, respectively, 0.14 mM and 1900 U mg(-1). The optimal pH and temperature for vinylphenol reductase were pH 5-6 and 30 degrees C, respectively. The molecular weight of the enzyme was 26 kDa. Trypsic digest of the protein was performed and the peptides were sequenced, which allowed us to identify in Brettanomyces genome an ORF coding for a 210 amino acid protein.

  20. Respiratory fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James B.

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  1. Respiratory active mitochondrial supercomplexes.

    PubMed

    Acín-Pérez, Rebeca; Fernández-Silva, Patricio; Peleato, Maria Luisa; Pérez-Martos, Acisclo; Enriquez, Jose Antonio

    2008-11-21

    The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.

  2. Respiratory viruses and children.

    PubMed

    Heikkinen, Terho

    2016-07-01

    Respiratory viruses place a great disease burden especially on the youngest children in terms of high rates of infection, bacterial complications and hospitalizations. In developing countries, some viral infections are even associated with substantial mortality in children. The interaction between viruses and bacteria is probably much more common and clinically significant than previously understood. Respiratory viruses frequently initiate the cascade of events that ultimately leads to bacterial infection. Effective antiviral agents can substantially shorten the duration of the viral illness and prevent the development of bacterial complications. Viral vaccines have the potential to not only prevent the viral infection but also decrease the incidence of bacterial complications. At present, antivirals and vaccines are only available against influenza viruses, but new vaccines and antivirals against other viruses, especially for RSV, are being developed. PMID:27177731

  3. Respiratory viruses and children.

    PubMed

    Heikkinen, Terho

    2016-07-01

    Respiratory viruses place a great disease burden especially on the youngest children in terms of high rates of infection, bacterial complications and hospitalizations. In developing countries, some viral infections are even associated with substantial mortality in children. The interaction between viruses and bacteria is probably much more common and clinically significant than previously understood. Respiratory viruses frequently initiate the cascade of events that ultimately leads to bacterial infection. Effective antiviral agents can substantially shorten the duration of the viral illness and prevent the development of bacterial complications. Viral vaccines have the potential to not only prevent the viral infection but also decrease the incidence of bacterial complications. At present, antivirals and vaccines are only available against influenza viruses, but new vaccines and antivirals against other viruses, especially for RSV, are being developed.

  4. Lower respiratory tract infections.

    PubMed

    Chang, Anne B; Chang, Christina C; O'Grady, K; Torzillo, P J

    2009-12-01

    Acute lower respiratory infections (ALRI) are the major cause of morbidity and mortality in young children worldwide. ALRIs are important indicators of the health disparities that persist between Indigenous and non-Indigenous children in developed countries. Bronchiolitis and pneumonia account for the majority of the ALRI burden. The epidemiology, diagnosis, and management of these diseases in Indigenous children are discussed. In comparison with non-Indigenous children in developing countries they have higher rates of disease, more complications, and their management is influenced by several unique factors including the epidemiology of disease and, in some remote regions, constraints on hospital referral and access to highly trained staff. The prevention of repeat infections and the early detection and management of chronic lung disease is critical to the long-term respiratory and overall health of these children.

  5. Respiratory fluid mechanics.

    PubMed

    Grotberg, James B

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  6. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  7. The impairment of methylmenaquinol:fumarate reductase affects hydrogen peroxide susceptibility and accumulation in Campylobacter jejuni.

    PubMed

    Kassem, Issmat I; Khatri, Mahesh; Sanad, Yasser M; Wolboldt, Melinda; Saif, Yehia M; Olson, Jonathan W; Rajashekara, Gireesh

    2014-04-01

    The methylmenaquinol:fumarate reductase (Mfr) of Campylobacter jejuni is a periplasmic respiratory (redox) protein that contributes to the metabolism of fumarate and displays homology to succinate dehydrogenase (Sdh). Since chemically oxidized redox-enzymes, including fumarate reductase and Sdh, contribute to the generation of oxidative stress in Escherichia coli, we assessed the role of Mfr in C. jejuni after exposure to hydrogen peroxide (H2 O2 ). Our results show that a Mfr mutant (∆mfrA) strain was less susceptible to H2 O2 as compared to the wildtype (WT). Furthermore, the H2 O2 concentration in the ∆mfrA cultures was significantly higher than that of WT after exposure to the oxidant. In the presence of H2 O2 , catalase (KatA) activity and katA expression were significantly lower in the ∆mfrA strain as compared to the WT. Exposure to H2 O2 resulted in a significant decrease in total intracellular iron in the ∆mfrA strain as compared to WT, while the addition of iron to the growth medium mitigated H2 O2 susceptibility and accumulation in the mutant. The ∆mfrA strain was significantly more persistent in RAW macrophages as compared to the WT. Scanning electron microscopy showed that infection with the ∆mfrA strain caused prolonged changes to the macrophages' morphology, mainly resulting in spherical-shaped cells replete with budding structures and craters. Collectively, our results suggest a role for Mfr in maintaining iron homeostasis in H2 O2 stressed C. jejuni, probably via affecting the concentrations of intracellular iron. PMID:24515965

  8. The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway.

    PubMed

    ter Beek, Josy; Krause, Nils; Reimann, Joachim; Lachmann, Peter; Ädelroth, Pia

    2013-10-18

    The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H(+) + 2e(-) → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.

  9. Thioredoxin Reductase Deficiency Potentiates Oxidative Stress, Mitochondrial Dysfunction and Cell Death in Dopaminergic Cells

    PubMed Central

    Lopert, Pamela; Day, Brian J.; Patel, Manisha

    2012-01-01

    Mitochondria are considered major generators of cellular reactive oxygen species (ROS) which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease (PD). We have recently shown that isolated mitochondria consume hydrogen peroxide (H2O2) in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx) system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H2O2 levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR) inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells) resulted in a synergistic increase in H2O2 levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2) in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H2O2, and cell death. Therefore, in addition to their role in the production of cellular H2O2 the mitochondrial Trx/Prx system serve as a major sink for cellular H2O2 and its disruption may contribute to dopaminergic pathology associated with PD. PMID:23226354

  10. The octahaem MccA is a haem c-copper sulfite reductase.

    PubMed

    Hermann, Bianca; Kern, Melanie; La Pietra, Luigi; Simon, Jörg; Einsle, Oliver

    2015-04-30

    The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA.

  11. Middle East Respiratory Syndrome

    PubMed Central

    Zumla, Alimuddin; Hui, David S; Perlman, Stanley

    2016-01-01

    SUMMARY The Middle East Respiratory Syndrome (MERS) is a newly recognized highly lethal respiratory disease caused by a novel single stranded, positive sense RNA betacoronavirus (MERS-CoV). Dromedary camels, host species for MERS-CoV are implicated in the direct or indirect transmission to humans, although the exact mode of transmission remains unknown. First isolated from a patient who died from a severe respiratory illness in June 2012 in Jeddah, Saudi Arabia, as of 16 February 2015, 983 laboratory-confirmed cases of MERS-CoV (360 deaths; 36.6% mortality) were reported to the WHO. Cases have been acquired in both the community and hospitals with limited human-to-human transmission reported in the community. Whilst the majority of MERS cases have occurred in Saudi Arabia and the United Arab Emirates, cases have been reported from Europe, USA and Asia in people who traveled from the Middle East or their contacts. Clinical features of MERS range from asymptomatic or mild disease to acute respiratory distress syndrome and multi-organ failure resulting in death, especially in individuals with underlying co-morbidities. There is no specific drug treatment for MERS and infection prevention and control measures are crucial to prevent spread of MERS-CoV in health care facilities. MERS-CoV continues to be an endemic,low level public health threat. However, the concern remains that the virus could mutate to exhibit increased interhuman transmissibility, increasing pandemic potential. Our seminar presents an overview of current knowledge and perspectives on the epidemiology, virology, mode of transmission, pathogen-host responses, clinical features, diagnosis and development of new drugs and vaccines. PMID:26049252

  12. INDUCTION OF CELL PROLIFERATION AND APOPTOSIS IN HL60 AND HACAT CELLS BY ARSENIC, ARSENATE, AND ARSENIC-CONTAMINATED DRINKING WATER

    EPA Science Inventory

    Induction of cell proliferation and apoptosis in HL-60 and HaCaT cells by arsenite, arsenate and arsenic-contaminated drinking water. T-C. Zhang, M. Schmitt, J. L. Mumford National Research Council, Washington DC and U.S. Environmental Protection Agency, NHEERL, Research Triangle...

  13. A PROBABILISTIC ARSENIC EXPOSURE ASSESSMENT FOR CHILDREN WHO CONTACT CHROMATED COPPER ARSENATE ( CAA )-TREATED PLAYSETS AND DECKS: PART 2 SENSITIVITY AND UNCERTAINTY ANALYSIS

    EPA Science Inventory

    A probabilistic model (SHEDS-Wood) was developed to examine children's exposure and dose to chromated copper arsenate (CCA)-treated wood, as described in Part 1 of this two part paper. This Part 2 paper discusses sensitivity and uncertainty analyses conducted to assess the key m...

  14. Effect of sulfide on the cytotoxicity of arsenite and arsenate in human hepatocytes (HepG2) and human urothelial cells (UROtsa).

    PubMed

    Hinrichsen, Sinikka; Lohmayer, Regina; Zdrenka, Ricarda; Dopp, Elke; Planer-Friedrich, Britta

    2014-09-01

    Arsenic, a common poison, is known to react with sulfide in vivo, forming thioarsenates. The acute toxicity of the inorganic thioarsenates is currently unknown. Our experiments showed that a fourfold sulfide excess reduced acute arsenite cytotoxicity in human hepatocytes (HepG2) and urothelial cells (UROtsa) significantly, but had little effect on arsenate toxicity. Speciation analysis showed immediate formation of thioarsenates (up to 73 % of total arsenic) in case of arsenite, but no speciation changes for arsenate. Testing acute toxicity of mono- and trithioarsenate individually, both thioarsenates were found to be more toxic than their structural analogue arsenate, but less toxic than arsenite. Toxicity increased with the number of thio groups. The amount of cellular arsenic uptake after 24 h corresponded to the order of toxicity of the four compounds tested. The dominant to almost exclusive intracellular arsenic species was arsenite. The results imply that thiolation is a detoxification process for arsenite in sulfidic milieus. The mechanism could either be that thioarsenates regulate the amount of free arsenite available for cellular uptake without entering the cells themselves, or, based on their chemical similarity to arsenate, they could be taken up by similar transporters and reduced rapidly intracellularly to arsenite. PMID:24781333

  15. COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (IAS) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (ASV) AND ARSENITE (ASIII)

    EPA Science Inventory

    COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (iAs) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (AsV) AND ARSENITE (AsIII). E M Kenyon, L M Del Razo and M F Hughes. U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; ...

  16. AN EVALUATION OF THE RELATIVE GENOTOXICITY OF ARSENITE, ARSENATE, AND FOUR METHYLATED METABOLITES IN VITRO USING THE ALKALINE SINGLE CELL GEL ASSAY

    EPA Science Inventory

    An Evaluation of the Relative Genotoxicity of Arsenite, Arsenate, and Four Methylated
    Metabolites In Vitro Using the Alkaline Single Cell Gel Assay (ASCG).

    Arsenic ( As) is a genotoxic and carcinogenic metal found in many drinking water systems throughout the world. ...

  17. Concentration-and time-dependent genomic changes in the mouse urinary bladder following exposure to arsenate in drinking water for up to twelve weeks

    EPA Science Inventory

    Inorganic arsenic (AsD is a known human bladder carcinogen. The objective of this study was to examine the concentration dependence of the genomic response to ASi in the urinary bladders of mice. C57BL/6J mice were exposed for 1 or 12 weeks to arsenate in drinking water at concen...

  18. Nanotechnology in respiratory medicine.

    PubMed

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  19. Central respiratory chemoreception.

    PubMed

    Guyenet, Patrice G; Stornetta, Ruth L; Bayliss, Douglas A

    2010-10-01

    By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO(2) or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO(2) most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid-sensitive glia and vascular cells that communicate with neurons via paracrine mechanisms. Retrotrapezoid nucleus (RTN) neurons are the most completely characterized CRCs. Their high sensitivity to CO(2) in vivo presumably relies on their intrinsic acid sensitivity, excitatory inputs from the carotid bodies and brain regions such as raphe and hypothalamus, and facilitating influences from neighboring astrocytes. RTN neurons are necessary for the respiratory network to respond to CO(2) during the perinatal period and under anesthesia. In conscious adults, RTN neurons contribute to an unknown degree to the pH-dependent regulation of breathing rate, inspiratory, and expiratory activity. The abnormal prenatal development of RTN neurons probably contributes to the congenital central hypoventilation syndrome. Other CRCs presumably exist, but the supportive evidence is less complete. The proposed locations of these CRCs are the medullary raphe, the nucleus tractus solitarius, the ventrolateral medulla, the fastigial nucleus, and the hypothalamus. Several wake-promoting systems (serotonergic and catecholaminergic neurons, orexinergic neurons) are also putative CRCs. Their contribution to central respiratory chemoreception may be behavior dependent or vary according to the state of vigilance. PMID:20737591

  20. Electrode assemblies composed of redox cascades from microbial respiratory electron transfer chains

    SciTech Connect

    Gates, Andrew J.; Marritt, Sophie; Bradley, Justin; Shi, Liang; McMillan, Duncan G.; Jeuken, Lars J.; Richardson, David; Butt, Julea N.

    2013-10-01

    Respiratory and photosynthetic electron transfer chains are dependent on vectorial electron transfer through a series of redox proteins. Examples include electron transfer from NapC to NapAB nitrate reductase in Paracoccus denitrificans and from CymA to Fcc3 (flavocytochrome c3) fumarate reductase in Shewanella oneidensis MR-1. In the present article, we demonstrate that graphite electrodes can serve as surfaces for the stepwise adsorption of NapC and NapAB, and the stepwise adsorption of CymA and Fcc3. Aspects of the catalytic properties of these assemblies are different from those of NapAB and Fcc3 adsorbed in isolation. We propose that this is due to the formation of NapC-NapAB and of CymA-Fcc3 complexes that are capable of supporting vectorial electron transfer.

  1. Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family.

    PubMed

    Sugishima, Masakazu; Kitamori, Yuka; Noguchi, Masato; Kohchi, Takayuki; Fukuyama, Keiichi

    2009-06-01

    The key steps in the degradation pathway of chlorophylls are the ring-opening reaction catalyzed by pheophorbide a oxygenase and sequential reduction by red chlorophyll catabolite reductase (RCCR). During these steps, chlorophyll catabolites lose their color and phototoxicity. RCCR catalyzes the ferredoxin-dependent reduction of the C20/C1 double bond of red chlorophyll catabolite. RCCR appears to be evolutionarily related to the ferredoxin-dependent bilin reductase (FDBR) family, which synthesizes a variety of phytobilin pigments, on the basis of sequence similarity, ferredoxin dependency, and the common tetrapyrrole skeleton of their substrates. The evidence, however, is not robust; the identity between RCCR and FDBR HY2 from Arabidopsis thaliana is only 15%, and the oligomeric states of these enzymes are different. Here, we report the crystal structure of A. thaliana RCCR at 2.4 A resolution. RCCR forms a homodimer, in which each subunit folds in an alpha/beta/alpha sandwich. The tertiary structure of RCCR is similar to those of FDBRs, strongly supporting that these enzymes evolved from a common ancestor. The two subunits are related by noncrystallographic 2-fold symmetry in which the alpha-helices near the edge of the beta-sheet unique in RCCR participate in intersubunit interaction. The putative RCC-binding site, which was derived by superimposing RCCR onto biliverdin-bound forms of FDBRs, forms an open pocket surrounded by conserved residues among RCCRs. Glu154 and Asp291 of A. thaliana RCCR, which stand opposite each other in the pocket, likely are involved in substrate binding and/or catalysis.

  2. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase.

    PubMed

    Lambooy, J P; Koffman, B M

    1985-01-01

    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  3. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  4. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  5. Some physical and immunological properties of ox kidney biliverdin reductase.

    PubMed Central

    Rigney, E M; Phillips, O; Mantle, T J

    1988-01-01

    The liver, kidney and spleen of the mouse and rat and the kidney and spleen of the ox express a monomeric form of biliverdin reductase (Mr 34,000), which in the case of the ox kidney enzyme exists in two forms (pI 5.4 and 5.2) that are probably charge isomers. The livers of the mouse and rats express, in addition, a protein (Mr 46,000) that cross-reacts with antibodies raised against the ox kidney enzyme and may be related to form 2 described by Frydman, Tomaro, Awruch & Frydman [(1983) Biochim. Biophys. Acta 759, 257-263]. Higher-Mr forms appear to exist in the guinea pig and hamster. The ox kidney enzyme has three thiol groups, of which two are accessible to 5,5'-dithiobis-(2-nitrobenzoate) in the native enzyme. Immunocytochemical analysis reveals that biliverdin reductase is localized in proximal tubules of the inner cortex of the rat kidney. Biliverdin reductase antiserum also stains proximal tubules in human and ox kidney. The staining of podocytes in glomeruli of ox kidney with antiserum to aldose reductase is particularly prominent. The localization of biliverdin reductase in the inner cortical zone of rat kidney is similar to that described for glutathione S-transferase YfYf, and it is suggested that one function of this 'intracellular binding protein' may be to maintain a low free concentration of biliverdin to allow biliverdin reductase to operate efficiently. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3060109

  6. Effects of dissolved carbonate on arsenate adsorption and surface speciation at the hematite--water interface.

    PubMed

    Arai, Yuji; Sparks, D L; Davis, J A

    2004-02-01

    Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [P(CO2) = 10(-3.5) atm and approximately 0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L(-1), [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L(-1), [As(V)]0 = 0.5 mM and I = 0.01 M NaCI], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (P(CO2) = 10(-3.5) atm) than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear ( 2.8 A) and bidentate binuclear (approximately equal to 3.3 A) bonding at pH 4.5-8 and loading levels of 0.46-3.10 microM m(-2). Using the results of the pseudo-equilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the P(CO2) = 10(-3.5) atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption

  7. Effects of Dissolved Carbonate on Arsenate Adsorption and Surface Speciation at the Hematite-Water Interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2004-01-01

    Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [PCO2 = 10 -3.5 atm and ???0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L -1, [As(V)]0 = 1.5 mM and / = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L-1, [As(V)] 0 = 0.5 mM and / = 0.01 M NaCl], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (PCO2 = 10-3.5 atm)than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear (???2.8 A??) and bidentate binuclear (???3.3 A??) bonding at pH 4.5-8 and loading levels of 0.46-3.10 ??M m-2. Using the results of the pseudoequilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the PCO2 = 10-3.5 atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to

  8. Sulfide as a Chemoautotrophic Electron Donor for Dissimilatory Arsenate Reduction in Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Hoeft, S. E.; Kulp, T. R.; Stolz, J. S.; Oremland, R. S.

    2003-12-01

    In aqueous systems, arsenic occurs as arsenate [As(V)] or as arsenite [As(III)], with the latter form being more toxic and mobile. Mono Lake, California is a meromictic soda lake (pH = 9.8; salinity = 70-90 g/L) with exceptionally high arsenic content ( ˜200 μ M), a consequence of hydrothermal inputs combined with evaporative concentration. Previous work has shown that arsenic speciation changes from As(V) to the more reduced As(III) with vertical transition from the lake's surface oxic waters to its unmixed, anoxic bottom waters and that dissimilatory reduction is responsible for the observed change in arsenic speciation. Rates of in situ dissimilatory As(V) reduction measured by radiotracer ( ˜1- 6 μ mol/L/d) were estimated to be significant enough to mineralize up to 14% of annual primary productivity. Subsequent lab-based investigations with As(V)-amended ( ˜1-2 mM) bottom water displayed significantly higher rates (150-260 μ mol/L/d) of As(V) reduction and were not limited by the availability of organic electron donors such as acetate, lactate, malate and glucose. The focus of this study was to identify a natural source of electrons for As(V) reduction in Mono Lake. While Mono Lake contains plentiful dissolved organic carbon ( ˜7 mM) this material is usually refractory and resistant to bacterial oxidation. Alternatively, the anoxic bottom waters contain high concentrations of sulfide ions ( ˜1-2 mM) that could potentially serve as an electron donor for dissimilatory As(V) reduction. In a time course experiment with As(V)-amended Mono Lake bottom water, we observed oxidation of sulfide linked to the reduction of As(V) to As(III). This reaction did not occur in filter sterilized controls and sulfide loss did not occur in samples lacking As(V). In bottom water amended with additional sulfide (total = 6 mM) and As(V), we observed a linear relationship between rates of dissimilatory As(V) reduction and As(V) concentration. The highest rate observed under

  9. Microdistribution of chromated copper arsenate preservative in rubberwood (Hevea brasiliensis Muell. Arg.)

    NASA Astrophysics Data System (ADS)

    Jusoh, Ismail Bin

    2000-08-01

    Rubberwood is popular for making indoor furniture since rubberwood is relatively abundant and sustainable. Currently more than 60% of the total annual rubberwood produced by rubber plantation is used as fuelwood. Rubberwood has the potential for both indoor and outdoor application. For exterior applications, preservative treatment is needed to extend the service life of rubberwood. The objectives of this study are to (1) assess treatability of rubberwood with chromated copper arsenate (CCA) preservative, (2) evaluate the natural decay resistance and efficacy of CCA on rubberwood, and (3) study the microdistribution of CCA components in rubberwood cells. The treatability of rubberwood was determined by measuring the penetration and retention of CCA type C preservative after a full-cell treatment. Natural decay resistance and efficacy of CCA treatment on rubberwood was estimated using a laboratory soilblock test according to AWPA E 10-91. The microdistribution of chromium, copper and arsenic in CCA-treated rubberwood was studied using scanning electron microscope in conjunction with energy dispersive X-ray analyzer (SEM-EDXA). As expected, longitudinal permeability was found to be better than the radial and the tangential permeability. The penetration and retention in the radial direction was about 3 times better than in the tangential direction. Longer pressure period increased penetration and retention of CCA type C in rubberwood. Complete penetration was achieved after 4 hours of pressure (1240 kPa) treatment. A pre-treatment steaming improved the treatability of rubberwood regardless of the anatomical direction. The average weight loss by white rot and brown rot was about 1.5 times higher than that of soft rot. A linear relationship was found between the weight loss and the incubation period for all the six test fungi. A CCA retention of 4.1 kg/m3 reduced weight loss to about 10% and retention of 14.5 kg/m3 reduced the weight loss of all test fungi at less than 2

  10. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM.

  11. Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent.

    PubMed

    Zeng, Hui; Arashiro, Maiko; Giammar, Daniel E

    2008-11-01

    Arsenate removal from water using an iron oxide-based sorbent was investigated to determine the optimal operating conditions and the influence of water composition on treatment efficiency. The novel sorbent with a high surface area was studied in flow-through column experiments conducted at different flow rates to quantify the effect of empty bed contact time (EBCT) on treatment performance. Arsenic removal efficiency declined with decreasing EBCT. Arsenic breakthrough curves at different EBCT values were successfully simulated with a pore and surface diffusion model (PSDM). Surface diffusion was the dominant intraparticle mass transfer process. The effect of water composition on arsenic removal efficiency was evaluated by conducting experiments with ultrapure water, ultrapure water with either phosphate or silica, and a synthetic groundwater that contained both phosphate and silica. Silica was more inhibitory than phosphate, and the silica in synthetic groundwater controlled the arsenic removal efficiency. PMID:18786691

  12. Effect of post-treatment processing on copper migration from Douglas-fir lumber treated with ammoniacal copper zinc arsenate.

    PubMed

    Ye, Min; Morrell, Jeffrey J

    2015-04-01

    Migration of heavy metals into aquatic environments has become a concern in some regions of the world. Many wood preservatives are copper based systems that have the potential to migrate from the wood and into the surrounding environment. Some wood treaters have developed "best management practices" (BMPs) that are designed to reduce the risk of migration, but there are few comparative studies assessing the efficacy of these processes. The potential for using various heating combinations to limit copper migration was assessed using ammoniacal coper zinc arsenate treated Douglas-fir lumber. Kiln drying and air drying both proved to be the most effective methods for limiting copper migration, while post-treatment steaming or hot water immersion produced more variable results. The results should provide guidance for improving the BMP processes. PMID:25659940

  13. Differential effects of arsenite and arsenate to Drosophila melanogaster in a combined adult/developmental toxicity assay

    SciTech Connect

    Goldstein, S.H.; Babich, H.

    1989-02-01

    Current concern of the environmental consequences of chemical wastes in soils has led to the development of microbial, plant, and, to a lesser extent, animal bioassays for terrestrial ecosystems. This paper evaluated a Drosophila assay that yields data both on acute toxicity to adults and on developmental toxicity to offspring and which is applicable for screening extracts from soils contaminated with chemical wastes. Acute toxicity assays with Drosophila have been used to evaluate the relative potencies of chemicals. The acute toxicity to adults and the developmental exposure bioassays were designed to be performed as separate tests. This paper combined these two tests into a single bioassay, using arsenic compounds as the test agents. Arsenite and arsenate were selected to evaluate the sensitivity of this combined assay in distinguishing between the toxicities of closely related chemicals.

  14. Respiratory System Disease.

    PubMed

    Goetz, Danielle M; Singh, Shipra

    2016-08-01

    Respiratory system involvement in cystic fibrosis is the leading cause of morbidity and mortality. Defects in the cystic fibrosis transmembrane regulator (CFTR) gene throughout the sinopulmonary tract result in recurrent infections with a variety of organisms including Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and nontuberculous mycobacteria. Lung disease occurs earlier in life than once thought and ideal methods of monitoring lung function, decline, or improvement with therapy are debated. Treatment of sinopulmonary disease may include physiotherapy, mucus-modifying and antiinflammatory agents, antimicrobials, and surgery. In the new era of personalized medicine, CFTR correctors and potentiators may change the course of disease. PMID:27469180

  15. Recurrent respiratory papillomatosis.

    PubMed

    Venkatesan, Naren N; Pine, Harold S; Underbrink, Michael P

    2012-06-01

    Recurrent respiratory papillomatosis (RRP) is a rare, benign disease with no known cure. RRP is caused by infection of the upper aerodigestive tract with the human papillomavirus (HPV). Passage through the birth canal is thought to be the initial transmission event, but infection may occur in utero. HPV vaccines have helped to provide protection from cervical cancer; however, their role in the prevention of RRP is undetermined. Clinical presentation of initial symptoms of RRP may be subtle. RRP course varies, and current management focuses on surgical debulking of papillomatous lesions with or without concurrent adjuvant therapy. PMID:22588043

  16. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Filip, Jan; Marušák, Zdeněk; Sharma, Virender K; Zbořil, Radek

    2013-04-01

    We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.

  17. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.

    PubMed

    Zagury, Gérald J; Dobran, Simona; Estrela, Sandra; Deschênes, Louise

    2008-04-01

    The environmental impact of chromated copper arsenate (CCA)-treated utility poles is linked to the possible soil and groundwater contamination with arsenic. The objective of the present study was to determine the arsenic speciation in soil and groundwater near in-service CCA-treated poles. Arsenite (As[III]) and arsenate (As[V]) concentrations were determined in 29 surface and subsurface soil samples collected near eight CCA-treated wood poles. Temporal variability of total arsenic concentrations and inorganic arsenic speciation was also assessed in groundwater at two sites through four sampling events over a 19-month period. Arsenic speciation was carried out by a solvent extraction method using ammonium pyrrolidine dithiocarbamate-methyl isobutyl ketone, and total arsenic was quantified by inductively coupled plasma/atomic emission spectrometry/hydride generation. Average arsenic concentrations in surface soils immediately adjacent to utility poles ranged from 153+/-49 to 410+/-150 mg/kg but approached background levels (below 5 mg/kg) within 0.50 m from the poles. A positive correlation was found between surface soil As concentration and total Fe content. In subsurface samples (0.50 m), arsenic levels were generally high in sandy soils (up to 223+/-32 mg/kg), moderate in clayey soils (up to 126+/-26 mg/kg), and relatively lower in organic soils (up to 56+/-24 mg/ kg). Arsenic(V) was the predominant arsenic species in surface (>78%) and subsurface soils (>66%). Total arsenic concentrations in groundwater below the clayey site were high and varied widely over time (79-390 microg/L), with 30 to 68% as As(III). Below the utility pole located on the organic site with a high Fe content, lower total arsenic levels (12-33 microg/L) were found, with As(III) ranging from 0 to 100%.

  18. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Filip, Jan; Marušák, Zdeněk; Sharma, Virender K; Zbořil, Radek

    2013-04-01

    We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet. PMID:23451768

  19. Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes.

    PubMed

    Dwivedi, S; Tripathi, R D; Tripathi, P; Kumar, A; Dave, R; Mishra, S; Singh, R; Sharma, D; Rai, U N; Chakrabarty, D; Trivedi, P K; Adhikari, B; Bag, M K; Dhankher, O P; Tuli, R

    2010-12-15

    Simulated pot experiments were conducted on four rice (Oryza sativa L.) genotypes (Triguna, IR-36, PNR-519, and IET-4786) to examine the effects of As(V) on amino acids and mineral nutrient status in grain along with antioxidant response to arsenic exposure. Rice genotypes responded differentially to As(V) exposure in terms of amino acids and antioxidant profiles. Total amino acid content in grains of all rice genotypes was positively correlated with arsenic accumulation. While, most of the essential amino acids increased in all cultivars except IR-36, glutamic acid and glycine increased in IET-4786 and PNR-519. The level of nonprotein thiols (NPTs) and the activities of superoxide dismutase (SOD; EC 1.15.1.1), glutathione reductase (GR; EC 1.6.4.2) and ascorbate peroxidase (APX; EC 1.11.1.11) increased in all rice cultivars except IET-4786. A significant genotypic variation was also observed in specific arsenic uptake (SAU; mg kg(-1)dw), which was in the order of Triguna (134) > IR-36 (71) > PNR-519 (53) > IET-4786 (29). Further, application of As(V) at lower doses (4 and 8 mg L(-1) As) enhanced the accumulation of selenium (Se) and other nutrients (Fe, P, Zn, and S), however, higher dose (12 mg L(-1) As) limits the nutrient uptake in rice. In conclusion, low As accumulating genotype, IET-4786, which also had significantly induced level of essential amino acids, seems suitable for cultivation in moderately As contaminated soil and would be safe for human consumption. PMID:21077666

  20. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  1. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  2. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  3. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  4. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  5. Domain evolution and functional diversification of sulfite reductases.

    PubMed

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  6. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  7. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  8. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  9. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  10. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  11. Molecular genetics of steroid 5 alpha-reductase 2 deficiency.

    PubMed Central

    Thigpen, A E; Davis, D L; Milatovich, A; Mendonca, B B; Imperato-McGinley, J; Griffin, J E; Francke, U; Wilson, J D; Russell, D W

    1992-01-01

    Two isozymes of steroid 5 alpha-reductase encoded by separate loci catalyze the conversion of testosterone to dihydrotestosterone. Inherited defects in the type 2 isozyme lead to male pseudohermaphroditism in which affected males have a normal internal urogenital tract but external genitalia resembling those of a female. The 5 alpha-reductase type 2 gene (gene symbol SRD5A2) was cloned and shown to contain five exons and four introns. The gene was localized to chromosome 2 band p23 by somatic cell hybrid mapping and chromosomal in situ hybridization. Molecular analysis of the SRD5A2 gene resulted in the identification of 18 mutations in 11 homozygotes, 6 compound heterozygotes, and 4 inferred compound heterozygotes from 23 families with 5 alpha-reductase deficiency. 6 apparent recurrent mutations were detected in 19 different ethnic backgrounds. In two patients, the catalytic efficiency of the mutant enzymes correlated with the severity of the disease. The high proportion of compound heterozygotes suggests that the carrier frequency of mutations in the 5 alpha-reductase type 2 gene may be higher than previously thought. Images PMID:1522235

  12. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  13. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  14. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N.; Luque, Francisco; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement

  15. Respiratory Therapy and Respiratory Therapy Technician. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Instructional Development and Services.

    This program guide identifies primary considerations in the organization, operation, and evaluation of respiratory therapy and respiratory therapy technician programs. An occupational description and program content are presented. The curriculum framework specifies the exact course title, course number, levels of instruction, major course content,…

  16. 10 CFR 850.28 - Respiratory protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Respiratory protection. (a) The responsible employer must establish a respiratory protection program that complies with the respiratory protection program requirements of 29 CFR 1910.134, Respiratory Protection... 10 Energy 4 2010-01-01 2010-01-01 false Respiratory protection. 850.28 Section 850.28...

  17. 10 CFR 850.28 - Respiratory protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Respiratory protection. (a) The responsible employer must establish a respiratory protection program that complies with the respiratory protection program requirements of 29 CFR 1910.134, Respiratory Protection... 10 Energy 4 2011-01-01 2011-01-01 false Respiratory protection. 850.28 Section 850.28...

  18. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  19. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus).

    PubMed

    Sheldon, P S; Kekwick, R G; Smith, C G; Sidebottom, C; Slabas, A R

    1992-04-01

    3-Oxoacyl-[ACP] reductase (E.C. 1.1.1.100, alternatively known as beta-ketoacyl-[ACP] reductase), a component of fatty acid synthetase has been purified from seeds of rape by ammonium sulphate fractionation, Procion Red H-E3B chromatography, FPLC gel filtration and high performance hydroxyapatite chromatography. The purified enzyme appears on SDS-PAGE as a number of 20-30 kDa components and has a strong tendency to exist in a dimeric form, particularly when dithiothreitol is not present to reduce disulphide bonds. Cleveland mapping and cross-reactivity with antiserum raised against avocado 3-oxoacyl-[ACP] reductase both indicate that the multiple components have similar primary structures. On gel filtration the enzyme appears to have a molecular mass of 120 kDa suggesting that the native structure is tetrameric. The enzyme has a strong preference for the acetoacetyl ester of acyl carrier protein (Km = 3 microM) over the corresponding esters of the model substrates N-acetyl cysteamine (Km = 35 mM) and CoA (Km = 261 microM). It is inactivated by dilution but this can be partly prevented by the inclusion of NADPH. Using an antiserum prepared against avocado 3-oxoacyl-[ACP] reductase, the enzyme has been visualised inside the plastids of rape embryo and leaf tissues by immunoelectron microscopy. Amino acid sequencing of two peptides prepared by digestion of the purified enzyme with trypsin showed strong similarities with 3-oxoacyl-[ACP] reductase from avocado pear and the Nod G gene product from Rhizobium meliloti.

  20. Respiratory disease and cardiovascular morbidity

    PubMed Central

    Koskela, R; Mutanen, P; Sorsa, J; Klockars, M

    2005-01-01

    Background: Work related dust exposure is a risk factor for acute and chronic respiratory irritation and inflammation. Exposure to dust and cigarette smoke predisposes to exogenous viral and bacterial infections of the respiratory tract. Respiratory infection can also act as a risk factor in the development of atherosclerotic and coronary artery disease. Aims: To investigate the association of dust exposure and respiratory diseases with ischaemic heart disease (IHD) and other cardiovascular diseases (CVDs). Methods: The study comprised 6022 dust exposed (granite, foundry, cotton mill, iron foundry, metal product, and electrical) workers hired in 1940–76 and followed until the end of 1992. National mortality and morbidity registers and questionnaires were used. The statistical methods were person-year analysis and Cox regression. Results: Co-morbidity from cardiovascular and respiratory diseases ranged from 17% to 35%. In at least 60% of the co-morbidity cases a respiratory disease preceded a cardiovascular disease. Chronic bronchitis, pneumonia, and upper respiratory track infections predicted IHD in granite workers (rate ratio (RR) = 1.9; 95% CI 1.38 to 2.72), foundry workers (2.1; 1.48 to 2.93), and iron foundry workers (1.7; 1.16 to 2.35). Dust exposure was not a significant predictor of IHD or other CVD in any group. Dust exposure was related to respiratory morbidity. Thus, some respiratory diseases appeared to act as intermediate variables in the association of dust exposure with IHD. Conclusion: Dust exposure had only a small direct effect on IHD and other CVD. IHD morbidity was associated with preceding respiratory morbidity. A chronic infectious respiratory tract disease appeared to play an independent role in the development of IHD. PMID:16109822

  1. Implementing change in respiratory care.

    PubMed

    Stoller, James K

    2010-06-01

    Though people are generally averse to change, change and innovation are critically important in respiratory care to maintain scientific and clinical progress. This paper reviews the issue of change in respiratory care. I summarize several available models of organizational and personal change (ie, those of Kotter and of Silversin and Kornacki, and the Intentional Change Theory of Boyatzis), review the characteristics of change-avid respiratory therapy departments, offer an example of a change effort in respiratory care (implementation of respiratory care protocols) and then analyze this change effort as it took place at one institution, the Cleveland Clinic, using these models. Finally, I present the results of an analysis of change-avid respiratory therapy departments and offer some suggestions regarding change management for the profession and for individual respiratory care clinicians. Common features of theories of organizational change include developing a sense of urgency, overcoming resistance, developing a guiding coalition, and involving key stakeholders early. With the understanding that change efforts may seem unduly "clean" and orderly in retrospect, the models help explain the sustainable success of efforts to implement the Respiratory Therapy Consult Service at the Cleveland Clinic. By implication, these models offer value in planning change efforts prospectively. Further analysis of features of change-avid respiratory therapy departments indicates 11 highly desired features, of which four that especially characterize change-avid departments include: having an up-to-date leadership team; employee involvement in change; celebrating wins; and an overall sense of progressiveness in the department. This analysis suggests that understanding and embracing change is important. To anchor change in our profession, greater attention should be given to developing a pipeline of respiratory care clinicians who, by virtue of their advanced training, have the skills

  2. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  3. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  4. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.

    PubMed

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L; Youn, Buhyun; Lawrence, Paulraj K; Gang, David R; Halls, Steven C; Park, HaJeung; Hilsenbeck, Jacqueline L; Davin, Laurence B; Lewis, Norman G; Kang, ChulHee

    2003-12-12

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  5. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase.

    PubMed

    Dinkova-Kostova, A T; Gang, D R; Davin, L B; Bedgar, D L; Chu, A; Lewis, N G

    1996-11-15

    Lignans are a widely distributed class of natural products, whose functions and distribution suggest that they are one of the earliest forms of defense to have evolved in vascular plants; some, such as podophyllotoxin and enterodiol, have important roles in cancer chemotherapy and prevention, respectively. Entry into lignan enzymology has been gained by the approximately 3000-fold purification of two isoforms of (+)-pinoresinol/(+)-lariciresinol reductase, a pivotal branchpoint enzyme in lignan biosynthesis. Both have comparable ( approximately 34.9 kDa) molecular mass and kinetic (Vmax/Km) properties and catalyze sequential, NADPH-dependent, stereospecific, hydride transfers where the incoming hydride takes up the pro-R position. The gene encoding (+)-pinoresinol/(+)-lariciresinol reductase has been cloned and the recombinant protein heterologously expressed as a functional beta-galactosidase fusion protein. Its amino acid sequence reveals a strong homology to isoflavone reductase, a key branchpoint enzyme in isoflavonoid metabolism and primarily found in the Fabaceae (angiosperms). This is of great evolutionary significance since both lignans and isoflavonoids have comparable plant defense properties, as well as similar roles as phytoestrogens. Given that lignans are widespread from primitive plants onwards, whereas the isoflavone reductase-derived isoflavonoids are mainly restricted to the Fabaceae, it is tempting to speculate that this branch of the isoflavonoid pathway arose via evolutionary divergence from that giving the lignans.

  6. Modulation of the Respiratory Supercomplexes in Yeast

    PubMed Central

    Cui, Tie-Zhong; Conte, Annalea; Fox, Jennifer L.; Zara, Vincenzo; Winge, Dennis R.

    2014-01-01

    Yeast cells deficient in the Rieske iron-sulfur subunit (Rip1) of ubiquinol-cytochrome c reductase (bc1) accumulate a late core assembly intermediate, which weakly associates with cytochrome oxidase (CcO) in a respiratory supercomplex. Expression of the N-terminal half of Rip1, which lacks the C-terminal FeS-containing globular domain (designated N-Rip1), results in a marked stabilization of trimeric and tetrameric bc1-CcO supercomplexes. Another bc1 mutant (qcr9Δ) stalled at the same assembly intermediate is likewise converted to stable supercomplex species by the expression of N-Rip1, but not by expression of intact Rip1. The N-Rip1-induced stabilization of bc1-CcO supercomplexes is independent of the Bcs1 translocase, which mediates Rip1 translocation during bc1 biogenesis. N-Rip1 induces the stabilization of bc1-CcO supercomplexes through an enhanced formation of CcO. The association of N-Rip1 with the late core bc1 assembly intermediate appears to confer stabilization of a CcO assembly intermediate. This induced stabilization of CcO is dependent on the Rcf1 supercomplex stabilization factor and only partially dependent on the presence of cardiolipin. N-Rip1 exerts a related induction of CcO stabilization in WT yeast, resulting in enhanced respiration. Additionally, the impact of CcO stabilization on supercomplexes was observed by means other than expression of N-Rip1 (via overexpression of CcO subunits Cox4 and Cox5a), demonstrating that this is a general phenomenon. This study presents the first evidence showing that supercomplexes can be stabilized by the stimulated formation of CcO. PMID:24421313

  7. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.

    PubMed

    Chou, Selene; Colman, Joan; Tylenda, Carolyn; De Rosa, Christopher

    2007-05-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) prepared this health consultation to provide support for assessing the public health implications of hazardous chemical exposure, primarily through drinking water, related to releases of chromated copper arsenate (CCA) in the port of Djibouti. CCA from a shipment, apparently intended for treating electric poles, is leaking into the soil in the port area. CCA is a pesticide used to protect wood against decay-causing organisms. This mixture commonly contains chromium(VI) (hexavalent chromium) as chromic acid, arsenic(V) (pentavalent arsenic) as arsenic pentoxide and copper (II) (divalent copper) as cupric oxide, often in an aqueous solution or concentrate. Experimental studies of the fate of CCA in soil and monitoring studies of wood-preserving sites where CCA was spilled on the soil indicate that the chromium(VI), arsenic and copper components of CCA can leach from soil into groundwater and surface water. In addition, at CCA wood-preserving sites, substantial concentrations of chromium(VI), arsenic and copper remained in the soil and were leachable into water four years after the use of CCA was discontinued, suggesting prolonged persistence in soil, with continued potential for leaching. The degree of leaching depended on soil composition and the extent of soil contamination with CCA. In general, leaching was highest for chromium(VI), intermediate for arsenic and lowest for copper. Thus, the potential for contamination of sources of drinking water exists. Although arsenic that is leached from CCA-contaminated soil into surface water may accumulate in the tissues of fish and shellfish, most of the arsenic in these animals will be in a form (often called fish arsenic) that is less harmful. Copper, which leaches less readily than the other components, can accumulate in tissues of mussels and oysters. Chromium is not likely to accumulate in the tissues of fish and shellfish. Limited studies of air

  8. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.

    PubMed

    Chou, Selene; Colman, Joan; Tylenda, Carolyn; De Rosa, Christopher

    2007-05-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) prepared this health consultation to provide support for assessing the public health implications of hazardous chemical exposure, primarily through drinking water, related to releases of chromated copper arsenate (CCA) in the port of Djibouti. CCA from a shipment, apparently intended for treating electric poles, is leaking into the soil in the port area. CCA is a pesticide used to protect wood against decay-causing organisms. This mixture commonly contains chromium(VI) (hexavalent chromium) as chromic acid, arsenic(V) (pentavalent arsenic) as arsenic pentoxide and copper (II) (divalent copper) as cupric oxide, often in an aqueous solution or concentrate. Experimental studies of the fate of CCA in soil and monitoring studies of wood-preserving sites where CCA was spilled on the soil indicate that the chromium(VI), arsenic and copper components of CCA can leach from soil into groundwater and surface water. In addition, at CCA wood-preserving sites, substantial concentrations of chromium(VI), arsenic and copper remained in the soil and were leachable into water four years after the use of CCA was discontinued, suggesting prolonged persistence in soil, with continued potential for leaching. The degree of leaching depended on soil composition and the extent of soil contamination with CCA. In general, leaching was highest for chromium(VI), intermediate for arsenic and lowest for copper. Thus, the potential for contamination of sources of drinking water exists. Although arsenic that is leached from CCA-contaminated soil into surface water may accumulate in the tissues of fish and shellfish, most of the arsenic in these animals will be in a form (often called fish arsenic) that is less harmful. Copper, which leaches less readily than the other components, can accumulate in tissues of mussels and oysters. Chromium is not likely to accumulate in the tissues of fish and shellfish. Limited studies of air

  9. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  10. Respiratory diseases of global consequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Respiratory diseases are one of the two major categories of poultry diseases that cause the most severe economic losses globally, both as enzootic diseases and as causes of epizootics. Some respiratory diseases are of such importance they are reportable to the World Organization for Animal Health (O...

  11. Respiratory diseases of global consequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Respiratory diseases are one of the two major categories of poultry diseases that cause the most severe economic losses globally (the other being enteric disease). The economic impact of respiratory disease is both direct, from the production losses caused by primary disease and indirect from preve...

  12. Novel Role for Aldose Reductase in Mediating Acute Inflammatory Responses in the Lung1

    PubMed Central

    Ravindranath, Thyyar M.; Mong, Phyllus Y.; Ananthakrishnan, Radha; Li, Qing; Quadri, Nosirudeen; Schmidt, Ann Marie; Ramasamy, Ravichandran; Wang, Qin

    2011-01-01

    Exaggerated inflammatory responses and the resultant increases in alveolar-capillary permeability underlie the pathogenesis of acute lung injury during sepsis. This study examined the functions of aldose reductase (AR) in mediating acute lung inflammation. Transgenic mice expressing human AR (ARTg) were used to study the functions of AR since mice have low intrinsic AR activity. In a mild cecal ligation and puncture model, ARTg mice demonstrated an enhanced AR activity and a greater inflammatory response as evaluated by circulating cytokine levels, neutrophil accumulation in the lungs, and activation of Rho kinase in lung endothelial cells (ECs). Compared with WT lung cells, ARTg lung cells produced more IL-6 and showed augmented JNK activation in response to LPS stimulation ex vivo. In human neutrophils, AR activity was required for fMLP-included CD11b activation and up-regulation, respiratory burst, and shape changes. In human pulmonary microvascular ECs, AR activity was required for TNF-α-induced activation of the Rho kinase/MKK4/JNK pathway and IL-6 production, but not p38 activation or ICAM-1 expression. Importantly, AR activity in both human neutrophils and ECs was required for neutrophil adhesion to TNF-α-stimulated ECs. These data demonstrate a novel role for AR in regulating the signaling pathways leading to neutrophil-EC adhesion during acute lung inflammation. PMID:20007578

  13. Delta 4-3-oxosteroid 5 beta-reductase deficiency causing neonatal liver failure and hemochromatosis.

    PubMed

    Shneider, B L; Setchell, K D; Whitington, P F; Neilson, K A; Suchy, F J

    1994-02-01

    Neonatal liver failure was evaluated in two infants. Neither infant had evidence of congenital infection, galactosemia, alpha 1-antitrypsin deficiency, tyrosinemia, Zellweger syndrome, or hemophagocytic lymphohistiocytosis. Abnormal levels of iron were detected in the minor salivary glands of the first infant and in the explanted liver of the second. Analyses of urinary bile salts by fast-atom bombardment ionization mass spectrometry and gas chromatography-mass spectrometry revealed a paucity of primary bile acids and a predominance of 7 alpha-hydroxy-3-oxo-4-cholenoic and 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acids. These findings are consistent with delta 4-3-oxosteroid 5 beta-reductase deficiency, a primary genetic defect in bile acid synthesis. Postmortem evaluation of the first infant revealed significant iron deposition in the liver, pancreas, thyroid, adrenal glands, myocardium, stomach, and submucosal glands of the respiratory tract. In both infants examination of the liver revealed extensive loss of hepatic parenchyma. These cases expand the clinical spectrum of bile acid metabolism defects to include neonatal liver failure with associated hemochromatosis. PMID:8301429

  14. Structure of the Membrane-intrinsic Nitric Oxide Reductase from Roseobacter denitrificans.

    PubMed

    Crow, Allister; Matsuda, Yuji; Arata, Hiroyuki; Oubrie, Arthur

    2016-06-14

    Membrane-intrinsic nitric oxide reductases (NORs) are key components of bacterial denitrification pathways with a close evolutionary relationship to the cytochrome oxidase (COX) complex found in aerobic respiratory chains. A key distinction between COX and NOR is the identity of the metal directly opposite heme b3 within the active site. In NOR, this metal is iron (FeB), whereas in COX, it is copper (CuB). The purified NOR of Roseobacter denitrificans contains copper and has modest oxidase activity, raising the possibility that a COX-like active site might have independently arisen within the context of a NOR-like protein scaffold. Here we present the crystal structure of the Roseobacter denitrificans NorBC complex and anomalous scattering experiments probing the identity of each metal center. Our results refute the hypothesis that copper occupies the active site and instead reveal a new metal center in the small subunit not seen in any other NOR or COX. PMID:27185533

  15. Compartmentalization and Regulation of Mitochondrial Function by Methionine Sulfoxide Reductases in Yeast

    PubMed Central

    Kaya, Alaattin; Koc, Ahmet; Lee, Byung Cheon; Fomenko, Dmitri E.; Rederstorff, Mathieu; Krol, Alain; Lescure, Alain; Gladyshev, Vadim N.

    2010-01-01

    Elevated levels of reactive oxygen species can damage proteins. Sulfur-containing amino acid residues, cysteine and methionine, are particularly susceptible to such damage. Various enzymes evolved to protect proteins or repair oxidized residues, including methionine sulfoxide reductases MsrA and MsrB, which reduce methionine-S-sulfoxide (Met-SO), and methionine-R-sulfoxide (Met-RO) residues, respectively, back to methionine. Here, we show that MsrA and MsrB are involved in the regulation of mitochondrial function. Saccharomyces cerevisiae mutant cells lacking MsrA, MsrB or both proteins, had normal levels of mitochondria, but lower levels of cytochrome c and fewer respiration-competent mitochondria. The growth of single MsrA or MsrB mutants on respiratory carbon sources was inhibited, and that of the double mutant was severely compromised, indicating impairment of mitochondrial function. Although MsrA and MsrB are thought to have similar roles in oxidative protein repair each targeting a diastereomer of methionine sulfoxide, their deletion resulted in different phenotypes. GFP fusions of MsrA and MsrB showed different localization patterns and primarily localized to cytoplasm and mitochondria, respectively. This finding agreed with compartment-specific enrichment of MsrA and MsrB activities. These results show that oxidative stress contributes to mitochondrial dysfunction through oxidation of methionine residues in proteins located in different cellular compartments. PMID:20799725

  16. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  17. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  18. Respiratory infections during air travel.

    PubMed

    Leder, K; Newman, D

    2005-01-01

    An increasing number of individuals undertake air travel annually. Issues regarding cabin air quality and the potential risks of transmission of respiratory infections during flight have been investigated and debated previously, but, with the advent of severe acute respiratory syndrome and influenza outbreaks, these issues have recently taken on heightened importance. Anecdotally, many people complain of respiratory symptoms following air travel. However, studies of ventilation systems and patient outcomes indicate the spread of pathogens during flight occurs rarely. In the present review, aspects of the aircraft cabin environment that affect the likelihood of transmission of respiratory pathogens on airplanes are outlined briefly and evidence for the occurrence of outbreaks of respiratory illness among airline passengers are reviewed.

  19. [Respiratory changes in deep diving].

    PubMed

    Segadal, K; Gulsvik, A; Nicolaysen, G

    1989-01-30

    Deep diving refers to saturation diving to a depth of more than 180 m (1.9 MPa ambient pressure). In the 1990s diving to 400 m may be necessary on the Norwegian continental shelf. The safety margins are narrow and at such depths the respiratory system is subject to great strain. Respiratory resistance increases and the dynamic lung volumes are reduced as the pressure increases due to enhanced gas density. Helium is used together with oxygen as breathing gas and the lower density partly normalises the dynamic lung volumes. The respiratory system imposes clear limitations on the intensity and duration of physical work during deep diving. We lack systematic studies of lung mechanics, gas exchange and respiratory regulation in the different phases of deep dives. Demonstration of possible chronic occupational respiratory diseases connected to diving is dependent on follow-up over a long time.

  20. Respiratory changes with deep diving.

    PubMed

    Segadal, K; Gulsvik, A; Nicolaysen, G

    1990-01-01

    Deep diving refers to saturation diving to a depth of more than 180 m (1.9 MPa ambient pressure). In the 1990s diving to 400 m may be necessary on the Norwegian continental shelf. The safety margins are narrow and the respiratory system is subject to great strain at such depths. The respiratory resistance increases and the dynamic lung volumes are reduced as the pressure increases due to enhanced gas density. Helium is used together with oxygen as breathing gas and its lower density partly normalises the dynamic lung volumes. The respiratory system puts clear limitations on intensity and duration of physical work in deep diving. Systematic studies of lung mechanics, gas exchange and respiratory regulation in the different phases of deep dives are lacking. Detection of occupational respiratory disorder following diving are dependent on long-term follow-up.

  1. [Acute respiratory distress syndrome].

    PubMed

    Estenssoro, Elisa; Dubin, Arnaldo

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is an acute respiratory failure produced by an inflammatory edema secondary to increased lung capillary permeability. This causes alveolar flooding and subsequently deep hypoxemia, with intrapulmonary shunt as its most important underlying mechanism. Characteristically, this alteration is unresponsive to high FIO2 and only reverses with end-expiratory positive pressure (PEEP). Pulmonary infiltrates on CXR and CT are the hallmark, together with decreased lung compliance. ARDS always occurs within a week of exposition to a precipitating factor; most frequently pneumonia, shock, aspiration of gastric contents, sepsis, and trauma. In CT scan, the disease is frequently inhomogeneous, with gravitational infiltrates coexisting with normal-density areas and also with hyperaerated parenchyma. Mortality is high (30-60%) especially in ARDS associated with septic shock and neurocritical diseases. The cornerstone of therapy lies in the treatment of the underlying cause and in the use mechanical ventilation which, if inappropriately administered, can lead to ventilator-induced lung injury. Tidal volume = 6 ml/kg of ideal body weight to maintain an end-inspiratory (plateau) pressure = 30 cm H2O ("protective ventilation") is the only variable consistently associated with decreased mortality. Moderate-to-high PEEP levels are frequently required to treat hypoxemia, yet no specific level or titration strategy has improved outcomes. Recently, the use of early prone positioning in patients with PaO2/FIO2 = 150 was associated with increased survival. In severely hypoxemic patients, it may be necessary to use adjuvants of mechanical ventilation as recruitment maneuvers, pressure-controlled modes, neuromuscular blocking agents, and extracorporeal-membrane oxygenation. Fluid restriction appears beneficial. PMID:27576283

  2. Doping and respiratory system.

    PubMed

    Casali, L; Pinchi, G; Puxeddu, E

    2007-03-01

    Historically many different drugs have been used to enhance sporting performances. The magic elixir is still elusive and the drugs are still used despite the heavy adverse effects. The respiratory system is regularly involved in this research probably because of its central location in the body with several connections to the cardiovascular system. Moreover people are aware that O2 consumption and its delivery to mitochondria firstly depend on ventilation and on the respiratory exchanges. The second step consists in the tendency to increase V'O2 max and to prolong its availability with the aim of improving the endurance time and to relieve the fatigue. Many methods and substances had been used in order to gain an artificial success. Additional oxygen, autologous and homologous transfusion and erythropoietin, mainly the synthetic type, have been administered with the aim of increasing the amount of oxygen being delivered to the tissues. Some compounds like stimulants and caffeine are endowed of excitatory activity on the CNS and stimulate pulmonary ventilation. They did not prove to have any real activity in supporting the athletic performances. Beta-adrenergic drugs, particularly clenbuterol, when administered orally or parenterally develop a clear illicit activity on the myosin fibres and on the muscles as a whole. Salbutamol, terbutaline, salmeterol and formoterol are legally admitted when administrated by MDI in the treatment of asthma. The prevalence of asthma and bronchial hyperactivity is higher in athletes than amongst the general population. This implies that clear rules must be provided to set a correct diagnosis of asthma in the athletes and a correct therapy to align with the actual guidelines according to the same rights of the "other" asthmatic patients.

  3. Tumor suppressor WWOX moderates the mitochondrial respiratory complex.

    PubMed

    Choo, Amanda; O'Keefe, Louise V; Lee, Cheng Shoou; Gregory, Stephen L; Shaukat, Zeeshan; Colella, Alexander; Lee, Kristie; Denton, Donna; Richards, Robert I

    2015-12-01

    Fragile site FRA16D exhibits DNA instability in cancer, resulting in diminished levels of protein from the WWOX gene that spans it. WWOX suppresses tumor growth by an undefined mechanism. WWOX participates in pathways involving aerobic metabolism and reactive oxygen species. WWOX comprises two WW domains as well as a short-chain dehydrogenase/reductase enzyme. Herein is described an in vivo genetic analysis in Drosophila melanogaster to identify functional interactions between WWOX and metabolic pathways. Altered WWOX levels modulate variable cellular outgrowths caused by genetic deficiencies of components of the mitochondrial respiratory complexes. This modulation requires the enzyme active site of WWOX, and the defective respiratory complex-induced cellular outgrowths are mediated by reactive oxygen species, dependent upon the Akt pathway and sensitive to levels of autophagy and hypoxia-inducible factor. WWOX is known to contribute to homeostasis by regulating the balance between oxidative phosphorylation and glycolysis. Reduction of WWOX levels results in diminished ability to respond to metabolic perturbation of normal cell growth. Thus, the ability of WWOX to facilitate escape from mitochondrial damage-induced glycolysis (Warburg effect) is, therefore, a plausible mechanism for its tumor suppressor activity.

  4. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.

  5. Assembly of the mitochondrial membrane system. Cytoplasmic mutants of Saccharomyces cerevisiae with lesions in enzymes of the respiratory chain and in the mitochondrial ATPase.

    PubMed

    Tzagoloff, A; Akai, A; Needleman, R B; Zulch, G

    1975-10-25

    Mutants of Saccharomyces cervisiae with defects in enzymes of the electron transfer chain and in the rutamycin-sensitive ATPase have been isolated. Some of the mutants are specifically affected in either cytochrome oxidase, coenzyme QH2-cytochrome c reductase or ATPase. Other strains are deficient in both cytochrome oxidase and coenzyme QH2-cytochrome c reductase but still have rutamycin-sensitive ATPase. All the mutants reported in this study fail to be complemented by a rho0 tester derived from a respiratory competent strain. The meiotic spore progeny obtained by mating the mutants to a respiratory competent haploid yeast, when scored for growth on glycerol, show a non-Mendelian segregation of the phenotype. These two genetic tests indicate the mutations to be cytoplasmically inherited. PMID:171256

  6. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition?

    PubMed

    Guo, W; Zhu, Y-G; Liu, W-J; Liang, Y-C; Geng, C-N; Wang, S-G

    2007-07-01

    Solution culture experiments were conducted to investigate the effects of silicon (Si) on arsenate (As(V)) uptake by rice. The addition of Si to the pretreatment or uptake solution significantly decreased shoot and root As concentrations (P<0.001 and P<0.05). The presence of Si in the pretreatment or uptake solution also significantly decreased shoot P concentrations (P<0.001). The data demonstrated that both internal and external Si inhibited the uptake of As and P. Results of As uptake kinetics showed that the mechanism of the effect of Si on arsenate uptake is not caused by direct competition for active sites of transporters with As. The effect of Si on As uptake was not entirely mediated through the effect of Si on P uptake. Although the addition of Si to pretreatment solutions still significantly decreased shoot and root As concentrations, the extent of reduction became smaller when rice roots were coated with iron plaque. PMID:17175078

  7. Effect of glycine substitution on the ferroelectric phase of betaine arsenate [(CH 3) 3NCH 2COO·H 3AsO 4

    NASA Astrophysics Data System (ADS)

    Dekola, T.; Ribeiro, J. L.; Klöpperpieper, A.

    2011-09-01

    The present work reports an experimental investigation on the influence of glycine (NH 2CH 2COOH) substitution in the polar properties and the critical dynamics of the molecular ferroelectric betaine arsenate, (CH 3) 3NCH 2COO·H 3AsO 4. The dielectric dispersion (20 Hz<ν<3 MHz) and the thermally induced displacement currents are investigated in detail over the extended Curie region of the system (130 K< T<100 K). The results obtained for a single crystal with nominal glycine content of 20% are analyzed, compared with those obtained for pure betaine arsenate and discussed within the scope of a phenomenological Landau model previously used to describe a system with competing ferroelectric and structural instabilities.

  8. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition?

    PubMed

    Guo, W; Zhu, Y-G; Liu, W-J; Liang, Y-C; Geng, C-N; Wang, S-G

    2007-07-01

    Solution culture experiments were conducted to investigate the effects of silicon (Si) on arsenate (As(V)) uptake by rice. The addition of Si to the pretreatment or uptake solution significantly decreased shoot and root As concentrations (P<0.001 and P<0.05). The presence of Si in the pretreatment or uptake solution also significantly decreased shoot P concentrations (P<0.001). The data demonstrated that both internal and external Si inhibited the uptake of As and P. Results of As uptake kinetics showed that the mechanism of the effect of Si on arsenate uptake is not caused by direct competition for active sites of transporters with As. The effect of Si on As uptake was not entirely mediated through the effect of Si on P uptake. Although the addition of Si to pretreatment solutions still significantly decreased shoot and root As concentrations, the extent of reduction became smaller when rice roots were coated with iron plaque.

  9. K[AsW2O9], the first member of the arsenate-tungsten bronze family: Synthesis, structure, spectroscopic and non-linear optical properties

    NASA Astrophysics Data System (ADS)

    Alekseev, Evgeny V.; Felbinger, Olivier; Wu, Shijun; Malcherek, Thomas; Depmeier, Wulf; Modolo, Giuseppe; Gesing, Thorsten M.; Krivovichev, Sergey V.; Suleimanov, Evgeny V.; Gavrilova, Tatiana A.; Pokrovsky, Lev D.; Pugachev, Alexey M.; Surovtsev, Nikolay V.; Atuchin, Victor V.

    2013-08-01

    K[AsW2O9], prepared by high-temperature solid-state reaction, is the first member of the arsenate-tungsten bronze family. The structure of K[AsW2O9] is based on a 3-dimensional (3D) oxotungstate-arsenate framework with the non-centrosymmetric P212121 space group, a=4.9747(3) Å, b=9.1780(8) Å, c=16.681(2) Å. The material was characterized using X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Raman and infrared (IR) spectroscopic techniques. The results of DSC demonstrate that this phase is stable up to 1076 K. Second harmonic generation (SHG) measurements performed on a powder sample demonstrate noticeable (0.1 of LiIO3) non-linear optical (NLO) activity.

  10. Dysrhythmias of the respiratory oscillator

    NASA Astrophysics Data System (ADS)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  11. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.

    PubMed

    VANDEMARK, P J; SMITH, P F

    1964-07-01

    VanDemark, P. J. (University of South Dakota, Vermillion), and P. F. Smith. Respiratory pathways in the Mycoplasma. II. Pathway of electron transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis. J. Bacteriol. 88:122-129. 1964.-Unlike the flavin-terminated respiratory pathway of the fermentative Mycoplasma, the respiratory chain of the nonfermentative M. hominis strain 07 appears to be more complex, involving quinones and cytochromes in addition to flavins. In addition to reduction by reduced nicotine adenine dinucleotide (NADH) and reduced nicotine adenine dinucleotide phosphate, nonpyridine nucleotide-linked reduction of the respiratory chain of this organism occurred with succinate, lactate, and short-chained acyl coenzyme A derivatives as electron donors. Enzymes catalyzing the oxidation of NADH included an NADH oxidase, a diaphorase, a quinone reductase, and a cytochrome c reductase. The oxidation of NADH was sensitive to a variety of inhibitors, including 10(-4)m Atabrine, 10(-3)m sodium amytal, 10(-5)mp-chloromercuribenzoate, 10(-4)m antimycin A, and 10(-4)m potassium cyanide. The oxidase was resolved by the addition of 5% trichloroacetic acid and reactivated by the addition of flavin adenine dinucleotide but not flavin mononucleotide. The M. hominis sonic extract contained an NADH-coenzyme Q reductase. The oxidation of NADH was stimulated by the addition of either menadione or vitamin K(2) (C(35)). The oxidase was inactivated by extraction with ether or irradiation at 360 mmu. The ether-inactivated enzyme was partially reactivated by the addition of "lipid" extract of the enzyme and coenzyme Q(6). Difference spectra of the cell extracts revealed the presence of "b" and "a" type cytochromes. These cell extracts were found to contain a cyanide-and azide-sensitive cytochrome oxidase and catalase. PMID:14197876

  12. Adrenaline modulates on the respiratory network development.

    PubMed

    Fujii, Morimitsu; Arata, Akiko

    2010-01-01

    Adrenaline regulates respiratory network, however, adrenergic contribution to the developing respiratory center has not well studied. Adrenaline application on embryonic day 17 medulla-spinal cord block preparations abolished non-respiratory activity and enhanced respiratory frequency. Phentolamine application on neonatal brainstem-spinal cord preparations that produced stable neonatal respiration resulted in respiratory destabilization. In E19 rat, adrenaline switched from enhancement to depression of the respiratory rhythm. Adrenaline modulated GABAergic synaptic transmission to respiratory neurons in late developmental stage. These results suggest that the involvement of central adrenergic modulation on the respiratory network maturation.

  13. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    PubMed

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent.

  14. SORPTION OF ARSENATE AND ARSENITE ON RUO2 X H2O: ANALYSIS OF SORBED PHASE OXIDATION STATE BY XANES IN ADVANCED PHOTON SOURCE ACTIVITY REPORT 2002

    EPA Science Inventory

    The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x H2O were examined by X-ray Absorption Near Edge Spectroscopy (XANES) to elucidate the solid state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x H

  15. Leaching of lead and arsenic in soils contaminated with lead arsenate pesticide residues. Rept. for 1 May 88-31 Mar 89

    SciTech Connect

    Peryea, F.J.

    1989-05-23

    Use of high rates of phosphate fertilizers in orchards contaminated with lead arsenate pesticide residues may influence Pb and As solubility and accelerate or retard translocation of these elements deeper into the soil where they may enter groundwater. To determine the extent of translocation, six Washington orchard soils heavily contaminated with lead arsenate (PbHAsO4) pesticides were sampled. A bulk soil sample was collected from a contaminated apple orchard to determine the influence of soil application of monoammonium phosphate (MAP, NH4H2PO4) and triple superphosphate (TSP, Ca(H2PO4)2) on lead and arsenate leaching. Most of the soil Pb and As was restricted to the upper 40 cm of soil. In all cases there was depletion of Pb and As at the immediate soil surface (0 to 5 cm). Arsenic was depleted relative to Pb in the A horizon and was enriched relative to Pb in the subsoil. Arsenic was apparently more mobile than Pb in all soils surveyed. Laboratory soil columns were amended with MAP or TSP at three P rates and leached using two leaching regimes. Addition of either MAP or TSP increased the amount of As leached from the soil but did not influence leaching of Pb. The amount of water that percolated through the soil influenced the total amount of leached As, the pH, and the salinity. The results indicate that surface-applied Pb and As are mobile in soils contaminated with lead arsenate pesticide residues. Potential for As contamination of shallow groundwater acquifers that lie below contaminated soils therefore exists.

  16. Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences

    NASA Astrophysics Data System (ADS)

    Marini, Luigi; Accornero, Marina

    2007-07-01

    The standard thermodynamic properties at 25°C, 1 bar (Δ G {f/o}, Δ H {f/o}, S o, C {P/o}, V o, ω) and the coefficients of the revised Helgeson-Kirkham-Flowers equations of state were evaluated for several aqueous complexes formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta 52:2009-2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359-1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate the log K of the destruction reactions of these metal-arsenate and metal-arsenite aqueous complexes at pressures and temperatures required by the EQ3/6 software package, version 7.2b. Apart from the AlAsO{4/o} and FeAsO{4/o} complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally for the Ca-dihydroarsenate and Ca-hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)-hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79-94, 2006), whereas the disagreement with the log K measured for the Ca-arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous solutions deriving from mixing of acid mine waters and surface waters.

  17. Role of Directed van der Waals Bonded Interactions in the Determination of the Structures of Molecular Arsenate Solids

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Cox, David F.; Dove, Patricia M; Downs, R. T.; Ross, Nancy L.; Rosso, Kevin M.

    2009-01-05

    Bond paths, local energy density properties, and Laplacian, L(r) = -2ρ(r), composite isosurfaces of the electron density distributions were calculated for the intramolecular and intermolecular bonded interactions for molecular solids of As2O3 and AsO2 composition, an As2O5 crystal, a number of arsenate molecules, and the arsenic metalloid, arsenolamprite. The directed intermolecular van der Waals As-O, O-O, and As-As bonded interactions are believed to serve as mainstays between the individual molecules in each of the molecular solids. As-O bond paths between the bonded atoms connect Lewis base charge concentrations and Lewis acid charge depletion domains, whereas the O-O and As-As paths connect Lewis base pair and Lewis acid pair domains, respectively, giving rise to sets of intermolecular directed bond paths. The alignment of the directed bond paths results in the periodic structures adopted by the arsenates. The arrangements of the As atoms in the claudetite polymorphs of As2O3 and the As atoms in arsenolamprite are similar. Like the As2O3 polymorphs, arsenolamprite is a molecular solid connected by relatively weak As-As intermolecular directed van der Waals bond paths between the layers of stronger As-As intramolecular bonded interactions. The bond critical point and local energy density properties of the intermolecular As-As bonded interactions in arsenolamprite are comparable with the As-As interactions in claudetite I. As such, the structure of claudetite I can be viewed as a stuffed derivative of the arsenolamprite structure with O atoms between pairs of As atoms comprising the layers of the structure. The cubic structure adopted by the arsenolite polymorph can be understood in terms of sets of directed acid-base As-O and base-base O-O pair domains and bond paths that radiate from the tetrahedral faces of its constituent molecules, serving as face-to-face key

  18. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.

    PubMed

    Vaxevanidou, K; Christou, C; Kremmydas, G F; Georgakopoulos, D G; Papassiopi, N

    2015-03-01

    In this study two different treatment options were investigated for the release of arsenic from a contaminated soil sample. The first option was based on the "bioaugmentation" principle and involved addition of a pure Fe(III)-reducing culture, i.e. Desulfuromonas palmitatis. The second option consisted in the "biostimulation" of indigenous bacteria and involved simple addition of nutrients. Due to the strong association of As with soil ferric oxides, the reductive dissolution of soil oxides by D. palmitatis lead to 45 % arsenic release in solution (2.15 mM). When only nutrients were supplied to the soil, the same amounts of Fe and As were dissolved with slower rates and most aqueous As was found to be in the trivalent state, indicating the presence of arsenate reducing species. The arsenate reducing microorganisms were enriched with successive cultures, using Na2HAsO4 as electron acceptor. The phylogenetic analysis revealed that the enriched microbial consortium contained Desulfosporosinus species, which are known arsenate reducers.

  19. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.

    PubMed

    Vaxevanidou, K; Christou, C; Kremmydas, G F; Georgakopoulos, D G; Papassiopi, N

    2015-03-01

    In this study two different treatment options were investigated for the release of arsenic from a contaminated soil sample. The first option was based on the "bioaugmentation" principle and involved addition of a pure Fe(III)-reducing culture, i.e. Desulfuromonas palmitatis. The second option consisted in the "biostimulation" of indigenous bacteria and involved simple addition of nutrients. Due to the strong association of As with soil ferric oxides, the reductive dissolution of soil oxides by D. palmitatis lead to 45 % arsenic release in solution (2.15 mM). When only nutrients were supplied to the soil, the same amounts of Fe and As were dissolved with slower rates and most aqueous As was found to be in the trivalent state, indicating the presence of arsenate reducing species. The arsenate reducing microorganisms were enriched with successive cultures, using Na2HAsO4 as electron acceptor. The phylogenetic analysis revealed that the enriched microbial consortium contained Desulfosporosinus species, which are known arsenate reducers. PMID:25588567

  20. Full-scale removal of arsenate and chromate from water using a limestone and ochreous sludge mixture as a low-cost sorbent material.

    PubMed

    Cederkvist, Karin; Holm, Peter E; Jensen, Marina B

    2010-05-01

    The oxyanions arsenate (AsO4(3-)) and chromate (CrO4(2-)) are major freshwater contaminants. Arsenate is a problematic contaminant in drinking water reservoirs, and chromate limits the use of urban stormwater runoff. High-capacity, low-cost, energy-efficient treatment technologies are required for the removal of these toxic anions from freshwater sources. Using a 50-m-long dual porosity filter, with limestone as filtering grains, treating stormwater runoff from Copenhagen, Denmark, we tested if addition of the waste product ochreous sludge can improve the removal of arsenate (As) and chromate (Cr) without compromising the calcite's removal affinity fowards metallic cations. Upon on-site embedding of the ochreous sludge, removal of arsenic and chromium was improved greatly, and copper (Cu) removal remained high. Steady-state effluent concentrations were reduced from 31 to 2 microg As/L, 127 to 1.5 microg Cr/L, and 18 to 9.6 microg Cu/L upon mixing with the ochreous sludge. Limestone-ochreous sludge represents a promising low-cost oxyanion and cation sorbent operating at neutral pH without pH control.