Science.gov

Sample records for respiratory complex iii

  1. Effects of mitochondrial complex III disruption in the respiratory chain of Neurospora crassa.

    PubMed

    Duarte, Margarida; Videira, Arnaldo

    2009-04-01

    In mitochondria from most organisms, including Neurospora crassa, dimeric complex III was found associated with complex I. Additional association of complex IV with this core structure leads to the formation of a respirasome. It was recently described for bacteria and mammals that complex III is needed for the assembly/stability of complex I. To elucidate the role of complex III in the organization of the respiratory chain of N. crassa, we analysed strains devoid of either the Rieske iron-sulphur or the COREII polypeptide subunits. The mutants display reduced growth, are female sterile and lack active complex III. The supramolecular organization of the oxidative phosphorylation system was characterized by electrophoretic analyses and the efficiency of the respiratory chain analysed by oxygen consumption measurements. The results obtained indicate that absence of complex III activity is not associated with the absence of complex I or complex IV, and leads to the induction of alternative oxidase. Complex III mutant mitochondria are devoid of respirasomes but contain significant amounts of dimeric complex I (I(2)) and of the supercomplex I(1)IV(1). Moreso, for the first time the alternative oxidase was found associated with dimeric complex IV and with supercomplex I(1)IV(1).

  2. Internal switches modulating electron tunneling currents in respiratory complex III.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc(1) complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways. Aromatic-aromatic interactions are highly utilized in the communication network since the key residues are aromatic in nature. The calculations show that there is a substantial change of the electron transfer rates between different redox pairs depending on the different conformations acquired by the key residues of the complex.

  3. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans.

    PubMed

    Stroh, Anke; Anderka, Oliver; Pfeiffer, Kathy; Yagi, Takao; Finel, Moshe; Ludwig, Bernd; Schägger, Hermann

    2004-02-01

    Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete "respirasome." Inactivation of the gene for tightly bound cytochrome c552 did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes.

  4. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III

    PubMed Central

    Beaudoin, Jessica N.; Ponnuraj, Nagendraprabhu; DiLiberto, Stephen J.; Hanafin, William P.; Kenis, Paul J. A.; Gaskins, H. Rex

    2015-01-01

    Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration. PMID:25994788

  5. Mutations in CYC1, Encoding Cytochrome c1 Subunit of Respiratory Chain Complex III, Cause Insulin-Responsive Hyperglycemia

    PubMed Central

    Gaignard, Pauline; Menezes, Minal; Schiff, Manuel; Bayot, Aurélien; Rak, Malgorzata; Ogier de Baulny, Hélène; Su, Chen-Hsien; Gilleron, Mylene; Lombes, Anne; Abida, Heni; Tzagoloff, Alexander; Riley, Lisa; Cooper, Sandra T.; Mina, Kym; Sivadorai, Padma; Davis, Mark R.; Allcock, Richard J.N.; Kresoje, Nina; Laing, Nigel G.; Thorburn, David R.; Slama, Abdelhamid; Christodoulou, John; Rustin, Pierre

    2013-01-01

    Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals’ fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity. PMID:23910460

  6. Respiratory complexes III and IV can each bind two molecules of cytochrome c at low ionic strength.

    PubMed

    Moreno-Beltrán, Blas; Díaz-Moreno, Irene; González-Arzola, Katiuska; Guerra-Castellano, Alejandra; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Quintana, Antonio

    2015-02-13

    The transient interactions of respiratory cytochrome c with complexes III and IV is herein investigated by using heterologous proteins, namely human cytochrome c, the soluble domain of plant cytochrome c1 and bovine cytochrome c oxidase. The binding molecular mechanisms of the resulting cross-complexes have been analyzed by Nuclear Magnetic Resonance and Isothermal Titration Calorimetry. Our data reveal that the two cytochrome c-involving adducts possess a 2:1 stoichiometry - that is, two cytochrome c molecules per adduct - at low ionic strength. We conclude that such extra binding sites at the surfaces of complexes III and IV can facilitate the turnover and sliding of cytochrome c molecules and, therefore, the electron transfer within respiratory supercomplexes.

  7. Respiratory complexes III and IV can each bind two molecules of cytochrome c at low ionic strength.

    PubMed

    Moreno-Beltrán, Blas; Díaz-Moreno, Irene; González-Arzola, Katiuska; Guerra-Castellano, Alejandra; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Quintana, Antonio

    2015-02-13

    The transient interactions of respiratory cytochrome c with complexes III and IV is herein investigated by using heterologous proteins, namely human cytochrome c, the soluble domain of plant cytochrome c1 and bovine cytochrome c oxidase. The binding molecular mechanisms of the resulting cross-complexes have been analyzed by Nuclear Magnetic Resonance and Isothermal Titration Calorimetry. Our data reveal that the two cytochrome c-involving adducts possess a 2:1 stoichiometry - that is, two cytochrome c molecules per adduct - at low ionic strength. We conclude that such extra binding sites at the surfaces of complexes III and IV can facilitate the turnover and sliding of cytochrome c molecules and, therefore, the electron transfer within respiratory supercomplexes. PMID:25595453

  8. Autism associated to a deficiency of complexes III and IV of the mitochondrial respiratory chain.

    PubMed

    Guevara-Campos, José; González-Guevara, Lucía; Briones, Paz; López-Gallardo, Ester; Bulán, Nuria; Ruiz-Pesini, Eduardo; Ramnarine, Denisse; Montoya, Julio

    2010-09-01

    Autism is the prototype of generalized developmental disorders or what today are called autism spectrum disorders. In most cases it is impossible to detect a specific etiology. It is estimated that a causative diagnosis may be shown in approximately 10-37% of the cases, including, congenital rubella, tuberous sclerosis, chromosome abnormalities such as fragile X syndrome and 22q13.3 deletion syndrome, Angelman, Williams, Smith-Magenis, Sotos, Cornelia de Lange, Möbius, Joubert and Goldenhar syndromes, Ito's hypomelanosis, as well as certain cerebral malformations and several inherited metabolic disorders. The case of a 3-year old girl is described, who was considered as autistic according to the criteria established by the DSM-IV manual for psychiatric disorders. She showed a delay in psychomotor development since she was 18 months old; she pronounces very few words (10), points to some objects, does not look up and it is hard to establish eye contact with her. She has paradoxical deafness and therefore, does not respond when called or when she is given orders, she is beginning to walk. She has not convulsions. Laboratory tests showed an anion gap of 31.6 mEq/L, lactate: 2.55: mmol/L, pyruvate: 0.06 mmol/L, and elevated lactate to/pyruvate ratio: 42.5. Under optical microscopy a muscular biopsy showed a reduction of the diameter of muscular fibers. The study of energy metabolism showed a partial deficiency of complexes III and IV of the respiratory chain, which allowed us to conclude that this was a mitochondrial dysfunction with an autistic clinical spectrum. PMID:21302592

  9. Arrangement of the Respiratory Chain Complexes in Saccharomyces cerevisiae Supercomplex III2IV2 Revealed by Single Particle Cryo-Electron Microscopy*

    PubMed Central

    Mileykovskaya, Eugenia; Penczek, Pawel A.; Fang, Jia; Mallampalli, Venkata K. P. S.; Sparagna, Genevieve C.; Dowhan, William

    2012-01-01

    Here we present for the first time a three-dimensional cryo-EM map of the Saccharomyces cerevisiae respiratory supercomplex composed of dimeric complex III flanked on each side by one monomeric complex IV. A precise fit of the existing atomic x-ray structures of complex III from yeast and complex IV from bovine heart into the cryo-EM map resulted in a pseudo-atomic model of the three-dimensional structure for the supercomplex. The distance between cytochrome c binding sites of complexes III and IV is about 6 nm, which supports proposed channeling of cytochrome c between the individual complexes. The opposing surfaces of complexes III and IV differ considerably from those reported for the bovine heart supercomplex as determined by cryo-EM. A closer association between the individual complex domains at the aqueous membrane interface and larger spaces between the membrane-embedded domains where lipid molecules may reside are also demonstrated. The supercomplex contains about 50 molecules of cardiolipin (CL) with a fatty acid composition identical to that of the inner membrane CL pool, consistent with CL-dependent stabilization of the supercomplex. PMID:22573332

  10. Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy.

    PubMed

    Mileykovskaya, Eugenia; Penczek, Pawel A; Fang, Jia; Mallampalli, Venkata K P S; Sparagna, Genevieve C; Dowhan, William

    2012-06-29

    Here we present for the first time a three-dimensional cryo-EM map of the Saccharomyces cerevisiae respiratory supercomplex composed of dimeric complex III flanked on each side by one monomeric complex IV. A precise fit of the existing atomic x-ray structures of complex III from yeast and complex IV from bovine heart into the cryo-EM map resulted in a pseudo-atomic model of the three-dimensional structure for the supercomplex. The distance between cytochrome c binding sites of complexes III and IV is about 6 nm, which supports proposed channeling of cytochrome c between the individual complexes. The opposing surfaces of complexes III and IV differ considerably from those reported for the bovine heart supercomplex as determined by cryo-EM. A closer association between the individual complex domains at the aqueous membrane interface and larger spaces between the membrane-embedded domains where lipid molecules may reside are also demonstrated. The supercomplex contains about 50 molecules of cardiolipin (CL) with a fatty acid composition identical to that of the inner membrane CL pool, consistent with CL-dependent stabilization of the supercomplex.

  11. Differential labeling of the subunits of respiratory complex III with (3H)succinic anhydride, (14C)succinic anhydride, and p-diazobenzene-(35S)sulfonate

    SciTech Connect

    Ho, S.H.; Rieske, J.S.

    1985-12-01

    Exposure of antimycin-treated Complex III (ubiquinol-cytochrome c reductase) purified from bovine heart mitochondria to (3H)succinic anhydride plus (35S)p-diazobenzenesulfonate (DABS) resulted in somewhat uniform relative labeling of the eight measured subunits of the complex by (3H)succinic anhydride. In contrast, relative labeling by (35S)DABS was similar to (3H)succinic anhydride for the subunits of high molecular mass, i.e., core proteins, cytochromes, and the iron-sulfur protein, but greatly reduced for the polypeptides of molecular mass below 15 kDa. With Complex II depleted in the iron-sulfur protein the relative labeling of core protein I by exposure of the complex to (3H)succinic anhydride was significantly enhanced, whereas labeling of the polypeptides represented by SDS-PAGE bands 7 and 8 was significantly inhibited. Dual labeling of the subunits of Complex III by 14C- and 3H-labeled succinic anhydride before and after dissociation of the complex by sodium dodecyl sulfate, respectively, was measured with the complex in its oxidized, reduced, and antimycin-inhibited states. Subunits observed to be most accessible or reactive to succinic anhydride were core protein II, the iron-sulfur protein, and polypeptides of SDS-PAGE bands 7,8, and 9. Two additional polypeptides of molecular masses 23 and 12kDa, not normally resolved by gel-electrophoresis, were detected. Reduction of the complex resulted in a significant change of 14C/3H labeling ratio of core protein only, whereas treatment of the complex with antimycin resulted in decreases in 14C/3H labeling ratios of core proteins I and II, cytochrome c1, and a polypeptide of molecular mass 13kDa identified as an antimycin-binding protein.

  12. Significance of respirasomes for the assembly/stability of human respiratory chain complex I.

    PubMed

    Schägger, Hermann; de Coo, René; Bauer, Matthias F; Hofmann, Sabine; Godinot, Catherine; Brandt, Ulrich

    2004-08-27

    We showed that the human respiratory chain is organized in supramolecular assemblies of respiratory chain complexes, the respirasomes. The mitochondrial complexes I (NADH dehydrogenase) and III (cytochrome c reductase) form a stable core respirasome to which complex IV (cytochrome c oxidase) can also bind. An analysis of the state of respirasomes in patients with an isolated deficiency of single complexes provided evidence that the formation of respirasomes is essential for the assembly/stability of complex I, the major entry point of respiratory chain substrates. Genetic alterations leading to a loss of complex III prevented respirasome formation and led to the secondary loss of complex I. Therefore, primary complex III assembly deficiencies presented as combined complex III/I defects. This dependence of complex I assembly/stability on respirasome formation has important implications for the diagnosis of mitochondrial respiratory chain disorders.

  13. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  14. Suppressors of superoxide production from mitochondrial complex III.

    PubMed

    Orr, Adam L; Vargas, Leonardo; Turk, Carolina N; Baaten, Janine E; Matzen, Jason T; Dardov, Victoria J; Attle, Stephen J; Li, Jing; Quackenbush, Douglas C; Goncalves, Renata L S; Perevoshchikova, Irina V; Petrassi, H Michael; Meeusen, Shelly L; Ainscow, Edward K; Brand, Martin D

    2015-11-01

    Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species, which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies, but its role remains controversial. Using high-throughput screening, we identified compounds that selectively eliminate superoxide production by complex III without altering oxidative phosphorylation; they modulate retrograde signaling including cellular responses to hypoxic and oxidative stress.

  15. Suppressors of superoxide production from mitochondrial complex III

    PubMed Central

    Orr, Adam L.; Vargas, Leonardo; Turk, Carolina N.; Baaten, Janine E.; Matzen, Jason T.; Dardov, Victoria J.; Attle, Stephen J.; Li, Jing; Quackenbush, Douglas C.; Goncalves, Renata L. S.; Perevoshchikova, Irina V.; Petrassi, H. Michael; Meeusen, Shelly L.; Ainscow, Edward K.; Brand, Martin D.

    2015-01-01

    Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species (ROS), which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies but its role remains controversial. Using high-throughput screening we identified compounds that selectively eliminate superoxide production by complex III without altering oxidative phosphorylation; they modulate retrograde signaling including cellular responses to hypoxic and oxidative stress. PMID:26368590

  16. Immunological studies on beef-heart ubiquinol--cytochrome c reductase (complex III)

    PubMed

    Nelson, B D; Mendel-Hartvig, I

    1977-10-17

    Antibodies against isolated beef-heart ubiquinol--cytochrome c reductase (complex III) have been characterized. Antibodies to complex III react strongly with isolated beef heart complex III and intact beef heart mitochondria, as shown by immunodiffusion and rocket electrophoresis experiments. The complex III content of intact mitochondria can be quantitated with rocket electrophoresis using isolated complex III as a standard. Antibodies to complex III also react with beef liver mitochondria and with both heart and liver mitochondria from rats. The latter are very weak antigens compared to beef heart material. Antibodies to complex III do not react with respiratory chain complexes I and IV, or F1-ATPase from beef heart mitochondria, but gives a slight, but variable, reaction with complex II and the membrane fraction isolated from complex V (oligomycin-sensitive ATPase). Antigenic sites are located on at least five of the seven peptides of complex III. These peptides are presumably lacking in respiratory chain complexes which do not react with antibodies to complex III, and are assumed to be uniquely located in complex III. Antiserum against complex III inhibitis duroquinol--cytochrome c reductase activity in isolated complex III and in complex III incorporated into phospholipid vesicles. Oxidation of NADH and succinate is not affected in submitochondrial particles treated with 6-times more antibody than required for complete inhibition of enzyme activity in free complex III or in complex III-phospholipid vesicles.

  17. Plutonium (III) and uranium (III) nitrile complexes

    SciTech Connect

    Enriquez, A. E.; Matonic, J. H.; Scott, B. L.; Neu, M. P.

    2002-01-01

    Iodine oxidation of uranium and plutonium metals in tetrahydrofuran and pyridine form AnI{sub 3}(THF){sub 4} and AnI{sub 3}(py){sub 4} (An = Pu, U). These compounds represent convenient entries Into solution An(III) chemistry in organic solvents. Extensions of the actinide metal oxidation methodology in nitrile solvents by I{sub 2}, AgPF{sub 6}, and TIPF{sub 6} are presented here. Treatment of Pu{sup 0} in acetonitrile with iodine yields a putative PuI{sub 3}(NCMe){sub x} intermediate which can be trapped with the tripodal nitrogen donor ligand tpza (tpza = (tris[(2-pyrazinyl)methyl]amine)) and forms the eight-coordinate complex (tpza)PuI{sub 3}(NCMe). Treatment of excess U{sup 0} metal by iodine in acetonitrile afforded a brown crystalline mixed valence complex, [U(NCMe){sub 9}][UI{sub 6}][I], instead of UI{sub 3}(NCMe){sub 4}. The analogous reaction in bezonitrile forms red crystalline UI{sub 4}(NCPh){sub 4}. In contrast, treatment of UI{sub 3}(THF){sub 4} with excess acetonitrile cleanly generates [U(NCMe){sub 9}][I]{sub 3}. Oxidation of Pu{sup 0} by either TI(I) or Ag(I) hexafluorophosphate salts generates a nine-coordinate homoleptic acetonitrile adduct [Pu(NCMe){sub 9}][PF{sub 6}]{sub 3}. Attempts to oxidize U{sub 0} with these salts were unsuccessful.

  18. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  19. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements. PMID:27442286

  20. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  1. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  2. Complex I Function and Supercomplex Formation Are Preserved in Liver Mitochondria Despite Progressive Complex III Deficiency

    PubMed Central

    Davoudi, Mina; Kotarsky, Heike; Hansson, Eva; Fellman, Vineta

    2014-01-01

    Functional oxidative phosphorylation requires appropriately assembled mitochondrial respiratory complexes and their supercomplexes formed mainly of complexes I, III and IV. BCS1L is the chaperone needed to incorporate the catalytic subunit, Rieske iron-sulfur protein, into complex III at the final stage of its assembly. In cell culture studies, this subunit has been considered necessary for supercomplex formation and for maintaining the stability of complex I. Our aim was to assess the importance of fully assembled complex III for supercomplex formation in intact liver tissue. We used our transgenic mouse model with a homozygous c.232A>G mutation in Bcs1l leading to decreased expression of BCS1L and progressive decrease of Rieske iron-sulfur protein in complex III, resulting in hepatopathy. We studied supercomplex formation at different ages using blue native gel electrophoresis and complex activity using high-resolution respirometry. In isolated liver mitochondria of young and healthy homozygous mutant mice, we found similar supercomplexes as in wild type. In homozygotes aged 27–29 days with liver disorder, complex III was predominantly a pre-complex lacking Rieske iron-sulfur protein. However, the main supercomplex was clearly detected and contained complex III mainly in the pre-complex form. Oxygen consumption of complex IV was similar and that of complex I was twofold compared with controls. These complexes in free form were more abundant in homozygotes than in controls, and the mRNA of complex I subunits were upregulated. In conclusion, when complex III assembly is deficient, the pre-complex without Rieske iron-sulfur protein can participate with available fully assembled complex III in supercomplex formation, complex I function is preserved, and respiratory chain stability is maintained. PMID:24466228

  3. Structure of bacterial respiratory complex I.

    PubMed

    Berrisford, John M; Baradaran, Rozbeh; Sazanov, Leonid A

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  4. Subunit arrangement in beef heart complex III

    SciTech Connect

    Gonzalez-Halphen, D.; Lindorfer, M.A.; Capaldi, R.A.

    1988-09-06

    Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described previously. Eight of the 12 polypeptide bands were identified from their NH/sub 2/-terminal sequences as obtained by electroblotting directly from the NaDodSO/sub 4/-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes (/sup 125/I)TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and V+VII. The cytochrome c binding site was found to include subunits IV, VII, and X. The combined data are used to provide an updated model of the topology of beef heart complex III.

  5. Genetic variability of respiratory complex abundance, organization, and activity in mouse brain

    PubMed Central

    Buck, Kari J.; Walter, Nicole A.R.; Denmark, Deaunne L.

    2013-01-01

    Mitochondrial dysfunction is implicated in the etiology and pathogenesis of numerous human disorders involving tissues with high energy demand. Murine models are widely used to elucidate genetic determinants of phenotypes relevant to human disease, with recent studies of C57BL/6J (B6), DBA/2J (D2) and B6xD2 populations implicating naturally occurring genetic variation in mitochondrial function/dysfunction. Using blue native polyacrylamide gel electrophoresis, immunoblots, and in-gel activity analyses of complexes I, II, IV and V, our studies are the first to assess abundance, organization, and catalytic activity of mitochondrial respiratory complexes and supercomplexes in mouse brain. Remarkable strain differences in supercomplex assembly and associated activity are evident, without differences in individual complexes I, II, III, or IV. Supercomplexes I1III2IV2-3 exhibit robust complex III immunoreactivity and complex I and IV activities in D2, but with little detected in B6 for I1III2IV2, and I1III2IV3 is not detected in B6. I1III2IV1 and I1III2 are abundant and catalytically active in both strains, but significantly more so in B6. Furthermore, while supercomplex III2IV1 is abundant in D2, none is detected in B6. In aggregate, these results indicate a shift toward more highly assembled supercomplexes in D2. Respiratory supercomplexes are thought to increase electron flow efficiency and individual complex stability, and to reduce electron leak and generation of reactive oxygen species. Our results provide a framework to begin assessing the role of respiratory complex suprastructure in genetic vulnerability and treatment for a wide variety of mitochondrial-related disorders. PMID:24164700

  6. Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1

    PubMed Central

    Coursolle, Dan; Gralnick, Jeffrey A.

    2012-01-01

    Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production. PMID:22363330

  7. Luminescence of europium (III) complexes for visualization

    NASA Astrophysics Data System (ADS)

    Kolontaeva, Olga A.; Pozharov, Mikhail V.; Korolovich, Vladimir F.; Khokhlova, Anastasia R.; Kirdyanova, Anna N.; Burmistrova, Natalia A.; Zakharova, Tamara V.; Goryacheva, Irina Y.

    2016-04-01

    With the purpose to develop bright non-toxic luminescent label for theranostic application we have studied complexation of lanthanide dipicolinates (2,6-pyridinedicarboxylates) by sodium alginate and effect of thermal exposure of synthesized micro-capsules on their luminescent properties. Synthesized micro-capsules are stable in acidic medium but dissolve at pH ~ 4 due to transformation of cationic europium dipicolinate complex to anionic. Luminescence studies have shown that emission spectra of europium(III)-alginate complexes (both chloride and dipicolinate) contain two intensive bands characteristic to Eu3+ ion (5D0 --> 7F1 (590 nm) and 5D0 --> 7F1 (612 nm)). We have also found that at 160ºC europium(III)- alginate micro-capsules decompose to black, soot-like substance, therefore, their thermal treatment must be performed in closed environment (i.e., sealed ampoules).

  8. Mitochondrial Respiratory Supercomplex Association Limits Production of Reactive Oxygen Species from Complex I

    PubMed Central

    Maranzana, Evelina; Barbero, Giovanna; Falasca, Anna Ida; Lenaz, Giorgio

    2013-01-01

    Abstract Aims: The mitochondrial respiratory chain is recognized today to be arranged in supramolecular assemblies (supercomplexes). Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. In the present study, we have directly addressed this issue by testing the ROS generation by Complex I in two experimental systems in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. Results: The results of our investigation provide experimental evidence that the production of ROS is strongly increased in either model, supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I. Innovation: Dissociation of supercomplexes may link oxidative stress and energy failure in a vicious circle. Conclusion: Our findings support a central role of mitochondrial supramolecular structure in the development of the aging process and in the etiology and pathogenesis of most major chronic diseases. Antioxid. Redox Signal. 19, 1469–1480. PMID:23581604

  9. Glucose modulates respiratory complex I activity in response to acute mitochondrial dysfunction.

    PubMed

    Cannino, Giuseppe; El-Khoury, Riyad; Pirinen, Marja; Hutz, Bettina; Rustin, Pierre; Jacobs, Howard T; Dufour, Eric

    2012-11-01

    Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an "emergency shutdown" system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.

  10. Glucose modulates respiratory complex I activity in response to acute mitochondrial dysfunction.

    PubMed

    Cannino, Giuseppe; El-Khoury, Riyad; Pirinen, Marja; Hutz, Bettina; Rustin, Pierre; Jacobs, Howard T; Dufour, Eric

    2012-11-01

    Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an "emergency shutdown" system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases. PMID:23007390

  11. Optical properties of the Eu(III)-La(III)-complex-doped polyolefine film and rod samples

    NASA Astrophysics Data System (ADS)

    Pogreb, Roman; Popov, Oleg; Lirtsman, Vlad; Pyshkin, Oleg; Kazachkov, Alexander; Musin, Albina; Finkelshtein, Binyamin; Shmukler, Yuri; Davidov, Dan; Bormashenko, Edward

    2005-04-01

    The work is devoted to luminescent properties of trivalent lanthanide complexes dispersed in thermoplastic host matrices. Polyethylene-based film and polypropylene-based rod both doped with these complexes were manufactured using an extrusion technique. Two kinds of dopants were used: Eu(III)-thenoyltrifluoroacetone-1,10-phenanthroline complex (Eu(III)) and Eu(III)-La(III)-1,10-phenanthroline complex (Eu(III)-La(III)). Comparison was made between these samples regarding absorption, excitation, emission and a lifetime of luminescence. Dependence of emission intensity on the excitation energy was determined. Emission spectra of the films were studied at room and helium temperatures. Optical properties of Eu(III) samples are different from Eu(III)-La(III) samples. Significant difference in spectra of these two types of samples may be attributed to the La(III) action.

  12. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation.

    PubMed

    Pérez-Pérez, Rafael; Lobo-Jarne, Teresa; Milenkovic, Dusanka; Mourier, Arnaud; Bratic, Ana; García-Bartolomé, Alberto; Fernández-Vizarra, Erika; Cadenas, Susana; Delmiro, Aitor; García-Consuegra, Inés; Arenas, Joaquín; Martín, Miguel A; Larsson, Nils-Göran; Ugalde, Cristina

    2016-08-30

    Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist.

  13. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation.

    PubMed

    Pérez-Pérez, Rafael; Lobo-Jarne, Teresa; Milenkovic, Dusanka; Mourier, Arnaud; Bratic, Ana; García-Bartolomé, Alberto; Fernández-Vizarra, Erika; Cadenas, Susana; Delmiro, Aitor; García-Consuegra, Inés; Arenas, Joaquín; Martín, Miguel A; Larsson, Nils-Göran; Ugalde, Cristina

    2016-08-30

    Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist. PMID:27545886

  14. Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography.

    PubMed

    Dudkina, Natalya V; Kudryashev, Mikhail; Stahlberg, Henning; Boekema, Egbert J

    2011-09-13

    The respirasome is a multisubunit supercomplex of the respiratory chain in mitochondria. Here we report the 3D reconstruction of the bovine heart respirasome, composed of dimeric complex III and single copies of complex I and IV, at about 2.2-nm resolution, determined by cryoelectron tomography and subvolume averaging. Fitting of X-ray structures of single complexes I, III(2), and IV with high fidelity allows interpretation of the model at the level of secondary structures and shows how the individual complexes interact within the respirasome. Surprisingly, the distance between cytochrome c binding sites of complexes III(2) and IV is about 10 nm. Modeling indicates a loose interaction between the three complexes and provides evidence that lipids are gluing them at the interfaces.

  15. Is there a genetic solution to bovine respiratory disease complex?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine respiratory disease complex (BRDC) is a complex multi-factor disease, which increases costs and reduces revenue from feedlot cattle. Multiple stressors and pathogens (viral and bacterial) have been implicated in the etiology of BRDC, therefore multiple approaches will be needed to evaluate a...

  16. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  17. Experimental and Theoretical Studies on Biologically Active Lanthanide (III) Complexes

    NASA Astrophysics Data System (ADS)

    Kostova, I.; Trendafilova, N.; Georgieva, I.; Rastogi, V. K.; Kiefer, W.

    2008-11-01

    The complexation ability and the binding mode of the ligand coumarin-3-carboxylic acid (HCCA) to La(III), Ce(III), Nd(III), Sm(III), Gd(III) and Dy(III) lanthanide ions (Ln(III)) are elucidated at experimental and theoretical level. The complexes were characterized using elemental analysis, DTA and TGA data as well as 1H NMR and 13C NMR spectra. FTIR and Raman spectroscopic techniques as well as DFT quantum chemical calculations were used for characterization of the binding mode and the structures of lanthanide(III) complexes of HCCA. The metal—ligand binding mode is predicted through molecular modeling and energy estimation of different Ln—CCA structures using B3LYP/6-31G(d) method combined with a large quasi-relativistic effective core potential for lanthanide ion. The energies obtained predict bidentate coordination of CCA- to Ln(III) ions through the carbonylic oxygen and the carboxylic oxygen. Detailed vibrational analysis of HCCA, CCA- and Ln(III) complexes based on both calculated and experimental frequencies confirms the suggested metal—ligand binding mode. The natural bonding analysis predicts strongly ionic character of the Ln(III)-CCA bonding in the- complexes studied. With the relatively resistant tumor cell line K-562 we obtained very interesting in-vitro results which are in accordance with our previously published data concerning the activity of lanthanide(III) complexes with other coumarin derivatives.

  18. Deficiency of respiratory chain complex I in Hashimoto thyroiditis.

    PubMed

    Zimmermann, Franz A; Neureiter, Daniel; Feichtinger, René G; Trost, Andrea; Sperl, Wolfgang; Kofler, Barbara; Mayr, Johannes A

    2016-01-01

    Oncocytic cells (OCs) are characterized by an accumulation of mitochondria and their occurrence in the thyroid gland of patients with Hashimoto thyroiditis (HT) is well known. However, their properties and functional relevance are poorly understood. We investigated OC lesions (n=212) in the thyroid of 12 HT patients. Loss of complex I protein was observed in oncocytic lesions of each of the patients. In addition to isolated complex I deficiency, 25% of oncocytic lesions showed combined deficiency of complex I and IV. Thus, we demonstrate for the first time a defect of respiratory chain complex I in OCs of HT patients.

  19. Current topics on inhibitors of respiratory complex I.

    PubMed

    Murai, Masatoshi; Miyoshi, Hideto

    2016-07-01

    There are a variety of chemicals which regulate the functions of bacterial and mitochondrial complex I. Some of them, such as rotenone and piericidin A, have been indispensable molecular tools in mechanistic studies on complex I. A large amount of experimental data characterizing the actions of complex I inhibitors has been accumulated so far. Recent X-ray crystallographic structural models of entire complex I may be helpful to carefully interpret this data. We herein focused on recent hot topics on complex I inhibitors and the subjects closely connected to these inhibitors, which may provide useful information not only on the structural and functional aspects of complex I, but also on drug design targeting this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  20. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed. PMID:27315225

  1. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    SciTech Connect

    Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna; Kotarsky, Heike; Hansson, Eva; Levéen, Per; Fellman, Vineta

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  2. Synthesis, thermal and spectroscopic behaviors of metal-drug complexes: La(III), Ce(III), Sm(III) and Y(III) amoxicillin trihydrate antibiotic drug complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Maydama, Hussein M. A.; Al-Azab, Fathi M.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-07-01

    The metal complexes of Amoxicillin trihydrate with La(III), Ce(III), Sm(III) and Y(III) are synthesized with 1:1 (metal:Amox) molar ratio. The suggested formula structures of the complexes are based on the results of the elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment in Bohr magnetons, as well as the thermal analysis (TG), and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results obtained suggested that Amoxicillin reacted with metal ions as tridentate ligands, coordinating the metal ion through its amino, imino, and β-lactamic carbonyl. The kinetic thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves.

  3. Synthesis, thermal and spectroscopic behaviors of metal-drug complexes: La(III), Ce(III), Sm(III) and Y(III) amoxicillin trihydrate antibiotic drug complexes.

    PubMed

    Refat, Moamen S; Al-Maydama, Hussein M A; Al-Azab, Fathi M; Amin, Ragab R; Jamil, Yasmin M S

    2014-07-15

    The metal complexes of Amoxicillin trihydrate with La(III), Ce(III), Sm(III) and Y(III) are synthesized with 1:1 (metal:Amox) molar ratio. The suggested formula structures of the complexes are based on the results of the elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment in Bohr magnetons, as well as the thermal analysis (TG), and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results obtained suggested that Amoxicillin reacted with metal ions as tridentate ligands, coordinating the metal ion through its amino, imino, and β-lactamic carbonyl. The kinetic thermodynamic parameters such as: Ea, ΔH(*), ΔS(*) and ΔG(*) were estimated from the DTG curves.

  4. Hexaammine Complexes of Cr(III) and Co(III): A Spectral Study.

    ERIC Educational Resources Information Center

    Brown, D. R.; Pavlis, R. R.

    1985-01-01

    Procedures are provided for experiments containing complex ions with octahedral symmetry, hexaamminecobalt(III) chloride and hexaamminechromium(III) nitrate, so students can interpret fully the ultra violet/visible spectra of the complex cations in terms of the ligand field parameters, 10 "Dq," the Racah interelectron repulsion parameters, "B,"…

  5. Dynamic subcellular localization of a respiratory complex controls bacterial respiration.

    PubMed

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria.

  6. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  7. Potentiometry: A Chromium (III) -- EDTA Complex

    ERIC Educational Resources Information Center

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  8. Luminescent xerogels obtained through embedding Tb(III) and Eu(III) complexes in silica matrix

    NASA Astrophysics Data System (ADS)

    Stan, Corneliu S.; Marcotte, Nathalie; Secula, Marius S.; Popa, Marcel

    2013-07-01

    The paper reports the preparation of two luminescent xerogels through embedding in a silica matrix of Tb(III) and Eu(III) complexes using succinimide (SI) and N-hydroxysuccinimide (NHSI) as ligands. In the first stage, Tb(III) and Eu(III) complexes with N-hydroxysuccinimide and succinimide were prepared at 1:3 metal to ligand ratio. Strong luminescent emission was observed only in case of Eu(III)-SI and Tb(III)-NHSI complexes while the Eu(III)-NHSI and Tb(III)-SI complexes exhibited none or weak photoluminescent properties. In the second stage, the selected highly luminescent complexes were embedded in silica matrices via a sol-gel procedure leading to the formation of xerogels with transparent-glassy aspect which keep the remarkable photoluminescence properties of the free complexes. The selected, highly luminescent free complexes and their correspondent silica xerogels were investigated through thermal analysis, powder XRD, SEM, FT-IR and fluorescence spectroscopy. Their excellent photoluminescent properties and excitation spectra, conveniently located in UV-A region, might recommend these materials for applications in optoelectronic devices where photonic conversion layers are required.

  9. Complexation of N4-Tetradentate Ligands with Nd(III) and Am(III)

    SciTech Connect

    Ogden, Mark D.; Sinkov, Sergey I.; Meier, G. Patrick; Lumetta, Gregg J.; Nash, Kenneth L.

    2012-12-06

    To improve understanding of aza-complexants in trivalent actinide–lanthanide separations, a series of tetradentate N-donor ligands have been synthesized and their complexation of americium(III) and neodymium(III) investigated by UV–visible spectrophotometry in methanolic solutions. The six pyridine/alkyl amine/imine ligands are N,N0-bis(2-methylpyridyl)-1,2-diaminoethane, N,N0-bis(2-methylpyridyl)-1,3-diaminopropane, trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC), N,N’-bis(2-pyridylmethyl)piperazine, N,N’-bis-[pyridin-2-ylmethylene]ethane-1,2-diamine, and trans-N,Nbis-([pyridin-2-ylmethylene]-cyclohexane-1,2-diamine. Each ligand has two pyridine groups and two aliphatic amine/imine N-donor atoms arranged with different degrees of preorganization and structural backbone rigidity. Conditional stability constants for the complexes of Am(III) and Nd(III) by these ligands establish the selectivity patterns. The overall selectivity of Am(III) over Nd(III) is similar to that reported for the terdentate bis(dialkyltriazinyl)pyridine molecules. The cyclohexane amine derivative (BPMDAC) is the strongest complexant and shows the highest selectivity for Am(III) over Nd(III) while the imines appear to prefer a bridging arrangement between two cations. These results suggest that this series of ligands could be employed to develop an enhanced actinide(III)– lanthanide(III) separation system.

  10. Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes.

    PubMed

    Kong, Linghao; He, Mengchang

    2016-07-01

    Organic Fe(III) complexes are widely distributed in the aqueous environment, which can efficiently generate free radicals under light illumination, playing a significant role in heavy metal speciation. However, the potential importance of the photooxidation of Sb(III) by organic Fe(III) complexes remains unclear. Therefore, the photooxidation mechanisms of Sb(III) were comprehensively investigated in Fe(III)-oxalate, Fe(III)-citrate and Fe(III)-fulvic acid (FA) solutions by kinetic measurements and modeling. Rapid photooxidation of Sb(III) was observed in an Fe(III)-oxalate solution over the pH range of 3 to 7. The addition of tert-butyl alcohol (TBA) as an ·OH scavenger quenched the Sb(III) oxidation, suggesting that ·OH is an important oxidant for Sb(III). However, the incomplete quenching of Sb(III) oxidation indicated the existence of other oxidants, presumably an Fe(IV) species in irradiated Fe(III)-oxalate solution. In acidic solutions, ·OH may be formed by the reaction of Fe(II)(C2O4) with H2O2, but a hypothetical Fe(IV) species may be generated by the reaction of Fe(II)(C2O4)2(2-) with H2O2 at higher pH. Kinetic modeling provides a quantitative explanation of the results. Evidence for the existence of ·OH and hypothetical Fe(IV) was also observed in an irradiated Fe(III)-citrate and Fe(III)-FA system. This study demonstrated an important pathway of Sb(III) oxidation in surface waters. PMID:27267512

  11. Structural and photophysical studies on ternary Sm(III), Nd(III), Yb(III), Er(III) complexes containing pyridyltriazole ligands

    PubMed Central

    Gusev, Alexey N.; Shul’gin, Victor F.; Meshkova, Svetlana B.; Hasegawa, Miki; Alexandrov, Grigory G.; Eremenko, Igor L.; Linert, Wolfgang

    2012-01-01

    Two bidentate pyridine-triazole ligands (3-(pyridine-2-yl)-5-phenyl-1,2,4-triazole (L1) and 5-phenyl-2-(2′-pyridyl)-7,8-benzo-6,5-dihydro-1,3,6-triazaindolizine (L2)), have been synthesized and used for Ln(Dbm)3 (Ln = Sm(III), Nd(III), Yb(III) and Er(III)) coordination. The structures of the ligands and resulting Sm(III) complex were determined in the solid state by X-ray diffraction. The title complexes were characterized by UV, fluorescent, IR-spectroscopy and thermogravimetric and elemental analyses. Photophysical studies on the Ln(III) complexes were carried out showing luminescence in the region typical for Ln(III). The effect of various factors on the enhancement luminescence of complexes is discussed. PMID:23470984

  12. Europium (III) coordination complex with a novel phosphonated ligand

    NASA Astrophysics Data System (ADS)

    Villemin, E.; Elias, B.; Marchand-Brynaert, J.

    2013-02-01

    An original Eu(III) complex with a phosphonated half-cage ligand (CCNPh) was synthesized and characterized. Coordination between Eu(III) and the selected ligand was investigated by FT-IR, 1H, 13C and 31P NMR spectroscopies. The stoichiometry of the Eu(III) complex in acetonitrile was determined by titrations using 1H, 31P NMR and photoluminescence. The 1M:2L stoichiometry, i.e. two CCNPh ligands for one Eu(III), has been measured. In contrast, the 1M:3L stoichiometry occurred in the solid state, from the elemental analysis. This particular behavior may be explained by the addition of a third CCNPh ligand to Eu(III) metallic core during the treatment and evaporation process for the obtention of the solid sample. An antenna effect has been observed consisting in the energy transfer from N-Ph (λexc = 276 nm) to Eu(III) (λem = 618 nm).

  13. Luminescent cyclometallated iridium(III) complexes having acetylide ligands

    SciTech Connect

    Thompson, Mark E.; Bossi, Alberto; Djurovich, Peter Ivan

    2014-09-02

    The present invention relates to phosphorescent (triplet-emitting) organometallic materials. The phosphorescent materials of the present invention comprise Ir(III)cyclometallated alkynyl complexes for use as triplet light-emitting materials. The Ir(III)cyclometallated alkynyl complexes comprise at least one cyclometallating ligand and at least one alkynyl ligand bonded to the iridium. Also provided is an organic light emitting device comprising an anode, a cathode and an emissive layer between the anode and the cathode, wherein the emissive layer comprises a Ir(III)cyclometallated alkynyl complex as a triplet emitting material.

  14. Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Goudie, Amanda D.; Finlay, Warren H.

    2014-01-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  15. Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues.

    PubMed

    Pettenuzzo, Leticia F; Ferreira, Gustavo da C; Schmidt, Anna Laura; Dutra-Filho, Carlos S; Wyse, Angela T S; Wajner, Moacir

    2006-02-01

    Methylmalonic acidemia is an inherited metabolic disorder biochemically characterized by tissue accumulation of methylmalonic acid (MMA) and clinically by progressive neurological deterioration and kidney failure, whose pathophysiology is so far poorly established. Previous studies have shown that MMA inhibits complex II of the respiratory chain in rat cerebral cortex, although no inhibition of complexes I-V was found in bovine heart. Therefore, in the present study we investigated the in vitro effect of 2.5mM MMA on the activity of complexes I-III, II, II-III and IV in striatum, hippocampus, heart, liver and kidney homogenates from young rats. We observed that MMA caused a significant inhibition of complex II activity in striatum and hippocampus (15-20%) at low concentrations of succinate in the medium, but not in the peripheral tissues. We also verified that the inhibitory property of MMA only occurred after exposing brain homogenates for at least 10 min with the acid, suggesting that this inhibition was mediated by indirect mechanisms. Simultaneous preincubation with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) and catalase (CAT) plus superoxide dismutase (SOD) did not prevent MMA-induced inhibition of complex II, suggesting that common reactive oxygen (superoxide, hydrogen peroxide and hydroxyl radical) and nitric (nitric oxide) species were not involved in this effect. In addition, complex II-III (20-35%) was also inhibited by MMA in all tissues tested, and complex I-III only in the kidney (53%) and liver (38%). In contrast, complex IV activity was not changed by MMA in all tissues studied. These results indicate that MMA differentially affects the activity of the respiratory chain pending on the tissues studied, being striatum and hippocampus more vulnerable to its effect. In case our in vitro data are confirmed in vivo in tissues from methylmalonic acidemic patients, it is feasible that that the present findings may be

  16. Respiratory complex I: 'steam engine' of the cell?

    PubMed

    Efremov, Rouslan G; Sazanov, Leonid A

    2011-08-01

    Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine. PMID:21831629

  17. Respiratory complex I: 'steam engine' of the cell?

    PubMed

    Efremov, Rouslan G; Sazanov, Leonid A

    2011-08-01

    Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.

  18. Developmental Origin of preBötzinger Complex Respiratory Neurons

    PubMed Central

    Gray, Paul A.; Hayes, John A.; Ling, Guang Y.; Llona, Isabel; Tupal, Srinivasan; Picardo, Maria Cristina D.; Ross, Sarah E.; Hirata, Tsutomu; Corbin, Joshua G.; Eugenin, Jaime; Del Negro, Christopher A.

    2010-01-01

    A subset of preBötzinger Complex (preBötC) neurokinin 1 receptor (NK1R) and somatostatin peptide (SST) expressing neurons are necessary for breathing in adult rats, in vivo. Their developmental origins and relationship to other preBötC glutamatergic neurons are unknown. Here we show, in mice, that the “core” of preBötC SST+/NK1R+/SST 2a receptor+ (SST2aR) neurons, are derived from Dbx1 expressing progenitors. We also show Dbx1 derived neurons heterogeneously co-express NK1R and SST2aR within and beyond the borders of preBötC. More striking, we find that nearly all non-catecholaminergic glutamatergic neurons of the ventrolateral medulla (VLM) are also Dbx1 derived. PreBötC SST+ neurons are born between E9.5 and E11.5 in the same proportion as non-SST expressing neurons. Additionally, preBötC Dbx1 neurons are respiratory-modulated and show an early inspiratory phase of firing in rhythmically active slice preparations. Loss of Dbx1 eliminates all glutamatergic neurons from the respiratory VLM including preBötC NK1R+/SST+ neurons. Dbx1 mutant mice do not express any spontaneous respiratory behaviors in vivo. Moreover, they do not generate rhythmic inspiratory activity in isolated en bloc preparations even after acidic or serotonergic stimulation. These data indicate preBötC core neurons represent a subset of a larger, more heterogeneous population of VLM Dbx1 derived neurons. These data indicate Dbx1 derived neurons are essential for the expression and, we hypothesize, are responsible for the generation of respiratory behavior both in vitro and in vivo. PMID:21048147

  19. Developmental origin of preBötzinger complex respiratory neurons.

    PubMed

    Gray, Paul A; Hayes, John A; Ling, Guang Y; Llona, Isabel; Tupal, Srinivasan; Picardo, Maria Cristina D; Ross, Sarah E; Hirata, Tsutomu; Corbin, Joshua G; Eugenín, Jaime; Del Negro, Christopher A

    2010-11-01

    A subset of preBötzinger Complex (preBötC) neurokinin 1 receptor (NK1R) and somatostatin peptide (SST)-expressing neurons are necessary for breathing in adult rats, in vivo. Their developmental origins and relationship to other preBötC glutamatergic neurons are unknown. Here we show, in mice, that the "core" of preBötC SST(+)/NK1R(+)/SST 2a receptor(+) (SST2aR) neurons, are derived from Dbx1-expressing progenitors. We also show that Dbx1-derived neurons heterogeneously coexpress NK1R and SST2aR within and beyond the borders of preBötC. More striking, we find that nearly all non-catecholaminergic glutamatergic neurons of the ventrolateral medulla (VLM) are also Dbx1 derived. PreBötC SST(+) neurons are born between E9.5 and E11.5 in the same proportion as non-SST-expressing neurons. Additionally, preBötC Dbx1 neurons are respiratory modulated and show an early inspiratory phase of firing in rhythmically active slice preparations. Loss of Dbx1 eliminates all glutamatergic neurons from the respiratory VLM including preBötC NK1R(+)/SST(+) neurons. Dbx1 mutant mice do not express any spontaneous respiratory behaviors in vivo. Moreover, they do not generate rhythmic inspiratory activity in isolated en bloc preparations even after acidic or serotonergic stimulation. These data indicate that preBötC core neurons represent a subset of a larger, more heterogeneous population of VLM Dbx1-derived neurons. These data indicate that Dbx1-derived neurons are essential for the expression and, we hypothesize, are responsible for the generation of respiratory behavior both in vitro and in vivo. PMID:21048147

  20. Synthesis and in vitro microbial evaluation of La(III), Ce(III), Sm(III) and Y(III) metal complexes of vitamin B6 drug.

    PubMed

    Refat, Moamen S; Al-Azab, Fathi M; Al-Maydama, Hussein M A; Amin, Ragab R; Jamil, Yasmin M S

    2014-06-01

    Metal complexes of pyridoxine mono hydrochloride (vitamin B6) are prepared using La(III), Ce(III), Sm(III) and Y(III). The resulting complexes are investigated. Some physical properties, conductivity, analytical data and the composition of the four pyridoxine complexes are discussed. The elemental analysis shows that the formed complexes of La(III), Ce(III), Sm(III) and Y(III) with pyridoxine are of 1:2 (metal:PN) molar ratio. All the synthesized complexes are brown in color and possess high melting points. These complexes are partially soluble in hot methanol, dimethylsulfoxide and dimethylformamide and insoluble in water and some other organic solvents. Elemental analysis data, spectroscopic (IR, UV-vis. and florescence), effective magnetic moment in Bohr magnetons and the proton NMR suggest the structures. However, definite particle size is determined by invoking the X-ray powder diffraction and scanning electron microscopy data. The results obtained suggested that pyridoxine reacted with metal ions as a bidentate ligand through its phenolate oxygen and the oxygen of the adjacent group at the 4'-position. The molar conductance measurements proved that the pyridoxine complexes are electrolytic in nature. The kinetic and thermodynamic parameters such as: Ea, ΔH(*), ΔS(*) and ΔG(*) were estimated from the DTG curves. The antibacterial evaluation of the pyridoxine and their complexes were also performed against some gram positive, negative bacteria as well as fungi.

  1. Synthesis and in vitro microbial evaluation of La(III), Ce(III), Sm(III) and Y(III) metal complexes of vitamin B6 drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-06-01

    Metal complexes of pyridoxine mono hydrochloride (vitamin B6) are prepared using La(III), Ce(III), Sm(III) and Y(III). The resulting complexes are investigated. Some physical properties, conductivity, analytical data and the composition of the four pyridoxine complexes are discussed. The elemental analysis shows that the formed complexes of La(III), Ce(III), Sm(III) and Y(III) with pyridoxine are of 1:2 (metal:PN) molar ratio. All the synthesized complexes are brown in color and possess high melting points. These complexes are partially soluble in hot methanol, dimethylsulfoxide and dimethylformamide and insoluble in water and some other organic solvents. Elemental analysis data, spectroscopic (IR, UV-vis. and florescence), effective magnetic moment in Bohr magnetons and the proton NMR suggest the structures. However, definite particle size is determined by invoking the X-ray powder diffraction and scanning electron microscopy data. The results obtained suggested that pyridoxine reacted with metal ions as a bidentate ligand through its phenolate oxygen and the oxygen of the adjacent group at the 4‧-position. The molar conductance measurements proved that the pyridoxine complexes are electrolytic in nature. The kinetic and thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves. The antibacterial evaluation of the pyridoxine and their complexes were also performed against some gram positive, negative bacteria as well as fungi.

  2. Molecular magnets based on homometallic hexanuclear lanthanide(III) complexes.

    PubMed

    Das, Sourav; Hossain, Sakiat; Dey, Atanu; Biswas, Sourav; Sutter, Jean-Pascal; Chandrasekhar, Vadapalli

    2014-05-19

    The reaction of lanthanide(III) chloride salts (Gd(III), Dy(III), Tb(III), and Ho(III)) with the hetero donor chelating ligand N'-(2-hydroxy-3-methoxybenzylidene)-6-(hydroxymethyl)picolinohydrazide (LH3) in the presence of triethylamine afforded the hexanuclear Ln(III) complexes [{Ln6(L)2(LH)2}(μ3-OH)4][MeOH]p[H2O]q[Cl]4·xH2O·yCH3OH (1, Ln = Gd(III), p = 4, q = 4, x = 8, y = 2; 2, Ln = Dy(III), p = 2, q = 6, x = 8, y = 4; 3, Ln = Tb(III), p = 2, q = 6, x = 10, y = 4; 4, Ln = Ho(III), p = 2, q = 6, x = 10, y = 2). X-ray diffraction studies revealed that these compounds possess a hexanuclear [Ln6(OH)4](14+) core consisting of four fused [Ln3(OH)](8+) subunits. Both static (dc) and dynamic (ac) magnetic properties of 1-4 have been studied. Single-molecule magnetic behavior has been observed in compound 2 with an effective energy barrier and relaxation time pre-exponential parameters of Δ/kB = 46.2 K and τ0 = 2.85 × 10(-7) s, respectively. PMID:24766539

  3. Tumor suppressor WWOX moderates the mitochondrial respiratory complex.

    PubMed

    Choo, Amanda; O'Keefe, Louise V; Lee, Cheng Shoou; Gregory, Stephen L; Shaukat, Zeeshan; Colella, Alexander; Lee, Kristie; Denton, Donna; Richards, Robert I

    2015-12-01

    Fragile site FRA16D exhibits DNA instability in cancer, resulting in diminished levels of protein from the WWOX gene that spans it. WWOX suppresses tumor growth by an undefined mechanism. WWOX participates in pathways involving aerobic metabolism and reactive oxygen species. WWOX comprises two WW domains as well as a short-chain dehydrogenase/reductase enzyme. Herein is described an in vivo genetic analysis in Drosophila melanogaster to identify functional interactions between WWOX and metabolic pathways. Altered WWOX levels modulate variable cellular outgrowths caused by genetic deficiencies of components of the mitochondrial respiratory complexes. This modulation requires the enzyme active site of WWOX, and the defective respiratory complex-induced cellular outgrowths are mediated by reactive oxygen species, dependent upon the Akt pathway and sensitive to levels of autophagy and hypoxia-inducible factor. WWOX is known to contribute to homeostasis by regulating the balance between oxidative phosphorylation and glycolysis. Reduction of WWOX levels results in diminished ability to respond to metabolic perturbation of normal cell growth. Thus, the ability of WWOX to facilitate escape from mitochondrial damage-induced glycolysis (Warburg effect) is, therefore, a plausible mechanism for its tumor suppressor activity.

  4. Differential proteomic profiling unveils new molecular mechanisms associated with mitochondrial complex III deficiency

    PubMed Central

    Morán, María; López-Bernardo, Elia; Cadenas, Susana; Hidalgo, Beatriz; Sánchez, Ricardo; Seneca, Sara; Arenas, Joaquín; Martín, Miguel A.; Ugalde, Cristina

    2014-01-01

    We have analyzed the cellular pathways and metabolic adaptations that take place in primary skin fibroblasts from patients with mutations in BCS1L, a major genetic cause of mitochondrial complex III enzyme deficiency. Mutant fibroblasts exhibited low oxygen consumption rates and intracellular ATP levels, indicating that the main altered molecular event probably is a limited respiration-coupled ATP production through the OXPHOS system. Two-dimensional DIGE and MALDI-TOF/TOF mass spectrometry analyses unambiguously identified 39 proteins whose expression was significantly altered in complex III-deficient fibroblasts. Extensive statistical and cluster analyses revealed a protein profile characteristic for the BCS1L mutant fibroblasts that included alterations in energy metabolism, cell signaling and gene expression regulation, cytoskeleton formation and maintenance, and intracellular stress responses. The physiological validation of the predicted functional adaptations of human cultured fibroblasts to complex III deficiency confirmed the up-regulation of glycolytic enzyme activities and the accumulation of branched-chain among other amino acids, suggesting the activation of anaerobic glycolysis and cellular catabolic states, in particular protein catabolism, together with autophagy as adaptive responses to mitochondrial respiratory chain dysfunction and ATP deficiency. Our data point to an overall metabolic and genetic reprogramming that could contribute to explain the clinical manifestations of complex III deficiency in patients. PMID:25239759

  5. Synthesis and Structural Studies of Gallium(III) and Iron(III) Hemicryptophane Complexes.

    PubMed

    Gosse, Isabelle; Robeyns, Koen; Bougault, Catherine; Martinez, Alexandre; Tinant, Bernard; Dutasta, Jean-Pierre

    2016-02-01

    New gallium(III) and iron(III) endohedral complexes were obtained from a hemicryptophane ligand bearing suitable binding sites for octahedral metal coordination. The solid-state structures of the free host and of the complexes were determined by single-crystal X-ray diffraction analysis. The metal ion is linked to the hydrazone nitrogen and the phenolate oxygen atoms, yielding a distorted octahedral geometry around the encapsulated metal. The two isomorphous structures of the metal complexes reveal the exclusive formation of PΔ/MΛ enantiomeric pairs.

  6. Luminescent properties of europium(III) and terbium(III) complexes with para- and ortho-ethoxybenzoic acids

    NASA Astrophysics Data System (ADS)

    Panyushkin, V. T.; Mutuzova, M. Kh.; Shamsutdinova, M. Kh.

    2016-02-01

    The luminescent properties of europium(III) and terbium(III) complexes with para- and ortho-ethoxybenzoic acids are studied. The excitation energies of the triplet states of ligands are determined, a hypothesis is made about the efficient luminescence of europium(III) and terbium(III) complexes, the geometry of the coordination polyhedron of a europium complex is established, and the luminescence quantum yields of the complexes in solution are determined.

  7. Pioglitazone leads to an inactivation and disassembly of complex I of the mitochondrial respiratory chain

    PubMed Central

    2013-01-01

    Background Thiazolidinediones are antidiabetic agents that increase insulin sensitivity but reduce glucose oxidation, state 3 respiration, and activity of complex I of the mitochondrial respiratory chain (MRC). The mechanisms of the latter effects are unclear. The aim of this study was to determine the mechanisms by which pioglitazone (PGZ), a member of the thiazolidinedione class of antidiabetic agents, decreases the activity of the MRC. In isolated mitochondria from mouse liver, we measured the effects of PGZ treatment on MRC complex activities, fully-assembled complex I and its subunits, gene expression of complex I and III subunits, and [3H]PGZ binding to mitochondrial complexes. Results In vitro, PGZ decreased activity of complexes I and III of the MRC, but in vivo only complex I activity was decreased in mice treated for 12 weeks with 10 mg/kg/day of PGZ. In vitro treatment of isolated liver mitochondria with PGZ disassembled complex I, resulting in the formation of several subcomplexes. In mice treated with PGZ, fully assembled complex I was increased and two additional subcomplexes were found. Formation of supercomplexes CI+CIII2+CIVn and CI+CIII2 decreased in mouse liver mitochondria exposed to PGZ, while formation of these supercomplexes was increased in mice treated with PGZ. Two-dimensional analysis of complex I using blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) showed that in vitro PGZ induced the formation of four subcomplexes of 600 (B), 400 (C), 350 (D), and 250 (E) kDa, respectively. Subcomplexes B and C had NADH:dehydrogenase activity, while subcomplexes C and D contained subunits of complex I membrane arm. Autoradiography and coimmunoprecipitation assays showed [3H]PGZ binding to subunits NDUFA9, NDUFB6, and NDUFA6. Treatment with PGZ increased mitochondrial gene transcription in mice liver and HepG2 cells. In these cells, PGZ decreased intracellular ATP content and enhanced gene expression of specific

  8. Near-Infrared Photoluminescence and Electroluminescence of Neodymium(III), Erbium(III), and Ytterbium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Kawamura, Yuichiro; Wada, Yuji; Yanagida, Shozo

    2001-01-01

    Tris(dibenzoylmethanato)(monobathophenanthroline)lanthanide(III) complex [Ln(DBM)3 bath (Ln: Nd, Er and Yb)] both in solutions and thin films at room temperature showed narrow band photoluminescence (PL) due to the f-f transitions in the near-IR region: 890, 1070 and 1350 nm for Nd(III), 980 and 1540 nm for Er(III), and 985 nm for Yb(III). The PL efficiencies in solution were determined [φPL=3.3× 10-3 for Nd(III), 7.0× 10-5 for Er(III), and 1.4× 10-2 for Yb(III)]. Organic electroluminescent (EL) devices having the structure of glass substrate/indium-tin oxide/N,N\\prime-diphenyl-N,N\\prime-di(m-tolyl)benzidine{\\slash}Ln(DBM)3bath(Ln: Nd, Er and Yb)/bathocuproine/Mg:Ag/Ag were fabricated, giving the EL bands around 900-1600 nm at room temperature. The external near-IR EL efficiencies at low current density were estimated by comparing with that of the Eu(III) device having the same structure. The saturation of near-IR EL intensity observed at the high current density suggested that the near-IR EL should suffer the T-T annihilation.

  9. An oxygen-sensitive luminescent Dy(iii) complex.

    PubMed

    Nakai, Hidetaka; Seo, Juncheol; Kitagawa, Kazuhiro; Goto, Takahiro; Matsumoto, Takahiro; Ogo, Seiji

    2016-06-21

    This paper presents the first dysprosium(iii) complex, [{((MeMe)ArO)3tacn}Dy(III)(THF)] (1(Dy)), that shows oxygen-sensitive luminescence. The synthesis, structure and oxygen-sensitive luminescence properties of 1(Dy) are reported (Φ = 0.050 and τ = 17.7 μs under N2, Φ = 0.011 and τ = 4.1 μs under O2 and KSV = 305 M(-1) in THF; KSV = 0.0077%(-1) in polystyrene film). The oxygen sensitive mechanism of 1(Dy) is discussed based on the photophysical properties of the corresponding gadolinium(iii) complex, [{((MeMe)ArO)3tacn}Gd(III)(THF)]. PMID:27191980

  10. Sparkle/PM3 Parameters for the Modeling of Neodymium(III), Promethium(III), and Samarium(III) Complexes.

    PubMed

    Freire, Ricardo O; da Costa, Nivan B; Rocha, Gerd B; Simas, Alfredo M

    2007-07-01

    The Sparkle/PM3 model is extended to neodymium(III), promethium(III), and samarium(III) complexes. The unsigned mean error, for all Sparkle/PM3 interatomic distances between the trivalent lanthanide ion and the ligand atoms of the first sphere of coordination, is 0.074 Å for Nd(III); 0.057 Å for Pm(III); and 0.075 Å for Sm(III). These figures are similar to the Sparkle/AM1 ones of 0.076 Å, 0.059 Å, and 0.075 Å, respectively, indicating they are all comparable models. Moreover, their accuracy is similar to what can be obtained by present-day ab initio effective potential calculations on such lanthanide complexes. Hence, the choice of which model to utilize will depend on the assessment of the effect of either AM1 or PM3 on the quantum chemical description of the organic ligands. Finally, we present a preliminary attempt to verify the geometry prediction consistency of Sparkle/PM3. Since lanthanide complexes are usually flexible, we randomly generated 200 different input geometries for the samarium complex QIPQOV which were then fully optimized by Sparkle/PM3. A trend appeared in that, on average, the lower the total energy of the local minima found, the lower the unsigned mean errors, and the higher the accuracy of the model. These preliminary results do indicate that attempting to find, with Sparkle/PM3, a global minimum for the geometry of a given complex, with the understanding that it will tend to be closer to the experimental geometry, appears to be warranted. Therefore, the sparkle model is seemingly a trustworthy semiempirical quantum chemical model for the prediction of lanthanide complexes geometries.

  11. Modeling the respiratory chain complexes with biothermokinetic equations - the case of complex I.

    PubMed

    Heiske, Margit; Nazaret, Christine; Mazat, Jean-Pierre

    2014-10-01

    The mitochondrial respiratory chain plays a crucial role in energy metabolism and its dysfunction is implicated in a wide range of human diseases. In order to understand the global expression of local mutations in the rate of oxygen consumption or in the production of adenosine triphosphate (ATP) it is useful to have a mathematical model in which the changes in a given respiratory complex are properly modeled. Our aim in this paper is to provide thermodynamics respecting and structurally simple equations to represent the kinetics of each isolated complexes which can, assembled in a dynamical system, also simulate the behavior of the respiratory chain, as a whole, under a large set of different physiological and pathological conditions. On the example of the reduced nicotinamide adenine dinucleotide (NADH)-ubiquinol-oxidoreductase (complex I) we analyze the suitability of different types of rate equations. Based on our kinetic experiments we show that very simple rate laws, as those often used in many respiratory chain models, fail to describe the kinetic behavior when applied to a wide concentration range. This led us to adapt rate equations containing the essential parameters of enzyme kinetic, maximal velocities and Henri-Michaelis-Menten like-constants (KM and KI) to satisfactorily simulate these data. PMID:25064016

  12. Photoswitchable azobenzene-appended iridium(iii) complexes.

    PubMed

    Pérez-Miqueo, J; Altube, A; García-Lecina, E; Tron, A; McClenaghan, N D; Freixa, Z

    2016-09-21

    Iridium(iii) cyclometalated complexes have been used as models to study the effect that extended conjugation and substitution pattern has on the photochromic behavior of azobenzene-appended 2-phenylpyridyl (ppy) ligands. For this purpose four azobenzene-containing ppy ligands were synthesized. With these ligands, nine iridium(iii) complexes containing up to three appended azobenzenes were synthesized. Analysis of their photochromic behaviour by means of UV-vis and (1)H-NMR spectroscopy permitted us to conclude that the light-induced trans-to-cis isomerization of the azobenzene was strongly inhibited upon coordination to the Ir(iii) cation when the electronic conjugation was extended along the whole ligand. The use of an aliphatic spacer unit (either -CH2- or -OCH2-) between the azobenzene and the ppy fragment of the ligand sufficed to disrupt the electronic communication, and obtain photochromic organometallic complexes. PMID:27460186

  13. A well-defined terminal vanadium(III) oxo complex.

    PubMed

    King, Amanda E; Nippe, Michael; Atanasov, Mihail; Chantarojsiri, Teera; Wray, Curtis A; Bill, Eckhard; Neese, Frank; Long, Jeffrey R; Chang, Christopher J

    2014-11-01

    The ubiquity of vanadium oxo complexes in the V+ and IV+ oxidation states has contributed to a comprehensive understanding of their electronic structure and reactivity. However, despite being predicted to be stable by ligand-field theory, the isolation and characterization of a well-defined terminal mononuclear vanadium(III) oxo complex has remained elusive. We present the synthesis and characterization of a unique terminal mononuclear vanadium(III) oxo species supported by the pentadentate polypyridyl ligand 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine (PY5Me2). Exposure of [V(II)(NCCH3)(PY5Me2)](2+) (1) to either dioxygen or selected O-atom-transfer reagents yields [V(IV)(O)(PY5Me2)](2+) (2). The metal-centered one-electron reduction of this vanadium(IV) oxo complex furnishes a stable, diamagnetic [V(III)(O)(PY5Me2)](+) (3) species. The vanadium(III) oxo species is unreactive toward H- and O-atom transfer but readily reacts with protons to form a putative vanadium hydroxo complex. Computational results predict that further one-electron reduction of the vanadium(III) oxo species will result in ligand-based reduction, even though pyridine is generally considered to be a poor π-accepting ligand. These results have implications for future efforts toward low-valent vanadyl chemistry, particularly with regard to the isolation and study of formal vanadium(II) oxo species.

  14. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition.

    PubMed

    Schirris, Tom J J; Renkema, G Herma; Ritschel, Tina; Voermans, Nicol C; Bilos, Albert; van Engelen, Baziel G M; Brandt, Ulrich; Koopman, Werner J H; Beyrath, Julien D; Rodenburg, Richard J; Willems, Peter H G M; Smeitink, Jan A M; Russel, Frans G M

    2015-09-01

    Cholesterol-lowering statins effectively reduce the risk of major cardiovascular events. Myopathy is the most important adverse effect, but its underlying mechanism remains enigmatic. In C2C12 myoblasts, several statin lactones reduced respiratory capacity and appeared to be strong inhibitors of mitochondrial complex III (CIII) activity, up to 84% inhibition. The lactones were in general three times more potent inducers of cytotoxicity than their corresponding acid forms. The Qo binding site of CIII was identified as off-target of the statin lactones. These findings could be confirmed in muscle tissue of patients suffering from statin-induced myopathies, in which CIII enzyme activity was reduced by 18%. Respiratory inhibition in C2C12 myoblasts could be attenuated by convergent electron flow into CIII, restoring respiration up to 89% of control. In conclusion, CIII inhibition was identified as a potential off-target mechanism associated with statin-induced myopathies.

  15. M(III)Dy(III)3 (M = Fe(III), Co(III)) complexes: three-blade propellers exhibiting slow relaxation of magnetization.

    PubMed

    Xu, Gong-Feng; Gamez, Patrick; Tang, Jinkui; Clérac, Rodolphe; Guo, Yun-Nan; Guo, Yang

    2012-05-21

    [Dy(III)(HBpz(3))(2)](2+) moieties (HBpz(3)(-) = hydrotris(pyrazolyl)borate) and a 3d transition-metal ion (Fe(III) or Co(III)) have been rationally assembled using an dithiooxalato dianion ligand into 3d-4f [MDy(3)(HBpz(3))(6)(dto)(3)]·4CH(3)CN·2CH(2)Cl(2) (M = Fe (1), Co (2) complexes. Single-crystal X-ray studies reveal that three eight-coordinated Dy(III) centers in a square antiprismatic coordination environment are connecting to a central octahedral trivalent Fe or Co ion forming a propeller-type complex. The dynamics of the magnetization in the two isostructural compounds, modulated by the nature of the central M(III) metal ion, are remarkably different despite their analogous direct current (dc) magnetic properties. The slow relaxation of the magnetization observed for 2 mainly originates from isolated Dy ions, since a diamagnetic Co(III) metal ion links the magnetic Dy(III) ions. In the case of 1, the magnetic interaction between S = 1/2 Fe(III) ion and the three Dy(III) magnetic centers, although weak, generates a complex energy spectrum of magnetic states with low-lying excited states that induce a smaller energy gap than for 2 and thus a faster relaxation of the magnetization.

  16. Lanthanum(III) and praseodymium(III) complexes with isatin thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Rai, Anita; Sengupta, Soumitra K.; Pandey, Om P.

    2005-09-01

    Ten new lanthanum(III) and praseodymium(III) complexes of the general formula Na[La(L) 2H 2O] (Ln = La(III) or Pr(III); LH 2 = thiosemicarbazones) derived from the condensation of isatin with 4-phenyl thiosemicarbazide, 4-(4-chlorophenyl) thiosemicarbazide, 4-(2-nitrophenyl) thiosemicarbazide, 4-(2-bromophenyl) thiosemicarbazide and 4-(2-methylphenyl) thiosemicarbazide, have been synthesized in methanol in presence of sodium hydroxide. The XRD spectra of the complexes were monitored to verify complex formation. The complexes have also been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H and 13C NMR spectral studies. Thermal studies of these complexes have been carried out in the temperature range 25-800 °C using TG, DTG and DTA techniques. All these complexes decompose gradually with the formation of Ln 2O 3 as the end product. The Judd-ofelt intensity parameter, oscillator strength, transition probability, stimulated emission cross section for different transitions of Pr 3+ for 4-phenyl thiosemicarbazones have been calculated.

  17. Lanthanum(III) and praseodymium(III) complexes with isatin thiosemicarbazones.

    PubMed

    Rai, Anita; Sengupta, Soumitra K; Pandey, Om P

    2005-09-01

    Ten new lanthanum(III) and praseodymium(III) complexes of the general formula Na[La(L)2H2O] (Ln=La(III) or Pr(III); LH2=thiosemicarbazones) derived from the condensation of isatin with 4-phenyl thiosemicarbazide, 4-(4-chlorophenyl) thiosemicarbazide, 4-(2-nitrophenyl) thiosemicarbazide, 4-(2-bromophenyl) thiosemicarbazide and 4-(2-methylphenyl) thiosemicarbazide, have been synthesized in methanol in presence of sodium hydroxide. The XRD spectra of the complexes were monitored to verify complex formation. The complexes have also been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H and 13C NMR spectral studies. Thermal studies of these complexes have been carried out in the temperature range 25-800 degrees C using TG, DTG and DTA techniques. All these complexes decompose gradually with the formation of Ln2O3 as the end product. The Judd-ofelt intensity parameter, oscillator strength, transition probability, stimulated emission cross section for different transitions of Pr3+ for 4-phenyl thiosemicarbazones have been calculated.

  18. Inhibition of Escherichia coli respiratory complex I by Zn(2+).

    PubMed

    Schulte, Marius; Mattay, Dinah; Kriegel, Sebastien; Hellwig, Petra; Friedrich, Thorsten

    2014-10-14

    The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples NADH oxidation and quinone reduction with the translocation of protons across the membrane. Complex I exhibits a unique L shape with a peripheral arm extending in the aqueous phase and a membrane arm embedded in the lipid bilayer. Both arms have a length of ∼180 Å. The electron transfer reaction is catalyzed by a series of cofactors in the peripheral arm, while the membrane arm catalyzes proton translocation. We used the inhibition of complex I by zinc to shed light on the coupling of the two processes, which is not yet understood. Enzyme kinetics revealed the presence of two high-affinity binding sites for Zn(2+) that are attributed to the proton translocation pathways in the membrane arm. Electrochemically induced Fourier transform infrared difference spectroscopy demonstrated that zinc binding involves at least two protonated acidic residues. Electron paramagnetic resonance spectroscopy showed that one of the cofactors is only partially reduced by NADH in the presence of Zn(2+). We conclude that blocking the proton channels in the membrane arm leads to a partial block of the electron transfer in the peripheral arm, indicating the long-range coupling between both processes.

  19. Solution structures of europium(III) complexes of ethylenediaminetetraacetic acid

    SciTech Connect

    Latva, M.; Kankara, J.; Haapakka, K.

    1996-04-01

    Coordination of ethylenediaminetetraacetic acid (EDTA) with europium(III) has been studied at different concentrations in solution using {sup 7}F{sub 0}{yields}{sup 5}D{sub 0} excitation spectroscopy and excited-state lifetime measurements. EDTA forms with Eu(III) ion three different species in equimolar solutions at room temperature. At low pH values EuEDTAH is formed and at higher pH values than 1.5 two EuEDTA{sup -} complexes, which differ from each other with one water molecule in the first coordination sphere of the Eu(III) ion, total coordination number and coordination geometry, are also formed. When the concentration of EDTA is higher than the concentration of Eu(III), an EuEDTA(EDTAH){sup 4-} species where the second EDTA is weakly coordinated to EuEDTA{sup -}, is formed. If the concentration of Eu(III) ion is higher than EDTA, the extra Eu(III) ions associate with EuEDTA{sup -} and link to one of the carboxylate groups of EDTA thus causing a shortening of the excited-state lifetime of the EuEDTA{sup -} complex.

  20. Phenotypic variation of TTC19-deficient mitochondrial complex III deficiency: a case report and literature review.

    PubMed

    Mordaunt, Dylan A; Jolley, Alexandra; Balasubramaniam, Shanti; Thorburn, David R; Mountford, Hayley S; Compton, Alison G; Nicholl, Jillian; Manton, Nicholas; Clark, Damian; Bratkovic, Drago; Friend, Kathryn; Yu, Sui

    2015-06-01

    Isolated mitochondrial respiratory chain complex III deficiency has been described in a heterogeneous group of clinical presentations in children and adults. It has been associated with mutations in MT-CYB, the only mitochondrial DNA encoded subunit, as well as in nine nuclear genes described thus far: BCS1L, TTC19, UQCRB, UQCRQ, UQCRC2, CYC1, UQCC2, LYRM7, and UQCC3. BCS1L, TTC19, UQCC2, LYRM7, and UQCC3 are complex III assembly factors. We report on an 8-year-old girl born to consanguineous Iraqi parents presenting with slowly progressive encephalomyopathy, severe failure to thrive, significant delays in verbal and communicative skills and bilateral retinal cherry red spots on fundoscopy. SNP array identified multiple regions of homozygosity involving 7.5% of the genome. Mutations in the TTC19 gene are known to cause complex III deficiency and TTC19 was located within the regions of homozygosity. Sequencing of TTC19 revealed a homozygous nonsense mutation at exon 6 (c.937C > T; p.Q313X). We reviewed the phenotypes and genotypes of all 11 patients with TTC19 mutations leading to complex III deficiency (including our case). The consistent features noted are progressive neurodegeneration with Leigh-like brain MRI abnormalities. Significant variability was observed however with the age of symptom onset and rate of disease progression. The bilateral retinal cherry red spots and failure to thrive observed in our patient are unique features, which have not been described, in previously reported patients with TTC19 mutations. Interestingly, all reported TTC19 mutations are nonsense mutations. The severity of clinical manifestations however does not specifically correlate with the residual complex III enzyme activities. PMID:25899669

  1. Complex formation reactions of lanthanum(III), cerium(III), thorium(IV), dioxouranyl(IV) complexes with tricine.

    PubMed

    Mohamed, Mahmoud M A

    2007-08-01

    Equilibrium studies for the heavy metal ions La(III), Ce(III), Th(IV) and UO2(IV) (M) complexes of the zwitterionic buffer tricine (L) in aqueous solution are investigated. Stoichiometry and stability constants for the different complexes formed as well as hydrolysis products of the metal cations are determined at 25 degrees C and ionic strength 0.1 M NaNO3. The stability of the formed complexes are discussed in terms of the nature of the heavy metal cation. The solid complexes are synthesized and characterized by means of elemental analysis, FTIR, and TG analysis. The general molecular formulae of the obtained complexes is suggested to be [M(L)2](NO3)n-2(H2O)x, where n = the charge of the metal cation, x = no. of water molecules.

  2. Detection of Lungs Status Using Morphological Complexities of Respiratory Sounds

    PubMed Central

    Bhattacharya, Parthasarathi

    2014-01-01

    Traditionally, the clinical diagnosis of a respiratory disease is made from a careful clinical examination including chest auscultation. Objective analysis and automatic interpretation of the lung sound based on its physical characters are strongly warranted to assist clinical practice. In this paper, a new method is proposed to distinguish between the normal and the abnormal subjects using the morphological complexities of the lung sound signals. The morphological embedded complexities used in these experiments have been calculated in terms of texture information (lacunarity), irregularity index (sample entropy), third order moment (skewness), and fourth order moment (Kurtosis). These features are extracted from a mixed data set of 10 normal and 20 abnormal subjects and are analyzed using two different classifiers: extreme learning machine (ELM) and support vector machine (SVM) network. The results are obtained using 5-fold cross-validation. The performance of the proposed method is compared with a wavelet analysis based method. The developed algorithm gives a better accuracy of 92.86% and sensitivity of 86.30% and specificity of 86.90% for a composite feature vector of four morphological indices. PMID:24688364

  3. Does As(III) interact with Fe(II), Fe(III) and organic matter through ternary complexes?

    PubMed

    Catrouillet, Charlotte; Davranche, Mélanie; Dia, Aline; Bouhnik-Le Coz, Martine; Demangeat, Edwige; Gruau, Gérard

    2016-05-15

    Up until now, only a small number of studies have been dedicated to the binding processes of As(III) with organic matter (OM) via ionic Fe(III) bridges; none was interested in Fe (II). Complexation isotherms were carried out with As(III), Fe(II) or Fe(III) and Leonardite humic acid (HA). Although PHREEQC/Model VI, implemented with OM thiol groups, reproduced the experimental datasets with Fe(III), the poor fit between the experimental and modeled Fe(II) data suggested another binding mechanism for As(III) to OM. PHREEQC/Model VI was modified to take various possible As(III)-Fe(II)-OM ternary complex conformations into account. The complexation of As(III) as a mononuclear bidentate complex to a bidentate Fe(II)-HA complex was evidenced. However, the model needed to be improved since the distribution of the bidentate sites appeared to be unrealistic with regards to the published XAS data. In the presence of Fe(III), As(III) was bound to thiol groups which are more competitive with regards to the low density of formed Fe(III)-HA complexes. Based on the new data and previously published results, we propose a general scheme describing the various As(III)-Fe-MO complexes that are able to form in Fe and OM-rich waters. PMID:26939079

  4. Synthesis and structural characterization of new dithiocarbamate complexes from Sb(III) and Bi(III)

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Nur Amirah; Baba, Ibrahim

    2013-11-01

    Twenty new antimony and bismuth dithiocarbamate complexes which employed ten different type of amines have been successfully synthesized. The synthesized complexes with metal to dithiocarbamate ratio at 1:3. Elemental analysis of the complexes gave the general formula of MCl[S2CNR'R"]2 where M = Sb(III), Bi(III); R' = methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, benzyl; R" = ethanol, methyl, ethyl, propyl, isopropyl, cyclohexyl, benzyl. The complexes were analysed by IR and NMR spectroscopy. The crystal structure of five-coordinated antimony (III) complex have been determined by X-ray single crystal diffraction. Single crystal X-ray diffraction studies on SbCl[S2CN(C4H9)(C2H5)]2 adopted a triclinic system with a space group P1 with a = 10.0141(8) Å, b = 10.1394(7) Å, c = 11.8665(9) Å, α = 67.960°, β =87.616°, γ = 80.172°.

  5. Synthesis and structural characterization of new dithiocarbamate complexes from Sb(III) and Bi(III)

    SciTech Connect

    Jamaluddin, Nur Amirah; Baba, Ibrahim

    2013-11-27

    Twenty new antimony and bismuth dithiocarbamate complexes which employed ten different type of amines have been successfully synthesized. The synthesized complexes with metal to dithiocarbamate ratio at 1:3. Elemental analysis of the complexes gave the general formula of MCl[S{sub 2}CNR’R”]{sub 2} where M = Sb(III), Bi(III); R’ = methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, benzyl; R” = ethanol, methyl, ethyl, propyl, isopropyl, cyclohexyl, benzyl. The complexes were analysed by IR and NMR spectroscopy. The crystal structure of five-coordinated antimony (III) complex have been determined by X-ray single crystal diffraction. Single crystal X-ray diffraction studies on SbCl[S{sub 2}CN(C{sub 4}H{sub 9})(C{sub 2}H{sub 5})]{sub 2} adopted a triclinic system with a space group P1 with a = 10.0141(8) Å, b = 10.1394(7) Å, c = 11.8665(9) Å, α = 67.960°, β =87.616°, γ = 80.172°.

  6. Electrochemistry and spectroscopy of ortho-metalated complexes of Ir(III) and Rh(III)

    SciTech Connect

    Ohsawa, Y.; Sprouse, S.; King, K.A.; DeArmond, M.K.; Hanck, K.W.; Watts, R.J.

    1987-02-26

    The electrochemical and UV-visible spectroscopic properties of Rh(III) and Ir(III) complexes of the ortho-metalating (NC) ligands, 2-phenylpyridine (ppy) and benzo(h)quinone (bzq), have been studied. Cyclic voltammetric studies of several of the dimeric species, (M(NC)/sub 2/Cl)/sub 2/, indicate metal-centered oxidation occurs at moderate potentials. Cationic monomers of the type M(NC)/sub 2/(NN)/sup +/ where (NN) = 2,2'-bipyridine or 1,10-phenanthroline have been prepared by reaction of the chelating ligands with the parent dimers. Cyclic voltammetric studies of these monomers indicate that several reversible ligand-centered reductions are generally observed and that the chelating ligand is more easily reduced than is the ortho-metalating ligand. Spectroscopic studies of the mixed ligand monomers indicate that dual emissions from MLCT states associated with the ortho-metalating and chelating ligands occur in the Ir(III) complexes whereas a single emission from a ligand-localized excited state is observed in the Rh(III) complexes. These results are discussed in terms of electronic and nuclear coupling factors analogous to those encountered in descriptions of bimolecular energy and electron-transfer processes.

  7. Bronchitis in two integrated steel works: III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution

    PubMed Central

    Lowe, C. R.; Campbell, H.; Khosla, T.

    1970-01-01

    Lowe, C. R., Campbell, H., and Khosla, T.(1970).Brit. J. industr. Med.,27, 121-129. Bronchitis in two integrated steel works. III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution. This is the third in a series of papers presenting the results of an epidemiological study of respiratory symptomatology and lung function among men employed in two integrated steel works in South Wales. In this paper measurements of atmospheric pollution are related to respiratory symptoms and ventilatory capacity among 10 449 men who spent the greater part of their working hours in one or other of 114 defined working areas. The problem has been explored in three different ways. In the first, each man was assigned the mean value of sulphur dioxide and respirable dust for the area in which he was working and this was related to his ventilatory capacity (FEV1·0), age, smoking habits, and the number of years he had spent in his present department. In the second, the 114 working areas were divided into four sub-groups, according to defined levels of atmospheric pollution, and the prevalence of chronic bronchitis and mean FEV1·0 in the four sub-groups was examined. In the third way, the mean atmospheric pollution levels in each of the 114 areas were related to the prevalence of bronchitis and to the mean FEV1·0, age, and smoking habits in those areas. The analysis demonstrates very clearly the over-riding importance of cigarette smoking in the aetiology of chronic bronchitis, but, so far as the main purpose of the survey is concerned, it is concluded that, if there is any relation between respiratory disability and atmospheric pollution in the two steel works, it is so slight that none of the three approaches to the problem was sensitive enough to detect it. The implications of this are discussed in the light of the levels of pollution that were recorded in and around the two works. PMID:5428631

  8. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders. PMID:26476839

  9. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders.

  10. Mapping the Escherichia coli transcription elongation complex with exonuclease III

    PubMed Central

    Liu, Zhaokun; Artsimovitch, Irina

    2014-01-01

    Summary RNA polymerase interactions with the nucleic acids control every step of the transcription cycle. These contacts mediate RNA polymerase recruitment to promoters; induce pausing during RNA chain synthesis, and control transcription termination. These interactions are dissected using footprinting assays, in which a bound protein protects nucleic acids from the digestion by nucleases or modification by chemical probes. Exonuclease III is frequently employed to study protein-DNA interactions owing to relatively simple procedures and low background. Exonuclease III has been used to determine RNA polymerase position in transcription initiation and elongation complexes and to infer the translocation register of the enzyme. In this chapter, we describe probing the location and the conformation of transcription elongation complexes formed by walking of the RNA polymerase along an immobilized template. PMID:25665555

  11. Oxalate complexation with aluminum(III) and iron(III) at moderately elevated temperatures

    SciTech Connect

    Tait, C.D.; Janecky, D.R.; Clark, D.L.; Bennett, P.C.

    1992-05-01

    To add to our understanding of the weathering of rocks in organic rich environments such as sedimentary brines and oil field waters, we have examined the temperature dependent complexation of aluminum with oxalate. Raman vibrational studies show that even the association constant for the highly charged Al(ox){sub 3}{sup 3{minus}} unexpectedly increases with moderate temperature increases to 80{degrees}C. To evaluate the potential importance of these Al-oxalate species in complex natural systems, temperature dependent competition experiments Fe(III) and Al(III) for oxalate have been initiated. Similar to aluminum, ferric oxalates show increases in association constants at higher temperatures. In competition experiments, the first association constant for Fe(ox){sup +} increases faster than that for Al(ox){sup +} to 90{degrees}C.

  12. The di-heme family of respiratory complex II enzymes.

    PubMed

    Lancaster, C Roy D

    2013-05-01

    The di-heme family of succinate:quinone oxidoreductases is of particular interest, because its members support electron transfer across the biological membranes in which they are embedded. In the case of the di-heme-containing succinate:menaquinone reductase (SQR) from Gram-positive bacteria and other menaquinone-containing bacteria, this results in an electrogenic reaction. This is physiologically relevant in that it allows the transmembrane electrochemical proton potential Δp to drive the endergonic oxidation of succinate by menaquinone. In the case of the reverse reaction, menaquinol oxidation by fumarate, catalysed by the di-heme-containing quinol:fumarate reductase (QFR), evidence has been obtained that this electrogenic electron transfer reaction is compensated by proton transfer via a both novel and essential transmembrane proton transfer pathway ("E-pathway"). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Δp. This compensatory "E-pathway" appears to be required by all di-heme-containing QFR enzymes and results in the overall reaction being electroneutral. In addition to giving a brief overview of progress in the characterization of other members of this diverse family, this contribution summarizes key evidence and progress in identifying constituents of the "E-pathway" within the framework of the crystal structure of the QFR from the anaerobic epsilon-proteobacterium Wolinella succinogenes at 1.78Å resolution. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.

  13. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents.

    PubMed

    Machado, Ignacio; Marino, Leonardo Biancolino; Demoro, Bruno; Echeverría, Gustavo A; Piro, Oscar E; Leite, Clarice Q F; Pavan, Fernando R; Gambino, Dinorah

    2014-11-24

    In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis.

  14. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents.

    PubMed

    Machado, Ignacio; Marino, Leonardo Biancolino; Demoro, Bruno; Echeverría, Gustavo A; Piro, Oscar E; Leite, Clarice Q F; Pavan, Fernando R; Gambino, Dinorah

    2014-11-24

    In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis. PMID:25261824

  15. The electronic spectra of mu-peroxodicobalt(III) complexes

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.

    1987-01-01

    Problems found in the determination of the electronic spectra of mu-peroxodicobalt(III) complexes are considered, and the common formation of different mu-peroxocomplexes upon oxygenation of Co(II)-ligand solutions is discussed. Three classes of spectra have been identified: (1) planar single bridged complexes; (2) nonplanar single-bridged complexes with a dihedral angle near 145 deg; and (3) dibridged mu-OH(-),O2(2-) complexes with a dihedral angle near 60 deg. All of the peroxide ligand-to-metal charge-transfer spectra are found to be consistent with a simple model that assumes a sinusoidal dependence of pi-asterisk O2(2-) energies and sigma-overlaps upon the dihedral angle.

  16. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions.

  17. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    PubMed

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  18. Photochemical transformation of an iron(III)-arsenite complex in acidic aqueous solution.

    PubMed

    Pozdnyakov, Ivan P; Ding, Wei; Xu, Jing; Chen, Long; Wu, Feng; Grivin, Vjacheslav P; Plyusnin, Victor F

    2016-03-01

    Surface complexation between arsenious acid anions (As(III)) and ferric (hydr)oxides in water is important for the transformation and transfer of inorganic arsenic species. The mechanisms of formation and the photochemistry of dissolved Fe(III)-As(III) complexes in acidic aqueous solution are still unclear. Here, the photooxidation of As(III) in the presence of Fe(III) ions in acidic media has been investigated by laser flash and steady-state photolysis. At low arsenite concentrations (<1 mM), As(III) is oxidized by the ˙OH radical generated by photolysis of the FeOH(2+) complex. At higher arsenite concentrations (>10 mM), photoactive Fe(III)-As(III) complexes are formed (ϕ≈ 0.012). At all arsenite concentrations, a white FeAsO4 colloid is formed during As(III) photolysis in the presence of Fe(III) ions. Solid Fe(III)-As(III) complexes have been prepared and characterized, and the photochemical transformation of As(III) into As(V) in solid Fe(III)-As(III) complexes has been confirmed. These findings are important for a better understanding of the evolution of As(III) species under environmental conditions and should provide guidance for detoxification of As(III)-polluted water systems.

  19. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    Macrocyclic rhodium(II) complexes LRh(H2O)(2+) (L = L-1 = cyclam and L-2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)(2)OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)(2)(H2O) CoR and (dmgBF(2))(2)(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)(2+). The new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. (C) 2013 Elsevier B.V. All rights reserved.

  20. Polyamide preparation with pentaamine cobalt (III) complex catalyst

    SciTech Connect

    Wu, M.Y.M.; Ball, L.E.; Coffey, G.P.

    1987-11-17

    A process is described for preparing a polyamide containing amide groups as integral parts of the main polymer chain comprising polymerizing a polyamide forming system, chosen from (1) an alpha, beta-unsaturated carboxylic acid and ammonia, (2) an ammonium salt of an alpha, beta unsaturated carboxylic acid, (3) an alpha, beta-unsaturated nitrile and water, (4) an alpha, beta-unsaturated amine and ammonia, (5) or a beta-amino propionic acid or its alkyl derivatives, in contact with a catalyst comprising a pentaamine cobalt (III) complex.

  1. Osazone anion radical complex of rhodium(III).

    PubMed

    Patra, Sarat Chandra; Biswas, Manas Kumar; Maity, Amarendra Nath; Ghosh, Prasanta

    2011-02-21

    One electron paramagnetic parent osazone complex of rhodium of type trans-Rh(L(NHPh)H(2))(PPh(3))(2)Cl(2) (1), defined as an osazone anion radical complex of rhodium(III), trans-Rh(III)(L(NHPh)H(2)(•-))(PPh(3))(2)Cl(2), 1((t-RhL•)), with a minor contribution (∼2%) of rhodium(II) electromer, trans-Rh(II)(L(NHPh)H(2))(PPh(3))(2)Cl(2), 1((t-Rh•L)), and their nonradical congener, trans-[Rh(III)(L(NHPh)H(2))(PPh(3))(2)Cl(2)]I(3) ([t-1](+)I(3)(-)), have been isolated and are substantiated by spectra, bond parameters, and DFT calculations on equivalent soft complexes [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)] (3) and [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)](+) (3(+)). 1 is not stable in solution and decomposes to [t-1](+) and a new rhodium(I) osazone complex, [Rh(I)(L(NHPh)H(2))(PPh(3))Cl] (2). 1 absorbs strongly at 351 nm due to MLCT and LLCT, while [t-1](+) and 2 absorb moderately in the range of 300-450 nm, respectively, due to LMCT and MLCT elucidated by TD-DFT calculations on 3((t-RhL•)), [t-3](+), and Rh(I)(L(NHPh)H(2))(PMe(3))Cl (4). EPR spectra of solids at 295 and 77 K, and dichloromethane-toluene frozen glass at 77 K of 1 are similar with g = 1.991, while g = 2.002 for the solid at 25 K. The EPR signal of 1 in dichloromethane solution is weaker (g = 1.992). In cyclic voltammetry, 1 displays two irreversible one electron transfer waves at +0.13 and -1.22 V, with respect to Fc(+)/Fc coupling, due to oxidation of 1((t-RhL•)) to [t-1](+) at the anode and reduction of rhodium(III) to rhodium(II), i.e., [t-1](+) to electromeric 1((t-Rh•L)) at the cathode. PMID:21261283

  2. Preparation of new fluorophore lanthanide complexes-Cloisite nanohybrids using the tricationic Pr(III), Gd(III) and Dy(III) complexes with 9,10-phenanthrenequinone.

    PubMed

    Mallakpour, Shadpour; Behnamfar, Mohammad Taghi; Dinari, Mohammad; Hadadzadeh, Hassan

    2015-02-25

    New fluorophore lanthanide complexes-Cloisite (LCs-C) nanohybrids have been prepared by the intercalation reaction of Cloisite Na(+) with the tricationic lanthanide complexes (1-3), [M(PQ)3(DMF)2(H2O)2](3+) (M=Pr(III) (1), Gd(III) (2), and Dy(III) (3); PQ=9,10-phenanthrenequinone), in aqueous solutions. The X-ray diffraction analysis of the modified clays (LCs-C) showed an increase in the interlayer distance (d) as compared to the pure Cloisite Na(+). Field-emission scanning electron microscopy (FE-SEM) was used to study the morphology of the modified clays and the results were demonstrated a homogeneous morphology for the nanohybrids. The thermal behavior of the LCs-C nanohybrids was investigated using thermogravimetric analysis. Solid-state fluorescence properties of the LCs-C nanohybrids were also investigated. The results show that all tricationic complexes have a significant fluorescence at room temperature when the complexes are adsorbed onto Cloisite.

  3. Preparation of new fluorophore lanthanide complexes-Cloisite nanohybrids using the tricationic Pr(III), Gd(III) and Dy(III) complexes with 9,10-phenanthrenequinone.

    PubMed

    Mallakpour, Shadpour; Behnamfar, Mohammad Taghi; Dinari, Mohammad; Hadadzadeh, Hassan

    2015-02-25

    New fluorophore lanthanide complexes-Cloisite (LCs-C) nanohybrids have been prepared by the intercalation reaction of Cloisite Na(+) with the tricationic lanthanide complexes (1-3), [M(PQ)3(DMF)2(H2O)2](3+) (M=Pr(III) (1), Gd(III) (2), and Dy(III) (3); PQ=9,10-phenanthrenequinone), in aqueous solutions. The X-ray diffraction analysis of the modified clays (LCs-C) showed an increase in the interlayer distance (d) as compared to the pure Cloisite Na(+). Field-emission scanning electron microscopy (FE-SEM) was used to study the morphology of the modified clays and the results were demonstrated a homogeneous morphology for the nanohybrids. The thermal behavior of the LCs-C nanohybrids was investigated using thermogravimetric analysis. Solid-state fluorescence properties of the LCs-C nanohybrids were also investigated. The results show that all tricationic complexes have a significant fluorescence at room temperature when the complexes are adsorbed onto Cloisite. PMID:25305612

  4. PreBotzinger complex neurokinin-1 receptor-expressing neurons mediate opioid-induced respiratory depression.

    PubMed

    Montandon, Gaspard; Qin, Wuxuan; Liu, Hattie; Ren, Jun; Greer, John J; Horner, Richard L

    2011-01-26

    The analgesic properties of the opium poppy Papever somniferum were first mentioned by Hippocrates around 400 BC, and opioid analgesics remain the mainstay of pain management today. These drugs can cause the serious side-effect of respiratory depression that can be lethal with overdose, however the critical brain sites and neurochemical identity of the neurons mediating this depression are unknown. By locally manipulating neurotransmission in the adult rat, we identify the critical site of the medulla, the preBötzinger complex, that mediates opioid-induced respiratory depression in vivo. Here we show that opioids at the preBötzinger complex cause respiratory depression or fatal apnea, with anesthesia and deep-sleep being particularly vulnerable states for opioid-induced respiratory depression. Importantly, we establish that the preBötzinger complex is fully responsible for respiratory rate suppression following systemic administration of opioid analgesics. The site in the medulla most sensitive to opioids corresponds to a region expressing neurokinin-1 receptors, and we show in rhythmically active brainstem section in vitro that neurokinin-1 receptor-expressing preBötzinger complex neurons are selectively inhibited by opioids. In summary, neurokinin-1 receptor-expressing preBötzinger complex neurons constitute the critical site mediating opioid-induced respiratory rate depression, and the key therapeutic target for its prevention or reversal.

  5. Complexity measures of the central respiratory networks during wakefulness and sleep

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin; Curran, Aidan K.; Akay, Metin

    2008-06-01

    Since sleep is known to influence respiratory activity we studied whether the sleep state would affect the complexity value of the respiratory network output. Specifically, we tested the hypothesis that the complexity values of the diaphragm EMG (EMGdia) activity would be lower during REM compared to NREM. Furthermore, since REM is primarily generated by a homogeneous population of neurons in the medulla, the possibility that REM-related respiratory output would be less complex than that of the awake state was also considered. Additionally, in order to examine the influence of neuron vulnerabilities within the rostral ventral medulla (RVM) on the complexity of the respiratory network output, we inhibited respiratory neurons in the RVM by microdialysis of GABAA receptor agonist muscimol. Diaphragm EMG, nuchal EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from five unanesthetized chronically instrumented intact piglets (3-10 days old). Complexity of the diaphragm EMG (EMGdia) signal during wakefulness, NREM and REM was evaluated using the approximate entropy method (ApEn). ApEn values of the EMGdia during NREM and REM sleep were found significantly (p < 0.05 and p < 0.001, respectively) lower than those of awake EMGdia after muscimol inhibition. In the absence of muscimol, only the differences between REM and wakefulness ApEn values were found to be significantly different.

  6. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  7. Sparkle/AM1 Parameters for the Modeling of Samarium(III) and Promethium(III) Complexes.

    PubMed

    Freire, Ricardo O; da Costa, Nivan B; Rocha, Gerd B; Simas, Alfredo M

    2006-01-01

    The Sparkle/AM1 model is extended to samarium(III) and promethium(III) complexes. A set of 15 structures of high crystallographic quality (R factor < 0.05 Å), with ligands chosen to be representative of all samarium complexes in the Cambridge Crystallographic Database 2004, CSD, with nitrogen or oxygen directly bonded to the samarium ion, was used as a training set. In the validation procedure, we used a set of 42 other complexes, also of high crystallographic quality. The results show that this parametrization for the Sm(III) ion is similar in accuracy to the previous parametrizations for Eu(III), Gd(III), and Tb(III). On the other hand, promethium is an artificial radioactive element with no stable isotope. So far, there are no promethium complex crystallographic structures in CSD. To circumvent this, we confirmed our previous result that RHF/STO-3G/ECP, with the MWB effective core potential (ECP), appears to be the most efficient ab initio model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. We thus generated a set of 15 RHF/STO-3G/ECP promethium complex structures with ligands chosen to be representative of complexes available in the CSD for all other trivalent lanthanide cations, with nitrogen or oxygen directly bonded to the lanthanide ion. For the 42 samarium(III) complexes and 15 promethium(III) complexes considered, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Ln(III) ion and the ligand atoms of the first sphere of coordination, is 0.07 and 0.06 Å, respectively, a level of accuracy comparable to present day ab initio/ECP geometries, while being hundreds of times faster.

  8. Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects.

    PubMed

    Iglesias, Darío E; Bombicino, Silvina S; Valdez, Laura B; Boveris, Alberto

    2015-12-01

    The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222 ± 4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 μM GSNO and by 48% in the presence of 30 μM SPER-NO, in both cases at ~1.25 μM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220 ± 9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 μM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2(•-) (up to 1.3 ± 0.1 nmol/min. mg protein) and H2O2 (up to 0.64 ± 0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 μM GSNO. The O2(•-)/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2(•-) disproportionation. Moreover, H2O2 production was increased by 72-74% when heart coupled mitochondria were exposed to 500 μM GSNO or 30 μM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH(•)]ss which, in turn, leads to an increase in O2(•-) and H2O2 mitochondrial production rates. PMID:26456055

  9. Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects.

    PubMed

    Iglesias, Darío E; Bombicino, Silvina S; Valdez, Laura B; Boveris, Alberto

    2015-12-01

    The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222 ± 4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 μM GSNO and by 48% in the presence of 30 μM SPER-NO, in both cases at ~1.25 μM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220 ± 9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 μM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2(•-) (up to 1.3 ± 0.1 nmol/min. mg protein) and H2O2 (up to 0.64 ± 0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 μM GSNO. The O2(•-)/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2(•-) disproportionation. Moreover, H2O2 production was increased by 72-74% when heart coupled mitochondria were exposed to 500 μM GSNO or 30 μM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH(•)]ss which, in turn, leads to an increase in O2(•-) and H2O2 mitochondrial production rates.

  10. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease.

    PubMed

    Nijtmans, L G J; Artal, Sanz M; Grivell, L A; Coates, P J

    2002-01-01

    Although originally identified as putative negative regulators of the cell cycle, recent studies have demonstrated that the PHB proteins act as a chaperone in the assembly of subunits of mitochondrial respiratory chain complexes. The two PHB proteins, Phblp and Phb2p, are located in the mitochondrial inner membrane where they form a large complex that represents a novel type of membrane-bound chaperone. On the basis of its native molecular weight, the PHB-complex should contain 12-14 copies of both Phblp and Phb2p. The PHB complex binds directly to newly synthesised mitochondrial translation products and stabilises them against degradation by membrane-bound metalloproteases belonging to the family of mitochondrial triple-A proteins. Sequence homology assigns Phb1p and Phb2p to a family of proteins which also contains stomatins, HflKC, flotillins and plant defence proteins. However, to date only the bacterial HflKC proteins have been shown to possess a direct functional homology with the PHB complex. Previously assigned actions of the PHB proteins, including roles in tumour suppression, cell cycle regulation, immunoglobulin M receptor binding and apoptosis seem unlikely in view of any hard evidence in their support. Nevertheless, because the proteins are probably indirectly involved in ageing and cancer, we assess their possible role in these processes. Finally, we suggest that the original name for these proteins, the prohibitins, should be amended to reflect their roles as proteins that hold badly formed subunits, thereby keeping the nomenclature already in use but altering its meaning to reflect their true function more accurately.

  11. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease.

    PubMed

    Nijtmans, L G J; Artal, Sanz M; Grivell, L A; Coates, P J

    2002-01-01

    Although originally identified as putative negative regulators of the cell cycle, recent studies have demonstrated that the PHB proteins act as a chaperone in the assembly of subunits of mitochondrial respiratory chain complexes. The two PHB proteins, Phblp and Phb2p, are located in the mitochondrial inner membrane where they form a large complex that represents a novel type of membrane-bound chaperone. On the basis of its native molecular weight, the PHB-complex should contain 12-14 copies of both Phblp and Phb2p. The PHB complex binds directly to newly synthesised mitochondrial translation products and stabilises them against degradation by membrane-bound metalloproteases belonging to the family of mitochondrial triple-A proteins. Sequence homology assigns Phb1p and Phb2p to a family of proteins which also contains stomatins, HflKC, flotillins and plant defence proteins. However, to date only the bacterial HflKC proteins have been shown to possess a direct functional homology with the PHB complex. Previously assigned actions of the PHB proteins, including roles in tumour suppression, cell cycle regulation, immunoglobulin M receptor binding and apoptosis seem unlikely in view of any hard evidence in their support. Nevertheless, because the proteins are probably indirectly involved in ageing and cancer, we assess their possible role in these processes. Finally, we suggest that the original name for these proteins, the prohibitins, should be amended to reflect their roles as proteins that hold badly formed subunits, thereby keeping the nomenclature already in use but altering its meaning to reflect their true function more accurately. PMID:11852914

  12. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing.

    PubMed

    Jana, Atanu; Crowston, Bethany J; Shewring, Jonathan R; McKenzie, Luke K; Bryant, Helen E; Botchway, Stanley W; Ward, Andrew D; Amoroso, Angelo J; Baggaley, Elizabeth; Ward, Michael D

    2016-06-01

    Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM). PMID:27219675

  13. The Internal Validation of Level II and Level III Respiratory Therapy Examinations. Final Report.

    ERIC Educational Resources Information Center

    Jouett, Michael L.

    This project began with the delineation of the roles and functions of respiratory therapy personnel by the American Association for Respiratory Therapy. In Phase II, The Psychological Corporation used this delineation to develop six proficiency examinations, three at each of two levels. One exam at each level was designated for the purpose of the…

  14. The Silver Complexes of Porphyrins, Corroles, and Carbaporphyrins: Silver in the Oxidation States II and III

    ERIC Educational Resources Information Center

    Bruckner, Christian

    2004-01-01

    Studies in relation to the silver complexes of porphyrins, corroles and carbaporphyrins are presented especially with relation to silver in the oxidation states II and III. It is seen that the Ag(sub III) complex was electrochemically readily and reversibly reduced to the corresponding Ag(sub II) complex, thus indicating that the complex could be…

  15. Lanthanide(III) complexation with an amide derived pyridinophane.

    PubMed

    Castro, Goretti; Bastida, Rufina; Macías, Alejandro; Pérez-Lourido, Paulo; Platas-Iglesias, Carlos; Valencia, Laura

    2015-02-16

    Herein we report a detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the 18-membered pyridinophane ligand containing acetamide pendant arms TPPTAM (TPPTAM = 2,2',2″-(3,7,11-triaza-1,5,9(2,6)-tripyridinacyclododecaphane-3,7,11-triyl)triacetamide). The ligand crystallizes in the form of a clathrated hydrate, where the clathrated water molecule establishes hydrogen-bonding interactions with the amide NH groups and two N atoms of the macrocycle. The X-ray structures of 13 different Ln(3+) complexes obtained as the nitrate salts (Ln(3+) = La(3+)-Yb(3+), except Pm(3+)) have been determined. Additionally, the X-ray structure of the La(3+) complex obtained as the triflate salt was also obtained. In all cases the ligand provides 9-fold coordination to the Ln(3+) ion, ten coordination being completed by an oxygen atom of a coordinated water molecule or a nitrate or triflate anion. The bond distances of the metal coordination environment show a quadratic change along the lanthanide series, as expected for isostructural series of Ln(3+) complexes. Luminescence lifetime measurements obtained from solutions of the Eu(3+) and Tb(3+) complexes in H2O and D2O point to the presence of a water molecule coordinated to the metal ion in aqueous solutions. The analysis of the Ln(3+)-induced paramagnetic shifts indicates that the complexes are ten-coordinated throughout the lanthanide series from Ce(3+) to Yb(3+), and that the solution structure is very similar to the structures observed in the solid state. The complexes of the light Ln(3+) ions are fluxional due to a fast Δ(λλλλλλ) ↔ Λ(δδδδδδ) interconversion that involves the inversion of the macrocyclic ligand and the rotation of the acetamide pendant arms. The complexes of the small Ln(3+) ions are considerably more rigid, the activation free energy determined from VT (1)H NMR for the Lu(3+) complex being ΔG(⧧)298 = 72.4 ± 5.1 kJ mol(-1).

  16. Chemical and biological reduction of Mn (III)-pyrophosphate complexes: Potential importance of dissolved Mn (III) as an environmental oxidant

    NASA Astrophysics Data System (ADS)

    Kostka, Joel E.; Luther, George W., III; Nealson, Kenneth H.

    1995-03-01

    Dissolved Mn (III) is a strong oxidant which could play an important role in the biogeochemistry of aquatic environments, but little is known about this form of Mn. Mn(III) was shown to form a stable complex with pyrophosphate which is easily measured by uv-vis spectrophotometry. The Mn(III)-pyrophosphate complex was produced at concentrations of 5 μM to 10 mM Mn at neutral pH. Inorganic electron donors, Fe(II) and sulfide, abiotically reduced Mn(III)-pyrophosphate in seconds with a stoichiometry of 1:1 and near 1:2 reductant:Mn (III), respectively. Shewanella putrefaciens strain MR-1 catalyzed the reduction of Mn(III)-pyrophosphate with formate or lactate as electron donors. Reduction of Mn(III) catalyzed by MR-1 was inhibited under aerobic conditions but only slightly under anaerobic conditions upon addition of the alternate electron acceptor, nitrate. MR-1 catalyzed reduction was also inhibited by metabolic inhibitors including formaldehyde, tetrachlorosalicylanilide (TCS), carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2- n-heptyl-4-hydroxyquinoline N-oxide (HQNO), but not antimycin A. When formate or lactate served as electron donor for Mn(III) reduction, carbon oxidation to CO 2 was coupled to the respiration of Mn (III). Using the incorporation of 3H-leucine into the TCA-insoluble fraction of culture extracts, it was shown that Mn (III) reduction was coupled to protein synthesis in MR-1. These data indicate that Mn (III) complexes may be produced under conditions found in aquatic environments and that the reduction of Mn(III) can be coupled to the cycling of Fe, S, and C.

  17. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    We found that the macrocyclic rhodium(II) complexes LRh(H2O)2+ (L = L1 = cyclam and L2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)2OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)2(H2O) CoR and (dmgBF2)2(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)2+. Moreover, the new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis.

  18. The Ins and Outs of Breath Holding: Simple Demonstrations of Complex Respiratory Physiology

    ERIC Educational Resources Information Center

    Skow, Rachel J.; Day, Trevor A.; Fuller, Jonathan E.; Bruce, Christina D.; Steinback, Craig D.

    2015-01-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology…

  19. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors 1

    PubMed Central

    Ikuma, Hiroshi; Bonner, Walter D.

    1967-01-01

    The effects of representative respiratory inhibitors were investigated on the coupled respiration of mung bean mitochondria using succinate and l-malate as substrates. The inhibitors studied were: (I) malonate, (II) amytal and rotenone, (III) antimycin A and 2-n-nonyl-4-hydroxyquinoline N-oxide (NOQNO), and (IV) cyanide and azide. Malonate inhibition of succinate oxidation follows a classical type of competitive inhibition with an inhibitor dissociation constant of 0.13 mm. There is no inhibition detectable when malate is used as substrate. In contrast to animal mitochondria, amytal is capable of inhibiting 20 to 40% of succinate oxidation and 90 to 100% of malate oxidation, but inhibition due to rotenone amounts to only 0 to 20% of succinate oxidation and 40 to 50% of malate oxidation. The half-maximal inhibition caused by amytal occurs at 2 to 2.5 mm and that by rotenone at 3 mμmoles/mg protein. The maximal inhibition caused by either antimycin A or NOQNO is 70 to 80% of the state 3 respiration. Very little inhibition was observed on the state 4 respiration, and both inhibitors were capable of titrating stoichiometrically with mitochondrial protein with identical titers, 0.22 mμmoles/mg protein for half-maximal inhibition. They differ, however, in that NOQNO does uncouple oxidative phosphorylation in mung bean mitochondria, but antimycin A does not do so. Both cyanide and azide inhibit the state 3 rate 65 to 80%. Inhibition of state 4 respiration can be up to 50% by cyanide, while almost none by azide. Uncoupling action was noted with cyanide, but very little with azide. It is concluded that the second state 3 rate of succinate oxidation includes 80% succinoxidase, the remaining 20% being contributed by the NADH pathway. Malate oxidation apparently does not involve succinoxidase. Malate oxidation is completely sensitive to amytal, but only 50% inhibited by rotenone. A difference between animal and plant mitochondria appears to be in the flavoproteins associated

  20. A hexadentate bis(thiosemicarbazonato) ligand: rhenium(V), iron(III) and cobalt(III) complexes.

    PubMed

    Paterson, Brett M; White, Jonathan M; Donnelly, Paul S

    2010-03-21

    A new 1,3-diaminopropane bridged bis(thiosemicarbazone) ligand (H(4)L) has been synthesised. The new hexadentate ligand is capable of forming six coordinate complexes with rhenium(V), iron(III) and cobalt(III). In the case of the iron(III) and cobalt(III) complexes the ligand doubly deprotonates to give the monocations [Fe(III)(H(2)L)](+) and [Co(III)(H(2)L)](+) in which the metal ion is in a distorted octahedral environment. In the rhenium(V) complex the ligand loses four protons by deprotonation of both secondary amine nitrogen atoms to give [Re(V)(L)](+) with the metal ion in a distorted trigonal prismatic coordination environment. [Re(V)(L)](+) represents a rare example of a rhenium(V) complex that does not contain one of the ReO(3+), ReN(2+) or Re(NPh)(2+) cores. The new ligand and metal complexes have been characterised by a combination of NMR spectroscopy, X-ray crystallography, mass spectrometry and microanalysis. The electrochemistry of [Fe(III)(H(2)L)](+), [Co(III)(H(2)L)](+) and [Re(V)(L)](+) has been investigated by cyclic voltammetry with each complex undergoing a single electron reduction event. It is possible to prepare the rhenium(V) complex from ReOCl(3)(PPh(3))(2) or directly from [ReO(4)](-) with the addition of a reductant, which suggests the new ligand may be of interest in the development of rhenium radiopharmaceuticals.

  1. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.

    PubMed

    Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka

    2014-08-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.

  2. Synthesis and bright luminescence of lanthanide (Eu(III), Tb(III)) complexes sensitized with a novel organic ligand

    NASA Astrophysics Data System (ADS)

    An, Bao-Li; Gong, Meng-Lian; Cheah, Kok-Wai; Zhang, Ji-Ming; Li, King-Fai

    2004-02-01

    A novel organic ligand, 6-[(benzylamino) carbonyl]-2-pyridine carboxylic acid (HBAP), and the corresponding lanthanide complexes, tris(6-[(benzylamino) carbonyl]- 2-pyridine carboxylato) lanthanide(III) (Ln-BAP, Ln=Eu, Tb, Gd), have been designed and synthesized. The lanthanide (Eu(III), Tb(III)) complexes were efficiently sensitized by BAP ligand. The fluorescence quantum yields were investigated by comparison with a luminescence standard, and the yields were 15 ± 3%, 34 ± 3% for the solid europium and terbium complexes respectively. The lowest triplet level of HBAP ligand was calculated from the phosphorescence spectrum of Gd-BAP complex, and the energy transfer mechanisms in the lanthanide complexes were discussed.

  3. Lipids of Sarcina lutea III. Composition of the Complex Lipids

    PubMed Central

    Huston, Charles K.; Albro, Phillip W.; Grindey, Gerald B.

    1965-01-01

    Huston, Charles K. (Fort Detrick, Frederick, Md.), Phillip W. Albro, and Gerald B. Grindey. Lipids of Sarcina lutea. III. Composition of the complex lipids. J. Bacteriol. 89:768–775. 1965.—The complex lipids from a strain of Sarcina lutea were isolated and separated into fractions on diethylaminoethyl cellulose acetate and silicic acid columns. These fractions were monitored in several thin-layer chromatography systems. The various lipid types were characterized by their behavior in thin-layer systems and by an analysis of their hydrolysis products. The fatty acid composition of the column fractions was determined by gas-liquid chromatography. A number of components (13) were separated by thin-layer chromatography and characterized. The major components were polyglycerol phosphatide (17.0%), lipoamino acids (15.1%), phosphatidyl glycerol (13.8%), and an incompletely characterized substance (15.0%). Minor constituents included phosphatidyl inositol (5.5%), phosphatidic acid (4.2%), phosphatidyl serine (2.0%), and phosphatidyl choline (1.0%). No phosphatidyl ethanolamine was observed. PMID:14273659

  4. Complexation of Nd(III) with tetraborate ion and its effect on actinide (III) solubility in WIPP brine

    SciTech Connect

    Borkowski, Marian; Richmann, Michael K; Reed, Donald T; Yongliang, Xiong

    2010-01-01

    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported.

  5. Cerium(III), europium(III), and ytterbium(III) complexes with alcohol donor groups as chemical exchange saturation transfer agents for MRI.

    PubMed

    Huang, Ching-Hui; Morrow, Janet R

    2009-08-01

    Lanthanide(III) complexes of macrocycles 1,4,7,10-tetrakis(2-hydroxyethyl)-1,4,7,10-tetraazacyclododecane (THED) and (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) were studied as chemical exchange saturation transfer (CEST) agents for magnetic resonance imaging (MRI) applications. The four hyperfine-shifted alcohol protons of these Ln(III) complexes gave rise to a single (1)H resonance in wet d(3)-acetonitrile that was separated from the bulk water resonance (Delta omega) by 8 ppm (Ce), 2 ppm (Nd), 7 ppm (Eu), or 17 ppm (Yb). A CEST peak corresponding to the alcohol protons was observed for all Ln(THED)(3+) or Ln(S-THP)(3+) complexes except Nd(III) at low water concentrations (<1%). In 100% aqueous buffered solutions, the CEST hydroxyl peak is observed for the Eu(III), Ce(III), and Yb(III) complexes over a range of pH values. The optimal pH range for the CEST effect of each complex is related to the pK(a) of the hydroxyl/water ligands of the complex. Optimum pH values for the CEST effect from alcohol proton exchange are pH = 6.0 for Ce(S-THP)(3+), pH = 4.5 for Eu(THED)(3+), and pH = 3.0 for Yb(S-THP)(3+).

  6. 1,2,4-Diazaphospholide complexes of lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii): synthesis, X-ray structural characterization, and magnetic susceptibility studies.

    PubMed

    Zhao, Minggang; Wang, Lixia; Li, Pangpang; Ma, Jianping; Zheng, Wenjun

    2016-07-01

    A few heteroleptic, charge-separated heterobimetallic, and polymeric alkali metalate complexes of 1,2,4-diazaphospholide lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii) were simply prepared via the metathesis reaction of MCl3 (THF)m (m = 1-2) and K[3,5-R2dp] ([3,5-R2dp](-) = 3,5-di-substituent-1,2,4-diazaphospholide; R = tBu, Ph) in a varied ratio (1 : 3, 1 : 4, and 1 : 5, respectively) at room temperature in tetrahydrofuran. All the complexes were fully characterized by (1)H, (13)C{(1)H}, (31)P{(1)H}, IR, and X-ray single crystal diffraction analysis despite their paramagnetism (excluding La(iii) complexes). The structures of the complexes were found to feature varied coordination modes. The magnetic properties of several compounds were studied by magnetic susceptibility, and the complexes presented the magnetic moments close to or lower than the theoretical values for the free ions in the trivalent oxidation states (Pr(3+), Nd(3+)). PMID:27326667

  7. 1,2,4-Diazaphospholide complexes of lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii): synthesis, X-ray structural characterization, and magnetic susceptibility studies.

    PubMed

    Zhao, Minggang; Wang, Lixia; Li, Pangpang; Ma, Jianping; Zheng, Wenjun

    2016-07-01

    A few heteroleptic, charge-separated heterobimetallic, and polymeric alkali metalate complexes of 1,2,4-diazaphospholide lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii) were simply prepared via the metathesis reaction of MCl3 (THF)m (m = 1-2) and K[3,5-R2dp] ([3,5-R2dp](-) = 3,5-di-substituent-1,2,4-diazaphospholide; R = tBu, Ph) in a varied ratio (1 : 3, 1 : 4, and 1 : 5, respectively) at room temperature in tetrahydrofuran. All the complexes were fully characterized by (1)H, (13)C{(1)H}, (31)P{(1)H}, IR, and X-ray single crystal diffraction analysis despite their paramagnetism (excluding La(iii) complexes). The structures of the complexes were found to feature varied coordination modes. The magnetic properties of several compounds were studied by magnetic susceptibility, and the complexes presented the magnetic moments close to or lower than the theoretical values for the free ions in the trivalent oxidation states (Pr(3+), Nd(3+)).

  8. Evaluation of the In Vivo and In Vitro Effects of Fructose on Respiratory Chain Complexes in Tissues of Young Rats.

    PubMed

    Macongonde, Ernesto António; Vilela, Thais Ceresér; Scaini, Giselli; Gonçalves, Cinara Ludvig; Ferreira, Bruna Klippel; Costa, Naithan Ludian Fernandes; de Oliveira, Marcos Roberto; Avila Junior, Silvio; Streck, Emilio Luiz; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda

    2015-01-01

    Hereditary fructose intolerance (HFI) is an autosomal-recessive disorder characterized by fructose and fructose-1-phosphate accumulation in tissues and biological fluids of patients. This disease results from a deficiency of aldolase B, which metabolizes fructose in the liver, kidney, and small intestine. We here investigated the effect of acute fructose administration on the activities of mitochondrial respiratory chain complexes, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) in cerebral cortex, liver, kidney, and skeletal muscle of male 30-day-old Wistar rats. The rats received subcutaneous injection of sodium chloride (0.9%; control group) or fructose solution (5 μmol/g; treated group). One hour later, the animals were euthanized and the cerebral cortex, liver, kidney, and skeletal muscle were isolated and homogenized for the investigations. Acute fructose administration increased complex I-III activity in liver. On the other hand, decreased complexes II and II-III activities in skeletal muscle and MDH in kidney were found. Interestingly, none of these parameters were affected in vitro. Our present data indicate that fructose administration elicits impairment of mitochondrial energy metabolism, which may contribute to the pathogenesis of the HFI patients.

  9. Evaluation of the In Vivo and In Vitro Effects of Fructose on Respiratory Chain Complexes in Tissues of Young Rats

    PubMed Central

    Macongonde, Ernesto António; Vilela, Thais Ceresér; Scaini, Giselli; Gonçalves, Cinara Ludvig; Ferreira, Bruna Klippel; Costa, Naithan Ludian Fernandes; de Oliveira, Marcos Roberto; Avila, Silvio; Streck, Emilio Luiz; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda

    2015-01-01

    Hereditary fructose intolerance (HFI) is an autosomal-recessive disorder characterized by fructose and fructose-1-phosphate accumulation in tissues and biological fluids of patients. This disease results from a deficiency of aldolase B, which metabolizes fructose in the liver, kidney, and small intestine. We here investigated the effect of acute fructose administration on the activities of mitochondrial respiratory chain complexes, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) in cerebral cortex, liver, kidney, and skeletal muscle of male 30-day-old Wistar rats. The rats received subcutaneous injection of sodium chloride (0.9%; control group) or fructose solution (5 μmol/g; treated group). One hour later, the animals were euthanized and the cerebral cortex, liver, kidney, and skeletal muscle were isolated and homogenized for the investigations. Acute fructose administration increased complex I-III activity in liver. On the other hand, decreased complexes II and II-III activities in skeletal muscle and MDH in kidney were found. Interestingly, none of these parameters were affected in vitro. Our present data indicate that fructose administration elicits impairment of mitochondrial energy metabolism, which may contribute to the pathogenesis of the HFI patients. PMID:26770008

  10. Synthesis, characterization, molecular docking and DNA binding studies of Al(III), Ga(III) and In(III) water-soluble complexes

    NASA Astrophysics Data System (ADS)

    Shorkaei, Mohammad Ranjkesh; Asadi, Zahra; Asadi, Mozaffar

    2016-04-01

    In this work three new water-soluble aluminum(III), gallium(III) and indium(III) Schiff base complexes; Na2[M(L)NO3]; where L denotes; N,N'-bis(5-sulfosalicyliden)-1,2-phenylendiamin (salsophen) were synthesized and characterized by UV-vis, 1HNMR, FT-IR spectroscopy, thermal gravimetry (TG) and elemental analysis. To study the biological preference with the molecular target DNA, interaction of these complexes with DNA have been explored by employing various biophysical methods including absorption spectra, fluorescence spectra, cyclic voltammetry and viscosity measurement. The Kb values at 298 K were found to be 1.17 × 104 for Al(III), 1.35 × 104 for Ga(III) and 1.64 × 104 M-1 for In(III) complexes, respectively. These results suggesting the greater binding propensity of In(III) complexes. Additionally molecular docking was carried out to ascertain the mode of action towards the molecular target DNA.

  11. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy.

    PubMed

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  12. Highly luminescent charge-neutral europium(iii) and terbium(iii) complexes with tridentate nitrogen ligands.

    PubMed

    Senthil Kumar, Kuppusamy; Schäfer, Bernhard; Lebedkin, Sergei; Karmazin, Lydia; Kappes, Manfred M; Ruben, Mario

    2015-09-21

    We report on the synthesis of tridentate-nitrogen pyrazole-pyridine-tetrazole (L(1)H) and pyrazole-pyridine-triazole (L(2)H) ligands and their complexation with lanthanides (Ln = Gd(iii), Eu(iii) and Tb(iii)) resulting in stable, charge-neutral complexes Ln(L(1))3 and Ln(L(2))3, respectively. X-ray crystallographic analysis of the complexes with L(1) ligands revealed tricapped trigonal coordination geometry around the lanthanide ions. All complexes show bright photoluminescence (PL) in the solid state, indicating efficient sensitization of the lanthanide emission via the triplet states of the ligands. In particular, the terbium complexes show high PL quantum yields of 65 and 59% for L(1) and L(2), respectively. Lower PL efficiencies of the europium complexes (7.5 and 9%, respectively) are attributed to large energy gaps between the triplet states of the ligands and accepting levels of Eu(iii). The triplet state energy can be reduced by introducing an electron withdrawing (EW) group at the 4 position of the pyridine ring. Such substitution of L(1)H with a carboxylic ester (COOMe) EW group leads to a europium complex with increased PL quantum yield of 31%. A comparatively efficient PL of the complexes dissolved in ethanol indicates that the lanthanide ions are shielded against nonradiative deactivation via solvent molecules.

  13. Mitochondrial Complex III Deficiency Caused by TTC19 Defects: Report of a Novel Mutation and Review of Literature.

    PubMed

    Ardissone, Anna; Granata, Tiziana; Legati, Andrea; Diodato, Daria; Melchionda, Laura; Lamantea, Eleonora; Garavaglia, Barbara; Ghezzi, Daniele; Moroni, Isabella

    2015-01-01

    We report about a patient with infantile-onset neurodegenerative disease associated with isolated mitochondrial respiratory chain complex III (cIII) deficiency. The boy, now 13 years old, presented with language regression and ataxia at 4 years of age and then showed a progressive course resulting in the loss of autonomous gait and speaking during the following 2 years. Brain MRI disclosed bilateral striatal necrosis. Sequencing of a panel containing nuclear genes associated with cIII deficiency revealed a previously undescribed homozygous rearrangement (c.782_786delinsGAAAAG) in TTC19 gene, which results in a frameshift with premature termination (p.Glu261Glyfs(*)8). TTC19 protein was absent in patient's fibroblasts. TTC19 encodes tetratricopeptide 19, a putative assembly factor for cIII. To date TTC19 mutations have been reported only in few cases, invariably associated with cIII deficiency, but presenting heterogeneous clinical phenotypes. We reviewed the genetic, biochemical, clinical and neuroradiological features of TTC19 mutant patients described to date. PMID:25772319

  14. [Recommendations for respiratory support in the newborn (iii). Surfactant and nitric oxide].

    PubMed

    Castillo Salinas, F; Elorza Fernández, D; Gutiérrez Laso, A; Moreno Hernando, J; Bustos Lozano, G; Gresa Muñoz, M; López de Heredia Goya, J; Aguar Carrascosa, M; Miracle Echegoyen, X; Fernández Lorenzo, J R; Serrano, M M; Concheiro Guisan, A; Carrasco Carrasco, C; Comuñas Gómez, J J; Moral Pumarega, M T; Sánchez Torres, A M; Franco, M L

    2015-11-01

    The recommendations included in this document will be part a series of updated reviews of the literature on respiratory support in the newborn infant. These recommendations are structured into twelve modules, and in this work module 7 is presented. Each module is the result of a consensus process including all members of the Surfactant and Respiratory Group of the Spanish Society of Neonatology. They represent a summary of the published papers on each specific topic, and of the clinical experience of each one of the members of the group.

  15. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture

    PubMed Central

    Friedman, Jonathan R; Mourier, Arnaud; Yamada, Justin; McCaffery, J Michael; Nunnari, Jodi

    2015-01-01

    The conserved MICOS complex functions as a primary determinant of mitochondrial inner membrane structure. We address the organization and functional roles of MICOS and identify two independent MICOS subcomplexes: Mic27/Mic10/Mic12, whose assembly is dependent on respiratory complexes and the mitochondrial lipid cardiolipin, and Mic60/Mic19, which assembles independent of these factors. Our data suggest that MICOS subcomplexes independently localize to cristae junctions and are connected via Mic19, which functions to regulate subcomplex distribution, and thus, potentially also cristae junction copy number. MICOS subunits have non-redundant functions as the absence of both MICOS subcomplexes results in more severe morphological and respiratory growth defects than deletion of single MICOS subunits or subcomplexes. Mitochondrial defects resulting from MICOS loss are caused by misdistribution of respiratory complexes in the inner membrane. Together, our data are consistent with a model where MICOS, mitochondrial lipids and respiratory complexes coordinately build a functional and correctly shaped mitochondrial inner membrane. DOI: http://dx.doi.org/10.7554/eLife.07739.001 PMID:25918844

  16. Calculation of genomic predicted transmitting abilities for bovine respiratory disease complex in Holsteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine Respiratory Disease Complex is a disease that is very costly to the dairy industry. Genomic selection may be an effective tool to improve host resistance to the pathogens that cause this disease. Use of genomic predicted transmitting abilities (GPTA) for selection has had a dramatic effect on...

  17. 1,2,4-Diazaphospholide complexes of yttrium(iii), dysprosium(iii), erbium(iii), and europium(ii,iii): synthesis, X-ray structural characterization, and EPR analysis.

    PubMed

    Wang, Yongli; Guo, Wenzhen; Liu, Dongling; Yang, Ying; Zheng, Wenjun

    2016-01-21

    Several structurally characterized heteroleptic, charge-separated heterobimetallic, and polymeric alkali metal ate complexes of 1,2,4-diazaphospholide Y(iii), Dy(iii), Er(iii), Eu(iii), and Eu(ii) were prepared via the reaction of MCl3 and K[3,5-R2dp] in varied ratios at 200-220 °C (M = Y, Dy, Er, Eu; R = tBu, Ph). PMID:26666366

  18. Thiocyanato Chromium (III) Complexes: Separation by Paper Electrophoresis and Estimate of Stability Constants

    ERIC Educational Resources Information Center

    Larsen, Erik; Eriksen, J.

    1975-01-01

    Describes an experiment wherein the student can demonstrate the existence of all the thiocyanato chromium complexes, estimate the stepwise formation constants, demonstrate the robustness of chromium III complexes, and show the principles of paper electrophoresis. (GS)

  19. Modulation of homochiral Dy(III) complexes: single-molecule magnets with ferroelectric properties.

    PubMed

    Li, Xi-Li; Chen, Chun-Lai; Gao, Yu-Liang; Liu, Cai-Ming; Feng, Xiang-Li; Gui, Yang-Hai; Fang, Shao-Ming

    2012-11-12

    Homochiral Dy(III) complexes: by changing the ligand-to-metal ratio, enantiomeric pairs of a Dy(III) complex of different nuclearity could be obtained. The mono- and dinuclear complexes exhibit characteristics of single-molecule magnets and different slow magnetic relaxation processes. In addition, the dinuclear complexes exhibit ferroelectric behavior, thus representing the first chiral polynuclear lanthanide-based single-molecule magnets with ferroelectric properties.

  20. Fluorescence and DNA-binding properties of neodymium(III) and praseodymium(III) complexes containing 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Mirkazehi-Rigi, Sohaila

    2011-09-01

    The binding of neodymium(III) and praseodymium(III) complexes containing 1,10-phenanthroline, [M(phen) 2Cl 3·OH 2] (M = Nd ( 1), Pr ( 2)), to DNA has been investigated by absorption, emission, and viscosity measurements. The complexes show absorption decreasing in charge transfer band, fluorescence decrement when bound to DNA. The binding constant Kb has been determined by absorption measurement for both complexes and found to be (6.76 ± 0.12) × 10 4 for 1 and (1.83 ± 0.15) × 10 4 M -1, for 2. The fluorescence of [M(phen) 2Cl 3·OH 2] (M = Nd ( 1), Pr ( 2)) has been studied in detail. The results of fluorescence titration reveal that DNA has the strong ability to quenching the intrinsic fluorescence of Nd(III) and Pr(III) complexes through the static quenching procedure. The binding site number n, apparent binding constant Kb and the Stern-Volmer constant kSV are determined. Thermodynamic parameters, enthalpy change (Δ H°) and entropy change (Δ S°), are calculated according to relevant fluorescent data and Van't Hoff equation. The experimental data suggest that the complexes bind to DNA by non-intercalative mode. Major groove binding is the preferred mode of interaction for [M(phen) 2Cl 3·OH 2] (M = Nd ( 1), Pr ( 2)) with DNA.

  1. Complexation of Am(III) and Nd(III) by 1,10-Phenanthroline-2,9-Dicarboxylic Acid

    SciTech Connect

    Ogden, Mark D.; Sinkov, Sergey I.; Nilsson, Mikael; Lumetta, Gregg J.; Hancock, Robert D.; Nash, Ken L.

    2013-01-01

    The complexant 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) is a planar tetradentate ligand that is more preorganized for metal complexation than its unconstrained analogue ethylendiiminodiacetic acid (EDDA). Furthermore, the backbone nitrogen atoms of PDA are aromatic, hence are softer than the aliphatic amines of EDDA. It has been hypothesized that PDA will selectively bond to trivalent actinides over lanthanides. In this report, the results of spectrophotometric studies of the complexation of Nd(III) and Am(III) by PDA are reported. Because the complexes are moderately stable, it was necessary to conduct these titrations using competitive equilibrium methods, competitive cation omplexing between PDA and diethylenetriaminepentaacetic acid, and competition between ligand protonation and complex formation. Stability constants and ligand protonation constants were determined at 0.1 mol/L ionic strength and at 0.5 mol/L ionic strength nitrate media at 21 ± 1 C. The stability constants are lower than those predicted from first principles and speciation calculations indicate that Am(III) selectivity over Nd(III) is less than that exhibited by 1,10-phenanthroline.

  2. Fluorescence and DNA-binding properties of neodymium(III) and praseodymium(III) complexes containing 1,10-phenanthroline.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Mirkazehi-Rigi, Sohaila

    2011-09-01

    The binding of neodymium(III) and praseodymium(III) complexes containing 1,10-phenanthroline, [M(phen)2Cl3·OH2] (M=Nd (1), Pr (2)), to DNA has been investigated by absorption, emission, and viscosity measurements. The complexes show absorption decreasing in charge transfer band, fluorescence decrement when bound to DNA. The binding constant Kb has been determined by absorption measurement for both complexes and found to be (6.76±0.12)×10(4) for 1 and (1.83±0.15)×10(4)M(-1), for 2. The fluorescence of [M(phen)2Cl3·OH2] (M=Nd (1), Pr (2)) has been studied in detail. The results of fluorescence titration reveal that DNA has the strong ability to quenching the intrinsic fluorescence of Nd(III) and Pr(III) complexes through the static quenching procedure. The binding site number n, apparent binding constant Kb and the Stern-Volmer constant kSV are determined. Thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), are calculated according to relevant fluorescent data and Van't Hoff equation. The experimental data suggest that the complexes bind to DNA by non-intercalative mode. Major groove binding is the preferred mode of interaction for [M(phen)2Cl3·OH2] (M=Nd (1), Pr (2)) with DNA.

  3. Nuclear gene mutations as the cause of mitochondrial complex III deficiency

    PubMed Central

    Fernández-Vizarra, Erika; Zeviani, Massimo

    2015-01-01

    Complex III (CIII) deficiency is one of the least common oxidative phosphorylation defects associated to mitochondrial disease. CIII constitutes the center of the mitochondrial respiratory chain, as well as a crossroad for several other metabolic pathways. For more than 10 years, of all the potential candidate genes encoding structural subunits and assembly factors, only three were known to be associated to CIII defects in human pathology. Thus, leaving many of these cases unresolved. These first identified genes were MT-CYB, the only CIII subunit encoded in the mitochondrial DNA; BCS1L, encoding an assembly factor, and UQCRB, a nuclear-encoded structural subunit. Nowadays, thanks to the fast progress that has taken place in the last 3–4 years, pathological changes in seven more genes are known to be associated to these conditions. This review will focus on the strategies that have permitted the latest discovery of mutations in factors that are necessary for a correct CIII assembly and activity, in relation with their function. In addition, new data further establishing the molecular role of LYRM7/MZM1L as a chaperone involved in CIII biogenesis are provided. PMID:25914718

  4. Control of electron transport routes through redox-regulated redistribution of respiratory complexes

    PubMed Central

    Liu, Lu-Ning; Bryan, Samantha J.; Huang, Fang; Yu, Jianfeng; Nixon, Peter J.; Rich, Peter R.; Mullineaux, Conrad W.

    2012-01-01

    In cyanobacteria, respiratory electron transport takes place in close proximity to photosynthetic electron transport, because the complexes required for both processes are located within the thylakoid membranes. The balance of electron transport routes is crucial for cell physiology, yet the factors that control the predominance of particular pathways are poorly understood. Here we use a combination of tagging with green fluorescent protein and confocal fluorescence microscopy in live cells of the cyanobacterium Synechococcus elongatus PCC 7942 to investigate the distribution on submicron scales of two key respiratory electron donors, type-I NAD(P)H dehydrogenase (NDH-1) and succinate dehydrogenase (SDH). When cells are grown under low light, both complexes are concentrated in discrete patches in the thylakoid membranes, about 100–300 nm in diameter and containing tens to hundreds of complexes. Exposure to moderate light leads to redistribution of both NDH-1 and SDH such that they become evenly distributed within the thylakoid membranes. The effects of electron transport inhibitors indicate that redistribution of respiratory complexes is triggered by changes in the redox state of an electron carrier close to plastoquinone. Redistribution does not depend on de novo protein synthesis, and it is accompanied by a major increase in the probability that respiratory electrons are transferred to photosystem I rather than to a terminal oxidase. These results indicate that the distribution of complexes on the scale of 100–300 nm controls the partitioning of reducing power and that redistribution of electron transport complexes on these scales is a physiological mechanism to regulate the pathways of electron flow. PMID:22733774

  5. Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex

    PubMed Central

    Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo

    2012-01-01

    Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical reactions in which this iron(III)–peroxo complex is cleanly converted to the iron(III)–hydroperoxo complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)–hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via homolytic O–O bond cleavage of the iron(III)–hydroperoxo species. All three of these iron species—the three most biologically relevant iron–oxygen intermediates—have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)–hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)–oxo complex in C–H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)–hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes. PMID:22031443

  6. Modeling rare earth complexes: Sparkle/AM1 parameters for thulium (III)

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rocha, Gerd B.; Simas, Alfredo M.

    2005-08-01

    The Sparkle/AM1 model, recently defined for Eu(III), Gd(III) and Tb(III) [R.O. Freire, G.B. Rocha, A.M., Simas, Inorg. Chem. 44 (2005) 3299], is extended to Tm(III). A set of 15 structures of high crystallographic quality from the Cambridge Crystallographic Database, with ligands chosen to be representative of all complexes with nitrogen or oxygen directly bonded to the Tm(III) ion, was used as a training set. For the 15 complexes, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Tm(III) ion and the oxygen or nitrogen ligand atoms of the first sphere of coordination, is 0.07 Å, a level of accuracy useful for luminescent complex design.

  7. Contribution of Bordetella bronchiseptica Type III secretion system to respiratory disease in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The type III secretion system (TTSS) of gram negative bacteria allows injection of effector proteins directly into the cytosol of eukaryotic cells. Previous studies have demonstrated that the B. bronchiseptica TTSS plays a role in the persistent bacterial colonization of the trachea of m...

  8. Ethanol oxidation by imidorhenium(V) complexes: formation of amidorhenium(III) complexes.

    PubMed

    Suing, A L; Dewan, C R; White, P S; Thorp, H H

    2000-12-25

    The reaction of Re(NC6H4R)Cl3(PPh3)2 (R = H, 4-Cl, 4-OMe) with 1,2-bis(diphenylphosphino)ethane (dppe) is investigated in refluxing ethanol. The reaction produces two major products, Re(NC6H4R)Cl(dppe)(2)2+ (R = H, 1-H; R = Cl, 1-Cl; R = OMe, 1-OMe) and the rhenium(III) species Re(NHC6H4R)Cl(dppe)2+ (R = H, 2-H; R = Cl, 2-Cl). Complexes 1-H (orthorhombic, Pcab, a = 22.3075(10) A, b = 23.1271(10) A, c = 23.3584(10) A, Z = 8), 1-Cl (triclinic, P1, a = 11.9403(6) A, b = 14.6673(8) A, c = 17.2664(9) A, alpha = 92.019(1) degrees, beta = 97.379(1) degrees, gamma = 90.134(1) degrees, Z = 2), and 1-OMe (triclinic, P1, a = 11.340(3) A, b = 13.134(4) A, c = 13.3796(25) A, alpha = 102.370(20) degrees, beta = 107.688(17) degrees, gamma = 114.408(20) degrees, Z = 1) are crystallographically characterized and show an average Re-N bond length (1.71 A) typical of imidorhenium(V) complexes. There is a small systematic decrease in the Re-N bond length on going from Cl to H to OMe. Complex 2-Cl (monoclinic, Cc, a = 24.2381(11) A, b = 13.4504(6) A, c = 17.466(8) A, beta = 97.06900(0) degrees, Z = 4) is also crystallographically characterized and shows a Re-N bond length (1.98 A) suggestive of amidorhenium(III). The rhenium(III) complexes exhibit unusual proton NMR spectra where all of the resonances are found at expected locations except those for the amido protons, which are at 37.8 ppm for 2-Cl and 37.3 ppm for 1-H. The phosphorus resonances are also unremarkable, but the 13C spectrum of 2-Cl shows a significantly shifted resonance at 177.3 ppm, which is assigned to the ipso carbon of the phenylamido ligand. The extraordinary shifts of the amido hydrogen and ipso carbon are attributed to second-order magnetism that is strongly focused along the axially compressed amido axis. The reducing equivalents for the formation of the Re(III) product are provided by oxidation of the ethanol solvent, which produces acetal and acetaldehyde in amounts as much as 30 equiv based on the quantity of

  9. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    PubMed

    Kohda, Masakazu; Tokuzawa, Yoshimi; Kishita, Yoshihito; Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  10. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    PubMed

    Kohda, Masakazu; Tokuzawa, Yoshimi; Kishita, Yoshihito; Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  11. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies

    PubMed Central

    Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  12. Structural organization of the mitochondrial respiratory chain.

    PubMed

    Genova, Maria Luisa; Bianchi, Cristina; Lenaz, Giorgio

    2003-03-01

    Two models exist of the mitochondrial respiratory chain: the model of a random organization of the individual respiratory enzyme complexes and that of a super-complex assembly formed by stable association between the individual complexes. Recently Schägger, using digitonin solubilization and Blue Native PAGE produced new evidence of preferential associations, in particular a Complex I monomer with a Complex III dimer, and suggested a model of the respiratory chain (the respirasome) based on direct electron channelling between complexes. Discrimination between the two models is amenable to kinetic testing using flux control analysis. Experimental evidence obtained in beef heart SMP, according to the extension of the Metabolic Control Theory for pathways with metabolic channelling, showed that enzyme associations involving Complex I and Complex III take place in the respiratory chain while Complex IV seems to be randomly distributed, with cytochrome c behaving as a mobile component. Flux control analysis at anyone of the respiratory complexes involved in aerobic succinate oxidation indicated that Complex II and III are not functionally associated in a stable supercomplex. A critical appraisal of the solid-state model of the mitochondrial respiratory chain requires its reconciliation with previous biophysical and kinetic evidence that CoQ behaves as a homogeneous diffusible pool between all reducing enzyme and all oxidizing enzymes: the hypothesis can be advanced that both models (CoQ pool and supercomplexes) are true, by postulating that supercomplexes physiologically exist in equilibrium with isolated complexes depending on metabolic conditions of the cell.

  13. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  14. Interaction of Pseudomonas fluorescens with Eu(III) and Ce(IV) - Desferrioxamine Complexes

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Ozaki, T.; Ohnuki, T.; Francis, A.

    2002-12-01

    Naturally occurring chelating agents-, such as siderophores, are able to form complexes with actinides and enhance their solubility and mobility in the environment. Adsorption and/or biodegradation of chelated actinides by microorganisms are important processes which regulate their mobility in the natural environment. In this study, association of Eu(III), Ce(IV), and Fe(III) - desferrioxamine B (DFO) complexes with aerobic bacterium, Pseudomonas fluorescens (ATCC 55241), was investigated-, Eu(III) and Ce(IV) were used as analogues to trivalent and tetravalent actinides, respectively. When 20 μM of 1:1 Eu(III) - and Ce(IV) - DFO complexes were incubated with P. fluorescens in 0.1 M Tris-HCl buffer (pH = 7.3), the metals were removed from solution, with no change in DFO in solution. With decreasing metal/DFO molar ratio from 1 to 0.01, the accumulation of Eu(III) and Ce(IV) by P. fluorescens decreased. Kinetics study showed that accumulation of Eu(III) reached the maximum within 30 minutes, and then it decreased slightly with time. On the other hand, Ce(IV) accumulation proceeded in a parabolic process where the kinetics was slower than that of Eu(III) accumulation. In comparison to Eu(III) and Ce(IV), the removal of Fe(III) added as a DFO complex by P. fluorescens was not observed. The formation constants (log K) of Eu(III) - DFO and Fe(III) - DFO are reported to be 15 and 30.6, respectively. These results suggest that Eu(III) - DFO complex was dissociated in the presence of bacteria cells and was readily biosorbed.

  15. Spectroscopic studies on unexpected complex azides of lanthanum(III) and neodymium(III)

    NASA Astrophysics Data System (ADS)

    Popitsch, A.; Mautner, A.; Fritzer, H. P.

    Solid azides of the types Cs 3La(N 3) 6, Cs 2Nd(N 3) 5, and Cs 4Nd(N 3) 7 can be prepared by metathetical reactions under special precautions. Electronic spectra in diffuse reflectance, infrared and Raman spectra, and magnetic susceptibilities versus temperature and field strength were measured on microcrystalline samples. The data of these new compounds are primarily discussed in view of vibrational properties of the azide ion N 3-, as ligand and in relation to first insights into the nature of the metal-nitrogen bonds within the coordination polyhedra of La(III) and Nd(III).

  16. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    PubMed

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens. PMID:27256017

  17. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    PubMed

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens.

  18. Synthesis of tyrosine-involved corrole Cu(III), Mn(IV), and Mn(III) complexes as biomimetic models of oxygen evolving complex in photosystem II

    NASA Astrophysics Data System (ADS)

    Xia, M.; Gao, Y.

    2014-12-01

    Boc-protected tyrosine-attached corrole ligand on the " ortho" position compound 3, its corresponding copper (III) 4a, manganese (IV) 4b, and manganese (III) 4c complexes have been designed and synthesized based on the structures of active-centers of related biological systems. 1H NMR and electronic absorption spectra of these metal complexes are investigated. The crystal structure of 4a displays the relative position of TyrOH unit to the high valent metal center. Electrochemistry investigations display the possibilities of intramolecular electron or energy transfer between TyrOH group and metal corrole group.

  19. Synthesis, structure and luminescence studies of Eu(III), Tb(III), Sm(III), Dy(III) cationic complexes with acetylacetone and bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane☆

    PubMed Central

    Gusev, Alexey N.; Hasegawa, Miki; Shimizu, Tomohito; Fukawa, Tomonori; Sakurai, Shoya; Nishchymenko, Galyna A.; Shul’gin, Victor F.; Meshkova, Svetlana B.; Linert, Wolfgang

    2013-01-01

    Studies concerning synthesis, structure and luminescence of eight-coordinate Eu, Tb, Sm and Dy complexes of the type [Ln(acac)2(L)]Cl (Hacac = pentanedione-2,4 and L = bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane) are reported in detail. The obtained complexes were investigated by various means including elemental- and thermogravimetric analysis, IR- and electron transition spectroscopy. The structure of the Tb complex was determined by single-crystal X-ray crystallography: Tb is eight-coordinate, and L acting only as a tetradentate chelate together with two bidentate acac ligands. Photophysical studies of the complexes were carried out. The Tb(III) and Eu(III) complexes show strong emissions both in solid state and solution. The intensity of the luminescence of Dy(III) and Sm(III) are relatively weak. The factors determining the intensity of the photoluminescence are discussed. PMID:24068839

  20. Neodymium(III) Complexation by Amino-Carbohydrates via a Ligand-Controlled Hydrolysis Mechanism

    SciTech Connect

    Levitskaia, Tatiana G.; Chen, Yongsheng; Fulton, John L.; Sinkov, Sergey I.

    2011-07-28

    Chelation of neodymium-III Nd(III) by D-glucosamine (DGA) and chitosan was investigated in solution at near-physiological pH and ionic strength. This research demonstrates the first example of the lanthanide ion heteroleptic hydroxo-carbohydrate complex in solution. It was demonstrated that DGA and chitosan suppressed formation of polynuclear Nd(III) species at elevated pH.

  1. Intermediate States of Ribonuclease III in Complex with Double-Stranded RNA

    SciTech Connect

    Gan, Jianhua; Tropea, Joseph E.; Austin, Brian P.; Court, Donald L.; Waugh, David S.; Ji, Xinhua

    2010-07-19

    Bacterial ribonuclease III (RNase III) can affect RNA structure and gene expression in either of two ways: as a processing enzyme that cleaves double-stranded (ds) RNA, or as a binding protein that binds but does not cleave dsRNA. We previously proposed a model of the catalytic complex of RNase III with dsRNA based on three crystal structures, including the endonuclease domain of RNase III with and without bound metal ions and a dsRNA binding protein complexed with dsRNA. We also reported a noncatalytic assembly observed in the crystal structure of an RNase III mutant, which binds but does not cleave dsRNA, complexed with dsRNA. We hypothesize that the RNase III {center_dot} dsRNA complex can exist in two functional forms, a catalytic complex and a noncatalytic assembly, and that in between the two forms there may be intermediate states. Here, we present four crystal structures of RNase III complexed with dsRNA, representing possible intermediates.

  2. Synthesis, crystal structure, interaction with BSA and antibacterial activity of La(III) and Sm(III) complexes with enrofloxacin.

    PubMed

    Wang, Yan-Jun; Hu, Rui-Ding; Jiang, Dong-Hua; Zhang, Ping-Hua; Lin, Qiu-Yue; Wang, Yun-Yun

    2011-03-01

    Two new La(III) and Sm(III) complexes with enrofloxacin (HER, 1-cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinoline carboxylic acid, C(19)H(21)FN(3)O(3)), [La(2)(ER)(6)(H(2)O)(2)]·14H(2)O(1) and [Sm(2)(ER)(6)(H(2)O)(2)]·14H(2)O(2) have been synthesized and characterized by elemental analysis, FT-IR, TG-DTG and X-ray single crystal diffraction. Both of the complexes are triclinic system with space group Pī. The structure of the complexes show that each rare earth atom in both complexes was nine-coordinated. Two of the enrofloxacin ions acted as tridentate chelate and bridging ligands, while the others as bidentate chelate ligands. The binding reaction between the complexes and bovine serum albumin (BSA) was studied by UV-vis absorption spectra and fluorescence spectroscopy. The results indicated that the two complexes had a quite strong ability to quench the fluorescence from BSA and the binding reaction was mainly a static quenching process. The binding constants K ( A )/(L·mol(-1)) were 1.46 × 10(5)(1) and 8.59 × 10(6)(2) and one binding site was formed. The synchronous spectroscopy suggested that tryptophan residues were placed in BSA. It was also found that the two complexes exhibited greater antimicrobial activity than enrofloxacin at given concentrations.

  3. Development of a C3-symmetric benzohydroxamate tripod: Trimetallic complexation with Fe(III), Cr(III) and Al(III)

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2016-06-01

    The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; Mdbnd Fe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238 nm in acidic pH and with the increase of pH, a new peak appeared at 270 nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor.

  4. Complexation of Curium(III) with DTPA at 10–70 °C: Comparison with Eu(III)–DTPA in Thermodynamics, Luminescence, and Coordination Modes

    SciTech Connect

    Tian, Guoxin; Zhang, Zhiyong; Martin, Leigh R.; Rao, Linfeng

    2015-02-16

    Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of their nearly identical chemical properties. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 ºC was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy of complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data have demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA.

  5. Complexation of curium(III) with DTPA at 10-70 °C: comparison with Eu(III)-DTPA in thermodynamics, luminescence, and coordination modes.

    PubMed

    Tian, Guoxin; Zhang, Zhiyong; Martin, Leigh R; Rao, Linfeng

    2015-02-16

    Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of the nearly identical chemical properties of these groups. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 °C was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy of complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA.

  6. Mitochondrial Encephalomyopathy and Complex III Deficiency Associated with a Stop-Codon Mutation in the Cytochrome b Gene

    PubMed Central

    Keightley, J. Andrew; Anitori, Roberto; Burton, Miriam D.; Quan, Franklin; Buist, Neil R. M.; Kennaway, Nancy G.

    2000-01-01

    We have reinvestigated a young woman, originally reported by us in 1983, who presented with exercise intolerance and lactic acidosis associated with severe deficiency of complex III and who responded to therapy with menadione and ascorbate. Gradually, she developed symptoms of a mitochondrial encephalomyopathy. Immunocytochemistry of serial sections of muscle showed a mosaic of fibers that reacted poorly with antibodies to subunits of complex III but reacted normally with antibodies to subunits of complexes I, II, or IV, suggesting a mutation of mtDNA. These findings demonstrate the diagnostic value of immunocytochemistry in identifying specific respiratory-chain deficiencies and, potentially, distinguishing between nuclear- or mtDNA-encoded defects. Sequence analysis revealed a stop-codon mutation (G15242A) in the mtDNA-encoded cytochrome b gene, resulting in loss of the last 215 amino acids of cytochrome b. PCR-RFLP analysis indicated that the G15242A mutation was heteroplasmic and was present in a high percentage (87%) of affected tissue (skeletal muscle) and a low percentage (0.7%) of unaffected tissue (blood) but was not detected in controls. Analysis of microdissected muscle fibers showed a significant correlation between the immunoreactivity toward the Rieske protein of complex III and the percentage of mutant mtDNA: immunopositive fibers had a median value of 33% of the G15242A mutation, whereas immunonegative, ragged-red fibers had a median value of 89%, indicating that the stop-codon mutation was pathogenic in this patient. The G15242A mutation was also present in several other tissues, including hair roots, indicating that it must have arisen either very early in embryogenesis, before separation of the primary germ layers, or in the maternal germ line. The findings in this patient are contrasted with other recently described patients who have mutations in the cytochrome b gene. PMID:11047755

  7. The Complexation of Mn(III) in the Sediments and Water Column of two Coastal Estuaries

    NASA Astrophysics Data System (ADS)

    Oldham, V.; Mucci, A.; Luther, G. W., III

    2015-12-01

    In seawater, we find that the complexation of the intermediate manganese oxidation state, dissolved Mn(III), is kinetically stabilized by organic ligands in diverse environments. The cycling of these complexes is also tightly coupled to the cycles of C, O, N, S, and Fe. In the suboxic porewaters of the St. Lawrence Estuary (2011 (1), 2014 (here)), Mn(III)-L complexes made up to 100 % of total dissolved Mn (dMn(T)). The porewaters were dominated by weak complexes in lower and upper estuary porewaters (35 ppt salinity), whereas in the Saguenay Fjord (30 ppt salinity), weak (logKcond=11.1-11.6) and strong (logKcond>13.6) Mn(III)-L complexes were found in the same sample, which were kinetically stable to reduction - even in the presence of excess soluble Fe(II). The site at the Saguenay fjord likely has more terrestrial influence, and potentially different Mn(III)-L binding ligands than in the more oceanic samples. Overlying waters at both sites indicate that dMn(T) is fluxing out of the sediments, and all water column samples contained strong Mn(III)-L complexes (up to 86% of dMn(T)). Laboratory tests show that strong terrestrial Mn(III)-L complexes can precipitate at pH<2, and so previous dMn(T) assays in such environments, involving an acidification step, may have omitted an important fraction of dMn(T). These findings present the first measurement of two Mn(III)-binding ligand classes in the same water mass, and indicate that Mn(III)-L complexes have diverse and varying reactivity. We will discuss the implication of fluxing Mn(III)-L complexes from sediments to the overlying water column, in the St. Lawrence system compared to our data from the Chesapeake Bay (2013 (2), 2014 (here)) where strong Mn(III)-L complexes made up to 50 % of total dissolved Mn (dMn(T)) in anoxic bottom waters, and were partially kinetically stable to sulfide reduction. 1. Madison, A.S., Tebo, B.M., Mucci, A., Sundby, B., Luther, G.W. 2013. Abundant porewater Mn(III) is a major component of

  8. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  9. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes

    PubMed Central

    Ziabreva, Iryna; Campbell, Graham; Rist, Julia; Zambonin, Jessica; Rorbach, Joanna; Wydro, Mateusz M; Lassmann, Hans; Franklin, Robin J M; Mahad, Don

    2010-01-01

    Oligodendrocyte lineage cells are susceptible to a variety of insults including hypoxia, excitotoxicity, and reactive oxygen species. Demyelination is a well-recognized feature of several CNS disorders including multiple sclerosis, white matter strokes, progressive multifocal leukoencephalopathy, and disorders due to mitochondrial DNA mutations. Although mitochondria have been implicated in the demise of oligodendrocyte lineage cells, the consequences of mitochondrial respiratory chain defects have not been examined. We determine the in vitro impact of established inhibitors of mitochondrial respiratory chain complex IV or cytochrome c oxidase on oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes as well as on differentiation capacity of OPCs from P0 rat. Injury to mature oligodendrocytes following complex IV inhibition was significantly greater than to OPCs, judged by cell detachment and mitochondrial membrane potential (MMP) changes, although viability of cells that remained attached was not compromised. Active mitochondria were abundant in processes of differentiated oligodendrocytes and MMP was significantly greater in differentiated oligodendrocytes than OPCs. MMP dissipated following complex IV inhibition in oligodendrocytes. Furthermore, complex IV inhibition impaired process formation within oligodendrocyte lineage cells. Injury to and impaired process formation of oligodendrocytes following complex IV inhibition has potentially important implications for the pathogenesis and repair of CNS myelin disorders. © 2010 Wiley-Liss, Inc. PMID:20665559

  10. Site-selective recognition of peptide phosphorylation by a terbium(III) complex in aqueous solution.

    PubMed

    Wang, Xiaohui; Yang, Tao; Luo, Jian; Yang, Liu; Yao, Cheng

    2015-05-11

    A terbium(III) complex exhibits efficient selectivity for proximal diphosphorylation of peptides, accompanied with remarkable luminescence enhancement in the presence of Zn(II) ions in both buffer and protein extraction solutions from brain homogenates of mice.

  11. Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator.

    PubMed

    Imada, Katsumi; Minamino, Tohru; Uchida, Yumiko; Kinoshita, Miki; Namba, Keiichi

    2016-03-29

    FliI and FliJ form the FliI6FliJ ATPase complex of the bacterial flagellar export apparatus, a member of the type III secretion system. The FliI6FliJ complex is structurally similar to the α3β3γ complex of F1-ATPase. The FliH homodimer binds to FliI to connect the ATPase complex to the flagellar base, but the details are unknown. Here we report the structure of the homodimer of a C-terminal fragment of FliH (FliHC2) in complex with FliI. FliHC2 shows an unusually asymmetric homodimeric structure that markedly resembles the peripheral stalk of the A/V-type ATPases. The FliHC2-FliI hexamer model reveals that the C-terminal domains of the FliI ATPase face the cell membrane in a way similar to the F/A/V-type ATPases. We discuss the mechanism of flagellar ATPase complex formation and a common origin shared by the type III secretion system and the F/A/V-type ATPases. PMID:26984495

  12. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium (Cr III) complex of N-ethyl - N -heptadecylfluoro-octane sulfonyl glycine containing up to 20...

  13. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  14. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  15. Copper-mediated fluorination of arylboronate esters. Identification of a copper(III) fluoride complex.

    PubMed

    Fier, Patrick S; Luo, Jingwei; Hartwig, John F

    2013-02-20

    A method for the direct conversion of arylboronate esters to aryl fluorides under mild conditions with readily available reagents is reported. Tandem reactions have also been developed for the fluorination of arenes and aryl bromides through arylboronate ester intermediates. Mechanistic studies suggest that this fluorination reaction occurs through facile oxidation of Cu(I) to Cu(III), followed by rate-limiting transmetalation of a bound arylboronate to Cu(III). Fast C-F reductive elimination is proposed to occur from an aryl-copper(III)-fluoride complex. Cu(III) intermediates have been generated independently and identified by NMR spectroscopy and ESI-MS. PMID:23384209

  16. Properties of a complex of Fe(III)-soybean lipoxygenase-1 and 4-nitrocatechol.

    PubMed

    Spaapen, L J; Verhagen, J; Veldink, G A; Vliegenthart, J F

    1980-01-18

    Fe(III)-soybean lipoxygenase-1 yields with 4-nitrocatechol a green coloured 1 : 1 complex, which shows at pH 7.0 absorption maxima at 385 nm and 650 nm. The formation of this complex is reversible. The circular dichroism spectrum of the complex of Fe(III)-lipoxygenase-1 and 4-nitrocatechol has a positive band at around 380 nm and a negative band at around 450 nm and is significantly different from that of the Fe(III)-enzyme as such. 4-Nitrocatechol can be displaced from the green complex by 13-L-hydroperoxy-cis-9, trans-11-octadecadienoic acid, resulting in the formation of the blue complex between the Fe(III)-enzyme and 13-L-hydroperoxy-cis-9,trans-11-octadecadienoic acid both under aerobic and anaerobic conditions. Also linoleic acid competes with 4-nitrocatechol for the binding site on the Fe(III)-enzyme, as can be demonstrated under anaerobic conditions, ultimately leading to reduction of the Fe(III)-enzyme. The oxygenation of linoleic acid by Fe(III)-lipoxygenase-1 is inhibited by 4-nitrocatechol. From steady-state kinetics a non-competitive inhibition pattern is obtained. Probably it has to be considered as pseudo non-competitive because of the slow establishment of the complex equilibrium. An inhibition constant (K4NC) of 16.3 microM is found. On prolonged incubation of Fe(III)-lipoxygenase-1 and 4-nitrocatechol the green complex converts into a brown species. This conversion is found to be coupled with a change in the nature of the inhibition from reversible to irreversible. A complex between native lipoxygenase-1 and 4-nitrocatechol is found to be unlikely.

  17. Respiratory chain supercomplexes in plant mitochondria.

    PubMed

    Eubel, Holger; Heinemeyer, Jesco; Sunderhaus, Stephanie; Braun, Hans-Peter

    2004-12-01

    Supercomplexes are defined associations of protein complexes, which are important for several cellular functions. This "quintenary" organization level of protein structure recently was also described for the respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of the oxidative phosphorylation (OXPOS) system (complexes I, III, IV and V) were found to form part of supercomplexes. Compositions of these supramolecular structures were systematically investigated using digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native (BN) polyacrylamide gel electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 1:2 ratio (I1 + III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be described, which have I2 + III4, V2, III2 + IV(1-2), and I1 + III2 + IV(1-4) compositions. Supercomplexes consisting of complexes I plus III plus IV were proposed to be called "respirasome", because they autonomously can carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative respiratory pathways in plant mitochondria on the basis of electron channeling. In this review, procedures to characterize the supermolecular organization of the plant respiratory chain and results concerning supercomplex structure and function are summarized and discussed.

  18. Study of holmium (III) and yttrium(III) with DOTA complexes as candidates for radiopharmaceutical use

    NASA Astrophysics Data System (ADS)

    Ernestová, M.; Jedináková-Křížová, V.

    2003-01-01

    Reaction conditions for complexation of radionuclides with DOTA were studied using thinlayer chromatography (TLC), paper chromatography (PC) and potentiometry. It was found that all of the studied complexes can reach very high radiochemical yield about 95%. Optimal conditions for obtaining such high radiochemical yields are as follows: pH higher than 4 and the excess of chelating agent must be minimally 3∶1. Potentiometric study showed that the formation of complexes is characterised by very slow kinetics.

  19. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex

    PubMed Central

    Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  20. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    PubMed

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  1. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Keskioğlu, Eren; Gündüzalp, Ayla Balaban; Çete, Servet; Hamurcu, Fatma; Erk, Birgül

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl· nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  2. Selective DNA purine base photooxidation by bis-terdentate iridium(III) polypyridyl and cyclometalated complexes.

    PubMed

    Jacques, Alexandre; Kirsch-De Mesmaeker, Andrée; Elias, Benjamin

    2014-02-01

    Two bis-terdentate iridium(III) complexes with polypyridyl and cyclometalated ligands have been prepared and characterized. Their spectroscopic and electrochemical properties have been studied, and a photophysical scheme addressing their properties is proposed. Different types of excited states have been considered to account for the deactivation processes in each complex. Interestingly, in the presence of mono- or polynucleotides, a photoinduced electron-transfer process from a DNA purine base (i.e., guanine or adenine) to the excited complex is shown through luminescence quenching experiments. For the first time, this work reports evidence for selective DNA purine bases oxidation by excited iridium(III) bis-terdentate complexes.

  3. A mononuclear nonheme iron(III)-superoxo complex: Crystallographic and spectroscopic characterization and reactivities

    PubMed Central

    Hong, Seungwoo; Sutherlin, Kyle D.; Park, Jiyoung; Kwon, Eunji; Siegler, Maxime A.; Solomon, Edward I.; Nam, Wonwoo

    2016-01-01

    Mononuclear nonheme iron(III)-superoxo species (FeIII-O2−•) have been implicated as key intermediates in the catalytic cycles of dioxygen activation by nonheme iron enzymes. Although nonheme iron(III)-superoxo species have been trapped and characterized spectroscopically in enzymatic and biomimetic reactions, no structural information has yet been obtained. Here we report for the first time the isolation, spectroscopic characterization, and crystal structure of a mononuclear side-on (η2) iron(III)-superoxo complex with a tetraamido macrocyclic ligand (TAML), [FeIII (TAML) (O2)]2− (1). The nonheme iron(III)-superoxo species undergoes both electrophilic and nucleophilic oxidation reactions as well as O2-transfer between metal complexes. In the O2-transfer reaction, 1 transfers the bound O2 unit to a manganese(III) analogue, resulting in the formation of a manganese(IV)-peroxo complex, [MnIV(TAML)(O2)]2− (2); 2 is characterized structurally and spectroscopically as a mononuclear side-on (η2) manganese(IV)-peroxo complex. The difference in the redox distribution between the metal ions and O2 in 1 and 2 is rationalized using density functional theory calculations. PMID:25510711

  4. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia.

    PubMed

    Koroleva, O A; Calder, G; Pendle, A F; Kim, S H; Lewandowska, D; Simpson, C G; Jones, I M; Brown, J W S; Shaw, P J

    2009-05-01

    Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell. PMID:19435936

  5. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia.

    PubMed

    Koroleva, O A; Calder, G; Pendle, A F; Kim, S H; Lewandowska, D; Simpson, C G; Jones, I M; Brown, J W S; Shaw, P J

    2009-05-01

    Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell.

  6. Solvation structure and thermodynamics for Pr(III), Nd(III) and Dy(III) complexes in ionic liquids evaluated by Raman spectroscopy and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kuribara, Keita; Matsumiya, Masahiko; Tsunashima, Katsuhiko

    2016-12-01

    The coordination states of trivalent praseodymium, neodymium, and dysprosium complexes in the ionic liquid, triethyl-n-pentylphosphonium bis(trifluoromethyl-sulfonyl) amide ([P2225][TFSA]) were investigated by Raman spectroscopy. The effect of the concentration of rare earth ions on the Raman spectra was investigated, ranging from 0.23 to 0.45 mol kg-1 of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA]. Based on a conventional analysis, the solvation numbers, n, of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA] were determined to be 4.99, 5.01, and 5.00 at 298 K and 5.04, 5.06, and 5.07 at 373 K, respectively. Thermodynamic properties such as ΔisoG, ΔisoH, and ΔisoS for the isomerism of [TFSA]- from trans- to cis-coordinated isomer in the bulk and the first solvation sphere of the central RE3+ (RE = Pr, Nd, and Dy) cation in [P2225][TFSA] were evaluated from the temperature dependence of the Raman bands, measured at temperatures ranging from 298 to 398 K. Regarding the bulk properties, ΔisoG(bulk), ΔisoH(bulk), and TΔisoS(bulk) at 298 K were found to be -1.06, 6.86, and 7.92 kJ mol-1, respectively. The trans-[TFSA]- was a dominant contributor to the enthalpy, as shown by the positive value of ΔisoH(bulk). The value of TΔisoS(bulk) was slightly larger than that of ΔisoH(bulk), and cis-[TFSA]- was, therefore, entropy-controlled in [P2225][TFSA]. In contrast, in the first solvation sphere of the RE3+ cation, ΔisoH(RE) became remarkably negative, suggesting that cis-[TFSA]- isomers were stabilized by enthalpic contributions. Furthermore, ΔisoH(RE) contributed to the remarkable decrease in ΔisoG(RE), and this result clearly indicates that cis-[TFSA]- conformers bound to RE3+ cations are the preferred coordination state of [RE(III)(cis-TFSA)5]2- in [P2225][TFSA]. Moreover, optimized geometries and binding energies of [Pr(III)(cis-TFSA)5]2-, [Nd(III)(cis-TFSA)5]2-, and [Dy(III)(cis-TFSA)5]2- clusters were also investigated by DFT calculations using the ADF

  7. Enantiomeric self-recognition in homo- and heterodinuclear macrocyclic lanthanide(III) complexes.

    PubMed

    Lisowski, Jerzy

    2011-06-20

    The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no

  8. Photophysical properties of ortho-metalated monomeric and dimeric complexes containing rhodium(III) and iridium(III) metal centers

    NASA Astrophysics Data System (ADS)

    Marshall, Jason Alexander

    Photophysical properties of dichloro-bridged dimers and monomeric tris complexes of the type [M(NC)2Cl]2 and M(NC)3, where NC refers to the ortho-metalating ligands 2-phenylpyridine (ppy), benzo[h]quinoline (bzq), or 2-(p-tolyl)pyridine (ptpy) and M is Rh(III) or Ir(III), were investigated. Excited-state emission of Rh(III) complexes are highly structured and independent of temperature from 4--100 K in glassy media, with long lifetimes (102 mus to ms). Emission is not observed from the pale yellow, fluid solutions of Rh(III) complexes at room temperature. Below 7K, decay kinetics are sensitive to temperature and are complicated, requiring multi-exponential fits in 4:1 EtOH/MeOH. The spectroscopic properties are consistent with the assignment of a lowest 3pipi* excited-state manifold perturbed by an admixture of higher-lying states possessing strong spin-orbit interactions. The complicated decays are attributed to spin-relaxation-limited behavior between spin-levels in the 3pipi* manifold. Deep yellow solutions of Ir(III) complexes in 4:1 EtOH/MeOH are observed to emit in both glassy media and in fluid solution, displaying severe changes in spectral shape as the glass softens which are not attributable to rigidochromic shifts. Low-temperature spectra are structured with emission origins in the range 496--520 nm whereas room-temperature emission of complexes in fluid solution are characteristically broad structureless bands with maxima redshifted from spectra measured in rigid media. Both the emission and the excited-state lifetimes display temperature dependence, with lifetimes in the microsecond to tens of microseconds range at 77 K, increasing by more than an order of magnitude as the temperature is decreased to 4 K. Each of these characteristic band shapes arises from separate components of the emission which have been time-resolved from the low-temperature spectrum. A long-lived, structured component of the emission, only observed in rigid media, has been

  9. Spectroscopic studies on gallic acid and its azo derivatives and their iron(III) complexes.

    PubMed

    Masoud, Mamdouh S; Ali, Alaa E; Haggag, Sawsan S; Nasr, Nessma M

    2014-01-01

    Azo gallic derivatives and their iron(III) complexes were synthesized and characterized. The stereochemistry and the mode of bonding of the complexes were achieved based on elemental analysis, UV-Vis and IR. The thermal behaviors of the complexes were studied. The effect of pH on the electronic absorption spectra of gallic acid and its azo derivatives are discussed. Different spectroscopic methods (molar ratio, straight line method, continuous variation, slope ratio and successive method) are applied for determination of stoichiometry and pK values for the complex formation of gallic acid with iron(III) in aqueous media. Iron(III) complexes of gallic acid is formed with different ratio: 1:1, 1:2, 1:3 and 1:4 (M:L).

  10. The pH dependence of Am(III) complexation with acetate: an EXAFS study.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Bauer, Nicole; Rossberg, André; Panak, Petra J

    2015-01-01

    The complexation of acetate with Am(III) is studied as a function of the pH (1-6) by extended X-ray absorption fine-structure (EXAFS) spectroscopy. The molecular structure of the Am(III)-acetate complexes (coordination numbers, oxygen and carbon distances) is determined from the raw k(3)-weighted Am LIII-edge EXAFS spectra. The results show a continuous shift of Am(III) speciation with increasing pH value towards the complexed species. Furthermore, it is verified that acetate coordinates in a bidentate coordination mode to Am(III) (Am-C distance: 2.82 ± 0.03 Å). The EXAFS data are analyzed by iterative transformation factor analysis to further verify the chemical speciation, which is calculated on the basis of thermodynamic constants, and the used structural model. The experimental results are in very good agreement with the thermodynamic modelling. PMID:25537594

  11. Synthesis of Cr(III)-morin complex: characterization and antioxidant study.

    PubMed

    Panhwar, Qadeer K; Memon, Shahabuddin

    2014-01-01

    The complex formation between Cr(III) and morin was carried out in methanol and confirmed by analytical characterization using UV-Vis, IR, (1)H NMR, and TG-DTA. UV-Vis shows significant bathochromic shift in benzoyl upon coordination as well as IR well illustrates the peak shift of C=O group and formation of a O-Cr(III) bond. Likewise, (1)H NMR studies clarify that Cr(III) metal ion replaces the 5OH proton hence; 5-hydroxy-4-keto site is employed by morin in chelation to form six-membered stable ring system out of three available chelating sites. In addition, TG-DTA denotes the presence of coordinated and crystalline water molecules. The melting point of the complex was found to be 389 °C by DSC. In addition, Cr(III)-morin complex was found to be a more potent antioxidant than morin as evaluated by DPPH• and FRAP methods.

  12. Exercise can induce temporary mitochondrial and contractile dysfunction linked to impaired respiratory chain complex activity.

    PubMed

    Schoepe, Maria; Schrepper, Andrea; Schwarzer, Michael; Osterholt, Moritz; Doenst, Torsten

    2012-01-01

    Exercise is considered to elicit a physiological response of the heart. Previous studies investigated the influence of repetitive exercise only at the end of the training period. We assessed the impact of 2 exercise protocols, differing in their treadmill inclination, on cardiac and mitochondrial function at different times during the training period. Within 10 weeks, animals trained with 16% incline developed hypertrophy (left ventricular posterior wall thickness: 1.6 ± 0.1 vs 2.4 ± 0.1 mm; P < .05) with normal function (ejection fraction: 75.2% ± 2.5% vs 75.6% ± 2.1%). However, at 6 weeks, there was temporary impairment of contractile function (ejection fraction: 74.5% ± 1.67% vs 65.8% ± 2.3%; P < .05) associated with decreased mitochondrial respiratory capacity (state 3 respiration: 326 ± 71 vs 161 ± 22 natoms/[min mg protein]; P < .05) and a gene expression shift from the adult (α) to the fetal (β) myosin heavy chain isoform. Although peroxisome proliferator-activated receptor gamma coactivator-1α expression was normal, nuclear respiratory factors (NRFs)-1 and -2 were significantly reduced (NRF-1: 1.00 ± 0.16 vs 0.55 ± 0.09; NRF-2: 1.00 ± 0.11 vs 0.63 ± 0.07; P < .05) after 6 weeks. These findings were associated with a reduction of electron transport chain complexes I and IV activity (complex I: 1016 ± 67 vs 758 ± 71 nmol/[min mg protein]; complex IV: 18768 ± 1394 vs 14692 ± 960 nmol/[min mg protein]; P < .05). Messenger RNA expression of selected nuclear encoded subunits of the electron transport chain was unchanged at all investigated time points. In contrast, animals trained with 10% incline showed less hypertrophy and normal function in echocardiography, normal maximal respiratory capacity, and unchanged complex activities at all 3 time points. Repetitive exercise may cause contractile and mitochondrial dysfunction characterized by impaired respiratory chain complex activities. This activity reduction is temporary and intensity related.

  13. Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly

    PubMed Central

    Vartak, Rasika; Deng, Janice; Fang, Hezhi; Bai, Yidong

    2015-01-01

    Respiratory Complex I deficiency is implicated in numerous degenerative and metabolic diseases. In particular, mutations in several mitochondrial DNA (mtDNA)-encoded Complex I subunits including ND4, ND5 and ND6 have been identified in several neurological diseases. We previously demonstrated that these subunits played essential roles in Complex I assembly which in turn affected mitochondrial function. Here, we carried out a comprehensive study of the Complex I assembly pathway. We identified a new Complex I intermediate containing both membrane and matrix arms at an early assembly stage. We find that lack of the ND6 subunit does not hinder membrane arm formation; instead it recruits ND1 and ND5 enter the intermediate. While ND4 is important for the formation of the newly identified intermediate, the addition of ND5 stabilizes the complex and is required for the critical transition from Complex I to supercomplexes assembly. As a result, the Complex I assembly pathway has been redefined in this study. PMID:25887158

  14. New Bismuth(III), Lanthanum(III), Praseodymium (III), and Heterodinuclear Bi-La and Bi-Pr Complexes with Polyaminocarboxylate Ligands

    NASA Astrophysics Data System (ADS)

    Wullens, H.; Bodart, N.; Devillers, M.

    2002-09-01

    New Bi(III), La(III) and Pr(III) complexes with a variety of high-denticity polyaminocarboxylic acids (H 4edta, H 5dtpa, H 6ttha, H 4Cydta, H 5hpdta, H 4egta) have been synthesized and characterized spectroscopically by FTIR. In the case of the decadentate ttha ligand, homodinuclear M2(ttha) ( M=Bi, La, Pr) and heterodinuclear MM'(ttha) complexes were isolated. Detailed investigations of their thermal degradation scheme were carried out in relationship with the possible use of these complexes as molecular precursors for the formation of mixed Bi-La and Bi-Pr oxides in which the crystal structure of the fluorite-like δ-Bi 2O 3 phase can be stabilized at room temperature. Decomposition proceeds in three successive stages, consisting of dehydration, ligand pyrolysis leading to monoxo-, dioxo- or simple carbonates, depending on the metal nature, and finally decarbonatation producing the corresponding oxide: α-Bi 2O 3, La 2O 3, Pr 6O 11, BiLaO 3 or BiPrO 3.

  15. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks.

    PubMed

    Refat, Moamen S

    2014-12-10

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3⋅nH2O where n=6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM). PMID:24952090

  16. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.

    PubMed

    Jones, Morris E; Fennessey, Christine M; DiChristina, Thomas J; Taillefert, Martial

    2010-04-01

    Recent voltammetric analyses indicate that Shewanella putrefaciens strain 200 produces soluble organic-Fe(III) complexes during anaerobic respiration of sparingly soluble Fe(III) oxides. Results of the present study expand the range of Shewanella species capable of producing soluble organic-Fe(III) complexes to include Shewanella oneidensis MR-1. Soluble organic-Fe(III) was produced by S. oneidensis cultures incubated anaerobically with Fe(III) oxides, or with Fe(III) oxides and the alternate electron acceptor fumarate, but not in the presence of O(2), nitrate or trimethylamine-N-oxide. Chemical mutagenesis procedures were combined with a novel MicroElectrode Screening Array (MESA) to identify four (designated Sol) mutants with impaired ability to produce soluble organic-Fe(III) during anaerobic respiration of Fe(III) oxides. Two of the Sol mutants were deficient in anaerobic growth on both soluble Fe(III)-citrate and Fe(III) oxide, yet retained the ability to grow on a suite of seven alternate electron acceptors. The rates of soluble organic-Fe(III) production were proportional to the rates of iron reduction by the S. oneidensis wild-type and Sol mutant strains, and all four Sol mutants retained wild-type siderophore production capability. Results of this study indicate that the production of soluble organic-Fe(III) may be an important intermediate step in the anaerobic respiration of both soluble and sparingly soluble forms of Fe(III) by S. oneidensis.

  17. Electrical properties of nanofibers and structural characterization of DNA-Au(III) complexes.

    PubMed

    Kwon, Young-Wan; Lee, Chang Hoon; Jin, Jung-Il; Hwang, Jong Seung; Hwang, Sung Woo

    2014-05-23

    In order to realize deoxyribonucleic acid (DNA)-based molecular electronics, chemical modifications of DNA are needed to improve electrical conductivity. We developed a novel method utilizing the incorporation of Au(III) ions into DNA bases to alter their electronic properties. When Au(III) ions were incorporated proportionally into DNA bases, conductance increased up to an Au(III) content of 0.42 Au(III) ion/nucleotide. Surprisingly, electron paramagnetic resonance signals of Au(II) ions were detected at g ∼1.98, and the calculated spin number of Au(II) ions ranged from ∼10(13) to ∼10(15). The structural deformation of the DNA helix occurred when complexed with Au(III); simultaneously, the conductance of DNA-Au(III) complexes decreased when the content of Au(III) was higher than 0.42 atom/nucleotide. This observation implies that the maintenance of helical structure in the Au(III) doped state of DNA molecules is very important to the enhancement of the carrier mobility of DNA. PMID:24786616

  18. Complexation Studies of Bidentate Heterocyclic N-Donor Ligands with Nd(III) and Am(III)

    SciTech Connect

    Ogden, Mark; Hoch, Courtney L.; Sinkov, Sergey I.; Meier, Patrick; Lumetta, Gregg J.; Nash, Kenneth L.

    2011-11-28

    A new bidentate nitrogen donor complexing agent that combines pyridine and triazole functional groups, 2-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)pyridine (PTMP), has been synthesized. The strength of its complexes with trivalent americium (Am3+) and neodymium (Nd3+) in anhydrous methanol has been evaluated using spectrophotometric techniques. The purpose of this investigation is to assess this ligand (as representative of a class of similarly structured species) as a possible model compound for the challenging separation of trivalent actinides from lanthanides. This separation, important in the development of advanced nuclear fuel cycles, is best achieved through the agency of multidentate chelating agents containing some number of nitrogen or sulfur donor groups. To evaluate the relative strength of the bidentate complexes, the derived constants are compared to those of the same metal ions with 2,2*-bipyridyl (bipy), 1,10-phenanthroline (phen), and 2-pyridin-2-yl-1H-benzimidazole (PBIm). At issue is the relative affinity of the triazole moiety for trivalent f element ions. For all ligands, the derived stability constants are higher for Am3+ than Nd3+. In the case of Am3+ complexes with phen and PBIm, the presence of 1:2 (AmL2) species is indicated. Possible separations are suggested based on the relative stability and stoichiometry of the Am3+ and Nd3+ complexes. It can be noted that the 1,2,3-triazolyl group imparts a potentially useful selectivity for trivalent actinides (An(III)) over trivalent lanthanides (Ln(III)), though the attainment of higher complex stoichiometries in actinide compared with lanthanide complexes may be an important driver for developing successful separations.

  19. Testing the role of preBötzinger complex somatostatin neurons in respiratory and vocal behaviors

    PubMed Central

    Tupal, Srinivasan; Rieger, Michael A.; Ling, Guang-Yi; Park, Thomas J.; Dougherty, Joseph D.; Goodchild, Ann K.; Gray, Paul A.

    2015-01-01

    Identifying neurons essential for the generation of breathing and related behaviors such as vocalization is an important question for human health. The targeted loss of preBötzinger complex (preBötC) glutamatergic neurons, including those that express high levels of somatostatin protein (SST neurons), eliminates normal breathing in adult rats. Whether preBötC SST neurons represent a functionally specialized population is unknown. We tested the effects on respiratory and vocal behaviors of eliminating SST neuron glutamate release by Cre-Lox-mediated genetic ablation of the vesicular glutamate transporter 2 (VGlut2). We found the targeted loss of VGlut2 in SST neurons had no effect on viability in vivo, or on respiratory period or responses to neurokinin 1 or µ-opioid receptor agonists in vitro. We then compared medullary SST peptide expression in mice with that of two species that share extreme respiratory environments but produce either high or low frequency vocalizations. In the Mexican free-tailed bat, SST peptide-expressing neurons extended beyond the preBötC to the caudal pole of the VII motor nucleus. In the naked mole-rat, however, SST-positive neurons were absent from the ventrolateral medulla. We then analyzed isolation vocalizations from SST-Cre;VGlut2F/F mice and found a significant prolongation of the pauses between syllables during vocalization but no change in vocalization number. These data suggest that glutamate release from preBötC SST neurons is not essential for breathing but play a species- and behavior-dependent role in modulating respiratory networks. They further suggest that the neural network generating respiration is capable of extensive plasticity given sufficient time. PMID:25040660

  20. Plane Transformations in a Complex Setting III: Similarities

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2009-01-01

    This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…

  1. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  2. Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments

    PubMed Central

    Zhu, Jiapeng; King, Martin S.; Yu, Minmin; Klipcan, Liron; Leslie, Andrew G. W.; Hirst, Judy

    2015-01-01

    Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved “core” subunits and 31 “supernumerary” subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iβ, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iβ and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein–ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation. PMID:26371297

  3. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I).

    PubMed

    Friedrich, Thorsten; Dekovic, Doris Kreuzer; Burschel, Sabrina

    2016-03-01

    Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.

  4. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex.

    PubMed

    Wang, Jia; Chen, Haixia; Wang, Yanwei; Xing, Lisha

    2015-04-01

    A new Inonotus obliquus polysaccharide-iron(III) complex (IOPS-iron) was synthesized and characterized. The preparation conditions of IOPS-iron(III) were optimized and the physicochemical properties were characterized by physicochemical methods, scanning electron microscopy (SEM), electron paramagnetic resonance (EPR) spectroscopy, fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, respectively. The highest iron content of IOPS-iron(III) complex (19.40%) was obtained at the conditions: the ratio of IOPS and FeCl3 • 6H2O was 3:5 (w/w), the pH value of alkali solution was 10, the reaction temperature was 30 °C and the reaction time was 6h. The iron(III) was shown to be bound through the binding sites of the polysaccharide IOPS and it could form spatially separated iron centers on the polysaccharide backbone. IOPS-iron(III) complex was found to have good digestive availability and antioxidant activities in the in vitro assays, which suggested the IOPS-iron(III) complex might be used as a new iron supplement candidate.

  5. QM/MM MD simulations of La(III)-phosphopeptide complexes.

    PubMed

    Messner, Christoph B; Bonn, Günther K; Hofer, Thomas S

    2015-01-01

    Several bioanalytical enrichment techniques are based on the interactions of phosphopeptides with Ln(III) ions. In order to gain an improved understanding of these complexes and the respective ion-peptide interactions, hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations of La(III) coordinating to the phosphopeptide VPQLEIVPNSpAEER were conducted. Simulations of di- as well as monoanionic phosphate groups were carried out. The La(III) ion and its first hydration layer, including the sidechain of the phosphoserine residue were treated quantum mechanically at RI-MP2/triple zeta level, whereas the remaining part of the system was treated with classical potentials. The simulation of the dianionic phosphopeptide revealed a 9-fold coordinated La(III) ion, with the phosphopeptide binding bi- as well as monodentate. The mean residence times (τ) of the first shell water molecules were 82 ps and 37 ps for the bi- and monodentate complexes, respectively, which is much higher compared to free La(III) in aqueous solution (τ=17 ps). The simulation of the monoanionic La(III)-phosphopeptide complex revealed a bidentate coordination throughout the 80 ps sampling period. An intramolecular hydrogen bond between the hydrogen of the phosphate group and the backbone was observed and a τ value of 14 ps was obtained, which is much lower as for the dianionic complex.

  6. Cationic gold(III) alkyl complexes: generation, trapping, and insertion of norbornene.

    PubMed

    Rekhroukh, Feriel; Brousses, Rémy; Amgoune, Abderrahmane; Bourissou, Didier

    2015-01-19

    Migratory insertion of alkenes into gold-carbon bonds, a fundamental yet unprecedented organometallic transformation, has been investigated from a discrete (P,C) cyclometalated gold(III) dimethyl complex. Methide abstraction by B(C6F5)3 is shown to generate a highly reactive cationic Au(III) complex that evolves spontaneously by C6F5 transfer from boron. In the presence of norbornene, migratory insertion into the Au-C bond proceeds readily. The resulting norbornyl complex is efficiently trapped with pyridines or chloride to give stable four-coordinate adducts.

  7. A general access to organogold(iii) complexes by oxidative addition of diazonium salts.

    PubMed

    Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-05-11

    At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed. PMID:27094217

  8. Formation of Soluble Organo-Chromium(III) Complexes after Chromate Reduction in the Presence of Cellular Organics

    SciTech Connect

    Puzon, Geoffrey J.; Roberts, Arthur G.; Kramer, David M.; Xun, Luying

    2005-04-01

    Microbial reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] has been investigated as a method for bioremediation of Cr(VI) contaminated environments. The produced Cr(III) is thought to be insoluble Cr(OH)3; however, recent reports suggested a more complex fate of Cr(III). A bacterial enzyme system, using NADH as the reductant, converts Cr(VI) to a soluble NAD+-Cr(III) complex, and cytochrome c-mediated Cr(VI) reduction produces cytochrome c-Cr(III) adducts. In this study, Cr(VI) reduction in the presence of cellular organic metabolites formed both soluble and insoluble organo-Cr(III) end-products. Several soluble end-products were characterized by absorbance spectroscopy and electron paramagnetic resonance spectrometry as organo-Cr(III) complexes, similar to the known ascorbate-Cr(III) complex. The complexes remained soluble and stable upon dialysis against distilled H2O and over a broad pH range. The ready formation of stable organo-Cr(III) complexes suggests that organo-Cr(III) complexes are rather common, likely representing an integral part of the natural cycling of chromium. Finally, thus, organo-Cr(III) complexes may account for the mobile form of Cr(III) detected in the environment.

  9. Synthesis, characterization and DNA-binding studies on La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide

    NASA Astrophysics Data System (ADS)

    He, Xin-Qian; Lin, Qiu-Yue; Hu, Rui-Ding; Lu, Xiao-Hong

    2007-09-01

    La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide (HL) were synthesized and characterized by elemental analyses, conductivity measurement, IR spectra and thermal analysis. The general formulas of the complexes were [Ln(HL) 3(H 2O) 2](NO 3) 3·2H 2O [Ln = La(III), Ce(III)]. The results indicated that the oxygen of carbonyl and the nitrogen of pyridyl coordinated to Ln(III), and there were also two water molecules taking part in coordination. Ln(III) and HL formed 1:3 chelate complexes and the coordination number was eight. The interaction between the complexes and DNA was studied by means of UV-vis spectra, fluorescence spectra, SERS spectra and agarose gel electrophoresis. The results showed that complexes can bind to DNA. The binding ability decreased in following order: La(III) complex, Ce(III) complex, and HL. The interaction modes between DNA and the three compounds were found to be mainly intercalative.

  10. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities.

    PubMed

    Subissi, Lorenzo; Posthuma, Clara C; Collet, Axelle; Zevenhoven-Dobbe, Jessika C; Gorbalenya, Alexander E; Decroly, Etienne; Snijder, Eric J; Canard, Bruno; Imbert, Isabelle

    2014-09-16

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  11. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities

    PubMed Central

    Subissi, Lorenzo; Posthuma, Clara C.; Collet, Axelle; Zevenhoven-Dobbe, Jessika C.; Gorbalenya, Alexander E.; Decroly, Etienne; Snijder, Eric J.; Canard, Bruno; Imbert, Isabelle

    2014-01-01

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3′-5′ exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5′-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  12. A spectrophotometric study of Am(III) complexation with nitrate in aqueous solution at elevated temperatures.

    PubMed

    Tian, Guoxin; Shuh, David K

    2014-10-21

    The complexation of americium(iii) with nitrate was studied at temperatures from 10 to 85 °C in 1 M HNO3-HClO4 by spectrophotometry. The 1 : 1 complex species, AmNO3(2+), was identified and the stability constants were calculated from the absorption spectra recorded for titrations at several temperatures. Specific ion interaction theory (SIT) was used for ionic strength corrections to obtain the stability constants of AmNO3(2+) at infinite dilution and variable temperatures. The absorption spectra of Am(iii) in diluted HClO4 were also reviewed, and the molar absorptivity of Am(iii) at around 503 nm and 813 nm was re-calibrated by titrations with standardized DTPA solutions to determine the concentration of Am(iii). PMID:24999760

  13. Reactions of Co(III)–Nitrosyl Complexes with Superoxide and Their Mechanistic Insights

    PubMed Central

    Kumar, Pankaj; Lee, Yong-Min; Park, Young Jun; Siegler, Maxime A.; Karlin, Kenneth D.; Nam, Wonwoo

    2015-01-01

    New CoIII-nitrosyl complexes bearing N-tetramethylated cyclam (TMC) ligands, [(12-TMC)CoIII(NO)]2+ (1) and [(13-TMC)CoIII(NO)]2+ (2), were synthesized via [(TMC)CoII(CH3CN)]2+ plus NO(g) reactions. Spectroscopic and structural characterization shows that these compounds bind the nitrosyl moiety in a bent end-on fashion. The CoIII-nitrosyl complexes, (1) and (2), reacted with KO2/2.2.2-Cryptand and produced [(12-TMC)CoII(NO2)]+ (3) and [(13-TMC)CoII(NO2)]+ (4), respectively; these possess O,O’-chelated nitrito ligands. Mechanistic studies using 18O-labeled superoxide (18O2•−) demonstrate that one oxygen atom in the nitrito ligand derives from superoxide and dioxygen produced comes from the other superoxide oxygen atom. Evidence supporting the formation of a Co-peroxynitrite intermediate is also presented. PMID:25793706

  14. Visible-light sensitized luminescent europium(III)-β-diketonate complexes: bioprobes for cellular imaging.

    PubMed

    Reddy, M L P; Divya, V; Pavithran, Rani

    2013-11-21

    Visible-light sensitized luminescent europium(III) molecular materials are of considerable importance because their outstanding photophysical properties make them well suited as labels in fluorescence-based bioassays and low-voltage driven pure red-emitters in optoelectronic technology. One challenge in this field is development of visible-light sensitizing ligands that can form highly emissive europium(III) complexes with sufficient stability and aqueous solubility for practical applications. Indeed, some of the recent reports have demonstrated that the excitation-window can be shifted to longer-wavelengths in europium(III)-β-diketonate complexes by appropriate molecular engineering and suitably expanded π-conjugation in the complex molecules. In this review, attention is focused on the latest innovations in the syntheses and photophysical properties of visible-light sensitized europium(III)-β-diketonate complexes and their application as bioprobes for cellular imaging. Furthermore, luminescent nanomaterials derived from long-wavelength sensitized europium(III)-β-diketonate complexes and their application in life sciences are also highlighted.

  15. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-01

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area. PMID:26753824

  16. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramesh, R.

    2014-01-01

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.

  17. Modulation of Amyloid-β Aggregation by Histidine-coordinating Cobalt(III) Schiff Base Complexes

    PubMed Central

    Heffern, Marie C.; Velasco, Pauline T.; Matosziuk, Lauren M.; Coomes, Joseph L.; Karras, Constantine; Ratner, Mark A.; Klein, William B.; Eckermann, Amanda L.; Meade, Thomas J.

    2014-01-01

    Oligomers of the Aβ42 peptide are significant neurotoxins linked to Alzheimer’s Disease (AD). Histidine (His) residues present at the N-terminus of Aβ42 are believed to influence toxicity by either serving as metal-ion binding sites (that promote oligomerization and oxidative damage) or facilitating synaptic binding. Transition metal complexes that bind to these residues and modulate Aβ toxicity have emerged as therapeutic candidates. Cobalt(III) Schiff base complexes (Co(III)-sb) were evaluated for their ability to interact with Aβ peptides. HPLC-MS, NMR, fluorescence, and DFT studies demonstrated that Co(III)-sb complexes could interact with the His residues in a truncated Aβ16 peptide representing the Aβ42 N-terminus. Coordination of Co(III)-sb complexes altered the structure of Aβ42 peptides and promoted the formation of large soluble oligomers. Interestingly, this structural perturbation of Aβ correlated to reduced synaptic binding to hippocampal neurons. These results demonstrate the promise of Co(III)-sb complexes in anti-AD therapeutic approaches. PMID:24961930

  18. Toxic variability and radiation potentiation by Rh(III) complexes in Salmonella typhimurium cells

    SciTech Connect

    Richmond, R.C.; O'Hara, J.; Picker, D.H.; Douple, E.B.

    1986-12-01

    Stationary-phase cells of Salmonella typhimurium were irradiated in phosphate-buffered saline in the presence of rhodium complexes to test for the potentiation of radiation-induced cell killing. Eleven Rh complexes, two Rh(I) and nine Rh(III), were tested. Seven Rh(III) complexes were found to be radiation potentiators; six potentiate only under hypoxic conditions, and one potentiates under both hypoxic and oxic conditions. Four of these seven Rh(III) complexes demonstrate potentiation that is 2 to 13 times greater than the sensitization caused by oxygen. Irradiating cells in Ham's F-12 culture medium rather than in phosphate-buffered saline eliminates this latter hypoxic radiation potentiation. None of the seven Rh(III) radiation potentiators are directly toxic to cells. However, four complexes were tested for hypoxic radiation-induced cytocidal toxicity, and three were found to be toxic after irradiation. The efficiency of this toxicity is not sufficient to account for the observed radiation potentiation. It is suggested that both reductive and oxidative free radical events are involved in the spectrum of Rh(III) potentiation observed.

  19. Synthesis and properties of cobalt(III) complexes of 4-substituted pyridine-capped dioxocyclams.

    PubMed

    Reiff, Angela L; Garcia-Frutos, Eva M; Gil, Jun Mo; Anderson, Oren P; Hegedus, Louis S

    2005-12-12

    Cobalt(III) acetate and cyanide complexes of a series of 5,12-dioxocyclams capped across the 1,8-position by 4-substituted pyridines or pyrazine were synthesized and fully characterized. Both the spectroscopic and structural parameters for these complexes were remarkably insensitive to the electronic nature of the capping group, which ranged from the pi-accepting pyrazine group to the sigma-donating 4-[(dimethylamino)phenyl]pyridyl group. All of the complexes underwent an irreversible, one-electron reduction [Co(III)-->Co(II)] at potentials ranging from -0.95 V vs saturated calomel electrode (SCE) for the pyrazine-capped cobalt acetate complex to -1.36 V vs SCE for the pyridine-capped cobalt cyanide complexes. Pyridine-capped cobalt(III) cyanide complex underwent reaction with Rh2(OAc)4 and ruthenium(II) phthalocyanine[bis(benzonitrile)] to form tetrametallic and trimetallic complexes through coordination bridging by the cyanide nitrogen lone pair. These complexes represent two quite different structural types for cyanide-bridged polymetallics. Complex has a relatively long (2.192 A) cyanide N-to-Rh bond, and the CN-Rh bond angle (157.6 degrees) is strongly distorted from linear. In contrast, complex has a substantially shortened cyanide N-to-Ru bond (2.017 A) and an almost linear arrangement along the entire bridging axis of the molecule.

  20. Genome Analysis of Structure–Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme

    PubMed Central

    Degli Esposti, Mauro

    2016-01-01

    Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni–Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure–function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function. PMID:26615219

  1. Genome Analysis of Structure-Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme.

    PubMed

    Degli Esposti, Mauro

    2015-11-27

    Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni-Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure-function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function.

  2. The multitude of iron-sulfur clusters in respiratory complex I.

    PubMed

    Gnandt, Emmanuel; Dörner, Katerina; Strampraad, Marc F J; de Vries, Simon; Friedrich, Thorsten

    2016-08-01

    Respiratory complex I couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. Complex I contains one non-covalently bound flavin mononucleotide and, depending on the species, up to ten iron-sulfur (Fe/S) clusters as cofactors. The reason for the presence of the multitude of Fe/S clusters in complex I remained enigmatic for a long time. The question was partly answered by investigations on the evolution of the complex revealing the stepwise construction of the electron transfer domain from several modules. Extension of the ancestral to the modern electron input domain was associated with the acquisition of several Fe/S-proteins. The X-ray structure of the complex showed that the NADH oxidation-site is connected with the quinone-reduction site by a chain of seven Fe/S-clusters. Fast enzyme kinetics revealed that this chain of Fe/S-clusters is used to regulate electron-tunneling rates within the complex. A possible function of the off-pathway cluster N1a is discussed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  3. Tuning cobalt(III) Schiff base complexes as activated protein inhibitors.

    PubMed

    Heffern, Marie C; Reichova, Viktorie; Coomes, Joseph L; Harney, Allison S; Bajema, Elizabeth A; Meade, Thomas J

    2015-09-21

    Cobalt(III) Schiff base complexes ([Co(acacen)(L)2](+), where L = NH3) inhibit histidine-containing proteins through dissociative exchange of the labile axial ligands (L). This work investigates axial ligand exchange dynamics of [Co(acacen)(L)2](+) complexes toward the development of protein inhibitors that are activated by external triggers such as light irradiation. We sought to investigate ligand exchange dynamics to design a Co(III) complex that is substitutionally inert under normal physiological conditions for selective activation. Fluorescent imidazoles (C3Im) were prepared as axial ligands in [Co(acacen)(L)2](+) to produce complexes (CoC3Im) that could report on ligand exchange and, thus, complex stability. These fluorescent imidazole reporters guided the design of a new dinuclear Co(III) Schiff base complex containing bridging diimidazole ligands, which exhibits enhanced stability to ligand exchange with competing imidazoles and to hydrolysis within a biologically relevant pH range. These studies inform the design of biocompatible Co(III) Schiff base complexes that can be selectively activated for protein inhibition with spatial and temporal specificity.

  4. Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications

    PubMed Central

    Wikström, Mårten; Hummer, Gerhard

    2012-01-01

    Complex I (NADH-ubiquinone oxidoreductase) in the respiratory chain of mitochondria and several bacteria functions as a redox-driven proton pump that contributes to the generation of the protonmotive force across the inner mitochondrial or bacterial membrane and thus to the aerobic synthesis of ATP. The stoichiometry of proton translocation is thought to be 4 H+ per NADH oxidized (2 e-). Here we show that a H+/2 e- ratio of 3 appears more likely on the basis of the recently determined H+/ATP ratio of the mitochondrial F1Fo-ATP synthase of animal mitochondria and of a set of carefully determined ATP/2 e- ratios for different segments of the mitochondrial respiratory chain. This lower H+/2 e- ratio of 3 is independently supported by thermodynamic analyses of experiments with both mitochondria and submitochondrial particles. A reduced H+/2 e- stoichiometry of 3 has important mechanistic implications for this proton pump. In a rough mechanistic model, we suggest a concerted proton translocation mechanism in the three homologous and tightly packed antiporter-like subunits L, M, and N of the proton-translocating membrane domain of complex I. PMID:22392981

  5. PARACEST properties of a dinuclear neodymium(III) complex bound to DNA or carbonate.

    PubMed

    Nwe, Kido; Andolina, Christopher M; Huang, Ching-Hui; Morrow, Janet R

    2009-07-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane, 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications, because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s(-1)) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln(2)(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethyl phosphate, and DNA. The CEST amide peak of Nd(2)(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu(2)(1) show that double-stranded and hairpin-loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu(2)(1) carbonate complex (K(d) = 15 microM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds.

  6. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    PubMed

    Car, Pierre-Emmanuel; Favre, Annaïck; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3·CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour. PMID:26282265

  7. Aqueous complexation of citrate with neodymium(III) and americium(III): a study by potentiometry, absorption spectrophotometry, microcalorimetry, and XAFS.

    PubMed

    Brown, M Alex; Kropf, A Jeremy; Paulenova, Alena; Gelis, Artem V

    2014-05-01

    The aqueous complexation of Nd(III) and Am(III) with anions of citrate was studied by potentiometry, absorption spectrophotometry, microcalorimetry, and X-ray absorption fine structure (XAFS). Using potentiometric titration data fitting the metal-ligand (L) complexes that were identified for Nd(III) were NdHL, NdL, NdHL2, and NdL2; a review of trivalent metal-citrate complexes is also included. Stability constants for these complexes were calculated from potentiometric and spectrophotometric titrations. Microcalorimetric results concluded that the entropy term of complex formation is much more dominant than the enthalpy. XAFS results showed a dependence in the Debye-Waller factor that indicated Nd(iii)-citrate complexation over the pH range of 1.56-6.12.

  8. Characterization of the apoLp-III/LPS complex: insight in the mode of binding interaction

    PubMed Central

    Oztug, Merve; Martinon, Daisy; Weers, Paul M.M.

    2012-01-01

    Apolipoproteins are able to associate with lipopolysaccharides (LPS), potentially providing protection against septic shock. To gain insight in the molecular details of this binding interaction, apolipophorin III (apoLp-III) from Galleria mellonella was used as a model. The binding of apoLp-III to LPS was optimal around 37–40 °C, close to the LPS phase transition temperature. ApoLp-III formed complexes with LPS from E. coli (serotype O55:B5) with a diameter of 24 nm, a molecular weight of ~390 kDa, containing four molecules of apoLp-III and 24 molecules of LPS. The LPS-bound form of the protein was substantially more resistant to guanidine-induced denaturation compared to unbound protein. The denaturation profile displayed a multiphase character with a steep drop in secondary structure between 0–1 M guanidine, and a slower decrease above 1 M guanidine HCl. In contrast, apoLp-III bound to detoxified LPS was only slightly more resistant to guanidine HCl induced denaturation compared to unbound protein. Analysis of size-exclusion FPLC elution profiles of mixtures of apoLp-III with LPS or detoxified LPS indicated a much weaker binding interaction with detoxified LPS compared to intact LPS. These results indicate that apoLp-III initially interacts with exposed carbohydrate regions, but that the lipid A region is required for a more stable LPS binding interaction. PMID:22779761

  9. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions

    PubMed Central

    Diaz, Francisca; Garcia, Sofia; Padgett, Kyle R.; Moraes, Carlos T.

    2012-01-01

    We have created two neuron-specific mouse models of mitochondrial electron transport chain deficiencies involving defects in complex III (CIII) or complex IV (CIV). These conditional knockouts (cKOs) were created by ablation of the genes coding for the Rieske iron–sulfur protein (RISP) and COX10, respectively. RISP is one of the catalytic subunits of CIII and COX10 is an assembly factor indispensable for the maturation of Cox1, one of the catalytic subunits of CIV. Although the rates of gene deletion, protein loss and complex dysfunction were similar, the RISP cKO survived 3.5 months of age, whereas the COX10 cKO survived for 10–12 months. The RISP cKO had a sudden death, with minimal behavioral changes. In contrast, the COX10 cKO showed a distinctive behavioral phenotype with onset at 4 months of age followed by a slower but progressive neurodegeneration. Curiously, the piriform and somatosensory cortices were more vulnerable to the CIII defect whereas cingulate cortex and to a less extent piriform cortex were affected preferentially by the CIV defect. In addition, the CIII model showed severe and early reactive oxygen species damage, a feature not observed until very late in the pathology of the CIV model. These findings illustrate how specific respiratory chain defects have distinct molecular mechanisms, leading to distinct pathologies, akin to the clinical heterogeneity observed in patients with mitochondrial diseases. PMID:22914734

  10. Fighting Fenton Chemistry: A Highly Active Iron(III) Tetracarbene Complex in Epoxidation Catalysis.

    PubMed

    Kück, Jens W; Anneser, Markus R; Hofmann, Benjamin; Pöthig, Alexander; Cokoja, Mirza; Kühn, Fritz E

    2015-12-01

    Organometallic Fe complexes with exceptionally high activities in homogeneous epoxidation catalysis are reported. The compounds display Fe(II) and Fe(III) oxidation states and bear a tetracarbene ligand. The more active catalyst exhibits activities up to 183 000 turnovers per hour at room temperature and turnover numbers of up to 4300 at -30 °C. For the Fe(III) complex, a decreased Fenton-type reactivity is observed compared with Fe(II) catalysts reported previously as indicated by a substantially lower H2 O2 decomposition and higher (initial) turnover frequencies. The dependence of the catalyst performance on the catalyst loading, substrate, water addition, and the oxidant is investigated. Under all applied conditions, the advantageous nature of the use of the Fe(III) complex is evident.

  11. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor.

    PubMed

    Schut, Gerrit J; Zadvornyy, Oleg; Wu, Chang-Hao; Peters, John W; Boyd, Eric S; Adams, Michael W W

    2016-07-01

    Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.

  12. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor.

    PubMed

    Schut, Gerrit J; Zadvornyy, Oleg; Wu, Chang-Hao; Peters, John W; Boyd, Eric S; Adams, Michael W W

    2016-07-01

    Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26808919

  13. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.

    PubMed

    Hirst, Judy; Roessler, Maxie M

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron-sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26721206

  14. Preparation, spectroscopic and thermal characterization of new La(III), Ce(III), Sm(III) and Y(III) complexes of enalapril maleate drug. In vitro antimicrobial assessment studies

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-02-01

    The 1:1 M ratio metal complexes of enalapril maleate hypertensive drug with La(III), Ce(III), Sm(III) and Y(III) were synthesized. The suggested structures of the resulted complexes based on the results of elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment, thermal analysis (TG), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) were discussed. The infrared spectral data were suggested that enalapril reacts with metal ions as an ionic bidentate ligand through its carboxylate oxygen and the amide carbonyl oxygen, but in case of the Sm(III) complex, it reacted as a monodentate through its amide carbonyl oxygen. Maleate moiety acts with all these metals as bidentate ligand through its carboxylate or carbonyl oxygen. The kinetic and thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves. The antibacterial evaluation of the enalapril maleate and their complexes were also performed against some gram positive and negative bacteria as well as fungi.

  15. Complexation of Al(III) with gluconate in alkaline to hyperalkaline solutions: formation, stability and structure.

    PubMed

    Pallagi, Attila; Tasi, Ágost Gyula; Peintler, Gábor; Forgo, Péter; Pálinkó, István; Sipos, Pál

    2013-10-01

    Contrary to suggestions in the literature, it has been proven that Al(III) forms a 1 : 1 complex with gluconate (hereafter Gluc(-)) in strongly alkaline (pH > 12) aqueous solutions. The complex formation was proven via(27)Al and (1)H NMR, freezing-point depression, polarimetric measurements as well as potentiometric and conductometric titrations. This complexation is a pH independent process, i.e., a condensation reaction takes place. The stability constant of the complex formed was derived from (1)H NMR and polarimetric measurements, and was found to be log K = 2.4 ± 0.4. In the complex formed, Al(III) has a tetrahedral geometry, and the Al(OH)4(-) is most probably statistically distributed between the alcoholate groups of the Gluc(-). PMID:23897548

  16. Photophysics of Fe(III) complexes with fluorosalicylic acid isomers in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, Ivan P.; Melnikov, Alexey A.; Šípoš, Rastislav; Chekalin, Sergey V.; Šima, Jozef

    2016-09-01

    Transient absorption spectroscopy is used to study photophysical processes of 1:1 Fe(III) complexes with all four fluorosalicylic acid isomers (Fe-FSAs) in aqueous solutions. Excited states of Fe-FSAs decay to the ground electronic state with two time constants. The faster process is interpreted as internal conversion to the vibrationally hot electronic ground state and the slower one - as a combination of vibrational cooling and solvation of the ground state. The results obtained for Fe-FSAs and other previously investigated Fe(III) salicylato compounds allow us to reveal the main cause of photochemical stability of the complexes upon charge transfer band excitation.

  17. Mitochondrial complex III: an essential component of universal oxygen sensing machinery?

    PubMed

    Chandel, Navdeep S

    2010-12-31

    Oxygen is necessary for the survival of mammalian cells. In order to maintain adequate cellular oxygenation, mammals have evolved multiple acute and long-term adaptive responses to hypoxia. These include hypoxic increases in erythropoiesis, pulmonary vasoconstriction and carotid body neurosecretion. Collectively, these responses help maintain oxygen homeostasis as oxygen levels remain scarce. There are multiple effectors proposed to underlie these diverse responses to hypoxia including PHD2, AMPK, NADPH oxidases, and mitochondrial complex III. Here I propose a model wherein complex III is integral to oxygen sensing in regulating diverse response to hypoxia.

  18. Genesis of cilia and microvilli of rat nasal epithelia during prenatal development. III. Respiratory epithelium surface, including a comparison with the surface of the olfactory epithelium.

    PubMed Central

    Menco, B P; Farbman, A I

    1987-01-01

    During prenatal development the respiratory epithelium surface of the rat's nasal septum underwent the following changes. At intra-uterine day E14 there was a transformation from State I, cells with primary cilia only, to cells which also had microvilli (Stage II). Anterior parts of the nasal septum retained microvilli throughout further development. Posteriorly, centriole multiplication (Stage III) and formation of shafts of secondary cilia (Stage IV) occurred from around E16 and E18 onwards, respectively. From E18 to E20 numbers of cells with cilia increased at an overall rate of about 6 X 10(6) cells/cm2/day. Respiratory cilia and microvilli grew, on average, by about 0.3 micron/day and 0.1 micron/day, respectively. At Stage V, beginning around E19, the cilia became aligned within cells and, at Stage VI, beginning around E21, became synchronised between cells. Respiratory ciliogenesis in the nose is most precocious near the olfactory epithelium. The formation of respiratory cilia starts after that of olfactory cilia. However, unlike olfactory epithelium surfaces those of ciliated respiratory epithelia resembled those of adults around birth. Images Figs. 1-4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 PMID:3654366

  19. A Mononuclear Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Metal Ions†

    PubMed Central

    Lee, Yong-Min; Bang, Suhee; Kim, Yun Mi; Cho, Jaeheung; Hong, Seungwoo; Nomura, Takashi; Ogura, Takashi; Troeppner, Oliver; Ivanović-Burmazović, Ivana

    2014-01-01

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating reactivities of oxygen-containing metal complexes in a variety of biological and biomimetic reactions, including dioxygen activation/formation and functionalization of organic substrates. Mononuclear nonheme iron(III)-peroxo species are invoked as active oxygen intermediates in the catalytic cycles of dioxygen activation by nonheme iron enzymes and their biomimetic compounds. Here, we report mononuclear nonheme iron(III)-peroxo complexes binding redox-inactive metal ions, [(TMC)FeIII(O2)]+-M3+ (M3+ = Sc3+ and Y3+; TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), which are characterized spectroscopically as a ‘side-on’ iron(III)-peroxo complex binding a redox-inactive metal ion, (TMC)FeIII-(μ,η2:η2-O2)-M3+ (2-M). While an iron(III)-peroxo complex, [(TMC)FeIII(O2)]+, does not react with electron donors (e.g., ferrocene), one-electron reduction of the iron(III)-peroxo complexes binding redox-inactive metal ions occurs readily upon addition of electron donors, resulting in the generation of an iron(IV)-oxo complex, [(TMC)FeIV(O)]2+ (4), via heterolytic O-O bond cleavage of the peroxide ligand. The rates of the conversion of 2-M to 4 are found to depend on the Lewis acidity of the redox-inactive metal ions and the oxidation potential of the electron donors. We have also determined the fundamental electron-transfer properties of 2-M, such as the reduction potential and the reorganization energy in electron-transfer reaction. Based on the results presented herein, we have proposed a mechanism for the reactions of 2-M and electron donors; the reduction of 2-M to the reduced species, (TMC)FeII-(O2)-M3+ (2’-M), is the rate-determining step, followed by heterolytic O-O bond cleavage of the reduced species to form 4. The present results provide a biomimetic example demonstrating that redox-inactive metal ions bound to an iron(III)-peroxo intermediate play a

  20. Theoretical and spectroscopic studies of lanthanum (III) complex of 5-aminoorotic acid

    NASA Astrophysics Data System (ADS)

    Kostova, Irena; Peica, Niculina; Kiefer, Wolfgang

    2006-09-01

    The lanthanum (III) complex of 5-aminoorotic acid (HAOA) was synthesized and its structure was determined by means of elemental analysis and IR, Raman, and 1H NMR spectroscopies. Significant differences in the IR, Raman, and 1H NMR spectra of the complex were observed as compared to the spectra of the ligand. The geometry of 5-aminoorotic acid was computed and optimized with the Gaussian 03 program employing the B3PW91 and B3LYP methods with the 6-311++G and LANL2DZ basis sets, while the geometry of the La(III) complex of 5-aminoorotic acid was also calculated and optimized with B3PW91/LANL2DZ and B3LYP/LANL2DZ methods. The density functional calculations revealed that the binding mode in the complex was bidentate through the carboxylic oxygen atoms. Detailed vibrational analysis of HAOA and La(III)-AOA systems based on both the calculated and experimental spectra confirmed the suggested metal-ligand binding mode. The density functional theory (DFT) calculated geometries, harmonic vibrational wavenumbers including IR and Raman scattering activities for the ligand and its La(III) complex were in good agreement with the experimental data, a complete vibrational assignment being proposed.

  1. Molecular structure and biological studies on Cr(III), Mn(II) and Fe(III) complexes of heterocyclic carbohydrazone ligand

    NASA Astrophysics Data System (ADS)

    Abu El-Reash, G. M.; El-Gammal, O. A.; Radwan, A. H.

    2014-03-01

    The chelating behavior of the ligand (H2APC) based on carbohydrazone core modified with pyridine end towards Cr(III), Mn(II) and Fe(III) ions have been examined. The 1H NMR and IR data for H2APC revealed the presence of two stereoisomers syn and anti in both solid state and in solution in addition to the tautomeric versatility based on the flexible nature of the hydrazone linkage leading to varied coordination modes. The spectroscopic data confirmed that the ligand behaves as a monobasic tridentate in Cr(III) and Fe(III) complexes and as neutral tetradentate in Mn(II) complex. The electronic spectra as well as the magnetic measurements confirmed the octahedral geometry for all complexes. The bond length and angles were evaluated by DFT method using material studio program for all complexes. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and cytotoxic activities of the compounds have been screened. Cr(III) complex and H2APC showed the highest antioxidant activity using ABTS and DPPH methods. With respect to in vitro Ehrlich ascites assay, H2APC exhibited the potent activity followed by Fe(III) and Cr(III)complexes.

  2. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I.

    PubMed

    Sazanov, Leonid A

    2014-08-01

    NADH-ubiquinone oxidoreductase (complex I) is the first and largest enzyme in the respiratory chain of mitochondria and many bacteria. It couples the transfer of two electrons between NADH and ubiquinone to the translocation of four protons across the membrane. Complex I is an L-shaped assembly formed by the hydrophilic (peripheral) arm, containing all the redox centres performing electron transfer and the membrane arm, containing proton-translocating machinery. Mitochondrial complex I consists of 44 subunits of about 1 MDa in total, whilst the prokaryotic enzyme is simpler and generally consists of 14 conserved "core" subunits. Recently we have determined the first atomic structure of the entire complex I, using the enzyme from Thermus thermophilus (536 kDa, 16 subunits, 9 Fe-S clusters, 64 TM helices). Structure suggests a unique coupling mechanism, with redox energy of electron transfer driving proton translocation via long-range (up to ~200 Å) conformational changes. It resembles a steam engine, with coupling elements (akin to coupling rods) linking parts of this molecular machine. PMID:24943718

  3. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I.

    PubMed

    Sazanov, Leonid A

    2014-08-01

    NADH-ubiquinone oxidoreductase (complex I) is the first and largest enzyme in the respiratory chain of mitochondria and many bacteria. It couples the transfer of two electrons between NADH and ubiquinone to the translocation of four protons across the membrane. Complex I is an L-shaped assembly formed by the hydrophilic (peripheral) arm, containing all the redox centres performing electron transfer and the membrane arm, containing proton-translocating machinery. Mitochondrial complex I consists of 44 subunits of about 1 MDa in total, whilst the prokaryotic enzyme is simpler and generally consists of 14 conserved "core" subunits. Recently we have determined the first atomic structure of the entire complex I, using the enzyme from Thermus thermophilus (536 kDa, 16 subunits, 9 Fe-S clusters, 64 TM helices). Structure suggests a unique coupling mechanism, with redox energy of electron transfer driving proton translocation via long-range (up to ~200 Å) conformational changes. It resembles a steam engine, with coupling elements (akin to coupling rods) linking parts of this molecular machine.

  4. A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli.

    PubMed

    Knuuti, Juho; Belevich, Galina; Sharma, Vivek; Bloch, Dmitry A; Verkhovskaya, Marina

    2013-12-01

    Reactive oxygen species (ROS) production by respiratory Complex I from Escherichia coli was studied in bacterial membrane fragments and in the isolated and purified enzyme, either solubilized or incorporated in proteoliposomes. We found that the replacement of a single amino acid residue in close proximity to the nicotinamide adenine dinucleotide (NADH)-binding catalytic site (E95 in the NuoF subunit) dramatically increases the reactivity of Complex I towards dioxygen (O2 ). In the E95Q variant short-chain ubiquinones exhibit strong artificial one-electron reduction at the catalytic site, also leading to a stronger increase in ROS production. Two mechanisms can contribute to the observed kinetic effects: (a) a change in the reactivity of flavin mononucleotide (FMN) towards dioxygen at the catalytic site, and (b) a change in the population of the ROS-generating state. We propose the existence of two (closed and open) states of the NAD(+) -bound enzyme as one feature of the substrate-binding site of Complex I. The analysis of the kinetic model of ROS production allowed us to propose that the population of Complex I with reduced FMN is always low in the wild-type enzyme even at low ambient redox potentials, minimizing the rate of reaction with O2 in contrast to E95Q variant.

  5. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.

    PubMed

    Chaube, Balkrishna; Malvi, Parmanand; Singh, Shivendra Vikram; Mohammad, Naoshad; Meena, Avtar Singh; Bhat, Manoj Kumar

    2015-11-10

    Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma.

  6. Induction of antibody responses in the common mucosal immune system by respiratory syncytical virus immunostimulating complexes.

    PubMed

    Hu, K F; Ekström, J; Merza, M; Lövgren-Bengtsson, K; Morein, B

    1999-05-01

    Immunostimulating complexes (ISCOMs) containing envelope proteins of respiratory syncytial virus (RSV) were explored as a mucosal delivery system for the capacity of inducing a common mucosal antibody response. Two intranasal (i.n.) administrations of BALB/c mice with ISCOMs induced potent serum IgG, and strong IgA responses to RSV locally in the lungs and the upper respiratory, and remotely in the genital and the intestinal tracts. Virtually no measurable IgA response was found in these mucosal organs after two subcutaneous (s.c.) immunizations. Virus neutralizing (VN) antibodies were detected in serum and in all of the mucosal organ extracts after both s.c. and i.n. immunizations indicating that the neutralizing epitopes were preserved after both mucosal and parenteral modes of administration. While the mucosal IgA response appears to be of mucosal origin, the IgG antibodies to RSV detected in the mucosal organs were likely of serum origin. However, the mucosal VN antibodies correlated with the IgG rather than the IgA levels. An enhanced IgA response to gp120 in various mucosal organs was recorded after i.n. immunization with gp120 incorporated in RSV ISCOMs, indicating a role of RSV envelope proteins in enhancing and targeting mucosal responses to passenger antigens. PMID:10363675

  7. Lanthanide(III)/actinide(III) differentiation in coordination of azine molecules to tris(cyclopentadienyl) complexes of cerium and uranium.

    PubMed

    Mehdoui, Thouraya; Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel

    2004-02-21

    Reaction of azine molecules L with the trivalent metallocenes [M(C5H4R)3](M = Ce, U; R = But, SiMe3) in toluene gave the Lewis base adducts [M(C5H4R)3(L)](L = pyridine, 3-picoline, 3,5-lutidine, 3-chloropyridine, pyridazine, pyrimidine, pyrazine, 3,5-dimethylpyrazine and s-triazine), except in the cases of M = U and L = 3-chloropyridine, pyridazine, pyrazine and s-triazine where oxidation of U(III) was found to occur. In the pairs of analogous compounds of Ce(III) and U(III), i.e.[M(C5H4But)3(L)](L = pyridine, picoline) and [M(C5H4SiMe3)3(L)](L = pyridine, lutidine, pyrimidine and dimethylpyrazine), the M-N and average M-C distances are longer for M = Ce than for M = U; however, within a series of azine adducts of the same metallocene, no significant variation is noted in the M-N and average M-C distances. The equilibria between [M(C5H4R)3], L and [M(C5H4R)3(L)] were studied by 1H NMR spectroscopy. The stability constants of the uranium complexes, KUL, are greater than those of the cerium counterparts, KCeL. The values of KML are much greater for R = SiMe3 than for R = But and a linear correlation is found between the logarithms of KML and the hydrogen-bond basicity pKHB scale of the azines. Thermodynamic parameters indicate that the enthalpy-entropy compensation effect holds for these complexation reactions. Competition reactions of [Ce(C5H4R)3] and [U(C5H4R)3] with L show that the selectivity of L in favour of U(III) increases with the [small pi] donor character of the metallocene and is proportional to the pi accepting ability of the azine molecule, measured by its reduction potential.

  8. An EXAFS spectroscopic study of Am(III) complexation with lactate.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Kaplan, Ugras; Koke, Carsten; Rossberg, André; Panak, Petra J

    2015-11-01

    The pH dependence (1-7) of Am(III) complexation with lactate in aqueous solution is studied using extended X-ray absorption fine-structure (EXAFS) spectroscopy. Structural data (coordination numbers, Am--O and Am--C distances) of the formed Am(III)-lactate species are determined from the raw k(3)-weighted Am LIII-edge EXAFS spectra. Between pH 1 and pH 6, Am(III) speciation shifts continuously towards complexed species with increasing pH. At higher pH, the amount of complexed species decreases due to formation of hydroxo species. The coordination numbers and distances (3.41-3.43 Å) of the coordinating carbon atoms clearly point out that lactate is bound `side-on' to Am(III) through both the carboxylic and the α-hydroxy function of lactate. The experimentally determined coordination numbers are compared with speciation calculations on the basis of tabulated thermodynamic stability constants. Both EXAFS data and thermodynamic modelling are in very good agreement. The EXAFS spectra are also analyzed by iterative transformation factor analysis to further verify the determined Am(III) speciation and the used structural model. PMID:26524312

  9. Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation

    PubMed Central

    Cowley, Ryan E.; DeYonker, Nathan J.; Eckert, Nathan A.; Cundari, Thomas R.; DeBeer, Serena; Bill, Eckhard; Ottenwaelder, Xavier; Flaschenriem, Christine; Holland, Patrick L.

    2010-01-01

    Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky β-diketiminate ligand; Ad = 1-adamantyl). This paper addresses: (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by 1H NMR and EPR spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or X-ray absorption (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 ± 0.01 Å) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron–RN3 intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an RN3 radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N2 loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide. PMID:20524625

  10. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  11. Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics.

    PubMed

    Joffe, Daniel J; Lelewski, Roxana; Weese, J Scott; Mcgill-Worsley, Jamie; Shankel, Catharine; Mendonca, Sonia; Sager, Tara; Smith, Michael; Poljak, Zvonimir

    2016-01-01

    This study investigated the association between presence of respiratory pathogens and development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics. In total, 86 dogs were tested using a commercial PCR respiratory panel; 64 dogs were considered as cases and 22 were control dogs matched by veterinary clinic. No control animals (0/22) were positive for canine parainfluenza virus (CPIV), whereas 27/64 (42%) CIRDC cases were positive. Furthermore, 81% of case dogs tested positive for Mycoplasma cynos, compared with 73% of control dogs. Canine respiratory corona virus (CRCoV) was detected in no control dogs compared with 9.4% of clinical dogs. No animals were positive for any influenza virus type A present in the diagnostic panel. Presence of CPIV was associated (P < 0.01) with the occurrence of CIRDC after adjustment for demographic factors and presence of CRCoV (P = 0.09).

  12. Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics.

    PubMed

    Joffe, Daniel J; Lelewski, Roxana; Weese, J Scott; Mcgill-Worsley, Jamie; Shankel, Catharine; Mendonca, Sonia; Sager, Tara; Smith, Michael; Poljak, Zvonimir

    2016-01-01

    This study investigated the association between presence of respiratory pathogens and development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics. In total, 86 dogs were tested using a commercial PCR respiratory panel; 64 dogs were considered as cases and 22 were control dogs matched by veterinary clinic. No control animals (0/22) were positive for canine parainfluenza virus (CPIV), whereas 27/64 (42%) CIRDC cases were positive. Furthermore, 81% of case dogs tested positive for Mycoplasma cynos, compared with 73% of control dogs. Canine respiratory corona virus (CRCoV) was detected in no control dogs compared with 9.4% of clinical dogs. No animals were positive for any influenza virus type A present in the diagnostic panel. Presence of CPIV was associated (P < 0.01) with the occurrence of CIRDC after adjustment for demographic factors and presence of CRCoV (P = 0.09). PMID:26740697

  13. Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics

    PubMed Central

    Joffe, Daniel J.; Lelewski, Roxana; Weese, J. Scott; Mcgill-Worsley, Jamie; Shankel, Catharine; Mendonca, Sonia; Sager, Tara; Smith, Michael; Poljak, Zvonimir

    2016-01-01

    This study investigated the association between presence of respiratory pathogens and development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics. In total, 86 dogs were tested using a commercial PCR respiratory panel; 64 dogs were considered as cases and 22 were control dogs matched by veterinary clinic. No control animals (0/22) were positive for canine parainfluenza virus (CPIV), whereas 27/64 (42%) CIRDC cases were positive. Furthermore, 81% of case dogs tested positive for Mycoplasma cynos, compared with 73% of control dogs. Canine respiratory corona virus (CRCoV) was detected in no control dogs compared with 9.4% of clinical dogs. No animals were positive for any influenza virus type A present in the diagnostic panel. Presence of CPIV was associated (P < 0.01) with the occurrence of CIRDC after adjustment for demographic factors and presence of CRCoV (P = 0.09). PMID:26740697

  14. The luminescence response of Eu(III)-thenoyltrifluoroacetonate complexes upon preresonant excitation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Stefanov, Ivan L.; Stanimirov, Stanislav S.; Petkov, Ivan K.

    2010-01-01

    The luminescence of thenoyltrifluoroacetonate (TTA) coordination complexes of trivalent europium ion (Eu(III)) in aqueous solutions and in solid-state polymeric films is probed upon single- and two-photon preresonant excitation with Ti:sapphire femtosecond laser. Particularly, diamine-liganded Eu(III)(TTA) 3 and poly(oxyethylene phosphate)tris(β-diketonate)Eu(III) complexes are examined aiming their possible applications as luminescent labels for sensing and imaging of biological molecules. Even at a pre-resonance, the excitation of these compounds with high-intensity, broadband light of frequency-doubled Ti:sapphire femtosecond laser centered around 400 nm results in a luminescence response suitable for fluorometric applications.

  15. Modeling rare earth complexes: Sparkle/PM3 parameters for thulium(III)

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rocha, Gerd B.; Simas, Alfredo M.

    2006-07-01

    The Sparkle model, recently defined for Tm(III) within AM1 [R.O. Freire, G.B. Rocha, A.M. Simas, Chem. Phys. Lett. 411 (2005) 61], is now extended to PM3. For the same 15 complexes previously used, the Sparkle/PM3 unsigned mean error, for all interatomic distances between the Tm(III) ion and the directly coordinating oxygen or nitrogen atoms, is 0.08 Å, a level of accuracy equivalent to the Sparkle/AM1 figure of 0.07 Å, as well as to results from present day ab initio effective core potential calculations. The results thus indicate that both Sparkle/AM1 and Sparkle/PM3 models may prove useful for luminescent Tm(III) complex design.

  16. Luminescent Alkyne-Bearing Terbium(III) Complexes and Their Application to Bioorthogonal Protein Labeling.

    PubMed

    O'Malley, William I; Abdelkader, Elwy H; Aulsebrook, Margaret L; Rubbiani, Riccardo; Loh, Choy-Theng; Grace, Michael R; Spiccia, Leone; Gasser, Gilles; Otting, Gottfried; Tuck, Kellie L; Graham, Bim

    2016-02-15

    Two new bifunctional macrocyclic chelate ligands that form luminescent terbium(III) complexes featuring an alkyne group for conjugation to (bio)molecules via the Cu(I)-catalyzed "click" reaction were synthesized. Upon ligation, the complexes exhibit a significant luminescent enhancement when excited at the λ(max) of the "clicked" products. To demonstrate the utility of the complexes for luminescent labeling, they were conjugated in vitro to E. coli aspartate/glutamate-binding protein incorporating a genetically encoded p-azido-L-phenylalanine or p-(azidomethyl)-L-phenylalanine residue. The complexes may prove useful for time-gated assay applications.

  17. Theoretical studies on the photophysical properties of some Iridium (III) complexes used for OLED

    NASA Astrophysics Data System (ADS)

    Urinda, Sharmistha; Das, Goutam; Pramanik, Anup; Sarkar, Pranab

    2016-09-01

    The structural and photophysical properties of four heteroleptic Iridium (III) complexes, based on 1-phenylpyrazole ligand, have been investigated theoretically. The effect of chemical substitution on the absorption and the emission spectra of the complexes has been studied and compared with the experimental data. We observe a significant structural change in the lowest triplet excited state as compared to the ground singlet state. We compute the emission wavelength of the complexes by considering the spin-orbit coupling. Using these understandings, we predict two new complexes having deeper blue emission which are supposed to be better efficient OLED materials.

  18. Near-Infrared Phosphorescent Iridium(III) Benzonorrole Complexes Possessing Pyridine-based Axial Ligands.

    PubMed

    Maurya, Yogesh Kumar; Ishikawa, Takahiro; Kawabe, Yasunori; Ishida, Masatoshi; Toganoh, Motoki; Mori, Shigeki; Yasutake, Yuhsuke; Fukatsu, Susumu; Furuta, Hiroyuki

    2016-06-20

    Novel near-infrared phosphorescent iridium(III) complexes based on benzo-annulated N-linked corrole analogue (termed as benzonorrole) were synthesized. The structures of the complexes revealed octahedral coordination geometries involving an organometallic iridium-carbon bond with two external axial ligands. Interestingly, the iridium(III) complex exhibits near-infrared phosphorescence at room temperature at wavelengths beyond 900 nm. The significant redshift of the emission, as compared to the corrole congener, is originated from the ligand-centered triplet character. The fine-tuning of the photophysical properties of the complexes was achieved by introducing electron-donating and electron-withdrawing substituents on the axial pyridine ligands. PMID:27249778

  19. Geometric and Electronic Structure of a Peroxomanganese(III) Complex Supported by a Scorpionate Ligand

    PubMed Central

    Colmer, Hannah E.; Geiger, Robert A.; Leto, Domenick F.; Wijeratne, Gayan B.; Day, Victor W.; Jackson, Timothy A.

    2014-01-01

    A monomeric MnII complex has been prepared with the facially-coordinating TpPh2 ligand, (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin MnII ion. Treatment of this MnII complex with excess KO2 at room temperature resulted in the formation of a MnIII-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the MnIII-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz2 MO that is the donor MO for this transition. PMID:25312785

  20. Reduction of a linear complex model for respiratory system during Airflow Interruption.

    PubMed

    Jablonski, Ireneusz; Mroczka, Janusz

    2010-01-01

    The paper presents methodology of a complex model reduction to its simpler version - an identifiable inverse model. Its main tool is a numerical procedure of sensitivity analysis (structural and parametric) applied to the forward linear equivalent designed for the conditions of interrupter experiment. Final result - the reduced analog for the interrupter technique is especially worth of notice as it fills a major gap in occlusional measurements, which typically use simple, one- or two-element physical representations. Proposed electrical reduced circuit, being structural combination of resistive, inertial and elastic properties, can be perceived as a candidate for reliable reconstruction and quantification (in the time and frequency domain) of dynamical behavior of the respiratory system in response to a quasi-step excitation by valve closure.

  1. First structurally characterized mixed-halogen nickel(III) NCN-pincer complex

    NASA Astrophysics Data System (ADS)

    Kozhanov, Konstantin A.; Bubnov, Michael P.; Cherkasov, Vladimir K.; Fukin, Georgy K.; Vavilina, Nina N.; Efremova, Larisa Yu.; Abakumov, Gleb A.

    2009-03-01

    A square-pyramidal mixed-halogen nickel(III) NCN-pincer complex (PipeNCN)NiClBr (where PipeNCN = 2,6-bis(piperidinomethyl)phenyl) was structurally characterized. Bromine occupies apical position; pincer ligand and chlorine atom are in the basal plane. EPR detects that complex in solution exists as a mixture of two structural isomers with bromine or chlorine atoms in the top of pyramid.

  2. Enhanced photophysics from self-assembled cyclometalated Ir(iii) complexes in water.

    PubMed

    McGoorty, Michelle M; Khnayzer, Rony S; Castellano, Felix N

    2016-06-14

    Two water-soluble anionic cyclometalated Ir(iii) complexes, Ir(ppy)2BPS [] and Ir(F-mppy)2BPS [] have been synthesized and display clear evidence of self-assembly in water. Concentration-induced aggregation enhances the excited-state properties of both complexes, blue-shifting the photoluminescence emission energies as well as increasing the corresponding excited state lifetimes and quantum yields up to a factor of 5. PMID:27240481

  3. Negative results in phase III trials of complex interventions: cause for concern or just good science?

    PubMed

    Crawford, Mike J; Barnicot, Kirsten; Patterson, Sue; Gold, Christian

    2016-07-01

    Not all interventions that show promise in exploratory trials will be supported in phase III studies. But the high failure rate in recent trials of complex mental health interventions is a concern. Proper consideration of trial processes and greater use of adaptive trial designs could ensure better use of available resources. PMID:27369475

  4. Eu(III) Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance

    SciTech Connect

    Moore, Evan G.; D'Aleo, Anthony; Xu, Jide; Raymond, Kenneth N.

    2009-05-29

    The luminescence properties of lanthanoid ions can be dramatically enhanced by coupling them to antenna ligands that absorb light in the UV-visible and then efficiently transfer the energy to the lanthanoid centre. The synthesis and the complexation of Ln{sup III} cations (Ln = Eu, Gd) for a ligand based on four 1-hydroxy-2-pyridinone (1,2-HOPO) chelators appended to a ligand backbone derived by linking two L-lysine units (3LI-bis-LYS) is described. This octadentate Eu{sup III} complex ([Eu(3LI-bis-LYS-1,2-HOPO)]{sup -}) has been evaluated in terms of its thermodynamic stability, UV-visible absorption and luminescence properties. For this complex, the conditional stability constant (pM) is 19.9, which is an order of magnitude higher than diethylenetriaminepentacetic acid at pH = 7.4. This Eu{sup III} complex also shows an almost two-fold increase in its luminescence quantum yield in aqueous solution (pH = 7.4) when compared with other octadentate ligands. Hence, despite a slight decrease of the molar absorption coefficient, a much higher brightness is obtained for [Eu(3LI-bis-LYS-1,2-HOPO)]{sup -}. This overall improvement was achieved by saturating the coordination sphere of the Eu{sup III} cation, yielding an increased metal-centred efficiency by excluding solvent water molecules from the metal's inner sphere.

  5. Future Development Of The Flerov Laboratory Accelerator Complex (Project DRIBs-III)

    NASA Astrophysics Data System (ADS)

    Gulbekian, G. G.; Dmitriev, S. N.; Itkis, M. G.; Oganessian, Yu. Ts.; Popeko, A. G.

    2010-04-01

    Future development of the FLNR accelerator complex (project DRIBs-III) includes modernization of existing cyclotrons, construction of a new experimental hall, creation of a new high current cyclotron and of next generation experimental set-ups. Realization of the project is planned for 2010-2016.

  6. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  7. Dissolution of Fe(III)(hydr) oxides by metal-EDTA complexes

    SciTech Connect

    Nowack, B.; Sigg, L. |

    1997-03-01

    The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA > CaEDTA > PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced. 35 refs., 11 figs., 4 tabs.

  8. RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus

    PubMed Central

    Staals, Raymond H. J.; Zhu, Yifan; Taylor, David W.; Kornfeld, Jack E.; Sharma, Kundan; Barendregt, Arjan; Koehorst, Jasper J.; Vlot, Marnix; Neupane, Nirajan; Varossieau, Koen; Sakamoto, Keiko; Suzuki, Takehiro; Dohmae, Naoshi; Yokoyama, Shigeyuki; Schaap, Peter J.; Urlaub, Henning; Heck, Albert J. R.; Nogales, Eva; Doudna, Jennifer A.; Shinkai, Akeo; van der Oost, John

    2015-01-01

    SUMMARY CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1–Csm5) with an uneven stoichiometry and a single crRNA of variable size (35–53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence. PMID:25457165

  9. Synthesis, Physicochemical Properties, and Antimicrobial Studies of Iron (III) Complexes of Ciprofloxacin, Cloxacillin, and Amoxicillin

    PubMed Central

    Ajali, Uzoechi; Ukoha, Pius O.

    2014-01-01

    Iron (III) complexes of ciprofloxacin, amoxicillin, and cloxacillin were synthesized and their aqueous solubility profiles, relative stabilities, and antimicrobial properties were evaluated. The complexes showed improved aqueous solubility when compared to the corresponding ligands. Relative thermal and acid stabilities were determined spectrophotometrically and the results showed that the complexes have enhanced thermal and acid stabilities when compared to the pure ligands. Antimicrobial studies showed that the complexes have decreased activities against most of the tested microorganisms. Ciprofloxacin complex, however, showed almost the same activity as the corresponding ligand. Job's method of continuous variation suggested 1 : 2 metals to ligand stoichiometry for ciprofloxacin complex but 1 : 1 for cloxacillin complex. PMID:25505991

  10. The origin, composition, and reactivity of dissolved iron(III) complexes in coastal organic- and iron-rich sediments

    NASA Astrophysics Data System (ADS)

    Beckler, Jordon S.; Jones, Morris E.; Taillefert, Martial

    2015-03-01

    The redox chemistry and speciation of Fe in both solid and dissolved phases were characterized in the organic- and Fe-rich sediments of the Satilla River estuary in South-East Georgia (USA) on a series of four cruises between July 2007 and January 2008. Results indicate that dissolved Fe is present in relatively high concentration in the overlying waters at the freshwater end of the estuary and flocculates along the river as the salinity increases downstream. Soluble organic-Fe(III) complexes comprise the majority of dissolved Fe (<0.2 μm) in the suboxic pore waters of the upriver stations that are characterized by high concentrations of poorly crystalline Fe(III) (oxy)hydroxides. In contrast, SO42--reducing conditions downstream prevent the accumulation of organic-Fe(III) in the pore waters by titrating Fe from the sediment. Separation of dissolved Fe by size exclusion chromatography revealed that Fe(II) is complexed by organic ligands in the pore waters while the organic-Fe(III) complexes are either small or highly reactive with the column matrix. Finally, dissimilatory Fe(III) reduction, stimulated by inoculating anaerobic sediments with a Fe(III)-reducing bacterium (FeRB), Shewanella putrefaciens strain 200, increased production of soluble organic-Fe(III) complexes, and addition of reactive Fe(III) hydroxides accelerated the non-reductive dissolution of Fe(III) (oxy)hydroxides irrespective of the presence of exogenous FeRB. These findings suggest soluble organic-Fe(III) complexes in suboxic pore waters may be produced both as intermediates during the dissimilatory reduction of Fe(III) (oxy)hydroxides by Fe(III)-reducing microorganisms and during the oxidation of organic-Fe(II) complexes by Fe(III) (oxy)hydroxides. These soluble organic-Fe(III) complexes are stable in pore waters and may flux from the sediments to the continental shelf.

  11. Thermodynamic Features of the Complexation of Neodymium(III) and Americium(III) by Lactate in Trifluoromethanesulfonate Media.

    SciTech Connect

    Peter R. Zalupski; Leigh R. Martin; Kenneth L. Nash

    2010-10-01

    The protonation of lactate has been studied in a variety of electrolyte solutions using microcalorimetry to reveal a distinct medium influence imposed on the thermochemistry of the investigated equilibrium. The thermochemistry of lactate protonation, when studied directly in 1.0 M sodium lactate, agreed well with the studies performed in trifluoromethanesulfonate (triflate). This thermodynamic agreement suggests that the physical chemistry of lactate in the solutions applicable to the TALSPEAK process – a solvent extraction method for separating trivalent actinides from trivalent lanthanides within the scope of used nuclear fuel processing efforts – may be simulated in triflate solutions. Potentiometry, spectrophotometry and microcalorimetry have been subsequently used to study the thermodynamic features of neodymium and americium complexation by lactate using triflate as a strong background electrolyte. Three successive mononuclear lactate complexes were identified for Nd(III) and Am(III). The stability constants for neodymium, log ß1 = 2.60 ± 0.01, log ß2 = 4.66 ± 0.02 and log ß3 = 5.6 ± 0.1, and for americium, log ß1 = 2.60 ± 0.06, log ß2 = 4.7 ± 0.1 and log ß3 = 6.2 ± 0.2, were found to closely agree with the thermodynamic studies reported in sodium perchlorate solutions. Consequently, the thermodynamic medium effect, imposed on the TALSPEAK-related solution equilibria by the presence of strong background electrolytes such as NaClO4 and NaNO3, do not significantly impact the speciation in solution.

  12. Photolysis of Iron (III) carboxylate complexes relevant for tropospheric aqueous particles and cloud droplets

    NASA Astrophysics Data System (ADS)

    Herrmann, H.; Weller, C.; Bräuer, P.; Tilgner, A.

    2012-12-01

    Absorption spectra and Fe(II) quantum yields of iron(III) coordination complexes with oxalate, malonate, succinate, glutarate, tartronate, tartrate, gluconate, glyoxalate and pyruvate were experimentally determined. Measured quantum yields of malonate, glutarate and gluconate complexes are in the range of 0.02 < Φ < 0.05, while succinate, tartrate, pyruvate, glyoxylate and tartronate complexes show values between 0.12 < Φ < 1.21. For some systems, the effect of dissolved oxygen on the quantum yields was considered. Oxygen generally lowers the Fe(II) quantum yield for the complexes with tartronate, pyruvate, glyoxalate and gluconate. No oxygen effect was observed with tartrate and, surprisingly, in the case of succinate complexes a higher quantum yield was observed at 351 nm under increased oxygen concentrations in solution. In the case of oxalate, a dependence of the quantum yield on the initial concentration of iron(III) oxalato complexes was observed. A kinetic simulation of the reaction system after the photolysis was performed for oxalate, succinate, glyoxalate and tartrate complexes to characterize the influence of secondary thermal reactions on the quantum yield. A tropospheric chemistry simulation with the multiphase chemistry mechanism CAPRAM involving the photolysis of the studied complexes and subsequent reactions of the resulting species shows that the contribution of the iron complex photochemistry to the formation of oxidants such as the hydroperoxyl radical and its anion, the hydroxyl radical and H2O2 is low in comparison to other sources. However, it is shown that Fe(III) complex photolysis represents a major sink for some ligands in addition to the oxidation via free radicals.

  13. Heterometallic trinuclear {CoLn(III)} (Ln = Gd, Tb, Ho and Er) complexes in a bent geometry. Field-induced single-ion magnetic behavior of the Er(III) and Tb(III) analogues.

    PubMed

    Goura, Joydeb; Brambleby, Jamie; Topping, Craig V; Goddard, Paul A; Suriya Narayanan, Ramakirushnan; Bar, Arun Kumar; Chandrasekhar, Vadapalli

    2016-05-31

    Through the use of a multi-site compartmental ligand, 2-methoxy-6-[{2-(2-hydroxyethylamino)ethylimino}methyl]phenol (LH3), the family of heterometallic, trinuclear complexes of the formula [CoLn(L)2(μ-O2CCH3)2(H2O)3]·NO3·xMeOH·yH2O has been expanded beyond Ln = Dy(III) to include Gd(III) (), Tb(III) (), Ho(III) () and Er(III) () for , and (x = 1; y = 1) and for (x = 0; y = 2). The metallic core of these complexes consists of a (Co(III)-Ln(III)-Co(III)) motif bridged in a bent geometry resulting in six-coordinated distorted Co(III) octahedra and nine-coordinated Ln(III) monocapped square-antiprisms. The magnetic characterization of these compounds reveals the erbium and terbium analogues to display a field induced single-ion magnetic behavior similar to the dysprosium analogue but at lower temperatures. The energy barrier for the reversal of the magnetization of the CoTb(III) analogue is Ueff ≥ 15.6(4) K, while for the CoEr(III) analogue Ueff ≥ 9.9(8) K. The magnetic properties are discussed in terms of distortions of the 4f electron cloud.

  14. Heterometallic trinuclear {CoLn(III)} (Ln = Gd, Tb, Ho and Er) complexes in a bent geometry. Field-induced single-ion magnetic behavior of the Er(III) and Tb(III) analogues.

    PubMed

    Goura, Joydeb; Brambleby, Jamie; Topping, Craig V; Goddard, Paul A; Suriya Narayanan, Ramakirushnan; Bar, Arun Kumar; Chandrasekhar, Vadapalli

    2016-05-31

    Through the use of a multi-site compartmental ligand, 2-methoxy-6-[{2-(2-hydroxyethylamino)ethylimino}methyl]phenol (LH3), the family of heterometallic, trinuclear complexes of the formula [CoLn(L)2(μ-O2CCH3)2(H2O)3]·NO3·xMeOH·yH2O has been expanded beyond Ln = Dy(III) to include Gd(III) (), Tb(III) (), Ho(III) () and Er(III) () for , and (x = 1; y = 1) and for (x = 0; y = 2). The metallic core of these complexes consists of a (Co(III)-Ln(III)-Co(III)) motif bridged in a bent geometry resulting in six-coordinated distorted Co(III) octahedra and nine-coordinated Ln(III) monocapped square-antiprisms. The magnetic characterization of these compounds reveals the erbium and terbium analogues to display a field induced single-ion magnetic behavior similar to the dysprosium analogue but at lower temperatures. The energy barrier for the reversal of the magnetization of the CoTb(III) analogue is Ueff ≥ 15.6(4) K, while for the CoEr(III) analogue Ueff ≥ 9.9(8) K. The magnetic properties are discussed in terms of distortions of the 4f electron cloud. PMID:27180723

  15. Iron(III) protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine.

    PubMed

    de Villiers, Katherine A; Gildenhuys, Johandie; le Roex, Tanya

    2012-04-20

    The antimalarial properties of the Cinchona alkaloids quinine and quinidine have been known for decades. Surprisingly, 9-epiquinine and 9-epiquinidine are almost inactive. A lack of definitive structural information has precluded a clear understanding of the relationship between molecular structure and biological activity. In the current study, we have determined by single crystal X-ray diffraction the structures of the complexes formed between quinine and quinidine and iron(III) protoporphyrin IX (Fe(III)PPIX). Coordination of the alkaloid to the Fe(III) center is a key feature of both complexes, and further stability is provided by an intramolecular hydrogen bond formed between a propionate side chain of Fe(III)PPIX and the protonated quinuclidine nitrogen atom of either alkaloid. These interactions are believed to be responsible for inhibiting the incorporation of Fe(III)PPIX into crystalline hemozoin during its in vivo detoxification. It is also possible to rationalize the greater activity of quinidine compared to that of quinine.

  16. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition

    PubMed Central

    Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl

    2016-01-01

    Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154

  17. Spectroscopic studies on the interaction between tryptophan-erbium(III) complex and herring sperm DNA.

    PubMed

    Zhao, Na; Wang, Xingming; Pan, Haizhuan; Hu, Yamin; Ding, Lisheng

    2010-05-01

    By means of UV and fluorescence spectra, the binding ratios between Er(III)-Trp and DNA in physiological pH environment (pH 7.40) were determined as n(Trp):n(Er(III))=3:1 and (n)ER(III)(Trp)(3):(n)(DNA) = 2:1, and the apparent molar absorptivity of epsilon(Er(III)-Trp-DNA) is 4.33 x 10(5) L mol(-1)cm(-1) which was confirmed by molar ratio method. The binding constants at different temperatures K(B25 degrees C)(theta)=1.93 x 10(4)L mol(-1) and K(B37 degrees C)(theta)=5.28 x 10(3)L mol(-1) were obtained by double reciprocal method. Thermodynamic function computation demonstrates that Delta(r)H(m)(theta) is the primary driving power of the interaction between Er(III)(Trp)(3) and DNA. By combination analysis of the Scatchard method and CD spectrometry, we suggested that the interaction mode between Er(III)(Trp)(3) complex and herring sperm DNA is groove and intercalation bindings.

  18. Americium(iii) and europium(iii) complex formation with lactate at elevated temperatures studied by spectroscopy and quantum chemical calculations.

    PubMed

    Barkleit, Astrid; Kretzschmar, Jerome; Tsushima, Satoru; Acker, Margret

    2014-08-01

    Thermodynamic parameters for the complex formation of Am(iii) and Eu(iii) with lactate were determined with UV-vis and time-resolved laser-induced fluorescence spectroscopy (TRLFS) in a temperature range between 25 and 70 °C. The reaction enthalpy decreased with increasing ionic strength. ATR FT-IR and NMR spectroscopy in combination with density functional theory (DFT) calculations revealed structural details of the Eu(iii) lactate 1 : 1 complex: a chelating coordination mode of the lactate with a monodentate binding carboxylate group and the hydroxyl group being deprotonated.

  19. Synthesis, spectroscopic, thermal and anticancer studies of metal-antibiotic chelations: Ca(II), Fe(III), Pd(II) and Au(III) chloramphenicol complexes

    NASA Astrophysics Data System (ADS)

    Al-Khodir, Fatima A. I.; Refat, Moamen S.

    2016-09-01

    Four Ca(II), Fe(III), Pd(II) and Au(III) complexes of chloramphenicol drug have been synthesized and well characterized using elemental analyses, (infrared, electronic, and 1H-NMR) spectra, magnetic susceptibility measurement, and thermal analyses. Infrared spectral data show that the chloramphenicol drug coordinated to Ca(II), Pd(II) and Au(III) metal ions through two hydroxyl groups with 1:1 or 1:2 M ratios, but Fe(III) ions chelated towards chloramphenicol drug via the oxygen and nitrogen atoms of amide group with 1:2 ratio based on presence of keto↔enol form. The X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques were used to identify the nano-size particles of both iron(III) and gold(III) chloramphenicol complexes. The antimicrobial assessments of the chloramphenicol complexes were scanned and collected the results against of some kind of bacteria and fungi. The cytotoxic activity of the gold(III) complex was tested against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.

  20. The tumor proteasome as a novel target for gold(III) complexes: implications for breast cancer therapy

    PubMed Central

    Milacic, Vesna; Dou, Q. Ping

    2009-01-01

    Although cisplatin plays a vital role in the treatment of several types of human cancer, its wide use is limited by the development of drug resistance and associated toxic side effects. Gold and gold complexes have been used to treat a wide range of ailments for many centuries. In recent years, the use of gold(III) complexes as an alternative to cisplatin treatment was proposed due to the similarities of gold and platinum. Gold(III) is isoelectronic with platinum(II) and gold(III) complexes have the same square-planar geometries as platinum(II) complexes, such as cisplatin. Although it was originally thought that gold(III) complexes might have the same molecular target as cisplatin, several lines of data indicated that proteins, rather than DNA, are targeted by gold complexes. We have recently evaluated cytotoxic and anti-cancer effects of several gold(III) dithiocarbamates against human breast cancer cells in vitro and in vivo. We have identified the tumor proteasome as an important target for gold(III) complexes and have shown that proteasome inhibition by gold(III) complexes is associated with apoptosis induction in breast cancer cells in vitro and in vivo. Furthermore, treatment of human breast tumor-bearing nude mice with a gold(III) dithiocarbamate complex was associated with tumor growth inhibition, supporting the significance of its potential development for breast cancer treatment. PMID:20047011

  1. Dissolution of iron(III)(HYDR)oxides by metal-EDTA-complexes

    SciTech Connect

    Nowack, B.; Sigg, L.

    1996-10-01

    The dissolution of Fe(III)(hydroxides) (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by adsorption of the metal-EDTA to the surface, dissociation of the complex at the surface and release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to uncomplexed EDTA. The rate decreases in the order EDTA >> CaEDTA > PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the system: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step (1) is more important than (2) and the difference in the dissolution rate for several metals is small. In the case of hydrous ferric oxide, step (2) is rate-limiting and the effect of the complexed metal is very pronounced.

  2. Single-molecule magnetism in three related {Co(III)2Dy(III)2}-acetylacetonate complexes with multiple relaxation mechanisms.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2013-06-17

    Three new heterometallic complexes with formulas of [Dy(III)2Co(III)2(OMe)2(teaH)2(acac)4(NO3)2] (1), [Dy(III)2Co(III)2(OH)2(teaH)2(acac)4(NO3)2]·4H2O (2), and [Dy(III)2Co(III)2(OMe)2(mdea)2(acac)4(NO3)2] (3) were characterized by single-crystal X-ray diffraction and by dc and ac magnetic susceptibility measurements. All three complexes have an identical "butterfly"-type metallic core that consists of two Dy(III) ions occupying the "body" position and two diamagnetic low-spin Co(III) ions occupying the outer "wing-tips". Each complex displays single-molecule magnet (SMM) behavior in zero applied magnetic field, with thermally activated anisotropy barriers of 27, 28, and 38 K above 7.5 K for 1-3, respectively, as well as observing a temperature-independent mechanism of relaxation below 5 K for 1 and 2 and at 3 K for 3, indicating fast quantum tunneling of magnetization (QTM). A second, faster thermally activated relaxation mechanism may also be active under a zero applied dc field as derived from the Cole-Cole data. Interestingly, these complexes demonstrate further relaxation modes that are strongly dependent upon the application of a static dc magnetic field. Dilution experiments that were performed on 1, in the {Y(III)2Co(III)2} diamagnetic analog, show that the slow magnetic relaxation is of a single-ion origin, but it was found that the neighboring ion also plays an important role in the overall relaxation dynamics.

  3. A chelating diisocyanide ligand for cyclometalated Ir(III) complexes with strong and tunable luminescence.

    PubMed

    Monti, Filippo; Baschieri, Andrea; Matteucci, Elia; Mazzanti, Andrea; Sambri, Letizia; Barbieri, Andrea; Armaroli, Nicola

    2015-01-01

    We report the synthesis, structural characterisation and detailed photophysical description of three cationic cyclometalated iridium(III) complexes (2-4) bearing a chelating diisocyanide as the ancillary ligand (1 = 2,2''-diisocyano-1,1':3',1''-terphenyl). All compounds display irreversible reduction and oxidation potentials and emit from a triplet excited state centred on the cyclometalating ligands with lifetimes of several dozen microseconds, as commonly observed for other iridium(III) isocyanide complexes and further confirmed by DFT calculations. Room-temperature photoluminescence can be tuned from blue to orange upon variation of the cyclometalating ligands, and the related quantum yields range from around 30% in acetonitrile solution to nearly 80% in solid-state, as for complex 3 embedded in a 1% w/w poly(methyl methacrylate) matrix.

  4. Complex formation of Am(III) and Am(IV) with phosphate ions in acetonitrile solutions

    SciTech Connect

    Perevalov, S.A.; Lebedev, I.A.; Myasoedov, B.F.

    1988-05-01

    The first dissociation constant of H/sub 3/PO/sub 4/ in acetonitrile solution (K/sub 1//sup 0/ = 1.75/centered dot/10/sup /minus/13/) and the constant of formation of H(H/sub 2/PO/sub 4/)/sub 2//sup /minus// dimers (K/sub d//sup 0/ = 8/centered dot/10/sup 2/) were determined by the method of pH-potentiometry. The complex formation of Am(III) in acetonitrile solutions containing 0.05-2.0 M H/sub 3/PO/sub 4/ was investigated by a spectrophotometric method; the stability constants of the complexes AmH/sub 2/PO/sub 4//sup 2+/ (/beta//sub 1//sup III/ = 1.0/centered dot/10/sup 12/) and Am(H/sub 2/PO/sub 4/)/sub 2//sup +/ (/beta//sub 2//sup III/ = 4.3/centered dot/10/sup 24/) were determined. The formal potentials of the couple Am/sup (IV)//Am/sup (III)/ in 0.3-1.9 M solutions of H/sub 3/PO/sub 4/ in acetonitrile were measured, and the stability constant of the phosphate complex of tetravalent americium Am(H/sub 2/PO/sub 4/)/sub 3//sup +/ (/beta//sub 3//sup IV/ = 2.5/centered dot/10/sup 46/) was calculated according to the value of the shift of the potential relative to the standard.

  5. Synthesis of Cr(III)-Morin Complex: Characterization and Antioxidant Study

    PubMed Central

    Panhwar, Qadeer K.; Memon, Shahabuddin

    2014-01-01

    The complex formation between Cr(III) and morin was carried out in methanol and confirmed by analytical characterization using UV-Vis, IR, 1H NMR, and TG-DTA. UV-Vis shows significant bathochromic shift in benzoyl upon coordination as well as IR well illustrates the peak shift of C=O group and formation of a O–Cr(III) bond. Likewise, 1H NMR studies clarify that Cr(III) metal ion replaces the 5OH proton hence; 5-hydroxy-4-keto site is employed by morin in chelation to form six-membered stable ring system out of three available chelating sites. In addition, TG-DTA denotes the presence of coordinated and crystalline water molecules. The melting point of the complex was found to be 389°C by DSC. In addition, Cr(III)-morin complex was found to be a more potent antioxidant than morin as evaluated by DPPH• and FRAP methods. PMID:24688439

  6. Electron paramagnetic resonance characteristics of some non-heme low-spin iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Duelund, Lars; Toftlund, Hans

    2000-02-01

    We have recorded the powder EPR-spectra of some near octahedral iron(III) complexes with tridentate ligands donors and analysed their spectra with simple ligand field analysis and for some cases with the angular overlap model (AOM). We have determined the electron praramagnetic resonance (EPR) characteristic of bis 1,4,7-triazacyclonane iron(III)chloride at 4 K and found that it was similar to the characteristics of the so-called 'highly anisotropic low spin' complexes. We have recorded the powder spectra of bis (2,6-bis(benzimidazoly-2-yl)pyridine) iron(III) perchlorate and made an AOM-analyses of the structural similar complex bis-(2,6 (N-carbamoyl)-pyridine) iron(III). With a combination of ligand field analyses and AOM, we could determine the π-donor properties of these ligands. The same approach have been used to determine the π-donor properties of the hydroperoxo ligand. Finally we have recorded the powder EPR-spectrum of [Fe(CN) 6] 3- doped in K 3[Co(CN) 6] and [Co(NH 3) 6][Co(CN) 6] at 4 and 100 K and in water at 4 K. The spectra are interpreted as the effect of a dynamic Jahn-Teller distortion.

  7. Highly selective fluorescent sensing of fenitrothion using per-6-amino-β-cyclodextrin:Eu(III) complex.

    PubMed

    Kanagaraj, Kuppusamy; Affrose, Abdullah; Sivakolunthu, Subbaiah; Pitchumani, Kasi

    2012-05-15

    A unique, efficient, highly sensitive and selective fluorescent chemosensor for fenitrothion has been reported for the first time using per-6-amino-β-cyclodextrin:Eu(III) complex. Among the various pesticides, the sensitivity response is found to be in the order, fenitrothion>quinalphos>methylparathion>parathion>methylparaoxon>paraoxon>fenchlorphos>profenofos>malathion. A detection limit as low as 1 × 10(-12)M for fenitrothion sensing is realized with a 2.4% relative standard deviation (RSD) of three consecutive runs. The per-6-amino-β-cyclodextrin:Eu(III):pesticide complexes and their sensing mechanism are evidenced from emission, NMR, FT-IR, binding constant measurement, Job's plot, ICD spectra, ESI-MS, lifetime measurements and molecular modeling studies. The proposed sensing is a consequence of Absorption Energy Transfer Emission (AETE) process as a result of better encapsulation of fenitrothion inside the cavity of per-6-amino-β-cyclodextrin:Eu(III) complex. The remarkable sensitivity and selectivity of fenitrothion compared to other OPs, is attributed to a more deeper binding and tighter fit of fenitrothion inside the CD cavity, which is evident from binding constant values and molecular modeling studies. This tighter fit ensures the replacement of two coordinating water molecules on Eu(III) ion, which may have contributed to the more selective sensing of fenitrothion. PMID:22425222

  8. Microwave-Assisted Synthesis of Heteroleptic Ir(III)(+) Polypyridyl Complexes.

    PubMed

    Monos, Timothy M; Sun, Alexandra C; McAtee, Rory C; Devery, James J; Stephenson, Corey R J

    2016-08-19

    We report a rapid, one-pot, operationally simple, and scalable preparation of valuable cationic heteroleptic iridium(III) polypyridyl photosensitizers. This method takes advantage of two consecutive microwave irradiation steps in the same reactor vial, avoiding the need for additional reaction purifications. A number of known heteroleptic iridium(III) complexes are prepared in up to 96% yield. Notably, this method is demonstrated to provide the synthetically versatile photosensitizer [Ir(ppy)2(dtbbpy)]PF6 in >1 g quantities in less than 5 h of bench time. We envision this method will help accelerate future developments in visible-light-dependent chemistry. PMID:27301646

  9. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction.

    PubMed

    Barman, Prasenjit; Upadhyay, Pranav; Faponle, Abayomi S; Kumar, Jitendra; Nag, Sayanta Sekhar; Kumar, Devesh; Sastri, Chivukula V; de Visser, Sam P

    2016-09-01

    Metal-peroxo intermediates are key species in the catalytic cycles of nonheme metalloenzymes, but their chemical properties and reactivity patterns are still poorly understood. The synthesis and characterization of a manganese(III)-peroxo complex with a pentadentate bispidine ligand system and its reactivity with aldehydes was studied. Manganese(III)-peroxo can react through hydrogen-atom abstraction reactions instead of the commonly proposed nucleophilic addition reaction. Evidence of the mechanism comes from experiments which identify a primary kinetic isotope effect of 5.4 for the deformylation reaction. Computational modeling supports the established mechanism and identifies the origin of the reactivity preference of hydrogen-atom abstraction over nucleophilic addition.

  10. Anion Effects on Lanthanide(III) Tetrazole-1-acetate Dinuclear Complexes Showing Slow Magnetic Relaxation and Photofluorescent Emission.

    PubMed

    Lu, Ying-Bing; Jiang, Xiao-Ming; Zhu, Shui-Dong; Du, Zi-Yi; Liu, Cai-Ming; Xie, Yong-Rong; Liu, Liang-Xian

    2016-04-18

    Three types of lanthanide complexes based on the tetrazole-1-acetic acid ligand and the 2,2'-bipyridine coligand were prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analyses; the formulas of these complexes are [Ln2(1-tza)4(NO3)2(2,2'-bipy)2] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5)), [Dy2(1-tza)4Cl2(2,2'-bipy)2] (6), and [Yb2(1-tza)4(NO3)2(2,2'-bipy)2] (7) (1-tza = tetrazole-1-acetate and 2,2'-bipy = 2,2'-bipyridine). They are dinuclear complexes possessing similar structures but different lanthanide(III) ion coordination geometries because of the distinction of peripheral anions (such as NO3(-) and Cl(-)) and the effect of lanthanide contraction. The variable-temperature magnetic susceptibilities of 1-6 were measured. Both Dy(III) complexes (5 and 6) display field-induced single-molecule magnet behaviors. Ab initio calculations revealed that the Dy(III) complex 6 possesses a more anisotropic Dy(III) ion in comparison to that in 5. The room-temperature photoluminescence spectra of Sm(III) (1), Eu(III) (2), Tb(III) (4), and Dy(III) (5 and 6) complexes exhibit strong characteristic emissions in the visible region, whereas the Yb(III) (7) complex shows near-infrared (NIR) luminescence. PMID:27023680

  11. Complexation of Lactate with Nd(III) and Eu(III) at Variable Temperatures: Studies by Potentiometry, Microcalorimetry, Optical Absorption and Luminescence Spectroscopy

    SciTech Connect

    Tian, Guoxin; Martin, Leigh R.; Rao, Linfeng

    2010-10-01

    Complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy and microcalorimetry. Stability constants of three successive lactate complexes (ML{sup 2+}, ML{sup 2+} and ML{sub 3}(aq), where M stands for Nd and Eu, and L stands for lactate) at 10, 25, 40, 55 and 70 C were determined. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd{sup 3+} and Eu{sup 3+}) with lactate is exothermic, and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated {alpha}-hydroxyl group of lactate participates in the complexation.

  12. Complexation of lactate with neodymium(III) and europium(III) at variable temperatures: studies by potentiometry, microcalorimetry, optical absorption, and luminescence spectroscopy.

    PubMed

    Tian, Guoxin; Martin, Leigh R; Rao, Linfeng

    2010-11-15

    The complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy, and microcalorimetry. The stability constants of three successive lactate complexes (ML(2+), ML(2)(+), and ML(3)(aq), where M stands for Nd and Eu and L stands for lactate) at 10, 25, 40, 55, and 70 °C were determined. The enthalpies of complexation at 25 °C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd(3+) and Eu(3+)) with lactate is exothermic and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated α-hydroxyl group of lactate participates in the complexation.

  13. Effects of Ligand Geometry on the Photophysical Properties of Photoluminescent Eu(III) and Sm(III) 1-Hydroxypyridin-2-one Complexes in Aqueous Solution.

    PubMed

    Daumann, Lena J; Tatum, David S; Andolina, Christopher M; Pacold, Joseph I; D'Aléo, Anthony; Law, Ga-lai; Xu, Jide; Raymond, Kenneth N

    2016-01-01

    A series of 10 tetradentate 1-hydroxy-pyridin-2-one (1,2-HOPO) ligands and corresponding eight-coordinated photoluminescent Eu(III) and Sm(III) complexes were prepared. Generally, the ligands differ by the linear (nLI) aliphatic linker length, from 2 to 8 methylene units between the bidentate 1,2-HOPO chelator units. The photoluminescent quantum yields (Φtot) were found to vary with the linker length, and the same trend was observed for the Eu(III) and Sm(III) complexes. The 2LI and 5LI bridged complexes are the brightest (Φtotxε). The change in ligand wrapping pattern between 2LI and 5LI complexes observed by X-ray diffraction (XRD) is further supported by density functional theory (DFT) calculations. The bimodal Φtot trends of the Eu(III) and Sm(III) complexes are rationalized by the change in ligand wrapping pattern as the bridge (nLI) is increased in length.

  14. Performance characteristics of the new Abbott Real Time MTB assay for detection of Mycobacterium tuberculosis complex in respiratory specimens.

    PubMed

    Vinuesa, Víctor; Navarro, David; Poujois, Sandrine; Zaragoza, Susana; Borrás, Rafael

    2016-03-01

    The performance of the Abbott Real Time MTB assay for detection of Mycobacterium tuberculosis complex in respiratory specimens was evaluated using a standard culture as the reference. The overall concordance between both methods was 0.95. The assay displayed an excellent sensitivity (100% for smear-positive/92.3% for smear-negative specimens) and specificity (100%).

  15. Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I1[OPEN

    PubMed Central

    Kühn, Kristina; Obata, Toshihiro; Feher, Kristen; Bock, Ralph; Fernie, Alisdair R.; Meyer, Etienne H.

    2015-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is central to cellular NAD+ recycling and accounts for approximately 40% of mitochondrial ATP production. To understand how complex I function impacts respiration and plant development, we isolated Arabidopsis (Arabidopsis thaliana) lines that lack complex I activity due to the absence of the catalytic subunit NDUFV1 (for NADH:ubiquinone oxidoreductase flavoprotein1) and compared these plants with ndufs4 (for NADH:ubiquinone oxidoreductase Fe-S protein4) mutants possessing trace amounts of complex I. Unlike ndufs4 plants, ndufv1 lines were largely unable to establish seedlings in the absence of externally supplied sucrose. Measurements of mitochondrial respiration and ATP synthesis revealed that compared with ndufv1, the complex I amounts retained by ndufs4 did not increase mitochondrial respiration and oxidative phosphorylation capacities. No major differences were seen in the mitochondrial proteomes, cellular metabolomes, or transcriptomes between ndufv1 and ndufs4. The analysis of fluxes through the respiratory pathway revealed that in ndufv1, fluxes through glycolysis and the tricarboxylic acid cycle were dramatically increased compared with ndufs4, which showed near wild-type-like fluxes. This indicates that the strong growth defects seen for plants lacking complex I originate from a switch in the metabolic mode of mitochondria and an up-regulation of respiratory fluxes. Partial reversion of these phenotypes when traces of active complex I are present suggests that complex I is essential for plant development and likely acts as a negative regulator of respiratory fluxes. PMID:26134164

  16. Redox-induced activation of the proton pump in the respiratory complex I

    PubMed Central

    Sharma, Vivek; Belevich, Galina; Gamiz-Hernandez, Ana P.; Róg, Tomasz; Vattulainen, Ilpo; Verkhovskaya, Marina L.; Wikström, Mårten; Hummer, Gerhard; Kaila, Ville R. I.

    2015-01-01

    Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions. PMID:26330610

  17. Engineering the Respiratory Complex I to Energy-converting NADPH:Ubiquinone Oxidoreductase*

    PubMed Central

    Morina, Klaudia; Schulte, Marius; Hubrich, Florian; Dörner, Katerina; Steimle, Stefan; Stolpe, Stefan; Friedrich, Thorsten

    2011-01-01

    The respiratory complex I couples the electron transfer from NADH to ubiquinone with a translocation of protons across the membrane. Its nucleotide-binding site is made up of a unique Rossmann fold to accommodate the binding of the substrate NADH and of the primary electron acceptor flavin mononucleotide. Binding of NADH includes interactions of the hydroxyl groups of the adenosine ribose with a conserved glutamic acid residue. Structural analysis revealed that due to steric hindrance and electrostatic repulsion, this residue most likely prevents the binding of NADPH, which is a poor substrate of the complex. We produced several variants with mutations at this position exhibiting up to 200-fold enhanced catalytic efficiency with NADPH. The reaction of the variants with NAD(P)H is coupled with proton translocation in an inhibitor-sensitive manner. Thus, we have created an energy-converting NADPH:ubiquinone oxidoreductase, an activity so far not found in nature. Remarkably, the oxidation of NAD(P)H by the variants leads to an enhanced production of reactive oxygen species. PMID:21832062

  18. Electrogenerated chemiluminescence from heteroleptic iridium(III) complexes with multicolor emission.

    PubMed

    Zhou, Yuyang; Gao, Hongfang; Wang, Xiaomei; Qi, Honglan

    2015-02-16

    Electrogenerated chemiluminescence (ECL) with different emission colors is important in the development of multichannel analytical techniques. In this report, five new heteroleptic iridium(III) complexes were synthesized, and their photophysical, electrochemical, and ECL properties were studied. Here, 2-(2,4-difluorophenyl)pyridine (dfppy, complex 1), 2-phenylbenzo[d]thiazole (bt, complex 2), and 2-phenylpyridine (ppy, complex 3) were used as the main ligands to tune the emission color, while avobenzone (avo) was used as the ancillary ligand. For comparison, complexes 4 and 5 with 2-phenylpyridine and 2-phenylbenzo[d]thiazole as the main ligand, respectively, and acetyl acetone (acac) as the ancillary ligand were also synthesized. All five iridium(III) complexes had strong intraligand absorption bands (π–π*) in the UV region (below 350 nm) and a featureless MLCT (d−π*) transition in the visible 400–500 nm range. Multicolored emissions were observed for these five iridium(III) complexes, including green, orange, and red for complexes 4, 5, 2, 1, 3, respectively. Density functional theory calculations indicate that the electronic density of the highest occupied molecular orbital is entirely located on the C^N ligands and the iridium atom, while the formation of the lowest unoccupied molecular orbital (LUMO) is complicated. The LUMO is mainly assigned to the ancillary ligand for complexes 1 and 3 but to the C^N ligand for complexes 2, 4, and 5. Cyclic voltammetry studies showed that all these complexes have a reversible oxidation wave, but no reduction waves were found in the electrochemical windows of CH2Cl2. The E1/2(ox) values of these complexes ranged from 0.642 to 0.978 V for complexes 3, 4, 2, 5, 1, (in increasing order) and are all lower than that of Ru(bpy)3(2+). Most importantly, when using tripropylamine as a coreactant, complexes 1–5 exhibited intense ECL signals with an emission wavelength centered at 616, 580, 663, 536, and 569 nm, respectively

  19. Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex.

    PubMed

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Liu, Shejiang

    2015-03-21

    The harmfulness of carcinogenic hexavalent chromium (Cr(VI)) is dramatically decreased when Cr(VI) is reduced to trivalent chromium (Cr(III)). Rutin, a natural flavonoid, exhibits excellent antioxidant activity by coordinating metal ions. In this study, a complex containing rutin and Cr(III) (rutin-Cr(III)) was synthesized and characterized. The rutin-Cr(III) complex was much easier to reduce than rutin. The reduction of the rutin-Cr(III) complex was highly pH-dependent, with 90% of the Cr(VI) being reduced to Cr(III) in 2h under optimal conditions. A biodegradable, sustained-release system encapsulating the rutin-Cr(III) complex in a alginate-chitosan microcapsule (rutin-Cr(III) ACMS) was also evaluated, and the reduction of Cr(VI) was assessed. This study also demonstrated that low-pH solutions increased the reduction rate of Cr(VI). The environmentally friendly microcapsules can reduce Cr(VI) for prolonged periods of time and can easily biodegrade after releasing the rutin-Cr(III) complex. Given the excellent performance of rutin-Cr(III) ACMS, the microcapsule system represents an effective system for the remediation of Cr(VI) pollution.

  20. Antitumor properties of five-coordinate gold(III) complexes bearing substituted polypyridyl ligands.

    PubMed

    Sanghvi, Chinar D; Olsen, Pauline M; Elix, Catherine; Peng, Shifang Bruce; Wang, Dongsheng; Chen, Zhuo Georgia; Shin, Dong M; Hardcastle, Kenneth I; MacBeth, Cora E; Eichler, Jack F

    2013-11-01

    In an on-going effort to discover metallotherapeutic alternatives to the chemotherapy drug cisplatin, neutral distorted square pyramidal gold(III) coordination complexes possessing 2,9-disubstituted-1,10-phenanthroline ligands {[((R)phen)AuCl3]; R = n-butyl, sec-butyl} have been previously synthesized and characterized. A structurally analogous gold(III) complex bearing a 6,6'-di-methylbipyridine ligand ([((methyl)bipy)AuCl3]) has been synthesized and fully characterized to probe the effect of differing aromatic character of the ligand on solution stability and tumor cell cytotoxicity. The two compounds [((sec-butyl)phen)AuCl3] and [((methyl)bipy)AuCl3]) were subsequently assessed for their stability against the biological reductant glutathione, and it was found that the [((sec-butyl)phen)AuCl3] complex exhibits slightly enhanced stability compared to the [((methyl)bipy)AuCl3] complex and significantly higher stability than previously reported square planar gold(III) complex ions. Furthermore, these complexes were tested for cytotoxic effects against existing lung and head and neck cancer cell lines in vitro. The [((sec-butyl)phen)AuCl3] complex was found to be more cytotoxic than cisplatin against five different tumor cell lines, whereas [((methyl)bipy)AuCl3] had more limited in vitro antitumor activity. Given that [((sec-butyl)phen)AuCl3] had significantly higher antitumor activity, it was tested against an in vivo tumor model. It was found that this complex did not significantly reduce the growth of xenograft tumors in mice and initial model binding studies with bovine serum albumin indicate that interactions with serum albumin proteins may be the cause for the limited in vivo activity of this potential metallotherapeutic. PMID:23948576

  1. Antitumor properties of five-coordinate gold(III) complexes bearing substituted polypyridyl ligands.

    PubMed

    Sanghvi, Chinar D; Olsen, Pauline M; Elix, Catherine; Peng, Shifang Bruce; Wang, Dongsheng; Chen, Zhuo Georgia; Shin, Dong M; Hardcastle, Kenneth I; MacBeth, Cora E; Eichler, Jack F

    2013-11-01

    In an on-going effort to discover metallotherapeutic alternatives to the chemotherapy drug cisplatin, neutral distorted square pyramidal gold(III) coordination complexes possessing 2,9-disubstituted-1,10-phenanthroline ligands {[((R)phen)AuCl3]; R = n-butyl, sec-butyl} have been previously synthesized and characterized. A structurally analogous gold(III) complex bearing a 6,6'-di-methylbipyridine ligand ([((methyl)bipy)AuCl3]) has been synthesized and fully characterized to probe the effect of differing aromatic character of the ligand on solution stability and tumor cell cytotoxicity. The two compounds [((sec-butyl)phen)AuCl3] and [((methyl)bipy)AuCl3]) were subsequently assessed for their stability against the biological reductant glutathione, and it was found that the [((sec-butyl)phen)AuCl3] complex exhibits slightly enhanced stability compared to the [((methyl)bipy)AuCl3] complex and significantly higher stability than previously reported square planar gold(III) complex ions. Furthermore, these complexes were tested for cytotoxic effects against existing lung and head and neck cancer cell lines in vitro. The [((sec-butyl)phen)AuCl3] complex was found to be more cytotoxic than cisplatin against five different tumor cell lines, whereas [((methyl)bipy)AuCl3] had more limited in vitro antitumor activity. Given that [((sec-butyl)phen)AuCl3] had significantly higher antitumor activity, it was tested against an in vivo tumor model. It was found that this complex did not significantly reduce the growth of xenograft tumors in mice and initial model binding studies with bovine serum albumin indicate that interactions with serum albumin proteins may be the cause for the limited in vivo activity of this potential metallotherapeutic.

  2. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  3. Synthesis and evaluation of gold(III) complexes as efficient DNA binders and cytotoxic agents.

    PubMed

    Patel, Mohan N; Bhatt, Bhupesh S; Dosi, Promise A

    2013-06-01

    In recent years, great interest has been focused on gold(III) complexes as cytotoxic and antitumor drugs. Recent studies demonstrated that simple bidentate or polydentate ligands containing nitrogen donor atoms may offer sufficient redox stabilization to produce viable Au(III) anticancer drug targets under physiologic conditions. So, we have synthesized square planer Au(III) complexes of type [Au(A(n))Clx]·Cly and characterized them using UV-Vis absorption, C, H, N elemental analysis, FT-IR, LC-MS, (1)H and (13)C NMR spectroscopy. These compounds manifested significant cytotoxic properties in vitro for brine shrimp lethality bioassay. The metal complexes were screened for series of DNA binding activity using UV-Vis absorption titration, hydrodynamic measurement and thermal DNA denaturation study. The nucleolytic activity was performed on plasmid pUC19 DNA. The Michaelis-Menten kinetic studies were performed to evaluate rate of enhancement in metal complexes mediated DNA cleavage over the non-catalyzed DNA cleavage.

  4. Synthesis and evaluation of gold(III) complexes as efficient DNA binders and cytotoxic agents

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Bhatt, Bhupesh S.; Dosi, Promise A.

    2013-06-01

    In recent years, great interest has been focused on gold(III) complexes as cytotoxic and antitumor drugs. Recent studies demonstrated that simple bidentate or polydentate ligands containing nitrogen donor atoms may offer sufficient redox stabilization to produce viable Au(III) anticancer drug targets under physiologic conditions. So, we have synthesized square planer Au(III) complexes of type [Au(An)Clx]·Cly and characterized them using UV-Vis absorption, C, H, N elemental analysis, FT-IR, LC-MS, 1H and 13C NMR spectroscopy. These compounds manifested significant cytotoxic properties in vitro for brine shrimp lethality bioassay. The metal complexes were screened for series of DNA binding activity using UV-Vis absorption titration, hydrodynamic measurement and thermal DNA denaturation study. The nucleolytic activity was performed on plasmid pUC19 DNA. The Michaelis-Menten kinetic studies were performed to evaluate rate of enhancement in metal complexes mediated DNA cleavage over the non-catalyzed DNA cleavage.

  5. Mononuclear Ru(III) Schiff base complexes: Synthesis, spectral, redox, catalytic and biological activity studies

    NASA Astrophysics Data System (ADS)

    Priya, N. Padma; Arunachalam, S.; Manimaran, A.; Muthupriya, D.; Jayabalakrishnan, C.

    2009-04-01

    An octahedral ruthenium(III) Schiff base complexes of the type [RuX(EPh 3)(L)] (where, X = Cl/Br; E = As/P; L = dianion of the Schiff bases derived from acetoacetanilide with o-phenylenediamine and salicylaldehyde/ o-hydroxyacetophenone/ o-vanillin/2-hydroxy-1-naphthaldehyde) have been synthesized from the reactions of equimolar reactions of [RuX 3(EPh 3) 3] and Schiff bases in benzene. The new Ru(III) Schiff base complexes have been characterized by elemental analyses, FT-IR, electronic, 1H NMR and 13C NMR spectra, EPR spectral studies, powder X-ray diffraction (XRD) and electrochemical studies. The new complexes were found to be effective catalysts for aryl-aryl coupling and the oxidation of alcohols into their corresponding carbonyl compounds, respectively, using molecular oxygen atmosphere at ambient temperature. Further, the new Ru(III) Schiff base complexes were screened for their antibacterial activity against Pseudomonas aeruginosa, Vibrio cholera, Salomonella typhi and Staphylococcus aureaus.

  6. Axial Imidazole Binding Strengths in Porphyrinoid Cobalt(III) Complexes as Studied by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mishra, Ekta; Worlinsky, Jill L.; Gilbert, Thomas M.; Brückner, Christian; Ryzhov, Victor

    2012-06-01

    The Co(II) complexes of twelve meso-tetraaryl-porphyrins, -chlorins, and chlorin analogues containing non-pyrrolic heterocycles were synthesized and converted in situ to the corresponding Co(III) complexes coordinated to one or two imidazoles. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) in conjunction with the energy-variable collision-induced dissociation (CID) technique was used to compare the relative gas-phase binding strength of the axially coordinated imidazoles to the octahedral and square planar Co(III) porphyrinoid complex ions. The observed binding energies of these ligands were rationalized in terms of the effects of porphyrinoid core structure and meso-substitution on the electron density on the central Co(III) centers. Some of these trends were supported by DFT-based computational studies. The study highlights to which extend porphyrins vary from chlorins and chlorin analogues in their coordination abilities and to which extraordinary degree meso-thienyl-substituents influence the electronic structure of porphyrins. The study also defines further the scope and limits CID experiments can be used to interrogate the electronic structures of metalloporphyrin complexes.

  7. Aerobic Oxidation of an Osmium(III) N-Hydroxyguanidine Complex To Give Nitric Oxide.

    PubMed

    Xiang, Jing; Wang, Qian; Yiu, Shek-Man; Man, Wai-Lun; Kwong, Hoi-Ki; Lau, Tai-Chu

    2016-05-16

    The aerobic oxidation of the N-hydroxyguanidinum moiety of N-hydroxyarginine to NO is a key step in the biosynthesis of NO by the enzyme nitric oxide synthase (NOS). So far, there is no chemical system that can efficiently carry out similar aerobic oxidation to give NO. We report here the synthesis and X-ray crystal structure of an osmium(III) N-hydroxyguanidine complex, mer-[Os(III){NH═C(NH2)(NHOH)}(L)(CN)3](-) (OsGOH, HL = 2-(2-hydroxyphenyl)benzoxazole), which to the best of our knowledge is the first example of a transition metal N-hydroxyguanidine complex. More significantly, this complex readily undergoes aerobic oxidation at ambient conditions to generate NO. The oxidation is pH-dependent; at pH 6.8, fac-[Os(NO)(L)(CN)3](-) is formed in which the NO produced is bound to the osmium center. On the other hand, at pH 12, aerobic oxidation of OsGOH results in the formation of the ureato complex [Os(III)(NHCONH2)(L)(CN)3](2-) and free NO. Mechanisms for this aerobic oxidation at different pH values are proposed. PMID:27135258

  8. Complexation behavior of Eu(III), Tb(III), Tm(III), and Am(III) with three 1,10-phenanthroline-type ligands: insights from density functional theory.

    PubMed

    Yang, Yanqiu; Fang, Yu; Liu, Jun; Hu, Shiyuan; Hu, Sheng; Yang, Liang; Wang, Dawei; Zhang, Huabei; Luo, Shunzhong

    2015-07-01

    Extraction complexes of Eu(III), Tb(III), Tm(III), and Am(III) with three 1,10-phenanthroline-type ligands have been studied, primarily using density functional theory (DFT). The same accuracies and optimized structural geometries were obtained whether optimization of the [ML2(NO3)](2+) complexes was performed at the B3LYP/6-31G(d)/RECP or the MP2/6-31G(d)/RECP level of theory. Calculations carried out at the B3LYP/6-311G(d, p)/RECP level of theory indicated that solvation does not favor the formation of these complexes. Moreover, the ΔGg and ΔGsolv values for the reactions leading to the formation of [LnL2(NO3)](2+) complexes were seen to decrease with increasing atomic number of the lanthanide (from Eu to Tb to Tm). In addition, when a strongly hydrophobic benzo[e][1,2,4]triazine group was created in each ligand, ligand selectivity for actinides/lanthanides in acidic media improved. Even greater ligand selectivity for actinides/lanthanides in acidic media was obtained when a 5,6-diphenyl-1,2,4-triazine group was created in each ligand instead of a benzo[e][1,2,4]triazine group. Vibrational analysis and NMR spectroscopic analysis were also performed on all of the studied ligands and the metal complexes that included them. Further in-depth investigations should be undertaken in this field. PMID:26141789

  9. Unsymmetrical Fe(III)Co(II) and Ga(III)Co(II) complexes as chemical hydrolases: biomimetic models for purple acid phosphatases (PAPs).

    PubMed

    Xavier, Fernando R; Neves, Ademir; Casellato, Annelise; Peralta, Rosely A; Bortoluzzi, Adailton J; Szpoganicz, Bruno; Severino, Patricia C; Terenzi, Hernán; Tomkowicz, Zbigniew; Ostrovsky, Sergei; Haase, Wolfgang; Ozarowski, Andrew; Krzystek, Jerzy; Telser, Joshua; Schenk, Gerhard; Gahan, Lawrence R

    2009-08-17

    The design and development of suitable biomimetic catalytic systems capable of mimicking the functional properties of enzymes continues to be a challenge for bioinorganic chemists. In this study, we report on the synthesis, X-ray structures, and physicochemical characterization of the novel isostructural [Fe(III)Co(II)(BPBPMP)(mu-OAc)(2)]ClO(4) (1) and [Ga(III)Co(II)(BPBPMP)(mu-OAc)(2)]ClO(4) (2) complexes with the unsymmetrical dinucleating ligand H(2)BPBPMP (2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol). The previously reported complex [Fe(III)Zn(II)(BPBPMP)(mu-OAc)(2)]ClO(4) (3) was investigated here by electron paramagnetic resonance for comparison with such studies on 1 and 2. A magneto-structural correlation between the exchange parameter J (cm(-1)) and the average bond lengh d (A) of the [Fe(III)-O-M(II)] structural unit for 1 and for related isostructural Fe(III)M(II) complexes using the correlation J = -10(7) exp(-6.8d) reveals that this parameter is the major factor that determines the degree of antiferromagnetic coupling in the series [(BPBPMP)Fe(III)(mu-OAc)(2)M(II)](+) (M(II) = Mn, Fe, Co, Ni) of complexes. Potentiometric and spectrophotometric titrations along with electronic absorption studies show that, in aqueous solution, complexes 1 and 2 generate the [(HO)M(III)(mu-OH)Co(II)(H(2)O)] complex as the catalytically active species in diester hydrolysis reactions. Kinetic studies on the hydrolysis of the model substrate bis(2,4-dinitrophenyl)phosphate by 1 and 2 show Michaelis-Menten behavior, with 2 being 35% more active than 1. In combination with k(H)/k(D) isotope effects, the kinetic studies suggest a mechanism in which a terminal M(III)-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst. In addition, the complexes show maximum catalytic activity in DNA hydrolysis near physiological pH. The modest reactivity difference between 1 and 2 is consistent with the slightly

  10. Carbohydrate-appended tumor targeting iron(III) complexes showing photocytotoxicity in red light.

    PubMed

    Basu, Uttara; Khan, Imran; Hussain, Akhtar; Gole, Bappaditya; Kondaiah, Paturu; Chakravarty, Akhil R

    2014-02-17

    Glucose-appended photocytotoxic iron(III) complexes of a tridentate Schiff base phenolate ligand [Fe(bpyag)(L)](NO3) (1-3), where bpyag is N,N-bis(2-pyridylmethyl)-2-aminoethyl-β-D-glucopyranoside and H2L is 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (H2phap) in 1, 3-(2-hydroxyphenylimino)-9-anthrylbutan-1-one (H2anap) in 2, and 3-(2-hydroxyphenylimino)-1-pyrenylbutan-1-one (H2pyap) in 3, were synthesized and characterized. The complex [Fe(dpma)(anap)](NO3) (4), having bis-(2-pyridylmethyl)benzylamine (dpma), in which the glucose moiety of bpyag is substituted by a phenyl group, was used as a control, and the complex [Fe(dpma)(anap)](PF6) (4a) was structurally characterized by X-ray crystallography. The structure shows a FeN4O2 core in a distorted octahedral geometry. The high-spin iron(III) complexes with magnetic moment value of ∼5.9 μB showed a low-energy phenolate-to-Fe(III) charge-transfer (CT) absorption band as a shoulder near 500 nm with a tail extending to 700 nm and an irreversible Fe(III)-Fe(II) redox couple near -0.6 V versus saturated calomel electrode. The complexes are avid binders to calf thymus DNA and showed photocleavage of supercoiled pUC19 DNA in red (647 nm) and green (532 nm) light. Complexes 2 and 3 displayed significant photocytotoxicity in red light, with an IC50 value of ∼20 μM in HeLa and HaCaT cells, and no significant toxicity in dark. The cell death is via an apoptotic pathway, by generation of reactive oxygen species. Preferential internalization of the carbohydrate-appended complexes 2 and 3 was evidenced in HeLa cells as compared to the control complex 4. A 5-fold increase in the cellular uptake was observed for the active complexes in HeLa cells. The photophysical properties of the complexes are rationalized from the density functional theory calculations.

  11. Neodymium(III) Complexes of Dialkylphosphoric and Dialkylphosphonic Acids Relevant to Liquid-Liquid Extraction Systems.

    PubMed

    Lumetta, Gregg J; Sinkov, Sergey I; Krause, Jeanette A; Sweet, Lucas E

    2016-02-15

    The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO(-) anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di(2-ethylhexyl)phosphoric acid (HA) is saturated with Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.

  12. Biotin-conjugated tumour-targeting photocytotoxic iron(III) complexes.

    PubMed

    Saha, Sounik; Majumdar, Ritankar; Hussain, Akhtar; Dighe, Rajan R; Chakravarty, Akhil R

    2013-07-28

    Iron(III) complexes [FeL(B)] (1-4) of a tetradentate phenolate-based ligand (H3L) and biotin-conjugated dipyridophenazine bases (B), viz. 7-aminodipyrido [3,2-a:2',3'-c]-phenazine (dppza in 1), (N-dipyrido[3,2-a:2',3'-c]-phenazino)amidobiotin (dppzNB in 2), dipyrido [3,2-a:2',3'-c]-phenazine-11-carboxylic acid (dppzc in 3) and 2-((2-biotinamido)ethyl) amido-dipyrido[3,2-a:2',3'-c]-phenazine (dppzCB in 4) are prepared, characterized and their interaction with streptavidin and DNA and their photocytotoxicity and cellular uptake in various cells studied. The high-spin iron(III) complexes display Fe(III)/Fe(II) redox couple near -0.7 V versus saturated calomel electrode in dimethyl sulfoxide-0.1 M tetrabutylammonium perchlorate. The complexes show non-specific interaction with DNA as determined from the binding studies. Complexes with appended biotin moiety show similar binding to streptavidin as that of free biotin, suggesting biotin conjugation to dppz does not cause any loss in its binding affinity to streptavidin. The photocytotoxicity of the complexes is tested in HepG2, HeLa and HEK293 cell lines. Complex 2 shows higher photocytotoxicity in HepG2 cells than in HeLa or HEK293, forming reactive oxygen species. This effect is attributed to the presence of overexpressed sodium-dependent multi-vitamin transporters in HepG2 cells. Microscopic studies in HepG2 cells show internalization of the biotin complexes 2 and 4 essentially occurring by receptor-mediated endocytosis, which is similar to that of native biotin and biotin fluorescein isothiocyanate conjugate.

  13. Structure and Mechanistic Implications of a Uroporphyrinogen III Synthase−Product Complex

    SciTech Connect

    Schubert,H.; Phillips, J.; Heroux, A.; Hill, C.

    2008-01-01

    Uroporphyrinogen III synthase (U3S) catalyzes the asymmetrical cyclization of a linear tetrapyrrole to form the physiologically relevant uroporphyrinogen III (uro'gen III) isomer during heme biosynthesis. Here, we report four apoenzyme and one product complex crystal structures of the Thermus thermophilus (HB27) U3S protein. The overlay of eight crystallographically unique U3S molecules reveals a huge range of conformational flexibility, including a 'closed' product complex. The product, uro'gen III, binds between the two domains and is held in place by a network of hydrogen bonds between the product's side chain carboxylates and the protein's main chain amides. Interactions of the product A and B ring carboxylate side chains with both structural domains of U3S appear to dictate the relative orientation of the domains in the closed enzyme conformation and likely remain intact during catalysis. The product C and D rings are less constrained in the structure, consistent with the conformational changes required for the catalytic cyclization with inversion of D ring orientation. A conserved tyrosine residue is potentially positioned to facilitate loss of a hydroxyl from the substrate to initiate the catalytic reaction.

  14. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly

    NASA Astrophysics Data System (ADS)

    Male, Gary; von Appen, Alexander; Glatt, Sebastian; Taylor, Nicholas M. I.; Cristovao, Michele; Groetsch, Helga; Beck, Martin; Müller, Christoph W.

    2015-06-01

    In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131-τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation.

  15. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly

    PubMed Central

    Male, Gary; von Appen, Alexander; Glatt, Sebastian; Taylor, Nicholas M. I.; Cristovao, Michele; Groetsch, Helga; Beck, Martin; Müller, Christoph W.

    2015-01-01

    In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131–τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation. PMID:26060179

  16. Dysprosium(III)-diethylenetriaminepentaacetate complexes of aminocyclodextrins as chiral NMR shift reagents.

    PubMed

    Wenzel, T J; Miles, R D; Zomlefer, K; Frederique, D E; Roan, M A; Troughton, J S; Pond, B V; Colby, A L

    2000-01-01

    A metal chelating ligand is bonded to alpha-, beta-, and gamma-cyclodextrin by the reaction of diethylenetraminepentaacetic dianhydride with the corresponding 6-mono- and 2-mono(amine)cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives causes shifts in the (1)H-NMR spectra of substrates such as propranolol, tryptophan, aspartame, carbinoxamine, pheniramine, doxylamine, and 1-anilino-8-naphthalenesulfonate. The Dy(III)-induced shifts enhance the enantiomeric resolution in the NMR spectra of several substrates. Enhancements in enantiomeric resolution using cyclodextrin derivatives with the amine tether are compared to previously described compounds in which the chelating ligand is attached through an ethylenediamine tether. In general, the Dy(III) complex of the 6-beta-derivative with the amine tether is a more effective chiral resolving agent than the complex with the ethylenediamine tether. The opposite trend is observed with the 2-beta-derivatives. The presence of the chelating ligand in the 2-beta-derivative hinders certain substrates from entering the cavity. For cationic substrates, evidence suggests that a cooperative association involving inclusion in the cavity and association with the Dy(III) unit occurs. Enhancements in enantiomeric resolution in the spectrum of tryptophan are greater for the secondary alpha- and gamma-derivatives than the beta-derivative.

  17. DNA binding, antioxidant activity, and DNA damage protection of chiral macrocyclic Mn(III) salen complexes.

    PubMed

    Pandya, Nirali; Khan, Noor-ul H; Prathap, K Jeya; Kureshy, Rukhsana I; Abdi, Sayed H R; Mishra, Sandhya; Bajaj, Hari C

    2012-12-01

    We are reporting the synthesis, characterization, and calf thymus DNA binding studies of novel chiral macrocyclic Mn(III) salen complexes S-1, R-1, S-2, and R-2. These chiral complexes showed ability to bind with DNA, where complex S-1 exhibits the highest DNA binding constant 1.20 × 10(6) M(-1). All the compounds were screened for superoxide and hydroxyl radical scavenging activities; among them, complex S-1 exhibited significant activity with IC(50) 1.36 and 2.37 μM, respectively. Further, comet assay was used to evaluate the DNA damage protection in white blood cells against the reactive oxygen species wherein complex S-1 was found effective in protecting the hydroxyl radicals mediated plasmid and white blood cells DNA damage.

  18. Complexation of Cm(III) and Eu(III) with CyMe4-BTPhen and CyMe4-BTBP studied by time resolved laser fluorescence spectroscopy.

    PubMed

    Bremer, Antje; Whittaker, Daniel M; Sharrad, Clint A; Geist, Andreas; Panak, Petra J

    2014-02-14

    The complexation of Cm(III) and Eu(III) with 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bipyridine (CyMe4-BTBP) in methanolic solution was investigated by TRLFS. For both ligands, the 1:2 complex with the particular metal ion is the only species observed in equilibrated samples. The species distribution for various ligand concentrations was determined and stability constants of the 1:2 complexes were derived (log β2 = 13.8 ± 0.2 (Cm(III)-CyMe4-BTPhen), log β2 = 11.6 ± 0.4 (Eu(III)-CyMe4-BTPhen), log β2 = 12.4 ± 0.3 (Cm(III)-CyMe4-BTBP) and log β2 = 11.3 ± 0.3 (Eu(III)-CyMe4-BTBP)). Biphasic experiments in combination with TRLFS studies on the organic phase revealed the formation of ternary complexes with two CyMe4-BTPhen or -BTBP molecules and additional coordination of a nitrate anion as species formed during the extraction process.

  19. Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base.

    PubMed

    Vadivel, T; Dhamodaran, M

    2016-09-01

    Chitosan can be modified chemically by condensation reaction of deacetylated chitosan with aldehyde in homogeneous phase. This condensation is carried by primary amine (NH2) with aldehyde (CHO) to form corresponding schiff base. The chitosan biopolymer schiff base derivatives are synthesized with substituted aldehydes namely 4-hydroxy-3-methoxy benzaldehyde, 2-hydroxy benzaldehyde, and 2-hydroxy-3-methoxy benzaldehyde, becomes a complexing agent or ligand. The Ruthenium(III) complexes were obtained by complexation of Ruthenium with schiff base ligands and this product exhibits as an excellent solubility and more biocompatibility. The novel series of schiff base Ruthenium(III) complexes are characterized by Elemental analysis, FT-IR spectroscopy, and Thermo-gravimetric analysis (TGA). The synthesized complexes have been subjected to antibacterial study. The antibacterial results indicated that the antibacterial activity of the complexes were more effective against Gram positive and Gram negative pathogenic bacteria. These findings are giving suitable support for developing new antibacterial agent and expand our scope for applications.

  20. Hydrolysis and cytotoxic properties of osmium(II)/(III)-DMSO-azole complexes. Short communication.

    PubMed

    Egger, Alexander; Cebrián-Losantos, Berta; Stepanenko, Iryna N; Krokhin, Artem A; Eichinger, Rene; Jakupec, Michael A; Arion, Vladimir B; Keppler, Bernhard K

    2008-08-01

    The antiproliferative properties of the osmium(II) complexes cis,fac-[Os(II)Cl(2)(DMSO)(3)(L)] and trans,cis,cis-[Os(II)Cl(2)(DMSO)(2)(L)(2)] (L = 1H-pyrazole, 1H-imidazole) were studied in three human cancer cell lines, namely 41M (ovary), SK-BR-3 (breast), and SW480 (colon). Their activities were compared with those of osmium(III) and ruthenium(III) NAMI-A type complexes on HT-29 (colon) and SK-BR-3 cancer cell lines. While IC(50) values of all the Os(II) complexes were found to be >1000 microM in all cell lines, Os and Ru-NAMI-A type complexes showed remarkable antiproliferative activity. The marginal in vitro cytotoxicity of the Os(II) compounds is presumably attributed to their resistance to hydrolysis. However, the Os-NAMI-A complexes, which are also kinetically stable in aqueous solution, showed reasonable antiproliferative activity in vitro when compared with the analogous Ru compounds and with the Os(II)-DMSO-azole species, indicating that hydrolysis might be not a prerequisite for the antitumor activity of Os-NAMI-A type complexes.

  1. Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Jiang, Teng; Wang, Long; Zhang, Sui; Sun, Ping-Chuan; Ding, Chuan-Fan; Chu, Yan-Qiu; Zhou, Ping

    2011-10-01

    Curcumin has been recognized as a potential natural drug to treat the Alzheimer's disease (AD) by chelating baleful metal ions, scavenging radicals and preventing the amyloid β (Aβ) peptides from the aggregation. In this paper, Al(III)-curcumin complexes with Al(III) were synthesized and characterized by liquid-state 1H, 13C and 27Al nuclear magnetic resonance (NMR), mass spectroscopy (MS), ultraviolet spectroscopy (UV) and generalized 2D UV-UV correlation spectroscopy. In addition, the density functional theory (DFT)-based UV and chemical shift calculations were also performed to view insight into the structures and properties of curcumin and its complexes. It was revealed that curcumin could interact strongly with Al(III) ion, and form three types of complexes under different molar ratios of [Al(III)]/[curcumin], which would restrain the interaction of Al(III) with the Aβ peptide, reducing the toxicity effect of Al(III) on the peptide.

  2. Complexation of Am(III) by oxalate in NaClO{sub 4} media

    SciTech Connect

    Choppin, G.R.; Chen, J.F.

    1995-09-01

    The complexation of Am(III) by oxalate has been investigated in solutions of NaClO{sub 4} up to 9.0 M ionic strength at 25{degrees}C. The dissociation constants of oxalic acid were determined by potentiometric titration, while the stability constants of the Am(III)-oxalate complexation were measured by the solvent extraction technique. A thermodynamic model was constructed to predict the apparent equilibrium constants at different ionic strengths by applying the Pitzer equation using parameters for the Na{sup +}-HOx{sup -}, Na{sup +}-Ox{sup -}, AmOx{sup +}-ClO{sub 4}{sup -}, and Na{sup +}-Am(Ox){sub 2}{sup -} interactions obtained by fitting the data.

  3. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  4. Synthesis, characterization and antibacterial study of cyclometalated rhodium(III) complex containing dithiocarbamate

    NASA Astrophysics Data System (ADS)

    Mansouri, Ghobad; Heidarizadi, Fateme; Naghipour, Ali; Notash, Behrouz

    2016-10-01

    The novel cyclometalated Rh(III) complex, [Rh(phpy)2(SˆS)], Where phpy is 2-phenylpyridine and (SˆS) is diethyldithiocarbamate, has been prepared and characterized by elemental analysis, IR, 13C and 1H NMR, electronic absorption and Fluorescence spectroscopies, cyclic voltammetry, and X-ray crystallography. The crystal structure of [Rh(phpy)2(SˆS)] shows that the coordination geometry around the Rh(III) is a distorted octahedron, with bite angles of 71.19-81.04° for all three bidentate ligands. Electrochemical analysis by cyclic voltammetry reveals irreversible redox behavior of the rhodium centre. Antibacterial activity of the complex has also been studied by agar disc diffusion method against three Gram-negative bacteria (Pseudomonas aeroginosa, Salmonella typhi and Escherichia coli) and two Gram-positive bacteria (Staphylococcus aureus and Corynebacterium renale).

  5. Novel polymer anchored Cr(III) Schiff base complexes: synthesis, characterization and antimicrobial properties.

    PubMed

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and (1)H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH). PMID:22622060

  6. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    SciTech Connect

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  7. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    SciTech Connect

    Mishra, Ashutosh; Dwivedi, Jagrati Shukla, Kritika

    2015-06-24

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  8. Experimental and computational evidence for the mechanism of intradiol catechol dioxygenation by non-heme iron(III) complexes.

    PubMed

    Jastrzebski, Robin; Quesne, Matthew G; Weckhuysen, Bert M; de Visser, Sam P; Bruijnincx, Pieter C A

    2014-11-24

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step. PMID:25322920

  9. Crystallization of Mitochondrial Respiratory Complex II fromChicken Heart: A Membrane-Protein Complex Diffracting to 2.0Angstrom

    SciTech Connect

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward A.

    2004-12-17

    Procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Angstrom with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites.

  10. Synthesis of new heteroscorpionate iridium(I) and iridium(III) complexes.

    PubMed

    Roa, A E; Campos, J; Paneque, M; Salazar, V; Otero, A; Lara-Sánchez, A; Rodríguez, A M; López-Solera, I; Gómez, M V

    2015-04-21

    The reactivity of different heteroscorpionate ligands based on bis(pyrazol-1-yl)methane, with different iridium-(i) and -(iii) precursors is reported. The reaction of the heteroscorpionate lithium salts "Li(bdmpza)", [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], "Li(bdmpzdta)" [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] and "Li(S)-mbpam" [(S)-mbpam = (S)-(-)-N-α-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate] with 1 equivalent of [IrCl3(THF)3] in THF for 18 h affords high yields of neutral and anionic heteroscorpionate chloride iridium complexes [IrCl2(bdmpza)(THF)] (), [Li(THF)4][IrCl3(bdmpzdta)] () and [IrCl2{(S)-mbpam})(THF)] (). Solution of complex in acetonitrile at room temperature leads to complex [IrCl2{(S)-mbpam})(NCCH3)] (). Complexes and were isolated as enantiopure compounds. The reaction of the lithium salt "Li(bdmpza)" with [IrCl(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)]2 in THF for 18 h gave the Ir(i) complex [Ir(bdmpza)(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)] (). The reaction of complex with CO (2 atm) at room temperature leads to a new complex of Ir(iii), [Ir(bdmpza)(k(2)-CH2C(Me)[double bond, length as m-dash]C(Me)CH2)(CO)] (). Treatment of heteroscorpionate ligand precursors "Li(bdmpza)" and "Li(bdmpzdta)" with [IrCp*Cl2]2 in THF yielded the iridium(iii) complexes [Ir2Cp*2Cl2(bdmpzx)] (x = a , x = dta ). These complexes have helical chirality due to the demands of the fixed pyrazole rings. The stereoisomerism and the self-assembly processes of these helicates have been studied in some detail in solution by NMR spectroscopy and in the solid state by X-ray diffraction. Mixtures of M- and P-handed enantiomers were obtained. Complex undergoes a decarboxylation process initiated by the HCl generated in the previous step leading to the known ionic complex [IrClCp*(bdmpm)][IrCl3Cp*] [bdmpm = bis(3,5-dimethylpyrazol-1-yl)methane] (). The

  11. Synthesis of new heteroscorpionate iridium(I) and iridium(III) complexes.

    PubMed

    Roa, A E; Campos, J; Paneque, M; Salazar, V; Otero, A; Lara-Sánchez, A; Rodríguez, A M; López-Solera, I; Gómez, M V

    2015-04-21

    The reactivity of different heteroscorpionate ligands based on bis(pyrazol-1-yl)methane, with different iridium-(i) and -(iii) precursors is reported. The reaction of the heteroscorpionate lithium salts "Li(bdmpza)", [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], "Li(bdmpzdta)" [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] and "Li(S)-mbpam" [(S)-mbpam = (S)-(-)-N-α-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate] with 1 equivalent of [IrCl3(THF)3] in THF for 18 h affords high yields of neutral and anionic heteroscorpionate chloride iridium complexes [IrCl2(bdmpza)(THF)] (), [Li(THF)4][IrCl3(bdmpzdta)] () and [IrCl2{(S)-mbpam})(THF)] (). Solution of complex in acetonitrile at room temperature leads to complex [IrCl2{(S)-mbpam})(NCCH3)] (). Complexes and were isolated as enantiopure compounds. The reaction of the lithium salt "Li(bdmpza)" with [IrCl(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)]2 in THF for 18 h gave the Ir(i) complex [Ir(bdmpza)(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)] (). The reaction of complex with CO (2 atm) at room temperature leads to a new complex of Ir(iii), [Ir(bdmpza)(k(2)-CH2C(Me)[double bond, length as m-dash]C(Me)CH2)(CO)] (). Treatment of heteroscorpionate ligand precursors "Li(bdmpza)" and "Li(bdmpzdta)" with [IrCp*Cl2]2 in THF yielded the iridium(iii) complexes [Ir2Cp*2Cl2(bdmpzx)] (x = a , x = dta ). These complexes have helical chirality due to the demands of the fixed pyrazole rings. The stereoisomerism and the self-assembly processes of these helicates have been studied in some detail in solution by NMR spectroscopy and in the solid state by X-ray diffraction. Mixtures of M- and P-handed enantiomers were obtained. Complex undergoes a decarboxylation process initiated by the HCl generated in the previous step leading to the known ionic complex [IrClCp*(bdmpm)][IrCl3Cp*] [bdmpm = bis(3,5-dimethylpyrazol-1-yl)methane] (). The

  12. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    SciTech Connect

    Moore, Evan G.; Xu, Jide; Dodani, Sheel; Jocher, Christoph; D'Aleo, Anthony; Seitz, Michael; Raymond, Kenneth

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.

  13. Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications.

    PubMed

    Nam, Jung Seung; Kang, Myeong-Gyun; Kang, Juhye; Park, Sun-Young; Lee, Shin Jung C; Kim, Hyun-Tak; Seo, Jeong Kon; Kwon, Oh-Hoon; Lim, Mi Hee; Rhee, Hyun-Woo; Kwon, Tae-Hyuk

    2016-08-31

    Protein inactivation by reactive oxygen species (ROS) such as singlet oxygen ((1)O2) and superoxide radical (O2(•-)) is considered to trigger cell death pathways associated with protein dysfunction; however, the detailed mechanisms and direct involvement in photodynamic therapy (PDT) have not been revealed. Herein, we report Ir(III) complexes designed for ROS generation through a rational strategy to investigate protein modifications by ROS. The Ir(III) complexes are effective as PDT agents at low concentrations with low-energy irradiation (≤ 1 J cm(-2)) because of the relatively high (1)O2 quantum yield (> 0.78), even with two-photon activation. Furthermore, two types of protein modifications (protein oxidation and photo-cross-linking) involved in PDT were characterized by mass spectrometry. These modifications were generated primarily in the endoplasmic reticulum and mitochondria, producing a significant effect for cancer cell death. Consequently, we present a plausible biologically applicable PDT modality that utilizes rationally designed photoactivatable Ir(III) complexes. PMID:27494510

  14. Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction.

    PubMed

    Garain, Samiran; Barman, Koushik; Sinha, Tridib Kumar; Jasimuddin, Sk; Haeberle, Jörg; Henkel, Karsten; Schmeisser, Dieter; Mandal, Dipankar

    2016-08-24

    Exploring efficient and inexpensive electrocatalysts for the oxidation of water is of great importance for various electrochemical energy storage and conversion technologies. In the present study, a new water-soluble [Ce(III)(DMF) (HSO4)3] complex was synthesized and characterized by UV-vis, photoluminescence, and high-resolution X-ray photoelectron spectroscopy techniques. Owing to classic 5d → 4f transitions, an intense photoluminescence in the UV region was observed from the water-soluble [Ce(III)(DMF) (HSO4)3] complex. A stacking electrode was designed where self-assembled l-cysteine monolayer modified gold was immobilized with the synthesized cerium complex and was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The resulting electrode, i.e., [Ce(III)(DMF) (HSO4)3]-l-cysteine-Au stacks shows high electrocatalytic water oxidation behavior at an overpotential of η ≈ 0.34 V under neutral pH conditions. We also demonstrated a way where the overpotential is possible to decrease upon irradiation of UV light. PMID:27490440

  15. Kinetic studies of nitrate removal from aqueous solution using granular chitosan-Fe(III) complex.

    PubMed

    Hu, Qili; Chen, Nan; Feng, Chuanping; Zhang, Jing; Hu, Weiwu; Lv, Long

    2016-01-01

    In the present study, a granular chitosan-Fe(III) complex was prepared as a feasible adsorbent for the removal of nitrate from an aqueous solution. There was no significant change in terms of nitrate removal efficiency over a wide pH range of 3-11. Nitrate adsorption on the chitosan-Fe(III) complex followed the Langmuir-Freundlich isotherm model. In order to more accurately reflect adsorption and desorption behaviors at the solid/solution interface, kinetic model I and kinetic model II were proposed to simulate the interfacial process in a batch system. Nitrate adsorption on the chitosan-Fe(III) complex followed the pseudo-first-order kinetic model and kinetic model I. The proposed half-time could provide useful information for optimizing process design. Adsorption and desorption rate constants obtained from kinetic model I and kinetic model II were beneficial to understanding the interfacial process and the extent of adsorption reaction. Kinetic model I and kinetic model II implied that nitrate uptake exponentially approaches a limiting value. PMID:26942545

  16. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  17. Photophysical effects of metal-carbon sigma bonds in ortho-metalated complexes of Ir(III) and Rh(III)

    SciTech Connect

    Sprouse, S.; King, K.A.; Spellane, P.J.; Watts, R.J.

    1984-10-31

    Dichloro-bridged dimers of the type (M(L)/sub 2/Cl)/sub 2/, where L is 2-phenylpyridine (ppy) or benzo(h)quinoline (bzq) and M is Rh(III) or Ir(III), have been characterized by /sup 13/C and /sup 1/H NMR spectroscopies and by absorption and emission spectroscopies. The NMR results confirm previous formulations of the complexes as dichloro-bridged ortho-metalated dimers in halocarbon solvents but indicate that they are cleaved to monomeric species of the type M(L)/sub 2/CIS in ligating solvents such as dimethylformamide (S = solvent). The absorption spectra of each of the complexes contain several low-energy bands which are assigned as metal-to-ligand charge-transfer (MLCT) transitions. All four of the dimers emit light following photoexcitation of their glassy solutions at 77 K. Their emission spectra and lifetimes lead to assignments of their emitting states as intraligand for the Rh(III) dimers and MLCT for the Ir(III) dimers. The Ir(III) dimers are also found to emit light following excitation at 295 K in deaerated dichloromethane. No emission is seen from the Rh(III) dimers under these conditions. Comparison of these results with previous results from studies of similar Rh(III) and Ir(III) complexes of 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) indicates that the ortho-metalated ligands are considerably higher than bpy and phen in the spectrochemical series. In addition to raising the energy of ligand field excited states in their complexes, relative to similar bpy and phen species, they induce lower energy charge-transfer transitions. These effects are consistent with the synergistic function of the ortho-metalated ligands as both strong sigma donors and ..pi.. acceptors.

  18. Trap-Free Halogen Photoelimination from Mononuclear Ni(III) Complexes.

    PubMed

    Hwang, Seung Jun; Powers, David C; Maher, Andrew G; Anderson, Bryce L; Hadt, Ryan G; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2015-05-27

    Halogen photoelimination reactions constitute the oxidative half-reaction of closed HX-splitting energy storage cycles. Here, we report high-yielding, endothermic Cl2 photoelimination chemistry from mononuclear Ni(III) complexes. On the basis of time-resolved spectroscopy and steady-state photocrystallography experiments, a mechanism involving ligand-assisted halogen elimination is proposed. Employing ancillary ligands to promote elimination offers a strategy to circumvent the inherently short-lived excited states of 3d metal complexes for the activation of thermodynamically challenging bonds. PMID:25950146

  19. Sorption of arsenate and arsenite anions by iron(III)-poly(hydroxamic acid) complex.

    PubMed

    Haron, M J; Wan Yunus, W M; Yong, N L; Tokunaga, S

    1999-12-01

    Iron(III)-poly(hydroxamic acid) resin complex has been studied for its sorption abilities with respect to arsenate and arsenite anions from an aqueous solution. The complex was found effective in removing the arsenate anion in the pH range of 2.0 to 5.5. The maximum sorption capacity was found to be 1.15 mmol/g. The sorption selectivity showed that arsenate sorption was not affected by chloride, nitrate and sulphate. The resin was tested and found effective for removal of arsenic ions from industrial wastewater samples.

  20. Investigating the complexity of respiratory patterns during recovery from severe hypoxia

    NASA Astrophysics Data System (ADS)

    Akay, Metin; Sekine, Noriko

    2004-03-01

    Progressive hypoxemia in anesthetized, peripherally chemodenervated piglets results in initial depression of the phrenic neurogram (PN) culminating in phrenic silence and, eventually, gasping. These changes reverse after the 30 min reoxygenation (recovery) period. To determine if changes in the PN patterns correspond to changes in temporal patterning, we have used the approximate entropy (ApEn) method to examine the effects of maturation on the complexity of breathing patterns in chemodenervated, vagotomized and decerebrated piglets during severe hypoxia and reoxygenation. The phrenic neurogram in piglets was recorded during eupnea (normal breathing), severe hypoxia (gasping) and recovery from severe hypoxia in 31 piglets (2 35 days). Nonlinear dynamical analysis of the phrenic neurogram was performed using the ApEn method. The mean ApEn values for a recording of five consecutive breaths during eupnea, a few phrenic neurogram signals during gasping, the beginning of the recovery period, and five consecutive breaths at every 5 min interval for the 30 min recovery period were calculated. Our data suggest that gasping resulted in reduced duration of the phrenic neurogram, and the gasp-like patterns exist at the beginning of the recovery. But, the durations of phrenic neurograms during recovery were increased after 10 min postreoxygenation, but were restored 30 min post recovery. The ApEn (complexity) values of the phrenic neurogram during eupnea were higher than those of gasping and the early (the onset of) recovery from severe hypoxia (p < 0.01), but were not statistically different than 5 min post recovery regardless of the maturation stages. These results suggest that hypoxia results in a reversible reconfiguration of the central respiratory pattern generator.

  1. Acceptorless Dehydrogenative Oxidation of Secondary Alcohols Catalysed by Cp*Ir(III) -NHC Complexes.

    PubMed

    Gülcemal, Süleyman; Gülcemal, Derya; Whitehead, George F S; Xiao, Jianliang

    2016-07-18

    A series of new Ir(III) complexes with carbene ligands that contain a range of benzyl wingtip groups have been prepared and fully characterised by NMR spectroscopy, HRMS, elemental analysis and X-ray diffraction. All the complexes were active in the acceptorless dehydrogenation of alcohol substrates in 2,2,2-trifluoroethanol to give the corresponding carbonyl compounds. The most active complex bore an electron-rich carbene ligand; this complex was used to catalyse the highly efficient and chemoselective dehydrogenation of a wide range of secondary alcohols to their respective ketones, with turnover numbers up to 1660. Mechanistic studies suggested that the turnover of the dehydrogenation reaction is limited by the H2 -formation step. PMID:27321021

  2. Acceptorless Dehydrogenative Oxidation of Secondary Alcohols Catalysed by Cp*Ir(III) -NHC Complexes.

    PubMed

    Gülcemal, Süleyman; Gülcemal, Derya; Whitehead, George F S; Xiao, Jianliang

    2016-07-18

    A series of new Ir(III) complexes with carbene ligands that contain a range of benzyl wingtip groups have been prepared and fully characterised by NMR spectroscopy, HRMS, elemental analysis and X-ray diffraction. All the complexes were active in the acceptorless dehydrogenation of alcohol substrates in 2,2,2-trifluoroethanol to give the corresponding carbonyl compounds. The most active complex bore an electron-rich carbene ligand; this complex was used to catalyse the highly efficient and chemoselective dehydrogenation of a wide range of secondary alcohols to their respective ketones, with turnover numbers up to 1660. Mechanistic studies suggested that the turnover of the dehydrogenation reaction is limited by the H2 -formation step.

  3. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity.

    PubMed

    Greco, Tiffany; Glenn, Thomas C; Hovda, David A; Prins, Mayumi L

    2016-09-01

    Cerebral metabolism of ketones after traumatic brain injury (TBI) improves neuropathology and behavior in an age-dependent manner. Neuroprotection is attributed to improved cellular energetics, although other properties contribute to the beneficial effects. Oxidative stress is responsible for mitochondrial dysfunction after TBI. Ketones decrease oxidative stress, increase antioxidants and scavenge free radicals. It is hypothesized that ketogenic diet (KD) will decrease post-TBI oxidative stress and improve mitochondria. Postnatal day 35 (PND35) male rats were given sham or controlled cortical impact (CCI) injury and placed on standard (STD) or KD. Ipsilateral cortex homogenates and mitochondria were assayed for markers of oxidative stress, antioxidant expression and mitochondrial function. Oxidative stress was significantly increased at 6 and 24 h post-injury and attenuated by KD while inducing protein expression of antioxidants, NAD(P)H dehydrogenase quinone 1 (NQO1) and superoxide dismutase (SOD1/2). Complex I activity was inhibited in STD and KD groups at 6 h and normalized by 24 h. KD significantly improved Complex II-III activity that was reduced in STD at 6 h. Activity remained reduced at 24 h in STD and unchanged in KD animals. These results strongly suggest that ketones improve post-TBI cerebral metabolism by providing alternative substrates and through antioxidant properties, preventing oxidative stress-mediated mitochondrial dysfunction.

  4. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting

    NASA Astrophysics Data System (ADS)

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions.

  5. Asymmetric Synthesis of Enantiomerically Pure Mono- and Binuclear Bis(cyclometalated) Iridium(III) Complexes.

    PubMed

    Yao, Su-Yang; Ou, Yan-Ling; Ye, Bao-Hui

    2016-06-20

    Chiral precursors Λ-[Ir(ppy)2(l-pro)] (Λ-L, where ppy is 2-phenylpyridine; pro is proline), Λ-[Ir(ppy)2(MeCN)2](PF6) (Λ-1), Δ-[Ir(ppy)2(d-pro)] (Δ-D), and Δ-[Ir(ppy)2(MeCN)2](PF6) (Δ-1) were synthesized from rac-[(Ir(ppy)2)2Cl2] and l-pro or d-pro by means of the auxiliary ligand strategy with 99% de values. The enantiopure mono complexes Λ/Δ-[Ir(ppy)2(L)](PF6) (L is 2,2'-bipyridine, Λ/Δ-2; L is 2,2'-dipyrimidine (dpm), Λ/Δ-3; L is 2,2'-bibenzimidazole (H2bbim), Λ/Δ-4) with 99% ee values and binuclear complexes ΛΛ/ΔΔ-[(Ir(ppy)2)2(dpm)](PF6)2 (ΛΛ-5 and ΔΔ-5) and ΛΛ/ΔΔ-[(Ir(ppy)2)2(bbim)] (ΛΛ-6 and ΔΔ-6) with 99% de values were synthesized in one step using the corresponding chiral precursors. The absolute configurations at Ir(III) centers of precursor Δ-1, mononuclear Λ-3, and binuclear ΔΔ-6 were confirmed by single-crystal structural analysis and characterized by circular dichroism (CD) spectroscopy. The correlation between the absolute configuration at Ir(III) center and CD spectra was established. The configurations at Ir(III) centers are stable during the reactions, and the chiral precursors can be used for the asymmetric synthesis of enantiomerically pure mono- and polynuclear Ir(III) complexes. Moreover, meso ΛΔ-[(Ir(ppy)2)2(dpm)](PF6)2 (meso-5) and ΛΔ-[(Ir(ppy)2)2(bbim)] (meso-6) were also synthesized using these precursors. PMID:27280959

  6. Integrated Investigation on the Production and Fate of Organo-Cr(III) Complexes from Microbial Reduction of Chromate

    SciTech Connect

    Xun, Luying

    2005-06-01

    Our objective is to investigate the complexity of chromium biogeocycling. Our results clearly support more complexity. In short, the chromium cycle is not as simple as the conversion between Cr(III) and Cr(VI) in inorganic forms. We have obtained more evidence to prove the formation of soluble organo-Cr(III) complexes from microbial reduction of Cr(VI). The complexes are relatively stable due to the slow ligand exchange of Cr(III). However, some microorganisms can consume the organic ligands and release Cr(III), which then precipitates. Efforts are being made to characterize the organo-Cr(III) complexes and investigate their behavior in soil. Progress and efforts are summarized for each task. Task 1. Production of soluble organo-Cr(III) complexes by selected microorganisms A total of eight organisms were screened for production of soluble organo-Cr(III) complexes by culturing in both growth and non growth media containing 4 mg/L of Cr(VI); three were Gram positive and five were Gram negative. The Gram-positive bacteria were Cellulomonas sp. ES 6, Rhodococcus sp., and Leafsonia sp., while Shewanella oneidensis MR 1, Desulfovibrio desulfuricans G20, D. vulgaris Hildenborough, Pseudomonas putida MK 1 and Ps. aeruginosa PAO 1 were Gram negative. Purifications of the soluble organo-Cr(III) complexes produced by Cellulomonas sp. ES 6, Shewanella. oneidensis MR 1, Rhodococcus sp., and D. vulgaris Hildenborough were carried out. The culture supernatants were lyophilized and extracted first with methanol followed by water. The extracts were then analyzed for soluble Cr. The majority of the Cr(III) was present in the water-soluble fraction for all of the bacteria tested (data not shown), revealing a general phenomenon of soluble Cr(III) production. Cellulomonas sp. ES6 produced the highest amount of soluble Cr(III) (364 ppm) and D. vulgaris Hildenborough produced the least (143 ppm). Seventy eight percent of the soluble Cr(III) produced by Shewanella. oneidensis MR 1 was

  7. The structures of CyMe4-BTBP complexes of americium(iii) and europium(iii) in solvents used in solvent extraction, explaining their separation properties.

    PubMed

    Ekberg, Christian; Löfström-Engdahl, Elin; Aneheim, Emma; Foreman, Mark R StJ; Geist, Andreas; Lundberg, Daniel; Denecke, Melissa; Persson, Ingmar

    2015-11-14

    Separation of trivalent actinoid (An(iii)) and lanthanoid (Ln(iii)) ions is extremely challenging due to their similar ionic radii and chemical properties. Poly-aromatic nitrogen compounds acting as tetradentate chelating ligands to the metal ions in the extraction, have the ability to sufficiently separate An(iii) from Ln(iii). One of these compounds, 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzol[1,2,4]triazin-3-yl)[2,2]bipyridine, CyMe4-BTBP, has proven to be resistant towards acidic environments and strong radiation from radioactive decomposition. EXAFS studies of the dicomplexes of CyMe4-BTBP with americium(iii) and europium(iii) in nitrobenzene, cyclohexanone, 1-hexanol, 1-octanol and malonamide (DMDOHEMA) in 1-octanol have been carried out to get a deeper understanding of the parameters responsible for the separation. The predominating complexes independent of solvent used are [Am(CyMe4-BTBP)2(NO3)](2+) and [Eu(CyMe4-BTBP)2](3+), respectively, which are present as outer-sphere ion-pairs with nitrate ions in the studied solvents with low relative permittivity. The presence of a nitrate ion in the first coordination sphere of the americium(iii) complex compensates the charge density of the complex considerably in comparison when only outer-sphere ion-pairs are formed as for the [Eu(CyMe4-BTBP)2](3+) complex. The stability and solubility of a complex in a solvent with low relative permittivity increase with decreasing charge density. The [Am(CyMe4-BTBP)2(NO3)](2+) complex will therefore be increasingly soluble and stabilized over the [Eu(CyMe4-BTBP)2](3+) complex in solvents with decreasing relative permittivity of the solvent. The separation of americium(iii) from europium(iii) with CyMe4-BTBP as extraction agent will increase with decreasing relative permittivity of the solvent, and thereby also with decreasing solubility of CyMe4-BTBP. The choice of solvent is therefore a balance of a high separation factor and sufficient solubility of the CyMe4-BTBP

  8. The structures of CyMe4-BTBP complexes of americium(iii) and europium(iii) in solvents used in solvent extraction, explaining their separation properties.

    PubMed

    Ekberg, Christian; Löfström-Engdahl, Elin; Aneheim, Emma; Foreman, Mark R StJ; Geist, Andreas; Lundberg, Daniel; Denecke, Melissa; Persson, Ingmar

    2015-11-14

    Separation of trivalent actinoid (An(iii)) and lanthanoid (Ln(iii)) ions is extremely challenging due to their similar ionic radii and chemical properties. Poly-aromatic nitrogen compounds acting as tetradentate chelating ligands to the metal ions in the extraction, have the ability to sufficiently separate An(iii) from Ln(iii). One of these compounds, 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzol[1,2,4]triazin-3-yl)[2,2]bipyridine, CyMe4-BTBP, has proven to be resistant towards acidic environments and strong radiation from radioactive decomposition. EXAFS studies of the dicomplexes of CyMe4-BTBP with americium(iii) and europium(iii) in nitrobenzene, cyclohexanone, 1-hexanol, 1-octanol and malonamide (DMDOHEMA) in 1-octanol have been carried out to get a deeper understanding of the parameters responsible for the separation. The predominating complexes independent of solvent used are [Am(CyMe4-BTBP)2(NO3)](2+) and [Eu(CyMe4-BTBP)2](3+), respectively, which are present as outer-sphere ion-pairs with nitrate ions in the studied solvents with low relative permittivity. The presence of a nitrate ion in the first coordination sphere of the americium(iii) complex compensates the charge density of the complex considerably in comparison when only outer-sphere ion-pairs are formed as for the [Eu(CyMe4-BTBP)2](3+) complex. The stability and solubility of a complex in a solvent with low relative permittivity increase with decreasing charge density. The [Am(CyMe4-BTBP)2(NO3)](2+) complex will therefore be increasingly soluble and stabilized over the [Eu(CyMe4-BTBP)2](3+) complex in solvents with decreasing relative permittivity of the solvent. The separation of americium(iii) from europium(iii) with CyMe4-BTBP as extraction agent will increase with decreasing relative permittivity of the solvent, and thereby also with decreasing solubility of CyMe4-BTBP. The choice of solvent is therefore a balance of a high separation factor and sufficient solubility of the CyMe4-BTBP

  9. Curium(III) complexation with pyoverdins secreted by a groundwater strain of Pseudomonas fluorescens.

    PubMed

    Moll, Henry; Johnsson, Anna; Schäfer, Mathias; Pedersen, Karsten; Budzikiewicz, Herbert; Bernhard, Gert

    2008-04-01

    Pyoverdins, bacterial siderophores produced by ubiquitous fluorescent Pseudomonas species, have great potential to bind and thus transport actinides in the environment. Therefore, the influence of pyoverdins secreted by microbes on the migration processes of actinides must be taken into account in strategies for the risk assessment of potential nuclear waste disposal sites. The unknown interaction between curium(III) and the pyoverdins released by Pseudomonas fluorescens (CCUG 32456) isolated from the granitic rock aquifers at the Aspö Hard Rock Laboratory (Aspö HRL), Sweden, is the subject of this paper. The interaction between soluble species of curium(III) and pyoverdins was studied at trace curium(III) concentrations (3 x 10(-7)M) using time-resolved laser-induced fluorescence spectroscopy (TRLFS). Three Cm(3+)-P. fluorescens (CCUG 32456) pyoverdin species, M(p)H(q)L(r), could be identified from the fluorescence emission spectra, CmH(2)L(+), CmHL, and CmL(-), having peak maxima at 601, 607, and 611 nm, respectively. The large formation constants, log beta(121 )= 32.50 +/- 0.06, log beta(111) = 27.40 +/- 0.11, and log beta(101) = 19.30 +/- 0.17, compared to those of other chelating agents illustrate the unique complexation properties of pyoverdin-type siderophores. An indirect excitation mechanism for the curium(III) fluorescence was observed in the presence of the pyoverdin molecules. PMID:17653625

  10. Defective dicubanes of Co(II)/Co(III) complexes with triethanolamine and N-donors.

    PubMed

    Hosseinian, S R; Tangoulis, V; Menelaou, M; Raptopoulou, C P; Psycharis, V; Dendrinou-Samara, C

    2013-04-21

    The mixed valence Co(II)/Co(III) tetranuclear clusters [Co(II)2Co(III)2(tea)2(pyr)2(NO3)4]·2CH3CN (1), [Co(II)2Co(III)2(μ3-OH)2(Htea)2(bpy)4](NO3)4 (2), and [Co(II)2Co(III)2(μ3-OH)2(Htea)2(phen)4](NO3)4·2CH3CN·2CH3OH (3) are described where tea and Htea are the fully and the doubly deprotonated form of triethanolamine, while as N-donors are pyridine, 2,2'-bipyridine and 1,10-phenanthroline. Complexes 1-3 contain the Co(II)2Co(III)2O6 core and can be described as defective dicubanes with different imperfectness. In 1, the central rhombic core Co2O2 is occupied by two Co(III) ions while the external cobalt atoms display Co(II) oxidation states; meanwhile 2 and 3 exhibit a reversal in their Co(II)2Co(III)2 oxidation state distribution. Two different theoretical models were used to explain the magnetic behavior: (i) spin-spin interaction model with local anisotropy terms where S = 3/2 for both metal centers and (ii) an anisotropic spin-spin interaction model applicable in the low temperature range (T < 40 K) using effective spins (Seff = 1/2) for both metal centers. For 1 a relatively strong next-nearest-neighbour antiferromagnetic exchange interaction between the Co(II) centers which are connected via diamagnetic Co(III) ion was found while for 2 and 3 the presence of ferromagnetic interaction is confirmed. The fitting results, concerning the first model, gave: J = 2.0(2)/3.2(2)/3.8(2) cm(-1), g = 2.35(1)/2.52(1)/2.57(1) and D = 11.0(1)/8.5(1)/7.8(1) cm(-1) while concerning the second model are: Jz = -7.1(2)/19.2(2)/22.1(2) cm(-1), gz = 6.8(1)/8.1(1)/8.3(1), Jxy/Jz = 0.34(2)/0.11(2)/0.14(2), and gxy/gz = 0.52(2)/0.28(2)/0.36(2) for 1-3. X-Band EPR spectrum of 1 has a very broad derivative centered at g = 5.3 while for 2 and 3 large g-variations were found in the range 20.0-1.0, indicative of an exchange interaction between Co(II) ions.

  11. Preparation and surface photoelectric properties of Fe(II/III) complexes

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Xu, Xiao-Ting; Li, Dan; Han, Xiao; Li, Lei; Chi, Yu-Xian; Niu, Shu-Yun; Zhang, Guang-Ning

    2013-05-01

    Four Fe(II/III) supramolecules, {[Fe(Hpdc)2(H2O)2]·2H2O} (1), [Fe(HImbc)2(H2O)2] (2), [Fe(phen)2(CN)2]·CH3CH2OH·2H2O (3), K[Fe(tp)2]·SO4 (4) (H2pdc = 2,5-Pyridinedicarboxylic acid, H2Imbc = 4,5-Imidazoledicarboxylic acid, phen = 1,10-phenanthroline, tp- = poly(pyrazolyl)borate), were synthesized by hydrothermal and room temperature stirring methods. They were characterized by single crystal X-ray diffraction, surface photovoltage spectroscopy (SPS), field-induced surface photovoltage spectroscopy (FISPS), electron paramagnetic resonance (EPR), UV-Vis absorption spectra (UV-Vis), infrared spectra (IR) and element analysis. The structural analyses indicate that complex (1) is a supramolecule with 2D structure connected by hydrogen bonds. Complex (2) is a supramolecule with hydrogen-bonded 3D structure. Complexes (3) and (4) are both 1D supramolecules connected by hydrogen bonds. The electronic state of central metal Fe(II) ions in complexes (1) and (2) is d6 with FeN2O4 coordination mode, lying in weaker distorted octahedral field. The electronic state of Fe(II) ion in complex (3) is d6 with Fe(CN)2N4 mode in the strong distorted octahedral field. The electronic state of Fe(III) ion in complex (4) is d5 with FeN6 mode, lying in the strong octahedral field. The micro-environment of Fe(II/III) ions in the four complexes is further investigated by EPR. The SPS of four complexes all exhibit photovoltage responses in the range of 300-700 nm. This indicates that they all possess certain photoelectric conversion capability. The effects of component, structure, type of ligands of the complexes, valence state and coordination micro-environment of the central metal ions on the SPS were discussed. Furthermore, the SPS and UV-Vis absorption spectra were interrelated.

  12. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-01

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  13. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III) Complexes

    PubMed Central

    Sumaoka, Jun; Akiba, Hiroki; Komiyama, Makoto

    2016-01-01

    Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear TbIII complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr), have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the TbIII ion as the emission center. Even in the coexistence of phosphoserine (pSer) and phosphothreonine (pThr), pTyr can be efficintly detected with high selectivity. Simply by adding these TbIII complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates. PMID:27375742

  14. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms. PMID:27250314

  15. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  16. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael

    2015-01-01

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  17. Iron(III) complexes: preparation, characterization, antibacterial activity and DNA-binding.

    PubMed

    Pansuriya, Pramod B; Patel, M N

    2008-04-01

    Iron(III) have been combined to well known quinolones (ciprofloxacin) and some Schiff bases with the help of coordination approach. Characterization of these compounds have been done using elemental analysis, magnetic measurements, thermogravimetric analysis, IR, UV-VIS, (1)H NMR and (13)C NMR spectral investigation. Analytical studies suggest that the iron(III)-quinolone complexes assume a six-coordinated dimeric distorted octahedral geometry. All the compounds show a good antibacterial activity against broad range of bacteria like Bacillus cereus, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi and Serratia marcescens, whereas no significant inhibition towards growth of fungal strains like Aspergillus Niger, Aspergillus flavus and Lasiodiplodia theobromae. Analyses of all these compounds show effective sperm herring DNA inhibition. PMID:18343909

  18. Field-Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)-Porphyrin Complex.

    PubMed

    Pascual-Álvarez, Alejandro; Vallejo, Julia; Pardo, Emilio; Julve, Miguel; Lloret, Francesc; Krzystek, J; Armentano, Donatella; Wernsdorfer, Wolfgang; Cano, Joan

    2015-11-23

    We report on a novel manganese(III)-porphyrin complex with the formula [Mn(III) (TPP)(3,5-Me2 pyNO)2 ]ClO4 ⋅CH3 CN (2; 3,5-Me2 pyNO=3,5-dimethylpyridine N-oxide, H2 TPP=5,10,15,20-tetraphenylporphyrin), in which the Mn(III) ion is six-coordinate with two monodentate 3,5-Me2 pyNO molecules and a tetradentate TPP ligand to build a tetragonally elongated octahedral geometry. The environment in 2 is responsible for the large and negative axial zero-field splitting (D=-3.8 cm(-1) ), low rhombicity (E/|D|=0.04) of the high-spin Mn(III) ion, and, ultimately, for the observation of slow magnetic-relaxation effects (Ea =15.5 cm(-1) at H=1000 G) in this rare example of a manganese-based single-ion magnet (SIM). Structural, magnetic, and electronic characterizations were carried out by means of single-crystal diffraction studies, variable-temperature direct- and alternating-current measurements and high-frequency and -field EPR spectroscopic analysis followed by quantum-chemical calculations. Slow magnetic-relaxation effects were also observed in the already known analogous compound [Mn(III) (TPP)Cl] (1; Ea =10.5 cm(-1) at H=1000 G). The results obtained for 1 and 2 are compared and discussed herein.

  19. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    PubMed

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed.

  20. Oxidation of formic acid on platinum surfaces decorated with cobalt(III) macrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Stevanović, S.; Babić-Samardžija, K.; Sovilj, S. P.; Tripković, A.; Jovanović, V. M.

    2009-09-01

    Platinum electrode decorated with three different mixed-ligand cobalt(III) complexes of the general formula [Co(Rdtc)cyclam](ClO4)2 [cyclam = 1,4,8,11-tetraazacyclotetradecane, Rdtc- = morpholine-(Morphdtc), piperidine-(Pipdtc), and 4-methylpiperidine-(4-Mepipdtc) dithiocarbamates, respectively] was used to study oxidation of formic acid in acidic solution. The complexes were adsorbed on differently prepared Pt surfaces, at open circuit potential. The preliminary results show increased catalytic activity of Pt for formic acid oxidation with complex ion adsorbed on the polycrystalline surfaces. The increase in catalytic activity depends on the structure of the complex applied and follows the order of metal-coordinated bidentate ligand as Morphdtc > Pipdtc > 4-Mepipdtc. Based on IR and NMR data, the main characteristics of the Rdtc ligands do not vary dramatically, but high symmetry of the corresponding complexes decreases in the same order. Accordingly, the complexes are distinctively more mobile, causing chemical interactions to occur on the surface with appreciable speed and enhanced selectivity. The effect of the complexes on catalytic activity presumably depends on structural changes on Pt surfaces caused by their adsorption.

  1. Preclinical characterization of anticancer gallium(III) complexes: solubility, stability, lipophilicity and binding to serum proteins.

    PubMed

    Rudnev, Alexander V; Foteeva, Lidia S; Kowol, Christian; Berger, Roland; Jakupec, Michael A; Arion, Vladimir B; Timerbaev, Andrei R; Keppler, Bernhard K

    2006-11-01

    The discovery and development of gallium(III) complexes capable of inhibiting tumor growth is an emerging area of anticancer drug research. A range of novel gallium coordination compounds with established cytotoxic efficacy have been characterized in terms of desirable chemical and biochemical properties and compared with tris(8-quinolinolato)gallium(III) (KP46), a lead anticancer gallium-based candidate that successfully finished phase I clinical trials (under the name FFC11), showing activity against renal cell cancer. In view of probable oral administration, drug-like parameters, such as solubility in water, saline and 0.5% dimethyl sulfoxide, stability against hydrolysis, measured as the rate constant of hydrolytic degradation in water or physiological buffer using a capillary zone electrophoresis (CZE) assay, and the octanol-water partition coefficient (logP) providing a rational estimate of a drug's lipophilicity, have been evaluated and compared. The differences in bioavailability characteristics between different complexes were discussed within the formalism of structure-activity relationships. The reactivity toward major serum transport proteins, albumin and transferrin, was also assayed in order to elucidate the drug's distribution pathway after intestinal absorption. According to the values of apparent binding rate constants determined by CZE, both KP46 and bis(2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazonato-N,N,S)gallium(III) tetrachlorogallate(III) (KP1089) bind to transferrin faster than to albumin. This implies that transferrin would rather mediate the accumulation of gallium antineoplastic agents in solid tumors. A tendency of being faster converted into the protein-bound form found for KP1089 (due possibly to non-covalent binding) seems complementary to its greater in vitro antiproliferative activity.

  2. The Alternative complex III: properties and possible mechanisms for electron transfer and energy conservation.

    PubMed

    Refojo, Patrícia N; Teixeira, Miguel; Pereira, Manuela M

    2012-10-01

    Alternative complexes III (ACIII) are recently identified membrane-bound enzymes that replace functionally the cytochrome bc(1/)b(6)f complexes. In general, ACIII are composed of four transmembrane proteins and three peripheral subunits that contain iron-sulfur centers and C-type hemes. ACIII are built by a combination of modules present in different enzyme families, namely the complex iron-sulfur molybdenum containing enzymes. In this article a historical perspective on the investigation of ACIII is presented, followed by an overview of the present knowledge on these enzymes. Electron transfer pathways within the protein are discussed taking into account possible different locations (cytoplasmatic or periplasmatic) of the iron-sulfur containing protein and their contribution to energy conservation. In this way several hypotheses for energy conservation modes are raised including linear and bifurcating electron transfer pathways. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  3. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex.

    PubMed

    Rice, Derek B; Wijeratne, Gayan B; Burr, Andrew D; Parham, Joshua D; Day, Victor W; Jackson, Timothy A

    2016-08-15

    A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the

  4. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex.

    PubMed

    Rice, Derek B; Wijeratne, Gayan B; Burr, Andrew D; Parham, Joshua D; Day, Victor W; Jackson, Timothy A

    2016-08-15

    A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the

  5. Gold(III)-CO and gold(III)-CO2 complexes and their role in the water-gas shift reaction

    PubMed Central

    Roşca, Dragoş-Adrian; Fernandez-Cestau, Julio; Morris, James; Wright, Joseph A.; Bochmann, Manfred

    2015-01-01

    The water-gas shift (WGS) reaction is an important process for the generation of hydrogen. Heterogeneous gold catalysts exhibit good WGS activity, but the nature of the active site, the oxidation state, and competing reaction mechanisms are very much matters of debate. Homogeneous gold WGS systems that could shed light on the mechanism are conspicuous by their absence: gold(I)–CO is inactive and gold(III)–CO complexes were unknown. We report the synthesis of the first example of an isolable CO complex of Au(III). Its reactivity demonstrates fundamental differences between the CO adducts of the neighboring d8 ions Pt(II) and Au(III): whereas Pt(II)-CO is stable to moisture, Au(III)–CO compounds are extremely susceptible to nucleophilic attack and show WGS reactivity at low temperature. The key to understanding these dramatic differences is the donation/back-donation ratio of the M–CO bond: gold-CO shows substantially less back-bonding than Pt-CO, irrespective of closely similar ν(CO) frequencies. Key WGS intermediates include the gold-CO2 complex [(C^N^C)Au]2(μ-CO2), which reductively eliminates CO2. The species identified here are in accord with Au(III) as active species and a carboxylate WGS mechanism. PMID:26601313

  6. Efficacy of ketoprofen administered in drinking water at a low dose for the treatment of porcine respiratory disease complex.

    PubMed

    Salichs, M; Sabaté, D; Homedes, J

    2013-09-01

    The purpose of this study was to evaluate the efficacy of an oral solution of ketoprofen administered in drinking water at a lower dose as a complement to antimicrobial therapy in a mild outbreak of porcine respiratory disease complex. The study was performed with 120 pigs with rectal temperature between 39.9 and 41°C and at least 1 sign indicating porcine respiratory disease complex (dyspnea, cough, nasal discharge, or depression). Animals were randomly allocated in 2 groups (treated and control group). Animals in both groups received etiological therapy with doxycycline at 10 mg · kg(-1) in drinking water for 5 d. The animals in the treated group also received 1.5 mg · kg(-1) of ketoprofen during the first 3 d. The reduction in rectal temperature in the treated group was significantly greater during the days of ketoprofen administration and up to 1 d after the end of treatment (P < 0.05). The percentage of dyspneic animals was significantly less (P < 0.05) in the treated group from d 2 to 5 of the study. Also, a significant improvement regarding depression and cough was seen in the animals of the treated group. No statistically significant (P > 0.05) differences were evidenced in productive variables. In conclusion, oral treatment with ketoprofen at 1.5 mg · kg(-1) in combination with antimicrobial therapy was found to be a clinically effective approach in outbreaks of mild porcine respiratory disease complex.

  7. Mutations in NDUFB11, Encoding a Complex I Component of the Mitochondrial Respiratory Chain, Cause Microphthalmia with Linear Skin Defects Syndrome

    PubMed Central

    van Rahden, Vanessa A.; Fernandez-Vizarra, Erika; Alawi, Malik; Brand, Kristina; Fellmann, Florence; Horn, Denise; Zeviani, Massimo; Kutsche, Kerstin

    2015-01-01

    Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject’s mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations. PMID:25772934

  8. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome.

    PubMed

    van Rahden, Vanessa A; Fernandez-Vizarra, Erika; Alawi, Malik; Brand, Kristina; Fellmann, Florence; Horn, Denise; Zeviani, Massimo; Kutsche, Kerstin

    2015-04-01

    Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.

  9. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome.

    PubMed

    van Rahden, Vanessa A; Fernandez-Vizarra, Erika; Alawi, Malik; Brand, Kristina; Fellmann, Florence; Horn, Denise; Zeviani, Massimo; Kutsche, Kerstin

    2015-04-01

    Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations. PMID:25772934

  10. Synthesis and luminescence properties of two novel lanthanide (III) perchlorate complexes with bis(benzoylmethyl) sulfoxide and benzoic acid.

    PubMed

    Li, Wen-Xian; Chai, Wen-Juan; Sun, Xiao-Jun; Ren, Tie; Shi, Xiao-Yan

    2010-07-01

    Two novel ternary rare earth complexes of Tb(III) and Dy(III) perchlorates with bis(benzoylmethyl) sulfoxide (L) and benzoic acid (L') had been synthesized and characterized by elemental analysis, coordination titration analysis, molar conductivity, IR, TG-DSC, (1)HNMR and UV spectra. The results indicated that the composition of these complexes was REL(5)L'(ClO(4))(2) x nH(2)O (RE = Tb(III), Dy(III); L = C(6)H(5)COCH(2)SOCH(2)COC(6)H(5), L' = C(6)H(5)COO; n = 6,8). The fluorescence spectra illustrated that the ternary rare earth complexes presented stronger fluorescence intensities, longer lifetimes and higher fluorescence quantum efficiencies than the binary rare earth complexes REL(5) x (ClO(4))(3) x 2 H(2)O. After the introduction of the second ligand benzoic acid group, the relative fluorescence emission intensities and fluorescence lifetimes of the ternary complexes REL(5)L'(ClO(4))(2) x nH(2)O (RE = Tb(III), Dy(III)) enhanced more obviously than the binary complexes. This indicated that the presence of both organic ligands bis(benzoylmethyl) sulfoxide and the second ligand benzoic acid could sensitize fluorescence intensities of rare earth ions, and the introduction of benzoic acid group was resulted in the enhancement of the fluorescence properties of the ternary rare earth complexes. The phosphorescence spectra were also discussed.

  11. Electrochemical Instability of Phosphonate-Derivatized, Ruthenium(III) Polypyridyl Complexes on Metal Oxide Surfaces.

    PubMed

    Hyde, Jacob T; Hanson, Kenneth; Vannucci, Aaron K; Lapides, Alexander M; Alibabaei, Leila; Norris, Michael R; Meyer, Thomas J; Harrison, Daniel P

    2015-05-13

    The oxidative stability of the molecular components of dye-sensitized photoelectrosynthesis cells for solar water splitting remains to be explored systematically. We report here the results of an electrochemical study on the oxidative stability of ruthenium(II) polypyridyl complexes surface-bound to fluorine-doped tin oxide electrodes in acidic solutions and, to a lesser extent, as a function of pH and solvent with electrochemical monitoring. Desorption occurs for the Ru(II) forms of the surface-bound complexes with oxidation to Ru(III) enhancing both desorption and decomposition. Based on the results of long-term potential hold experiments with cyclic voltammetry monitoring, electrochemical oxidation to Ru(III) results in slow decomposition of the complex by 2,2'-bipyridine ligand loss and aquation and/or anation. A similar pattern of ligand loss was also observed for a known chromophore-catalyst assembly for both electrochemical water oxidation and photoelectrochemical water splitting. Our results are significant in identifying the importance of enhancing chromophore stability, or at least transient stability, in oxidized forms in order to achieve stable performance in aqueous environments in photoelectrochemical devices. PMID:25871342

  12. Complex Formation Between Ca(II), Mg(II), Al(III) Ions and Salicylglycine

    PubMed Central

    Kilyén, Melinda; Labádi, lmre; Tombácz, Etelka; Kiss, Tamás

    2003-01-01

    For modelling the interactions of proteins/peptides with hard metal ions the complex formation of salicylglycine (SalGly) with Ca(II), Mg(ll) and AI(III) ions was studied in aqueous solution using pHpotentiometric and UV-vis spectroscopic techniques. Al(lll) ion was found to form more stable complexes with SalGiy than Ca(ll) or Mg(ll) ions. While AI(III) ion forms various 1:1 complexes of different protonation states in the pH range 2-7, Ca(ll), Mg(ll) ions seem to interact with SalGly only in the basic pH range and form mixed hydroxo species MLH-1 at pH ~ 8. According to the UV-vis spectroscopic measurements in the species MLH-1 the carboxylate-O- atom and the phenolate-O- coordinate to the metal ions. SaIGiy is able to keep Al(lll) in solution through inner and outer sphere coordination to metastable amorphous AI(OH)3 particles. Deprotonation of the peptide amide Nil does not occur in these systems. PMID:18365063

  13. Directivity Patterns of Complex Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2014-12-01

    Complex solar type III-like radio bursts are a group of type III bursts that occur in association with slowly drifting type II radio bursts excited by coronal mass ejection (CME) driven shock waves. We presentsimultaneous observations of these radio bursts from the STEREO A, B and WIND spacecraft at low frequencies, located at different vantage points in the ecliptic plane. Using these stereoscopic observations, wedetermine the directivity of these complex radio bursts. We estimate the angles between the directions of the magnetic field at the sources and the lines connecting the source to the spacecraft (viewing angles) by assuming that the sources are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere. We estimate the normalized peak intensities of these bursts (directivity factors) at each spacecraft using their time profiles at each spacecraft. These observations indicate that the complex type III bursts can be divided into two groups: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field, and (2) bursts emitting into a wider cone. We show that the bursts , which are emitted along the tangent to the spiral magnetic field lines at the source are very intense, and their intensities steadily fall as the viewing angles increase to higher values. We have developed a ray tracing code and computed the distributions of the trajectories of rays emitted at the fundamental and second harmonic of the electron plasma frequency. The comparison of the observed emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relativelyweaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  14. Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions.

    PubMed

    You, Youngmin; Cho, Somin; Nam, Wonwoo

    2014-02-17

    Phosphorescence signaling provides a valuable alternative to conventional bioimaging based on fluorescence. The benefits of using phosphorescent molecules include improved sensitivity and capabilities for effective elimination of background signals by time-gated acquisition. Cyclometalated Ir(III) complexes are promising candidates for facilitating phosphorescent bioimaging because they provide synthetic versatility and excellent phosphorescence properties. In this Forum Article, we present our recent studies on the development of phosphorescence sensors for the detection of metal ions based on cyclometalated iridium(III) complexes. The constructs contained cyclometalating (C^N) ligands with the electron densities and band-gap energies of the C^N ligand structures systematically varied. Receptors that chelated zinc, cupric, and chromium ions were tethered to the ligands to create phosphorescence sensors. The alterations in the C^N ligand structures had a profound influence on the phosphorescence responses to metal ions. Mechanistic studies suggested that the phosphorescence responses could be explained on the basis of the modulation of photoinduced electron transfer (PeT) from the receptor to the photoexcited iridium species. The PeT behaviors strictly adhered to the Rehm-Weller principle, and the occurrence of PeT was located in the Marcus-normal region. It is thus anticipated that improved responses will be obtainable by increasing the excited-state reduction potential of the iridium(III) complexes. Femtosecond transient absorption experiments provided evidence for the presence of an additional photophysical mechanism that involved metal-ion-induced alteration of the intraligand charge-transfer (ILCT) transition state. Utility of the mechanism by PeT and ILCT has been demonstrated for the phosphorescence sensing of biologically important transition-metal ions. In particular, the phosphorescence zinc sensor could report the presence of intracellular zinc pools by

  15. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes.

    PubMed

    Dougherty, Gerard W; Loges, Niki T; Klinkenbusch, Judith A; Olbrich, Heike; Pennekamp, Petra; Menchen, Tabea; Raidt, Johanna; Wallmeier, Julia; Werner, Claudius; Westermann, Cordula; Ruckert, Christian; Mirra, Virginia; Hjeij, Rim; Memari, Yasin; Durbin, Richard; Kolb-Kokocinski, Anja; Praveen, Kavita; Kashef, Mohammad A; Kashef, Sara; Eghtedari, Fardin; Häffner, Karsten; Valmari, Pekka; Baktai, György; Aviram, Micha; Bentur, Lea; Amirav, Israel; Davis, Erica E; Katsanis, Nicholas; Brueckner, Martina; Shaposhnykov, Artem; Pigino, Gaia; Dworniczak, Bernd; Omran, Heymut

    2016-08-01

    Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.

  16. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes.

    PubMed

    Dougherty, Gerard W; Loges, Niki T; Klinkenbusch, Judith A; Olbrich, Heike; Pennekamp, Petra; Menchen, Tabea; Raidt, Johanna; Wallmeier, Julia; Werner, Claudius; Westermann, Cordula; Ruckert, Christian; Mirra, Virginia; Hjeij, Rim; Memari, Yasin; Durbin, Richard; Kolb-Kokocinski, Anja; Praveen, Kavita; Kashef, Mohammad A; Kashef, Sara; Eghtedari, Fardin; Häffner, Karsten; Valmari, Pekka; Baktai, György; Aviram, Micha; Bentur, Lea; Amirav, Israel; Davis, Erica E; Katsanis, Nicholas; Brueckner, Martina; Shaposhnykov, Artem; Pigino, Gaia; Dworniczak, Bernd; Omran, Heymut

    2016-08-01

    Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography. PMID:26909801

  17. Synthesis and characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol.

    PubMed

    Kumar, S Praveen; Suresh, R; Giribabu, K; Manigandan, R; Munusamy, S; Muthamizh, S; Narayanan, V

    2015-03-15

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  18. Characterization of the RNA polymerase II and III complexes in Leishmania major.

    PubMed

    Martínez-Calvillo, Santiago; Saxena, Alka; Green, Amanda; Leland, Aaron; Myler, Peter J

    2007-04-01

    Transcription of protein-coding genes in Leishmania major and other trypanosomatids differs from that in most eukaryotes and bioinformatic analyses have failed to identify several components of the RNA polymerase (RNAP) complexes. To increase our knowledge about this basic cellular process, we used tandem affinity purification (TAP) to identify subunits of RNAP II and III. Mass spectrometric analysis of the complexes co-purified with TAP-tagged LmRPB2 (encoded by LmjF31.0160) identified seven RNAP II subunits: RPB1, RPB2, RPB3, RPB5, RPB7, RPB10 and RPB11. With the exception of RPB10 and RPB11, and the addition of RPB8, these were also identified using TAP-tagged constructs of one (encoded by LmjF34.0890) of the two LmRPB6 orthologues. The latter experiments also identified the RNAP III subunits RPC1 (C160), RPC2 (C128), RPC3 (C82), RPC4 (C53), RPC5 (C37), RPC6 (C34), RPC9 (C17), RPAC1 (AC40) and RPAC2 (AC19). Significantly, the complexes precipitated by TAP-tagged LmRPB6 did not contain any RNAP I-specific subunits, suggesting that, unlike in other eukaryotes, LmRPB6 is not shared by all three polymerases but is restricted to RNAP II and III, while the LmRPB6z (encoded by LmjF25.0140) isoform is limited to RNAP I. Similarly, we identified peptides from only one (encoded by LmjF18.0780) of the two RPB5 orthologues and one (LmjF13.1120) of the two RPB10 orthologues, suggesting that LmRPB5z (LmjF18.0790) and LmRPB10z (LmjF13.1120) are also restricted to RNAP I. In addition to these RNAP subunits, we also identified a number of other proteins that co-purified with the RNAP II and III complexes, including a potential transcription factor, several histones, an ATPase involved in chromosome segregation, an endonuclease, four helicases, RNA splicing factor PTSR-1, at least two RNA binding proteins and several proteins of unknown function. PMID:17275824

  19. Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium (III) complexes bonded

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Li, Zhiqiang; Xu, Yang; Wang, Yige

    2016-05-01

    In this work, a novel red-emitting organic-inorganic hybrid material with europium (III) lanthanide β-diketonate complexes linked to a zirconia was reported, which was realized by adduct formation with zirconia-tethered terpyridine moieties. Luminescence enhancement of the hybrid material has been observed compared with pure Eu(tta)3·2H2O. Transparent and strongly luminescent thin films based on PMMA were also prepared at room temperature, which are highly luminescent under UV-light irradiation and possess a promising prospect in the area of optics.

  20. Paramagnetic titanium(III) and zirconium(III) metallocene complexes as precatalysts for the dehydrocoupling/dehydrogenation of amine-boranes.

    PubMed

    Helten, Holger; Dutta, Barnali; Vance, James R; Sloan, Matthew E; Haddow, Mairi F; Sproules, Stephen; Collison, David; Whittell, George R; Lloyd-Jones, Guy C; Manners, Ian

    2013-01-01

    Complexes of Group 4 metallocenes in the +3 oxidation state and amidoborane or phosphidoborane function as efficient precatalysts for the dehydrocoupling/dehydrogenation of amine-boranes, such as Me(2) NH⋅BH(3). Such Ti(III) -amidoborane complexes are generated in [Cp(2)Ti]-catalyzed amine-borane dehydrocoupling reactions, for which diamagnetic M(II) and M(IV) species have been previously postulated as precatalysts and intermediates. PMID:23197391

  1. Sensitized near-infrared emission from ytterbium(III) via direct energy transfer from iridium(III) in a heterometallic neutral complex.

    PubMed

    Mehlstäubl, Marita; Kottas, Gregg S; Colella, Silvia; De Cola, Luisa

    2008-05-14

    A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.

  2. Complex III deficiency due to an in-frame MT-CYB deletion presenting as ketotic hypoglycemia and lactic acidosis.

    PubMed

    Mori, Mari; Goldstein, Jennifer; Young, Sarah P; Bossen, Edward H; Shoffner, John; Koeberl, Dwight D

    2015-09-01

    Complex III deficiency due to a MT-CYB mutation has been reported in patients with myopathy. Here, we describe a 15-year-old boy who presented with metabolic acidosis, ketotic hypoglycemia and carnitine deficiency. Electron transport chain analysis and mitochondrial DNA sequencing on muscle tissue lead to the eventual diagnosis of complex III deficiency. This case demonstrates the critical role of muscle biopsies in a myopathy work-up, and the clinical efficacy of supplement therapy. PMID:26937408

  3. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs.

    PubMed

    Rettondin, Andressa R; Carneiro, Zumira A; Gonçalves, Ana C R; Ferreira, Vanessa F; Oliveira, Carolina G; Lima, Angélica N; Oliveira, Ronaldo J; de Albuquerque, Sérgio; Deflon, Victor M; Maia, Pedro I S

    2016-09-14

    Tridentate thiosemicarbazone ligands with an ONS donor set, H2L(R) (R = Me and Et) were prepared by reactions of 1-phenyl-1,3-butanedione with 4-R-3-thiosemicarbazides. H2L(R) reacts with Na[AuCl4]·2H2O in MeOH in a 1:1 M ratio under formation of green gold(III) complexes of composition [AuCl(L(R))]. These compounds represent the first examples of gold(III) complexes with ONS chelate-bonded thiosemicarbazones. The in vitro anti-Trypanosoma cruzi activity against both trypomastigote and amastigote forms (IC50try/ama) of CL Brener strains as well as the cytotoxicity against LLC-MK2 cells of the free ligands and complexes was evaluated. The complex [AuCl(L(Me))] was found to be more active and more selective than its precursor ligand and the standard drug benznidazole with a SItry/ama value higher than 200, being considered as a lead candidate for Chagas disease treatment. Moreover the in vitro activity against the replicative amastigote form (IC50ama) of T. cruzi was additionally investigated revealing that [AuCl(L(Me))] was also more potent than benznidazole still with a similar selectivity index. Finally, docking studies showed that free ligands and complexes interact with the same residues of the parasite protease cruzain but with different intensities, suggesting that this protease could be a possible target for the trypanocidal action of the obtained compounds. PMID:27191616

  4. Iridium(III) complexes with phenyl-tetrazoles as cyclometalating ligands.

    PubMed

    Monti, Filippo; Baschieri, Andrea; Gualandi, Isacco; Serrano-Pérez, Juan J; Junquera-Hernández, José M; Tonelli, Domenica; Mazzanti, Andrea; Muzzioli, Sara; Stagni, Stefano; Roldan-Carmona, Cristina; Pertegás, Antonio; Bolink, Henk J; Ortí, Enrique; Sambri, Letizia; Armaroli, Nicola

    2014-07-21

    Ir(III) cationic complexes with cyclometalating tetrazolate ligands were prepared for the first time, following a two-step strategy based on (i) a silver-assisted cyclometalation reaction of a tetrazole derivative with IrCl3 affording a bis-cyclometalated solvato-complex P ([Ir(ptrz)2(CH3CN)2](+), Hptrz = 2-methyl-5-phenyl-2H-tetrazole); (ii) a substitution reaction with five neutral ancillary ligands to get [Ir(ptrz)2L](+), with L = 2,2'-bypiridine (1), 4,4'-di-tert-butyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), and 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4), and [Ir(ptrz)2L2](+), with L = tert-butyl isocyanide (5). X-ray crystal structures of P, 2, and 3 were solved. Electrochemical and photophysical studies, along with density functional theory calculations, allowed a comprehensive rationalization of the electronic properties of 1-5. In acetonitrile at 298 K, complexes equipped with bipyridine or phenanthroline ancillary ligands (1-3) exhibit intense and structureless emission bands centered at around 540 nm, with metal-to-ligand and ligand-to-ligand charge transfer (MLCT/LLCT) character; their photoluminescence quantum yields (PLQYs) are in the range of 55-70%. By contrast, the luminescence band of 5 is weak, structured, and blue-shifted and is attributed to a ligand-centered (LC) triplet state of the tetrazolate cyclometalated ligand. The PLQY of 4 is extremely low (<0.1%) since its lowest level is a nonemissive triplet metal-centered ((3)MC) state. In rigid matrix at 77 K, all of the complexes exhibit intense luminescence. Ligands 1-3 are also strong emitters in solid matrices at room temperature (1% poly(methyl methacrylate) matrix and neat films), with PLQYs in the range of 27-70%. Good quality films of 2 could be obtained to make light-emitting electrochemical cells that emit bright green light and exhibit a maximum luminance of 310 cd m(-2). Tetrazolate cyclometalated ligands push the emission of Ir(III) complexes to the blue, when compared to

  5. Malfunctioning of the Iron–Sulfur Cluster Assembly Machinery in Saccharomyces cerevisiae Produces Oxidative Stress via an Iron-Dependent Mechanism, Causing Dysfunction in Respiratory Complexes

    PubMed Central

    Gomez, Mauricio; Pérez-Gallardo, Rocío V.; Sánchez, Luis A.; Díaz-Pérez, Alma L.; Cortés-Rojo, Christian; Meza Carmen, Victor; Saavedra-Molina, Alfredo; Lara-Romero, Javier; Jiménez-Sandoval, Sergio; Rodríguez, Francisco; Rodríguez-Zavala, José S.; Campos-García, Jesús

    2014-01-01

    Biogenesis and recycling of iron–sulfur (Fe–S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe–S clusters are assembled into apoproteins by the iron–sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe–S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe–S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe–S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain. PMID:25356756

  6. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    PubMed Central

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  7. Synthesis, structure and spectroscopic study of Rh III polypyridine complexes with phenylcyanamide derivative ligands

    NASA Astrophysics Data System (ADS)

    Hadadzadeh, Hassan; Rezvani, Ali R.; Belanger-Gariepy, Francine

    2005-04-01

    Several new Rh III complexes, [Rh(tpy)(bpy)L](PF 6) 2 (tpy=2,2':6',2″-terpyridine, bpy=2,2'-bipyridine, and L=monoanions of phenylcyanamide(pcyd)), 4-methylphenylcyanamide (4-MePcyd), 2,4-dimethylphenylcyanamide (2,4-Me 2pcyd), 4-methoxyphenylcyanamide (4-MeOPcyd), 2-chlorophenylcyanamide (2-Clpcyd) and 2,5-dichlorophenylcyanamide (2,5-Cl 2pcyd) have been synthesized and characterized by elemental analysis, IR, 1H NMR and electronic absorption spectroscopies. ORTEP drawing of [Rh(tpy)(bpy)(2,5-Cl 2pcyd)](PF 6) 2·1/2CH 3CN shows three pyridyl rings of the tpy ligand that are nearly coplanar, as are the two rings of bpy. The anionic cyanamide group is coordinated end-on by the nitrile nitrogen to the Rh III. The Rh III-NCN bond is bent, having an angle of 125.4°. This bent bond is largely determined by the σ-bonding interaction of a cyanamide non-bonding electron pair in a sp 2 hybrid orbital.

  8. A comparative study of the biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus and Chlorella vulgaris

    SciTech Connect

    Aksu, Z.; Calik, A.

    1999-03-01

    In this study a comparative biosorption of iron(III)-cyanide complex anions from aqueous solutions to Rhizopus arrhizus and Chlorella vulgaris was investigated. The iron(III)-cyanide complex ion-binding capacities of the biosorbents were shown as a function of initial pH, initial iron(III)-cyanide complex ion, and biosorbent concentrations. The results indicated that a significant reduction of iron(III)-cyanide complex ions was achieved at pH 13, a highly alkaline condition for both the biosorbents. The maximum loading capacities of the biosorbents were found to be 612.2 mg/g for R.arrhizus at 1,996.2 mg/L initial iron(III)-cyanide complex ion concentration and 387.0 mg/g for C. vulgaris at 845.4 mg/L initial iron(III)-cyanide complex ion concentration at this pH. The Freundlich, Langmuir, and Redlich-Peterson adsorption models were fitted to the equilibrium data at pH 3, 7, and 13. The equilibrium data of the biosorbents could be best fitted by all the adsorption models over the entire concentration range at pH 13.

  9. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma.

  10. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set.

    PubMed

    Oddon, Frédéric; Chiba, Yosuke; Nakazawa, Jun; Ohta, Takehiro; Ogura, Takashi; Hikichi, Shiro

    2015-06-15

    Reaction of O2 with a high-spin mononuclear iron(II) complex supported by a five-azole donor set yields the corresponding mononuclear non-heme iron(III)-superoxo species, which was characterized by UV/Vis spectroscopy and resonance Raman spectroscopy. (1)H NMR analysis reveals diamagnetic nature of the superoxo complex arising from antiferromagnetic coupling between the spins on the low-spin iron(III) and superoxide. This superoxo species reacts with H-atom donating reagents to give a low-spin iron(III)-hydroperoxo species showing characteristic UV/Vis, resonance Raman, and EPR spectra.

  11. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    PubMed

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.

  12. Reactivity of Cys4 zinc finger domains with gold(III) complexes: insights into the formation of "gold fingers".

    PubMed

    Jacques, Aurélie; Lebrun, Colette; Casini, Angela; Kieffer, Isabelle; Proux, Olivier; Latour, Jean-Marc; Sénèque, Olivier

    2015-04-20

    Gold(I) complexes such as auranofin or aurothiomalate have been used as therapeutic agents for the treatment of rheumatoid arthritis for several decades. Several gold(I) and gold(III) complexes have also shown in vitro anticancer properties against human cancer cell lines, including cell lines resistant to cisplatin. Because of the thiophilicity of gold, cysteine-containing proteins appear as likely targets for gold complexes. Among them, zinc finger proteins have attracted attention and, recently, gold(I) and gold(III) complexes have been shown to inhibit poly(adenosine diphosphate ribose)polymerase-1 (PARP-1), which is an essential protein involved in DNA repair and in cancer resistance to chemotherapies. In this Article, we characterize the reactivity of the gold(III) complex [Au(III)(terpy)Cl]Cl2 (Auterpy) with a model of Zn(Cys)4 "zinc ribbon" zinc finger by a combination of absorption spectroscopy, circular dichroism, mass spectrometry, high-performance liquid chromatography analysis, and X-ray absorption spectroscopy. We show that the Zn(Cys)4 site of Zn·LZR is rapidly oxidized by Auterpy to form a disulfide bond. The Zn(2+) ion is released, and the two remaining cysteines coordinate the Au(+) ion that is produced during the redox reaction. Subsequent oxidation of these cysteines can take place in conditions of excess gold(III) complex. In the presence of excess free thiols mimicking the presence of glutathione in cells, mixing of the zinc finger model and gold(III) complex yields a different product: complex (Au(I))2·LZR with two Au(+) ions bound to cysteines is formed. Thus, on the basis of detailed speciation and kinetic measurements, we demonstrate herein that the destruction of Zn(Cys)4 zinc fingers by gold(III) complexes to achieve the formation of "gold fingers" is worth consideration, either directly or mediated by reducing agents.

  13. Charged bis-cyclometalated iridium(III) complexes with carbene-based ancillary ligands.

    PubMed

    Monti, Filippo; Kessler, Florian; Delgado, Manuel; Frey, Julien; Bazzanini, Federico; Accorsi, Gianluca; Armaroli, Nicola; Bolink, Henk J; Ortí, Enrique; Scopelliti, Rosario; Nazeeruddin, Md Khaja; Baranoff, Etienne

    2013-09-16

    Charged cyclometalated (C(^)N) iridium(III) complexes with carbene-based ancillary ligands are a promising family of deep-blue phosphorescent compounds. Their emission properties are controlled primarily by the main C(^)N ligands, in contrast to the classical design of charged complexes where N(^)N ancillary ligands with low-energy π* orbitals, such as 2,2'-bipyridine, are generally used for this purpose. Herein we report two series of charged iridium complexes with various carbene-based ancillary ligands. In the first series the C(^)N ligand is 2-phenylpyridine, whereas in the second one it is 2-(2,4-difluorophenyl)-pyridine. One bis-carbene (:C(^)C:) and four different pyridine-carbene (N(^)C:) chelators are used as bidentate ancillary ligands in each series. Synthesis, X-ray crystal structures, and photophysical and electrochemical properties of the two series of complexes are described. At room temperature, the :C(^)C: complexes show much larger photoluminescence quantum yields (ΦPL) of ca. 30%, compared to the N(^)C: analogues (around 1%). On the contrary, all of the investigated complexes are bright emitters in the solid state both at room temperature (1% poly(methyl methacrylate) matrix, ΦPL 30-60%) and at 77 K. Density functional theory calculations are used to rationalize the differences in the photophysical behavior observed upon change of the ancillary ligands. The N(^)C:-type complexes possess a low-lying triplet metal-centered ((3)MC) state mainly deactivating the excited state through nonradiative processes; in contrast, no such state is present for the :C(^)C: analogues. This finding is supported by temperature-dependent excited-state lifetime measurements made on representative N(^)C: and :C(^)C: complexes.

  14. Stimuli responsive hybrid magnets: tuning the photoinduced spin-crossover in Fe(III) complexes inserted into layered magnets.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; López-Jordà, Maurici; Waerenborgh, João C; Desplanches, Cédric; Wang, Hongfeng; Létard, Jean-François; Hauser, Andreas; Tissot, Antoine

    2013-06-12

    The insertion of a [Fe(sal2-trien)](+) complex cation into a 2D oxalate network in the presence of different solvents results in a family of hybrid magnets with coexistence of magnetic ordering and photoinduced spin-crossover (LIESST effect) in compounds [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CHCl3 (1·CHCl3), [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CHBr3 (1·CHBr3), and [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CH2Br2 (1·CH2Br2). The three compounds crystallize in a 2D honeycomb anionic layer formed by Mn(II) and Cr(III) ions linked through oxalate ligands and a layer of [Fe(sal2-trien)](+) complexes and solvent molecules (CHCl3, CHBr3, or CH2Br2) intercalated between the 2D oxalate network. The magnetic properties and Mössbauer spectroscopy indicate that they undergo long-range ferromagnetic ordering at 5.6 K and a spin crossover of the intercalated [Fe(sal2-trien)](+) complexes at different temperatures T1/2. The three compounds present a LIESST effect with a relaxation temperature TLIESST inversely proportional to T1/2. The isostructural paramagnetic compound, [Fe(III)(sal2-trien)][Zn(II)Cr(III)(ox)3]·CH2Cl2 (2·CH2Cl2) was also prepared. This compound presents a partial spin crossover of the inserted Fe(III) complex as well as a LIESST effect. Finally, spectroscopic characterization of the Fe(III) doped compound [Ga0.99Fe0.01(sal2trien)][Mn(II)Cr(III)(ox)3]·CH2Cl2 (3·CH2Cl2) shows a gradual and complete thermal spin crossover and a LIESST effect on the isolated Fe(III) complexes. This result confirms that cooperativity is not a necessary condition to observe the LIESST effect in an Fe(III) compound.

  15. [Effects of Has-Fe(III) complex on the photodegradation of 2, 4-D in aqueous environment].

    PubMed

    Yu, Chun-yan; Zhao, Hui-min; Chen, Shuo; Zhang, Yao-bin; Quan, Xie

    2010-02-01

    To elucidate the roles of humic acids (HAs) and iron on the environmental fate and transport of organic pollutants in natural water, the interactions of HAs with Fe(III) were characterized by Fourier transform infrared spectroscopy (FTIR) spectra, Ultraviolet-visible (UV-vis) spectra and fluorescence spectra, indicating the formation of HAs-Fe(III) complex. Electron paramagnetic resonance (EPR) spectra show *OH radicals are generated and can participate in the photoreaction in solutions containing HAs, Fe(III) and HAs-Fe(III) complex. Under Xe lamp irradiation (lamda >290 nm), the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D), as a kind of herbicide, followed the pseudo-first-order reaction kinetics. The pseudo-first-order rate constant of 2,4-D photodegradation with the presence of only 2,4-D (2 mg x L(-1)) was 0.007 h(-1). In the presence of HAs (5 mg x L(-1)), Fe(III) (0.2 mmol x L(-1)) and HAs-Fe(III) complex, the rate constants of 2,4-D degradation were 0.004, 0.034 and 0.046 h(-1), respectively. It was interesting to note that in the existence of HAs, 2,4-D photodegradation was inhibited. While in the presence of Fe(III), 2,4-D photodegradation was enhanced. Furthermore, in the coexistence of HAs and Fe(III), HAs-Fe(III) complex showed better increased effect on the photodegradation of 2,4-D than Fe(III) alone.

  16. Antioxidant, tautomerism and antibacterial studies of Fe(III)-1,2,4-triazole based complexes

    NASA Astrophysics Data System (ADS)

    Kharadi, G. J.

    2013-06-01

    New Fe(III) complexes have been synthesized by the reactions of ferric nitrate with Schiff base derived from 3-substituted phenyl-4-amino-5-hydrazino-1,2,4-triazole and indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [FeLn(H2O)(OH)]·xH2O. Structural and spectroscopic properties have been studied on the basis of elemental analyses, infrared spectra, 1H and 13H NMR spectra, electronic spectra, magnetic measurements and FAB mass spectra. FT-IR, 1H and 13H NMR studies reveal that the ligand (Ln) exists in the tautomeric enol form in both the states with intramolecular hydrogen bonding. Magnetic moment and reflectance spectral studies reveal that an octahedral geometry has been assigned to all the prepared complexes. FRAP values indicate that all the compounds have a ferric reducing antioxidant power. The compounds 2 and 3 showed relatively high antioxidant activity while compound 1 and 4 shows poor antioxidant power. Also good antimicrobial activities of the complexes against Staphylococcus aureus, Bacillus subtilis, Serratia marcescens, Pseudomonas aeruginosa and Escherichia coli have been found compared to its free ligands.

  17. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    NASA Astrophysics Data System (ADS)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  18. Complex networks for data-driven medicine: the case of Class III dentoskeletal disharmony

    NASA Astrophysics Data System (ADS)

    Scala, A.; Auconi, P.; Scazzocchio, M.; Caldarelli, G.; McNamara, JA; Franchi, L.

    2014-11-01

    In the last decade, the availability of innovative algorithms derived from complexity theory has inspired the development of highly detailed models in various fields, including physics, biology, ecology, economy, and medicine. Due to the availability of novel and ever more sophisticated diagnostic procedures, all biomedical disciplines face the problem of using the increasing amount of information concerning each patient to improve diagnosis and prevention. In particular, in the discipline of orthodontics the current diagnostic approach based on clinical and radiographic data is problematic due to the complexity of craniofacial features and to the numerous interacting co-dependent skeletal and dentoalveolar components. In this study, we demonstrate the capability of computational methods such as network analysis and module detection to extract organizing principles in 70 patients with excessive mandibular skeletal protrusion with underbite, a condition known in orthodontics as Class III malocclusion. Our results could possibly constitute a template framework for organising the increasing amount of medical data available for patients’ diagnosis.

  19. A multi-step solvent-free mechanochemical route to indium(iii) complexes.

    PubMed

    Wang, Jingyi; Ganguly, Rakesh; Yongxin, Li; Díaz, Jesus; Soo, Han Sen; García, Felipe

    2016-05-10

    Mechanochemistry is well-established in the solid-phase synthesis of inorganic materials but has rarely been employed for molecular syntheses. In recent years, there has been nascent interest in 'greener' synthetic methods with less solvent, higher yields, and shorter reaction times being especially appealing to the fine chemicals and inorganic catalyst industries. Herein, we demonstrate that main-group indium(iii) complexes featuring bis(imino)acenaphthene (BIAN) ligands are readily accessible through a mechanochemical milling approach. The synthetic methodology reported herein not only bypasses the use of large solvent quantities and transition metal reagents for ligand synthesis, but also reduces reaction times dramatically. These new main-group complexes exhibit the potential to be reduced to indium(i) compounds, which may be employed as photosensitizers in organic catalyses and functional materials. PMID:27112317

  20. A multi-step solvent-free mechanochemical route to indium(iii) complexes.

    PubMed

    Wang, Jingyi; Ganguly, Rakesh; Yongxin, Li; Díaz, Jesus; Soo, Han Sen; García, Felipe

    2016-05-10

    Mechanochemistry is well-established in the solid-phase synthesis of inorganic materials but has rarely been employed for molecular syntheses. In recent years, there has been nascent interest in 'greener' synthetic methods with less solvent, higher yields, and shorter reaction times being especially appealing to the fine chemicals and inorganic catalyst industries. Herein, we demonstrate that main-group indium(iii) complexes featuring bis(imino)acenaphthene (BIAN) ligands are readily accessible through a mechanochemical milling approach. The synthetic methodology reported herein not only bypasses the use of large solvent quantities and transition metal reagents for ligand synthesis, but also reduces reaction times dramatically. These new main-group complexes exhibit the potential to be reduced to indium(i) compounds, which may be employed as photosensitizers in organic catalyses and functional materials.

  1. Synthesis and Characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) Complexes of Schiff Base Derived from Isonicotinoyl Hydrazone

    PubMed Central

    Gawande, Pranita U.; Mandlik, P. R.; Aswar, A. S.

    2015-01-01

    2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoyl hydrazone as a Schiff base ligand and its complexes with Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) metal ions have been synthesized. The ligands as well as their metal complexes were well characterized using various physicochemical techniques such as elemental analyses, molar conductance measurements, magnetic measurements, thermal analysis, electronic and IR spectral studies. On the basis of these studies, square pyramidal stereochemistry for Mn(III) and VO(IV) complexes while octahedral stereochemistry for all the other complexes have been suggested. The complexes were found to be stable up to 60-70° and thermal decomposition of the complexes ended with respective metal oxide as a final product. The thermal data have been analyzed for kinetic parameters using Broido and Horowitz-Metzger methods. The synthesized Schiff base ligand and its complexes were also tested for their antimicrobial activity using various microorganisms. PMID:26664052

  2. Polymer-cobalt(III) complexes: structural analysis of metal chelates on DNA interaction and comparative cytotoxic activity.

    PubMed

    Nehru, Selvan; Arunachalam, Sankaralingam; Arun, Renganathan; Premkumar, Kumpati

    2014-01-01

    A new series of pendant-type polymer-cobalt(III) complexes, [Co(LL)2(BPEI)Cl](2+), (where BPEI = branched polyethyleneimine, LL = dipyrido[3,2-a:2',3'-c](6,7,8,9-tetrahydro)phenazine (dpqc), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and imidazo[4,5-f]1,10-phenanthroline (ip)) each with three different degrees of coordination have been synthesized and characterized. Studies to know the mode and strength of interaction between these polymer-metal complexes and calf thymus DNA have been performed by UV-Visible absorption and emission techniques. Among these series, each polymer metal complex having higher binding strength with DNA has been selected to test against human cancer/normal cell lines. On the basis of these spectral studies, it is proposed that our polymer-metal complexes bind with DNA mainly through intercalation along with some electrostatic binding. The order of binding strength for the complexes with ligand, dpqc > dpq > ip. The analysis of the results suggests that polymer-cobalt(III) complexes with higher degree of coordination effectively binds with DNA due to the presence of large number of positively charged cobalt(III) chelates in the polymer chain which cooperatively act to increase the overall binding strength. These polymer-cobalt(III) complexes with hydrophobic ligands around the cobalt(III) metal centre favour the base stacking interactions via intercalation. All the complexes show very good anticancer activities and increasing of binding strength results in higher inhibition value. The polymer-cobalt(III) complex with dpqc ligand possess two fold increased anticancer activity when compared to complexes with other ligands against MCF-7 cells. Besides, the complexes were insensitive towards the growth of normal cells (HEK-293) at the IC50 concentration.

  3. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function

    PubMed Central

    Hogan, Brigid L. M.; Barkauskas, Christina E.; Chapman, Harold A.; Epstein, Jonathan A.; Jain, Rajan; Hsia, Connie C. W.; Niklason, Laura; Calle, Elizabeth; Le, Andrew; Randell, Scott H.; Rock, Jason; Snitow, Melinda; Krummel, Matthew; Stripp, Barry R.; Vu, Thiennu; White, Eric S.; Whitsett, Jeffrey A.; Morrisey, Edward E.

    2014-01-01

    Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair. PMID:25105578

  4. Kinetic Analysis of the Conversion of Nonheme Alkylperoxoiron(III) Species to Iron(IV) Complexes

    PubMed Central

    Jensen, Michael P.; Payeras, Antoni Mairata i; Fiedler, Adam T.; Costas, Miquel; Kaizer, József; Stubna, Audria; Münck, Eckard; Que, Lawrence

    2008-01-01

    Low-spin mononuclear alkylperoxoiron(III) complexes decompose by peroxide O-O bond homolysis to form iron(IV) species. We examined the kinetics of previously reported homolysis reactions for alkylperoxoiron(III) intermediates supported by TPA (tris-(2-pyridylmethyl)amine) in CH3CN solution and promoted by pyridine-N-oxide, by BPMCN (N,N-bis(2-pyridylmethyl)-N,N-dimethyl-trans-1,2-diaminocyclohexane) in its cis-β configuration in CH3CN and CH2Cl2, as well as for the previously unreported chemistry of TPA and 5-Me3TPA intermediates in acetone. Each of these reactions forms an oxoiron(IV) complex, except for the β-BPMCN reaction in CH2Cl2 that yields a novel (hydroxo)alkylperoxoiron(IV) product. Temperature-dependent rate measurements suggest a common reaction trajectory for each of these reactions, and verify previous theoretical estimates of a ca. 60 kJ/mole enthalpic barrier to homolysis. However, both the tetradentate supporting ligand and exogenous ligands in the sixth octahedral coordination site significantly perturb the homolyses, such that observed rates can vary over two orders of magnitude at a given temperature. This is manifested as a compensation effect in which increasing activation enthalpy is offset by increasingly favorable activation entropy. Moreover, the applied kinetic model is consistent with geometric isomerism in the low-spin alkylperoxoiron(III) intermediates, wherein the alkylperoxo ligand is coordinated in either of the inequivalent cis sites afforded by the non-heme ligands. PMID:17326618

  5. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

    PubMed Central

    Ejidike, Ikechukwu P.

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  6. A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes.

    PubMed

    Baschieri, Andrea; Monti, Filippo; Matteucci, Elia; Mazzanti, Andrea; Barbieri, Andrea; Armaroli, Nicola; Sambri, Letizia

    2016-08-15

    Two phosphorescent Ir(III) complexes bearing a mesoionic carbene ligand based on 1,2,3-triazolylidene are obtained for the first time. A silver-iridium transmetalation of the in situ-generated mesoionic carbene affords the cationic dichloro complex [Ir(trizpy)2Cl2](+) (3, trizpy = 1-benzyl-3-methyl-4-(pyridin-2-yl)-1H-1,2,3-triazolylidene) that reacts with a bis-tetrazolate (b-trz) dianionic ligand to give [Ir(trizpy)2(b-trz)](+) (5). The new compounds are fully characterized by NMR spectroscopy and mass spectrometry, and the X-ray structure of 3 is determined. The electrochemical behavior is somewhat different compared to most standard cationic iridium complexes. The first oxidation process is shifted to substantially higher potential in both 3 and 5, due to peculiar and different ligand-induced effects in the two cases, which stabilize the highest occupied molecular orbital; reduction processes are centered on the mesoionic carbene ligands. Both compounds exhibit a mostly ligand-centered luminescence band in the blue-green spectral region, substantially stronger in the case of 5 versus 3, both in CH3CN solution and in poly(methyl methacrylate) matrix at room temperature. Optimized geometries, orbital energies, spin densities, and electronic transitions are determined via density functional theory calculations, which support a full rationalization of the electrochemical and photophysical behavior. This work paves the way for the development of Ir-based emitters with neutral mesoionic carbene ligands and anionic ancillary ligands, a new concept in the area of cationic Ir(III) complexes.

  7. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

    PubMed Central

    Ejidike, Ikechukwu P.

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)].

  8. A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes.

    PubMed

    Baschieri, Andrea; Monti, Filippo; Matteucci, Elia; Mazzanti, Andrea; Barbieri, Andrea; Armaroli, Nicola; Sambri, Letizia

    2016-08-15

    Two phosphorescent Ir(III) complexes bearing a mesoionic carbene ligand based on 1,2,3-triazolylidene are obtained for the first time. A silver-iridium transmetalation of the in situ-generated mesoionic carbene affords the cationic dichloro complex [Ir(trizpy)2Cl2](+) (3, trizpy = 1-benzyl-3-methyl-4-(pyridin-2-yl)-1H-1,2,3-triazolylidene) that reacts with a bis-tetrazolate (b-trz) dianionic ligand to give [Ir(trizpy)2(b-trz)](+) (5). The new compounds are fully characterized by NMR spectroscopy and mass spectrometry, and the X-ray structure of 3 is determined. The electrochemical behavior is somewhat different compared to most standard cationic iridium complexes. The first oxidation process is shifted to substantially higher potential in both 3 and 5, due to peculiar and different ligand-induced effects in the two cases, which stabilize the highest occupied molecular orbital; reduction processes are centered on the mesoionic carbene ligands. Both compounds exhibit a mostly ligand-centered luminescence band in the blue-green spectral region, substantially stronger in the case of 5 versus 3, both in CH3CN solution and in poly(methyl methacrylate) matrix at room temperature. Optimized geometries, orbital energies, spin densities, and electronic transitions are determined via density functional theory calculations, which support a full rationalization of the electrochemical and photophysical behavior. This work paves the way for the development of Ir-based emitters with neutral mesoionic carbene ligands and anionic ancillary ligands, a new concept in the area of cationic Ir(III) complexes. PMID:27483041

  9. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases.

    PubMed

    Ejidike, Ikechukwu P; Ajibade, Peter A

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N'-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  10. Relaxation Dynamics and Magnetic Anisotropy in a Low-Symmetry Dy(III) Complex.

    PubMed

    Lucaccini, Eva; Briganti, Matteo; Perfetti, Mauro; Vendier, Laure; Costes, Jean-Pierre; Totti, Federico; Sessoli, Roberta; Sorace, Lorenzo

    2016-04-11

    The magnetic behaviour of a Dy(LH)3 complex (LH(-) is the anion of 2-hydroxy-N'-[(E)-(2-hydroxy-3-methoxyphenyl)methylidene]benzhydrazide) was analysed in depth from both theoretical and experimental points of view. Cantilever torque magnetometry indicated that the complex has Ising-type anisotropy, and provided two possible directions for the easy axis of anisotropy due to the presence of two magnetically non-equivalent molecules in the crystal. Ab initio calculations confirmed the strong Ising-type anisotropy and disentangled the two possible orientations. The computed results obtained by using ab initio calculations were then used to rationalise the composite dynamic behaviour observed for both pure Dy(III) phase and Y(III) diluted phase, which showed two different relaxation channels in zero and non-zero static magnetic fields. In particular, we showed that the relaxation behaviour at the higher temperature range can be correctly reproduced by using a master matrix approach, which suggests that Orbach relaxation is occurring through a second excited doublet. PMID:26960531

  11. Complexes of ruthenium(III) with some 2-aminothiazole derivatives/synthesis, properties and pharmacological studies.

    PubMed

    Nikolova, Antonina; Ivanov, Darvin; Bontchev, Panayot; Buyukliev, Rossen; Mehandjiev, Dimitar; Gochev, Georgi; Konstantinov, Spiro; Karaivanova, Margarita

    2004-01-01

    Four new complexes of Ru(III) with a general formula [Ru(L)2Cl2]Cl, where L = 2-amino-4-phenylthiazole (CAS 2010-06-2), 2-amino-4-methylthiazole (CAS 1603-91-4), ethyl 2-amino-4-methyl-5-thiazolecarboxylate (CAS 7210-76-6) and ethyl 2-amino-4-phenyl-5-thiazolecarboxylate (CAS 64399-23-1), were prepared. The syntheses were carried out in polar medium and inert atmosphere at a molar ratio Ru:L = 1:2 or 1:3. The compounds obtained were characterised by IR-, 1H-NMR- 13C-NMR-, UV-VIS-, EPR spectroscopy, magnetochemical and conductivity measurements. The ligands behaved as bidental, bounding Ru(III) through the nitrogen atoms from the amino group and the heterocycle. The complex of ethyl 2-amino-4-phenyl-5-thiazolecarboxylate showed significant antileukaemic activity on various human cells (IC50 values ranging from 20 to 92 micromol/l). Toxicological studies on mice indicated that such concentrations could be reached without mortality. This compound exhibited a promising antineoplastic potential and needs further pharmacological and toxicological evaluation.

  12. A family of acetato-diphenoxo triply bridged dimetallic Zn(II)Ln(III) complexes: SMM behavior and luminescent properties.

    PubMed

    Oyarzabal, Itziar; Artetxe, Beñat; Rodríguez-Diéguez, Antonio; García, JoséÁngel; Seco, José Manuel; Colacio, Enrique

    2016-06-21

    Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region. PMID:27230817

  13. Fluorescence studies, DNA binding properties and antimicrobial activity of a dysprosium(III) complex containing 1,10-phenanthroline.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-10-01

    Luminescence and binding properties of dysprosium(III) complex containing 1,10-phenanthroline (phen), [Dy(phen)2(OH2)3Cl]Cl2⋅H2O with DNA has been studied by electronic absorption, emission spectroscopy and viscosity measurement. The thermodynamic studies suggest that the interaction process to be endothermic and entropically driven, which indicates that the dysprosium(III) complex might interact with DNA by a non intercalation binding mode. Additionally, the competitive fluorescence study with ethidium bromide and also the effect of iodide ion and salt concentration on fluorescence of the complex-DNA system is investigated. Experimental results indicate that the Dy(III) complex strongly binds to DNA, presumably via groove binding mode. Furthermore, the complex shows a potent antibacterial activity and DNA cleavage ability.

  14. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms

    NASA Astrophysics Data System (ADS)

    Ain, Qurratul; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K.

    2015-04-01

    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln = Nd(III) or Sm(III) and LH2 = Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici.

  15. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms.

    PubMed

    Ain, Qurratul; Pandey, S K; Pandey, O P; Sengupta, S K

    2015-04-01

    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln=Nd(III) or Sm(III) and LH2=Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici.

  16. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  17. Z-selective, catalytic internal alkyne semihydrogenation under H2/CO mixtures by a niobium(III) imido complex.

    PubMed

    Gianetti, Thomas L; Tomson, Neil C; Arnold, John; Bergman, Robert G

    2011-09-28

    The discovery of a Nb(III)-mediated catalytic hydrogenation of internal alkynes to (Z)-alkenes that proceeds through an unprecedented mechanism is reported. The mechanistic proposal involves initial reduction of the alkyne by the Nb(III) complex (BDI)Nb(N(t)Bu)(CO)(2) to provide a Nb(V) metallacyclopropene, itself capable of σ-bond metathesis reactivity with H(2). The resulting alkenyl hydride species then undergoes reductive elimination to provide the (Z)-alkene product and regenerate a metal complex in the Nb(III) oxidation state. Support for the proposed mechanism is derived from (i) the dependence of the product selectivity on the relative concentrations of CO and H(2), (ii) the isolation of complexes closely related to those proposed to be part of the catalytic cycle, (iii) H/D crossover experiments, and (iv) DFT studies of multiple possible reaction pathways.

  18. Structure-function relationships within Keppler-type antitumor ruthenium(III) complexes: the case of 2-aminothiazolium[trans-tetrachlorobis(2-aminothiazole)ruthenate(III)].

    PubMed

    Mura, Pasquale; Piccioli, Francesca; Gabbiani, Chiara; Camalli, Mercedes; Messori, Luigi

    2005-07-11

    Keppler-type ruthenium(III) complexes exhibit promising antitumor properties. We report here a study of 2-aminothiazolium[trans-tetrachlorobis(2-aminothiazole)ruthenate(III)], both in the solid state and in solution. The crystal structure has been solved and found to exhibit classical features. Important solvatochromic effects were revealed. Notably, we observed that introduction of an amino group in position 2 greatly accelerates chloride hydrolysis compared to the thiazole analogue; this latter finding may be of interest for a fine-tuning of the reactivity of these novel metallodrugs.

  19. Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Faust, Bruce C.; Labiosa, William B.; Dai, K'o. H.; MacFall, Janet S.; Browne, Bryant A.; Ribeiro, Anthony A.; Richter, Daniel D.

    1995-07-01

    Aluminum-27 (27Al) nuclear magnetic resonance (NMR) spectroscopy was used to characterize Al(III)-hydroxo complexes, in aqueous solutions with total Al(III) concentrations of 1.0-10 μM, using a custom-built NMR probe, coil, and sample bottle with low background aluminum impurities. Published 27Al NMR spectroscopy studies have traditionally used total Al(III) concentrations that are generally outside the range of geochemical interest (total [ Al(III) l ≥ 1000 μM). In this study, lower Al(III) concentrations (≤ 10 μM) were used to more closely approximate natural conditions, while allowing the measurement of mononuclear Al(III) species by 27Al NMR spectroscopy. The sensitivity of the 27Al NMR spectroscopy system, as measured by the signal-to-noise ratio (S/N), is S/N= 5 for 1.0 μM Al(III) at pH 2.00 and S/N= 3 for 10 μM Al(III) at pH 5.20. This level of sensitivity is within the range of geochemically relevant Al(III) concentrations found in slightly acidic natural waters. Quantitative models are developed which link observations of NMR chemical shifts and linewidth ratios to the calculated equilibrium speciation of mononuclear Al(III) for 10 μM Al(III) solutions at pH values 2.00 to 5.20 (prepared by titrating acidic AI(III) solutions with pyridine). Linear-regression best fits of the models to the NMR data are used to determine the intrinsic chemical shifts and linewidths of individual mononuclear Al(III) species. The intrinsic chemical shift of each Al(III) species "i", δi (ppm), is (1) δAl3+ ≡ 0 for Al3+ (defined by convention), (2) δAl(OH)2+ = 3.5 (SE= 1.3, N = 10) for Al(OH)2+, (3) δAl(OH)2+ ≅ 3.7 (SE= 1.4, N = 10) for Al(OH)2+ , and (4) δAl(OH)4- = 79.9 (SE= 0.03, N = 4) for Al(OH)4-; where positive chemical shifts are "downfield," SE = standard error, and N =number of samples. A convention is delineated in which the linewidth of the Al(III) species/peak of interest is normalized with respect to that of a reference species (Al3+) under the

  20. Cationic iridium(III) complexes with two carbene-based cyclometalating ligands: cis versus trans isomers.

    PubMed

    Monti, Filippo; La Placa, Maria Grazia I; Armaroli, Nicola; Scopelliti, Rosario; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Kessler, Florian

    2015-03-16

    A series of cationic iridium(III) complexes with two carbene-based cyclometalating ligands and five different N^N bipyridine and 1,10-phenanthroline ancillary ligands is presented. For the first time--in the frame of a rarely studied class of bis(heteroleptic) iridium complexes with two carbene-based cyclometalating ligands--a pair of cis and trans isomers has been isolated. All complexes (trans-1-5 and cis-3) were characterized by (1)H NMR, (13)C NMR, (31)P NMR, and HRMS (ESI-TOF); in addition, crystal structures of cis-3 and trans-4 are reported and discussed. Cyclic voltammetric studies show that the whole series exhibits highly reversible oxidation and reduction processes, suggesting promising potential for optoelectronic applications. Ground-state DFT and TD-DFT calculations nicely predict the blue shift experimentally observed in the room-temperature absorption and emission spectra of cis-3, compared to the trans complexes. In CH3CN, cis-3 displays a 4-fold increase in photoluminescence quantum yield (PLQY) with respect to trans-3, as a consequence of drastically slower nonradiative rate constant. By contrast, at 77 K, the emission properties of all the compounds, including the cis isomer, are much more similar, with a pronounced hypsochromic shift for the trans complexes. A similar behavior is found in solid state (1% w/w poly(methyl methacrylate) matrix), with all complexes displaying PLQY of ∼70-80%, comparable emission lifetimes (τ ≈ 1.3 μs), and a remarkable rigidochromic shift. To rationalize the more pronounced nonradiative deactivation (and smaller PLQY) observed for photoexcited trans complexes, comparative temperature-dependent emission studies in the range of 77-450 K for cis-3 and trans-3 were made in propylene glycol, showing that solvation effects are primarily responsible for the observed behavior.

  1. Experimental and theoretical approach of photophysical properties of lanthanum(III) and erbium(III) complexes of tris(methoxymethyl)-5-oxine podant.

    PubMed

    Akbar, Rifat; Baral, Minati; Kanungo, B K

    2014-08-14

    With the aim of evaluating the coordination behavior of a novel polydentate tripodal ligand, 5-[[3-[(8-hydroxy-5-quinolyl)methoxy]-2-[(8-hydroxy-5-quinolyl)methoxymethyl]-2-methyl propoxy]methyl]quinolin-8-ol (TMOM5OX), towards La(III) and Er(III) metal ions, the detailed investigations of photophysical properties by theoritical and experimental (potentiometric, UV-visible and fluorescence spectrophotometry) methods were carried out. TMOM5OX has been found to form protonated complex [Ln(H4L)](4+) (Ln=La or Er) below pH 3.8, which consecutively deprotonates through one-proton processes with rise of pH. The formation constants (logβ) of neutral complexes have been determined to be 36.42 (LaL) and 35.76, 37.62 (for ErL and ErL2, respectively) and the pLn (pLn=-log[Ln(3+)]) values of 24.6 and 27.1 for La(III) and Er(III) ions, respectively, calculated at pH 7.4, indicating TMOM5OX is a good lanthanide synthetic chelator. The absorption spectroscopy of these complexes show marked spectral variations due to characteristic lanthanide transitions, which support the use of TMOM5OX as a sensitive optical pH based sensor to detect Ln(III) metal ions in biological systems. In addition, these complexes have also been shown to exhibit strong green fluorescence allowing simultaneous sensing within the visible region under physiological pH in competitive medium for both La(III) and Er(III) ions. The intense fluorescence from these compounds were revealed to intermittently get quenched under acidic and basic conditions due to the photoinduced intramolecular electron transfer from excited 8-hydroxyquinoline (8-HQ) moiety to metal ion, just an opposite process. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensors. The complexes coordination geometries were optimized using the sparkle/PM6 model and the theoretical spectrophotometric studies were carried out in order to validate the experimental findings, based on ZINDO/S methodology at configuration

  2. Experimental and theoretical approach of photophysical properties of lanthanum(III) and erbium(III) complexes of tris(methoxymethyl)-5-oxine podant

    NASA Astrophysics Data System (ADS)

    Akbar, Rifat; Baral, Minati; Kanungo, B. K.

    2014-08-01

    With the aim of evaluating the coordination behavior of a novel polydentate tripodal ligand, 5-[[3-[(8-hydroxy-5-quinolyl)methoxy]-2-[(8-hydroxy-5-quinolyl)methoxymethyl]-2-methyl propoxy]methyl]quinolin-8-ol (TMOM5OX), towards La(III) and Er(III) metal ions, the detailed investigations of photophysical properties by theoritical and experimental (potentiometric, UV-visible and fluorescence spectrophotometry) methods were carried out. TMOM5OX has been found to form protonated complex [Ln(H4L)]4+ (Ln = La or Er) below pH 3.8, which consecutively deprotonates through one-proton processes with rise of pH. The formation constants (log β) of neutral complexes have been determined to be 36.42 (LaL) and 35.76, 37.62 (for ErL and ErL2, respectively) and the pLn (pLn = -log[Ln3+]) values of 24.6 and 27.1 for La(III) and Er(III) ions, respectively, calculated at pH 7.4, indicating TMOM5OX is a good lanthanide synthetic chelator. The absorption spectroscopy of these complexes show marked spectral variations due to characteristic lanthanide transitions, which support the use of TMOM5OX as a sensitive optical pH based sensor to detect Ln(III) metal ions in biological systems. In addition, these complexes have also been shown to exhibit strong green fluorescence allowing simultaneous sensing within the visible region under physiological pH in competitive medium for both La(III) and Er(III) ions. The intense fluorescence from these compounds were revealed to intermittently get quenched under acidic and basic conditions due to the photoinduced intramolecular electron transfer from excited 8-hydroxyquinoline (8-HQ) moiety to metal ion, just an opposite process. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensors. The complexes coordination geometries were optimized using the sparkle/PM6 model and the theoretical spectrophotometric studies were carried out in order to validate the experimental findings, based on ZINDO/S methodology at configuration

  3. Tuning of spin crossover behaviour in iron(III) complexes involving pentadentate Schiff bases and pseudohalides.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Boča, Roman; Trávníček, Zdeněk; Svoboda, Ingrid; Fuess, Hartmut; Linert, Wolfgang

    2011-10-21

    Investigations on a series of eight novel mononuclear iron(III) Schiff base complexes with the general formula [Fe(L(5))(L(1))]·S (where H(2)L(5) = pentadentate Schiff-base ligand, L(1) = a pseudohalido ligand, and S is a solvent molecule) are reported. Several different aromatic 2-hydroxyaldehyde derivatives were used in combination with a non-symmetrical triamine 1,6-diamino-4-azahexane to synthesize the H(2)L(5) Schiff base ligands. The consecutive reaction with iron(III) chloride resulted in the preparation of the [Fe(L(5))Cl] precursor complexes which were left to react with a wide range of the L(1) pseudohalido ligands. The low-spin compounds were prepared using the cyanido ligand: [Fe(3m-salpet)(CN)]·CH(3)OH (1a), [Fe(3e-salpet)(CN)]·H(2)O (1b), while the high-spin compounds were obtained by the reaction of the pseudohalido (other than cyanido) ligands with the [Fe(L(5))Cl] complex arising from salicylaldehyde derivatives: [Fe(3Bu5Me-salpet)(NCS)] (2a), [Fe(3m-salpet)(NCO)]·CH(3)OH (2b) and [Fe(3m-salpet)(N(3))] (2c). The compounds exhibiting spin-crossover phenomena were prepared only when L(5) arose from 2-hydroxy-1-naphthaldehyde (H(2)L(5) = H(2)napet): [Fe(napet)(NCS)]·CH(3)CN (3a, T(1/2) = 151 K), [Fe(napet)(NCSe)]·CH(3)CN (3b, T(1/2) = 170 K), [Fe(napet)(NCO)] (3c, T(1/2) = 155 K) and [Fe(napet)(N(3))], which, moreover, exhibits thermal hysteresis (3d, T(1/2)↑ = 122 K, T(1/2)↓ = 117 K). These compounds are the first examples of octahedral iron(III) spin-crossover compounds with the coordinated pseudohalides. We report the structure and magnetic properties of these complexes. The magnetic data of all the compounds were analysed using the spin Hamiltonian formalism including the ZFS term and in the case of spin-crossover, the Ising-like model was also applied. PMID:21904754

  4. Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria.

    PubMed

    Marques, Isabel; Dencher, Norbert A; Videira, Arnaldo; Krause, Frank

    2007-12-01

    The existence of specific respiratory supercomplexes in mitochondria of most organisms has gained much momentum. However, its functional significance is still poorly understood. The availability of many deletion mutants in complex I (NADH:ubiquinone oxidoreductase) of Neurospora crassa, distinctly affected in the assembly process, offers unique opportunities to analyze the biogenesis of respiratory supercomplexes. Herein, we describe the role of complex I in assembly of respiratory complexes and supercomplexes as suggested by blue and colorless native polyacrylamide gel electrophoresis and mass spectrometry analyses of mildly solubilized mitochondria from the wild type and eight deletion mutants. As an important refinement of the fungal respirasome model, we found that the standard respiratory chain of N. crassa comprises putative complex I dimers in addition to I-III-IV and III-IV supercomplexes. Three Neurospora mutants able to assemble a complete complex I, lacking only the disrupted subunit, have respiratory supercomplexes, in particular I-III-IV supercomplexes and complex I dimers, like the wild-type strain. Furthermore, we were able to detect the I-III-IV supercomplexes in the nuo51 mutant with no overall enzymatic activity, representing the first example of inactive respirasomes. In addition, III-IV supercomplexes were also present in strains lacking an assembled complex I, namely, in four membrane arm subunit mutants as well as in the peripheral arm nuo30.4 mutant. In membrane arm mutants, high-molecular-mass species of the 30.4-kDa peripheral arm subunit comigrating with III-IV supercomplexes and/or the prohibitin complex were detected. The data presented herein suggest that the biogenesis of complex I is linked with its assembly into supercomplexes.

  5. Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)-Superoxo and Manganese(IV)-Peroxo Complexes.

    PubMed

    Hong, Seungwoo; Kumar, Pankaj; Cho, Kyung-Bin; Lee, Yong-Min; Karlin, Kenneth D; Nam, Wonwoo

    2016-09-26

    Reactions of nonheme Fe(III) -superoxo and Mn(IV) -peroxo complexes bearing a common tetraamido macrocyclic ligand (TAML), namely [(TAML)Fe(III) (O2 )](2-) and [(TAML)Mn(IV) (O2 )](2-) , with nitric oxide (NO) afford the Fe(III) -NO3 complex [(TAML)Fe(III) (NO3 )](2-) and the Mn(V) -oxo complex [(TAML)Mn(V) (O)](-) plus NO2 (-) , respectively. Mechanistic studies, including density functional theory (DFT) calculations, reveal that M(III) -peroxynitrite (M=Fe and Mn) species, generated in the reactions of [(TAML)Fe(III) (O2 )](2-) and [(TAML)Mn(IV) (O2 )](2-) with NO, are converted into M(IV) (O) and (.) NO2 species through O-O bond homolysis of the peroxynitrite ligand. Then, a rebound of Fe(IV) (O) with (.) NO2 affords [(TAML)Fe(III) (NO3 )](2-) , whereas electron transfer from Mn(IV) (O) to (.) NO2 yields [(TAML)Mn(V) (O)](-) plus NO2 (-) .

  6. Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)-Superoxo and Manganese(IV)-Peroxo Complexes.

    PubMed

    Hong, Seungwoo; Kumar, Pankaj; Cho, Kyung-Bin; Lee, Yong-Min; Karlin, Kenneth D; Nam, Wonwoo

    2016-09-26

    Reactions of nonheme Fe(III) -superoxo and Mn(IV) -peroxo complexes bearing a common tetraamido macrocyclic ligand (TAML), namely [(TAML)Fe(III) (O2 )](2-) and [(TAML)Mn(IV) (O2 )](2-) , with nitric oxide (NO) afford the Fe(III) -NO3 complex [(TAML)Fe(III) (NO3 )](2-) and the Mn(V) -oxo complex [(TAML)Mn(V) (O)](-) plus NO2 (-) , respectively. Mechanistic studies, including density functional theory (DFT) calculations, reveal that M(III) -peroxynitrite (M=Fe and Mn) species, generated in the reactions of [(TAML)Fe(III) (O2 )](2-) and [(TAML)Mn(IV) (O2 )](2-) with NO, are converted into M(IV) (O) and (.) NO2 species through O-O bond homolysis of the peroxynitrite ligand. Then, a rebound of Fe(IV) (O) with (.) NO2 affords [(TAML)Fe(III) (NO3 )](2-) , whereas electron transfer from Mn(IV) (O) to (.) NO2 yields [(TAML)Mn(V) (O)](-) plus NO2 (-) . PMID:27593390

  7. Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes

    NASA Astrophysics Data System (ADS)

    Naughton, H.; Fendorf, S. E.

    2015-12-01

    Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical

  8. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging.

    PubMed

    Holub, Jan; Meckel, Marian; Kubíček, Vojtěch; Rösch, Frank; Hermann, Petr

    2015-01-01

    Ligands with geminal bis(phosphonic acid) appended to 1,4,7-triazacyclonone-1,4-diacetic acid fragment through acetamide (NOTAM(BP) ) or methylenephosphinate (NO2AP(BP) ) spacers designed for (68) Ga were prepared. Ga(III) complexation is much faster for ligand with methylenephosphinate spacer than that with acetamide one, in both chemical (high reactant concentrations) and radiolabeling studies with no-carrier-added (68) Ga. For both ligands, formation of Ga(III) complex was slower than that with NOTA owing to the strong out-of-cage binding of bis(phosphonate) group. Radiolabeling was efficient and fast only above 60 °C and in a narrow acidity region (pH ~3). At higher temperature, hydrolysis of amide bond of the carboxamide-bis(phosphonate) conjugate was observed during complexation reaction leading to Ga-NOTA complex. In vitro sorption studies confirmed effective binding of the (68) Ga complexes to hydroxyapatite being comparable with that found for common bis(phosphonate) drugs such as pamindronate. Selective bone uptake was confirmed in healthy rats by biodistribution studies ex vivo and by positron emission tomography imaging in vivo. Bone uptake was very high, with SUV (standardized uptake value) of 6.19 ± 1.27 for [(68) Ga]NO2AP(BP) ) at 60 min p.i., which is superior to uptake of (68) Ga-DOTA-based bis(phosphonates) and [(18) F]NaF reported earlier (SUV of 4.63 ± 0.38 and SUV of 4.87 ± 0.32 for [(68) Ga]DO3AP(BP) and [(18) F]NaF, respectively, at 60 min p.i.). Coincidently, accumulation in soft tissue is generally low (e.g. for kidneys SUV of 0.26 ± 0.09 for [(68) Ga]NO2AP(BP) at 60 min p.i.), revealing the new (68) Ga complexes as ideal tracers for noninvasive, fast and quantitative imaging of calcified tissue and for metastatic lesions using PET or PET/CT.

  9. Interaction between tryptophan-Sm(III) complex and DNA with the use of a acridine orange dye fluorophor probe.

    PubMed

    Xiong, Xiao Li; Zhao, Na; Wang, Xing Ming

    2016-02-01

    The interaction of the Trp-Sm(III) complex with herring sperm DNA (hs-DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV-vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp-Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)-(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K(Ө)25°C  = 7.14 × 10(5)  L·mol(-1) and K(Ө) 37°C  = 5.28 × 10(4)  L·mol(-1), and it could displace the AO dye from the AO-DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that Δr Hm (Ө) is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs-DNA is groove binding and weak intercalation binding.

  10. In situ synthesis and luminescence characteristics of complexes of europium(III) with 4,6-diacetylresorcinol

    SciTech Connect

    Liu Shengli

    2008-08-04

    The complexes of europium(III) with 4,6-diacetylresorcinol (H{sub 2}DAR) and a co-ligand (phen, bpy or 2,2'-bipyridine N,N'-dioxide (2,2'-bpyO{sub 2})) were in situ synthesized in silica matrix via a two-step gel process. The formation of complexes in silica gel was confirmed by the luminescence excitation spectra. The silica gels that contain in situ synthesized europium complexes exhibit the characteristic emission bands of the Eu(III). The results show that there are two ways to enhance the emission intensity of the Eu(III): (i) synthesize the complex in silica matrix and (ii) synthesize the complex with a co-ligand, which coordinates with Eu(III) in the composite system and can efficiently transfer the energy from 4,6-diacetylresorcinol to the Eu(III). The order of the luminescence intensities of the complexes is: Eu{sub 2}(DAR){sub 3}(phen){sub 2}-(sol-gel) > Eu{sub 2}(DAR){sub 3}(2,2'-bpyO{sub 2}){sub 2}-(sol-gel) > Eu{sub 2}(DAR){sub 3} (bpy){sub 2}-(sol-gel) > Eu{sub 2}(DAR){sub 3}-(sol-gel) > pure Eu{sub 2}(DAR){sub 3}.4H{sub 2}O.

  11. New Insights into Structure and Luminescence of EuIII and SmIII Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    PubMed Central

    2016-01-01

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [MIIIL]− (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the EuIII and SmIII complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements. PMID:25607882

  12. Influence of chirality using Mn(III) salen complexes on DNA binding and antioxidant activity.

    PubMed

    Khan, Noor-Ul H; Pandya, Nirali; Kumar, Manoj; Bera, Prasanta Kumar; Kureshy, Rukhsana I; Abdi, Sayed H R; Bajaj, Hari C

    2010-10-01

    Chiral Mn(iii) salen complexes S-1, R-1, S-2, R-2, S-3 and R-3 derived from the respective chiral salen ligands, viz., (1S,2S)-N,N'-bis-[3-tert-butyl-5-chloromethyl-salicylidine]-1,2-cyclohexanediamine S-1'/(1R,2R)-N,N'-bis-[3-tert-butyl-5-chloromethyl-salicylidine]-1,2-cyclohexanediamine R-1'/(1S,2S)-N,N'-bis-[3-tert-butyl-5-N,N'N'triethylaminomethyl-salicylidine]-1,2-cyclohexanediamine dichloride S-2'/(1R,2R)-N,N'-bis-[3-tert-butyl-5-N,N'N'triethylaminomethyl-salicylidine]-1,2-cyclohexanediamine dichloride R-2'/(1S,2S)-N,N'-bis-[3,5-di-tert-butylsalicylidene]-1,2-cyclohexanediamine S-3' and (1R,2R)-N,N'-bis-[3,5-di-tert-butyl-salicylidene]-1,2-cyclohexanediamine R-3', were synthesized. Characterization of the complexes was done by microanalysis, IR, LC-MS, UV-vis. and circular dichroism (CD) spectroscopy. Binding of these complexes with calf thymus DNA (CT-DNA) was studied by absorption spectroscopy, competitive binding study, viscosity measurements, circular dichroism measurements, thermal denaturation study and observation of their different antioxidant activities. Among all the complexes used, the best result in terms of binding constant (intercalative) (130.4 x 10(4)) was achieved with the complex S-1 by spectroscopic titration. The complex S-1 showed strong antioxidant activity as well. PMID:20717621

  13. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions.

    PubMed

    Wang, Bin; Lee, Yong-Min; Clémancey, Martin; Seo, Mi Sook; Sarangi, Ritimukta; Latour, Jean-Marc; Nam, Wonwoo

    2016-02-24

    Mononuclear nonheme high-spin iron(III)-acylperoxo complexes bearing an N-methylated cyclam ligand were synthesized, spectroscopically characterized, and investigated in olefin epoxidation and alkane hydroxylation reactions. In the epoxidation of olefins, epoxides were yielded as the major products with high stereo-, chemo-, and enantioselectivities; cis- and trans-stilbenes were oxidized to cis- and trans-stilbene oxides, respectively. In the epoxidation of cyclohexene, cyclohexene oxide was formed as the major product with a kinetic isotope effect (KIE) value of 1.0, indicating that nonheme iron(III)-acylperoxo complexes prefer C═C epoxidation to allylic C-H bond activation. Olefin epoxidation by chiral iron(III)-acylperoxo complexes afforded epoxides with high enantioselectivity, suggesting that iron(III)-acylperoxo species, not high-valent iron-oxo species, are the epoxidizing agent. In alkane hydroxylation reactions, iron(III)-acylperoxo complexes hydroxylated C-H bonds as strong as those in cyclohexane at -40 °C, wherein (a) alcohols were yielded as the major products with high regio- and stereoselectivities, (b) activation of C-H bonds by the iron(III)-acylperoxo species was the rate-determining step with a large KIE value and good correlation between reaction rates and bond dissociation energies of alkanes, and (c) the oxygen atom in the alcohol product was from the iron(III)-acylperoxo species, not from molecular oxygen. In isotopically labeled water (H2(18)O) experiments, incorporation of (18)O from H2(18)O into oxygenated products was not observed in the epoxidation and hydroxylation reactions. On the basis of mechanistic studies, we conclude that mononuclear nonheme high-spin iron(III)-acylperoxo complexes are strong oxidants capable of oxygenating hydrocarbons prior to their conversion into iron-oxo species via O-O bond cleavage.

  14. Complexation of uranium(VI) and samarium(III) with oxydiacetic acid: temperature effect and coordination modes.

    PubMed

    Rao, Linfeng; Garnov, Alexander Yu; Jiang, Jun; Di Bernardo, Plinio; Zanonato, PierLuigi; Bismondo, Arturo

    2003-06-01

    The complexation of uranium(VI) and samarium(III) with oxydiacetate (ODA) in 1.05 mol kg(-1) NaClO(4) is studied at variable temperatures (25-70 degrees C). Three U(VI)/ODA complexes (UO(2)L, UO(2)L(2)(2-), and UO(2)HL(2)(-)) and three Sm(III)/ODA complexes (SmL(j)((3-2)(j)+) with j = 1, 2, 3) are identified in this temperature range. The formation constants and the molar enthalpies of complexation are determined by potentiometry and calorimetry. The complexation of uranium(VI) and samarium(III) with oxydiacetate becomes more endothermic at higher temperatures. However, the complexes become stronger due to increasingly more positive entropy of complexation at higher temperatures that exceeds the increase in the enthalpy of complexation. The values of the heat capacity of complexation (Delta C(p) degrees in J K(-1) mol(-1)) are 95 +/- 6, 297 +/- 14, and 162 +/- 19 for UO(2)L, UO(2)L(2)(2-), and UO(2)HL(2)(-), and 142 +/- 6, 198 +/- 14, and 157 +/- 19 for SmL(+), SmL(2)(-), and SmL(3)(3-), respectively. The thermodynamic parameters, in conjunction with the structural information from spectroscopy, help to identify the coordination modes in the uranium oxydiacetate complexes. The effect of temperature on the thermodynamics of the complexation is discussed in terms of the electrostatic model and the change in the solvent structure. PMID:12767209

  15. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.

    PubMed

    Sun, Fei; Zhou, Qiangjun; Pang, Xiaoyun; Xu, Yingzhi; Rao, Zihe

    2013-08-01

    Cellular respiration is the process that releases energy from food and supplies energy for life processes. The mitochondrial respiratory chain is the final and most important step for cellular respiration and is located on the inner membrane of mitochondrion and comprises four large trans-membrane protein complexes (respiratory chain Complexes I, II, III and IV) as well as ubiquinone between Complexes I/II and III and cytochrome c between Complexes III and IV. The function of mitochondrial respiratory chain is biological oxidation by transferring electrons from NADH and succinate to oxygen and then generating proton gradient across the inner membrane. Such proton gradient is utilized by ATP synthase (ATPase, also called as Complex V) to produce energy molecules ATP. Structural studies of mitochondrial respiratory membrane protein complexes are important to understand the mechanism of electron transfer and the redox-coupled proton translocation across the inner membrane. Here, according to the time line, we reviewed the great achievements on structural studies of mitochondrial respiratory complexes in the past twenty years as well as the recent research progresses on the structures of mitochondrial respiratory supra-complexes.

  16. Spin transitions in bis(amidinato)-N-heterocyclic carbene iron(II) and iron(III) complexes.

    PubMed

    Drake, Jessica L; Kaplan, Hilan Z; Wilding, Matthew J T; Li, Bo; Byers, Jeffery A

    2015-10-14

    In contrast to high spin pyridyl diimine iron(ii) dichloride complexes, analogous bis(amidinato)-N-heterocyclic carbene iron(ii) and iron(iii) complexes demonstrate complex magnetic behaviour. In the solid state, they are best described as intermediate spin complexes at low temperatures that demonstrate gradual spin transitions beginning near or below room temperature. Treating the bis(amidinato)-N-heterocyclic carbene iron(ii) complex with an aryl azide revealed enhanced reactivity compared to analogous complexes supported by pyridyl diimine ligands.

  17. Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation.

    PubMed

    Wang, Hui; Yao, Hong; Sun, Peizhe; Li, Desheng; Huang, Ching-Hua

    2016-01-01

    Tetracycline antibiotics (TCs) are frequently detected micropollutants and are known to have a strong tendency to complex with metal ions such as Fe(II) and Fe(III) in aquatic environments. Experiments with Fe(II) and TCs showed that the complexation of Fe(II) with tetracycline (TTC), oxytetracycline (OTC), or chlorotetracycline (CTC) could lead to the accelerated oxidation of Fe(II) and the promoted degradation of TCs simultaneously. The reaction started with complexation of Fe(II) with TC followed by oxidation of the Fe(II)-TC complex by dissolved oxygen to generate a Fe(III)-TC complex and reactive oxygen species (ROS). The ROS (primarily ·OH) then degraded TC. The oxidation rate constants of Fe(II) in the Fe(II)-H2L and Fe(II)-HL complexes were 0.269 and 1.511 min(-1), respectively, at ambient conditions (pH 7, 22 °C, and PO2 of 0.21 atm), which were about 60 and 350 times of the oxidation rate of uncomplexed Fe(II). Humic acids (HA) compete with TCs for Fe(II), but the effect was negligible at moderate HA concentrations (≤10 mg·L(-1)). Experiments with Fe(III) and TCs showed that the complexation of Fe(III) with TC could generate oxidized TC and Fe(II) without the need of oxygen at a relatively slower rate compared to the reaction involving Fe(II), O2, and TCs. These findings indicate the mutually influenced environmental transformation of TCs and Fe(II) and Fe(III) induced by their complexation. These newly identified reactions could play an important role in affecting the environmental fate of TCs and cycling of Fe(II) and Fe(III) in TCs-contaminated water and soil systems. PMID:26618388

  18. Synthesis, structure, and properties of low-spin manganese(III)-poly(pyrazolyl)borate complexes.

    PubMed

    Hossain, Ferdaus; Rigsby, Matthew A; Duncan, Cole T; Milligan, Paul L; Lord, Richard L; Baik, Mu-Hyun; Schultz, Franklin A

    2007-04-01

    The manganese(III)-bis[poly(pyrazolyl)borate] complexes, Mn(pzb)2SbF6, where pzb- = tetrakis(pyrazolyl)borate (pzTp) (1), hydrotris(pyrazolyl)borate (Tp) (2), or hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) (3), have been synthesized by oxidation of the corresponding Mn(pzb)2 compounds with NOSbF6. The Mn(III) complexes are low-spin in solution and the solid state (microeff = 2.9-3.8 microB). X-ray crystallography confirms their uncommon low-spin character. The close conformity of mean Mn-N distances of 1.974(4), 1.984(5), and 1.996(4) A in 1, 2, and 3, respectively, indicates absence of the characteristic Jahn-Teller distortion of a high-spin d4 center. N-Mn-N bite angles of slightly less than 90 degrees within the facially coordinated pzb- ligands produce a small trigonal distortion and effective D3d symmetry in 1 and 2. These angles increase to 90.0(4)degrees in 3, yielding an almost perfectly octahedral disposition of N donors in Mn(Tp*)2+. Examination of structural data from 23 metal-bis(pzb) complexes reveals systematic changes within the metal-(pyrazolyl)borate framework as the ligand is changed from pzTp to Tp to Tp*. These deformations consist of significant increases in M-N-N, N-B-N, and N-N-B angles and a minimal increase in Mn-N distance as a consequence of the steric demands of the 3-methyl groups. Less effective overlap of pyrazole lone pairs with metal atom orbitals resulting from the M-N-N angular displacement is suggested to contribute to the lower ligand field strength of Tp* complexes. Mn(pzb)2+ complexes undergo electrochemical reduction and oxidation in CH3CN. The electrochemical rate constant (ks,h) for reduction of t2g4 Mn(pzb)2+ to t2g3eg2 Mn(pzb)2 (a coupled electron-transfer and spin-crossover reaction) is 1-2 orders of magnitude smaller than that for oxidation of t2g4 Mn(pzb)2+ to t2g3 Mn(pzb)22+. ks,h values decrease as Tp* > pzTp > Tp for the Mn(pzb)2+/0 electrode reactions, which contrasts with the behavior of the comparable Fe(pzb)2

  19. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

    PubMed Central

    Forkink, Marleen; Basit, Farhan; Teixeira, José; Swarts, Herman G.; Koopman, Werner J.H.; Willems, Peter H.G.M.

    2015-01-01

    Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24 h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY581/591 and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling. PMID:26516986

  20. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    PubMed Central

    Noda, Yuki; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours. PMID:24441566

  1. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    PubMed Central

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:26109743

  2. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    PubMed Central

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:25645603

  3. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  4. Micellar catalysis of the alkylation of mercuric ions by alkyl cobalt(III) complexes.

    PubMed

    Allen, R J; Bunton, C A

    1976-01-01

    Anionic micelles of sodium lauryl sulfate, NaLS, catalyze the monoalkylation of Hg2+ in dilute acid by alkyl aquobis-(dimethyl glyoximato) cobalt (III), RCo(DH)2(H2O) degrees and the related propane derivatives RCo(DOH) DOpn (H2O)+, where R = Me, Et, n-C5H11. Nonionic micelles of Igepal do not catalyze the reaction. In the absence of micelles RCo(DH)2(H2O) degrees is considerably more reactive than RCo(DOH)DOpn(H2O)+, but this higher reactivity is offset in part by its higher basicity. Anionic micelles markedly increase the basicity of RCo(DOH)DOpn(H2O)+ and slightly increase that of RCo(DH)2(H2O) degrees. For reactions of the unprotonated Co(III) complexes the maximum rate enhancements by micelles of NaLS are: R = Me, 19(131); Et, 58 (65); n-C5H11, 46 (32). (The values in parentheses are for RCo(DOH)DOpn(H2O)+.)

  5. {sup 35}Mn ESE-ENDOR of a mixed valence Mn(III)Mn(IV) complex: Comparison with the Mn cluster of the photosynthetic oxygen-evolving complex

    SciTech Connect

    Randall, D.W.; Sturgeon, B.E.; Ball, J.A.; Lorigan, G.A.; Chan, M.K.; Britt, R.D.; Klein, M.P. |; Armstrong, W.H.

    1995-11-29

    Analysis of {sup 55}Mn electron spin echo-electron nuclear double resonance (ESE-ENDOR) spectra obtained on a dinuclear mixed valence Mn(III)Mn(IV) complex [di-{mu}-oxotetrakis(2, 2`-bipyridine)dimanganese(III,IV)] (1) reveals the hyperfine and nuclear quadrupolar parameters for the spin I=5/2 {sup 55}Mn nucleus of both Mn(III) and Mn(IV) ions. The {sup 55}Mn ESE-ENDOR data obtained on the g = 2 Mn multiline EPR signal of the S{sub 2} state of the photosystem II oxygen-evolving complex demonstrate that this EPR signal cannot arise from a dinuclear Mn(III)-Mn(IV) center. The ENDOR spectra are consistent with a tetranuclear Mn cluster origin for the photosystem II multiline EPR signal. 75 refs., 7 figs., 2 tabs.

  6. The first 3-D LaIII-SrII heterometallic complex: Synthesis, structure and luminescent properties

    NASA Astrophysics Data System (ADS)

    Hong, Zhiwei; Ran, Jingwen; Li, Tao; Chen, Yanmei

    2016-10-01

    The first 3-D LaIII-SrII heterometallic complex, namely [La2Sr(pda)4(H2O)4]n·6nH2O (1, H2pda = pyridine-2,6-dicarboxylic acid), has been successfully synthesized under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that complex 1 features a 3-D porous framework and displays a new topology. The crystal structure can be simplified to a 4,6-connected 3-D network with Schläfli symbol of {34·42·88·9}2{34·42}. The crystals also have been characterized by X-ray powder diffraction, elemental analysis, thermal analysis, and IR spectroscopy. The infrared spectral analysis indicates that complex 1 is a carboxylate coordinated compound, several water molecules exist in the compound. The thermal study shows that there are ten water molecules in the crystal structure. The luminescent property has also been investigated. It shows a blue-purple fluorescence emission.

  7. Facile formation and redox of benzoxazole-2-thiolate-bridged dinuclear Pt(II/III) complexes.

    PubMed

    Wang, Zhe; Jiang, Lu; Liu, Zhi-Pan; Gan, C R Raymond; Liu, Zhaolin; Zhang, Xin-Hai; Zhao, Jin; Hor, T S Andy

    2012-10-28

    Reaction of [Pt(L)(μ-Cl)](2) (L = ppy (2-phenylpyridine) or bzq (benzo[h]quinoline)) with 2-mercaptobenzoxazole (NOSH) and NaOAc in THF at r.t. yields the dinuclear Pt(II) d(8)-d(8) complexes [Pt(2)L(2)(μ-NOS-κN,S)(2)] (L = ppy, 1; L = bzq, 2) and the Pt(III) d(7)-d(7) complexes [Pt(2)(ppy)(2)(μ-NOS-κN,S)(2)(NOS-κS)(2)] (L = ppy, 3; L = bzq, 4) in one pot. The C,N-cyclometalated ligand is chelating whereas the N,S-donating benzoxazole-2-thiolates doubly bridge the two metal centers. The Pt···Pt separations of 3.0204(3) and 2.9726(8) Å in 1 and 2 contract to 2.685(1) Å in 3 and 2.6923(3) Å in 4, respectively, when two S-bound thiolate ligands coordinate trans- to the Pt···Pt axis. However, cyclometalation is preserved and there is minimum perturbation of the bridging ligands. Complexes 3 and 4 can be also obtained by oxidative addition of the thiolate ligand. In the presence of NaBH(4), 3 and 4 can be reduced to 1 and 2, respectively. At r.t., 1 and 2 exhibit intense orange-red luminescence at 625 nm and 631 nm, respectively. The electrochemical properties of 1-4 have been also discussed.

  8. The gallium(III)-salicylidene acylhydrazide complex shows synergistic anti-biofilm effect and inhibits toxin production by Pseudomonas aeruginosa.

    PubMed

    Rzhepishevska, Olena; Hakobyan, Shoghik; Ekstrand-Hammarström, Barbro; Nygren, Yvonne; Karlsson, Torbjörn; Bucht, Anders; Elofsson, Mikael; Boily, Jean-François; Ramstedt, Madeleine

    2014-09-01

    Bacterial biofilms cause a range of problems in many areas and especially in health care. Biofilms are difficult to eradicate with traditional antibiotics and consequently there is a need for alternative ways to prevent and/or remove bacterial biofilms. Furthermore, the emergence of antibiotic resistance in bacteria creates a challenge to find new types of antibiotics with a lower evolutionary pressure for resistance development. One route to develop such drugs is to target the so called virulence factors, i.e. bacterial systems used when bacteria infect a host cell. This study investigates synergy effects between Ga(III) ions, previously reported to suppress biofilm formation and growth in bacteria, and salicylidene acylhydrazides (hydrazones) that have been proposed as antivirulence drugs targeting the type three secretion system used by several Gram-negative pathogens, including Pseudomonas aerugionosa, during bacterial infection of host cells. A library of hydrazones was screened for: Fe(III) binding, enhanced anti-biofilm effect with Ga(III) on P. aeruginosa, and low cytotoxicity to mammalian cells. The metal coordination for the most promising ligand, 2-Oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (ME0163) with Ga(III) was investigated using extended X-ray absorption fine structure spectroscopy as well as density functional theory. The results showed that Ga(III) chelates the hydrazone with 5- and 6-membered chelating rings, and that the Ga(III)-ME0163 complex enhanced the antibiofilm effect of Ga(III) while suppressing the type three secretion system in P. aeruginosa. The latter effect was not observed for the hydrazone alone and was similar for Ga(III)-citrate and Ga(III)-ME0163 complexes, indicating that the inhibition of virulence was caused by Ga(III).

  9. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    SciTech Connect

    Fugate, G.; Feil-Jenkins, J.F.; Sullivan, J.C.; Nash, K.L.

    1996-12-01

    Rates of complex formation and dissociation in NpO{sub 2}{sup +}- Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La{sup 3+}, Eu{sup 3+}, Dy{sup 3+}, and Fe{sup 3+} with CLIII. Rate determining step in each system is an intramolecular process, the NpO{sub 2}{sup +}-CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are {Delta}H=46.2{+-}0.3 kJ/m and {Delta}S=7{+-} J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are {Delta}H=38.8{+-}0.6 kJ/m, {Delta}S=-96{+-}18 J/mK, {Delta}H=70.0{+-} kJ/m, and {Delta}S=17{+-}1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, and Zr{sup 4+}. Rates of CLIII complex formation reactions for Fe{sup 3+}, Zr{sup 4+}, NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, La{sup 3+}, Eu{sup 3+}, and Dy{sup 3+} correlate with cation radius rather than charge/radius ratio.

  10. Luminescent Silica Core / Silver Shell Encapsulated with Eu(III) Complex.

    PubMed

    Zhang, Jian; Fu, Yi; Lakowicz, Joseph R

    2009-11-12

    In this paper we studied the metal-enhanced emission from long-lifetime lanthanide dyes that were encapsulated in the silver nanoshells. The metal nanoshells were synthesized with the silica spherical cores of 50 nm diameters and the silver shells of 5 - 60 nm. The optical properties of luminescent metal shells were performed on the either ensemble fluorescence spectroscopy or single particle imaging. The emission intensity from the encapsulated lanthanides was observed to enhance significantly by the metal nanoshell. The enhancement efficiency initially increased with the metal shell thickness and then decreased. The maximal enhancement occurred at the 20 - 30 nm thickness. The lifetime of encapsulated Eu(III) complexes was shorten dramatically indicating that they were coupled efficiently with the metal shells. The increased brightness and reduced lifetime of this core-shell structure demonstrate that the lanthanides are favorable for the single target molecule detections after encapsulating into the metal nanoshells. PMID:20514146

  11. Polymorphism in the spin-crossover ferric complexes [(TPA)Fe(III)(TCC)]PF6.

    PubMed

    Collet, Eric; Boillot, Marie Laure; Hebert, Johan; Moisan, Nicolas; Servol, Marina; Lorenc, Maciej; Toupet, Loïc; Buron-Le Cointe, Marylise; Tissot, Antoine; Sainton, Joelle

    2009-08-01

    We have identified two polymorphs of the molecular complex [(TPA)Fe((III))(TCC)]PF(6) [TPA = tris(2-pyridylmethyl)amine and TCC = 3,4,5,6-tetrachlorocatecholate dianion]: one is monoclinic and the other is orthorhombic. By lowering the temperature both undergo a thermal spin-crossover between a high-spin (S = 5/2) and a low-spin (S = 1/2) state, which we detected by magnetic, optical and X-ray diffraction measurements. The thermal crossover is only slightly shifted between the polymorphs. Their crystalline structures consist of similar cation layers alternating with PF(6) anion layers, packed differently in the two polymorphs. The magnetic and optical properties of the polymorphs are presented.

  12. A Nonribosomal Peptide Synthetase-derived Iron(III) Complex from the Pathogenic Fungus Aspergillus fumigatus

    PubMed Central

    Yin, Wen-Bing; Baccile, Joshua A.; Bok, Jin Woo; Chen, Yiming; Keller, Nancy P.; Schroeder, Frank C.

    2013-01-01

    Small molecules (SMs) play central roles as virulence factors of pathogenic fungi and bacteria; however, genomic analyses suggest that the majority of microbial SMs have remained uncharacterized. Based on microarray analysis followed by comparative metabolomics of overexpression/knockout mutants we identified a tryptophan-derived iron(III)-complex, hexadehydroastechrome (HAS), as the major product of the cryptic has non-ribosomal peptide synthetase (NRPS) gene cluster in the human pathogen Aspergillus fumigatus. Activation of the has cluster created a highly virulent A. fumigatus strain that increased mortality of infected mice. Comparative metabolomics of different mutant strains allowed to propose a pathway for HAS biosynthesis and further revealed cross-talk with another NRPS pathway producing the anti-cancer fumitremorgins. PMID:23360537

  13. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  14. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    PubMed Central

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-01-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells. PMID:26864567

  15. A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes.

    PubMed

    Roşca, Dragoş-Adrian; Smith, Dan A; Hughes, David L; Bochmann, Manfred

    2012-10-15

    Going for gold: The first thermally stable gold(III) hydride [(C N C)*AuH] is presented. It undergoes regioselective insertions with allenes to give gold(III) vinyl complexes, and reductive condensation with [(C N C)*AuOH] to the air-stable Au(II) product, [(C N C)*(2)Au(2)], with a short nonbridged gold-gold bond.

  16. Intramolecular ferro- and antiferromagnetic interactions in oxo-carboxylate bridged digadolinium(III) complexes.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2010-08-21

    Two new digadolinium(III) complexes with monocarboxylate ligands, [Gd2(pac)6(H2O)4] (1) and [Gd2(tpac)6(H2O)4] (2) (Hpac = pentanoic acid and Htpac = 3-thiopheneacetic acid), have been prepared and their structures determined by X-ray diffraction on single crystals. Their structures consist of neutral and isolated digadolinium(III) units, containing six monocarboxylate ligands and four coordinated water molecules, the bridging skeleton being built by a muO(1):kappa2O(1)O(2) framework. This structural pattern has already been observed in the parent acetate-containing compound [Gd2(ac)6(H2O)4] x 4 H2O (3) whose structure and magnetic properties were reported elsewhere (L. Cañadillas-Delgado, O. Fabelo, J. Cano, J. Pasán, F. S. Delgado, M. Julve, F. Lloret and C. Ruiz-Pérez, CrystEngComm, 2009, 11, 2131). Each gadolinium(III) ion in 1 and 2 is nine-coordinated with seven carboxylate-oxygen atoms from four pac (1)/tpac (2) ligands and two water molecules (1 and 2) building a distorted monocapped square antiprism. The values of the intramolecular gadolinium-gadolinium separation are 4.1215(5) (1), 4.1255(6) (2) and 4.1589(3) A (3) and those of the angle at the oxo-carboxylate bridge (theta) are 113.16(13) (1), 112.5(2) (2) and 115.47(7) degrees (3). Magnetic susceptibility measurements in the temperature range 1.9-300 K reveal the occurrence of a weak intramolecular antiferromagnetic interaction [J = -0.032(1) (1) and -0.012(1) cm(-1) (2), the Hamiltonian being defined as H = -JS(A) x S(B)] in contrast with the intramolecular ferromagnetic coupling which occurs in 3 (J = +0.031(1) cm(-1)). The magneto-structural data of 1-3 show the relevance of the geometrical parameters at the muO(1):kappa2O(1)O(2) bridge on the nature of the magnetic coupling between two gadolinium(III) ions.

  17. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato.

    PubMed

    Bultema, Jelle B; Braun, Hans-Peter; Boekema, Egbert J; Kouril, Roman

    2009-01-01

    The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V(2)). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I+III(2), III(2)+IV(1), V(2), I+III(2)+IV(1) and I(2)+III(2) in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I(2)+III(2)+IV(2) supercomplex, could be determined in a coherent way. The maps also show that the I+III(2)+IV(1) supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I(2)+III(2)+IV(2) units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.

  18. Electronic Modulation of the SOMO-HOMO Energy Gap in Iron(III) Complexes towards Unimolecular Current Rectification.

    PubMed

    Wickramasinghe, Lanka D; Mazumder, Shivnath; Kpogo, Kenneth K; Staples, Richard J; Schlegel, H Bernhard; Verani, Cláudio N

    2016-07-25

    Amphiphilic five-coordinate iron(III) complexes with {N2 O2 Cl} and {N2 O3 } coordination spheres are studied to elucidate the roles of electronic structure on the mechanisms for current rectification. The presence of an apical chlorido or phenolato ligand plays a crucial role, and the [Fe(III) {N2 O2 Cl}] species supports an asymmetric mechanism while its [Fe(III) {N2 O3 }] counterpart seems to allow for unimolecular mechanism. The effects of electron-donating and electron-withdrawing substituents in the ligand frameworks are also considered.

  19. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-01

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  20. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    PubMed

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species.

  1. Synthesis, characterization and DNA-binding studies of 2-carboxybenzaldehydeisonicotinoylhydrazone and its La(III), Sm(III) and Eu(III) complexes

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Wang, Yan; Yang, Zheng-Yin

    2007-02-01

    2-Carboxybenzaldehydeisonicotinoylhydrazone (HL), and its three lanthanide complexes, LnL 3·4H 2O [Ln = La( 1), Sm( 2), Eu( 3)], have been synthesized and characterized on the basis of elemental analyses, molar conductivities, IR spectra and thermal analyses. In addition, the DNA-binding properties of the ligand and its complexes have been investigated by absorption, fluorescence and viscosity measurements. The experimental results indicated that the complexes ( 2) and ( 3) can bind to DNA, but the ligand and the complex ( 1) cannot; the binding affinity of the complex ( 3) is higher than that of the complex ( 2) and the intrinsic binding constant Kb of the complex ( 3) is 7.86 × 10 4 M -1.

  2. Chloride-Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins.

    PubMed

    Kita, Yusuke; Hida, Shoji; Higashihara, Kenya; Jena, Himanshu Sekhar; Higashida, Kosuke; Mashima, Kazushi

    2016-07-11

    Efficient rhodium(III) catalysts were developed for asymmetric hydrogenation of simple olefins. A new series of chloride-bridged dinuclear rhodium(III) complexes 1 were synthesized from the rhodium(I) precursor [RhCl(cod)]2 , chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asymmetric hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asymmetric hydrogenation of allylic alcohols, alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes 1 over typical rhodium(I) catalytic systems. PMID:27088539

  3. Bond Fission and Non-Radiative Decay in Iridium(III) Complexes.

    PubMed

    Zhou, Xiuwen; Burn, Paul L; Powell, Benjamin J

    2016-06-01

    We investigate the role of metal-ligand bond fission in the nonradiative decay of excited states in iridium(III) complexes with applications in blue organic light-emitting diodes (OLEDs). We report density functional theory (DFT) calculations of the potential energy surfaces upon lengthening an iridium-nitrogen (Ir-N) bond. In all cases we find that for bond lengths comparable to those of the ground state the lowest energy state is a triplet with significant metal-to-ligand change transfer character ((3)MLCT). But, as the Ir-N bond is lengthened there is a sudden transition to a regime where the lowest excited state is a triplet with significant metal centered character ((3)MC). Time-dependent DFT relativistic calculations including spin-orbit coupling perturbatively show that the radiative decay rate from the (3)MC state is orders of magnitude slower than that from the (3)MLCT state. The calculated barrier height between the (3)MLCT and (3)MC regimes is clearly correlated with previously measured nonradiative decay rates, suggesting that thermal population of the (3)MC state is the dominant nonradiative decay process at ambient temperature. In particular, fluorination both drives the emission of these complexes to a deeper blue color and lowers the (3)MLCT-(3)MC barrier. If the Ir-N bond is shortened in the (3)MC state another N atom is pushed away from the Ir, resulting in the breaking of this bond, suggesting that once the Ir-N bond breaks the damage to the complex is permanent-this will have important implications for the lifetimes of devices using this type of complex as the active material. The consequences of these results for the design of more efficient blue phosphors for OLED applications are discussed. PMID:27175618

  4. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    PubMed Central

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.

    2014-01-01

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept. PMID:25545884

  5. Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands.

    PubMed

    Enyedy, Éva A; Dömötör, Orsolya; Varga, Erika; Kiss, Tamás; Trondl, Robert; Hartinger, Christian G; Keppler, Bernhard K

    2012-12-01

    The stoichiometry and stability constants of the Ga(III) complexes of 8-hydroxyquinoline (HQ), 8-hydroxyquinoline-5-sulfonate (HQS), maltol, thiomaltol, allomaltol and thioallomaltol were determined by means of pH-potentiometry, UV-vis spectrophotometry, spectrofluorometry and (1)H NMR spectroscopy in aqueous solution. Spectrofluorometry was used to determine the stability constants of the Ga(III)-HQ species in water. Formation of [GaL](2+), [GaL(2)](+) and [GaL(3)] complexes was found and the Ga(III) binding ability of the ligands followed the order: thioallomaltolIII) (KP46) the dissociation of the complex is negligible at physiological pH even in the biologically relevant low concentration range. Thus KP46 is able to preserve its original entity more considerably than other Ga(III) complexes. Moreover, intrinsic fluorescence of KP46 allows the monitoring of the cellular accumulation and distribution in human cancer cells by fluorescence microscopy.

  6. Sunlight-driven formation and dissociation of a dynamic mixed-valence thallium(III)/thallium(I) porphyrin complex.

    PubMed

    Ndoyom, Victoria; Fusaro, Luca; Dorcet, Vincent; Boitrel, Bernard; Le Gac, Stéphane

    2015-03-16

    Inspired by a Newton's cradle device and interested in the development of redox-controllable bimetallic molecular switches, a mixed-valence thallium(III)/thallium(I) bis-strap porphyrin complex, with Tl(III) bound out of the plane of the N core and Tl(I) hung to a strap on the opposite side, was formed by the addition of TlOAc to the free base and exposure to indirect sunlight. In this process, oxygen photosensitization by the porphyrin allows the oxidation of Tl(I) to Tl(III). The bimetallic complex is dynamic as the metals exchange their positions symmetrically to the porphyrin plane with Tl(III) funneling through the macrocycle. Further exposure of the complex to direct sunlight leads to thallium dissociation and to total recovery of the free base. Hence, the porphyrin plays a key role at all stages of the cycle of the complex: It hosts two metal ions, and by absorbing light, it allows the formation and dissociation of Tl(III). These results constitute the basis for the further design of innovative light-driven bimetallic molecular devices.

  7. Highly efficient phosphorescent materials based on Ir(iii) complexes-grafted on a polyhedral oligomeric silsesquioxane core.

    PubMed

    Yu, Tianzhi; Xu, Zixuan; Su, Wenming; Zhao, Yuling; Zhang, Hui; Bao, Yanjun

    2016-09-14

    A new iridium(iii) complex containing a coumarin derivative as the cyclometalated ligand (L) and a carbazole-functionalized β-diketonate (Cz-acac-allyl) as the ancillary ligand, namely, Ir(iii) bis(3-(pyridin-2-yl)coumarinato-N,C(4))(1-(9-butyl-9H-carbazol-3-yl)hept-6-ene-1,3-dionato-O,O) [Ir(L)2(Cz-acac-allyl)], was firstly synthesized as the emissive iridium(iii) complex. Then three new phosphorescent polyhedral oligomeric silsesquioxane (POSS) materials, consisting of the emissive Ir(iii) complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core were successfully synthesized by hydrosilylation reaction in the presence of platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane (Pt-dvs) as the catalyst. These phosphorescent POSS materials offer many advantages including amorphous properties, good thermal stabilities, and good solubility in common solvents, and high purity via column chromatography. The photoluminescence spectra of the POSS materials in solution and in the solid state indicate a reduction in the degrees of interactions among the Ir(iii) complex units and concentration quenching due to the bulky POSS core. Solution processed light-emitting devices based on these phosphorescent POSS materials exhibit a maximum external quantum efficiency (EQE) of 9.77%. PMID:27501335

  8. Complexation of Eu(III) with cucurbit[n]uril, n = 5 and 7: a thermodynamic and structural study.

    PubMed

    Rawat, Neetika; Kar, Aishwarya; Bhattacharyya, A; Rao, Ankita; Nayak, S K; Nayak, C; Jha, S N; Bhattacharyya, D; Tomar, B S

    2015-03-01

    Cucurbit[n]urils (CBn) are a new class of macrocyclic cage compounds capable of binding organic and inorganic species, owing to their unique pumpkin like structure comprising of both a hydrophobic cavity and a hydrophilic portal. The thermodynamics of the complexation of Eu(III) with CBn of a different cavity size viz. cucurbit[5]uril (CB5) and cucurbit[7]uril (CB7) has been studied by UV-Vis spectroscopy and calorimetry at 25 °C whereas the structure of the complexes was investigated using time resolved fluorescence spectroscopy (TRFS) and extended X-ray absorption fine structure spectroscopy (EXAFS) in a formic acid-water mixture (50 wt%). This is the first report on the structural investigation of Eu-CBn complexes in solution. The thermodynamic data (ΔG, ΔH and ΔS) for Eu(III) complexation with CBn reveal the formation of a 1 : 1 complex with CB5, while both 1 : 1 and 1 : 2 complexes are observed with CB7. The signatures of these species are observed in ESI-MS measurements, which corroborates with the species postulated in thermodynamic studies. The complexation reactions are found to be driven by ΔS as ΔH is either small negative or positive indicating the formation of inner sphere complexes, which is in line with TRFS and EXAFS results. These studies show that Eu(III) caps one of the CB5 portals by binding with all the carbonyl groups in the 1 : 1 Eu-CB5 complex, whereas in the 1 : 1 Eu-CB7 complex, Eu(III) interacts with only a few of the carbonyl groups of CB7. The computational studies (DFT calculations) on Eu-CB5 and Eu-CB7 complexes further support the experimental data.

  9. Metal-ligand interaction of lanthanides with coumarin derivatives. Part I. Complexation of 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione with La(III), Ce(III), Nd(III) and Ho(III).

    PubMed

    Swiatek, Mirosława; Kufelnicki, Aleksander

    2012-01-01

    Solutions of lanthanum(III), cerium(III), neodymium(III) and holmium(III) nitrates with 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione (1) in 10% v/v dioxane-water medium were used. Coordination modes of 1 with the selected lanthanides have been examined. Hydroxo-complexes with deprotonated water molecules from the inner coordination sphere have been stated in basic medium. Stability constants of the forming complex species were determined by potentiometric titrations using Superquad and Hyperquad2003 programs. The most stable complexes are formed with La(III). The UV-Vis spectra of the Nd(III)-1 system confirmed the L:M = 1:1 stoichiometry evaluated potentiometrically.

  10. Comparative evaluation of two commercial amplification assays for direct detection of Mycobacterium tuberculosis complex in respiratory specimens.

    PubMed Central

    Piersimoni, C; Callegaro, A; Nista, D; Bornigia, S; De Conti, F; Santini, G; De Sio, G

    1997-01-01

    Two commercial assays detecting the presence of Mycobacterium tuberculosis complex in clinical specimens by rRNA target amplification (Gen-Probe Amplified M. tuberculosis Direct Test [AMTD]) and PCR (Amplicor) were evaluated. The tests were applied to 327 digested, decontaminated respiratory specimens collected from 236 patients. Results were compared with those of acid-fast staining and culture. The combination of culture and clinical diagnosis was considered the "gold standard." A total of 60 specimens were collected from 27 patients with a diagnosis of pulmonary tuberculosis. Thirteen of these specimens were from patients receiving standard antituberculosis therapy and therefore were not included in the comparison. Of the remaining 47 specimens, 33 were smear positive, 40 were culture positive, 45 were AMTD positive, and 39 were Amplicor positive. After resolution of discrepant results, the overall sensitivities, specificities, and positive and negative predictive values were 77, 100, 100, and 95 for staining; 87, 100, 100, and 97.4 for culture; 95.9, 98.9, 94, and 99.2 for AMTD; and 85.4, 99.6, 97.9, and 97.1 for Amplicor, respectively. Agreement between AMTD and Amplicor assay results was 96.8%. It is concluded that although both nucleic acid amplification methods are rapid and specific for the detection of M. tuberculosis complex in respiratory specimens, AMTD appeared to be more sensitive than Amplicor. PMID:8968906

  11. On the complexity of scoring acute respiratory distress syndrome: do not forget hemodynamics!

    PubMed

    Repessé, Xavier; Aubry, Alix; Vieillard-Baron, Antoine

    2016-08-01

    Acute respiratory distress syndrome (ARDS) remains associated with a poor outcome despite recent major therapeutic advances. Forecasting the outcome of patients suffering from such a syndrome is of a crucial interest and many scores have been proposed, all suffering from limits responsible for important discrepancies. Authors try to elaborate simple, routine and reliable scores but most of them do not consider hemodynamics yet acknowledged as a major determinant of outcome. This article aims at reminding the approach of scoring in ARDS and at deeply describing the most recently published one in order to highlight their main pitfall, which is to forget the hemodynamics. PMID:27618840

  12. On the complexity of scoring acute respiratory distress syndrome: do not forget hemodynamics!

    PubMed Central

    Repessé, Xavier; Aubry, Alix

    2016-01-01

    Acute respiratory distress syndrome (ARDS) remains associated with a poor outcome despite recent major therapeutic advances. Forecasting the outcome of patients suffering from such a syndrome is of a crucial interest and many scores have been proposed, all suffering from limits responsible for important discrepancies. Authors try to elaborate simple, routine and reliable scores but most of them do not consider hemodynamics yet acknowledged as a major determinant of outcome. This article aims at reminding the approach of scoring in ARDS and at deeply describing the most recently published one in order to highlight their main pitfall, which is to forget the hemodynamics. PMID:27618840

  13. On the complexity of scoring acute respiratory distress syndrome: do not forget hemodynamics!

    PubMed Central

    Repessé, Xavier; Aubry, Alix

    2016-01-01

    Acute respiratory distress syndrome (ARDS) remains associated with a poor outcome despite recent major therapeutic advances. Forecasting the outcome of patients suffering from such a syndrome is of a crucial interest and many scores have been proposed, all suffering from limits responsible for important discrepancies. Authors try to elaborate simple, routine and reliable scores but most of them do not consider hemodynamics yet acknowledged as a major determinant of outcome. This article aims at reminding the approach of scoring in ARDS and at deeply describing the most recently published one in order to highlight their main pitfall, which is to forget the hemodynamics.

  14. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes.

    PubMed

    Latouche, Camille; Skouteris, Dimitrios; Palazzetti, Federico; Barone, Vincenzo

    2015-07-14

    We report in the present paper a comprehensive investigation of representative Pt(II) and Ir(III) complexes with special reference to their one-photon absorption spectra employing methods rooted in density functional theory and its time dependent extension. We have compared nine different functionals ranging from generalized gradient approximation (GGA) to global or range-separated hybrids, and two different basis sets, including pseudopotentials for 4 iridium and 7 platinum complexes. It turns out that hybrid functionals with the same exchange part give comparable results irrespective of the specific correlation functional (i.e., B3LYP is very close to B3PW91 and PBE0 is very close to MPW1PW91). More recent functionals, such as CAM-B3LYP and M06-2X, overestimate excitation energies, whereas local functionals (BP86 -GGA-, M06-L -Meta GGA-) strongly underestimate transition energies with respect to experimental results. As expected, basis set effects are weak, and the use of a triple-ζ polarized (def2-TZVP) basis set does not significantly improve the computed excitation energies with respect to a classical double-ζ basis set (LANL2DZ) augmented by polarization functions, but it significantly raises the computational effort. PMID:26575764

  15. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    SciTech Connect

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay time is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.

  16. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    DOE PAGES

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay timemore » is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less

  17. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    PubMed

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  18. Fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum(III) and the fluorometry of nucleic acids

    SciTech Connect

    Cheng Zhi Huang; Ke An Li; Shen Yang Tong

    1996-07-01

    The ternary fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum (III) were studied. Nucleic acids in the study involve natured and thermally denatured calf thymus DNA, fish sperm DNA and yeast RNA. In the range of PH 8.0-8.4 (controlled by NH{sub 3}-NH{sub 4}Cl buffer) ternary fluorescent complexes are formed which emit at 485.0 nm for calf thymus DNA and at 480.0 nm for fish sperm DNA when excited at 265.0 nm. Based on the fluorescence reactions sensitive fluorometric methods for nucleic acids were proposed. Using optimal conditions, the calibration curves were linear in the range of 0.4 --3.6 {mu}g{sup .}ml{sup -1} for calf thymus DNA, 0.4 -- 4.0 {mu}g{sup .}ml{sup -1} for fish sperm DNA and 0.4 --4.0{mu}g{sup .}ml{sup -1} for yeast RNA, respectively. Five synthetic samples were determined with satisfaction.

  19. Promising in Vitro anti-Alzheimer Properties for a Ruthenium(III) Complex

    PubMed Central

    2013-01-01

    Metal complexes represent today an attractive class of experimental anti-Alzheimer agents with the potential of blocking β-amyloid 1–42 aggregation and scavenging its toxicity. Three representative ruthenium(III) complexes, namely NAMI A, KP1019, and PMRU20, were specifically evaluated to this end in an established in vitro model of AD relying on primary cortical neurons. Notably, PMRU20 turned out to be highly effective in protecting cortical neurons against Aβ 1–42 toxicity, while the other tested ruthenium compounds were poorly active or even inactive; we also found that PMRU20 is virtually devoid of any significant toxicity in vitro at the applied concentrations. Interestingly, PMRU20 was neuroprotective even against the toxicity induced by Aβ 25–35. The direct reaction of PMRU20 with Aβ 1–42 was explored through ESI MS analysis and some adduct formation evidenced. In addition, thioflavin T assays revealed that PMRU20 greatly reduces Aβ 1–42 aggregation. The implications of these findings are discussed in relation to emerging treatment strategies for the Alzheimer’s disease. PMID:24900669

  20. The fluxional amine gold(III) complex as an excellent catalyst and precursor of biologically active acyclic carbenes.

    PubMed

    Montanel-Pérez, Sara; Herrera, Raquel P; Laguna, Antonio; Villacampa, M Dolores; Gimeno, M Concepción

    2015-05-21

    A new amine gold(III) complex [Au(C6F5)2(DPA)]ClO4 with the di-(2-picolyl)amine (DPA) ligand has been synthesised. In the solid state the complex has a chiral amine nitrogen because the ligand coordinates to the gold centre through one nitrogen atom from a pyridine and through the NH moiety, whereas in solution it shows a fluxional behaviour with a rapid exchange between the pyridine sites. This complex can be used as an excellent synton to prepare new gold(III) carbene complexes by the reaction with isocyanide CNR. The resulting gold(III) derivatives have unprecedented bidentate C^N acyclic carbene ligands. All the complexes have been spectroscopically and structurally characterized. Taking advantage of the fluxional behaviour of the amine complex, its catalytic properties have been tested in several reactions with the formation of C-C and C-N bonds. The complex showed excellent activity with total conversion, without the presence of a co-catalyst, and with a catalyst loading as low as 0.1%. These complexes also present biological properties, and cytotoxicity studies have been performed in vitro against three tumour human cell lines, Jurkat (T-cell leukaemia), MiaPaca2 (pancreatic carcinoma) and A549 (lung carcinoma). Some of them showed excellent cytotoxic activity compared with the reference cisplatin.

  1. Dual emission from an ortho-metalated Ir(III) complex

    SciTech Connect

    King, K.A.; Watts, R.J.

    1987-03-04

    Several complexes of Ir(III) containing both the bidentate N-coordinating ligand 2,2'-bipyridine (bpy) and the N,C-orthometalating ligand 2-phenylpyridine (ppy) have recently been prepared; these include the two species Ir(ppy)/sub 2/(bpy)/sup +/ (A) and Ir(ppy)(bpy)/sub 2//sup 2 +/ (B). The former was prepared from the dichloro-bridged dimer, (Ir(ppy)/sub 2/Cl)/sub 2/, by modification of the procedure of Nonoyama while the latter was obtained by reaction of cis-(Ir(bpy)/sub 2/(OSO/sub 2/CF/sub 3/)/sub 2/) (CF/sub 3/SO/sub 3/) with ppy in refluxing 2-ethoxyethanol. The purity of the complexes was monitored with thin-layer chromatography using silica gel plates and 1:1:1 acetone/methanol/water mixtures for elution. Samples of the complexes used in these studies showed only one component in thin-layer chromatography. While only one isomer of B is possible, there are three possible isomers of A. Data from /sup 1/H and /sup 13/C NMR experiments indicate that A has C/sub 2/ symmetry. The NMR spectrum indicates, as does thin-layer chromatography, that only a single isomer of A is present with no detectable impurities due to a mixture of isomers. While X-ray structural data for A are lacking, structural data for related complexes suggest that A is the isomer with cisoid metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds. These species were prepared in order to probe further the effects of metal-carbon bonding on energy-transfer processes and electron-transfer reactions of metal complexes. Emission spectroscopic studies reported here reveal unusual and distinct intramolecular energy-transfer behavior in these complexes. Whereas dual emission from the former is observed in glasses at 77 K, a single emission is observed in the latter.

  2. Cobalt(III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Chakkaravarthi, G

    2016-09-01

    Cobalt(III) complexes (1-3) such as [Co(acac)(bpy)(N3)2·H2O] 1, [Co(acac)(en)(N3)2] 2, and [Co(acac)(2-pic)(N3)2] 3 (where, acac=acetylacetone, bpy=2.2'-bipyridine, en=ethylenediamine, 2-pic=2-picolylamine and NaN3=sodium azide) were synthesized and characterized. The structure of complexes (1-3) has been determined by single crystal X-ray diffraction studies and the configuration around cobalt(III) ion was distorted octahedral coordination geometry. Density functional theory calculations were performed to examine the molecular geometry and frontier molecular orbital properties of complexes (1-3). DNA binding properties of the cobalt(III) complexes with calf thymus DNA (CT-DNA) were investigated by UV-visible absorption, fluorescence, circular dichroism spectroscopy and viscosity measurements. The docking studies showed the preferred orientation of sterically acceptable Co(III) complexes (1, 2) inside the DNA through the mode of intercalation, whereas complex 3 exhibited minor groove binding modes. The intrinsic binding constants Kb of complexes (1-3) with CT-DNA were in the following order 1>3>2. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) and gel electrophoresis assay demonstrated that the complexes (1-3) promote the cleavage of the pBR322 DNA in the presence of 3-mercaptopropionic acid (MPA) and cleavage process was found to proceed by singlet oxygen cleavage mechanism. Further, the in vitro cytotoxicity studies of complexes (1-3) were tested on human breast cancer cell line (MCF-7). PMID:27475779

  3. Optical properties of bicyclometalated Ir(III) and Rh(III) complexes of benzo[h]quinoline with (N∧S)- and (N∧O)- chelating ligands

    NASA Astrophysics Data System (ADS)

    Katlenok, E. A.; Balashev, K. P.

    2014-02-01

    [M(bzq)2(N∧X)] complexes (M = Rh(III), Ir(III); (bzq)- is the deprotonated form of benzo[h]quinoline, and (N∧X)- are 2-thiolpyridine, 2-hydroxypyridine, and 2-thiolbenzothiazole ions) are studied by absorption and emission spectroscopy and voltammetry. The long-wavelength absorption bands of [Rh(bzq)2(N∧X)] in the range of 420-424 nm are attributed to the optical metal-to-ligand charge transfer (MLCT) transitions, while the low-temperature (77 K) phosphorescence in the range of 490-610 nm is assigned to the intraligand (IL) transition of the {Rh(bzq)2} metal-complex fragment. The phosphorescence of the [Ir(bzq)2(N∧X)] complexes in liquid solutions in the range of 585-675 nm is assigned to the radiative MLCT transition, while the low-temperature (77 K) phosphorescence occurs from the thermally nonequilibrium MLCT and IL excited states of the {Ir(bzq)2} metal-complex fragment.

  4. Heterobimetallic bismuth(III)/molybdenum(VI) and antimony(III