Charususin, Noppawan; Dacha, Sauwaluk; Gosselink, Rik; Decramer, Marc; Von Leupoldt, Andreas; Reijnders, Thomas; Louvaris, Zafeiris; Langer, Daniel
2018-01-01
Respiratory muscle dysfunction is common and contributes to dyspnea and exercise limitation in patients with chronic obstructive pulmonary disease (COPD). Improving dynamic function of respiratory muscles during exercise might help to reduce symptoms and improve exercise capacity. Areas covered: The aims of this review are to 1) summarize physiological mechanisms linking respiratory muscle dysfunction to dyspnea and exercise limitation; 2) provide an overview of available therapeutic approaches to better maintain load-capacity balance of respiratory muscles during exercise; and 3) to summarize current knowledge on potential mechanisms explaining effects of interventions aimed at optimizing dynamic respiratory muscle function with a special focus on inspiratory muscle training. Expert commentary: Several mechanisms which are potentially linking improvements in dynamic respiratory muscle function to symptomatic and functional benefits have not been studied so far in COPD patients. Examples of underexplored areas include the study of neural processes related to the relief of acute dyspnea and the competition between respiratory and peripheral muscles for limited energy supplies during exercise. Novel methodologies are available to non-invasively study these mechanisms. Better insights into the consequences of dynamic respiratory muscle dysfunction will hopefully contribute to further refine and individualize therapeutic approaches in patients with COPD.
Respiratory muscle involvement in sarcoidosis.
Schreiber, Tina; Windisch, Wolfram
2018-07-01
In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.
Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee
2018-06-01
The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P < 0.05). In addition, the higher thickening ratio of the affected side showed significant relationship with higher trunk function. Moreover, higher respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P < 0.05). Thus, chronic stroke survivors have decreased abdominal muscle thickness on the affected side, and respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.
Correlation between thoracolumbar curvatures and respiratory function in older adults.
Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond
2017-01-01
Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were -46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r =-0.23, P <0.05; forced vital capacity: r =-0.32, P <0.05), quiet expiration intercostal thickness ( r =-0.22, P <0.05) and deep expiration diaphragm muscle thickness ( r =-0.21, P <0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength ( r =-0.29, P <0.05) and diaphragm muscle thickness at deep inspiration ( r =-0.22, P <0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures, respiratory muscles and lung function should be taken into consideration in the holistic management of respiratory function among older adults.
Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun
2016-01-01
[Purpose] Fragmentary studies on characteristics of respiratory muscles are being done to increase respiratory capacity by classifying exercises into voluntary respiratory exercise which relieves symptoms and prevents COPD and exercise using breathing exercise equipment. But this study found changes on respiratory pattern through changes on the activity pattern of agonist and synergist respiratory muscles and studied what effect they can have on body function improvement. [Subjects and Methods] Fifteen subjects in experimental group I that respiratory exercise of diaphragm and 15 subjects in experimental group II that feedback respiratory exercise were randomly selected among COPD patients to find the effective intervention method for COPD patients. And intervention program was conducted for 5 weeks, three times a week, once a day and 30 minutes a session. They were measured with BODE index using respiratory muscle activity, pulmonary function, the six-minute walking test, dyspnea criteria and BMI Then the results obtained were compared and analyzed. [Results] There was a significant difference in sternocleidomastoid muscle and scalene muscle and in 6-minute walk and BODE index for body function. Thus the group performing feedback respiratory had more effective results for mild COPD patients. [Conclusion] Therefore, the improvement was significant regarding the activity of respiratory muscles synergists when breathing before doing breathing exercise. Although, it is valuable to reduce too much mobilization of respiratory muscles synergists through the proper intervention it is necessary to study body function regarding improvement of respiratory function for patients with COPD.
Postoperative respiratory muscle dysfunction: pathophysiology and preventive strategies.
Sasaki, Nobuo; Meyer, Matthew J; Eikermann, Matthias
2013-04-01
Postoperative pulmonary complications are responsible for significant increases in hospital cost as well as patient morbidity and mortality; respiratory muscle dysfunction represents a contributing factor. Upper airway dilator muscles functionally resist the upper airway collapsing forces created by the respiratory pump muscles. Standard perioperative medications (anesthetics, sedatives, opioids, and neuromuscular blocking agents), interventions (patient positioning, mechanical ventilation, and surgical trauma), and diseases (lung hyperinflation, obesity, and obstructive sleep apnea) have differential effects on the respiratory muscle subgroups. These effects on the upper airway dilators and respiratory pump muscles impair their coordination and function and can result in respiratory failure. Perioperative management strategies can help decrease the incidence of postoperative respiratory muscle dysfunction. Such strategies include minimally invasive procedures rather than open surgery, early and optimal mobilizing of respiratory muscles while on mechanical ventilation, judicious use of respiratory depressant anesthetics and neuromuscular blocking agents, and noninvasive ventilation when possible.
Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.
Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth
2016-03-31
Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.
Aerobic exercise and respiratory muscle strength in patients with cystic fibrosis.
Dassios, Theodore; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel
2013-05-01
The beneficial role of exercise in maintaining health in patients with cystic fibrosis (CF) is well described. Few data exist on the effect of exercise on respiratory muscle function in patients with CF. Our objective was to compare respiratory muscle function indices in CF patients that regularly exercise with those CF patients that do not. This cross-sectional study assessed nutrition, pulmonary function and respiratory muscle function in 37 CF patients that undertook regular aerobic exercise and in a control group matched for age and gender which consisted of 44 CF patients that did not undertake regular exercise. Respiratory muscle function in CF was assessed by maximal inspiratory pressure (Pimax), maximal expiratory pressure (Pemax) and pressure-time index of the respiratory muscles (PTImus). Median Pimax and Pemax were significantly higher in the exercise group compared to the control group (92 vs. 63 cm H2O and 94 vs. 64 cm H2O respectively). PTImus was significantly lower in the exercise group compared to the control group (0.089 vs. 0.121). Upper arm muscle area (UAMA) and mid-arm muscle circumference were significantly increased in the exercise group compared to the control group (2608 vs. 2178 mm2 and 23 vs. 21 cm respectively). UAMA was significantly related to Pimax in the exercising group. These results suggest that CF patients that undertake regular aerobic exercise maintain higher indices of respiratory muscle strength and lower PTImus values, while increased UAMA values in exercising patients highlight the importance of muscular competence in respiratory muscle function in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.
Magnet, Friederike Sophie; Callegari, Jens; Dieninghoff, Doris; Spielmanns, Marc; Storre, Jan Hendrik; Schmoor, Claudia; Windisch, Wolfram
2017-01-01
Pseudomonas aeruginosa infection impairs respiratory muscle function in adolescents with cystic fibrosis, but its impact on adult patients has not been characterised. To investigate respiratory muscle function in adult cystic fibrosis patients according to P. aeruginosa status (repetitive samples over 12 months). The pressure-time index of the respiratory muscles (PTImus), a measure of their efficiency, served as the primary outcome. In addition, respiratory load and maximal respiratory muscle strength were assessed. In 51 patients examined (65% female; median age 32 years, IQR 24-40), a median of 3.0 (IQR 2-4) different pathogens was found in each patient. The PTImus was 0.113 and 0.126 in Pseudomonas-positive (n = 33) and -negative (n = 18) patients, respectively (p = 0.53). Univariate analysis showed a lower PTImus in male than in female patients (p = 0.006). Respiratory muscle load and strength were otherwise comparable, with the exception of higher nasal sniff pressures in Pseudomonas-positive patients who were chronically infected (>50% of positive samples). Quality of Life (according to the Cystic Fibrosis Questionnaire-Revised) was higher if both respiratory load and the PTImus were low (high respiratory muscle efficiency). Chronic P. aeruginosa infection does not influence respiratory muscle efficiency in adult cystic fibrosis patients with otherwise multiple co-infections. In addition, patients with reduced respiratory muscle efficiency had worse Quality of Life. © 2016 S. Karger AG, Basel.
Alonso, Joan Francesc; Mañanas, Miguel A; Hoyer, Dirk; Topor, Zbigniew L; Bruce, Eugene N
2007-09-01
Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear methods are not sufficient. Therefore, the objective of this study was the detection of diagnostically relevant nonlinear complex respiratory mechanisms. Two aims of this work were: (1) to assess coordination of respiratory muscles contractions through evaluation of interactions between respiratory signals and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF); (2) to differentiate between functioning of respiratory muscles in patients with OSAS and in normal subjects. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from three respiratory muscles: genioglossus, sternomastoid and diaphragm. Inspiratory pressure and flow were also acquired. All signals were measured in eight patients with OSAS and eight healthy subjects during an increased respiratory effort while awake. Several variables were defined and calculated from CMIF in order to describe correlation between signals. The results indicate different nonlinear couplings of respiratory muscles in both populations. This effect is progressively more evident at higher levels of respiratory effort.
Monitoring respiratory muscles.
Nava, S
1998-12-01
The respiratory system consists of two main parts, the lung and the ventilatory pump. The latter consists of the bony structure of the thorax, the central respiratory controllers, the inspiratory and expiratory muscles, and the nerves innervating these muscles. Respiratory muscle fatigue occurs when respiratory muscle endurance is exceeded. Muscle fatigue is defined as a condition in which there is a reduction in the capacity for developing force and/or velocity of a muscle, resulting from muscle activity, and which is reversible by rest. The respiratory muscles are somewhat difficult to assess and the techniques employed are still relatively primitive. The most important methods of respiratory muscles function assessment are: 1) the vital capacity manoeuvre, which depends on maximum inspiratory and expiratory effort by the muscles and may be a useful indicator of respiratory muscle function; 2) radiological screening has been proposed for the detection of diaphragm paralysis. This may be helpful if the paralysis is unilateral, but bilateral paralysis is difficult to detect; and 3) respiratory muscles strength may be assessed with either voluntary or nonvoluntary manoeuvres. The function of the inspiratory muscles is assessed with 3 voluntary dependent manoeuvres. They are the so called Müller manoeuvre (or maximal inspiratory pressure), the sniff test and the combined test. All these three manoeuvres generate a pressure that is a reflection of complex interactions between several muscle groups since the efforts produce different mechanisms of activity of inspiratory and expiratory muscles. Two techniques are presently employed to assess diaphragm function, not being dependent on the patient's motivation: electrical phrenic nerve stimulation and cervical magnetic stimulation. Since it is less painful, magnetic cervical stimulation overcomes some of the difficulties encountered during electrical stimulation. With these two techniques recordings of diaphragmatic force are possible, and at the same time useful information about the conduction time of both phrenic nerves can be obtained.
Imaging of respiratory muscles in neuromuscular disease: A review.
Harlaar, L; Ciet, P; van der Ploeg, A T; Brusse, E; van der Beek, N A M E; Wielopolski, P A; de Bruijne, M; Tiddens, H A W M; van Doorn, P A
2018-03-01
Respiratory muscle weakness frequently occurs in patients with neuromuscular disease. Measuring respiratory function with standard pulmonary function tests provides information about the contribution of all respiratory muscles, the lungs and airways. Imaging potentially enables the study of different respiratory muscles, including the diaphragm, separately. In this review, we provide an overview of imaging techniques used to study respiratory muscles in neuromuscular disease. We identified 26 studies which included a total of 573 patients with neuromuscular disease. Imaging of respiratory muscles was divided into static and dynamic techniques. Static techniques comprise chest radiography, B-mode (brightness mode) ultrasound, CT and MRI, and are used to assess the position and thickness of the diaphragm and the other respiratory muscles. Dynamic techniques include fluoroscopy, M-mode (motion mode) ultrasound and MRI, used to assess diaphragm motion in one or more directions. We discuss how these imaging techniques relate with spirometric values and whether these can be used to study the contribution of the different respiratory muscles in patients with neuromuscular disease. Copyright © 2017. Published by Elsevier B.V.
Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf
2016-01-01
Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P <0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG ( P <0.001). Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.
Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso RF
2016-01-01
Background Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. Objective The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. Design This study was a randomized and controlled trial. Participants A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). Intervention The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Evaluations Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. Results After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Conclusion Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment. PMID:27822031
Chronic Pseudomonas aeruginosa infection and respiratory muscle impairment in cystic fibrosis.
Dassios, Theodore G; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel
2014-03-01
Chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis (CF) is associated with increased morbidity. Chronic infection can cause limb and respiratory muscle compromise. Respiratory muscle function can be assessed via maximal inspiratory pressure (PImax), maximal expiratory pressure (PEmax), and the pressure-time index of the respiratory muscles (PTImus). We studied the effect of chronic P. aeruginosa infection on respiratory muscle function in patients with CF. This cross-sectional study assessed PImax, PEmax, PTImus, FEV1, FVC, maximum expiratory flow during the middle half of the FVC maneuver, body mass index, and upper arm muscle area in 122 subjects with CF, in 4 subgroups matched for age and sex at different stages of P. aeruginosa infection, according to the Leeds criteria. We compared respiratory muscle function in the subgroups according to P. aeruginosa infection state. Median PImax was significantly lower in CF subjects with chronic P. aeruginosa infection (PImax = 62 cm H2O), compared to subjects who were never infected (PImax = 86 cm H2O, P = .02), free of infection (PImax = 74 cm H2O, P = .01), or intermittently infected (PImax = 72 cm H2O, P = .02). Median PTImus was significantly increased in CF subjects with chronic P. aeruginosa infection (PTImus = .142), compared to subjects who were free of infection (PTImus = .102, P = .006). Median upper-arm muscle area was significantly lower in CF subjects with chronic P. aeruginosa infection (upper-arm muscle area = 2,219 mm(2)), compared to subjects who were never infected (2,754 mm(2), P = .03), free of infection (2,678 mm(2), P = .01), or intermittently infected (2,603 mm(2), P = .04). Multivariate logistic regression revealed P. aeruginosa state of infection as a significant determinant of PTImus (P = .03) independently of sex, upper-arm muscle area, and FEV1. CF subjects with chronic P. aeruginosa infection exhibited impaired respiratory muscle function and decreased inspiratory muscle strength, and chronic P. aeruginosa infection independently impacts respiratory muscle function in subjects with CF.
Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.
2014-01-01
Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306
Wang, Yao; Shao, Wei-bo; Gao, Li; Lu, Jie; Gu, Hao; Sun, Li-hua; Tan, Yan; Zhang, Ying-dong
2014-01-01
There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson's disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration. Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson's disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed. Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients. These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.
Determinants of respiratory pump function in patients with cystic fibrosis.
Dassios, Theodore
2015-01-01
Respiratory failure constitutes the major cause of morbidity and mortality in patients with Cystic Fibrosis (CF). Respiratory failure could either be due to lung parenchyma damage or to insufficiency of the respiratory pump which consists of the respiratory muscles, the rib cage and the neuromuscular transmission pathways. Airway obstruction, hyperinflation and malnutrition have been historically recognised as the major determinants of respiratory pump dysfunction in CF. Recent research has identified chronic infection, genetic predisposition, dietary and pharmaceutical interventions as possible additional determinants of this impairment. Furthermore, new methodological approaches in assessing respiratory pump function have led to a better understanding of the pathogenesis of respiratory pump failure in CF. Finally, respiratory muscle function could be partially preserved in CF patients with structured interventions such as aerobic exercise, inspiratory muscle training and non-invasive ventilation and CF patients could consequently be relatively protected from respiratory fatigue and respiratory failure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pulmonary Function, Muscle Strength and Mortality in Old Age
Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.
2009-01-01
Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207
López-de-Uralde-Villanueva, Ibai; Sollano-Vallez, Ernesto; Del Corral, Tamara
2017-06-11
To investigate whether patients with chronic nonspecific neck pain and having moderate to severe disability have a greater cervical motor function impairment and respiratory disturbances compared with patients with chronic nonspecific neck pain having mild disability and asymptomatic subjects; and the association between these outcomes in patients with chronic nonspecific neck pain and healthy controls. Cross-sectional study, 44 patients with chronic nonspecific neck pain and 31 healthy subjects participated. The neck disability index was used to divide the patients into 2 groups: 1) mild disability group (scores between 5 and 14 points); and 2) moderate to severe disability group (scores >14 points). Cervical motor function was measured by cervical range of motion, forward head posture, neck flexor, and extensor muscle strength. Respiratory function and maximum respiratory pressures were also measured. Statistically differences were found between the patients with chronic nonspecific neck pain having a moderate to severe disability and the asymptomatic subjects for cervical and respiratory muscle strength. Comparisons between chronic nonspecific neck pain and the asymptomatic groups showed differences for all the variables, except for forward head posture. The regression model determined that strength of cervical flexion explained 36.4 and 45.6% of the variance of maximum inspiratory pressures and maximum expiratory pressures, respectively. Only the chronic nonspecific neck pain group with moderate to severe disability showed differences compared with the healthy subjects. Neck muscle strength could be a good predictor of respiratory muscle function. Implications for rehabilitation Neck pain severity could be closely associated with decreased respiratory pressure in patients with chronic nonspecific neck pain. These findings suggest a new therapeutic approach for patients with moderate to severe disability, such as respiratory muscle training. The regression models show that a simple measurement of neck muscle strength could provide a reasonably accurate prediction for the respiratory function of these patients. Hence, this could provide an easy tool to assess respiratory function to physiotherapists without the need for sophisticated instrumentation.
Santin, Joseph M; Hartzler, Lynn K
2017-04-01
Semiaquatic frogs may not breathe air for several months because they overwinter in ice-covered ponds. In contrast to many vertebrates that experience decreased motor performance after inactivity, bullfrogs, Lithobates catesbeianus , retain functional respiratory motor processes following cold-submergence. Unlike mammalian hibernators with unloaded limb muscles and inactive locomotor systems, respiratory mechanics of frogs counterintuitively allow for ventilatory maneuvers when submerged. Thus, we hypothesized that bullfrogs generate respiratory motor patterns during cold-submergence to avoid disuse and preserve motor performance. Accordingly, we measured activity of respiratory muscles (buccal floor compressor and glottal dilator) via electromyography in freely behaving bullfrogs at 20 and 2°C. Although we confirm that ventilation cycles occur underwater at 20°C, bullfrogs did not activate either respiratory muscle when submerged acutely or chronically at 2°C. We conclude that cold-submerged bullfrogs endure respiratory motor inactivity, implying that other mechanisms, excluding underwater muscle activation, maintain a functional respiratory motor system throughout overwintering. © 2017. Published by The Company of Biologists Ltd.
Zhang, Jian-Qing; Long, Xiang-Yu; Xie, Yu; Zhao, Zhi-Huan; Fang, Li-Zhou; Liu, Ling; Fu, Wei-Ping; Shu, Jing-Kui; Wu, Jiang-Hai; Dai, Lu-Ming
2017-11-02
Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.
Early Exercise Rehabilitation of Muscle Weakness in Acute Respiratory Failure Patients
Berry, Michael J.; Morris, Peter E.
2013-01-01
Acute Respiratory Failure patients experience significant muscle weakness which contributes to prolonged hospitalization and functional impairments post-hospital discharge. Based on our previous work, we hypothesize that an exercise intervention initiated early in the intensive care unit aimed at improving skeletal muscle strength could decrease hospital stay and attenuate the deconditioning and skeletal muscle weakness experienced by these patients. Summary Early exercise has the potential to decrease hospital length of stay and improve function in Acute Respiratory Failure patients. PMID:23873130
Chlumský, J; Filipova, P; Terl, M
2006-01-01
Most patients with chronic obstructive pulmonary disease (COPD) have impaired respiratory muscle function. Maximal oesophageal pressure correlates closely with exercise tolerance and seems to predict the distance walked during the 6-min walk test. This study assessed the non-invasive parameters of respiratory muscle function in 41 patients with COPD to investigate their relationship to pulmonary function tests and exercise tolerance. The COPD patients, who demonstrated the full range of airway obstruction severity, had a mean forced expiratory volume in 1 s of 42.5% predicted (range, 20 - 79% predicted). Both the maximal inspiratory muscle strength and non-invasive tension-time index were significantly correlated with the degree of lung hyperinflation, as expressed by the ratio of residual volume to total lung capacity, and the distance walked in 6 min. We conclude that respiratory muscle function was influenced mainly by lung hyperinflation and that it had an important effect on exercise tolerance in COPD patients.
Pulmonary function at diagnosis of amyotrophic lateral sclerosis. Rate of deterioration.
Schiffman, P L; Belsh, J M
1993-02-01
The purpose of this study was to determine the degree of respiratory muscle impairment in patients with newly diagnosed amyotrophic lateral sclerosis (ALS) and the subsequent rate of decline of respiratory function. Thirty-one of 36 patients had respiratory muscle weakness at presentation, although only 7 complained of any respiratory symptoms. Vital capacity (percent predicted) was significantly lower in the symptomatic group (55.9 +/- 20.3) compared with the asymptomatic group (76.4 +/- 21.0). Respiratory muscle impairment as measured by vital capacity (percent predicted) was related to stage of disease at presentation. Rate of decline of respiratory muscle strength as measured by VC (-3.5 percent/month), negative inspiratory pressure (NIF) (+2.9 cm H2O/month), and positive expiratory pressure (PEP) (-3.4 cm H2O/month) tended to be linear with a great deal of interpatient variability. It is concluded that early measurement of respiratory muscle strength in ALS with subsequent follow-up studies may be useful in determining overall prognosis and in decision making.
Alonso, J F; Mañanas, M A; Hoyer, D; Topor, Z L; Bruce, E N
2004-01-01
Analysis of respiratory muscle activity is a promising technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Evaluation of interactions between muscles is very useful in order to determine the muscular pattern during an exercise. These interactions have already been assessed by means of different linear techniques like cross-spectrum, magnitude squared coherence or cross-correlation. The aim of this work is to evaluate interactions between respiratory and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF), and finding out what information can be extracted from it. Some parameters are defined and calculated from CMIF between ventilatory and myographic signals of three respiratory muscles. Finally, differences in certain parameters were obtained between OSAS patients and healthy subjects indicating different respiratory muscle couplings.
Respiratory muscle function in patients with cystic fibrosis.
Dassios, Theodore; Katelari, Anna; Doudounakis, Stavros; Mantagos, Stefanos; Dimitriou, Gabriel
2013-09-01
Respiratory muscle function in patients with cystic fibrosis (CF) can be assessed by measurement of maximal inspiratory pressure (Pimax ), maximal expiratory pressure (Pemax ), and pressure-time index of the respiratory muscles (PTImus ). We investigated the differences in maximal respiratory pressures and PTImus between CF patients with no gross hyperinflation and healthy controls and described the effects of pulmonary function and nutrition impairment on respiratory muscle function in this group of CF patients. Forced expiratory volume in 1 sec (FEV1 ), forced vital capacity (FVC) and maximal expiratory flow between 25% and 75% of VC (MEF25-75 ), body mass index (BMI), upper arm muscle area (UAMA), Pimax , Pemax , and PTImus were assessed in 140 CF patients and in a control group of 140 healthy subjects matched for age and gender. Median Pimax and Pemax were significantly lower in CF patients compared to the controls [Pimax = 74 (57-94) in CF vs. 84 (66-102) in controls, P = 0.009], [Pemax = 71 (50-95) in CF vs. 84 (66-102) in controls, P < 0.001]. Median PTImus in CF patients compared to controls was significantly increased [PTImus = 0.110 (0.076-0.160) in CF vs. 0.094 (0.070-0.137) in controls, P = 0.049] and it was significantly higher in CF patients with impaired pulmonary function. In CF patients, PTImus was significantly negatively related to upper arm muscle area (r = 0.184, P = 0.031). These findings suggest that CF patients with no severe lung disease compared to healthy subjects exhibit impaired respiratory muscle function, while CF patients with impaired pulmonary function and nutrition indices exhibit higher PTImus values. Copyright © 2012 Wiley Periodicals, Inc.
Mechanical Properties of Respiratory Muscles
Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.
2014-01-01
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238
ERIC Educational Resources Information Center
Wang, Hui-Yi; Chen, Chien-Chih; Hsiao, Shih-Fen
2012-01-01
Cerebral palsy (CP) is a common childhood disorder characterized by motor disability. Children with CP are at risk of developing significant respiratory problems associated with insufficient respiratory muscle strength. It is crucial to identify important factors which are associated with the limitations in daily living function in such children.…
Respiratory muscle function in infants with spinal muscular atrophy type I.
Finkel, Richard S; Weiner, Daniel J; Mayer, Oscar H; McDonough, Joseph M; Panitch, Howard B
2014-12-01
To determine the feasibility and safety of respiratory muscle function testing in weak infants with a progressive neuromuscular disorder. Respiratory insufficiency is the major cause of morbidity and mortality in infants with spinal muscular atrophy type I (SMA-I). Tests of respiratory muscle strength, endurance, and breathing patterns can be performed safely in SMA-I infants. Useful data can be collected which parallels the clinical course of pulmonary function in SMA-I. An exploratory study of respiratory muscle function testing and breathing patterns in seven infants with SMA-I seen in our neuromuscular clinic. Measurements were made at initial study visit and, where possible, longitudinally over time. We measured maximal inspiratory (MIP) and transdiaphragmatic pressures, mean transdiaphragmatic pressure, airway occlusion pressure at 100 msec of inspiration, inspiratory and total respiratory cycle time, and aspects of relative thoracoabdominal motion using respiratory inductive plethysmography (RIP). The tension time index of the diaphragm and of the respiratory muscles, phase angle (Φ), phase relation during the total breath, and labored breathing index were calculated. Age at baseline study was 54-237 (median 131) days. Reliable data were obtained safely for MIP, phase angle, labored breathing index, and the invasive and non-invasive tension time indices, even in very weak infants. Data obtained corresponded to the clinical estimate of severity and predicted the need for respiratory support. The testing employed was both safe and feasible. Measurements of MIP and RIP are easily performed tests that are well tolerated and provide clinically useful information for infants with SMA-I. © 2014 Wiley Periodicals, Inc.
Dudgeon, Deborah; Baracos, Vickie E
2016-09-01
Loss of skeletal muscle mass and cachexia are important manifestations of chronic obstructive pulmonary disease and have been associated with breathlessness, functional limitation and poor prognosis. A number of other life-limiting illnesses, including cancer and chronic heart failure as well as acute conditions seen in ICU such as sepsis, are characteristically associated with cachexia and sarcopenia. These conditions may have respiratory muscle atrophy of sufficient magnitude to contribute to the development of breathlessness and associated functional limitation. The purpose of this review is to summarize findings related to a direct role for severe respiratory muscle wasting in the etiology of breathlessness in advanced, life limiting illness. Localized wasting of respiratory muscles appears to be part of systemic wasting of skeletal muscles, driven by deconditioning, nutritional insufficiencies and inflammation, and because of disease-specific factors (tumor factors and exacerbations), anabolic insufficiency, autonomic dysfunction, drugs (such as corticosteroids and chemotherapy agents), mechanical ventilation and comorbidities. Marked morphological and biochemical abnormalities have been noted in diaphragm muscle biopsies. Older patients with multiple comorbidities associated with muscle loss and cachexia are likely to be at elevated risk of respiratory muscle atrophy and functional loss, because of the presence of multiple, interacting etiologic factors.
Tamplin, Jeanette; Brazzale, Danny J; Pretto, Jeffrey J; Ruehland, Warren R; Buttifant, Mary; Brown, Douglas J; Berlowitz, David J
2011-02-01
To explore how respiratory impairment after cervical spinal cord injury affects vocal function, and to explore muscle recruitment strategies used during vocal tasks after quadriplegia. It was hypothesized that to achieve the increased respiratory support required for singing and loud speech, people with quadriplegia use different patterns of muscle recruitment and control strategies compared with control subjects without spinal cord injury. Matched, parallel-group design. Large university-affiliated public hospital. Consenting participants with motor-complete C5-7 quadriplegia (n=6) and able-bodied age-matched controls (n=6) were assessed on physiologic and voice measures during vocal tasks. Not applicable. Standard respiratory function testing, surface electromyographic activity from accessory respiratory muscles, sound pressure levels during vocal tasks, the Voice Handicap Index, and the Perceptual Voice Profile. The group with quadriplegia had a reduced lung capacity (vital capacity, 71% vs 102% of predicted; P=.028), more perceived voice problems (Voice Handicap Index score, 22.5 vs 6.5; P=.046), and greater recruitment of accessory respiratory muscles during both loud and soft volumes (P=.028) than the able-bodied controls. The group with quadriplegia also demonstrated higher accessory muscle activation in changing from soft to loud speech (P=.028). People with quadriplegia have impaired vocal ability and use different muscle recruitment strategies during speech than the able-bodied. These findings will enable us to target specific measurements of respiratory physiology for assessing functional improvements in response to formal therapeutic singing training. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Ovechkin, Alexander V; Sayenko, Dimitry G; Ovechkina, Elena N; Aslan, Sevda C; Pitts, Teresa; Folz, Rodney J
2016-07-15
The objective of this study was to examine the feasibility of a full-scale investigation of the neurophysiological mechanisms of COPD-induced respiratory neuromuscular control deficits. Characterization of respiratory single- and multi-muscle activation patterns using surface electromyography (sEMG) were assessed along with functional measures at baseline and following 21±2 (mean±SD) sessions of respiratory motor training (RMT) performed during a one-month period in four patients with GOLD stage II or III COPD. Pre-training, the individuals with COPD showed significantly increased (p<0.05) overall respiratory muscle activity and disorganized multi-muscle activation patterns in association with lowered spirometrical measures and decreased fast- and slow-twitch fiber activity as compared to healthy controls (N=4). Following RMT, functional and respiratory sEMG activation outcomes during quite breathing and forced expiratory efforts were improved suggesting that functional improvements, induced by task-specific RMT, are evidence respiratory neuromuscular networks re-organization. Published by Elsevier B.V.
Panaite, Petrica-Adrian; Kuntzer, Thierry; Gourdon, Geneviève; Lobrinus, Johannes Alexander; Barakat-Walter, Ibtissam
2013-01-01
SUMMARY Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1. PMID:23180777
Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function
Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi
2000-01-01
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K m) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle. PMID:10995435
Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders
Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.
2009-01-01
Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353
Respiratory muscle adaptations: a comparison between bodybuilders and endurance athletes.
Hackett, D A; Johnson, N; Chow, C
2013-04-01
The purpose of this study was to compare the respiratory muscle and lung function measures of bodybuilders (BB) and endurance athletes (EA). Forty-two male subjects (22 BB and 20 EA) aged 20-35 years underwent respiratory muscle strength measurements (MIP and MEP), lung function testing (FEV1, FVC, FEV1/FVC%, IC, ERV, FRC, RV, and TLC), hydrostatic weighing and VO2max testing. One-repetition maximum (1RM) for bench press, squat and deadlift was performed by BB. BB had significantly greater MIP and MEP compared to EA by 43% and 53% respectively (P<0.01). Moderate correlation was found for MEP and 1RM bench press (P<0.01), and weak correlations found for the squat and deadlift (P<0.01). Fat-free mass was significantly greater for BB compared with EA (P<0.01), while VO2max was significantly greater for EA compared with BB (P<0.01). No differences in lung function indices were observed between groups. When compared to EA, BB exhibited significantly greater respiratory muscle strength. The maximal load lifted for bench press predicted expiratory muscle strength gain. Lung function measures did not differ between the groups.
Decrease in pulmonary function and oxygenation after lung resection
Westerdahl, Elisabeth; Langer, Daniel; Souza, Domingos S.R.; Andreasen, Jan Jesper
2018-01-01
Respiratory deficits are common following curative intent lung cancer surgery and may reduce the patient's ability to be physically active. We evaluated the influence of surgery on pulmonary function, respiratory muscle strength and physical performance after lung resection. Pulmonary function, respiratory muscle strength (maximal inspiratory/expiratory pressure) and 6-min walk test (6MWT) were assessed pre-operatively, 2 weeks post-operatively and 6 months post-operatively in 80 patients (age 68±9 years). Video-assisted thoracoscopic surgery was performed in 58% of cases. Two weeks post-operatively, we found a significant decline in pulmonary function (forced vital capacity −0.6±0.6 L and forced expiratory volume in 1 s −0.43±0.4 L; both p<0.0001), 6MWT (−37.6±74.8 m; p<0.0001) and oxygenation (−2.9±4.7 units; p<0.001), while maximal inspiratory and maximal expiratory pressure were unaffected. At 6 months post-operatively, pulmonary function and oxygenation remained significantly decreased (p<0.001), whereas 6MWT was recovered. We conclude that lung resection has a significant short- and long-term impact on pulmonary function and oxygenation, but not on respiratory muscle strength. Future research should focus on mechanisms negatively influencing post-operative pulmonary function other than impaired respiratory muscle strength. PMID:29362707
Decrease in pulmonary function and oxygenation after lung resection.
Brocki, Barbara Cristina; Westerdahl, Elisabeth; Langer, Daniel; Souza, Domingos S R; Andreasen, Jan Jesper
2018-01-01
Respiratory deficits are common following curative intent lung cancer surgery and may reduce the patient's ability to be physically active. We evaluated the influence of surgery on pulmonary function, respiratory muscle strength and physical performance after lung resection. Pulmonary function, respiratory muscle strength (maximal inspiratory/expiratory pressure) and 6-min walk test (6MWT) were assessed pre-operatively, 2 weeks post-operatively and 6 months post-operatively in 80 patients (age 68±9 years). Video-assisted thoracoscopic surgery was performed in 58% of cases. Two weeks post-operatively, we found a significant decline in pulmonary function (forced vital capacity -0.6±0.6 L and forced expiratory volume in 1 s -0.43±0.4 L; both p<0.0001), 6MWT (-37.6±74.8 m; p<0.0001) and oxygenation (-2.9±4.7 units; p<0.001), while maximal inspiratory and maximal expiratory pressure were unaffected. At 6 months post-operatively, pulmonary function and oxygenation remained significantly decreased (p<0.001), whereas 6MWT was recovered. We conclude that lung resection has a significant short- and long-term impact on pulmonary function and oxygenation, but not on respiratory muscle strength. Future research should focus on mechanisms negatively influencing post-operative pulmonary function other than impaired respiratory muscle strength.
Lee, Dong-Kyu; Kim, Se-Hun
2018-05-01
[Purpose] This study aims to identify the effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients. [Subjects and Methods] The study included 24 chronic stroke patients who were randomly assigned, 12 each, to the experimental and control groups, and received neurodevelopmental treatment. Moreover, the experimental group underwent respiratory exercise. In each patient, the trunk control was measured using the Trunk Impairment Scale (TIS); muscle activity of the trunk, through the surface electromyogram; and pulmonary function, using the pneumatometer. [Results] The intragroup comparison showed significant differences in TIS, Forced vital capacity (FVC), Forced expiratory volume at one second (FEV1), Rectus Abdominis (RA), Internal Oblique (IO) and External Oblique (EO) in the experimental group. The intergroup comparison showed that the differences in TIS, FVC, FEV1, RA, IO and EO within the experimental group appeared significant relative to the control group. [Conclusion] Based on these results, this study proved that respiratory exercise was effective in improving trunk control, pulmonary function, and trunk muscle activity in patients with chronic stroke.
Global muscle dysfunction as a risk factor of readmission to hospital due to COPD exacerbations.
Vilaró, Jordi; Ramirez-Sarmiento, Alba; Martínez-Llorens, Juana M A; Mendoza, Teresa; Alvarez, Miguel; Sánchez-Cayado, Natalia; Vega, Angeles; Gimeno, Elena; Coronell, Carlos; Gea, Joaquim; Roca, Josep; Orozco-Levi, Mauricio
2010-12-01
Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with several modifiable (sedentary life-style, smoking, malnutrition, hypoxemia) and non-modifiable (age, co-morbidities, severity of pulmonary function, respiratory infections) risk factors. We hypothesise that most of these risk factors may have a converging and deleterious effects on both respiratory and peripheral muscle function in COPD patients. A multicentre study was carried out in 121 COPD patients (92% males, 63 ± 11 yr, FEV(1), 49 ± 17%pred). Assessments included anthropometrics, lung function, body composition using bioelectrical impedance analysis (BIA), and global muscle function (peripheral muscle (dominant and non-dominant hand grip strength, HGS), inspiratory (PI(max)), and expiratory (PE(max)) muscle strength). GOLD stage, clinical status (stable vs. non-stable) and both current and past hospital admissions due to COPD exacerbations were included as covariates in the analyses. Respiratory and peripheral muscle weakness were observed in all subsets of patients. Muscle weakness, was significantly associated with both current and past hospitalisations. Patients with history of multiple admissions showed increased global muscle weakness after adjusting by FEV(1) (PE(max), OR = 6.8, p < 0.01; PI(max), OR = 2.9, p < 0.05; HGSd, OR = 2.4, and HGSnd, OR = 2.6, p = 0.05). Moreover, a significant increase in both respiratory and peripheral muscle weakness, after adjusting by FEV(1), was associated with current acute exacerbations. Muscle dysfunction, adjusted by GOLD stage, is associated with an increased risk of hospital admissions due to acute episodes of exacerbation of the disease. Current exacerbations further deteriorate muscle dysfunction. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dose response effect of cement dust on respiratory muscles competence in cement mill workers.
Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad
2006-12-01
Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p < 0.0005), maximum peak amplitude (p < 0.0005), peak-to-peak amplitude (p < 0.0005) and duration of response (p < 0.0005) in cement mill workers compared to their matched control. Cement dust impairs the intercostal muscle competence and stratification of results shows a dose-effect of years of exposure in cement mill.
Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI
Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi; Wens, Stephan C. A.; van Doorn, Pieter A.; Tiddens, Harm A. W. M.; van der Ploeg, Ans T.; de Bruijne, Marleen
2016-01-01
Background Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness. Methods The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle. Results Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls. Conclusion Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response. PMID:27391236
Rassler, Beate; Marx, Grit; Hallebach, Stephanie; Kalischewski, Petra; Baumann, Irene
2011-01-01
Myasthenia gravis (MG) is characterized by reduced muscle endurance and is often accompanied by respiratory complications. Improvement of respiratory function is therefore an important objective in MG therapy. A previous study demonstrated that respiratory muscle endurance training (RMET) over four weeks increased respiratory muscle endurance of MG patients to about 200% of baseline. The purpose of the present study was to establish an appropriate maintenance training and to test its effects over four months. Ten patients with mild to moderate MG participated in this study. During the first month, they performed five training sessions per week. For the following 3 months, training frequency was reduced to five sessions per two weeks. Myasthenia score, lung function, and respiratory endurance were determined prior to training, after the first month, and after 4 months. Myasthenia score improved from 0.71 ± 0.1 to 0.56 ± 0.1 (P = 0.007). Respiratory endurance time increased from 6.1 ± 0.8 to 20.3 ± 3.0 min (P < 0.001). In conclusion, this RMET maintenance program is feasible and is significantly beneficial for MG patients. PMID:21869926
Physiology of respiratory disturbances in muscular dystrophies
Lo Mauro, Antonella
2016-01-01
Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e. when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. Key points A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination. In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia. Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness. Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase. The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. Educational aims To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy. To understand the impact of respiratory disturbances in patients with muscular dystrophy. To provide a brief description of the main forms of muscular dystrophy with their respiratory implications. PMID:28210319
Physiology of respiratory disturbances in muscular dystrophies.
Lo Mauro, Antonella; Aliverti, Andrea
2016-12-01
Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e . when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination.In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia.Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness.Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase.The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy.To understand the impact of respiratory disturbances in patients with muscular dystrophy.To provide a brief description of the main forms of muscular dystrophy with their respiratory implications.
Respiratory muscle training for cystic fibrosis.
Hilton, Nathan; Solis-Moya, Arturo
2018-05-24
Cystic fibrosis is the most common autosomal recessive disease in white populations, and causes respiratory dysfunction in the majority of individuals. Numerous types of respiratory muscle training to improve respiratory function and health-related quality of life in people with cystic fibrosis have been reported in the literature. Hence a systematic review of the literature is needed to establish the effectiveness of respiratory muscle training (either inspiratory or expiratory muscle training) on clinical outcomes in cystic fibrosis. This is an update of a previously published review. To determine the effectiveness of respiratory muscle training on clinical outcomes in people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials register comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 17 April 2018.A hand search of the Journal of Cystic Fibrosis and Pediatric Pulmonology was performed, along with an electronic search of online trial databases up until 07 May 2018. Randomised controlled studies comparing respiratory muscle training with a control group in people with cystic fibrosis. Review authors independently selected articles for inclusion, evaluated the methodological quality of the studies, and extracted data. Additional information was sought from trial authors where necessary. The quality of the evidence was assessed using the GRADE system MAIN RESULTS: Authors identified 19 studies, of which nine studies with 202 participants met the review's inclusion criteria. There was wide variation in the methodological and written quality of the included studies. Four of the nine included studies were published as abstracts only and lacking concise details, thus limiting the information available. Seven studies were parallel studies and two of a cross-over design. Respiratory muscle training interventions varied dramatically, with frequency, intensity and duration ranging from thrice weekly to twice daily, 20% to 80% of maximal effort, and 10 to 30 minutes, respectively. Participant numbers ranged from 11 to 39 participants in the included studies; five studies were in adults only and four in a combination of children and adults.No significant improvement was reported in the primary outcome of pulmonary function (forced expiratory volume in one second and forced vital capacity) (very low-quality evidence). Although no change was reported in exercise capacity as assessed by the maximum rate of oxygen use, a 10% improvement in exercise duration was found when working at 60% of maximal effort in one study (n = 20) (very low-quality evidence). In a further study (n = 18), when working at 80% of maximal effort, health-related quality of life improved in the mastery and emotion domains (very low-quality evidence). With regards to the review's secondary outcomes, one study (n = 11) found a significant change in intramural pressure, functional residual capacity and maximal inspiratory pressure following training (low-quality evidence). A further study (n = 22) reported that respiratory muscle endurance was significantly longer in the training group (P < 0.01). No studies reported on any other secondary outcomes. Meta-analyses could not be performed due to a lack of consistency and insufficient detail in reported outcome measures. There is insufficient evidence to suggest whether this intervention is beneficial or not. Healthcare practitioners should consider the use of respiratory muscle training on a case-by-case basis. Further research of reputable methodological quality is needed to determine the effectiveness of respiratory muscle training in people with cystic fibrosis. Researchers should consider the following clinical outcomes in future studies; respiratory muscle function, pulmonary function, exercise capacity, hospital admissions, and health-related quality of life. Sensory-perceptual changes, such as respiratory effort sensation (e.g. rating of perceived breathlessness) and peripheral effort sensation (e.g. rating of perceived exertion) may also help to elucidate mechanisms underpinning the effectiveness of respiratory muscle training.
Russian, Chris; Litchke, Lyn; Hudson, John
2011-01-01
Context Quality sleep possesses numerous benefits to normal nighttime and daytime functioning. High-level spinal cord injury (SCI) often impacts the respiratory muscles that can lead to poor respiratory function during sleep and negatively affect sleep quality. The impact of respiratory muscle training (RMT) on sleep quality, as assessed by overnight polysomnography (PSG), is yet to be determined among the spinal cord-injured population. This case report describes the effects of 10 weeks of RMT on the sleep quality of a 38-year-old male with cervical SCI. Methods Case report. Findings/results The subject completed overnight PSG, respiratory muscle strength assessment, and subjective sleepiness assessment before and after 10 weeks of RMT. The post-test results indicated improvements in sleep quality (e.g. fewer electroencephalographic (EEG) arousals during sleep) and daytime sleepiness scores following RMT. Conclusion/clinical relevance Respiratory activity has been proven to impact EEG arousal activity during sleep. Arousals during sleep lead to a fragmented sleeping pattern and affect sleep quality and daytime function. Our subject presented with a typical sleep complaint of snoring and excessive sleepiness. The subject's pre-test PSG demonstrated a large number of arousals during sleep. It is important for all individuals complaining of problems during sleep or daytime problems associated with sleep (i.e. excessive daytime sleepiness) to seek medical attention and proper evaluation. PMID:21675365
Borges, Daniel L; Silva, Mayara Gabrielle; Silva, Luan Nascimento; Fortes, João Vyctor; Costa, Erika Thalita; Assunção, Rebeca Pessoa; Lima, Carlos Magno; da Silva Nina, Vinícius José; Bernardo-Filho, Mário; Caputo, Danúbia Sá
2016-09-01
Physical activity is beneficial in several clinical situations and recommended for patients with ischemic heart disease, as well as for those undergoing cardiac surgery. In a randomized controlled trial, 34 patients underwent coronary artery bypass grafting. A randomized control group (n = 15) submitted to conventional physiotherapy. The intervention group (n = 19) received the same protocol plus additional aerobic exercise with cycle ergometer. Pulmonary function by spirometry, respiratory muscle strength by manovacuometry, and functional capacity through 6-minute walking test was assessed before surgery and at hospital discharge. There was significant reduction in pulmonary function in both groups. In both groups, inspiratory muscle strength was maintained while expiratory muscle strength significantly decreased. Functional capacity was maintained in the intervention group (364.5 [324.5 to 428] vs. 348 [300.7 to 413.7] meters, P = .06), but it decreased significantly in control group patients (320 [288.5 to 393.0] vs. 292 [237.0 to 336.0] meters, P = .01). A significant difference in functional capacity was also found in intergroup analyses at hospital discharge (P = .03). Aerobic exercise applied early on coronary artery bypass grafting patients may promote maintenance of functional capacity, with no impact on pulmonary function and respiratory muscle strength when compared with conventional physiotherapy.
Fauroux, Brigitte; Khirani, Sonia
2014-08-01
Neuromuscular diseases represent a heterogeneous group of disorders of the muscle, nerve or neuromuscular junction. The respiratory muscles are rarely spared in neuromuscular diseases even if the type of muscle involvement, severity and time course greatly varies among the different diseases. Diagnosis of respiratory muscle weakness is crucial because of the importance of respiratory morbidity and mortality. Presently, routine respiratory evaluation is based on non-invasive volitional tests, such as the measurement of lung volumes, spirometry and the maximal static pressures, which may be difficult or impossible to obtain in some young children. Other tools or parameters are thus needed to assess the respiratory muscle weakness and its consequences in young children. The measurement of oesogastric pressures can be helpful as they allow the diagnosis and quantification of paradoxical breathing, as well as the assessment of the strength of the inspiratory and expiratory muscles by means of the oesophageal pressure during a maximal sniff and of the gastric pressure during a maximal cough. Sleep assessment should also be part of the respiratory evaluation of children with neuromuscular disease with at least the recording of nocturnal gas exchange if polysomnography is not possible or unavailable. This improvement in the assessment of respiratory muscle performance may increase our understanding of the respiratory pathophysiology of the different neuromuscular diseases, improve patient care, and guide research and innovative therapies by identifying and validating respiratory parameters. © 2014 Asian Pacific Society of Respirology.
Kongsaengdao, Subsai; Samintarapanya, Kanoksri; Rusmeechan, Siwarit; Sithinamsuwan, Pasiri; Tanprawate, Surat
2009-08-01
In this study we describe the electrophysiological findings in botulism patients with neuromuscular respiratory failure from major botulism outbreaks in Thailand. High-rate repetitive nerve stimulation testing (RNST) of the abductor digiti minimi (ADM) muscle of 17 botulism patients with neuromuscular respiratory failure showed mostly incremental responses, especially in response to >20-HZ stimulation. In the most severe stage of neuromuscular respiratory failure, RNST failed to elicit a compound muscle action potential (CMAP) of the ADM muscle. In the moderately severe stage, the initial CMAPs were of very low amplitude, and a 3-HZ RNST elicited incremental or decremental responses. A 10-HZ RNST elicited mainly decremental responses. In the early recovery stage, the initial CMAP amplitudes of the ADM muscle improved, with initially low amplitudes and an incremental response to 3- and 10-HZ RNSTs. Improved electrophysiological patterns of the ADM muscle correlated with improved respiratory muscle function. Incremental responses to 20-HZ RNST were most useful for diagnosis. The initial electrodiagnostic sign of recovery following treatment of neuromuscular respiratory failure was an increased CMAP amplitude and an incremental response to 10-20-HZ RNST. Muscle Nerve 40: 271-278, 2009.
Peng, Jeffrey; Dalton, Jill; Butt, Mark; Tracy, Kristin; Kennedy, Derek; Haroldsen, Peter; Cahayag, Rhea; Zoog, Stephen; O'Neill, Charles A; Tsuruda, Laurie S
2017-02-01
Pompe disease is a rare neuromuscular disorder caused by an acid α-glucosidase (GAA) deficiency resulting in glycogen accumulation in muscle, leading to myopathy and respiratory weakness. Reveglucosidase alfa (BMN 701) is an insulin-like growth factor 2-tagged recombinant human acid GAA (rhGAA) that enhances rhGAA cellular uptake via a glycosylation-independent insulin-like growth factor 2 binding region of the cation-independent mannose-6-phosphate receptor (CI-MPR). The studies presented here evaluated the effects of Reveglucosidase alfa treatment on glycogen clearance in muscle relative to rhGAA, as well as changes in respiratory function and glycogen clearance in respiratory-related tissue in a Pompe mouse model (GAA tm1Rabn /J). In a comparison of glycogen clearance in muscle with Reveglucosidase alfa and rhGAA, Reveglucosidase alfa was more effective than rhGAA with 2.8-4.7 lower EC 50 values, probably owing to increased cellular uptake. The effect of weekly intravenous administration of Reveglucosidase alfa on respiratory function was monitored in Pompe and wild-type mice using whole body plethysmography. Over 12 weeks of 20-mg/kg Reveglucosidase alfa treatment in Pompe mice, peak inspiratory flow (PIF) and peak expiratory flow (PEF) stabilized with no compensation in respiratory rate and inspiratory time during hypercapnic and recovery conditions compared with vehicle-treated Pompe mice. Dose-related decreases in glycogen levels in both ambulatory and respiratory muscles generally correlated to changes in respiratory function. Improvement of murine PIF and PEF were similar in magnitude to increases in maximal inspiratory and expiratory pressure observed clinically in late onset Pompe patients treated with Reveglucosidase alfa (Byrne et al., manuscript in preparation). Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Aspects of respiratory muscle fatigue in a mountain ultramarathon race.
Wüthrich, Thomas U; Marty, Julia; Kerherve, Hugo; Millet, Guillaume Y; Verges, Samuel; Spengler, Christina M
2015-03-01
Ultramarathon running offers a unique possibility to investigate the mechanisms contributing to the limitation of endurance performance. Investigations of locomotor muscle fatigue show that central fatigue is a major contributor to the loss of strength in the lower limbs after an ultramarathon. In addition, respiratory muscle fatigue is known to limit exercise performance, but only limited data are available on changes in respiratory muscle function after ultramarathon running and it is not known whether the observed impairment is caused by peripheral and/or central fatigue. In 22 experienced ultra-trail runners, we assessed respiratory muscle strength, i.e., maximal voluntary inspiratory and expiratory pressures, mouth twitch pressure (n = 16), and voluntary activation (n = 16) using cervical magnetic stimulation, lung function, and maximal voluntary ventilation before and after a 110-km mountain ultramarathon with 5862 m of positive elevation gain. Both maximal voluntary inspiratory (-16% ± 13%) and expiratory pressures (-21% ± 14%) were significantly reduced after the race. Fatigue of inspiratory muscles likely resulted from substantial peripheral fatigue (reduction in mouth twitch pressure, -19% ± 15%; P < 0.01), as voluntary activation (-3% ± 6%, P = 0.09) only tended to be decreased, suggesting negligible or only mild levels of central fatigue. Forced vital capacity remained unchanged, whereas forced expiratory volume in 1 s, peak inspiratory and expiratory flow rates, and maximal voluntary ventilation were significantly reduced (P < 0.05). Ultraendurance running reduces respiratory muscle strength for inspiratory muscles shown to result from significant peripheral muscle fatigue with only little contribution of central fatigue. This is in contrast to findings in locomotor muscles. Whether this difference between muscle groups results from inherent neuromuscular differences, their specific pattern of loading or other reasons remain to be clarified.
Pomidori, Luca; Lamberti, Nicola; Malagoni, Anna Maria; Manfredini, Fabio; Pozzato, Enrico; Felisatti, Michele; Catizone, Luigi; Barillà, Antonio; Zuccalà, Alessandro; Tripepi, Giovanni; Mallamaci, Francesca; Zoccali, Carmine; Cogo, Annalisa
2016-12-01
Skeletal muscle atrophy and dysfunction with associated weakness may involve the respiratory muscles of dialysis patients. We evaluated the effect of moderate-intensity exercise on lung function and respiratory muscle strength. Fifty-nine patients (25 F, aged 65 ± 13 years) from two centers participating in the multicenter randomized clinical trial EXerCise Introduction To Enhance Performance in Dialysis (EXCITE) were studied. Subjects were randomized into a prescribed exercise group (E), wherein subjects performed two 10-min walking sessions every second day at an intensity below the self-selected speed, or a control group (C) with usual care. Physical performance was assessed by the 6-min walk test (6MWT). Patient lung function and respiratory muscle strength were evaluated by spirometry and maximal inspiratory pressure (MIP), respectively. Forty-two patients (14 F) completed the study. At baseline, the groups did not differ in any parameters. In total, 7 patients (4 in E; 3 in C) showed an obstructive pattern. The pulmonary function parameters were significantly correlated with 6MWT but not with any biochemical measurements. Group E safely performed the exercise program. At follow-up, the spirometry parameters did not change in either group. A deterioration of MIP (-7 %; p = 0.008) was observed in group C, but not in group E (+3.3 %, p = ns). In E, an increase of 6MWT was also found (+12 vs. 0 % in C; p = 0.038). In dialysis patients, a minimal dose of structured exercise improved physical capacity and maintained a stable respiratory muscle function, in contrast to the control group where it worsened.
Buck, Eva; Zügel, Martina; Schumann, Uwe; Merz, Tamara; Gumpp, Anja M; Witting, Anke; Steinacker, Jürgen M; Landwehrmeyer, G Bernhard; Weydt, Patrick; Calzia, Enrico; Lindenberg, Katrin S
2017-01-01
Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD), one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR) in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111) as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.
Evaluation of space capacities of the respiratory muscles during hypokinesia
NASA Astrophysics Data System (ADS)
Baranov, V. M.; Aleksandrova, N. P.; Tikhonov, M. A.
2005-08-01
Nowdays, the phenomenon of physical performance degradation after a long period of motor restraint or microgravity is universally interpreted as a result of deconditioning of the cardiovascular system and anti- gravity skeletal muscles.Yet, deconditioning affects not only the skeletal but also respiratory muscles exhaustion of which by relative hypoventilation brings about hypercapnia, hypoxia and pulmonary acidosis conducive to the sensations of painful breathlessness impacting the capacity for physical work. It should be emphasized that these developments are little known in spite of their theoretical and practical significance; therefore, our purpose was to study the functional state and spare capacity of the respiratory muscles in laboratory animals (Wistar rats) following 3-wk tail-suspension.The experiment strengthened the hypothesis according to which simulation of the physiological effects of motor restraint and microgravity leads to fatigue and deconditioning of the respiratory muscles.
Rafiq, Rachida; Prins, Hendrik J; Boersma, Wim G; Daniels, Johannes Ma; den Heijer, Martin; Lips, Paul; de Jongh, Renate T
2017-01-01
Although vitamin D is well known for its function in calcium homeostasis and bone mineralization, several studies have shown positive effects on muscle strength and physical function. In addition, vitamin D has been associated with pulmonary function and the incidence of airway infections. As vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (COPD) patients, supplementation might have a beneficial effect in these patients. To assess the effect of vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients. Secondary outcomes are pulmonary function, handgrip strength, exacerbation rate, and quality of life. We performed a randomized, double-blind, placebo-controlled pilot trial. Participants were randomly allocated to receive 1,200 IU vitamin D3 per day (n=24) or placebo (n=26) during 6 months. Study visits were conducted at baseline, and at 3 and 6 months after randomization. During the visits, blood was collected, respiratory muscle strength was measured (maximum inspiratory and expiratory pressure), physical performance and 6-minute walking tests were performed, and handgrip strength and pulmonary function were assessed. In addition, participants kept a diary card in which they registered respiratory symptoms. At baseline, the mean (standard deviation [SD]) serum 25-hydroxyvitamin D (25(OH)D) concentration (nmol/L) was 42.3 (15.2) in the vitamin D group and 40.6 (17.0) in the placebo group. Participants with vitamin D supplementation had a larger increase in serum 25(OH)D compared to the placebo group after 6 months (mean difference (SD): +52.8 (29.8) vs +12.3 (25.1), P <0.001). Primary outcomes, respiratory muscle strength and physical performance, did not differ between the groups after 6 months. In addition, no differences were found in the 6-minute walking test results, handgrip strength, pulmonary function, exacerbation rate, or quality of life. Vitamin D supplementation did not affect (respiratory) muscle strength or physical performance in this pilot trial in vitamin D-deficient COPD patients.
Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu
2016-05-01
The purpose of the present study was to investigate the effect of walking in water on respiratory muscle fatigue compared with that of walking on land at the same exercise intensity. Ten healthy males participated in 40-min treadmill walking trials on land and in water at an intensity of 60% of peak oxygen consumption. Respiratory function and respiratory muscle strength were evaluated before and after walking trials. Inspiratory muscle strength and forced expiratory volume in 1 s were significantly decreased immediately after walking in water, and expiratory muscle strength was significantly decreased immediately and 5 min after walking in water compared with the baseline. The decreases of inspiratory and expiratory muscle strength were significantly greater compared with that after walking on land. In conclusion, greater inspiratory and expiratory muscle fatigue was induced by walking in water than by walking on land at the same exercise intensity in healthy young men.
Respiratory muscles stretching acutely increases expansion in hemiparetic chest wall.
Rattes, Catarina; Campos, Shirley Lima; Morais, Caio; Gonçalves, Thiago; Sayão, Larissa Bouwman; Galindo-Filho, Valdecir Castor; Parreira, Verônica; Aliverti, Andrea; Dornelas de Andrade, Armèle
2018-08-01
Individuals post-stroke may present restrictive ventilatory pattern generated from changes in the functionality of respiratory system due to muscle spasticity and contractures. Objective was to assess the acute effects after respiratory muscle stretching on the ventilatory pattern and volume distribution of the chest wall in stroke subjects. Ten volunteers with right hemiparesis after stroke and a mean age of 60 ± 5.7 years were randomised into the following interventions: respiratory muscle stretching and at rest (control). The ventilatory pattern and chest wall volume distribution were evaluated through optoelectronic plethysmography before and immediately after each intervention. Respiratory muscle stretching promoted a significant acute increase of 120 mL in tidal volume, with an increase in minute ventilation, mean inspiratory flow and mean expiratory flow compared with the control group. Pulmonary ribcage increased 50 mL after stretching, with 30 mL of contribution to the right pulmonary rib cage (hemiparetic side) in comparison to the control group. Respiratory muscle stretching in patients with right hemiparesis post-stroke demonstrated that acute effects improve the expansion of the respiratory system during tidal breathing. NCT02416349 (URL: https://clinicaltrials.gov/ct2/show/ NCT02416349). Copyright © 2018 Elsevier B.V. All rights reserved.
Worth, H; Grundmann, C; Goeckenjan, G; Smidt, U; Irlich, G; Loogen, F
1984-01-01
To study the effect of postoperative confinement to bed on respiratory muscle fatigue, 31 male subjects (age, 34-66 years) undergoing coronary artery revascularization were examined. Fatigue of both respiratory muscles (musculi intercostales externi) and leg muscles (musculus gastrocnemius) was determined by electromyography prior to and 7 and 12 days after operation. Additionally, oscillatory resistance to breathing and phase angle were measured. Pre- and postoperative routine lung function tests were performed. A comparison between preoperative and postoperative measurements reveals that respiratory as well as leg muscle fatigue occurred at higher loads during the preoperative and the second postoperative than during the first postoperative determination. After surgery vital capacity, total lung capacity, 1-second capacity, and, to a lower extent, thoracic gas volume were diminished, while specific airway conductance, oscillatory resistance to breathing, phase angle, residual volume, and relative 1-second capacity remained unchanged. The constancy of the latter parameters indicates that neither airway obstruction nor a significant restriction of the lung and/or thorax occurred due to surgery. Therefore, the increase of respiratory muscle fatigue after surgery may more probably be attributed to a lack of training of respiratory muscles which may contribute to limitation of ventilation in bedridden patients.
Functional Magnetic Stimulation of Inspiratory and Expiratory Muscles in Subjects With Tetraplegia.
Zhang, Xiaoming; Plow, Ela; Ranganthan, Vinoth; Huang, Honglian; Schmitt, Melissa; Nemunaitis, Gregory; Kelly, Clay; Frost, Frederick; Lin, Vernon
2016-07-01
Respiratory complications are major causes of morbidity and mortality in persons with a spinal cord injury, partly because of respiratory muscle paralysis. Earlier investigation has demonstrated that functional magnetic stimulation (FMS) can be used as a noninvasive technology for activating expiratory muscles, thus producing useful expiratory functions (simulated cough) in subjects with spinal cord injury. To evaluate the effectiveness of FMS for conditioning inspiratory and expiratory muscles in persons with tetraplegia. A prospective before and after trial. FMS Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH. Six persons with tetraplegia. Each subject participated in a 6-week FMS protocol for conditioning the inspiratory and expiratory muscles. A magnetic stimulator was used with the center of a magnetic coil placed at the C7-T1 and T9-T10 spinous processes, respectively. Pulmonary function tests were performed before, during, and after the protocol. Respiratory variables included maximal inspiratory pressure (MIP), inspiratory reserve volume (IRV), peak inspiratory flow (PIF), maximal expiratory pressure (MEP), expiratory reserve volume (ERV), and peak expiratory flow (PEF). After 6 weeks of conditioning, the main outcome measurements (mean ± standard error) were as follows: MIP, 89.6 ± 7.3 cm H2O; IRV, 1.90 ± 0.34 L; PIF, 302.4 ± 36.3 L/min; MEP, 67.4 ± 11.1 cm H2O; ERV, 0.40 ± 0.06 L; and PEF, 372.4 ± 31.9 L/min. These values corresponded to 117%, 107%, 136%, 109%, 130%, and 124% of pre-FMS conditioning values, respectively. Significant improvements were observed in MIP (P = .022), PIF (P = .0001), and PEF (P = .0006), respectively. When FMS was discontinued for 4 weeks, these values showed decreases from their values at the end of the conditioning protocol, which suggests that continual FMS may be necessary to maintain improved respiratory functions. FMS conditioning of the inspiratory and expiratory muscles improved voluntary inspiratory and expiratory functions. FMS may be a noninvasive technology for respiratory muscle training in persons with tetraplegia. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Anaesthetic management of a patient with Pompe disease for kyphoscoliosis correction.
Kumbar, Vaishali; Simha, Jayashree; Gundappa, Parameswara
2016-05-01
Pompe disease (PD) is a type II glycogen storage disease, characterised by abnormal glycogen deposition, mainly in heart and skeletal muscles, leading to progressive loss of muscle function. The infantile variety is associated with severe hypertrophic cardiomyopathy and generally do not reach adulthood. The juvenile variety presents with progressive muscle weakness and respiratory failure. Anaesthetic management concerns in the patient reported here were mainly due to respiratory failure, myopathy and sensitivity to muscle relaxants and significant haemodynamic changes perioperatively. We successfully managed a 13-year-old girl with juvenile PD on respiratory support scheduled for thoracolumbar kyphoscoliosis corrective surgery. Ketamine and dexmedetomidine were used for induction of anaesthesia and maintenance. Muscle relaxants were diligently avoided in this case.
Pilates Method for Lung Function and Functional Capacity in Obese Adults.
Niehues, Janaina Rocha; Gonzáles, Inês; Lemos, Robson Rodrigues; Haas, Patrícia
2015-01-01
Obesity is defined as the condition in which the body mass index (BMI) is ≥ 30 kg/m2 and is responsible for decreased quality of life and functional limitations. The harmful effects on ventilatory function include reduced lung capacity and volume; diaphragmatic muscle weakness; decreased lung compliance and stiffness; and weakness of the abdominal muscles, among others. Pilates is a method of resistance training that works with low-impact muscle exercises and is based on isometric exercises. The current article is a review of the literature that aims to investigate the hypothesis that the Pilates method, as a complementary method of training, might be beneficial to pulmonary function and functional capacity in obese adults. The intent of the review was to evaluate the use of Pilates as an innovative intervention in the respiratory dysfunctions of obese adults. In studies with other populations, it has been observed that Pilates can be effective in improving chest capacity and expansion and lung volume. That finding is due to the fact that Pilates works through the center of force, made up of the abdominal muscles and gluteus muscles lumbar, which are responsible for the stabilization of the static and dynamic body that is associated with breath control. It has been observed that different Pilates exercises increase the activation and recruitment of the abdominal muscles. Those muscles are important in respiration, both in expiration and inspiration, through the facilitation of diaphragmatic action. In that way, strengthening the abdominal muscles can help improve respiratory function, leading to improvements in lung volume and capacity. The results found in the current literature review support the authors' observations that Pilates promotes the strengthening of the abdominal muscles and that improvements in diaphragmatic function may result in positive outcomes in respiratory function, thereby improving functional capacity. However, the authors did not find specific studies with obese people, justifying the need for future studies.
de Medeiros, Ana Irene Carlos; Fuzari, Helen Kerlen Bastos; Rattesa, Catarina; Brandão, Daniella Cunha; de Melo Marinho, Patrícia Érika
2017-04-01
Does inspiratory muscle training improve respiratory muscle strength, functional capacity, lung function and quality of life of patients with chronic kidney disease? Does inspiratory muscle training improve these outcomes more than breathing exercises? Systematic review and meta-analysis of randomised trials. People with chronic kidney disease undergoing dialysis treatment. The primary outcomes were: maximal inspiratory pressure, maximal expiratory pressure, and distance covered on the 6-minute walk test. The secondary outcomes were: forced vital capacity, forced expiratory volume in the first second (FEV 1 ), and quality of life. The search identified four eligible studies. The sample consisted of 110 participants. The inspiratory muscle training used a Threshold ® or PowerBreathe ® device, with a load ranging from 30 to 60% of the maximal inspiratory pressure and lasting from 6 weeks to 6 months. The studies showed moderate to high risk of bias, and the quality of the evidence was rated low or very low, due to the studies' methodological limitations. The meta-analysis showed that inspiratory muscle training significantly improved maximal inspiratory pressure (MD 23 cmH 2 O, 95% CI 16 to 29) and the 6-minute walk test distance (MD 80m, 95% CI 41 to 119) when compared with controls. Significant benefits in lung function and quality of life were also identified. When compared to breathing exercises, significant benefits were identified in maximal expiratory pressure (MD 6 cmH 2 O, 95% CI 2 to 10) and FEV 1 (MD 0.24litres 95% CI 0.14 to 0.34), but not maximal inspiratory pressure or forced vital capacity. In patients with chronic renal failure on dialysis, inspiratory muscle training with a fixed load significantly improves respiratory muscle strength, functional capacity, lung function and quality of life. The evidence for these benefits may be influenced by some sources of bias. PROSPERO (CRD 42015029986). [de Medeiros AIC, Fuzari HKB, Rattesa C, Brandão DC, de Melo Marinho PÉ (2017) Inspiratory muscle training improves respiratory muscle strength, functional capacity and quality of life in patients with chronic kidney disease: a systematic review. Journal of Physiotherapy 63: 76-83]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
[Analogies between heart and respiratory muscle failure. Importance to clinical practice].
Köhler, D
2009-01-01
Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation. One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels. The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fueled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump. The main function of cardiac and respiratory pump is maintenance of oxygen transport. The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen. Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory muscles may be supported through elective ventilatory support (mainly non-invasive) in the patient's home. The latter treatment in particular will increase patient endurance and quality of life and decrease mortality. Heart and respiratory pump failure share many common features. Since both take care of oxygen supply to the body, their function and compensatory mechanisms are closely related and linked.
Pascual-Guardia, Sergio; Wodja, Emil; Gorostiza, Amaya; López de Santamaría, Elena; Gea, Joaquim; Gáldiz, Juan B; Sliwinski, Pawel; Barreiro, Esther
2013-03-02
Despite the beneficial effects of exercise training in chronic obstructive pulmonary disease (COPD) patients, several studies have revealed functional and biological abnormalities in their peripheral muscles. The objective was to determine whether exercise training of high intensity and long duration modifies oxidative stress levels and structure of respiratory and peripheral muscles of severe COPD patients, while also improving their exercise capacity and quality of life. Multicenter study (Warsaw and Barakaldo) in which 25 severe COPD out-patients were recruited from the COPD clinics. In all patients, lung and muscle functions, exercise capacity (walking test and cycloergometer) and quality of life (QoL) were assessed, and open muscle biopsies from the vastus lateralis and external intercostals (n=14) were obtained before and after an exercise training program of high intensity (respiratory rehabilitation area, 70% maximal tolerated load in a cycloergometer) and long duration (10 weeks). Oxidative stress and muscle structural modifications were evaluated in all muscle biopsies using immunoblotting and immunohistochemistry. In all patients, after the training program, without any drop-outs, exercise capacity and QoL improved significantly, whereas oxidative stress, muscle damage and structure were not modified in their respiratory or limb muscles compared to baseline. In patients with severe COPD, exercise training of high intensity and long duration significantly improves their exercise capacity and QoL, without inducing significant modifications on oxidative stress levels or muscle structure in their respiratory or peripheral muscles. These results may have future clinical therapeutic implications. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Gosselink, R; Kovacs, L; Ketelaer, P; Carton, H; Decramer, M
2000-06-01
To evaluate the contribution of respiratory muscle weakness (part 1) and respiratory muscle training (part 2) to pulmonary function, cough efficacy, and functional status in patients with advanced multiple sclerosis (MS). Survey (part 1) and randomized controlled trial (part 2). Rehabilitation center for MS. Twenty-eight bedridden or wheelchair-bound MS patients (part 1); 18 patients were randomly assigned to a training group (n = 9) or a control group (n = 9) (part 2). The training group (part 2) performed three series of 15 contractions against an expiratory resistance (60% maximum expiratory pressure [PEmax]) two times a day, whereas the control group performed breathing exercises to enhance maximal inspirations. Forced vital capacity (FVC), inspiratory, and expiratory muscle strength (PImax and PEmax), neck flexion force (NFF), cough efficacy by means of the Pulmonary Index (PI), and functional status by means of the Extended Disability Status Scale (EDSS). Part 1 revealed a significantly reduced FVC (43% +/- 26% predicted), PEmax (18% +/- 8% predicted), and PImax (27% +/- 11% predicted), whereas NFF was only mildly reduced (93% +/- 26% predicted). The PI (median score, 10) and EDSS (median score, 8.5) were severely reduced. PEmax was significantly correlated to FVC, EDSS, and PI (r = .77, -.79, and -.47, respectively). In stepwise multiple regression analysis. PEmax was the only factor contributing to the explained variance in FVC (R2 = .60), whereas body weight (R2 = .41) was the only factor for the PI. In part 2, changes in PImax and PEmax tended to be higher in the training group (p = .06 and p = .07, respectively). The PI was significantly improved after 3 months of training compared with the control group (p < .05). After 6 months, the PI remained significantly better in the training group. Expiratory muscle strength was significantly reduced and related to FVC, cough efficacy, and functional status. Expiratory muscle training tended to enhance inspiratory and expiratory muscle strength. In addition, subjectively and objectively rated cough efficacy improved significantly and lasted for 3 months after training cessation.
Lessa, Thais Borges; de Abreu, Dilayla Kelly; Rodrigues, Márcio Nogueira; Brólio, Marina Pandolphi; Miglino, Maria Angélica; Ambrósio, Carlos Eduardo
2014-11-01
Duchenne muscular dystrophy (DMD) is a genetic disease, characterized by atrophy and muscle weakness. The respiratory failure is a common cause of early death in patients with DMD. Golden retriever muscular dystrophy (GRMD) is a canine model which has been extensively used for many advances in therapeutics applications. As the patients with DMD, the GRMD frequently died from cardiac and respiratory failure. Observing the respiratory failure in DMD is one of the major causes of mortality we aimed to describe the morphological and ultrastructural data of trachea, lungs (conductive and respiratory portion of the system), and diaphragm muscle using histological and ultrastructural analysis. The diaphragm muscle showed discontinuous fibers architecture, with different diameter; a robust perimysium inflammatory infiltrate and some muscle cells displayed central nuclei. GRMD trachea and lungs presented collagen fibers and in addition, the GRMD lungs showed higher of levels collagen fibers that could limit the alveolar ducts and alveoli distension. Therefore, the most features observed were the collagen areas and fibrosis. We suggested in this study that the collagen remodeling in the trachea, lungs, and diaphragm muscle may increase fibrosis and affect the trachea, lungs, and diaphragm muscle function that can be a major cause of respiratory failure that occur in patients with DMD. © 2014 Wiley Periodicals, Inc.
The effect of inspiratory and expiratory respiratory muscle training in rowers.
Forbes, S; Game, A; Syrotuik, D; Jones, R; Bell, G J
2011-10-01
This study examined inspiratory and expiratory resistive loading combined with strength and endurance training on pulmonary function and rowing performance. Twenty-one male (n = 9) and female (n = 12) rowers were matched on 2000 m simulated rowing race time and gender and randomly assigned to two groups. The experimental group trained respiratory muscles using a device that provided both an inspiratory and expiratory resistance while the control group used a SHAM device. Respiratory muscle training (RMT) or SHAM was performed 6 d/wk concurrent with strength (3 d/wk) and endurance (3 d/wk) training on alternate days for 10 weeks. Respiratory muscle training (RMT) enhanced maximum inspiratory (PI(max)) and expiratory (PE(max)) strength at rest and during recovery from exercise (P < 0.05). Both groups showed improvements in peak VO2, strength, and 2000 m performance time (P < 0.05). It was concluded that RMT is effective for improving respiratory strength but did not facilitate greater improvements to simulated 2000 m rowing performance.
The effects of ageing on respiratory muscle function and performance in older adults.
Watsford, Mark L; Murphy, Aron J; Pine, Matthew J
2007-02-01
The reduced physiological capacity evident with ageing may affect the ability to perform many tasks, potentially affecting quality of life. Previous research has clearly demonstrated the reduced capacity of the respiratory system with ageing and described the effect that habitual physical activity has upon this decline. This research aimed to examine the influence of age on respiratory muscle (RM) function and the relationship between RM function and physical performance within the Australian population. Seventy-two healthy older adults (50-79 years) were divided into males (n=36) and females (n=36) and examined for pulmonary function, RM strength, inspiratory muscle endurance (IME) and 1.6 km walking performance. There were no significant age by gender effects for any variables; however, ageing was significantly related to reduced RM function and walking capacity within each gender. Furthermore, regression analysis showed that the RM strength could be predicted from age. Partial correlations controlling for age indicated that expiratory muscle strength was significantly related to walking performance in males (p=0.04), whilst IME contributed significantly to walking performance in all participants. These within-gender effects and relationships indicate that RM strength is an important physiological variable to maintain in the older population, as it may be related to functional ability.
Zeren, Melih; Demir, Rengin; Yigit, Zerrin; Gurses, Hulya N
2016-12-01
To investigate the effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. Prospective randomized controlled single-blind study. Cardiology department of a university hospital. A total of 38 patients with permanent atrial fibrillation were randomly allocated to either a treatment group (n = 19; age 66.2 years (8.8)) or a control group (n = 19; age 67.1 years (6.4)). The training group received inspiratory muscle training at 30% of maximal inspiratory pressure for 15 minutes twice a day, 7 days a week, for 12 weeks alongside the standard medical treatment. The control group received standard medical treatment only. Spirometry, maximal inspiratory and expiratory pressures and 6-minute walking distance was measured at the beginning and end of the study. There was a significant increase in maximal inspiratory pressure (27.94 cmH 2 O (8.90)), maximal expiratory pressure (24.53 cmH 2 O (10.34)), forced vital capacity (10.29% (8.18) predicted), forced expiratory volume in one second (13.88% (13.42) predicted), forced expiratory flow 25%-75% (14.82% (12.44) predicted), peak expiratory flow (19.82% (15.62) predicted) and 6-minute walking distance (55.53 m (14.13)) in the training group (p < 0.01). No significant changes occurred in the control group (p > 0.05). Inspiratory muscle training can improve pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. © The Author(s) 2016.
Effects of Aging on the Respiratory System.
ERIC Educational Resources Information Center
Levitzky, Michael G.
1984-01-01
Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…
Jiroutková, Kateřina; Krajčová, Adéla; Žiak, Jakub; Fric, Michal; Gojda, Jan; Džupa, Valér; Kalous, Martin; Tůmová, Jana; Trnka, Jan; Duška, František
2017-09-01
Functional mitochondria in skeletal muscle of patients with protracted critical illness and intensive care unit-acquired weakness are depleted, but remaining mitochondria have increased functional capacities of respiratory complexes II and III. This can be an adaptation to relative abundancy of fatty acid over glucose caused by insulin resistance. We hypothesized that the capacity of muscle mitochondria to oxidize fatty acid is increased in protracted critical illness. We assessed fatty acid oxidation (FAO) and mitochondrial functional indices in vitro by using extracellular flux analysis in cultured myotubes obtained by isolating and culturing satellite cells from vastus lateralis muscle biopsy samples from patients with ICU-acquired weakness (n = 6) and age-matched healthy controls (n = 7). Bioenergetic measurements were performed at baseline and after 6 days of exposure to free fatty acids (FFAs). Mitochondrial density in myotubes from ICU patients was 69% of healthy controls ( P = .051). After adjustment to mitochondrial content, there were no differences in adenosine triphosphate (ATP) synthesis or the capacity and coupling of the respiratory chain. FAO capacity in ICU patients was 157% of FAO capacity in controls ( P = .015). In myotubes of ICU patients, unlike healthy controls, the exposure to FFA significantly ( P = .009) increased maximum respiratory chain capacity. In an in vitro model of skeletal muscle of patients with protracted critical illness, we have shown signs of adaptation to increased FAO. Even in the presence of glucose and insulin, elevation of FFAs in the extracellular environment increased maximal capacity of the respiratory chain.
Bloise, Flavia F; van der Spek, Anne H; Surovtseva, Olga V; Ortiga-Carvalho, Tania Maria; Fliers, Eric; Boelen, Anita
2016-04-01
The diaphragm is the main respiratory muscle, and its function is compromised during severe illness. Altered local thyroid hormone (TH) metabolism may be a determinant of impaired muscle function during illness. This study investigates the effects of bacterial sepsis and chronic inflammation on muscle fiber type, local TH metabolism, and mitochondrial function in the diaphragm. Two mouse models were used: sepsis induced by S. pneumoniae infection or chronic inflammation induced by subcutaneous turpentine injection. In vitro, the effect of bacterial endotoxin (LPS) on mitochondrial function in C2C12 myotubes was studied. Sepsis induced a transient increase in the fiber type I profile and increased Dio3 expression while decreasing Dio2, Thra1, and Slc16a2 expression. Triiodothyronine positively regulated genes Tnni2 and Myog were decreased, indicating reduced TH signaling in the diaphragm. In contrast, chronic inflammation increased the fiber type II profile in the diaphragm as well as Thra1, Thrb1, and Myog expression while decreasing Dio3 expression, suggesting increased TH responsiveness during chronic inflammation. LPS-stimulated C2C12 myotubes showed decreased Dio2 expression and reduced basal oxygen consumption as well as non-mitochondrial respiration. The same respiratory profile was induced by Dio2 knockdown in myotubes. The in vivo results show differential effects of sepsis and chronic inflammation on diaphragm muscle fiber type, TH metabolism, and mitochondrial function, while the in vitro results point to a causal role for altered TH metabolism in functional muscle impairment. These findings may be relevant for the pathogenesis of impaired respiratory function in critical illness.
Menezes, Kênia Kp; Nascimento, Lucas R; Ada, Louise; Polese, Janaine C; Avelino, Patrick R; Teixeira-Salmela, Luci F
2016-07-01
After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Systematic review of randomised or quasi-randomised trials. Adults with respiratory muscle weakness following stroke. Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8), showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14) and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25); it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96) compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. PROSPERO (CRD42015020683). [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016) Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.Journal of Physiotherapy62: 138-144]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Diagnostic methods to assess inspiratory and expiratory muscle strength*
Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro
2015-01-01
Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965
Upper airway muscles awake and asleep.
Sériès, Frédéric
2002-06-01
Upper airway (UA) structures are involved in different respiratory and non-respiratory tasks. The coordination of agonist and antagonist UA dilators is responsible for their mechanical function and their ability to maintain UA patency throughout the respiratory cycle. The activity of these muscles is linked with central respiratory activity but also depends on UA pressure changes and is greatly influenced by sleep. UA muscles are involved in determining UA resistance and stability (i.e. closing pressure), and the effect of sleep on these variables may be accounted for by its effect on tonic and phasic skeletal muscle activities. The mechanical effects of UA dilator contraction also depend on their physiological properties (capacity to generate tension in vitro, activity of the anaerobic enzymatic pathway, histo-chemical characteristics that may differ between subjects who may or may not have sleep-related obstructive breathing disorders). These characteristics may represent an adaptive process to an increased resistive loading of these muscles. The apparent discrepancy between the occurrence of UA closure and an increased capacity to generate tension in sleep apnea patients may be due to a reduction in the effectiveness of UA muscle contraction in these patients; such an increase in tissue stiffness could be accounted for by peri-muscular tissue characteristics. Therefore, understanding of UA muscle physiological characteristics should take into account its capacity for force production and its mechanical coupling with other UA tissues. Important research goals for the future will be to integrate these issues with other physiological features of the disease, such as UA size and dimension, histological characteristics of UA tissues and the effect of sleep on muscle function. Such integration will better inform understanding of the role of pharyngeal UA muscles in the pathophysiology of the sleep apnea/hypopnea syndrome.
Pulmonary function in infectious mononucleosis.
Morgan, E J; Altmeyer, R; Khakoo, R; Lapp, N L
1982-06-01
Infectious mononucleosis (IM) is common among students. These patients often complain of fatigue and dyspnea. To determine whether IM alters respiratory function, we performed spirometric, single-breath diffusing capacity, and maximal static respiratory pressure tests on seven patients with symptoms of IM. These studies were repeated two weeks later and the respiratory pressures were repeated five months later. Each patient served as his own control. Pulmonary function was normal except for respiratory pressures, which were initially low. These pressures, still low after two weeks, improved significantly after five months. We concluded that IM is associated with transient respiratory muscle weakness.
Gross, D; Meiner, Z
1993-08-01
Most patients with neuromuscular disease develop muscle weakness, including the ventilatory muscles leading to respiratory difficulty and, at times, respiratory insufficiency. We studied the effect of ventilatory muscle training on the ventilatory function and capacity of patients with various types of neuromuscular disease. The ambulatory patients were divided into three major groups. Group I (n = 6) patients with motor neuron disease (MND), such as amyotrophic latera sclerosis; Group II (n = 11) patients with myoneural junction disease (MNJ), such as myasthenia gravis and: Group III (n = 7) patients with muscle diseases such as progressive muscular disease. Patients were evaluated for their neuromuscular diagnosis and status of the disease. A complete physical examination and the various neuromuscular tests were performed. A complete respiratory evaluation was applied: pulmonary function tests (PFT), maximum inspiratory pressure (MIP). Patients then started ventilatory muscle training by resistive breathing, as a prophylactic treatment, for 10 min, three times daily, with a resistance which would induce fatigue. All tests were repeated every six weeks, and the results were as follow: forced vital capacity (FVC) changed from 38.8 +/- 12.3 to 53.2 +/- 9.6% (NS) of predicted value in group I, from 49.8 +/- 8.7 to 66.1 +/- 7.5% (p < 0.002) in group II, and from 47.0 +/- 7.5 to 53.3 +/- 7.6% (p < 0.04) in group III. Forced expiratory volume in one second (FEV1) was 34.8 +/- 11.0, 46.3 +/- 5, and 45.1 +/- 9% for the three groups, respectively, and did not change with training.(ABSTRACT TRUNCATED AT 250 WORDS)
Leelarungrayub, Jirakrit; Pinkaew, Decha; Puntumetakul, Rungthip; Klaphajone, Jakkrit
2017-01-01
The aim of this study was to evaluate the efficiency of a simple prototype device for training respiratory muscles in lung function, respiratory muscle strength, walking capacity, quality of life (QOL), dyspnea, and oxidative stress in patients with COPD. Thirty COPD patients with moderate severity of the disease were randomized into three groups: control (n=10, 6 males and 4 females), standard training (n=10, 4 males and 6 females), and prototype device (n=10, 5 males and 5 females). Respiratory muscle strength (maximal inspiratory pressure [PImax] and maximal expiratory pressure [PEmax]), lung function (forced vital capacity [FVC], percentage of FVC, forced expiratory volume in 1 second [FEV 1 ], percentage of FEV 1 [FEV 1 %], and FEV 1 /FVC), 6-minute walking distance (6MWD), QOL, and oxidative stress markers (total antioxidant capacity [TAC]), glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) were evaluated before and after 6 weeks of training. Moreover, dyspnea scores were assessed before; during week 2, 4, and 6 of training; and at rest after training. All parameters between the groups had no statistical difference before training, and no statistical change in the control group after week 6. FVC, FEV 1 /FVC, PImax, PEmax, QOL, MDA, and NO showed significant changes after 6 weeks of training with either the standard or prototype device, compared to pre-training. FEV 1 , FEV 1 %, 6MWD, TAC, and GSH data did not change statistically. Furthermore, the results of significant changes in all parameters were not statistically different between training groups using the standard and prototype device. The peak dyspnea scores increased significantly in week 4 and 6 when applying the standard or prototype device, and then lowered significantly at rest after 6 weeks of training, compared to pre-training. This study proposes that a simple prototype device can be used clinically in COPD patients as a standard device to train respiratory muscles, improving lung function and QOL, as well as involving MDA and NO levels.
Rice, Amber; Fuglevand, Andrew J; Laine, Christopher M; Fregosi, Ralph F
2011-05-01
The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.
NASA Technical Reports Server (NTRS)
Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.
2001-01-01
Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.
Mitochondrial function in diaphragm of emphysematous hamsters after treatment with nandrolone.
Wijnhoven, Hanneke J H; Ennen, Leo; Rodenburg, Richard J T; Dekhuijzen, P N Richard
2006-01-01
Respiratory failure in patients with COPD may be caused by insufficient force production or insufficient endurance capacity of the respiratory muscles. Anabolic steroids may improve respiratory muscle function in COPD. The effect of anabolic steroids on mitochondrial function in the diaphragm in emphysema is unknown. In an emphysematous male hamster model, we investigated whether administration of the anabolic steroid nandrolone decanoate (ND) altered the activity of mitochondrial respiratory chain complexes in the diaphragm. The bodyweight of hamsters treated with ND was decreased after treatment compared with initial values, and serum testosterone levels were significantly lower in hamsters treated with ND than in control hamsters. No difference in the activity of mitochondrial respiratory chain complexes in the diaphragm between normal and emphysematous hamsters was observed. Treatment with ND did not change the activity of mitochondrial respiratory chain complexes in the diaphragm of both normal and emphysematous hamsters. In emphysematous hamsters, administration of ND decreased the activity of succinate:cytochrome c oxidoreductase compared with ND treatment in normal hamsters. We conclude that anabolic steroids have negative effects on the activity of succinate:cytochrome c oxidoreductase and anabolic status in this emphysematous hamster model.
Mitochondrial function in diaphragm of emphysematous hamsters after treatment with nandrolone
Wijnhoven, Hanneke JH; Ennen, Leo; Rodenburg, Richard JT; Dekhuijzen, PN Richard
2006-01-01
Respiratory failure in patients with COPD may be caused by insufficient force production or insufficient endurance capacity of the respiratory muscles. Anabolic steroids may improve respiratory muscle function in COPD. The effect of anabolic steroids on mitochondrial function in the diaphragm in emphysema is unknown. In an emphysematous male hamster model, we investigated whether administration of the anabolic steroid nandrolone decanoate (ND) altered the activity of mitochondrial respiratory chain complexes in the diaphragm. The bodyweight of hamsters treated with ND was decreased after treatment compared with initial values, and serum testosterone levels were significantly lower in hamsters treated with ND than in control hamsters. No difference in the activity of mitochondrial respiratory chain complexes in the diaphragm between normal and emphysematous hamsters was observed. Treatment with ND did not change the activity of mitochondrial respiratory chain complexes in the diaphragm of both normal and emphysematous hamsters. In emphysematous hamsters, administration of ND decreased the activity of succinate:cytochrome c oxidoreductase compared with ND treatment in normal hamsters. We conclude that anabolic steroids have negative effects on the activity of succinate:cytochrome c oxidoreductase and anabolic status in this emphysematous hamster model. PMID:18046906
Edner, Anna; Nyman, Görel; Essén-Gustavsson, Birgitta
2002-10-01
To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol-ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol-ketamine infusion on respiratory function. Prospective experimental study. Seven standardbred trotters, 5-12 years old, 416-581 kg. Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg -1 ) and maintained with a continuous IV infusion of propofol (0.15 mg kg -1 minute -1 ) and ketamine (0.05 mg kg -1 minute -1 ) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg -1 ) was administered IV and 40-50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O 2 and CO 2 ) and muscle temperature were measured at pre-determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation and HCO 3 . Mixed venous blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation, HCO 3 , cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Circulatory function was preserved during propofol-ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre-injection levels, although heart rate and cardiac output had not. No difference in indices of muscle metabolism was found between dependent and independent muscles. Anaerobic muscle metabolism, indicated by decreased muscle and creatine phosphate levels was evident after anaesthesia. Muscle perfusion was closely related to cardiac output but not arterial blood pressure. Total intravenous anaesthesia with propofol-ketamine deserves further study despite its respiratory depression effects, as the combination preserves cardiovascular function. Decreases in high-energy phosphate stores during recovery show that muscle is vulnerable after anaesthesia. Continued research is required to clarify the course of muscle metabolic events during recovery. Copyright © 2002 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.
Aida, Nobuko; Shibuya, Masako; Yoshino, Katsuki; Komoda, Masaji; Inoue, Tomoko
2002-12-01
A new rehabilitation (New-RH) program including respiratory muscle stretch gymnastics (RMSG) was developed to alleviate post-coronary artery bypass grafting pain (PCP). Effects on respiratory muscle function, pain, activities of daily living (ADL), mood and exercise capacity were investigated. Subjects were 16 consecutive patients undergoing median full sternotomy coronary artery bypass grafting (CABG), and were randomly divided into equal New-RH (S-group) and conventional therapy (C-group) groups. Rib cage dominant breathing was observed postoperatively in both groups. With preoperative tan deltaVrc/deltaVab, increases at 1-week postoperatively and decreases at discharge for S-group tended to exceed those of C-group (p > .05). Decreased maximum inspiratory and expiratory pressure status for functional residual capacity and percent forced expiratory volume in one second at discharge again only tended to be smaller for S-group (p > .05). S-group displayed significantly reduced pain around both scapulas at discharge (p = .049), and increased mean overall ADL and profile of mood states (POMS)/Vigor scores (p = .031 and p = .018, respectively). POMS/Tension-Anxiety scores at discharge for S-group were significantly smaller than those preoperatively (p = .025), and S-group displayed significantly increased distance walked over 6-minutes at discharge than C-group (p = .029). New-RH improves patient participation in exercise therapy and increases exercise capacity by reducing PCP, relieving anxiety and tension, and improving ADL.
Markham, Bruce E; Kernodle, Stace; Nemzek, Jean; Wilkinson, John E; Sigler, Robert
2015-01-01
Poloxamer 188 NF (national formulary (NF) grade of P-188) improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko) muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c.) injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg) for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg) significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone's effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients.
Markham, Bruce E.; Kernodle, Stace; Nemzek, Jean; Wilkinson, John E.; Sigler, Robert
2015-01-01
Poloxamer 188 NF (national formulary (NF) grade of P-188) improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko) muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c.) injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg) for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg) significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone’s effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients. PMID:26248188
Bieli, Christian; Summermatter, Selina; Boutellier, Urs; Moeller, Alexander
2017-03-01
Respiratory muscle endurance (RME) training has been shown to increase exercise endurance and lung function in adults with cystic fibrosis (CF). We conducted an interventional study to investigate the effectiveness of RME training on CF-related health outcomes in children. In a crossover trial, 22 children, aged 9-18 years, with CF performed 8 weeks of RME training and standard chest physiotherapy in a randomized sequence separated by a 1 week washout period. All children underwent training sessions using the RME training device before beginning the study. The primary outcomes were RME (in minutes) and exercise endurance (in minutes). Data were analyzed according to the intention-to-treat principle. Sixteen of 22 children (73%) completed the study. Study dropouts tended to be older with more advanced lung disease. After RME training, respiratory muscle endurance significantly increased by 7.03 ± 8.15 min (mean ± standard deviation, P < 0.001), whereas exercise endurance was unchanged by RME training (0.80 ± 2.58 min, P = 0.169). No significant improvement in secondary outcomes (lung function, CF quality of life, and CF clinical score) were observed. The small sample size and short intervention time have to be acknowledged as limitations of our study. RME training led to a significant increase in respiratory muscle endurance in children with CF. However, RME training did not improve exercise endurance or other CF-related health outcomes. Thus, our results do not support the routine use of RME training in the care of children with CF. Future studies in larger populations and with prolonged intervention time may overcome the limitations of our study. Pediatr Pulmonol. 2017;52:331-336. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Picard, Martin; Ritchie, Darmyn; Thomas, Melissa M; Wright, Kathryn J; Hepple, Russell T
2011-12-01
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
José, Anderson; Dal Corso, Simone
2016-04-01
Among people who are hospitalised for community-acquired pneumonia, does an inpatient exercise-based rehabilitation program improve functional outcomes, symptoms, quality of life and length of hospital stay more than a respiratory physiotherapy regimen? Randomised trial with concealed allocation, intention-to-treat analysis and blinding of some outcomes. Forty-nine adults hospitalised for community-acquired pneumonia. The experimental group (n=32) underwent a physical training program that included warm-up, stretching, peripheral muscle strength training and walking at a controlled speed for 15 minutes. The control group (n=17) underwent a respiratory physiotherapy regimen that included percussion, vibrocompression, respiratory exercises and free walking. The intervention regimens lasted 8 days. The primary outcome was the Glittre Activities of Daily Living test, which assesses the time taken to complete a series of functional tasks (eg, rising from a chair, walking, stairs, lifting and bending). Secondary outcomes were distance walked in the incremental shuttle walk test, peripheral muscle strength, quality of life, dyspnoea, lung function, C-reactive protein and length of hospital stay. Measures were taken 1 day before and 1 day after the intervention period. There was greater improvement in the experimental group than in the control group on the Glittre Activities of Daily Living test (mean between-group difference 39 seconds, 95% CI 20 to 59) and the incremental shuttle walk test (mean between-group difference 130 m, 95% CI 77 to 182). There were also significantly greater improvements in quality of life, dyspnoea and peripheral muscle strength in the experimental group than in the control group. There were no between-group differences in lung function, C-reactive protein or length of hospital stay. The improvement in functional outcomes after an inpatient rehabilitation program was greater than the improvement after standard respiratory physiotherapy. The exercise training program led to greater benefits in functional capacity, peripheral muscle strength, dyspnoea and quality of life. ClinicalTrials.gov, NCT02103400. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Matos-Garcia, Bruna C; Rocco, Isadora S; Maiorano, Lara D; Peixoto, Thatiana C A; Moreira, Rita Simone L; Carvalho, Antonio C C; Catai, Aparecida Maria; Arena, Ross; Gomes, Walter J; Guizilini, Solange
2017-06-01
The purpose of this study was to evaluate respiratory muscle strength and endurance in the inpatient period in patients who recently experienced myocardial infarction (MI) and investigate the effects of a home-based walking program on respiratory strength and endurance in low-risk patients after MI. Patients were randomized into a usual-care group (UCG) entailing regular care (n = 23) and an intervention group (IG) entailing an outpatient home-based walking program (n = 31). Healthy sex- and age-matched participants served as a control group for respiratory endurance variables. Respiratory muscle strength was evaluated through maximal inspiratory pressure (MIP) and endurance during the inpatient period, at 15 days, and at 60 days after MI. Submaximal functional capacity was determined by a 6-minute walk test (6MWT) at hospital discharge and 60 days after MI. Both groups showed impaired inspiratory muscle strength at hospital discharge. When compared with healthy individuals, after MI, patients had worse respiratory muscle endurance pressure (PTH max = 73.02 ± 8.40 vs 44.47 ± 16.32; P < 0.05) and time (Tlim = 324.1 ± 12.2 vs 58.7 ± 93.3; P < 0.05). Only the IG showed a significant improvement in MIP and PTH max at 15 days and 60 days after MI (P < 0.05). When comparing groups, the IG achieved higher values for MIP, PTH max , and Tlim 15 and 60 days after MI (P < 0.01). The 60-day assessment revealed that the 6MWT distance and level of physical activity was significantly higher in the IG compared with the UCG. Low-risk patients recently experiencing MI demonstrate impaired MIP and respiratory endurance compared with healthy participants. A home-based walking program improved respiratory endurance and functional capacity. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Weaning failure and respiratory muscle function: What has been done and what can be improved?
Magalhães, Paulo A F; Camillo, Carlos A; Langer, Daniel; Andrade, Lívia B; Duarte, Maria do Carmo M B; Gosselink, Rik
2018-01-01
Respiratory muscle dysfunction, being a common cause of weaning failure, is strongly associated with prolonged mechanical ventilation (MV) and prolonged stay in intensive care units. Inspiratory muscle training (IMT) has been described as an important contributor to the treatment of respiratory muscle dysfunction in critically ill patients. Its effectiveness is however yet controversial. To discuss evidence for assessment of readiness and the effectiveness of interventions for liberation from MV, with special attention to the role of IMT. PubMed, LILACS, PEDro and Web of Science were searched for papers of assessment and treatment of patients who failed liberation from MV after at least one attempt published in English or Portuguese until June 2016. Weaning predictors are related to weaning success (86%-100% for sensitivity and 7%-69% for specificity) and work of breathing (73%-100% for sensitivity and 56%-100% for specificity). Spontaneous breathing trials (SBT), noninvasive MV and early mobilization have been reported to improve weaning outcomes. Two modalities of IMT were identified in five selected studies: 1) adjustment of ventilator trigger sensitivity 2) inspiratory threshold loading. Both IMT training modalities promoted significant increases in respiratory muscle strength. IMT with threshold loading showed positive effect on endurance compared to control. Methods to indentify respiratory muscle weakness in critically ill patients are feasible and described as indexes that show good accuracy. Individualized and supervised rehabilitation programs including IMT, SBT, noninvasive MV and early mobilization should be encouraged in patients with inspiratory muscle weakness. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Management and treatment of respiratory failure associated with amyotrophic lateral sclerosis].
Danel-Brunaud, V; Perez, T; Just, N; Destée, A
2005-04-01
In amyotrophic lateral sclerosis (ALS), respiratory muscle involvement is highly predictive of survival and quality of life (QOL). There is compelling evidence that non invasive ventilation (NIV) prolongs survival by several months and improves QOL more than any other currently available treatment. Frequent testing of pulmonary function and regular evaluations are recommended since 1999 by the American Academy of Neurology in order to take appropriate treatment decisions. There are numerous tests available to evaluate respiratory status in ALS and it is important to know their sensitivity and specificity to recognize clinical risk situations. Some recent data suggest that sniff nasal pressure and maximal inspiratory pressure (MIP) can be performed reliably by most ALS patients and are more sensitive to decrements in inspiratory muscle strength than spirometry or arterial blood gasometry. Airway obstruction caused by ineffective coughing is the principal cause of intolerance to NIV. Several factors other than respiratory muscle strength may affect pulmonary function: postural changes, nutritional status, infectious disease, drugs. The neurologist has to coordinate multidisciplinary care, with attention to individual patient preferences, and with a frank and compassionate discussion between the patient, the family, the physicians and the caregivers.
El-Khoury, R; Bradford, A; O'Halloran, K D
2012-01-01
Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).
Xavier, Vivian Bertoni; Roxo, Renata Spósito; Miorin, Luiz Antônio; Dos Santos Alves, Vera Lúcia; Dos Santos Sens, Yvoty Alves
2015-06-01
Chronic kidney disease (CKD) patients on long-term dialysis present changes in pulmonary function and respiratory muscle strength, negatively influencing physical capacity. To analyze the impact of a continuous positive airway pressure (CPAP) protocol on the respiratory capacity of CKD patients under hemodialysis. A randomized clinical trial was conducted involving 40 CKD patients 19-83 years old divided into two groups: control (n = 20) and CPAP (n = 20). Subjects were assessed on the respiratory muscle function test, maximal respiratory pressures, peak flow and 6-min walk test, at baseline and again at the 2-month follow-up. CPAP group patients were submitted to CPAP protocol (PEEP: 5 cm H2O, flow: 15 L/min, FiO2: 33 %) three times per week during hemodialysis sessions. The CPAP group showed higher forced vital capacity, forced expiratory volume in one second, peak expiratory flow, maximal inspiratory pressure, peak flow, as well as lower systolic blood pressure, heart rate, respiratory rate and Borg scale, in addition to a longer distance travelled on the 6-min walk test, compared with the control group. The introduction of a CPAP protocol during hemodialysis sessions had a positive impact on pulmonary function and physical capacity in CKD patients.
USDA-ARS?s Scientific Manuscript database
The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, we determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to two years post-injury. Biopsies were collected from the m. vastus lateralis...
Ozalp, Ozge; Inal-Ince, Deniz; Calik, Ebru; Vardar-Yagli, Naciye; Saglam, Melda; Savci, Sema; Arikan, Hulya; Bosnak-Guclu, Meral; Coplu, Lutfi
2012-06-11
There are limited number of studies investigating extrapulmonary manifestations of bronchiectasis. The purpose of this study was to compare peripheral muscle function, exercise capacity, fatigue, and health status between patients with bronchiectasis and healthy subjects in order to provide documented differences in these characteristics for individuals with and without bronchiectasis. Twenty patients with bronchiectasis (43.5 ± 14.1 years) and 20 healthy subjects (43.0 ± 10.9 years) participated in the study. Pulmonary function, respiratory muscle strength (maximal expiratory pressure - MIP - and maximal expiratory pressure - MEP), and dyspnea perception using the Modified Medical Research Council Dyspnea Scale (MMRC) were determined. A six-minute walk test (6MWT) was performed. Quadriceps muscle, shoulder abductor, and hand grip strength (QMS, SAS, and HGS, respectively) using a hand held dynamometer and peripheral muscle endurance by a squat test were measured. Fatigue perception and health status were determined using the Fatigue Severity Scale (FSS) and the Leicester Cough Questionnaire (LCQ), respectively. Number of squats, 6MWT distance, and LCQ scores as well as lung function testing values and respiratory muscle strength were significantly lower and MMRC and FSS scores were significantly higher in patients with bronchiectasis than those of healthy subjects (p < 0.05). In bronchiectasis patients, QMS was significantly associated with HGS, MIP and MEP (p < 0.05). The 6MWT distance was significantly correlated to LCQ psychological score (p < 0.05). The FSS score was significantly associated with LCQ physical and total and MMRC scores (p < 0.05). The LCQ psychological score was significantly associated with MEP and 6MWT distance (p < 0.05). Peripheral muscle endurance, exercise capacity, fatigue and health status were adversely affected by the presence of bronchiectasis. Fatigue was associated with dyspnea and health status. Respiratory muscle strength was related to peripheral muscle strength and health status, but not to fatigue, peripheral muscle endurance or exercise capacity. These findings may provide insight for outcome measures for pulmonary rehabilitation programs for patients with bronchiectasis.
Okubo, Bruno Memória; Matos, Anacélia Gomes de; Ribeiro Junior, Howard Lopes; Borges, Daniela de Paula; Oliveira, Roberta Taiane Germano de; de Castro, Marilena Facundo; Martins, Manoel Ricardo Alves; Gonçalves, Romélia Pinheiro; Bruin, Pedro Felipe Carvalhedo; Pinheiro, Ronald Feitosa; Magalhães, Silvia Maria Meira
2017-01-01
The ageing process is associated with gradual decline in respiratory system performance. Anemia is highly prevalent among older adults and usually associated with adverse outcomes. Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic malignancies with increasing incidence with age and characterized by anemia and other cytopenias. The main objectives of this study were to evaluate respiratory muscle strength and lung function in elderly patients with anemia, compare data between myelodysplastic syndromes and non-clonal anemias and evaluate the influence of serum IL-8 level and NF-kB activity on deteriorate pulmonary function in this specific population. Individuals aged 60 and older with anemia secondary to MDS, non-clonal anemia and healthy elderly individuals. Forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/ FVC ratio were measured by spirometry. Respiratory muscle strength was evaluated by maximal static respiratory pressures measurement. IL-8 analysis was performed by ELISA and activity of NF-kB by chemiluminescent assay. Mean Hb concentration was comparable between patients with anemia. Significant differences were detected between all patients with anemia and controls for maximum-effort inspiratory mouth pressure (PImax) and also for maximum-effort expiratory mouth pressure (PEmax). The MDS group recorded a significantly lower PImax and PEmax percent predicted when compared to non-clonal anemia group. For FVC and FEV1, a significant difference was found in anemic patients, with even significantly lower values for FVC and FEV1 in MDS group. No significant differences were detected for PImax and PEmax and spirometry parameters when anemic patients were stratified according to the degree of anemia. A significant negative impact in FVC (% pred), PImax (% pred) and PEmax (% pred) was observed in patients with MDS and higher levels of IL-8 or increased activity of NF-kB. A negative impact of anemia, independent of its degree, was demonstrated in respiratory muscle strength and lung function particularly in MDS. The well known elevated proinflammatory cytokines in MDS patients were proposed to play a role as was demonstrated by detrimental effect of higher IL-8 and NF-kB in pulmonary function tests in this population.
Guo, Wen; Wong, Siu; Li, Michelle; Liang, Wentao; Liesa, Marc; Serra, Carlo; Jasuja, Ravi; Bartke, Andrzej; Kirkland, James L.; Shirihai, Orian; Bhasin, Shalender
2012-01-01
Testosterone supplementation increases muscle mass in older men but has not been shown to consistently improve physical function and activity. It has been hypothesized that physical exercise is required to induce the adaptations necessary for translation of testosterone-induced muscle mass gain into functional improvements. However, the effects of testosterone plus low intensity physical exercise training (T/PT) on functional performance and bioenergetics are unknown. In this pilot study, we tested the hypothesis that combined administration of T/PT would improve functional performance and bioenergetics in male mice late in life more than low-intensity physical training alone. 28-month old male mice were randomized to receive T/PT or vehicle plus physical training (V/PT) for 2 months. Compare to V/PT control, administration of T/PT was associated with improvements in muscle mass, grip strength, spontaneous physical movements, and respiratory activity. These changes were correlated with increased mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. Mice receiving T/PT also displayed increased expression of key elements for mitochondrial quality control, including markers for mitochondrial fission-and-fusion and mitophagy. Concurrently, mice receiving T/PT also displayed increased expression of markers for reduced tissue oxidative damage and improved muscle quality. Conclusion: Testosterone administered with low-intensity physical training improves grip strength, spontaneous movements, and respiratory activity. These functional improvements were associated with increased muscle mitochondrial biogenesis and improved mitochondrial quality control. PMID:23240002
Yamada, Shinichiro; Hashizume, Atsushi; Hijikata, Yasuhiro; Inagaki, Tomonori; Suzuki, Keisuke; Kondo, Naohide; Kawai, Kaori; Noda, Seiya; Nakanishi, Hirotaka; Banno, Haruhiko; Hirakawa, Akihiro; Koike, Haruki; Halievski, Katherine; Jordan, Cynthia L.; Katsuno, Masahisa; Sobue, Gen
2016-01-01
The aim of this study was to characterize the respiratory function profile of subjects with spinal and bulbar muscular atrophy (SBMA), and to explore the underlying pathological mechanism by comparing the clinical and biochemical indices of this disease with those of amyotrophic lateral sclerosis (ALS). We enrolled male subjects with SBMA (n = 40) and ALS (n = 25) along with 15 healthy control subjects, and assessed their respiratory function, motor function, and muscle strength. Predicted values of peak expiratory flow (%PEF) and forced vital capacity were decreased in subjects with SBMA compared with controls. In SBMA, both values were strongly correlated with the trunk subscores of the motor function tests and showed deterioration relative to disease duration. Compared with activities of daily living (ADL)-matched ALS subjects, %PEF, tongue pressure, and grip power were substantially decreased in subjects with SBMA. Both immunofluorescence and RT-PCR demonstrated a selective decrease in the expression levels of the genes encoding the myosin heavy chains specific to fast-twitch fibers in SBMA subjects. The mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha and peroxisome proliferator-activated receptor delta were up-regulated in SBMA compared with ALS and controls. In conclusion, %PEF is a disease-specific respiratory marker for the severity and progression of SBMA. Explosive muscle strength, including %PEF, was selectively affected in subjects with SBMA and was associated with activation of the mitochondrial biogenesis-related molecular pathway in skeletal muscles. PMID:28005993
2013-01-01
Background Pain is a negative factor in the recovery process of postoperative patients, causing pulmonary alterations and complications and affecting functional capacity. Thus, it is plausible to introduce transcutaneous electrical nerve stimulation (TENS) for pain relief to subsequently reduce complications caused by this pain in the postoperative period. The objective of this paper is to assess the effects of TENS on pain, walking function, respiratory muscle strength and vital capacity in kidney donors. Methods/design Seventy-four patients will be randomly allocated into 2 groups: active TENS or placebo TENS. All patients will be assessed for pain intensity, walk function (Iowa Gait Test), respiratory muscle strength (maximal inspiratory pressure and maximal expiratory pressure) and vital capacity before and after the TENS application. The data will be collected by an assessor who is blinded to the group allocation. Discussion This study is the first to examine the effects of TENS in this population. TENS during the postoperative period may result in pain relief and improvements in pulmonary tests and mobility, thus leading to an improved quality of life and further promoting organ donation. Trial registration Registro Brasileiro de Ensaios Clinicos (ReBEC), number RBR-8xtkjp. PMID:23311705
Arikan, Hulya; Yatar, İlker; Calik-Kutukcu, Ebru; Aribas, Zeynep; Saglam, Melda; Vardar-Yagli, Naciye; Savci, Sema; Inal-Ince, Deniz; Ozcelik, Ugur; Kiper, Nural
2015-01-01
There are limited reports that compare muscle strength, functional exercise capacity, activities of daily living (ADL) and parameters of physical fitness of cystic fibrosis (CF) patients with healthy peers in the literature. The purpose of this study was to assess and compare respiratory and peripheral muscle strength, functional exercise capacity, ADL and physical fitness in patients with CF and healthy subjects. Nineteen patients with CF (mean forced expiratory volume in one second-FEV1: 86.56±18.36%) and 20 healthy subjects were included in this study. Respiratory (maximal inspiratory pressure-MIP and maximal expiratory pressure-MEP) and peripheral muscle strength (quadriceps, shoulder abductors and hand grip strength) were evaluated. Functional exercise capacity was determined with 6min walk test (6MWT). ADL was assessed with Glittre ADL test and physical fitness was assessed with Munich fitness test (MFT). There were not any statistically significant difference in MIP, %MIP, MEP and %MEP values between two groups (p>0.05). %Peripheral muscle strength (% quadriceps and shoulder abductors strength), 6MWT distance and %6MWT distance were significantly lower in patients with CF than those of healthy subjects (p<0.05). Glittre ADL-test time was significantly longer in patients with CF than healthy subjects (p<0.05). According to Munich fitness test, the number of bouncing a ball, hanging score, distance of standing vertical jumping and standing vertical jumping score were significantly lower in patients with CF than those of healthy subjects (p<0.05). Peripheral muscle strength, functional exercise capacity, ADL performance and speed, coordination, endurance and power components of physical fitness are adversely affected in mild-severe patients with CF compared to healthy peers. Evaluations must be done in comprehensive manner in patients with CF with all stages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Boentert, Matthias; Prigent, Hélène; Várdi, Katalin; Jones, Harrison N.; Mellies, Uwe; Simonds, Anita K.; Wenninger, Stephan; Barrot Cortés, Emilia; Confalonieri, Marco
2016-01-01
Pompe disease is an autosomal-recessive lysosomal storage disorder characterized by progressive myopathy with proximal muscle weakness, respiratory muscle dysfunction, and cardiomyopathy (in infants only). In patients with juvenile or adult disease onset, respiratory muscle weakness may decline more rapidly than overall neurological disability. Sleep-disordered breathing, daytime hypercapnia, and the need for nocturnal ventilation eventually evolve in most patients. Additionally, respiratory muscle weakness leads to decreased cough and impaired airway clearance, increasing the risk of acute respiratory illness. Progressive respiratory muscle weakness is a major cause of morbidity and mortality in late-onset Pompe disease even if enzyme replacement therapy has been established. Practical knowledge of how to detect, monitor and manage respiratory muscle involvement is crucial for optimal patient care. A multidisciplinary approach combining the expertise of neurologists, pulmonologists, and intensive care specialists is needed. Based on the authors’ own experience in over 200 patients, this article conveys expert recommendations for the diagnosis and management of respiratory muscle weakness and its sequelae in late-onset Pompe disease. PMID:27763517
Multivisceral Transplantation Rehabilitation Program-Case Report.
Loschi, T M; Cinacchi, M P R G; Baccan, M D T A; Marques, F; Pedroso, P T; Meira Filho, S P; Scacchetti, T; Pavão, D N
2018-04-01
Multivisceral transplantation is the treatment for multiple abdominal organ failure. The patient experiences reduced food intake and absorption of nutrients, contributing to weight loss and decreased muscle mass, reducing functional capacity. A physical and nutritional rehabilitation program based on adequate caloric intake associated with supervised physical exercise seems to support a gain of muscle mass, re-establishing its capacity and functional independence. A rehabilitation program was carried out, consisting of low-intensity aerobic exercise on treadmill, exercises of global strengthening (50% of 1 maximum repetition [1RM], with progressive increase), and nutritional monitoring (oral hypercaloric diet, hyperproteic supplementation daily and after exercise). Initial and final evaluation included weight, muscle mass index, brachial circumference (BC), tricipital cutaneous fold (TCF), hand grip strength (HGS), 6-minute walk test (6MWT), 1RM, vital capacity (VC), and respiratory muscle strength. After the program, functional capacity was evaluated through the 6MWT (92%), 1RM test, VC (55%), respiratory muscle strength, HGS at 5 kg, weight gain (4.75%), increase of BC in 2 cm, and TCF in 2 mm. The program contributed to functional independence, improved quality of life, and social reintegration, suggesting the importance of a supervised physical activity program associated with adequate nutritional intake after multivisceral transplantation. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Ya-Chen; Hsiao, Tzu-Chien
2018-07-01
Respiratory inductance plethysmography (RIP) sensor is an inexpensive, non-invasive, easy-to-use transducer for collecting respiratory movement data. Studies have reported that the RIP signal's amplitude and frequency can be used to discriminate respiratory diseases. However, with the conventional approach of RIP data analysis, respiratory muscle effort cannot be estimated. In this paper, the estimation of the respiratory muscle effort through RIP signal was proposed. A complementary ensemble empirical mode decomposition method was used, to extract hidden signals from the RIP signals based on the frequency bands of the activities of different respiratory muscles. To validate the proposed method, an experiment to collect subjects' RIP signal under thoracic breathing (TB) and abdominal breathing (AB) was conducted. The experimental results for both the TB and AB indicate that the proposed method can be used to loosely estimate the activities of thoracic muscles, abdominal muscles, and diaphragm. Graphical abstract ᅟ.
Menezes, Kênia Kiefer Parreiras De; Nascimento, Lucas Rodrigues; Polese, Janaine Cunha; Ada, Louise; Teixeira-Salmela, Luci Fuscaldi
Respiratory muscle training has shown to increase strength of the respiratory muscles following a stroke. However, low duration and/or intensity of training may be responsible for the small effect size seen and/or absence of carry-over effects to an activity, e.g., walking. Therefore, an investigation of the effects of long-duration, high-intensity respiratory muscle training is warranted. This proposed protocol for a randomized clinical trial will examine the efficacy of high-intensity respiratory muscle training to increase strength and improve activity following a stroke. This study will be a two-arm, prospectively registered, randomized controlled trial, with blinded assessors. Thirty-eight individuals who have suffered a stroke will participate. The experimental group will undertake a 40-min of respiratory muscle training program, seven days/week, for eight weeks in their homes. Training loads will be increased weekly. The control group will undertake a sham respiratory muscle training program with equivalent duration and scheduling of training. The primary outcome will be the strength of the inspiratory muscles, measured as maximal inspiratory pressure. Secondary outcomes will include expiratory muscle strength, inspiratory muscle endurance, dyspnea, respiratory complications, and walking capacity. Outcomes will be collected by a researcher blinded to group allocation at baseline (Week 0), after intervention (Week 8), and one month beyond intervention (Week 12). High-intensity respiratory muscle training may have the potential to optimize the strength of the respiratory muscles following a stroke. If benefits are carried over to activity, the findings may have broader implications, since walking capacity has been shown to predict physical activity and community participation on this population. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.
2016-01-01
Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life. PMID:26973537
Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu
2016-01-01
Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.
Pascual, Sergi; Casadevall, Carme; Orozco-Levi, Mauricio; Barreiro, Esther
2015-01-01
Respiratory and/or limb muscle dysfunction, which are frequently observed in chronic obstructive pulmonary disease (COPD) patients, contribute to their disease prognosis irrespective of the lung function. Muscle dysfunction is caused by the interaction of local and systemic factors. The key deleterious etiologic factors are pulmonary hyperinflation for the respiratory muscles and deconditioning secondary to reduced physical activity for limb muscles. Nonetheless, cigarette smoke, systemic inflammation, nutritional abnormalities, exercise, exacerbations, anabolic insufficiency, drugs and comorbidities also seem to play a relevant role. All these factors modify the phenotype of the muscles, through the induction of several biological phenomena in patients with COPD. While respiratory muscles improve their aerobic phenotype (percentage of oxidative fibers, capillarization, mitochondrial density, enzyme activity in the aerobic pathways, etc.), limb muscles exhibit the opposite phenotype. In addition, both muscle groups show oxidative stress, signs of damage and epigenetic changes. However, fiber atrophy, increased number of inflammatory cells, altered regenerative capacity; signs of apoptosis and autophagy, and an imbalance between protein synthesis and breakdown are rather characteristic features of the limb muscles, mostly in patients with reduced body weight. Despite that significant progress has been achieved in the last decades, full elucidation of the specific roles of the target biological mechanisms involved in COPD muscle dysfunction is still required. Such an achievement will be crucial to adequately tackle with this relevant clinical problem of COPD patients in the near-future. PMID:26623119
Chacon-Cabrera, Alba; Fermoselle, Clara; Urtreger, Alejandro J; Mateu-Jimenez, Mercè; Diament, Miriam J; de Kier Joffé, Elisa D Bal; Sandri, Marco; Barreiro, Esther
2014-11-01
Cachexia is a relevant comorbid condition of chronic diseases including cancer. Inflammation, oxidative stress, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) are involved in the pathophysiology of cancer cachexia. Currently available treatment is limited and data demonstrating effectiveness in in vivo models are lacking. Our objectives were to explore in respiratory and limb muscles of lung cancer (LC) cachectic mice whether proteasome, NF-κB, and MAPK inhibitors improve muscle mass and function loss through several molecular mechanisms. Body and muscle weights, limb muscle force, protein degradation and the ubiquitin-proteasome system, signaling pathways, oxidative stress and inflammation, autophagy, contractile and functional proteins, myostatin and myogenin, and muscle structure were evaluated in the diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing cachectic mice (BALB/c), with and without concomitant treatment with NF-κB (sulfasalazine), MAPK (U0126), and proteasome (bortezomib) inhibitors. Compared to control animals, in both respiratory and limb muscles of LC cachectic mice: muscle proteolysis, ubiquitinated proteins, autophagy, myostatin, protein oxidation, FoxO-1, NF-κB and MAPK signaling pathways, and muscle abnormalities were increased, while myosin, creatine kinase, myogenin, and slow- and fast-twitch muscle fiber size were decreased. Pharmacological inhibition of NF-κB and MAPK, but not the proteasome system, induced in cancer cachectic animals, a substantial restoration of muscle mass and force through a decrease in muscle protein oxidation and catabolism, myostatin, and autophagy, together with a greater content of myogenin, and contractile and functional proteins. Attenuation of MAPK and NF-κB signaling pathway effects on muscles is beneficial in cancer-induced cachexia. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Harris, R. Luke; Grob, Tanya; Sandhu, Komal; Schwab, Timothy
2017-02-01
The purpose of this study was to test the hypothesis that mobile, wireless near-infrared spectroscopy (NIRS) instruments can be used during standard lung function tests to measure adaptations in respiratory muscle metabolism over weeks to months. In eight varsity soccer players at 0 weeks and after 16 weeks of routine training, commercially available mobile, wireless NIRS instruments were used to measure oxygenation and hemodynamics in the sternocleidomastoid (SCM, accessory inspiration muscle). During maximal expiratory pressure (MEP) and forced vital capacity (FVC) maneuvers we determined peak or antipeak changes relative to baseline in oxygenation and hemodynamics: Δ%Sat (muscle oxygen saturation), ΔtHb (total hemoglobin), ΔO2Hb (oxygenated hemoglobin), and ΔHHb (deoxygenated hemoglobin). Subjects reported that the average training load was 13.3 h/week during the 16 study weeks, compared to 10.4 h/week during 12 prior weeks. After 16 weeks of training compared to 0 weeks we found statistically significant increases in SCM Δ%Sat (57.7%), ΔtHb (55.3%), and ΔO2Hb (56.7%) during MEP maneuvers, and in SCM Δ%Sat (64.8%), ΔtHb (29.4%), and ΔO2Hb (51.6%) during FVC maneuvers. Our data provide preliminary evidence that NIRS measurements during standard lung function tests are sufficiently sensitive to detect improvements or declines in respiratory muscle metabolism over periods of weeks to months due to training, disease, and rehabilitation exercise.
McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.
2016-01-01
Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis. PMID:27462274
Campos, Elaine Cristina de; Peixoto-Souza, Fabiana Sobral; Alves, Viviane Cristina; Basso-Vanelli, Renata; Barbalho-Moulim, Marcela; Laurino-Neto, Rafael Melillo; Costa, Dirceu
2018-03-15
To determine whether weight loss in women with morbid obesity subjected to bariatric surgery alters lung function, respiratory muscle strength, functional capacity and the level of habitual physical activity and to investigate the relationship between these variables and changes in both body composition and anthropometrics. Twenty-four women with morbid obesity were evaluated with regard to lung function, respiratory muscle strength, functional capacity, body composition, anthropometrics and the level of habitual physical activity two weeks prior to and six months after bariatric surgery. Regarding lung function, mean increases of 160 mL in slow vital capacity, 550 mL in expiratory reserve volume, 290 mL in forced vital capacity and 250 mL in forced expiratory volume in the first second as well as a mean reduction of 490 mL in inspiratory capacity were found. Respiratory muscle strength increased by a mean of 10 cmH2O of maximum inspiratory pressure, and a 72-meter longer distance on the Incremental Shuttle Walk Test demonstrated that functional capacity also improved. Significant changes also occurred in anthropometric variables and body composition but not in the level of physical activity detected using the Baecke questionnaire, indicating that the participants remained sedentary. Moreover, correlations were found between the percentages of lean and fat mass and both inspiratory and expiratory reserve volumes. The present data suggest that changes in body composition and anthropometric variables exerted a direct influence on functional capacity and lung function in the women analyzed but exerted no influence on sedentarism, even after accentuated weight loss following bariatric surgery.
Moreno, A M; Castro, R R T; Silva, B M; Villacorta, H; Sant'Anna Junior, M; Nóbrega, A C L
2014-11-01
The purpose of this study was to determine the effect of respiratory muscle fatigue on intercostal and forearm muscle perfusion and oxygenation in patients with heart failure. Five clinically stable heart failure patients with respiratory muscle weakness (age, 66 ± 12 years; left ventricle ejection fraction, 34 ± 3%) and nine matched healthy controls underwent a respiratory muscle fatigue protocol, breathing against a fixed resistance at 60% of their maximal inspiratory pressure for as long as they could sustain the predetermined inspiratory pressure. Intercostal and forearm muscle blood volume and oxygenation were continuously monitored by near-infrared spectroscopy with transducers placed on the seventh left intercostal space and the left forearm. Data were compared by two-way ANOVA and Bonferroni correction. Respiratory fatigue occurred at 5.1 ± 1.3 min in heart failure patients and at 9.3 ± 1.4 min in controls (P<0.05), but perceived effort, changes in heart rate, and in systolic blood pressure were similar between groups (P>0.05). Respiratory fatigue in heart failure reduced intercostal and forearm muscle blood volume (P<0.05) along with decreased tissue oxygenation both in intercostal (heart failure, -2.6 ± 1.6%; controls, +1.6 ± 0.5%; P<0.05) and in forearm muscles (heart failure, -4.5 ± 0.5%; controls, +0.5 ± 0.8%; P<0.05). These results suggest that respiratory fatigue in patients with heart failure causes an oxygen demand/delivery mismatch in respiratory muscles, probably leading to a reflex reduction in peripheral limb muscle perfusion, featuring a respiratory metaboreflex.
Bilateral Diaphragmatic Paralysis in a Patient With Critical Illness Polyneuropathy
Chen, Hsuan-Yu; Chen, Hung-Chen; Lin, Meng-Chih; Liaw, Mei-Yun
2015-01-01
Abstract Bilateral diaphragmatic paralysis (BDP) manifests as respiratory muscle weakness, and its association with critical illness polyneuropathy (CIP) was rarely reported. Here, we present a patient with BDP related to CIP, who successfully avoided tracheostomy after diagnosis and management. A 71-year-old male presented with acute respiratory failure after sepsis adequately treated. Repeated intubation occurred because of carbon dioxide retention after each extubation. After eliminating possible factors, septic shock-induced respiratory muscle weakness was suspected. Physical examination, a nerve conduction study, and chest ultrasound confirmed our impression. Pulmonary rehabilitation and reconditioning exercises were arranged, and the patient was discharged with a diagnosis of BDP. The diagnosis of BDP is usually delayed, and there are only sporadic reports on its association with polyneuropathy, especially in patients with preserved limb muscle function. Therefore, when physicians encounter patients that are difficult to wean from mechanical ventilation, CIP associated with BDP should be considered in the differential diagnosis. PMID:26252301
Seo, KyoChul; Hwan, Park Seung; Park, KwangYong
2017-03-01
[Purpose] The purpose of this study is to examine the effects of inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise on chronic stroke patients' respiratory muscle activation. [Subjects and Methods] All experimental subjects performed exercises five times per week for four weeks. Thirty chronic stroke patients were randomly assign to an experimental group of 15 patients and a control group of 15 patients. The experimental group underwent exercises consisting of basic exercise treatment for 15 minutes and inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise for 15 minutes and the control group underwent exercises consisting of basic exercise treatment for 15 minutes and auto-med exercise for 15 minutes. The activation levels of respiratory muscles were measured before and after the experiment using MP 150WSW to obtain the results of the experiment. [Results] In the present study, when the pulmonary functions of the experimental group and the control group before and after the experiment were compared, whereas the experimental group showed significant differences in all sections. In the verification of intergroup differences between the experimental group and the control group before and after the experiment. [Conclusion] The respiratory rehabilitation exercise is considered to be capable of inducing positive effects on stroke patients' respiratory muscles through diaphragm breathing exercise and lip puckering breathing exercise.
Sarcopenia and frailty in chronic respiratory disease.
Bone, Anna E; Hepgul, Nilay; Kon, Samantha; Maddocks, Matthew
2017-02-01
Sarcopenia and frailty are geriatric syndromes characterized by multisystem decline, which are related to and reflected by markers of skeletal muscle dysfunction. In older people, sarcopenia and frailty have been used for risk stratification, to predict adverse outcomes and to prompt intervention aimed at preventing decline in those at greatest risk. In this review, we examine sarcopenia and frailty in the context of chronic respiratory disease, providing an overview of the common assessments tools and studies to date in the field. We contrast assessments of sarcopenia, which consider muscle mass and function, with assessments of frailty, which often additionally consider social, cognitive and psychological domains. Frailty is emerging as an important syndrome in respiratory disease, being strongly associated with poor outcome. We also unpick the relationship between sarcopenia, frailty and skeletal muscle dysfunction in chronic respiratory disease and reveal these as interlinked but distinct clinical phenotypes. Suggested areas for future work include the application of sarcopenia and frailty models to restrictive diseases and population-based samples, prospective prognostic assessments of sarcopenia and frailty in relation to common multidimensional indices, plus the investigation of exercise, nutritional and pharmacological strategies to prevent or treat sarcopenia and frailty in chronic respiratory disease.
Sarcopenia and frailty in chronic respiratory disease
Bone, Anna E; Hepgul, Nilay; Kon, Samantha
2017-01-01
Sarcopenia and frailty are geriatric syndromes characterized by multisystem decline, which are related to and reflected by markers of skeletal muscle dysfunction. In older people, sarcopenia and frailty have been used for risk stratification, to predict adverse outcomes and to prompt intervention aimed at preventing decline in those at greatest risk. In this review, we examine sarcopenia and frailty in the context of chronic respiratory disease, providing an overview of the common assessments tools and studies to date in the field. We contrast assessments of sarcopenia, which consider muscle mass and function, with assessments of frailty, which often additionally consider social, cognitive and psychological domains. Frailty is emerging as an important syndrome in respiratory disease, being strongly associated with poor outcome. We also unpick the relationship between sarcopenia, frailty and skeletal muscle dysfunction in chronic respiratory disease and reveal these as interlinked but distinct clinical phenotypes. Suggested areas for future work include the application of sarcopenia and frailty models to restrictive diseases and population-based samples, prospective prognostic assessments of sarcopenia and frailty in relation to common multidimensional indices, plus the investigation of exercise, nutritional and pharmacological strategies to prevent or treat sarcopenia and frailty in chronic respiratory disease. PMID:27923981
Activation of respiratory muscles during respiratory muscle training.
Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim
2018-01-01
It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.
Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William
2017-11-01
What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the WOB increased locomotor blood flow. Oxygen uptake was not different during the control and resistor trials (3.8 ± 0.9 versus 3.7 ± 0.8 l min -1 , P > 0.05), but was lower on the proportional assist ventilator trial (3.4 ± 0.7 l min -1 , P < 0.05) compared with control. Our findings support the concept that respiratory muscle work significantly influences the distribution of blood flow to both respiratory and locomotor muscles. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
The effects of respiratory-muscle training on exercise in older women.
Watsford, Mark; Murphy, Arona
2008-07-01
This research examined the effects of respiratory-muscle (RM) training on RM function and exercise performance in older women. Twenty-six women (60-69 yr of age) were assessed for spirometry, RM strength (maximal inspiratory and expiratory pressure), inspiratory-muscle endurance, and walking performance to a perceived exertion rating of "hard." They were randomly allocated to a threshold RM training group (RMT) or a nonexercising control group (CON) for 8 wk.After training, the 22% (inspiratory) and 30% (expiratory) improvements in RM strength in the RMT group were significantly higher than in the CON group (p < .05). The RMT group also displayed several significant performance improvements, including improved within-group treadmill performance time (12%) and reductions in submaximal heart rate (5%), percentage of maximum voluntary ventilation (16%), and perceived exertion for breathing (8%). RM training appears to improve RM function in older women. Furthermore, these improvements appear to be related to improved submaximal exercise performance.
Development of disability in chronic obstructive pulmonary disease: beyond lung function.
Eisner, Mark D; Iribarren, Carlos; Blanc, Paul D; Yelin, Edward H; Ackerson, Lynn; Byl, Nancy; Omachi, Theodore A; Sidney, Stephen; Katz, Patricia P
2011-02-01
COPD is a major cause of disability, but little is known about how disability develops in this condition. The authors analysed data from the Function, Living, Outcomes and Work (FLOW) Study which enrolled 1202 Kaiser Permanente Northern California members with COPD at baseline and re-evaluated 1051 subjects at 2-year follow-up. The authors tested the specific hypothesis that the development of specific non-respiratory impairments (abnormal body composition and muscle strength) and functional limitations (decreased lower extremity function, poor balance, mobility-related dyspnoea, reduced exercise performance and decreased cognitive function) will determine the risk of disability in COPD, after controlling for respiratory impairment (FEV(1) and oxygen saturation). The Valued Life Activities Scale was used to assess disability in terms of a broad range of daily activities. The primary disability outcome measure was defined as an increase in the proportion of activities that cannot be performed of 3.3% or greater from baseline to 2-year follow-up (the estimated minimal important difference). Multivariable logistic regression was used for analysis. Respiratory impairment measures were related to an increased prospective risk of disability (multivariate OR 1.75; 95% CI 1.26 to 2.44 for 1 litre decrement of FEV(1) and OR 1.57 per 5% decrement in oxygen saturation; 95% CI 1.13 to 2.18). Non-respiratory impairment (body composition and lower extremity muscle strength) and functional limitations (lower extremity function, exercise performance, and mobility-related dyspnoea) were all associated with an increased longitudinal risk of disability after controlling for respiratory impairment (p<0.05 in all cases). Non-respiratory impairment and functional limitations were predictive of prospective disability, above-and-beyond sociodemographic characteristics, smoking status and respiratory impairment (area under the receiver operating characteristic curve increased from 0.65 to 0.75; p<0.001). Development of non-respiratory impairment and functional limitations, which reflect the systemic nature of COPD, appear to be critical determinants of disablement. Prevention and treatment of disability require a comprehensive approach to the COPD patient.
LoMauro, Antonella; D’Angelo, Maria Grazia; Aliverti, Andrea
2015-01-01
Duchenne muscular dystrophy (DMD) is an X-linked myopathy resulting in progressive weakness and wasting of all the striated muscles including the respiratory muscles. The consequences are loss of ambulation before teen ages, cardiac involvement and breathing difficulties, the main cause of death. A cure for DMD is not currently available. In the last decades the survival of patients with DMD has improved because the natural history of the disease can be changed thanks to a more comprehensive therapeutic approach. This comprises interventions targeted to the manifestations and complications of the disease, particularly in the respiratory care. These include: 1) pharmacological intervention, namely corticosteroids and idebenone that significantly reduce the decline of spirometric parameters; 2) rehabilitative intervention, namely lung volume recruitment techniques that help prevent atelectasis and slows the rate of decline of pulmonary function; 3) scoliosis treatment, namely steroid therapy that is used to reduce muscle inflammation/degeneration and prolong ambulation in order to delay the onset of scoliosis, being an additional contribution to the restrictive lung pattern; 4) cough assisted devices that improve airway clearance thus reducing the risk of pulmonary infections; and 5) non-invasive mechanical ventilation that is essential to treat nocturnal hypoventilation, sleep disordered breathing, and ultimately respiratory failure. Without any intervention death occurs within the first 2 decades, however, thanks to this multidisciplinary therapeutic approach life expectancy of a newborn with DMD nowadays can be significantly prolonged up to his fourth decade. This review is aimed at providing state-of-the-art methods and techniques for the assessment and management of respiratory function in DMD patients. PMID:26451113
Stugiewicz, Magdalena; Tkaczyszyn, Michał; Kasztura, Monika; Banasiak, Waldemar; Ponikowski, Piotr; Jankowska, Ewa A
2016-07-01
Skeletal and respiratory myopathy not only constitutes an important pathophysiological feature of heart failure and chronic obstructive pulmonary disease, but also contributes to debilitating symptomatology and predicts worse outcomes in these patients. Accumulated evidence from laboratory experiments, animal models, and interventional studies in sports medicine suggests that undisturbed systemic iron homeostasis significantly contributes to the effective functioning of skeletal muscles. In this review, we discuss the role of iron status for the functioning of skeletal muscle tissue, and highlight iron deficiency as an emerging therapeutic target in chronic diseases accompanied by a marked muscle dysfunction. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Terao, Shin-ichi; Miura, Naofumi; Noda, Aiji; Yoshida, Mari; Hashizume, Yoshio; Ikeda, Hiroshi; Sobue, Gen
2006-10-01
We report a 69-year-old man who developed paralytic poliomyelitis in childhood and then decades later suffered from fatal respiratory failure. Six months before this event, he had progressive weight loss and shortness of breath. He had severe muscular atrophy of the entire right leg as a sequela of the paralytic poliomyelitis. He showed mild weakness of the facial muscle and tongue, dysarthria, and severe muscle atrophy from the neck to proximal upper extremities and trunk, but no obvious pyramidal signs. Electromyogram revealed neurogenic changes in the right leg, and in the paraspinal, sternocleidomastoid, and lingual muscles. There was a slight increase in central motor conduction time from the motor cortex to the lumbar anterior horn. Pulmonary function showed restrictive ventilation dysfunction, which was the eventual cause of death. Some neuropathological features were suggestive of amyotrophic lateral sclerosis (ALS), namely Bunina bodies. In patients with a history of paralytic poliomyelitis who present after a long stable period with advanced fatal respiratory failure, one may consider not only respiratory impairment from post-polio syndrome but also the onset of ALS.
The value of multiple tests of respiratory muscle strength
Steier, Joerg; Kaul, Sunny; Seymour, John; Jolley, Caroline; Rafferty, Gerrard; Man, William; Luo, Yuan M; Roughton, Michael; Polkey, Michael I; Moxham, John
2007-01-01
Background Respiratory muscle weakness is an important clinical problem. Tests of varying complexity and invasiveness are available to assess respiratory muscle strength. The relative precision of different tests in the detection of weakness is less clear, as is the value of multiple tests. Methods The respiratory muscle function tests of clinical referrals who had multiple tests assessed in our laboratories over a 6‐year period were analysed. Thresholds for weakness for each test were determined from published and in‐house laboratory data. The patients were divided into three groups: those who had all relevant measurements of global inspiratory muscle strength (group A, n = 182), those with full assessment of diaphragm strength (group B, n = 264) and those for whom expiratory muscle strength was fully evaluated (group C, n = 60). The diagnostic outcome of each inspiratory, diaphragm and expiratory muscle test, both singly and in combination, was studied and the impact of using more than one test to detect weakness was calculated. Results The clinical referrals were primarily for the evaluation of neuromuscular diseases and dyspnoea of unknown cause. A low maximal inspiratory mouth pressure (Pimax) was recorded in 40.1% of referrals in group A, while a low sniff nasal pressure (Sniff Pnasal) was recorded in 41.8% and a low sniff oesophageal pressure (Sniff Poes) in 37.9%. When assessing inspiratory strength with the combination of all three tests, 29.6% of patients had weakness. Using the two non‐invasive tests (Pimax and Sniff Pnasal) in combination, a similar result was obtained (low in 32.4%). Combining Sniff Pdi (low in 68.2%) and Twitch Pdi (low in 67.4%) reduced the diagnoses of patients with diaphragm weakness to 55.3% in group B. 38.3% of the patients in group C had expiratory muscle weakness as measured by maximum expiratory pressure (Pemax) compared with 36.7% when weakness was diagnosed by cough gastric pressure (Pgas), and 28.3% when assessed by Twitch T10. Combining all three expiratory muscle tests reduced the number of patients diagnosed as having expiratory muscle weakness to 16.7%. Conclusion The use of single tests such as Pimax, Pemax and other available individual tests of inspiratory, diaphragm and expiratory muscle strength tends to overdiagnose weakness. Combinations of tests increase diagnostic precision and, in the population studied, they reduced the diagnosis of inspiratory, specific diaphragm and expiratory muscle weakness by 19–56%. Measuring both Pimax and Sniff Pnasal resulted in a relative reduction of 19.2% of patients falsely diagnosed with inspiratory muscle weakness. The addition of Twitch Pdi to Sniff Pdi increased diagnostic precision by a smaller amount (18.9%). Having multiple tests of respiratory muscle function available both increases diagnostic precision and makes assessment possible in a range of clinical circumstances. PMID:17557772
Jaenisch, Rodrigo B.; Hentschke, Vítor S.; Quagliotto, Edson; Cavinato, Paulo R.; Schmeing, Letiane A.; Xavier, Léder L.
2011-01-01
Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction. PMID:21903877
Efficacy of Interventions to Improve Respiratory Function After Stroke.
Menezes, Kênia Kp; Nascimento, Lucas R; Avelino, Patrick R; Alvarenga, Maria Tereza Mota; Teixeira-Salmela, Luci F
2018-07-01
The aim of this study was to systematically review all current interventions that have been utilized to improve respiratory function and activity after stroke. Specific searches were conducted. The experimental intervention had to be planned, structured, repetitive, purposive, and delivered with the aim of improving respiratory function. Outcomes included respiratory strength (maximum inspiratory pressure [P Imax ], maximum expiratory pressure [P Emax ]) and endurance, lung function (FVC, FEV 1 , and peak expiratory flow [PEF]), dyspnea, and activity. The quality of the randomized trials was assessed by the PEDro scale using scores from the Physiotherapy Evidence Database (www.pedro.org.au), and risk of bias was assessed in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. The 17 included trials had a mean PEDro score of 5.7 (range 4-8) and involved 616 participants. Meta-analyses showed that respiratory muscle training significantly improved all outcomes of interest: P Imax (weighted mean difference 11 cm H 2 O, 95% CI 7-15, I 2 = 0%), P Emax (8 cm H 2 O, 95% CI 2-15, I 2 = 65%), FVC (0.25 L, 95% CI 0.12-0.37, I 2 = 29%), FEV 1 (0.24 L, 95% CI 0.17-0.30, I 2 = 0%), PEF (0.51 L/s, 95% CI 0.10-0.92, I 2 = 0%), dyspnea (standardized mean difference -1.6 points, 95% CI -2.2 to -0.9; I 2 = 0%), and activity (standardized mean difference 0.78, 95% CI 0.22-1.35, I 2 = 0%). Meta-analyses found no significant results for the effects of breathing exercises on lung function. For the remaining interventions (ie, aerobic and postural exercises) and the addition of electrical stimulation, meta-analyses could not be performed. This systematic review reports 5 possible interventions used to improve respiratory function after stroke. Respiratory muscle training proved to be effective for improving inspiratory and expiratory strength, lung function, and dyspnea, and benefits were carried over to activity. However, there is still no evidence to accept or refute the efficacy of aerobic, breathing, and postural exercises, or the addition of electrical stimulation in respiratory function. Copyright © 2018 by Daedalus Enterprises.
Effect of pyridostigmine on in vivo and in vitro respiratory muscle of mdx mice.
Amancio, Gabriela de Cássia Sousa; Grabe-Guimarães, Andrea; Haikel, Dridi; Moreau, Johan; Barcellos, Neila Marcia Silva; Lacampagne, Alain; Matecki, Stefan; Cazorla, Olivier
2017-09-01
The current work was conducted to verify the contribution of neuromuscular transmission defects at the neuromuscular junction to Duchenne Muscular Dystrophy disease progression and respiratory dysfunction. We tested pyridostigmine and pyridostigmine encapsulated in liposomes (liposomal PYR), an acetylcholinesterase inhibitor to improve muscular contraction on respiratory muscle function in mdx mice at different ages. We evaluated in vivo with the whole-body plethysmography, the ventilatory response to hypercapnia, and measured in vitro diaphragm strength in each group. Compared to C57BL10 mice, only 17 and 22 month-old mdx presented blunted ventilatory response, under normocapnia and hypercapnia. Free pyridostigmine (1mg/kg) was toxic to mdx mice, unlike liposomal PYR, which did not show any side effect, confirming that the encapsulation in liposomes is effective in reducing the toxic effects of this drug. Treatment with liposomal PYR, either acute or chronic, did not show any beneficial effect on respiratory function of this DMD experimental model. The encapsulation in liposomes is effective to abolish toxic effects of drugs. Copyright © 2017. Published by Elsevier B.V.
Jawhar, A; Ponelies, N; Schild, L
2016-12-01
The clinical success of total knee arthroplasty (TKA) depends substantially on the quadriceps muscle function. A frequently applied thigh tourniquet during TKA may induce ischemia related injuries to quadriceps muscle cells. Animal limb muscles subjected to 2-5 h ischemia revealed dysfunctional mitochondria, which in turn compromised the cellular bioenergetics and increased the level of reactive oxygen species. The hypothesis of the present study was that tourniquet application during TKA for 60 min (min) affects the amount and function of mitochondria within musculus vastus medialis cells. In a randomized clinical trial, 10 patients enrolled to undergo primary TKA. The patients were randomly assigned to the tourniquet (n = 5) or non-tourniquet group (n = 5) after obtaining a written informed consent. For each of the groups, the first muscle biopsy was harvested immediately after performing the surgical approach and the second biopsy exactly 60 min later. All biopsies (5 × 5 × 5 mm) 125 mm 3 were harvested from musculus vastus medialis and snap-frozen in liquid nitrogen. The biochemical analysis of the prepared muscle tissues included the measurement of activities of mitochondrial respiratory chain enzyme complexes I-III and citrate synthase. Tourniquet-induced 60 min ischemia time did not significantly change the activities of the mitochondrial respiratory chain enzymes complexes I-III of the skeletal muscle cells. The citrate synthase activities found to be not significantly different between both groups. The use of tourniquet during TKA within a limited time period of 60 min remained without substantial effects on the amount and function of mitochondria within human skeletal muscle cells.
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S
2014-08-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.
Postdoctoral Fellowship for Dr. Lindholm, Underwater Physiology and Medicine
2008-05-01
St Croix 2000) and/or an increased reliance on fast twitch muscle fibers that are dependent on glycogen and produce La. The changes in muscle and...resistance protocol ( isometric ) increases respiratory muscle strength but not endurance, while, a protocol designed to increase respiratory muscle endurance... muscles (RMT). RMT minimized respiratory muscle fatigue and normalized the ventilatory response to increasing C02 (C02 sensitivity) and blood C02 in C02
Brocki, Barbara Cristina; Andreasen, Jan Jesper; Langer, Daniel; Souza, Domingos Savio R; Westerdahl, Elisabeth
2016-05-01
The aim was to investigate whether 2 weeks of inspiratory muscle training (IMT) could preserve respiratory muscle strength in high-risk patients referred for pulmonary resection on the suspicion of or confirmed lung cancer. Secondarily, we investigated the effect of the intervention on the incidence of postoperative pulmonary complications. The study was a single-centre, parallel-group, randomized trial with assessor blinding and intention-to-treat analysis. The intervention group (IG, n = 34) underwent 2 weeks of postoperative IMT twice daily with 2 × 30 breaths on a target intensity of 30% of maximal inspiratory pressure, in addition to standard postoperative physiotherapy. Standard physiotherapy in the control group (CG, n = 34) consisted of breathing exercises, coughing techniques and early mobilization. We measured respiratory muscle strength (maximal inspiratory/expiratory pressure, MIP/MEP), functional performance (6-min walk test), spirometry and peripheral oxygen saturation (SpO2), assessed the day before surgery and again 3-5 days and 2 weeks postoperatively. Postoperative pulmonary complications were evaluated 2 weeks after surgery. The mean age was 70 ± 8 years and 57.5% were males. Thoracotomy was performed in 48.5% (n = 33) of cases. No effect of the intervention was found regarding MIP, MEP, lung volumes or functional performance at any time point. The overall incidence of pneumonia was 13% (n = 9), with no significant difference between groups [IG 6% (n = 2), CG 21% (n = 7), P = 0.14]. An improved SpO2 was found in the IG on the third and fourth postoperative days (Day 3: IG 93.8 ± 3.4 vs CG 91.9 ± 4.1%, P = 0.058; Day 4: IG 93.5 ± 3.5 vs CG 91 ± 3.9%, P = 0.02). We found no association between surgical procedure (thoracotomy versus thoracoscopy) and respiratory muscle strength, which was recovered in both groups 2 weeks after surgery. Two weeks of additional postoperative IMT, compared with standard physiotherapy alone, did not preserve respiratory muscle strength but improved oxygenation in high-risk patients after lung cancer surgery. Respiratory muscle strength recovered in both groups 2 weeks after surgery. NCT01793155. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
The effects of strength and endurance training in patients with rheumatoid arthritis.
Strasser, Barbara; Leeb, Gunther; Strehblow, Christoph; Schobersberger, Wolfgang; Haber, Paul; Cauza, Edmund
2011-05-01
Patients with rheumatoid arthritis (RA) suffer from muscle loss, causing reduced muscle strength and endurance. The current study aimed to: (1) evaluate the effects of combined strength and endurance training (CT) on disease activity and functional ability in patients with RA and (2) investigate the benefits of a 6-month supervised CT program on muscle strength, cardio-respiratory fitness, and body composition of RA patients. Forty patients with RA, aged 41-73 years, were recruited for the current study. Twenty of these patients (19 females, one male) were randomly assigned to a 6-month supervised CT program; 20 patients (17 females, three males) served as controls. Within the CT program, strength training consisted of sets of weight bearing exercises for all major muscle groups. In addition to strength training, systematic endurance training was performed on a cycle ergometer two times per week. For RA patients involved in CT, disease activity (p = 0.06) and pain (p = 0.05) were reduced after the 6-month training period while general health (p = 0.04) and functional ability (p = 0.06) improved. Cardio-respiratory endurance was found to have improved significantly (by 10%) after 6 months of CT (p < 0.001). The overall strength of patients undertaking CT increased by an average of 14%. Lean body mass increased, and the percentage of body fat was found to decrease significantly (p < 0.05). A combination of strength and endurance training resulted in considerable improvements in RA patients' muscle strength and cardio-respiratory endurance, accompanied by positive changes in body composition and functional ability. Long-term training appears to be effective in reducing disease activity and associated pain and was found to have no deleterious effects.
Turner, L A; Tecklenburg-Lund, S L; Chapman, R; Shei, R-J; Wilhite, D P; Mickleborough, T
2016-07-01
We investigated how inspiratory muscle training impacted respiratory and locomotor muscle deoxygenation during submaximal exercise with resistive inspiratory loading. 16 male cyclists completed 6 weeks of either true (n=8) or sham (n=8) inspiratory muscle training. Pre- and post-training, subjects completed 3, 6-min experimental trials performed at ~80% ˙VO2peak with interventions of either moderate inspiratory loading, heavy inspiratory loading, or maximal exercise imposed in the final 3 min. Locomotor and respiratory muscle oxy-, deoxy-, and total-haemoglobin and myoglobin concentration was continuously monitored using near-infrared spectroscopy. Locomotor muscle deoxygenation changes from 80% ˙VO2peak to heavy inspiratory loading were significantly reduced pre- to post-training from 4.3±5.6 µM to 2.7±4.7 µM. Respiratory muscle deoxygenation was also significantly reduced during the heavy inspiratory loading trial (4.6±3.5 µM to 1.9±1.5 µM) post-training. There was no significant difference in oxy-, deoxy-, or total-haemoglobin and myoglobin during any of the other loading trials, from pre- to post-training, in either group. After inspiratory muscle training, highly-trained cyclists exhibited decreased locomotor and respiratory muscle deoxygenation during exercise with heavy inspiratory loading. These data suggest that inspiratory muscle training reduces oxygen extraction by the active respiratory and limb muscles, which may reflect changes in respiratory and locomotor muscle oxygen delivery. © Georg Thieme Verlag KG Stuttgart · New York.
de Campos, Elaine Cristina; Peixoto-Souza, Fabiana Sobral; Alves, Viviane Cristina; Basso-Vanelli, Renata; Barbalho-Moulim, Marcela; Laurino-Neto, Rafael Melillo; Costa, Dirceu
2018-01-01
OBJECTIVE: To determine whether weight loss in women with morbid obesity subjected to bariatric surgery alters lung function, respiratory muscle strength, functional capacity and the level of habitual physical activity and to investigate the relationship between these variables and changes in both body composition and anthropometrics. METHODS: Twenty-four women with morbid obesity were evaluated with regard to lung function, respiratory muscle strength, functional capacity, body composition, anthropometrics and the level of habitual physical activity two weeks prior to and six months after bariatric surgery. RESULTS: Regarding lung function, mean increases of 160 mL in slow vital capacity, 550 mL in expiratory reserve volume, 290 mL in forced vital capacity and 250 mL in forced expiratory volume in the first second as well as a mean reduction of 490 mL in inspiratory capacity were found. Respiratory muscle strength increased by a mean of 10 cmH2O of maximum inspiratory pressure, and a 72-meter longer distance on the Incremental Shuttle Walk Test demonstrated that functional capacity also improved. Significant changes also occurred in anthropometric variables and body composition but not in the level of physical activity detected using the Baecke questionnaire, indicating that the participants remained sedentary. Moreover, correlations were found between the percentages of lean and fat mass and both inspiratory and expiratory reserve volumes. CONCLUSION: The present data suggest that changes in body composition and anthropometric variables exerted a direct influence on functional capacity and lung function in the women analyzed but exerted no influence on sedentarism, even after accentuated weight loss following bariatric surgery. PMID:29561930
Muscle function in COPD: a complex interplay
Donaldson, Anna V; Maddocks, Matthew; Martolini, Dario; Polkey, Michael I; Man, William D-C
2012-01-01
The skeletal muscles play an essential role in life, providing the mechanical basis for respiration and movement. Skeletal muscle dysfunction is prevalent in all stages of chronic obstructive pulmonary disease (COPD), and significantly influences symptoms, functional capacity, health related quality of life, health resource usage and even mortality. Furthermore, in contrast to the lungs, the skeletal muscles are potentially remedial with existing therapy, namely exercise-training. This review summarizes clinical and laboratory observations of the respiratory and peripheral skeletal muscles (in particular the diaphragm and quadriceps), and current understanding of the underlying etiological processes. As further progress is made in the elucidation of the molecular mechanisms of skeletal muscle dysfunction, new pharmacological therapies are likely to emerge to treat this important extra-pulmonary manifestation of COPD. PMID:22973093
Brouwers, Bram; Stephens, Natalie A.; Costford, Sheila R.; Hopf, Meghan E.; Ayala, Julio E.; Yi, Fanchao; Xie, Hui; Li, Jian-Liang; Gardell, Stephen J.; Sparks, Lauren M.; Smith, Steven R.
2018-01-01
Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function. PMID:29942262
[The respiratory muscles in emphysema. The effects of thoracic distension].
Cassart, M; Estenne, M
2000-04-01
Besides increasing the work of ventilation, emphysema increases lung volume which in itself has a deleterious effect on the inspiratory muscles. We review here the effects of an acute change in lung volume on the configuration of the rib cage and muscle function. We also discuss the effects of the chronic distension associated with emphysema. The effects produced by changes in muscle length and configuration on the mechanical force and action of inspiratory muscles is detailed with particular focus on the diaphragm and its structural adaptations to experimental emphysema. We also analyze the activation pattern of inspiratory and expiratory muscles during the breathing process in patients with emphysema. Finally, we discuss the effects of single-lung transplantation and reduction surgery on chest distension and improved inspiratory muscle function.
Stephenson, Erin J.; Stepto, Nigel K.; Koch, Lauren G.; Britton, Steven L.
2012-01-01
Inactivity-related diseases are becoming a huge burden on Western society. While there is a major environmental contribution to metabolic health, the intrinsic properties that predispose or protect against particular health traits are harder to define. We used rat models of inborn high running capacity (HCR) and low running capacity (LCR) to determine inherent differences in mitochondrial volume and function, hypothesizing that HCR rats would have greater skeletal muscle respiratory capacity due to an increase in mitochondrial number. Additionally, we sought to determine if there was a link between the expression of the orphan nuclear receptor neuron-derived orphan receptor (Nor)1, a regulator of oxidative metabolism, and inherent skeletal muscle respiratory capacity. LCR rats were 28% heavier (P < 0.0001), and fasting serum insulin concentrations were 62% greater than in HCR rats (P = 0.02). In contrast, HCR rats had better glucose tolerance and reduced adiposity. In the primarily oxidative soleus muscle, maximal respiratory capacity was 21% greater in HCR rats (P = 0.001), for which the relative contribution of fat oxidation was 20% higher than in LCR rats (P = 0.02). This was associated with increased citrate synthase (CS; 33%, P = 0.009) and β-hydroxyacyl-CoA (β-HAD; 33%, P = 0.0003) activities. In the primarily glycolytic extensor digitum longus muscle, CS activity was 29% greater (P = 0.01) and β-HAD activity was 41% (P = 0.0004) greater in HCR rats compared with LCR rats. Mitochondrial DNA copy numbers were also elevated in the extensor digitum longus muscles of HCR rats (35%, P = 0.049) and in soleus muscles (44%, P = 0.16). Additionally, HCR rats had increased protein expression of individual mitochondrial respiratory complexes, CS, and uncoupling protein 3 in both muscle types (all P < 0.05). In both muscles, Nor1 protein was greater in HCR rats compared with LCR rats (P < 0.05). We propose that the differential expression of Nor1 may contribute to the differences in metabolic regulation between LCR and HCR phenotypes. PMID:22936731
Muscle glucose metabolism in chronic obstructive pulmonary disease patients.
Sancho-Muñoz, Antonio; Trampal, Carlos; Pascual, Sergi; Martínez-Llorens, Juana; Chalela, Roberto; Gea, Joaquim; Orozco-Levi, Mauricio
2014-06-01
Muscle dysfunction is one of the most extensively studied manifestations of COPD. Metabolic changes in muscle are difficult to study in vivo, due to the lack of non-invasive techniques. Our aim was to evaluate metabolic activity simultaneously in various muscle groups in COPD patients. Thirty-nine COPD patients and 21 controls with normal lung function, due to undergo computed axial and positron emission tomography for staging of localized lung lesions were included. After administration of 18-fluordeoxyglucose, images of 2 respiratory muscles (costal and crural diaphragm, and rectus abdominus) and 2 peripheral muscles (brachial biceps and quadriceps) were obtained, using the standard uptake value as the glucose metabolism index. Standard uptake value was higher in both portions of the diaphragm than in the other muscles of all subjects. Moreover, the crural diaphragm and rectus abdominus showed greater activity in COPD patients than in the controls (1.8±0.7 vs 1.4±0.8; and 0.78±0.2 vs 0.58±0.1; respectively, P<.05). A similar trend was observed with the quadriceps. In COPD patients, uptake in the two respiratory muscles and the quadriceps correlated directly with air trapping (r=0.388, 0.427 and 0.361, respectively, P<.05). There is greater glucose uptake and metabolism in the human diaphragm compared to other muscles when the subject is at rest. Increased glucose metabolism in the respiratory muscles (with a similar trend in their quadriceps) of COPD patients is confirmed quantitatively, and is directly related to the mechanical loads confronted. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.
Effects of breathing exercises on lung capacity and muscle activities of elderly smokers.
Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon
2016-06-01
[Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength.
Effects of breathing exercises on lung capacity and muscle activities of elderly smokers
Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon
2016-01-01
[Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength. PMID:27390394
A review of concepts regarding the origin of respiratory muscle fatigue
NASA Astrophysics Data System (ADS)
Kuraszkiewicz, Bożena; Piotrkiewicz, Maria
2011-01-01
In this review, the classification of respiratory muscle fatigue from the perspective of its origin is presented. The fatigue is classified as central or peripheral, and the latter further subdivided into high- and low-frequency fatigue. However, muscle fatigue is a complex process and all three types of fatigue probably occur simultaneously in the overloaded respiratory muscles. The relative importance of each type depends on the duration of respiratory loading and other physiological variables. However, central and high-frequency fatigue resolve rapidly once muscle overload is removed, whereas low-frequency fatigue persists over long time.
Respiratory modulation of human autonomic rhythms
NASA Technical Reports Server (NTRS)
Badra, L. J.; Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.
2001-01-01
We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.
Jevnikar, Mitja; Kodric, Metka; Cantarutti, Fabiana; Cifaldi, Rossella; Longo, Cinzia; Della Porta, Rossana; Bembi, Bruno; Confalonieri, Marco
2015-12-01
Pompe disease is an autosomal recessive metabolic disorder caused by the deficiency of the lysosomal enzyme acid α-glucosidase. This deficiency leads to glycogen accumulation in the lysosomes of muscle tissue causing progressive muscular weakness particularly of the respiratory system. Enzyme replacement therapy (ERT) has demonstrated efficacy in slowing down disease progression in infants. Despite the large number of studies describing the effects of physical training in juvenile and adult late onset Pompe disease (LOPD). There are very few reports that analyze the benefits of respiratory muscle rehabilitation or training. The effectiveness of respiratory muscle training was investigated using a specific appliance with adjustable resistance (Threshold). The primary endpoint was effect on respiratory muscular strength by measurements of MIP and MEP. Eight late-onset Pompe patients (aged 13 to 58 years; 4 female, 4 male) with respiratory muscle deficiency on functional respiratory tests were studied. All patients received ERT at the dosage of 20 mg/kg/every 2 weeks and underwent training with Threshold at specified pressures for 24 months. A significant increase in MIP was observed during the follow-up of 24 month: 39.6 cm H 2 O (+ 25.0%) at month 3; 39.5 cm H 2 O (+ 24.9%) at month 6; 39.1 cm H 2 O (+ 23.7%) at month 9; 37.3 cm H 2 O (+ 18.2%) at month 12; and 37.3 cm H 2 O (+ 17.8%) at month 24. Median MEP values also showed a significant increase during the first 9 months: 29.8 cm H 2 O, (+ 14.3%) at month 3; 31.0 cm H 2 O (+ 18.6) at month 6; and 29.5 cm H 2 O (+ 12.9) at month 9. MEP was then shown to be decreased at months 12 and 24; median MEP was 27.2 cm H 2 O (+ 4.3%) at 12 months and 26.6 cm H 2 O (+ 1.9%) at 24 months. The FVC remain stable throughout the study. An increase in respiratory muscular strength was demonstrated with Threshold training when used in combination with ERT.
Lewis, Philip; Sheehan, David; Soares, Renata; Varela Coelho, Ana; O'Halloran, Ken D.
2015-01-01
Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease. PMID:25941492
Respiratory muscle tension as symptom generator in individuals with high anxiety sensitivity.
Ritz, Thomas; Meuret, Alicia E; Bhaskara, Lavanya; Petersen, Sibylle
2013-02-01
Anxiety and panic are associated with the experience of a range of bodily symptoms, in particular unpleasant breathing sensations (dyspnea). Respiratory theories of panic disorder have focused on disturbances in blood gas regulation, but respiratory muscle tension as a source of dyspnea has not been considered. We therefore examined the potential of intercostal muscle tension to elicit dyspnea in individuals with high anxiety sensitivity, a risk factor for developing panic disorder. Individuals high and low in anxiety sensitivity (total N=62) completed four tasks: electromyogram biofeedback for tensing intercostal muscle, electromyogram biofeedback for tensing leg muscles, paced breathing at three different speeds, and a fine motor task. Global dyspnea, individual respiratory sensations, nonrespiratory sensations, and discomfort were assessed after each task, whereas respiratory pattern (respiratory inductance plethysmography) and end-tidal carbon dioxide (capnography) were measured continuously. In individuals with high compared to low anxiety sensitivity, intercostal muscle tension elicited a particularly strong report of obstruction (M=5.1, SD=3.6 versus M=2.5, SD=3.0), air hunger (M=1.9, SD=2.1 versus M=0.4, SD=0.8), hyperventilation symptoms (M=0.6, SD=0.6 versus M=0.1, SD=0.1), and discomfort (M=5.1, SD=3.2 versus M=2.2, SD=2.1) (all p values<.05). This effect was not explained by site-unspecific muscle tension, voluntary manipulation of respiration, or sustained task-related attention. Nonrespiratory control sensations were not significantly affected by tasks (F<1), and respiratory variables did not reflect any specific responding of high-Anxiety Sensitivity Index participants to intercostal muscle tension. Respiratory muscle tension may contribute to the respiratory sensations experienced by panic-prone individuals. Theories and treatments for panic disorder should consider this potential source of symptoms.
Cotten, Pamela B.; Piscitelli, Marina A.; McLellan, William A.; Rommel, Sentiel A.; Dearolf, Jennifer L.; Pabst, D. Ann
2011-01-01
Most mammals possess stamina because their locomotor and respiratory (i.e., ventilatory) systems are mechanically coupled. These systems are decoupled, however, in bottlenose dolphins (Tursiops truncatus) as they swim on a breath-hold. Locomotion and ventilation are coupled only during their brief surfacing event, when they respire explosively (up to 90% of total lung volume in approximately 0.3s) (Ridgway et al., 1969). The predominantly slow-twitch fiber profile of their diaphragm (Dearolf, 2003) suggests that this muscle does not likely power their rapid ventilatory event. Based upon Bramble's (1989) biomechanical model of locomotor-respiratory coupling in galloping mammals, it was hypothesized that locomotor muscles function to power ventilation in bottlenose dolphins. It was further hypothesized that these muscles would be composed predominantly of fast-twitch fibers to facilitate the bottlenose dolphin's rapid ventilation. The gross morphology of cranio-cervical (scalenus, sternocephalicus, sternohyoid), thoracic (intercostals, transverse thoracis), and lumbo-pelvic (hypaxialis, rectus abdominis, abdominal obliques) muscles (n=7) and the fiber-type profiles (n=6) of selected muscles (scalenus, sternocephalicus, sternohyoid, rectus abdominis) of bottlenose dolphins were investigated. Physical manipulations of excised thoracic units were carried out to investigate potential actions of these muscles. Results suggest that the cranio-cervical muscles act to draw the sternum and associated ribs cranio-dorsally, which flares the ribs laterally, and increases the thoracic cavity volume required for inspiration. The lumbo-pelvic muscles act to draw the sternum and caudal ribs caudally, which decreases the volumes of the thoracic and abdominal cavities required for expiration. All muscles investigated were composed predominantly of fast-twitch fibers (range 61-88% by area) and appear histochemically poised for rapid contraction. These combined results suggest that dolphins utilize muscles, similar to those used by galloping mammals, to power their explosive ventilation. PMID:18777569
Protective role of Parkin in skeletal muscle contractile and mitochondrial function.
Gouspillou, Gilles; Godin, Richard; Piquereau, Jérome; Picard, Martin; Mofarrahi, Mahroo; Mathew, Jasmin; Purves-Smith, Fennigje M; Sgarioto, Nicolas; Hepple, Russell T; Burelle, Yan; Hussain, Sabah N A
2018-04-22
Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2 -/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2 -/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2 -/- mice display a slight but significant decrease in its specific force. Park2 -/ - muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2 +/+ muscles, the mitochondrial function of Park2 -/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2 -/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Effect on lung function of mounthpiece ventilation in Steinert disease. A case report.
Annunziata, Anna; Fiorentino, Giuseppe; Esquinas, Antonio
2017-03-01
In patients with muscular dystrophies both muscle length tension relationship changes and muscle elasticity and plasticity are decreased, resulting in impaired inspiratory muscle function and decreased vital capacity. Furthermore, the loss of deep breathing further increases the risk of alveolar collapse, hypoventilation and atelectasias. In this case report, a stable improvement of vital capacity after treatment with mounthpiece ventilation (MPV), was observed, suggesting that not invasive ventilation (NIV) might help to maintai lung and chest wall compliance, prevent hypoventilation and atelectasias which in turn may slow down the development of the restrictive respiratory pattern. The improvement of vital capacity may have a positive impact on alveolar ventilation by reducing the time with SaO2 values below 90%. This case illustrates that MPV is an effective method to improve respiratory function in patients non-tolerant of nasal mask and a valid alternative option for those who need NIV support for the most part of the day. Furthermore, the use of MPV, alone or combined with other interfaces, improves the quality of life of the neuromuscular patients and promotes a greater adherence to mechanical ventilation.
Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle.
Greggio, Chiara; Jha, Pooja; Kulkarni, Sameer S; Lagarrigue, Sylviane; Broskey, Nicholas T; Boutant, Marie; Wang, Xu; Conde Alonso, Sonia; Ofori, Emmanuel; Auwerx, Johan; Cantó, Carles; Amati, Francesca
2017-02-07
Mitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults. Exercise differentially modulated respiratory complexes. Complex I was the most upregulated complex and not stoichiometrically associated to the other complexes. In contrast to the other complexes, complex I was almost exclusively found assembled in supercomplexes in muscle mitochondria. Overall, supercomplex content was increased after exercise. In particular, complexes I, III, and IV were redistributed to supercomplexes in the form of I+III 2 +IV. Taken together, our results provide the first evidence that exercise affects the stoichiometry of supercomplex formation in humans and thus reveal a novel adaptive mechanism for increased energy demand. Copyright © 2017 Elsevier Inc. All rights reserved.
Oliveira, Marcio Aparecido; Vidotto, Milena Carlos; Nascimento, Oliver Augusto; Almeida, Renato; Santoro, Ilka Lopes; Sperandio, Evandro Fornias; Jardim, José Roberto; Gazzotti, Mariana Rodrigues
2015-01-01
Studies have shown that physiopathological changes to the respiratory system can occur following thoracic and abdominal surgery. Laminectomy is considered to be a peripheral surgical procedure, but it is possible that thoracic spinal surgery exerts a greater influence on lung function. The aim of this study was to evaluate the pulmonary volumes and maximum respiratory pressures of patients undergoing cervical, thoracic or lumbar spinal surgery. Prospective study in a tertiary-level university hospital. Sixty-three patients undergoing laminectomy due to diagnoses of tumors or herniated discs were evaluated. Vital capacity, tidal volume, minute ventilation and maximum respiratory pressures were evaluated preoperatively and on the first and second postoperative days. Possible associations between the respiratory variables and the duration of the operation, surgical diagnosis and smoking status were investigated. Vital capacity and maximum inspiratory pressure presented reductions on the first postoperative day (20.9% and 91.6%, respectively) for thoracic surgery (P = 0.01), and maximum expiratory pressure showed reductions on the first postoperative day in cervical surgery patients (15.3%; P = 0.004). The incidence of pulmonary complications was 3.6%. There were reductions in vital capacity and maximum respiratory pressures during the postoperative period in patients undergoing laminectomy. Surgery in the thoracic region was associated with greater reductions in vital capacity and maximum inspiratory pressure, compared with cervical and lumbar surgery. Thus, surgical manipulation of the thoracic region appears to have more influence on pulmonary function and respiratory muscle action.
Dias, Fernanda Dultra; Sampaio, Luciana Maria Malosá; da Silva, Graziela Alves; Gomes, Évelim LF Dantas; do Nascimento, Eloisa Sanches Pereira; Alves, Vera Lucia Santos; Stirbulov, Roberto; Costa, Dirceu
2013-01-01
Introduction Pulmonary rehabilitation (PR) is a multidisciplinary program of care for patients with chronic obstructive pulmonary disease (COPD) with the goal of improving the functional capacity and quality of life, as well as maintaining the clinical stability of COPD sufferers. However, not all patients are available for such a program despite discomfort with their condition. The aim of this study was to evaluate the effects of a home-based PR (HBPR) program on functional ability, quality of life, and respiratory muscle strength and endurance. Patients and methods Patients with COPD according to the Global Initiative of Chronic Obstructive Lung Disease were randomized (double-blind) into two groups. One group performed a protocol at home with aerobic and muscle strength exercises and was called the intervention group; the other group received only instructions to perform breathing and stretching exercises, characterizing it as the control group (CG). We assessed the following variables at baseline and 2 months: exercise tolerance (incremental shuttle walk test and upper limb test), respiratory muscle (strength and endurance test), and health-related quality of life (Airways Questionnaire 20). Results There were no significant changes after the intervention in either of the two groups in exercise tolerance and quality of life. However, the intervention group had improved respiratory endurance compared with the CG, while the CG presented a decrease in the load sustained by the respiratory muscles after the HBPR. Conclusion A program of HBPR with biweekly supervision (although not enough to provide significant improvements in physical capacity or quality of life) played an important role in maintaining the stability of the clinical features of patients with COPD; the patients had no worsening of symptoms during the intervention period according to the daily log. PMID:24235824
[Instrumentation support in respiratory kinesiotherapy].
Vandevenne, A; Sergysels, R; Ravez, P; Worth, H; De Coster, A
1988-01-01
The points of impact of instrumental support in respiratory physiotherapy are numerous; they concern primarily the pulmonary expansion, bronchial drainage and function of respiratory muscles. The pulmonary expansion may be helped by incitant spirometry and either intermittent or continuous positive pressure respiration, or indirectly by the utilisation of respiration against resistance (expiratory bottles, masks with uni-directional valves and expiratory resistances etc.). These different techniques may be used in the presence of instability of the respiratory units, secondary to an alteration of surfactant or to closure of the small airways induced by a transitory reduction (in the post-operative period) or permanent reduction (such as parietal wall disease of mechanical or neuro-muscular origin) of the functional residual capacity (CRF). If the continuous positive airway pressure (CPAP) seems particularly helpful for the CRF to recover to the pre-operative level it also appears on the contrary as the least efficacious technique to increase trans-pulmonary pressure. The instrumental support for bronchial drainage may theoretically affect the tension activity of the transport (instrumental help in the pulmonary expansion and in hyperventilation), muco-ciliary transport (external parietal vibration or internal vibrations applied to the upper airways), the biphasic flow (expiratory assistance by negative pressure and humidifiers). The function of the respiratory muscles may in certain cases be improved by the use of abdominal pneumatic cuirasses, by hyperventilation exercises in an isocapnoeic milieu or in breathing exercises against an additional inspiratory or expiratory resistance. If the physiological foundation of mechanical support in respiratory education may be frequently identified, the clinical results reported in the literature are often contradictory.
Luo, Yu-wen; Wang, Mei; Hu, Yu-he; Xu, Wen-hui; Zhou, Lu-qian; Chen, Rong-chang; Chen, Xin
2017-01-01
Background Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Materials and methods Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Results Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group (P<0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPImax [maximal inspiratory pressure] 5.20±0.89 cmH2O vs 1.32±0.91 cmH2O; P<0.05). However, there were no significant differences in the other indices between the two groups (P>0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness (P>0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program (P>0.05). Conclusion Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT. PMID:28919733
Wang, Kai; Zeng, Guang-Qiao; Li, Rui; Luo, Yu-Wen; Wang, Mei; Hu, Yu-He; Xu, Wen-Hui; Zhou, Lu-Qian; Chen, Rong-Chang; Chen, Xin
2017-01-01
Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group ( P <0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPI max [maximal inspiratory pressure] 5.20±0.89 cmH 2 O vs 1.32±0.91 cmH 2 O; P <0.05). However, there were no significant differences in the other indices between the two groups ( P >0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness ( P >0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program ( P >0.05). Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT.
Respiratory Muscle Strength Predicts Decline in Mobility in Older Persons
Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Leurgans, S.; Shah, R.C.; Bennett, D.A.
2008-01-01
Objectives To test the hypothesis that respiratory muscle strength is associated with the rate of change in mobility even after controlling for leg strength and physical activity. Methods Prospective study of 890 ambulatory older persons without dementia who underwent annual clinical evaluations to examine change in the rate of mobility over time. Results In a linear mixed-effect model adjusted for age, sex, and education, mobility declined about 0.12 unit/year, and higher levels of respiratory muscle strength were associated with a slower rate of mobility decline (estimate 0.043, SE 0.012, p < 0.001). Respiratory muscle strength remained associated with the rate of change in mobility even after controlling for lower extremity strength (estimate 0.036, SE 0.012, p = 0.004). In a model that included terms for respiratory muscle strength, lower extremity strength and physical activity together, all three were independent predictors of mobility decline in older persons. These associations remained significant even after controlling for body composition, global cognition, the development of dementia, parkinsonian signs, possible pulmonary disease, smoking, joint pain and chronic diseases. Conclusion Respiratory muscle strength is associated with mobility decline in older persons independent of lower extremity strength and physical activity. Clinical interventions to improve respiratory muscle strength may decrease the burden of mobility impairment in the elderly. PMID:18784416
Effect of endurance exercise on respiratory muscle function in patients with cystic fibrosis.
Reilly, Charles C; Ward, Katie; Jolley, Caroline J; Frank, Lucy A; Elston, Caroline; Moxham, John; Rafferty, Gerrard F
2012-03-15
During exercise, patients with cystic fibrosis (CF) dynamically hyperinflate, which imposes both elastic and threshold loads on the inspiratory muscles and places them at a mechanical disadvantage due to muscle shortening. Conversely, dynamic hyperinflation imposes a progressively resistive load and lengthens the expiratory muscles potentially increasing their susceptibility to develop low frequency fatigue (LFF). The aim of the study was to determine whether high intensity endurance exercise leads to the development of LFF in either the diaphragm or expiratory abdominal wall muscles in patients with CF. Ten patients and ten healthy individuals were studied. Twitch transdiaphragmatic pressure (TwP(di)) and twitch abdominal pressure (TwT(10)) were measured before and after exhaustive endurance cycle exercise at 80% of their previously determined maximum work rate. There was no difference in TwP(di) or TwT(10) at 20, 40 or 60 min post exercise compared to pre-exercise resting values in any of the participants, indicating that overt LFF of the respiratory muscles did not develop. Copyright © 2012 Elsevier B.V. All rights reserved.
Männikkö, Roope; Wong, Leonie; Tester, David J; Thor, Michael G; Sud, Richa; Kullmann, Dimitri M; Sweeney, Mary G; Leu, Costin; Sisodiya, Sanjay M; FitzPatrick, David R; Evans, Margaret J; Jeffrey, Iona J M; Tfelt-Hansen, Jacob; Cohen, Marta C; Fleming, Peter J; Jaye, Amie; Simpson, Michael A; Ackerman, Michael J; Hanna, Michael G; Behr, Elijah R; Matthews, Emma
2018-04-14
Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.4, which is encoded by the gene SCN4A. Variants in NaV1.4 that directly alter skeletal muscle excitability can cause myotonia, periodic paralysis, congenital myopathy, and myasthenic syndrome. SCN4A variants have also been found in infants with life-threatening apnoea and laryngospasm. We therefore hypothesised that rare, functionally disruptive SCN4A variants might be over-represented in infants who died from SIDS. We did a case-control study, including two consecutive cohorts that included 278 SIDS cases of European ancestry and 729 ethnically matched controls without a history of cardiovascular, respiratory, or neurological disease. We compared the frequency of rare variants in SCN4A between groups (minor allele frequency <0·00005 in the Exome Aggregation Consortium). We assessed biophysical characterisation of the variant channels using a heterologous expression system. Four (1·4%) of the 278 infants in the SIDS cohort had a rare functionally disruptive SCN4A variant compared with none (0%) of 729 ethnically matched controls (p=0·0057). Rare SCN4A variants that directly alter NaV1.4 function occur in infants who had died from SIDS. These variants are predicted to significantly alter muscle membrane excitability and compromise respiratory and laryngeal function. These findings indicate that dysfunction of muscle sodium channels is a potentially modifiable risk factor in a subset of infant sudden deaths. UK Medical Research Council, the Wellcome Trust, National Institute for Health Research, the British Heart Foundation, Biotronik, Cardiac Risk in the Young, Higher Education Funding Council for England, Dravet Syndrome UK, the Epilepsy Society, the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health, and the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Fat-Free Mass Index for Evaluating the Nutritional Status and Disease Severity in COPD.
Luo, Yuwen; Zhou, Luqian; Li, Yun; Guo, Songwen; Li, Xiuxia; Zheng, Jingjing; Zhu, Zhe; Chen, Yitai; Huang, Yuxia; Chen, Rui; Chen, Xin
2016-05-01
Despite the high prevalence of weight loss in subjects with COPD, the 2011 COPD management guidelines do not include an index measuring nutritional status. Fat-free mass index (FFMI) can accurately determine the nutritional status of subjects and may be closely correlated with COPD severity. We aimed to determine the nutritional status evaluated by FFMI according to the 2011 Global Initiative for Chronic Obstructive Lung Disease (GOLD) levels in stable subjects with COPD and the association between nutritional status and respiratory symptoms, exercise capacity, and respiratory muscle function. We included 235 stable subjects with COPD in this cross-sectional study. All of the subjects were divided into the 2011 GOLD Groups A, B, C, and D. FFMI (measured by bioelectrical impedance), spirometry (FEV1, percent-of-predicted FEV1, and FEV1/FVC), respiratory muscle function (peak inspiratory and peak expiratory pressures), exercise capacity (6-min walk distance), and dyspnea severity (Modified Medical Research Council dyspnea scale) were measured and compared between the GOLD groups. Malnutrition was identified in 48.5% of subjects and most prevalent in Group D (Group A: 41%, Group B: 41%, Group C: 31%, and Group D: 62%). FFMI was significantly lower in Group D (P < .001), with both sexes considered malnourished. Low FFMI significantly correlated with frequent exacerbation, older age, decreased pulmonary function, 6-min walk distance, peak inspiratory pressure, and worsened dyspnea. FFMI was significantly lower in the emphysema-dominant phenotype and mixed phenotype compared with the normal phenotype and airway-dominant phenotype. A stepwise multiple linear regression analysis identified peak inspiratory pressures and older age as independent predictors of FFMI. Malnutrition is highly prevalent in all COPD groups, particularly in Group D subjects, who warrant special attention for nutritional intervention and pulmonary rehabilitation. FFMI significantly correlated with exercise capacity, dyspnea, respiratory muscle function, and pulmonary function and may be a useful predictor of COPD severity. Copyright © 2016 by Daedalus Enterprises.
Pulmonary function in patients with Huntington’s Disease
2014-01-01
Background Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive motor, cognitive and psychiatric disturbances. Chest muscle rigidity, respiratory muscle weakness, difficulty in clearing airway secretions and swallowing abnormalities have been described in patients with neurodegenerative disorders including HD. However limited information is available regarding respiratory function in HD patients. The purpose of this study was to investigate pulmonary function of patients with HD in comparison to healthy volunteers, and its association with motor severity. Methods Pulmonary function measures were taken from 18 (11 male, 7 female) manifest HD patients (53 ± 10 years), and 18 (10 male, 8 female) healthy volunteers (52 ± 11 years) with similar anthropometric and life-style characteristics to the recruited HD patients. Motor severity was quantified by the Unified Huntington’s Disease Rating Scale-Total Motor Score (UHDRS-TMS). Maximum respiratory pressure was measured on 3 separate days with a week interval to assess test-retest reliability. Results The test-retest reliability of maximum inspiratory and expiratory pressure measurements was acceptable for both HD patient and control groups (ICC ≥0.92), but the values over 3 days were more variable in the HD group (CV < 11.1%) than in the control group (CV < 7.6%). The HD group showed lower respiratory pressure, forced vital capacity, peak expiratory flow and maximum voluntary ventilation than the control group (p < 0.05). Forced vital capacity, maximum voluntary ventilation and maximum respiratory pressures were negatively (r = -0.57; -0.71) correlated with the UHDRS-TMS (p < 0.05). Conclusion Pulmonary function is decreased in manifest HD patients, and the magnitude of the decrease is associated with motor severity. PMID:24886346
Cavalcante Marcelino, Alessandra M F; da Silva, Hilton Justino
2010-01-01
Asthma is a chronic illness of the airways that can reduce respiratory muscle strength due to the resulting hyperinflation or treatment with corticosteroids. One of the ways to evaluate this respiratory muscular weakness is the Maximal Inspiratory Pressure (PImax). A systematic review of the databases PUBMED/MEDLINE, LILACS and SCIELO was carried through, using the key words: Asthma, respiratory muscle and muscle strength. Fifty were found and six articles that evaluated the PImax in asthmatics, from these, thirty were excluded, making a total of twenty six articles. Through the present revision we show the effectiveness of PImax in evaluating respiratory muscle strength in asthmatics. More studies are needed, however, fot better understanding of the asthmatic individual. Rev Port Pneumol 2010; XVI (3): 463-470. © 2010 Sociedade Portuguesa de Pneumologia/SPP.
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R.; Andtbacka, Robert H. I.; Trinity, Joel D.; Hyngstrom, John R.; Garten, Ryan S.; Diakos, Nikolaos A.; Ives, Stephen J.; Dela, Flemming; Larsen, Steen; Drakos, Stavros
2014-01-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production. PMID:24906913
Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M.; López-Soriano, Francisco J.
2017-01-01
Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection), redox balance (protein oxidation and nitration and antioxidants) and muscle proteins (1-dimensional immunoblots), carbonylated proteins (2-dimensional immunoblots), inflammatory cells (immunohistochemistry), and mitochondrial respiratory chain (MRC) complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV). Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius. PMID:29255650
Ceriana, Piero; Vitacca, Michele; Carlucci, Annalisa; Paneroni, Mara; Pisani, Lara; Nava, Stefano
2017-04-01
Symptoms, clinical course, functional and biological data during an exacerbation of chronic obstructive pulmonary disease (EXCOPD) have been investigated, but data on physiological changes of respiratory mechanics during a severe exacerbation with respiratory acidosis requiring noninvasive mechanical ventilation (NIMV) are scant. The aim of this study was to evaluate changes of respiratory mechanics in COPD patients comparing data observed during EXCOPD with those observed during stable state in the recovery phase. In 18 COPD patients having severe EXCOPD requiring NIMV for global respiratory failure, we measured respiratory mechanics during both EXCOPD (T0) and once the patients achieved a stable state (T1). The diaphragm and inspiratory muscles effort was significantly increased under relapse, as well as the pressure-time product of the diaphragm and the inspiratory muscle (PTPdi and PTPes). The resistive loads to breathe (i.e., PEEPi,dyn, compliance and inspiratory resistances) were also markedly increased, while the maximal pressures generated by the diaphragm and the inspiratory muscles, together with forced expired volumes were decreased. All these indices statistically improved but with a great intrasubject variability in stable condition. Moreover, tension-time index (TTdi) significantly improved from the EXCOPD state to the condition of clinical stability (0.156 ± 0.04 at T0 vs. 0.082 ± 0.02 at T1 p < 0.001). During an EXCOPD, the load/capacity of the respiratory pump is impaired, and although the patients exhibit a rapid shallow breathing pattern, this does not necessarily correlate with a TTdi ≥ 0.15. These changes are reverted once they recover from the EXCOPD, despite a large variability between patients.
Bartley, Jenna M; Pan, Sarah J; Keilich, Spencer R; Hopkins, Jacob W; Al-Naggar, Iman M; Kuchel, George A; Haynes, Laura
2016-04-01
Although the influenza virus only infects the respiratory system, myalgias are commonly experienced during infection. In addition to a greater risk of hospitalization and death, older adults are more likely to develop disability following influenza infection; however, this relationship is understudied. We hypothesized that upon challenge with influenza, aging would be associated with functional impairments, as well as upregulation of skeletal muscle inflammatory and atrophy genes. Infected young and aged mice demonstrated decreased mobility and altered gait kinetics. These declines were more prominent in hind limbs and in aged mice. Skeletal muscle expression of genes involved in inflammation, as well as muscle atrophy and proteolysis, increased during influenza infection with an elevated and prolonged peak in aged mice. Infection also decreased expression of positive regulators of muscle mass and myogenesis components to a greater degree in aged mice. Gene expression correlated to influenza-induced body mass loss, although evidence did not support direct muscle infection. Overall, influenza leads to mobility impairments with induction of inflammatory and muscle degradation genes and downregulation of positive regulators of muscle. These effects are augmented and prolonged with aging, providing a molecular link between influenza infection, decreased resilience and increased risk of disability in the elderly.
Bartley, Jenna M.; Pan, Sarah J.; Keilich, Spencer R.; Hopkins, Jacob W.; Al-Naggar, Iman M.; Kuchel, George A.; Haynes, Laura
2016-01-01
Although the influenza virus only infects the respiratory system, myalgias are commonly experienced during infection. In addition to a greater risk of hospitalization and death, older adults are more likely to develop disability following influenza infection; however, this relationship is understudied. We hypothesized that upon challenge with influenza, aging would be associated with functional impairments, as well as upregulation of skeletal muscle inflammatory and atrophy genes. Infected young and aged mice demonstrated decreased mobility and altered gait kinetics. These declines were more prominent in hind limbs and in aged mice. Skeletal muscle expression of genes involved in inflammation, as well as muscle atrophy and proteolysis, increased during influenza infection with an elevated and prolonged peak in aged mice. Infection also decreased expression of positive regulators of muscle mass and myogenesis components to a greater degree in aged mice. Gene expression correlated to influenza-induced body mass loss, although evidence did not support direct muscle infection. Overall, influenza leads to mobility impairments with induction of inflammatory and muscle degradation genes and downregulation of positive regulators of muscle. These effects are augmented and prolonged with aging, providing a molecular link between influenza infection, decreased resilience and increased risk of disability in the elderly. PMID:26856410
Cruz-Montecinos, Carlos; Godoy-Olave, Diego; Contreras-Briceño, Felipe A; Gutiérrez, Paulina; Torres-Castro, Rodrigo; Miret-Venegas, Leandro; Engel, Roger M
2017-01-01
Background and objective In chronic obstructive pulmonary disease (COPD), accessory respiratory muscles are recruited as a compensatory adaptation to changes in respiratory mechanics. This results in shortening and overactivation of these and other muscles. Manual therapy is increasingly being investigated as a way to alleviate these changes. The aim of this study was to measure the immediate effect on lung function of a soft tissue manual therapy protocol (STMTP) designed to address changes in the accessory respiratory muscles and their associated structures in patients with severe COPD. Methods Twelve medically stable patients (n=12) with an existing diagnosis of severe COPD (ten: GOLD Stage III and two: GOLD Stage IV) were included. Residual volume, inspiratory capacity and oxygen saturation (SpO2) were recorded immediately before and after administration of the STMTP. A Student’s t-test was used to determine the effect of the manual therapy intervention (P<0.05). Results The mean age of the patients was 62.4 years (range 46–77). Nine were male. Residual volume decreased from 4.5 to 3.9 L (P=0.002), inspiratory capacity increased from 2.0 to 2.1 L (P=0.039) and SpO2 increased from 93% to 96% (P=0.001). Conclusion A single application of an STMTP appears to have the potential to produce immediate clinically meaningful improvements in lung function in patients with severe and very severe COPD. PMID:28260875
Jones, Harrison N; Crisp, Kelly D; Moss, Tronda; Strollo, Katherine; Robey, Randy; Sank, Jeffrey; Canfield, Michelle; Case, Laura E; Mahler, Leslie; Kravitz, Richard M; Kishnani, Priya S
2014-01-01
Respiratory muscle weakness is a primary therapeutic challenge for patients with infantile Pompe disease. We previously described the clinical implementation of a respiratory muscle training (RMT) regimen in two adults with late-onset Pompe disease; both demonstrated marked increases in inspiratory and expiratory muscle strength in response to RMT. However, the use of RMT in pediatric survivors of infantile Pompe disease has not been previously reported. We report the effects of an intensive RMT program on maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) using A-B-A (baseline-treatment-posttest) single subject experimental design in two pediatric survivors of infantile Pompe disease. Both subjects had persistent respiratory muscle weakness despite long-term treatment with alglucosidase alfa. Subject 1 demonstrated negligible to modest increases in MIP/MEP (6% increase in MIP, d=0.25; 19% increase in MEP, d=0.87), while Subject 2 demonstrated very large increases in MIP/MEP (45% increase in MIP, d=2.38; 81% increase in MEP, d=4.31). Following three-month RMT withdrawal, both subjects maintained these strength increases and demonstrated maximal MIP and MEP values at follow-up. Intensive RMT may be a beneficial treatment for respiratory muscle weakness in pediatric survivors of infantile Pompe disease.
Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.
Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A
2012-02-28
In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.
DiMauro, Salvatore
2006-11-01
Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.
Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.
Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J
2005-10-01
To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p < .05) and were able to stand and ambulate. All weaned from mechanical ventilation, but three required subsequent intermittent support. Six patients died before hospital discharge. Upper extremity strength on admission inversely correlated with time to wean from mechanical ventilation (R = .72, p < .001). : Patients receiving chronic ventilation are weak and deconditioned but respond to aggressive whole-body and respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.
[Six-minute walk test in children with neuromuscular disease.
Cruz-Anleu, Israel Didier; Baños-Mejía, Benjamín Omar; Galicia-Amor, Susana
2013-01-01
Background: neuromuscular diseases affect the motor unit. When they evolve, respiratory complications are common; the six-minute walk test plays an important role in the assessment of functional capacity. Methods: prospective, transversal, descriptive and observational study. We studied seven children with a variety of neuromuscular diseases and spontaneous ambulation. We tested their lung function, and administered a six-minute walk test and a test of respiratory muscle strength to these children. Results: the age was 9.8 ± 2.4 years. All patients were males. Forced vital capacity decreased in three patients (42.8 %), forced expiratory volume during the first second (2.04 ± 1.4 L) and peak expiratory flow (4.33 ± 3.3 L/s) were normal. The maximum strength of respiratory muscles was less than 60 % of predicted values. The distance covered in the six-minute walk test was lower when compared with healthy controls (29.9 %). Conclusions: the six-minute walk test can be a useful tool in early stages of this disease, since it is easy to perform and well tolerated by the patients.
Tamplin, Jeanette; Baker, Felicity A; Grocke, Denise; Brazzale, Danny J; Pretto, Jeffrey J; Ruehland, Warren R; Buttifant, Mary; Brown, Douglas J; Berlowitz, David J
2013-03-01
To explore the effects of singing training on respiratory function, voice, mood, and quality of life for people with quadriplegia. Randomized controlled trial. Large, university-affiliated public hospital, Victoria, Australia. Participants (N=24) with chronic quadriplegia (C4-8, American Spinal Injury Association grades A and B). The experimental group (n=13) received group singing training 3 times weekly for 12 weeks. The control group (n=11) received group music appreciation and relaxation for 12 weeks. Assessments were conducted pre, mid-, immediately post-, and 6-months postintervention. Standard respiratory function testing, surface electromyographic activity from accessory respiratory muscles, sound pressure levels during vocal tasks, assessments of voice quality (Perceptual Voice Profile, Multidimensional Voice Profile), and Voice Handicap Index, Profile of Mood States, and Assessment of Quality of Life instruments. The singing group increased projected speech intensity (P=.028) and maximum phonation length (P=.007) significantly more than the control group. Trends for improvements in respiratory function, muscle strength, and recruitment were also evident for the singing group. These effects were limited by small sample sizes with large intersubject variability. Both groups demonstrated an improvement in mood (P=.002), which was maintained in the music appreciation and relaxation group after 6 months (P=.017). Group music therapy can have a positive effect on not only physical outcomes, but also can improve mood, energy, social participation, and quality of life for an at-risk population, such as those with quadriplegia. Specific singing therapy can augment these general improvements by improving vocal intensity. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Gea, Joaquim
2016-01-01
Chronic obstructive pulmonary disease (COPD) will be a major leading cause of death worldwide in the near future. Weakness and atrophy of the quadriceps are associated with a significantly poorer prognosis and increased mortality in COPD. Despite that skeletal muscle dysfunction may affect both respiratory and limb muscle groups in COPD, the latter are frequently more severely affected. Therefore, muscle dysfunction in COPD is a common systemic manifestation that should be evaluated on routine basis in clinical settings. In the present review, several aspects of COPD muscle dysfunction are being reviewed, with special emphasis on the underlying biological mechanisms. Figures on the prevalence of COPD muscle dysfunction and the most relevant etiologic contributors are also provided. Despite that ongoing research will shed light into the contribution of additional mechanisms to COPD muscle dysfunction, current knowledge points toward the involvement of a wide spectrum of cellular and molecular events that are differentially expressed in respiratory and limb muscles. Such mechanisms are thoroughly described in the article. The contribution of epigenetic events on COPD muscle dysfunction is also reviewed. We conclude that in view of the latest discoveries, from now, on new avenues of research should be designed to specifically target cellular mechanisms and pathways that impair muscle mass and function in COPD using pharmacological strategies and/or exercise training modalities. PMID:27056059
Yu, Qing; Morales, Melissa; Li, Ning; Fritz, Alexander G; Ruobing, Ren; Blaeser, Anthony; Francois, Ershia; Lu, Qi-Long; Nagaraju, Kanneboyina; Spurney, Christopher F
2018-04-06
Fukutin-related protein (FKRP) mutations are the most common cause of dystroglycanopathies known to cause both limb girdle and congenital muscular dystrophy. The P448Lneo- mouse model has a knock-in mutation in the FKRP gene and develops skeletal, respiratory, and cardiac muscle disease. We studied the natural history of the P448Lneo- mouse model over 9 months and the effects of twice weekly treadmill running. Forelimb and hindlimb grip strength (Columbus Instruments) and overall activity (Omnitech Electronics) assessed skeletal muscle function. Echocardiography was performed using VisualSonics Vevo 770 (FujiFilm VisualSonics). Plethysmography was performed using whole body system (ADInstruments). Histological evaluations included quantification of inflammation, fibrosis, central nucleation, and fiber size variation. P448Lneo- mice had significantly increased normalized tissue weights compared to controls at 9 months of age for the heart, gastrocnemius, soleus, tibialis anterior, quadriceps, and triceps. There were no significant differences seen in forelimb or hindlimb grip strength or activity monitoring in P448Lneo- mice with or without exercise compared to controls. Skeletal muscles demonstrated increased inflammation, fibrosis, central nucleation, and variation in fiber size compared to controls (p < 0.05) and worsened with exercise. Plethysmography showed significant differences in respiratory rates and decreased tidal and minute volumes in P448Lneo- mice (p < 0.01). There was increased fibrosis in the diaphragm compared to controls (p < 0.01). Echocardiography demonstrated decreased systolic function in 9-month-old mutant mice (p < 0.01). There was increased myocardial wall thickness and mass (p < 0.001) with increased fibrosis in 9-month-old P448Lneo- mice compared to controls (p < 0.05). mRNA expression for natriuretic peptide type A (Nppa) was significantly increased in P448Lneo- mice compared to controls at 6 months (p < 0.05) and for natriuretic peptide type B (Nppb) at 6 and 9 months of age (p < 0.05). FKRP-deficient P448Lneo- mice demonstrate significant deficits in cardiac and respiratory functions compared to control mice, and this is associated with increased inflammation and fibrosis. This study provides new functional outcome measures for preclinical trials of FKRP-related muscular dystrophies.
Cotten, Pamela B; Piscitelli, Marina A; McLellan, William A; Rommel, Sentiel A; Dearolf, Jennifer L; Pabst, D Ann
2008-12-01
Most mammals possess stamina because their locomotor and respiratory (i.e., ventilatory) systems are mechanically coupled. These systems are decoupled, however, in bottlenose dolphins (Tursiops truncatus) as they swim on a breath hold. Locomotion and ventilation are coupled only during their brief surfacing event, when they respire explosively (up to 90% of total lung volume in approximately 0.3 s) (Ridgway et al. 1969 Science 166:1651-1654). The predominantly slow-twitch fiber profile of their diaphragm (Dearolf 2003 J Morphol 256:79-88) suggests that this muscle does not likely power their rapid ventilatory event. Based on Bramble's (1989 Amer Zool 29:171-186) biomechanical model of locomotor-respiratory coupling in galloping mammals, it was hypothesized that locomotor muscles function to power ventilation in bottlenose dolphins. It was further hypothesized that these muscles would be composed predominantly of fast-twitch fibers to facilitate the bottlenose dolphin's rapid ventilation. The gross morphology of craniocervical (scalenus, sternocephalicus, sternohyoid), thoracic (intercostals, transverse thoracis), and lumbopelvic (hypaxialis, rectus abdominis, abdominal obliques) muscles (n = 7) and the fiber-type profiles (n = 6) of selected muscles (scalenus, sternocephalicus, sternohyoid, rectus abdominis) of bottlenose dolphins were investigated. Physical manipulations of excised thoracic units were carried out to investigate potential actions of these muscles. Results suggest that the craniocervical muscles act to draw the sternum and associated ribs craniodorsally, which flares the ribs laterally, and increases the thoracic cavity volume required for inspiration. The lumbopelvic muscles act to draw the sternum and caudal ribs caudally, which decreases the volumes of the thoracic and abdominal cavities required for expiration. All muscles investigated were composed predominantly of fast-twitch fibers (range 61-88% by area) and appear histochemically poised for rapid contraction. These combined results suggest that dolphins utilize muscles, similar to those used by galloping mammals, to power their explosive ventilation. (c) 2008 Wiley-Liss, Inc.
Vincent, Grace; Lamon, Séverine; Gant, Nicholas; Vincent, Peter J.; MacDonald, Julia R.; Markworth, James F.; Edge, Johann A.; Hickey, Anthony J. R.
2015-01-01
Purpose: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. Methods: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. Results: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. Conclusion: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression. PMID:25759671
Respiratory dysfunction in patients with chronic neck pain: What is the current evidence?
Dimitriadis, Zacharias; Kapreli, Eleni; Strimpakos, Nikolaos; Oldham, Jacqueline
2016-10-01
Respiratory function of patients with neck pain has not been given much consideration in usual clinical practice. The problem has however been highlighted occasionally by renown clinical scientists and recently there is a growing interest in the investigation of respiratory function in this clinical population. The aim of this review is to critically present the emerging evidence and discuss the similarities and differences observed. Although the evidence for some respiratory parameters is conflicting, it seems to be generally agreed that others such as maximal voluntary ventilation, strength of respiratory muscles, chest mechanics and partial pressure of arterial carbon dioxide are affected in patients with chronic neck pain. The effect size of the respiratory dysfunction regarding these respiratory parameters can be approximately described as moderate. These findings not only suggest a more thoughtful drug prescription, but they may lead to consideration of incorporation of respiratory assessment and treatment into routine physiotherapy practice. Indeed preliminary studies exploring the incorporation of such a treatment into usual practice have provided very promising results not only in relation to respiratory function, but also for other parameters of clinical interest. There remains however imminent need for randomized controlled trials to confirm the evidence base for such an approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Respiratory insufficiency with preserved diaphragmatic function in amyotrophic lateral sclerosis.
Yamauchi, Rika; Imai, Tomihiro; Tsuda, Emiko; Hozuki, Takayoshi; Yamamoto, Daisuke; Shimohama, Shun
2014-01-01
We performed a longitudinal study to elucidate the correlation between respiratory insufficiency and respiratory biomarkers, including diaphragmatic compound muscle action potential (DCMAP), at the initiation of noninvasive ventilation (NIV) in patients with amyotrophic lateral sclerosis (ALS). The patients were assessed at least every six months. Additional assessments were performed at the start of respiratory therapy when the patients met the criteria for the initiation of NIV. Each assessment consisted of a full neurological examination, a phrenic nerve conduction study, respiratory function tests, and nocturnal pulsed oximetry. We enrolled 43 patients with either definite or probable ALS as defined by the revised El Escorial criteria. The patients were divided into two groups according to the timing of the initiation of respiratory therapy. Seventeen patients (group A) met the criteria for NIV initiation when their DCMAP remained normal. Twenty-six patients (group B) met the criteria when their DCMAP decreased below normal limits. Although respiratory function parameters were significantly worse in group B compared with group A at NIV initiation, more than 80% of the patients in both groups developed nocturnal desaturation during sleep. DCMAP is not always a reliable indicator for determining the optimal timing for NIV initiation during the progression of respiratory insufficiency in ALS. Physicians should be aware of the risk of respiratory insufficiency during sleep in patients with ALS.
Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory
ERIC Educational Resources Information Center
Medler, Scott; Harrington, Frederick
2013-01-01
Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…
Cardiac function in muscular dystrophy associates with abdominal muscle pathology.
Gardner, Brandon B; Swaggart, Kayleigh A; Kim, Gene; Watson, Sydeaka; McNally, Elizabeth M
The muscular dystrophies target muscle groups differentially. In mouse models of muscular dystrophy, notably the mdx model of Duchenne Muscular Dystrophy, the diaphragm muscle shows marked fibrosis and at an earlier age than other muscle groups, more reflective of the histopathology seen in human muscular dystrophy. Using a mouse model of limb girdle muscular dystrophy, the Sgcg mouse, we compared muscle pathology across different muscle groups and heart. A cohort of nearly 200 Sgcg mice were studied using multiple measures of pathology including echocardiography, Evans blue dye uptake and hydroxyproline content in multiple muscle groups. Spearman rank correlations were determined among echocardiographic and pathological parameters. The abdominal muscles were found to have more fibrosis than other muscle groups, including the diaphragm muscle. The abdominal muscles also had more Evans blue dye uptake than other muscle groups. The amount of diaphragm fibrosis was found to correlate positively with fibrosis in the left ventricle, and abdominal muscle fibrosis correlated with impaired left ventricular function. Fibrosis in the abdominal muscles negatively correlated with fibrosis in the diaphragm and right ventricles. Together these data reflect the recruitment of abdominal muscles as respiratory muscles in muscular dystrophy, a finding consistent with data from human patients.
Controlled-frequency breath swimming improves swimming performance and running economy.
Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S
2015-02-01
Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P < 0.05) while maximum inspiratory pressure was unchanged. Running economy improved by 6 (9)% in CFB following training (P < 0.05). Forced vital capacity increased by 4% (4) in SM (P < 0.05) and was unchanged in CFB. These findings suggest that limiting breath frequency during swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clinical management of chronic obstructive pulmonary disease patients with muscle dysfunction
Casadevall, Carme; Pascual, Sergi; Orozco-Levi, Mauricio; Barreiro, Esther
2016-01-01
Muscle dysfunction is frequently observed in chronic obstructive pulmonary disease (COPD) patients, contributing to their exercise limitation and a worsening prognosis. The main factor leading to limb muscle dysfunction is deconditioning, whereas respiratory muscle dysfunction is mostly the result of pulmonary hyperinflation. However, both limb and respiratory muscles are also influenced by other negative factors, including smoking, systemic inflammation, nutritional abnormalities, exacerbations and some drugs. Limb muscle weakness is generally diagnosed through voluntary isometric maneuvers such as handgrip or quadriceps muscle contraction (dynamometry); while respiratory muscle loss of strength is usually recognized through a decrease in maximal static pressures measured at the mouth. Both types of measurements have validated reference values. Respiratory muscle strength can also be evaluated determining esophageal, gastric and transdiaphragmatic maximal pressures although there is a lack of widely accepted reference equations. Non-volitional maneuvers, obtained through electrical or magnetic stimulation, can be employed in patients unable to cooperate. Muscle endurance can also be assessed, generally using repeated submaximal maneuvers until exhaustion, but no validated reference values are available yet. The treatment of muscle dysfunction is multidimensional and includes improvement in lifestyle habits (smoking abstinence, healthy diet and a good level of physical activity, preferably outside), nutritional measures (diet supplements and occasionally, anabolic drugs), and different modalities of general and muscle training. PMID:28066619
Acute effects of inspiratory muscle warm-up on pulmonary function in healthy subjects.
Özdal, Mustafa
2016-06-15
The acute effects of inspiratory muscle warm-up on pulmonary functions were examined in 26 healthy male subjects using the pulmonary function test (PFT) in three different trials. The control trial (CON) did not involve inspiratory muscle warm-up, while the placebo (IMWp) and experimental (IMW) trials involved inspiratory muscle warm-up. There were no significant changes between the IMWp and CON trials (p>0.05). All the PFT measurements, including slow vital capacity, inspiratory vital capacity, forced vital capacity, forced expiratory volume in one second, maximal voluntary ventilation, and maximal inspiratory pressure were significantly increased by 3.55%, 12.52%, 5.00%, 2.75%, 2.66%, and 7.03% respectively, in the subjects in the IMW trial than those in the CON trial (p<0.05). These results show that inspiratory muscle warm-up improved the pulmonary functions. The mechanisms responsible for these improvements are probably associated with the concomitant increase in the inspiratory muscle strength, and the cooperation of the upper thorax, neck, and respiratory muscles, and increased level of reactive O2 species in muscle tissue, and potentially improvement of muscle O2 delivery-to-utilization. However, further investigation is required to determine the precise mechanisms responsible from among these candidates. Copyright © 2016 Elsevier B.V. All rights reserved.
Pirinen, Eija; Canto, Carles; Jo, Young-Suk; Morato, Laia; Zhang, Hongbo; Menzies, Keir; Williams, Evan G.; Mouchiroud, Laurent; Moullan, Norman; Hagberg, Carolina; Li, Wei; Timmers, Silvie; Imhof, Ralph; Verbeek, Jef; Pujol, Aurora; van Loon, Barbara; Viscomi, Carlo; Zeviani, Massimo; Schrauwen, Patrick; Sauve, Anthony; Schoonjans, Kristina; Auwerx, Johan
2014-01-01
SUMMARY We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. PMID:24814482
Heydari, Abbas; Farzad, Marjan; Ahmadi hosseini, Seyed-hossein
2015-01-01
To examine the effect of incentive spirometry in pulmonary rehabilitation of chronic obstructive pulmonary disease (COPD) patients and compare its efficacy with inspiratory resistive muscle training (IMT) technique. Randomized controlled trial. Thirty patients with COPD, from a general hospital in Mashhad, Iran, were randomly assigned to two study groups. All subjects trained daily in two 15-minute sessions, 4 days a week, for 4 weeks. Respiratory function tests were compared before interventions and at the end of weeks 2 and 4. Both techniques improved the mean values of all respiratory function tests (p≤.01). The IMT technique was more effective to improve MVV and PImax (p≤.05). PEFR was better improved in the incentive spirometry group (p≤.05). There was no significant difference for other spirometric parameters between two groups. Incentive spirometry can be considered as an effective component for pulmonary rehabilitation in COPD patients. © 2013 Association of Rehabilitation Nurses.
Respiratory weakness in patients with chronic neck pain.
Dimitriadis, Zacharias; Kapreli, Eleni; Strimpakos, Nikolaos; Oldham, Jacqueline
2013-06-01
Respiratory muscle strength is one parameter that is currently proposed to be affected in patients with chronic neck pain. This study was aimed at examining whether patients with chronic neck pain have reduced respiratory strength and with which neck pain problems their respiratory strength is associated. In this controlled cross-sectional study, 45 patients with chronic neck pain and 45 healthy well-matched controls were recruited. Respiratory muscle strength was assessed through maximal mouth pressures. The subjects were additionally assessed for their pain intensity and disability, neck muscle strength, endurance of deep neck flexors, neck range of movement, forward head posture and psychological states. Paired t-tests showed that patients with chronic neck pain have reduced Maximal Inspiratory (MIP) (r = 0.35) and Maximal Expiratory Pressures (MEP) (r = 0.39) (P < 0.05). Neck muscle strength (r > 0.5), kinesiophobia (r < -0.3) and catastrophizing (r < -0.3) were significantly associated with maximal mouth pressures (P < 0.05), whereas MEP was additionally negatively correlated with neck pain and disability (r < -0.3, P < 0.05). Neck muscle strength was the only predictor that remained as significant into the prediction models of MIP and MEP. It can be concluded that patients with chronic neck pain present weakness of their respiratory muscles. This weakness seems to be a result of the impaired global and local muscle system of neck pain patients, and psychological states also appear to have an additional contribution. Clinicians are advised to consider the respiratory system of patients with chronic neck pain during their usual assessment and appropriately address their treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery.
Cordeiro, André Luiz Lisboa; de Melo, Thiago Araújo; Neves, Daniela; Luna, Julianne; Esquivel, Mateus Souza; Guimarães, André Raimundo França; Borges, Daniel Lago; Petto, Jefferson
2016-04-01
Cardiac surgery is a highly complex procedure which generates worsening of lung function and decreased inspiratory muscle strength. The inspiratory muscle training becomes effective for muscle strengthening and can improve functional capacity. To investigate the effect of inspiratory muscle training on functional capacity submaximal and inspiratory muscle strength in patients undergoing cardiac surgery. This is a clinical randomized controlled trial with patients undergoing cardiac surgery at Instituto Nobre de Cardiologia. Patients were divided into two groups: control group and training. Preoperatively, were assessed the maximum inspiratory pressure and the distance covered in a 6-minute walk test. From the third postoperative day, the control group was managed according to the routine of the unit while the training group underwent daily protocol of respiratory muscle training until the day of discharge. 50 patients, 27 (54%) males were included, with a mean age of 56.7±13.9 years. After the analysis, the training group had significant increase in maximum inspiratory pressure (69.5±14.9 vs. 83.1±19.1 cmH2O, P=0.0073) and 6-minute walk test (422.4±102.8 vs. 502.4±112.8 m, P=0.0031). We conclude that inspiratory muscle training was effective in improving functional capacity submaximal and inspiratory muscle strength in this sample of patients undergoing cardiac surgery.
Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice
Burns, David P.; Ali, Izza; Rieux, Clement; Healy, James; Jasionek, Greg; O’Halloran, Ken D.
2017-01-01
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease. PMID:29210997
Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.
Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind
2017-05-01
Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.
Long-term effects of systemic gene therapy in a canine model of myotubular myopathy.
Elverman, Matthew; Goddard, Melissa A; Mack, David; Snyder, Jessica M; Lawlor, Michael W; Meng, Hui; Beggs, Alan H; Buj-Bello, Ana; Poulard, Karine; Marsh, Anthony P; Grange, Robert W; Kelly, Valerie E; Childers, Martin K
2017-11-01
X-linked myotubular myopathy (XLMTM), a devastating pediatric disease caused by the absence of the protein myotubularin, results from mutations in the MTM1 gene. While there is no cure for XLMTM, we previously reported effects of MTM1 gene therapy using adeno-associated virus (AAV) vector on muscle weakness and pathology in MTM1-mutant dogs. Here, we followed 2 AAV-infused dogs over 4 years. We evaluated gait, strength, respiration, neurological function, muscle pathology, AAV vector copy number (VCN), and transgene expression. Four years following AAV-mediated gene therapy, gait, respiratory performance, neurological function and pathology in AAV-infused XLMTM dogs remained comparable to their healthy littermate controls despite a decline in VCN and muscle strength. AAV-mediated gene transfer of MTM1 in young XLMTM dogs results in long-term expression of myotubularin transgene with normal muscular performance and neurological function in the absence of muscle pathology. These findings support a clinical trial in patients. Muscle Nerve 56: 943-953, 2017. © 2017 Wiley Periodicals, Inc.
Estrada, Luis; Torres, Abel; Garcia-Casado, Javier; Sarlabous, Leonardo; Prats-Boluda, Gema; Jane, Raimon
2016-08-01
The use of non-invasive methods for the study of respiratory muscle signals can provide clinical information for the evaluation of the respiratory muscle function. The aim of this study was to evaluate time-frequency characteristics of the electrical activity of the sternocleidomastoid muscle recorded superficially by means of concentric ring electrodes (CREs) in a bipolar configuration. The CREs enhance the spatial resolution, attenuate interferences, as the cardiac activity, and also simplify the orientation problem associated to the electrode location. Five healthy subjects underwent a respiratory load test in which an inspiratory load was imposed during the inspiratory phase. During the test, the electromyographic signal of the sternocleidomastoid muscle (EMGsc) and the inspiratory mouth pressure (Pmouth) were acquired. Time-frequency characteristics of the EMGsc signal were analyzed by means of eight time-frequency representations (TFRs): the spectrogram (SPEC), the Morlet scalogram (SCAL), the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CHWD), two generalized exponential distributions (GED1 and GED2), the Born-Jordan distribution (BJD) and the Cone-Kernel distribution (CKD). The instantaneous central frequency of the EMGsc showed an increasing behavior during the inspiratory cycle and with the increase of the inspiratory load. The bilinear TFRs (WVD, CHWD, GEDs and BJD) were less sensitive to cardiac activity interference than classical TFRs (SPEC and SCAL). The GED2 was the TFR that shown the best results for the characterization of the instantaneous central frequency of the EMGsc.
Vitacca, Michele; Kaymaz, Dicle; Lanini, Barbara; Vagheggini, Guido; Ergün, Pınar; Gigliotti, Francesco; Ambrosino, Nicolino; Paneroni, Mara
2018-02-01
The role of non-invasive ventilation (NIV) during exercise training (ET) in patients with chronic respiratory failure (CRF) is still unclear. The aim of this study was to test whether NIV during ET had an additional effect in increasing the 6-min walking distance (6MWD) and cycle endurance time compared with ET alone. All patients underwent 20 sessions of cycle training over 3 weeks and were randomly assigned to ET with NIV or ET alone. Outcome measures were 6MWD (primary outcome), incremental and endurance cycle ergometer exercise time, respiratory muscle function, quality of life by the Maugeri Respiratory Failure questionnaire (MRF-28), dyspnoea (Medical Research Council scale) and leg fatigue at rest. Forty-two patients completed the study. Following training, no significant difference in 6MWD changes were found between groups. Improvement in endurance time was significantly greater in the NIV group compared with the non-NIV training group (754 ± 973 vs 51 ± 406 s, P = 0.0271); dyspnoea improved in both groups, while respiratory muscle function and leg fatigue improved only in the NIV ET group. MRF-28 improved only in the group training without NIV. In CRF patients on long-term NIV and long-term oxygen therapy (LTOT), the addition of NIV to ET sessions resulted in an improvement in endurance time, but not in 6MWD. © 2017 Asian Pacific Society of Respirology.
Static respiratory muscle work during immersion with positive and negative respiratory loading.
Taylor, N A; Morrison, J B
1999-10-01
Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P < 0.05), and to 1.79 J. l(-1) at mouth pressure (P < 0.05). Under the control state, and during the above experimental conditions, static expiratory work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.
Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.
Ost, Mario; Keipert, Susanne; van Schothorst, Evert M; Donner, Verena; van der Stelt, Inge; Kipp, Anna P; Petzke, Klaus-Jürgen; Jove, Mariona; Pamplona, Reinald; Portero-Otin, Manuel; Keijer, Jaap; Klaus, Susanne
2015-04-01
Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle. © FASEB.
Ciguatera fish poisoning with elevated muscle enzymes and abnormal spinal MRI.
Wasay, Mohammad; Sarangzai, Amanullah; Siddiqi, Ather; Nizami, Qamaruddin
2008-03-01
We report three cases of ciguatera fish poisoning. One patient died secondary to respiratory failure. Two patients showed elevated muscle enzymes and one patients had an abnormal cervical spinal MRI. MRI findings have not been previously described. MRI findings explain the mechanism of the L'hermitte phenomenon (a common complaint) among these patients. Respiratory failure is rare in ciguatera fish poisoning. Our findings suggest this could be related to respiratory muscles involvement.
2012-01-01
Background To determine the influence of breathing maneuver and sitting posture on tidal volume (TV), respiratory rate (RR), and muscle activity of the inspiratory accessory muscles in patients with chronic obstructive pulmonary disease (COPD). Methods Twelve men with COPD participated in the study. Inductive respiratory plethysmography and surface electromyography were used to simultaneously measure TV, RR, and muscle activity of the inspiratory accessory muscles [the scalenus (SM), sternocleidomastoid (SCM), and pectoralis major (PM) muscles] during quiet natural breathing (QB) and pursed-lips breathing (PLB) in three sitting postures: neutral position (NP), with armm support (WAS), and with arm and head support (WAHS). Results Two-way repeated-measures analysis of variance was employed. In a comparison of breathing patterns, PLB significantly increased TV and decreased RR compared to QB. Muscle activity in the SM and SCM increased significantly in PLB compared to QB. In a comparison of sitting postures, the muscle activity of the SM, SCM, and PM increased in the forward-leaning position. Conclusions The results suggest that in COPD, PLB induced a favorable breathing pattern (increased TV and reduced RR) compared to QB. Additionally, WAS and WAHS positions increased muscle activity of the inspiratory accessory muscles during inspiration versus NP. Differential involvement of accessory respiratory muscles can be readily studied in COPD patients, allowing monitoring of respiratory load during pulmonary rehabilitation. PMID:22958459
Cardiac consequences to skeletal muscle-centric therapeutics for Duchenne muscular dystrophy.
Townsend, DeWayne; Yasuda, Soichiro; Chamberlain, Jeffrey; Metzger, Joseph M
2009-02-01
Duchenne muscular dystrophy (DMD) is a fatal disease of muscle deterioration. Duchenne muscular dystrophy affects all striated muscles in the body, including the heart. Recent advances in palliative care, largely directed at improving respiratory function, have extended life but paradoxically further unmasked emergent heart disease in DMD patients. New experimental strategies have shown promise in restoring dystrophin in the skeletal muscles of dystrophin- deficient animals. These strategies often have little or no capacity for restitution of dystrophin in the hearts of these animals. This article draws on both clinical data and recent experimental data to posit that effective skeletal muscle restricted therapies for DMD will paradoxically heighten cardiomyopathy and heart failure in these patients.
Kwon, Hae-Yeon
2017-01-01
[Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5–13 years of age in I–III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject’s guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity. PMID:28265153
Nicaise, Charles; Putatunda, Rajarshi; Hala, Tamara J.; Regan, Kathleen A.; Frank, David M.; Brion, Jean-Pierre; Leroy, Karelle; Pochet, Roland; Wright, Megan C.
2012-01-01
Abstract A primary cause of morbidity and mortality following cervical spinal cord injury (SCI) is respiratory compromise, regardless of the level of trauma. In particular, SCI at mid-cervical regions targets degeneration of both descending bulbospinal respiratory axons and cell bodies of phrenic motor neurons, resulting in deficits in the function of the diaphragm, the primary muscle of inspiration. Contusion-type trauma to the cervical spinal cord is one of the most common forms of human SCI; however, few studies have evaluated mid-cervical contusion in animal models or characterized consequent histopathological and functional effects of degeneration of phrenic motor neuron–diaphragm circuitry. We have generated a mouse model of cervical contusion SCI that unilaterally targets both C4 and C5 levels, the location of the phrenic motor neuron pool, and have examined histological and functional outcomes for up to 6 weeks post-injury. We report that phrenic motor neuron loss in cervical spinal cord, phrenic nerve axonal degeneration, and denervation at diaphragm neuromuscular junctions (NMJ) resulted in compromised ipsilateral diaphragm function, as demonstrated by persistent reduction in diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation and abnormalities in spontaneous diaphragm electromyography (EMG) recordings. This injury paradigm is reproducible, does not require ventilatory assistance, and provides proof-of-principle that generation of unilateral cervical contusion is a feasible strategy for modeling diaphragmatic/respiratory deficits in mice. This study and its accompanying analyses pave the way for using transgenic mouse technology to explore the function of specific genes in the pathophysiology of phrenic motor neuron degeneration and respiratory dysfunction following cervical SCI. PMID:23176637
Gregorini, Cristie; Cipriano Junior, Gerson; Aquino, Leticia Moraes de; Branco, João Nelson Rodrigues; Bernardelli, Graziella França
2010-03-01
Respiratory muscle strength has been related to the postoperative outcome of cardiac surgeries. The main documented therapeutic purpose of transcutaneous electrical nerve stimulation (TENS) is the reduction of pain, which could bring secondary benefits to the respiratory muscles and, consequently, to lung capacities and volumes. The objective of the present study was to evaluate the effectiveness of short-duration transcutaneous electrical nerve stimulation (TENS) in the reduction of pain and its possible influence on respiratory muscle strength and lung capacity and volumes of patients in the postoperative period of cardiac surgery. Twenty five patients with mean age of 59.9 +/- 10.3 years, of whom 72% were men, and homogeneous as regards weight and height, were randomly assigned to two groups. One group received therapeutic TENS (n = 13) and the other, placebo TENS (n = 12), for four hours on the third postoperative day of cardiac surgery. Pain was analyzed by means of a visual analogue scale, and of respiratory muscle strength as measured by maximum respiratory pressures and lung capacity and volumes before and after application of TENS. Short-duration TENS significantly reduced pain of patients in the postoperative period (p < 0.001). Respiratory muscle strength (p < 0.001), tidal volume (p < 0.001) and vital capacity (p < 0.05) significantly improved after therapeutic TENS, unlike in the placebo group. Short-duration TENS proved effective for the reduction of pain and improvement of respiratory muscle strength, as well as of lung volumes and capacity.
Discharge properties of upper airway motor units during wakefulness and sleep.
Trinder, John; Jordan, Amy S; Nicholas, Christian L
2014-01-01
Upper airway muscle motoneurons, as assessed at the level of the motor unit, have a range of different discharge patterns, varying as to whether their activity is modulated in phase with the respiratory cycle, are predominantly inspiratory or expiratory, or are phasic as opposed to tonic. Two fundamental questions raised by this observation are: how are synaptic inputs from premotor neurons distributed over motoneurons to achieve these different discharge patterns; and how do different discharge patterns contribute to muscle function? We and others have studied the behavior of genioglossus (GG) and tensor palatini (TP) single motor units at transitions from wakefulness to sleep (sleep onset), from sleep to wakefulness (arousal from sleep), and during hypercapnia. Results indicate that decreases or increases in GG and TP muscle activity occur as a consequence of derecruitment or recruitment, respectively, of phasic and tonic inspiratory-modulated motoneurons, with only minor changes in rate coding. Further, sleep-wake state and chemical inputs to this "inspiratory system" appear to be mediated through the respiratory pattern generator. In contrast, phasic and tonic expiratory units and units with a purely tonic pattern, the "tonic system," are largely unaffected by sleep-wake state, and are only weakly influenced by chemical stimuli and the respiratory cycle. We speculate that the "inspiratory system" produces gross changes in upper airway muscle activity in response to changes in respiratory drive, while the "tonic system" fine tunes airway configuration with activity in this system being determined by local mechanical conditions. © 2014 Elsevier B.V. All rights reserved.
RIEDE, TOBIAS
2014-01-01
Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague–Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns. PMID:23423862
Piccinato, Carlos E; Salles Roselino, José E; Massuda, Carlos A; Cherri, Jesualdo
2004-01-01
The great resistance of muscle to ischemia was used to study blood flow-dependent phenomena produced by anesthetic drugs in this condition. A short reperfusion period was used in order to favor metabolic changes indicative of an effect of chlorpromazine (CPZ) on blood flow. Gracilis muscles of dogs were submitted to 5 h of ischemia and 30 min of reperfusion. CPZ-treated animals were injected I.V. (2 mg/kg) 10 min before the beginning of ischemia. Biopsies provided the material for tissue measurements. Lactate content and pH were determined in blood samples collected from a muscle efferent vein. In both the CPZ-treated and nontreated groups, ischemia induced a decline in muscle glycogen content, with a corresponding increase in muscle lactate and a decrease in mitochondrial respiratory control ratio. After 30 min of reperfusion, tissue levels of lactate did not attain preischemic values but showed a clear decline in the two experimental groups, evidencing the reversible state of the muscle. All other metabolic parameters remained unchanged. Mitochondrial respiratory control remained functional during ischemia and reperfusion. Blood pH displayed similar changes in both groups. There was no metabolic indication that the drug affected blood flow during early reperfusion and/or of a greater sensitivity of muscle endothelial cells to anesthetic drugs. Copyright 2004 Wiley-Liss, Inc.
Pasteuning-Vuhman, S; Putker, K; Tanganyika-de Winter, C L; Boertje-van der Meulen, J W; van Vliet, L; Overzier, M; Plomp, J J; Aartsma-Rus, A; van Putten, M
2018-01-01
Merosin deficient congenital muscular dystrophy 1A (MDC1A) is a very rare autosomal recessive disorder caused by mutations in the LAMA2 gene leading to severe and progressive muscle weakness and atrophy. Although over 350 causative mutations have been identified for MDC1A, no treatment is yet available. There are many therapeutic approaches in development, but the lack of natural history data of the mouse model and standardized outcome measures makes it difficult to transit these pre-clinical findings to clinical trials. Therefore, in the present study, we collected natural history data and assessed pre-clinical outcome measures for the dy2J/dy2J mouse model using standardized operating procedures available from the TREAT-NMD Alliance. Wild type and dy2J/dy2J mice were subjected to five different functional tests from the age of four to 32 weeks. Non-tested control groups were taken along to assess whether the functional test regime interfered with muscle pathology. Respiratory function, body weights and creatine kinase levels were recorded. Lastly, skeletal muscles were collected for further histopathological and gene expression analyses. Muscle function of dy2J/dy2J mice was severely impaired at four weeks of age and all mice lost the ability to use their hind limbs. Moreover, respiratory function was altered in dy2J/dy2J mice. Interestingly, the respiration rate was decreased and declined with age, whereas the respiration amplitude was increased in dy2J/dy2J mice when compared to wild type mice. Creatine kinase levels were comparable to wild type mice. Muscle histopathology and gene expression analysis revealed that there was a specific regional distribution pattern of muscle damage in dy2J/dy2J mice. Gastrocnemius appeared to be the most severely affected muscle with a high proportion of atrophic fibers, increased fibrosis and inflammation. By contrast, triceps was affected moderately and diaphragm only mildly. Our study presents a complete natural history dataset which can be used in setting up standardized studies in dy2J/dy2J mice.
Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr; CHRU Montpellier, 34295 Montpellier; Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques
2012-03-01
The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complexmore » I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.« less
Respiratory failure associated with hypoventilation in a patient with severe hypothyroidism
Fukusumi, Munehisa; Iidaka, Toshiko; Mouri, Atsuto; Hamamoto, Yoichiro; Kamimura, Mitsuhiro
2014-01-01
A 70-year-old Japanese man was admitted to hospital because of decreased consciousness due to type II respiratory failure. Severe hypothyroidism was diagnosed and considered to be associated with hypoventilation due to respiratory muscle dysfunction and sleep apnea syndrome. His status was improved partially by replacement of thyroid hormone. Despite maintaining a euthyroid state, improvement of respiratory muscle dysfunction was incomplete. PMID:25473574
Sandoval Moreno, L M; Casas Quiroga, I C; Wilches Luna, E C; García, A F
2018-02-02
To evaluate the efficacy of respiratory muscular training in the weaning of mechanical ventilation and respiratory muscle strength in patients on mechanical ventilation of 48hours or more. Randomized controlled trial of parallel groups, double-blind. Ambit: Intensive Care Unit of a IV level clinic in the city of Cali. 126 patients in mechanical ventilation for 48hours or more. The experimental group received daily a respiratory muscle training program with treshold, adjusted to 50% of maximal inspiratory pressure, additional to standard care, conventional received standard care of respiratory physiotherapy. MAIN INTEREST VARIABLES: weaning of mechanical ventilation. Other variables evaluated: respiratory muscle strength, requirement of non-invasive mechanical ventilation and frequency of reintubation. intention-to-treat analysis was performed with all variables evaluated and analysis stratified by sepsis condition. There were no statistically significant differences in the median weaning time of the MV between the groups or in the probability of extubation between groups (HR: 0.82 95% CI: 0.55-1.20 P=.29). The maximum inspiratory pressure was increased in the experimental group on average 9.43 (17.48) cmsH20 and in the conventional 5.92 (11.90) cmsH20 (P=.48). The difference between the means of change in maximal inspiratory pressure was 0.46 (P=.83 95%CI -3.85 to -4.78). respiratory muscle training did not demonstrate efficacy in the reduction of the weaning period of mechanical ventilation nor in the increase of respiratory muscle strength in the study population. Registered study at ClinicalTrials.gov (NCT02469064). Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Zifko, U; Chen, R
1996-10-01
Neurological disorders frequently contribute to respiratory failure in critically ill patients. They may be the primary reason for the initiation of mechanical ventilation, or may develop later as a secondary complication. Disorders of the central nervous system leading to respiratory failure include metabolic encephalopathies, acute stroke, lesions of the motor cortex and brain-stem respiratory centres, and their descending pathways. Guillan-Barré syndrome, critical illness polyneuropathy and acute quadriplegic myopathy are the more common neuromuscular causes of respiratory failure. Clinical observations and pulmonary function tests are important in monitoring respiratory function. Respiratory electrophysiological studies are useful in the investigation and monitoring of respiratory failure. Transcortical and cervical magnetic stimulation can assess the central respiratory drive, and may be useful in determining the prognosis in ventilated patients, with cervical cord dysfunction. It is also helpful in the assessment of failure to wean, which is often caused by a combination of central and peripheral nervous system disorders. Phrenic nerve conduction studies and needle electromyography of the diaphragm and chest wall muscles are useful to characterize neuropathies and myopathies affecting the diaphragm. Repetitive phrenic nerve stimulation can assess neuromuscular transmission defects. It is important to identify patients at risk of respiratory failure. They should be carefully monitored and mechanical ventilation should be initiated before the development of severe hypoxaemia.
Mechanisms of physical activity limitation in chronic lung diseases.
Vogiatzis, Ioannis; Zakynthinos, George; Andrianopoulos, Vasileios
2012-01-01
In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i) the imbalance between ventilatory capacity and demand, (ii) the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii) the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea) and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients' quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.
Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M
2004-09-01
In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.
Chlif, Mehdi; Chaouachi, Anis; Ahmaidi, Said
2017-07-01
Obese patients show a decline in exercise capacity and diverse degrees of dyspnea in association with mechanical abnormalities, increased ventilatory requirements secondary to the increased metabolic load, and a greater work of breathing. Consequently, obese patients may be particularly predisposed to the development of respiratory muscle fatigue during exercise. The aim of this study was to assess inspiratory muscle performance during incremental exercise in 19 obese male subjects (body mass index 41 ± 6 kg/m 2 ) after aerobic exercise training using the noninvasive, inspiratory muscle tension-time index (T T0.1 ). Measurements performed included anthropometric parameters, lung function assessed by spirometry, rate of perceived breathlessness with the modified Borg dyspnea scale (0-10), breathing pattern, maximal exercise capacity, and inspiratory muscle performance with a breath-by-breath automated exercise metabolic system during an incremental exercise test. T T0.1 was calculated using the equation, T T0.1 = P 0.1 /P Imax × T I /T tot (where P 0.1 represents mouth occlusion pressure, P Imax is maximal inspiratory pressure, and T I /T tot is the duty cycle). At rest, there was no statistically significant difference for spirometric parameters and cardiorespiratory parameters between pre- and post-training. At maximal exercise, the minute ventilation, the rate of exchange ratio, the rate of perceived breathlessness, and the respiratory muscle performance parameters were not significantly different pre- and post-training; in contrast, tidal volume ( P = .037, effect size = 1.51), breathing frequency ( P = .049, effect size = 0.97), power output ( P = .048, effect size = 0.79), peak oxygen uptake ( P = .02, effect size = 0.92) were significantly higher after training. At comparable work load, training induces lower minute ventilation, mouth occlusion pressure, ratio of occlusion pressure to maximal inspiratory pressure, T T0.1 , and rate of perceived breathlessness. Aerobic exercise at ventilatory threshold can induce significant improvement in respiratory muscle strength, maximal exercise capacity, and inspiratory muscle performance and decreased dyspnea perception in obese subjects. Copyright © 2017 by Daedalus Enterprises.
Activation of respiratory muscles during weaning from mechanical ventilation.
Walterspacher, Stephan; Gückler, Julia; Pietsch, Fabian; Walker, David Johannes; Kabitz, Hans-Joachim; Dreher, Michael
2017-04-01
Respiratory muscle dysfunction is a key component of weaning failure. Balancing respiratory muscle loading and unloading by applying different ventilation modes along with spontaneous breathing episodes are established weaning strategies. However, the effects of body positioning on the respiratory muscles during weaning remains unclear. This study aimed at assessing respiratory drive by surface electromyography (EMG) of the diaphragm (EMG dia ) and parasternal muscles (EMG para ) in tracheotomized patients during prolonged weaning in 3 randomized body positions-supine, 30° semirecumbent, and 80° sitting-during mechanical ventilation and spontaneous breathing. Nine patients were included for analysis. Cardiorespiratory parameters (heart rate, blood pressure, arterial oxygen saturation, dyspnea) did not change under each condition (all P>.05). EMG para and EMG dia did not change under mechanical ventilation (both P>.05). EMG dia changed under spontaneous breathing from supine to sitting (0.45±0.26 vs 0.32±0.19; P=.012) and between semirecumbent to sitting (0.41±0.23 vs 0.32±0.19; P=.039), whereas EMG para did not change. This is the first study to show that body positioning influences respiratory drive to the diaphragm in tracheotomized patients with prolonged weaning from mechanical ventilation during unassisted breathing. Sitting position reduces respiratory drive compared with semirecumbent and supine positioning and might therefore be favored during spontaneous breathing trials. Copyright © 2016 Elsevier Inc. All rights reserved.
Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells
Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine
2017-01-01
Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954
Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity.
Lan, Chou-Chin; Chu, Wen-Hua; Yang, Mei-Chen; Lee, Chih-Hsin; Wu, Yao-Kuang; Wu, Chin-Pyng
2013-09-01
Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. We aimed to investigate the effects of PR in patients with normal exercise capacity on health-related quality of life and exercise capacity. Twenty-six subjects with COPD and normal exercise capacity were studied. All subjects participated in 12-week, 2 sessions per week, hospital-based, out-patient PR. Baseline and post-PR status were evaluated by spirometry, the St George's Respiratory Questionnaire, cardiopulmonary exercise test, respiratory muscle strength, and dyspnea scores. The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. After PR there was significant improvement in maximal oxygen uptake and work rate. Improvements in St George's Respiratory Questionnaire scores of total, symptoms, activity, and impact were accompanied by improvements of exercise capacity, respiratory muscle strength, maximum oxygen pulse, and exertional dyspnea scores (all P < .05). There were no significant changes in pulmonary function test results (FEV1, FVC, and FEV1/FVC), minute ventilation, breathing frequency, or tidal volume at rest or exercise after PR. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity. Exercise training is still indicated for patients with normal exercise capacity.
The effects of respiratory muscle training on respiratory mechanics and energy cost.
Held, Heather E; Pendergast, David R
2014-08-15
Resistance respiratory muscle training (RRMT) increases respiratory muscle strength and can increase swimming endurance time by as much as 85%. The purpose of this study was to examine potential mechanisms by which RRMT improves exercise endurance. Eight healthy adult male scuba divers underwent experiments in a hyperbaric chamber at sea level (1 atmosphere absolute (ATA)), 2.7 ATA and 4.6 ATA, both dry and fully submersed. Subjects rested, exercised, and rested while mimicking their own exercise breathing (ISEV). Airway resistance (R(aw)), exhaled nitric oxide output (V˙(NO)), and respiratory duty cycle (T(I)/T(Tot)) were determined before and after four weeks of RRMT. RRMT decreased T(I)/T(Tot) (-10% at rest at 1 ATA), V˙(O2) (-17% at 2.7 ATA during submersed exercise), V˙(E) (-6% at 2.7 ATA during submersed exercise), and R(aw) (-34% inspiratory at 4.6 ATA submersed, -38% expiratory at 2.7 ATA dry), independent of changes in V˙(NO). Most importantly, respiratory muscle efficiency increased (+83% at 2.7 ATA submersed). Copyright © 2014 Elsevier B.V. All rights reserved.
Jacobs, Robert Acton; Flück, Daniela; Bonne, Thomas Christian; Bürgi, Simon; Christensen, Peter Møller; Toigo, Marco; Lundby, Carsten
2013-09-01
Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg(-1)·min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (Vo2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.
Dorchies, Olivier M; Reutenauer-Patte, Julie; Dahmane, Elyes; Ismail, Heham M; Petermann, Olivier; Patthey- Vuadens, Ophélie; Comyn, Sophie A; Gayi, Elinam; Piacenza, Tony; Handa, Robert J; Décosterd, Laurent A; Ruegg, Urs T
2013-02-01
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Radhakrishnan, K; Sharma, V K; Subramanian, S K
2017-05-10
Maximal physical exertion in sports usually causes fatigue in the exercising muscles, but not in the respiratory muscles due to triggering of the Respiratory muscle metabo-reflex, a sympathetic vasoconstrictor response leading to preferential increment in blood flow to respiratory muscles. 1 We planned to investigate whether a six week yogic pranayama based Volitional Respiratory Muscle Training (VRMT) can improve maximal Graded Exercise Treadmill Test (GXTT) performance in healthy adult recreational sportspersons. Consecutive, consenting healthy adult recreational sportspersons aged 20.56±2.49 years (n=30), volunteered to 'baseline recording' of resting heart rate (HR), blood pressure (BP), respiratory rate (RR), and Bruce ramp protocol maximal GXTT until volitional exhaustion providing total test time (TTT), derived VO2max, Metabolic Equivalent of Task (METs), HR and BP response during maximal GXTT and drop in recovery HR data. After six weeks of observation, they underwent 'pre-intervention recording' followed by supervised VRMT intervention for 6 weeks (30 minutes a day; 5 days a week) and then 'post-intervention recording'. Repeated measures ANOVA with pairwise t statistical comparison was used to analyse the data. After supervised VRMT, we observed significant decrease in their resting supine RR (p<0.001), resting supine HR (p=0.001), HR after 5 minutes of assuming standing posture (p=0.003); significant increase in TTT (p<0.001), derived VO2max (p<0.001), METs (p<0.001) and drop in recovery HR (p=0.038); altered HR response and BP response during exercise. We hypothesize that these changes are probably due to VRMT induced learnt behaviour to control the breathing pattern that improves breathing economy, improvement in respiratory muscle aerobic capacity, attenuation of respiratory muscle metabo-reflex, increase in cardiac stroke volume and autonomic resetting towards parasympatho-dominance. Yogic Pranayama based VRMT can be used in sports conditioning programme of athletes to further improve their maximal exercise performance, and as part of rehabilitation training during return from injury.
Oueslati, Ferid; Boone, Jan; Ahmaidi, Said
2016-06-15
The purpose of this study was to investigate the relationships between respiratory muscle endurance, tissue oxygen saturation index dynamics of leg muscle (TSI) and the time to exhaustion (TTE) during high intensity exercise. Eleven males performed a respiratory muscle endurance test, a maximal incremental running field test (8 km h(-1)+0.5 km h(-1) each 60s) and a high-intensity constant speed field test at 90% VO2max. The TSI in vastus lateralis was monitored with near-infrared spectroscopy. The TSI remained steady between 20 and 80% of TTE. Between 80 and 100% of TTE (7.5 ± 6.1%, p<0.05), a significant drop in TSI concomitant with a minute ventilation increase (16 ± 10 l min(-1)) was observed. Moreover, the increase of ventilation was correlated to the drop in TSI (r=0.70, p<0.05). Additionally, respiratory muscle endurance was significantly correlated to TSI time plateau (20-80% TTE) (r=0.83, p<0.05) and to TTE (r=0.95, p<0.001). The results of the present study show that the tissue oxygen saturation plateau might be affected by ventilatory work and that respiratory muscle endurance could be considered as a determinant of performance during heavy exercise. Copyright © 2016 Elsevier B.V. All rights reserved.
Torres, Abel; Fiz, Jose A; Jane, Raimon; Laciar, Eric; Galdiz, Juan B; Gea, Joaquim; Morera, Josep
2008-01-01
The study of the mechanomyographic (MMG) signals of respiratory muscles is a promising technique in order to evaluate the respiratory muscles effort. A new approach for quantifying the relationship between respiratory MMG signals and respiratory effort is presented by analyzing the spatio-temporal patterns in the MMG signal using two non-linear methods: Rényi entropy and Lempel-Ziv (LZ) complexity analysis. Both methods are well suited to the analysis of non-stationary biomedical signals of short length. In this study, MMG signals of the diaphragm muscle acquired by means of a capacitive accelerometer applied on the costal wall were analyzed. The method was tested on an animal model (dogs), and the diaphragmatic MMG signal was recorded continuously while two non anesthetized mongrel dogs performed a spontaneous ventilation protocol with an incremental inspiratory load. The performance in discriminating high and low respiratory effort levels with these two methods was analyzed with the evaluation of the Pearson correlation coefficient between the MMG parameters and respiratory effort parameters extracted from the inspiratory pressure signal. The results obtained show an increase of the MMG signal Rényi entropy and LZ complexity values with the increase of the respiratory effort. Compared with other parameters analyzed in previous works, both Rényi entropy and LZ complexity indexes demonstrates better performance in all the signals analyzed. Our results suggest that these non-linear techniques are useful to detect and quantify changes in the respiratory effort by analyzing MMG respiratory signals.
Mead, A. F.; Petrov, M.; Malik, A. S.; Mitchell, M. A.; Childers, M. K.; Bogan, J. R.; Seidner, G.; Kornegay, J. N.
2014-01-01
Ventilatory insufficiency remains the leading cause of death and late stage morbidity in Duchenne muscular dystrophy (DMD). To address critical gaps in our knowledge of the pathobiology of respiratory functional decline, we used an integrative approach to study respiratory mechanics in a translational model of DMD. In studies of individual dogs with the Golden Retriever muscular dystrophy (GRMD) mutation, we found evidence of rapidly progressive loss of ventilatory capacity in association with dramatic morphometric remodeling of the diaphragm. Within the first year of life, the mechanics of breathing at rest, and especially during pharmacological stimulation of respiratory control pathways in the carotid bodies, shift such that the primary role of the diaphragm becomes the passive elastic storage of energy transferred from abdominal wall muscles, thereby permitting the expiratory musculature to share in the generation of inspiratory pressure and flow. In the diaphragm, this physiological shift is associated with the loss of sarcomeres in series (∼60%) and an increase in muscle stiffness (∼900%) compared with those of the nondystrophic diaphragm, as studied during perfusion ex vivo. In addition to providing much needed endpoint measures for assessing the efficacy of therapeutics, we expect these findings to be a starting point for a more precise understanding of respiratory failure in DMD. PMID:24408990
Respiratory muscle decline in Duchenne muscular dystrophy.
Khirani, Sonia; Ramirez, Adriana; Aubertin, Guillaume; Boulé, Michèle; Chemouny, Chrystelle; Forin, Véronique; Fauroux, Brigitte
2014-05-01
Duchenne muscular dystrophy (DMD) causes progressive respiratory muscle weakness. The aim of the study was to analyze the trend of a large number of respiratory parameters to gain further information on the course of the disease. Retrospective study. 48 boys with DMD, age range between 6 and 19 year old, who were followed in our multidisciplinary neuromuscular clinic between 2001 and 2011. Lung function, blood gases, respiratory mechanics, and muscle strength were measured during routine follow-up over a 10-year period. Only data from patients with at least two measurements were retained. The data of 28 patients were considered for analysis. Four parameters showed an important decline with age. Gastric pressure during cough (Pgas cough) was below normal in all patients with a mean decline of 5.7 ± 3.8 cmH2 O/year. Sniff nasal inspiratory pressure (SNIP) tended to increase first followed by a rapid decline (mean decrease 4.8 ± 4.9 cmH2 O; 5.2 ± 4.4% predicted/year). Absolute forced vital capacity (FVC) values peaked around the age of 13-14 years and remained mainly over 1 L but predicted values showed a mean 4.1 ± 4.4% decline/year. Diaphragmatic tension-time index (TTdi) increased above normal values after the age of 14 years with a mean increase of 0.04 ± 0.04 point/year. This study confirms the previous findings that FVC and SNIP are among the most important parameters to monitor the evolution of DMD. Expiratory muscle strength, assessed by Pgas cough, and the endurance index, TTdi, which are reported for the first time in a large cohort, appeared to be informative too, even though measured through an invasive method. © 2013 Wiley Periodicals, Inc.
Ways of increasing muscular activity by means of isometric muscular exertion
NASA Technical Reports Server (NTRS)
Kovalik, A. V.
1980-01-01
The effect of isometric muscular exertion on the human body was investigated by having subjects perform basic movements in a sitting position in the conventional manner with additional muscle tension at 50% maximum force and at maximum force. The pulse, arterial pressure, skin temperature, respiratory rate, minute respiratory volume and electrical activity of the muscles involved were all measured. Performance of the exercises with maximum muscular exertion for 20 sec and without movement resulted in the greatest shifts in these indices; in the conventional manner substantial changes did not occur; and with isometric muscular exertion with 50% maximum force with and without movement, optimal functional shifts resulted. The latter is recommended for use in industrial exercises for the prevention of hypodynamia. Ten exercises are suggested.
Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G
2016-01-01
The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades. PMID:27997359
Cebrià I Iranzo, Maria Dels Àngels; Tortosa-Chuliá, M Ángeles; Igual-Camacho, Celedonia; Sancho, Patricia; Galiana, Laura; Tomás, José Manuel
2014-01-01
The institutionalized elderly with functional impairment show a greater decline in respiratory muscle (RM) function. The aims of the study are to evaluate outcomes and costs of RM training using Pranayama in institutionalized elderly people with functional impairment. A randomized controlled trial was conducted on institutionalized elderly people with walking limitation (n=54). The intervention consisted of 6 weeks of Pranayama RM training (5 times/week). The outcomes were measured at 4 time points, and were related to RM function: the maximum respiratory pressures and the maximum voluntary ventilation. Perceived satisfaction in the experimental group (EG) was assessed by means of an ad hoc questionnaire. Direct and indirect costs were estimated from the social perspective. The GE showed a significant improvement related with strength (maximum respiratory pressures) and endurance (maximum voluntary ventilation) of RM. Moreover, 92% of the EG reported a high satisfaction. The total social costs, direct and indirect, amounted to Euro 21,678. This evaluation reveals that RM function improvement is significant, that intervention is well tolerated and appreciated by patients, and the intervention costs are moderate. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.
[Aging of the respiratory system: anatomical changes and physiological consequences].
Ketata, W; Rekik, W K; Ayadi, H; Kammoun, S
2012-10-01
The respiratory system undergoes progressive involution with age, resulting in anatomical and functional changes that are exerted on all levels. The rib cage stiffens and respiratory muscles weaken. Distal bronchioles have reduced diameter and tend to be collapsed. Mobilized lung volumes decrease with age while residual volume increases. Gas exchanges are modified with a linear decrease of PaO(2) up to the age of 70 years and a decreased diffusing capacity of carbon monoxide. Ventilatory responses to hypercapnia, hypoxia and exercise decrease in the elderly. Knowledge of changes in the respiratory system related to advancing age is a medical issue of great importance in order to distinguish the effects of aging from those of diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Effects of cervical self-stretching on slow vital capacity.
Han, Dongwook; Yoon, Nayoon; Jeong, Yeongran; Ha, Misook; Nam, Kunwoo
2015-07-01
[Purpose] This study investigated the effects of self-stretching of cervical muscles, because the accessory inspiratory muscle is considered to improve pulmonary function. [Subjects] The subjects were 30 healthy university students 19-21 years old who did not have any lung disease, respiratory dysfunction, cervical injury, or any problems upon cervical stretching. [Methods] Spirometry was used as a pulmonary function test to measure the slow vital capacity before and after stretching. The slow vital capacity of the experimental group was measured before and after cervical self-stretching. Meanwhile, the slow vital capacity of the control group, which did not perform stretching, was also measured before and after the intervention. [Results] The expiratory vital capacity, inspiratory reserve volume, and expiratory reserve volume of the experimental group increased significantly after the cervical self-stretching. [Conclusion] Self-stretching of the cervical muscle (i.e., the inspiratory accessory muscle) improves slow vital capacity.
Protti, Alessandro; Ronchi, Dario; Bassi, Gabriele; Fortunato, Francesco; Bordoni, Andreina; Rizzuti, Tommaso; Fumagalli, Roberto
2016-07-01
To better clarify the pathogenesis of linezolid-induced lactic acidosis. Case report. ICU. A 64-year-old man who died with linezolid-induced lactic acidosis. Skeletal muscle was sampled at autopsy to study mitochondrial function. Lactic acidosis developed during continuous infusion of linezolid while oxygen consumption and oxygen extraction were diminishing from 172 to 52 mL/min/m and from 0.27 to 0.10, respectively. Activities of skeletal muscle respiratory chain complexes I, III, and IV, encoded by nuclear and mitochondrial DNA, were abnormally low, whereas activity of complex II, entirely encoded by nuclear DNA, was not. Protein studies confirmed stoichiometric imbalance between mitochondrial (cytochrome c oxidase subunits 1 and 2) and nuclear (succinate dehydrogenase A) DNA-encoded respiratory chain subunits. These findings were not explained by defects in mitochondrial DNA or transcription. There were no compensatory mitochondrial biogenesis (no induction of nuclear respiratory factor 1 and mitochondrial transcript factor A) or adaptive unfolded protein response (reduced concentration of heat shock proteins 60 and 70). Linezolid-induced lactic acidosis is associated with diminished global oxygen consumption and extraction. These changes reflect selective inhibition of mitochondrial protein synthesis (probably translation) with secondary mitonuclear imbalance. One novel aspect of linezolid toxicity that needs to be confirmed is blunting of reactive mitochondrial biogenesis and unfolded protein response.
Sternohyoid and diaphragm muscle form and function during postnatal development in the rat.
O'Connell, R A; Carberry, J; O'Halloran, K D
2013-09-01
What is the central question of this study? Co-ordinated activity of the thoracic pump and pharyngeal dilator muscles is critical for maintaining airway calibre and respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in the airway dilator muscles. What is the main finding and its importance? Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a maturational shift in muscle myosin heavy chain phenotype. This maturation is accelerated in the sternohyoid muscle relative to the diaphragm and may have implications for the control of airway calibre in vivo. The striated muscles of breathing, including the thoracic pump and pharyngeal dilator muscles, play a critical role in maintaining respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in airway dilator muscles given that co-ordinated activity of both sets of muscles is needed for the maintenance of airway calibre and effective pulmonary ventilation. The form and function of sternohyoid and diaphragm muscles from Wistar rat pups [postnatal day (PD) 10, 20 and 30] was determined. Isometric contractile and endurance properties were examined in tissue baths containing Krebs solution at 35°C. Myosin heavy chain (MHC) isoform composition was determined using immunofluorescence. Muscle oxidative and glycolytic capacity was assessed by measuring the activities of succinate dehydrogenase and glycerol-3-phosphate dehydrogenase using semi-quantitative histochemistry. Sternohyoid and diaphragm peak isometric force and fatigue increased significantly with postnatal maturation. Developmental myosin disappeared by PD20, whereas MHC2B areal density increased significantly from PD10 to PD30, emerging earlier and to a much greater extent in the sternohyoid muscle. The numerical density of fibres expressing MHC2X and MHC2B increased significantly during development in the sternohyoid. Diaphragm succinate dehydrogenase activity and sternohyoid glycerol-3-phosphate dehydrogenase activity increased significantly with age. Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a postnatal shift in muscle MHC phenotype. The accelerated maturation of the sternohyoid muscle relative to the diaphragm may have implications for the control of airway calibre in vivo.
Morel, Jérome; Palao, Jean-Charles; Castells, Josiane; Desgeorges, Marine; Busso, Thierry; Molliex, Serge; Jahnke, Vanessa; Del Carmine, Peggy; Gondin, Julien; Arnould, David; Durieux, Anne Cécile; Freyssenet, Damien
2017-09-07
Sepsis induced loss of muscle mass and function contributes to promote physical inactivity and disability in patients. In this experimental study, mice were sacrificed 1, 4, or 7 days after cecal ligation and puncture (CLP) or sham surgery. When compared with diaphragm, locomotor muscles were more prone to sepsis-induced muscle mass loss. This could be attributed to a greater activation of ubiquitin-proteasome system and an increased myostatin expression. Thus, this study strongly suggests that the contractile activity pattern of diaphragm muscle confers resistance to atrophy compared to the locomotor gastrocnemius muscle. These data also suggest that a strategy aimed at preventing the activation of catabolic pathways and preserving spontaneous activity would be of interest for the treatment of patients with sepsis-induced neuromyopathy.
Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio
2017-12-01
Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.
Chacon-Cabrera, Alba; Fermoselle, Clara; Salmela, Ida; Yelamos, Jose; Barreiro, Esther
2015-12-01
Current treatment options for cachexia, which impairs disease prognosis, are limited. Muscle-enriched microRNAs and protein acetylation are involved in muscle wasting including lung cancer (LC) cachexia. Poly(ADP-ribose) polymerases (PARP) are involved in muscle metabolism. We hypothesized that muscle-enriched microRNA, protein hyperacetylation, and expression levels of myogenic transcription factors (MTFs) and downstream targets, muscle loss and function improve in LC cachectic Parp-1(−/−) and Parp-2(−/−) mice. Body and muscle weights, grip strength, muscle phenotype, muscle-enriched microRNAs (miR-1, -133, -206, and -486), protein acetylation, acetylated levels of FoxO1, FoxO3, and PGC-1α, histone deacetylases (HDACs) including SIRT1, MTFs, and downstream targets (α-actin, PGC-1α, and creatine kinase) were evaluated in diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) wild type (WT), Parp-1(−/−) and Parp-2−/− mice. Compared to WT cachectic animals, in both respiratory and limb muscles of Parp-1(−/−) and Parp-2(−/−) cachectic mice: downregulation of muscle-specific microRNAs was counterbalanced especially in gastrocnemius of Parp-1(−/−) mice; increased protein acetylation was attenuated (improvement in HDAC3, SIRT-1, and acetylated FoxO3 levels in both muscles, acetylated FoxO1 levels in the diaphragm); reduced MTFs and creatine kinase levels were mitigated; body and muscle weights, strength, and muscle fiber sizes improved, while tumor weight and growth decreased. These molecular findings may explain the improvements seen in body and muscle weights, limb muscle force and fiber sizes in both Parp-1(−/−) and Parp-2(−/−) cachectic mice. PARP-1 and -2 play a role in cancer-induced cachexia, thus selective pharmacological inhibition of PARP-1 and -2 may be of interest in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.
Jensen, Dennis; Webb, Katherine A; Davies, Gregory A L; O'Donnell, Denis E
2008-01-01
The aim of this study was to identify the physiological mechanisms of exertional respiratory discomfort (breathlessness) in pregnancy by comparing ventilatory (breathing pattern, airway function, operating lung volumes, oesophageal pressure (Poes)-derived indices of respiratory mechanics) and perceptual (breathlessness intensity) responses to incremental cycle exercise in 15 young, healthy women in the third trimester (TM3; between 34 and 38 weeks gestation) and again 4–5 months postpartum (PP). During pregnancy, resting inspiratory capacity (IC) increased (P < 0.01) and end-expiratory lung volume decreased (P < 0.001), with no associated change in total lung capacity (TLC) or static respiratory muscle strength. This permitted greater tidal volume (VT) expansion throughout exercise in TM3, while preserving the relationship between contractile respiratory muscle effort (tidal Poes swing expressed as a percentage of maximum inspiratory pressure (PImax)) and thoracic volume displacement (VT expressed as a percentage of vital capacity) and between breathlessness and ventilation (V̇E). At the highest equivalent work rate (HEWR = 128 ± 5 W) in TM3 compared with PP: V̇E, tidal Poes/PImax and breathlessness intensity ratings increased by 10.2 l min−1 (P < 0.001), 8.8%PImax (P < 0.05) and 0.9 Borg units (P < 0.05), respectively. Pulmonary resistance was not increased at rest or during exercise at the HEWR in TM3, despite marked increases in mean tidal inspiratory and expiratory flow rates, suggesting increased bronchodilatation. Dynamic mechanical constraints on VT expansion (P < 0.05) with associated increased breathlessness intensity ratings (P < 0.05) were observed near peak exercise in TM3 compared with PP. In conclusion: (1) pregnancy-induced increases in exertional breathlessness reflected the normal awareness of increased V̇E and contractile respiratory muscle effort; (2) mechanical adaptations of the respiratory system, including recruitment of resting IC and increased bronchodilatation, accommodated the increased VT while preserving effort–displacement and breathlessness–V̇E relationships; and (3) dynamic mechanical ventilatory constraints contributed to respiratory discomfort near the limits of tolerance in late gestation. PMID:18687714
Effects of aging on mitochondrial function in skeletal muscle of American Quarter Horses
Li, Chengcheng; White, Sarah H.; Warren, Lori K.
2016-01-01
Skeletal muscle function, aerobic capacity, and mitochondrial (Mt) function have been found to decline with age in humans and rodents. However, not much is known about age-related changes in Mt function in equine skeletal muscle. Here, we compared fiber-type composition and Mt function in gluteus medius and triceps brachii muscle between young (age 1.8 ± 0.1 yr, n = 24) and aged (age 17-25 yr, n = 10) American Quarter Horses. The percentage of myosin heavy chain (MHC) IIX was lower in aged compared with young muscles (gluteus, P = 0.092; triceps, P = 0.012), while the percentages of MHC I (gluteus; P < 0.001) and MHC IIA (triceps; P = 0.023) were increased. Mass-specific Mt density, indicated by citrate synthase activity, was unaffected by age in gluteus, but decreased in aged triceps (P = 0.023). Cytochrome-c oxidase (COX) activity per milligram tissue and per Mt unit decreased with age in gluteus (P < 0.001 for both) and triceps (P < 0.001 and P = 0.003, respectively). Activity of 3-hydroxyacyl-CoA dehydrogenase per milligram tissue was unaffected by age, but increased per Mt unit in aged gluteus and triceps (P = 0.023 and P < 0.001, respectively). Mt respiration of permeabilized muscle fibers per milligram tissue was unaffected by age in both muscles. Main effects of age appeared when respiration was normalized to Mt content, with increases in LEAK, oxidative phosphorylation capacity, and electron transport system capacity (P = 0.038, P = 0.045, and P = 0.007, respectively), independent of muscle. In conclusion, equine skeletal muscle aging was accompanied by a shift in fiber-type composition, decrease in Mt density and COX activity, but preserved Mt respiratory function. PMID:27283918
Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L.; Sheffield, Val C.; Golan, Hava; Parvari, Ruti
2015-01-01
Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene. PMID:26247364
Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L; Sheffield, Val C; Golan, Hava; Parvari, Ruti
2015-08-01
Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene.
Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems.
Komatsu, Riyo; Okazaki, Tatsuma; Ebihara, Satoru; Kobayashi, Makoto; Tsukita, Yoko; Nihei, Mayumi; Sugiura, Hisatoshi; Niu, Kaijun; Ebihara, Takae; Ichinose, Masakazu
2018-05-22
Repetition of the onset of aspiration pneumonia in aged patients is common and causes chronic inflammation. The inflammation induces proinflammatory cytokine production and atrophy in the muscles. The proinflammatory cytokines induce muscle proteolysis by activating calpains and caspase-3, followed by further degradation by the ubiquitin-proteasome system. Autophagy is another pathway of muscle atrophy. However, little is known about the relationship between aspiration pneumonia and muscle. For swallowing muscles, it is not clear whether they produce cytokines. The main objective of this study was to determine whether aspiration pneumonia induces muscle atrophy in the respiratory (the diaphragm), skeletal (the tibialis anterior, TA), and swallowing (the tongue) systems, and their possible mechanisms. We employed a mouse aspiration pneumonia model and computed tomography (CT) scans of aged pneumonia patients. To induce aspiration pneumonia, mice were inoculated with low dose pepsin and lipopolysaccharide solution intra-nasally 5 days a week. The diaphragm, TA, and tongue were isolated, and total RNA, proteins, and frozen sections were stored. Quantitative real-time polymerase chain reaction determined the expression levels of proinflammatory cytokines, muscle E3 ubiquitin ligases, and autophagy related genes. Western blot analysis determined the activation of the muscle proteolysis pathway. Frozen sections determined the presence of muscle atrophy. CT scans were used to evaluate the muscle atrophy in aged aspiration pneumonia patients. The aspiration challenge enhanced the expression levels of proinflammatory cytokines in the diaphragm, TA, and tongue. Among muscle proteolysis pathways, the aspiration challenge activated caspase-3 in all the three muscles examined, whereas calpains were activated in the diaphragm and the TA but not in the tongue. Activation of the ubiquitin-proteasome system was detected in all the three muscles examined. The aspiration challenge activated autophagy in the TA and the tongue, whereas weak or little activation was detected in the diaphragm. The aspiration challenge resulted in a greater proportion of smaller myofibers than in controls in the diaphragm, TA, and tongue, suggesting muscle atrophy. CT scans clearly showed that aspiration pneumonia was followed by muscle atrophy in aged patients. Aspiration pneumonia induced muscle atrophy in the respiratory, skeletal, and swallowing systems in a preclinical animal model and in human patients. Diaphragmatic atrophy may weaken the force of cough to expectorate sputum or mis-swallowed contents. Skeletal muscle atrophy may cause secondary sarcopenia. The atrophy of swallowing muscles may weaken the swallowing function. Thus, muscle atrophy could become a new therapeutic target of aspiration pneumonia. © 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Differentiated muscles are mandatory for gas-filling of the Drosophila airway system.
Wang, Yiwen; Cruz, Tina; Irion, Uwe; Moussian, Bernard
2015-11-30
At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. © 2015. Published by The Company of Biologists Ltd.
Fröhlich, Thomas; Kemter, Elisabeth; Flenkenthaler, Florian; Klymiuk, Nikolai; Otte, Kathrin A; Blutke, Andreas; Krause, Sabine; Walter, Maggie C; Wanke, Rüdiger; Wolf, Eckhard; Arnold, Georg J
2016-09-16
Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials.
Exercise training improves vascular mitochondrial function
Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David
2016-01-01
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520
Effects of Ramadan Fasting on Inspiratory Muscle Function.
Soori, Mohsen; Mohaghegh, Shahram; Hajain, Maryam; Moraadi, Behrooz
2016-09-01
Ramadan fasting is a major challenge for exercising Muslims especially in warm seasons. There is some evidence to indicate that Ramadan fasting causes higher subjective ratings of perceived exertion (RPE) in fasting Muslims. The mechanisms of this phenomenon are not known exactly. The role of respiratory muscle strength in this regard has not been studied yet. The aim of this study was investigation of the effects of Ramadan fasting on respiratory muscle strength. In a before-after study, from 35 fasting, apparently healthy, male adults who had fasted from the beginning of Ramadan, maximal inspiratory muscle pressure (MIP) and peak inspiratory flow (PIF) were measured in the last week of Ramadan month in summer. At the time of test, there was not any sleep problem in participants and all of them had good cooperation. Three months later, after exclusion of incompatible persons mainly because of change in their physical activity level, smoking behavior or drug consumption, the measurements were repeated in 12 individuals. Weight, MIP and PIF data had normal distribution (Kolmogorov-Smirnov Test). There was a significant increase in MIP (mean 8.3 cm H 2 O with 95% confidence interval of 2.2 - 14.3) and PIF (mean 0.55 lit/s with 95% confidence interval of 0.02 - 1.07) and weight (mean 3.4 Kg with 95% confidence interval of 2.2 - 4.5) after Ramadan (Paired t test with P < 0.05). When weight difference was used as a covariate in repeated measure ANOVA test, there was no further significant difference between MIP and PIF measurements. Ramadan fasting may cause reduction of respiratory muscle strength through reduction of body weight.
Lung function in post-poliomyelitis syndrome: a cross-sectional study*
de Lira, Claudio Andre Barbosa; Minozzo, Fábio Carderelli; Sousa, Bolivar Saldanha; Vancini, Rodrigo Luiz; Andrade, Marília dos Santos; Quadros, Abrahão Augusto Juviniano; Oliveira, Acary Souza Bulle; da Silva, Antonio Carlos
2013-01-01
OBJECTIVE: To compare lung function between patients with post-poliomyelitis syndrome and those with sequelae of paralytic poliomyelitis (without any signs or symptoms of post-poliomyelitis syndrome), as well as between patients with post-poliomyelitis syndrome and healthy controls. METHODS: Twenty-nine male participants were assigned to one of three groups: control; poliomyelitis (comprising patients who had had paralytic poliomyelitis but had not developed post-poliomyelitis syndrome); and post-poliomyelitis syndrome. Volunteers underwent lung function measurements (spirometry and respiratory muscle strength assessment). RESULTS: The results of the spirometric assessment revealed no significant differences among the groups except for an approximately 27% lower mean maximal voluntary ventilation in the post-poliomyelitis syndrome group when compared with the control group (p = 0.0127). Nevertheless, the maximal voluntary ventilation values for the post-poliomyelitis group were compared with those for the Brazilian population and were found to be normal. No significant differences were observed in respiratory muscle strength among the groups. CONCLUSIONS: With the exception of lower maximal voluntary ventilation, there was no significant lung function impairment in outpatients diagnosed with post-poliomyelitis syndrome when compared with healthy subjects and with patients with sequelae of poliomyelitis without post-poliomyelitis syndrome. This is an important clinical finding because it shows that patients with post-poliomyelitis syndrome can have preserved lung function. PMID:24068267
Phielix, Esther; Schrauwen-Hinderling, Vera B.; Mensink, Marco; Lenaers, Ellen; Meex, Ruth; Hoeks, Joris; Kooi, Marianne Eline; Moonen-Kornips, Esther; Sels, Jean-Pierre; Hesselink, Matthijs K.C.; Schrauwen, Patrick
2008-01-01
OBJECTIVE—A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients. RESEARCH DESIGN AND METHODS—Ten overweight diabetic patients, 12 first-degree relatives, and 16 control subjects, all men, matched for age and BMI, participated in this study. Insulin sensitivity was measured with a hyperinsulinemic-euglycemic clamp. Ex vivo intrinsic mitochondrial respiratory capacity was determined in permeabilized skinned muscle fibers using high-resolution respirometry and normalized for mitochondrial content. In vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time after exercise using 31P-magnetic resonance spectroscopy. RESULTS—Insulin-stimulated glucose disposal was lower in diabetic patients compared with control subjects (11.2 ± 2.8 vs. 28.9 ± 3.7 μmol · kg−1 fat-free mass · min−1, respectively; P = 0.003), with intermediate values for first-degree relatives (22.1 ± 3.4 μmol · kg−1 fat-free mass · min−1). In vivo mitochondrial function was 25% lower in diabetic patients (P = 0.034) and 23% lower in first-degree relatives, but the latter did not reach statistical significance (P = 0.08). Interestingly, ADP-stimulated basal respiration was 35% lower in diabetic patients (P = 0.031), and fluoro-carbonyl cyanide phenylhydrazone–driven maximal mitochondrial respiratory capacity was 31% lower in diabetic patients (P = 0.05) compared with control subjects with intermediate values for first-degree relatives. CONCLUSIONS—A reduced basal ADP-stimulated and maximal mitochondrial respiratory capacity underlies the reduction in in vivo mitochondrial function, independent of mitochondrial content. A reduced capacity at both the level of the electron transport chain and phosphorylation system underlies this impaired mitochondrial capacity. PMID:18678616
Control of abdominal muscles by brain stem respiratory neurons in the cat
NASA Technical Reports Server (NTRS)
Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro
1985-01-01
The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.
Soares, Ana Alice de Almeida; Barros, Camila Moraes; Santos, Cássia Giulliane Costa; Dos Santos, Maria Renata Aragão; Silva, José Rodrigo Santos; Silva Junior, Walderi Monteiro da; Simões, Silvia de Magalhães
2018-03-01
Rhinitis and asthma decrease quality of life. Few studies have assessed the performance of children with asthma or rhinitis under submaximal exercise. We evaluated maximal respiratory pressures, spirometric parameters, and ability to sustain submaximal exercise in these children before and after the 6-minute walk test (6MWT), compared to healthy children. This cross-sectional, analytical study included 89 children aged 6-12 years in outpatient follow-up: 27 healthy (H), 31 with rhinitis (R), and 31 with mild asthma under control (A). Pulmonary function parameters and maximal respiratory pressures were measured before and 5, 10, and 30 minutes after the 6MWT. Wilcoxon test was used to compare numerical numerical variables between two groups and analysis of variance or Kruskal-Wallis test for comparison among three groups. Total distance traveled in the 6MWT was similar among the three groups. Compared to pre-test values, VEF1 (Forced Expiratory Volume in 1 second), VEF0.75 (Forced Expiratory Volume in 0.75 second), and FEF25-75 (Forced Expiratory Flow 25-75% of the Forced Vital Capacity - CVF - curve) decreased significantly after the 6MWT in group A, and VEF0.75, FEF25-75, and VEF1/CVF decreased significantly in group R. Groups A and R had lower Maximum Inspiratory Pressure values than group H before and after the 6MWT at all time points assessed. The findings suggest that children with rhinitis and mild asthma present with alterations in respiratory muscle strength and pulmonary function not associated with clinical complaints, reinforcing the concept of the united airways.
de OLIVEIRA, Josélia Jucirema Jarschel; de FREITAS, Alexandre Coutinho Teixeira; de ALMEIDA, Andréa Adriana
2016-01-01
ABSTRACT Background: Respiratory physiotherapy plays an important role preventing complications in bariatric surgery. Aim: To assess the effects of out-patient physiotherapy during post-operative period through respiratory pressures and functional capacity in individuals submitted to bariatric surgery. Method: A prospective longitudinal and controlled study was done in adults with body mass index (BMI) equal or greater than 40 kg/m², who have been submitted to bariatric surgery. They were divided into two groups: intervention-group, who performed out-patient physiotherapy twice a week, from thirty to sixty days after surgery; and the control-group, who only followed home instructions. Both groups were evaluated before surgery and sixty days after surgery through manovacuometry, six-minute walk test and the Borg Scale of perceived exertion. Results: Twenty participants were included the intervention-group and twenty-three in the control-group. Both groups had significant and similar weight loss after surgery. The manovacuometry presented no differences comparing pre- and post-surgery and in the comparison between the groups. The result of the six-minute walk test for the intervention-group increased by 10.1% in the post-operative period in relation to pre-. The Borg scale of perceived exertion in the intervention-group in pre-surgery decreased by 13.5% in the post-surgery compared to pre-surgery. In the control-group there was no difference comparing pre- and post-operative values, as in the comparison with the intervention-group. Conclusion: The low-intensity exercise program, carried out between the 30th and the 60th day after bariatric surgery provided better functional capacity; did not change respiratory muscle strength; and improved the perceived exertion rate. PMID:27683775
Minic, Zeljka; Zhang, Yanhua; Mao, Guangzhao; Goshgarian, Harry G
2016-03-23
Respiratory complications in patients with spinal cord injury (SCI) are common and have a negative impact on the quality of patients' lives. Systemic administration of drugs that improve respiratory function often cause deleterious side effects. The present study examines the applicability of a novel nanotechnology-based drug delivery system, which induces recovery of diaphragm function after SCI in the adult rat model. We developed a protein-coupled nanoconjugate to selectively deliver by transsynaptic transport small therapeutic amounts of an A1 adenosine receptor antagonist to the respiratory centers. A single administration of the nanoconjugate restored 75% of the respiratory drive at 0.1% of the systemic therapeutic drug dose. The reduction of the systemic dose may obviate the side effects. The recovery lasted for 4 weeks (the longest period studied). These findings have translational implications for patients with respiratory dysfunction after SCI. The leading causes of death in humans following SCI are respiratory complications secondary to paralysis of respiratory muscles. Systemic administration of methylxantines improves respiratory function but also leads to the development of deleterious side effects due to actions of the drug on nonrespiratory sites. The importance of the present study lies in the novel drug delivery approach that uses nanotechnology to selectively deliver recovery-inducing drugs to the respiratory centers exclusively. This strategy allows for a reduction in the therapeutic drug dose, which may reduce harmful side effects and markedly improve the quality of life for SCI patients. Copyright © 2016 the authors 0270-6474/16/363441-12$15.00/0.
Pessoa, Isabela M B S; Houri Neto, Miguel; Montemezzo, Dayane; Silva, Luisa A M; Andrade, Armèle Dornelas De; Parreira, Verônica F
2014-01-01
The maximum static respiratory pressures, namely the maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP), reflect the strength of the respiratory muscles. These measures are simple, non-invasive, and have established diagnostic and prognostic value. This study is the first to examine the maximum respiratory pressures within the Brazilian population according to the recommendations proposed by the American Thoracic Society and European Respiratory Society (ATS/ERS) and the Brazilian Thoracic Association (SBPT). To establish reference equations, mean values, and lower limits of normality for MIP and MEP for each age group and sex, as recommended by the ATS/ERS and SBPT. We recruited 134 Brazilians living in Belo Horizonte, MG, Brazil, aged 20-89 years, with a normal pulmonary function test and a body mass index within the normal range. We used a digital manometer that operationalized the variable maximum average pressure (MIP/MEP). At least five tests were performed for both MIP and MEP to take into account a possible learning effect. We evaluated 74 women and 60 men. The equations were as follows: MIP=63.27-0.55 (age)+17.96 (gender)+0.58 (weight), r(2) of 34% and MEP= - 61.41+2.29 (age) - 0.03(age(2))+33.72 (gender)+1.40 (waist), r(2) of 49%. In clinical practice, these equations could be used to calculate the predicted values of MIP and MEP for the Brazilian population.
Biomechanical simulation of thorax deformation using finite element approach.
Zhang, Guangzhi; Chen, Xian; Ohgi, Junji; Miura, Toshiro; Nakamoto, Akira; Matsumura, Chikanori; Sugiura, Seiryo; Hisada, Toshiaki
2016-02-06
The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. We constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force-length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced. Thorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification. Thorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system.
Wolf, Joachim; Obermaier-Kusser, Bert; Jacobs, Martina; Milles, Cornelia; Mörl, Mario; von Pein, Harald D; Grau, Armin J; Bauer, Matthias F
2012-05-15
We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive. Copyright © 2012 Elsevier B.V. All rights reserved.
Rocha, Flávia Roberta; Brüggemann, Ana Karla Vieira; Francisco, Davi de Souza; Medeiros, Caroline Semprebom de; Rosal, Danielle; Paulin, Elaine
2017-01-01
To evaluate diaphragmatic mobility in relation to lung function, respiratory muscle strength, dyspnea, and physical activity in daily life (PADL) in patients with COPD. We included 25 patients with COPD, classified according to the Global Initiative for Chronic Obstructive Lung Disease criteria, and 25 healthy individuals. For all of the participants, the following were evaluated: anthropometric variables, spirometric parameters, respiratory muscle strength, diaphragmatic mobility (by X-ray), PADL, and the perception of dyspnea. In the COPD group, diaphragmatic mobility was found to correlate with lung function variables, inspiratory muscle strength, and the perception of dyspnea, whereas it did not correlate with expiratory muscle strength or PADL. In patients with COPD, diaphragmatic mobility seems to be associated with airway obstruction and lung hyperinflation, as well as with ventilatory capacity and the perception of dyspnea, although not with PADL. Avaliar a relação da mobilidade diafragmática com a função pulmonar, força muscular respiratória, dispneia e atividade física de vida diária (AFVD) em pacientes com DPOC. Foram avaliados 25 pacientes com diagnóstico de DPOC, classificados de acordo com critérios da Global Initiative for Chronic Obstructive Lung Disease, e 25 indivíduos saudáveis. Todos foram submetidos às seguintes avaliações: mensuração antropométrica, espirometria, força muscular respiratória, mobilidade diafragmática (por radiografia), AFVD e percepção de dispneia. No grupo DPOC, houve correlações da mobilidade diafragmática com variáveis de função pulmonar, força muscular inspiratória e percepção de dispneia. Não houve correlações da mobilidade diafragmática com força muscular expiratória e AFVD. A mobilidade diafragmática parece estar associada tanto com a obstrução das vias aéreas quanto com a hiperinsuflação pulmonar em pacientes com DPOC, assim como com a capacidade ventilatória e percepção de dispneia, mas não com AFVD.
[Adult form of Pompe disease].
Ziółkowska-Graca, Bozena; Kania, Aleksander; Zwolińska, Grazyna; Nizankowska-Mogilnicka, Ewa
2008-01-01
Pompe disease (glycogen-storage disease type II) is an autosomal recessive disorder caused by a deficiency of lysosomal acid alpha-glucosidase (GAA), leading to the accumulation of glycogen in the lysosomes primarily in muscle cells. In the adult form of the disease, proximal muscle weakness is noted and muscle volume is decreased. The infantile form is usually fatal. In the adult form of the disease the prognosis is relatively good. Muscle weakness may, however, interfere with normal daily activities, and respiratory insufficiency may be associated with obstructive sleep apnea. Death usually results from respiratory failure. Effective specific treatment is not available. Enzyme replacement therapy with recombinant human GAA (rh-GAA) still remains a research area. We report the case of a 24-year-old student admitted to the Department of Pulmonary Diseases because of severe respiratory insufficiency. Clinical symptoms such as dyspnea, muscular weakness and increased daytime sleepiness had been progressing for 2 years. Clinical examination and increased blood levels of CK suggested muscle pathology. Histopathological analysis of muscle biopsy, performed under electron microscope, confirmed the presence of vacuoles containing glycogen. Specific enzymatic activity of alpha-glucosidase was analyzed confirming Pompe disease. The only effective method to treat respiratory insufficiency was bi-level positive pressure ventilation. Respiratory rehabilitation was instituted and is still continued by the patient at home. A high-protein, low-sugar diet was proposed for the patient. Because of poliglobulia low molecular weight heparin was prescribed. The patient is eligible for experimental replacement therapy with rh-GAA.
Roussos, C S; Macklem, P T
1977-08-01
The time required (tlim) to produce fatigue of the diaphragm was determined in three normal seated subjects, breathing through a variety of high alinear, inspiratory resistances. During each breath in all experimental runs the subject generated a transdiaphragmatic pressure (Pdi) which was a predetermined fraction of his maximum inspiratory Pdi (Pdimax) at functional residual capacity. The breathing test was performed until the subject was unable to generate this Pdi. The relationship between Pdi/Pdimax and tlim was curvilinear so that when Pdi/Pdimax was small tlim increased markedly for little changes in Pdi/Pdimax. The value of Pdi/Pdimax that could be generated indefinitely (Pdicrit) was around 0.4. Hypoxia appeared to have no influence on Pdicrit, but probably led to a reduction in tlim at Pdi greater than Pdicrit for equal rates of energy consumption. Insofar as the behavior of the diaphragm reflects that of other respiratory muscles it appears that quite high inspiratory loads can be tolerated indefinitely. However, when the energy consumption of the respiratory muscles exceeds a critical level, fatigue should develop. This may be a mechanism of respiratory failure in a variety in a variety of lung diseases.
Twose, Paul; Jones, Una; Wise, Matt P
2018-06-01
Critical illness has profound effects on muscle strength and long-term physical morbidity. However, there remains a paucity of evidence for the aetiology of critical illness related weakness. Recent animal model research identified that hypercapnia may reduce the rate of muscle loss. The aim of this study was to determine the effect of hypercapnia on respiratory and peripheral skeletal muscle in patients with critical illness. A pilot observational study of mechanically ventilated critically ill patients at a tertiary critical care unit who were retrospectively categorised as: 1) Respiratory failure with normocapnia; 2) Respiratory failure with hypercapnia; and 3) brain injury. Diaphragm thickness and quadriceps rectus femoris cross-sectional area (RFCSA) were measured using ultrasound imaging at baseline and at days 3, 5, 7 and 10 of mechanical ventilation. Significant reductions in RFCSA muscle loss were observed for all time-points when compared to baseline [day 10: -14.9%±8.2 p< 0.001], and in diaphragm thickness between baseline and day 7 [day 7: -5.8%±9.5 p=0.029). No correlation was identified between the rate of muscle mass loss in the diaphragm and RFCSA. In this pilot study, peripheral skeletal muscle weakness occurred early and rapidly within the critical care population, irrespective of carbon dioxide levels. Copyright © 2018 Elsevier Inc. All rights reserved.
Physiology of breathlessness associated with pleural effusions
Thomas, Rajesh; Jenkins, Susan; Eastwood, Peter R.; Lee, Y.C. Gary; Singh, Bhajan
2015-01-01
Purpose of review Pleural effusions have a major impact on the cardiorespiratory system. This article reviews the pathophysiological effects of pleural effusions and pleural drainage, their relationship with breathlessness, and highlights key knowledge gaps. Recent findings The basis for breathlessness in pleural effusions and relief following thoracentesis is not well understood. Many existing studies on the pathophysiology of breathlessness in pleural effusions are limited by small sample sizes, heterogeneous design and a lack of direct measurements of respiratory muscle function. Gas exchange worsens with pleural effusions and improves after thoracentesis. Improvements in ventilatory capacity and lung volumes following pleural drainage are small, and correlate poorly with the volume of fluid drained and the severity of breathlessness. Rather than lung compression, expansion of the chest wall, including displacement of the diaphragm, appears to be the principle mechanism by which the effusion is accommodated. Deflation of the thoracic cage and restoration of diaphragmatic function after thoracentesis may improve diaphragm effectiveness and efficiency, and this may be an important mechanism by which breathlessness improves. Effusions do not usually lead to major hemodynamic changes, but large effusions may cause cardiac tamponade and ventricular diastolic collapse. Patients with effusions can have impaired exercise capacity and poor sleep quality and efficiency. Summary Pleural effusions are associated with abnormalities in gas exchange, respiratory mechanics, respiratory muscle function and hemodynamics, but the association between these abnormalities and breathlessness remains unclear. Prospective studies should aim to identify the key mechanisms of effusion-related breathlessness and predictors of improvement following pleural drainage. PMID:25978627
Physiology of breathlessness associated with pleural effusions.
Thomas, Rajesh; Jenkins, Susan; Eastwood, Peter R; Lee, Y C Gary; Singh, Bhajan
2015-07-01
Pleural effusions have a major impact on the cardiorespiratory system. This article reviews the pathophysiological effects of pleural effusions and pleural drainage, their relationship with breathlessness, and highlights key knowledge gaps. The basis for breathlessness in pleural effusions and relief following thoracentesis is not well understood. Many existing studies on the pathophysiology of breathlessness in pleural effusions are limited by small sample sizes, heterogeneous design and a lack of direct measurements of respiratory muscle function. Gas exchange worsens with pleural effusions and improves after thoracentesis. Improvements in ventilatory capacity and lung volumes following pleural drainage are small, and correlate poorly with the volume of fluid drained and the severity of breathlessness. Rather than lung compression, expansion of the chest wall, including displacement of the diaphragm, appears to be the principle mechanism by which the effusion is accommodated. Deflation of the thoracic cage and restoration of diaphragmatic function after thoracentesis may improve diaphragm effectiveness and efficiency, and this may be an important mechanism by which breathlessness improves. Effusions do not usually lead to major hemodynamic changes, but large effusions may cause cardiac tamponade and ventricular diastolic collapse. Patients with effusions can have impaired exercise capacity and poor sleep quality and efficiency. Pleural effusions are associated with abnormalities in gas exchange, respiratory mechanics, respiratory muscle function and hemodynamics, but the association between these abnormalities and breathlessness remains unclear. Prospective studies should aim to identify the key mechanisms of effusion-related breathlessness and predictors of improvement following pleural drainage.
Sleep/wake firing patterns of human genioglossus motor units.
Bailey, E Fiona; Fridel, Keith W; Rice, Amber D
2007-12-01
Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
Introduction High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient–ventilator asynchrony (PVA). Patients and methods Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Results Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings (P=0.017). Conclusion High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA. PMID:28138234
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.
Boutagy, Nabil E; Rogers, George W; Pyne, Emily S; Ali, Mostafa M; Hulver, Matthew W; Frisard, Madlyn I
2015-10-30
Skeletal muscle mitochondria play a specific role in many disease pathologies. As such, the measurement of oxygen consumption as an indicator of mitochondrial function in this tissue has become more prevalent. Although many technologies and assays exist that measure mitochondrial respiratory pathways in a variety of cells, tissue and species, there is currently a void in the literature in regards to the compilation of these assays using isolated mitochondria from mouse skeletal muscle for use in microplate based technologies. Importantly, the use of microplate based respirometric assays is growing among mitochondrial biologists as it allows for high throughput measurements using minimal quantities of isolated mitochondria. Therefore, a collection of microplate based respirometric assays were developed that are able to assess mechanistic changes/adaptations in oxygen consumption in a commonly used animal model. The methods presented herein provide step-by-step instructions to perform these assays with an optimal amount of mitochondrial protein and reagents, and high precision as evidenced by the minimal variance across the dynamic range of each assay.
Franco, Caroline Buarque; Ribeiro, Antonio Fernando; Morcillo, André Moreno; Zambon, Mariana Porto; Almeida, Marina Buarque; Rozov, Tatiana
2014-01-01
OBJECTIVE: To analyze the effects of Pilates mat exercises in patients with cystic fibrosis (CF). METHODS: This was a clinical trial involving 19 CF patients recruited from either the CF Outpatient Clinic of the State University at Campinas Hospital de Clínicas or the Children's Institute of the University of São Paulo School of Medicine Hospital das Clínicas. All of the patients performed Pilates mat exercises for four months (one 60-min session per week). The variables studied (before and after the intervention) were respiratory muscle strength, MIP, MEP, FVC, and FEV1. RESULTS: After the intervention, MIP was significantly higher in the male patients (p = 0.017), as were MIP and MEP in the female patients (p = 0.005 and p = 0.007, respectively). There were no significant differences between the pre- and post-intervention values of FVC or FEV1, neither in the sample as a whole nor among the patients of either gender. CONCLUSIONS: Our results show that Pilates mat exercises have beneficial effects on respiratory muscle strength in CF patients. PMID:25410840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, N.G.; Tulinius, M.H.; Holme, E.
1992-12-01
The authors have studied the segregation and manifestations of the tRNA[sup Lys] A[r arrow]G[sup (8344)] mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNA[sup Lys] mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, andmore » mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrone had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemical evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases. These findings suggest that >92% of mtDNA with the tRNA[sup Lys] mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. There was a positive correlation between the levels of mtDNA with the tRNA[sup Lys] mutation in lymphocytes and the levels in muscle, in all nine investigated cases. The levels of mutated mtDNA were higher in muscle than in lymphocytes in all cases. 30 refs., 3 figs., 5 tabs.« less
Pulmonary Adaptation to High Altitude.
1983-08-12
base status, cerebral hypoxia,.periodic. breathing in sleep, exercise gas exchange, * respiratory mnuscle fatigue. .-. A4N~rea~.&P ol nftw-"Nyr OMI... respiratory muscle’ metboYi L * morphology in the rat; and the effects of lg-emyoxaand differint levels of hypoxia on venitilation and periodic breathing...34 hypothesis. 5. The rat appears to be a good model for the study of respiratory muscle metabolism during exercise and in chronic hypoxia. Studies on both of
Sarmento, Lais A; Pinto, Juliana Sst; da Silva, Ana Pp; Cabral, Cristina Mn; Chiavegato, Luciana D
2017-04-01
To compare the effect of conventional physical therapy and Pilates on function, restoration, and exercise ability in hospitalized chronic renal patients. A total of 56 inpatients were randomized into two groups: Conventional physical therapy and Pilates. The primary outcomes were functionality (Barthel Index), respiratory muscle strength (manovacuometry), and ability to exercise (step test) evaluated in the following periods: preintervention, after the 5th session, and after the 10th session or at discharge. Three months after randomization, the Barthel Index was applied over the phone. At the end of the 10 sessions or at discharge, the length of hospital stay was calculated and the level of satisfaction with physical therapy care was assessed (MedRisk). Linear mixed models were used for the primary outcomes and the Student's t-test was used for length of stay and satisfaction. There was no significant between-group difference in functionality (MD -1.3; 95% CI -2.8 to 5.4), inspiratory and expiratory muscle strength (MD -1.3; 95% CI -7.3 to 4.5/MD -4.5; 95% CI -0.7 to 9.7, respectively), performance in the step test (MD -3.3; 95% CI -6.2 to 12.8), patient satisfaction with physical therapy care (MD -2.0; 95% CI -5.1 to 9.1), and length of stay (MD 4.5; 95% CI -15.9 to 6.8). Both interventions, conventional physical therapy and Pilates, showed improvements and there is no difference between them. Therefore both can be used in chronic renal patients.
ERIC Educational Resources Information Center
Fischer, Michael J.; Gutenbrunner, Christoph; Ptok, Martin
2009-01-01
The objective of this study was to evaluate a new intervention for chronic dysphonias, consisting of a 2-week outpatient treatment period using intensified voice therapy combined with elements of physical medicine, including physiotherapy (orthotherapy, detonisation and training of the trunk muscles, respiratory therapy and others), manual therapy…
Organophosphate-induced intermediate syndrome: aetiology and relationships with myopathy.
Karalliedde, Lakshman; Baker, David; Marrs, Timothy C
2006-01-01
The intermediate syndrome (IMS) following organophosphorus (OP) insecticide poisoning was first described in the mid-1980s. The syndrome described comprised characteristic symptoms and signs occurring after apparent recovery from the acute cholinergic syndrome. As the syndrome occurred after the acute cholinergic syndrome but before organophosphate-induced delayed polyneuropathy, the syndrome was called 'intermediate syndrome'. The IMS occurs in approximately 20% of patients following oral exposure to OP pesticides, with no clear association between the particular OP pesticide involved and the development of the syndrome. It usually becomes established 2-4 days after exposure when the symptoms and signs of the acute cholinergic syndrome (e.g. muscle fasciculations, muscarinic signs) are no longer obvious. The characteristic features of the IMS are weakness of the muscles of respiration (diaphragm, intercostal muscles and accessory muscles including neck muscles) and of proximal limb muscles. Accompanying features often include weakness of muscles innervated by some cranial nerves. It is now emerging that the degree and extent of muscle weakness may vary following the onset of the IMS. Thus, some patients may only have weakness of neck muscles whilst others may have weakness of neck muscles and proximal limb muscles. These patients may not require ventilatory care but close observation and monitoring of respiratory function is mandatory. Management is essentially that of rapidly developing respiratory distress and respiratory failure. Delays in instituting ventilatory care will result in death. Initiation of ventilatory care and maintenance of ventilatory care often requires minimal doses of non-depolarising muscle relaxants. The use of depolarising muscle relaxants such as suxamethonium is contraindicated in OP poisoning. The duration of ventilatory care required by patients may differ considerably and it is usual for patients to need ventilatory support for 7-15 days and even up to 21 days. Weaning from ventilatory care is best carried out in stages, with provision of continuous positive airway pressure prior to complete weaning. Continuous and close monitoring of respiratory function (arterial oxygen saturation, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide in arterial blood) and acid-base status are an absolute necessity. Prophylactic antibiotics are usually not required unless there has been evidence of aspiration of material into the lungs. Close monitoring of fluid and electrolyte balance is mandatory in view of the profuse offensive diarrhoea that most patients develop. Maintenance of nutrition, physiotherapy, prevention of bed sores and other routine measures to minimise discomfort during ventilatory care are necessary. Recovery from the intermediate syndrome is normally complete and without any sequelae. The usefulness of oximes during the IMS remains uncertain. In animal experiments, very early administration of oximes has prevented the occurrence of myopathy. There are reports from developed countries where administration of oximes at recommended doses and within 2 hours of ingestion of OP insecticide did not prevent the onset of the IMS. Controlled randomised clinical studies are necessary to evaluate the efficacy of oximes in combating the IMS. Electrophysiological studies following OP poisoning have revealed three characteristic phenomena: (i) repetitive firing following a single stimulus; (ii) gradual reduction in twitch height or compound muscle action potential followed by an increase with repetitive stimulation (the 'decrement-increment response'); and (iii) continued reduction in twitch height or compound muscle action potential with repetitive simulation ('decrementing response'). Of these, the decrementing response is the most frequent finding during the IMS, whilst repetitive firing is observed during the acute cholinergic syndrome. The distribution of the weakness in human cases of the IMS, in general, parallels the distribution of the myopathy observed in a number of studies in experimental animals. This has led to speculation that myopathy is involved in the causation of the IMS. However, while myopathy and the IMS have a common origin in acetylcholine accumulation, they are not causally related to one another.
The physiological basis of rehabilitation in chronic heart and lung disease.
Vogiatzis, Ioannis; Zakynthinos, Spyros
2013-07-01
Cardiopulmonary rehabilitation is recognized as a core component of management of individuals with congestive heart failure (CHF) or chronic obstructive pulmonary disease (COPD) that is designed to improve their physical and psychosocial condition without impacting on the primary organ impairment. This has lead the scientific community increasingly to believe that the main effects of cardiopulmonary rehabilitative exercise training are focused on skeletal muscles that are regarded as dysfunctional in both CHF and COPD. Accordingly, following completion of a cardiopulmonary rehabilitative exercise training program there are important peripheral muscular adaptations in both disease entities, namely increased capillary density, blood flow, mitochondrial volume density, fiber size, distribution of slow twitch fibers, and decreased lactic acidosis and vascular resistance. Decreased lactic acidosis at a given level of submaximal exercise not only offsets the occurrence of peripheral muscle fatigue, leading to muscle task failure and muscle discomfort, but also concurrently mitigates the additional burden on the respiratory muscles caused by the increased respiratory drive, thereby reducing dyspnea sensations. Furthermore in patients with COPD, exercise training reduces the degree of dynamic lung hyperinflation leading to improved arterial oxygen content and central hemodynamic responses, thus increasing systemic muscle oxygen availability. In patients with CHF, exercise training has beneficial direct and reflex sympathoinhibitory effects and favorable effects on normalization of neurohumoral excitation. These physiological benefits apply to all COPD and CHF patients independently of the degree of disease severity and are associated with improved exercise tolerance, functional capacity, and quality of life.
Mehani, Sherin Hassan Mohammed
2017-01-01
The aim of the present study was to compare threshold inspiratory muscle training (IMT) and expiratory muscle training (EMT) in elderly male patients with moderate degree of COPD. Forty male patients with moderate degree of COPD were recruited for this study. They were randomly divided into two groups: the IMT group who received inspiratory training with an intensity ranging from 15% to 60% of their maximal inspiratory pressure, and the EMT group who received expiratory training with an equal intensity which was adjusted according to the maximal expiratory pressure. Both groups received training three times per week for 2 months, in addition to their prescribed medications. Both IMT and EMT groups showed a significant improvement in forced vital capacity, forced expiratory volume in the first second, forced expiratory volume in the first second% from the predicted values, and forced vital capacity% from the predicted value, with no difference between the groups. Both types of training resulted in a significant improvement in blood gases (SaO 2 %, PaO 2 , PaCO 2 , and HCO 3 ), with the inspiratory muscle group showing the best results. Both groups showed a significant improvement in the 6-min walking distance: an increase of about 25% in the inspiratory muscle group and about 2.5% in the expiratory muscle group. Both IMT and EMT must be implemented in pulmonary rehabilitation programs in order to achieve improvements in pulmonary function test, respiratory muscle strength, blood oxygenation, and 6-min walking distance.
Digestive and respiratory tract motor responses associated with eructation
Medda, Bidyut K.; Shaker, Reza
2013-01-01
We studied the digestive and respiratory tract motor responses in 10 chronically instrumented dogs during eructation activated after feeding. Muscles were recorded from the cervical area, thorax, and abdomen. The striated muscles were recorded using EMG and the smooth muscles using strain gauges. We found eructation in three distinct functional phases that were composed of different sets of motor responses: gas escape, barrier elimination, and gas transport. The gas escape phase, activated by gastric distension, consists of relaxation of the lower esophageal sphincter and diaphragmatic hiatus and contraction of the longitudinal muscle of the thoracic esophagus and rectus abdominis. All these motor events promote gas escape from the stomach. The barrier elimination phase, probably activated by rapid gas distension of the thoracic esophagus, consists of relaxation of the pharyngeal constrictors and excitation of dorsal and ventral upper esophageal sphincter distracting muscles, as well as rapid contraction of the diaphragmatic dome fibers. These motor events allow esophagopharyngeal air movement by promoting retrograde airflow and opening of the upper esophageal sphincter. The transport phase, possibly activated secondary to diaphragmatic contraction, consists of a retrograde contraction of the striated muscle esophagus that transports the air from the thoracic esophagus to the pharynx. We hypothesize that the esophageal reverse peristalsis is mediated by elementary reflexes, rather than a coordinated peristaltic response like secondary peristalsis. The phases of eructation can be activated independently of one another or in a different manner to participate in physiological events other than eructation that cause gastroesophageal or esophagogastric reflux. PMID:23578784
Liu, Xuan; Trakooljul, Nares; Hadlich, Frieder; Murani, Eduard; Wimmers, Klaus; Ponsuksili, Siriluck
2017-10-25
Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.
Frankenstein, Lutz; Nelles, Manfred; Meyer, F Joachim; Sigg, Caroline; Schellberg, Dieter; Remppis, B Andrew; Katus, Hugo A; Zugck, Christian
2009-08-01
Training studies frequently use maximum inspiratory mouth occlusion pressure (PImax) as a therapeutic target and surrogate marker. For patients on beta-blocker (BBL), prognostic data allowing this extrapolation do not exist. Furthermore, the effects of BBL, mainstay of modern chronic heart failure therapy, on respiratory muscle function remain controversial. Finally, no proper separate cutoff according to treatment exists. Prospective, observational inclusion of patients with stable systolic chronic heart failure and recording of 1 year and all-time mortality for endpoint analysis. In 686 patients, 81% men, 494 patients on BBL, PImax was measured along with clinical evaluation. The median follow-up was 50 months (interquartile range: 26-75 months). Patients with or without BBL did not differ significantly for PImax, percentage of predicted PImax or other marker of disease severity. PImax was a significant (hazard ratio: 0.925; 95% confidence interval: 0.879-0.975; chi(2): 8.62) marker of adverse outcome, independent of BBL-status or aetiology. Percentage of predicted PImax was not independent of PImax. The cutoff identified through receiver-operated characteristics for 1-year mortality was 4.14 kPa for patients on BBL and 7.29 kPa for patients not on BBL. When separated accordingly, 1-year mortality was 8.5 versus 21.4%, P=0.02, for patients not on BBL and 4.3 versus 16.2%, P<0.001, for patients on BBL. This study fills the gap between trials targeting respiratory muscle on a functional basis and the resultant prognostic information with regard to BBL. BBL lowered the optimal PImax cutoff values for risk stratification without changing the measured values of PImax. This should be considered at inclusion and evaluation of trials and interpretation of exercise parameters.
Tupal, Srinivasan; Huang, Wei-Hsiang; Picardo, Maria Cristina D; Ling, Guang-Yi; Del Negro, Christopher A; Zoghbi, Huda Y; Gray, Paul A
2014-01-01
All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing. DOI: http://dx.doi.org/10.7554/eLife.02265.001 PMID:24842997
Inomoto, Atsushi; Fukuda, Rika; Deguchi, Junko; Toyonaga, Toshihiro
2017-09-01
[Purpose] Current studies report that patients with chronic obstructive pulmonary disease (COPD) may also have arteriosclerosis. This study aimed to investigate the relationship between respiratory function and arterial stiffness in healthy workers using the brachial-ankle pulse wave velocity (baPWV). [Subjects and Methods] This study included 104 male Japanese workers without COPD. We collected participant information and measured hemodynamics, body composition, and respiratory function. [Results] In the correlation analysis, baPWV showed a significant positive correlation with age, smoking index, systolic blood pressure, diastolic blood pressure, and heart rate, and a significant negative correlation with height, fat free mass, lower limb muscle mass, forced vital capacity (FVC), and forced expiratory volume in one second (FEV1). In multiple regression analysis using factors other than baPWV and respiratory function as adjustment variables, both FVC and FEV1 showed a significant negative relationship with baPWV (p=0.009 and p=0.027, respectively). FEV1/FVC was not significantly related to baPWV (p=0.704). [Conclusion] The results of this study indicated that FEV1/FVC and the proportion of FEV1 predicted, which are indicators of airflow limitation, are not predictors of baPWV in workers without airflow limitation. However, since baPWV showed a significant negative relationship with FVC and FEV 1, the reduction in respiratory function that does not cause airflow limitation, such as FVC or FEV1 decline, may be related to an increase in the risk of arterial stiffness.
LoMauro, Antonella; Pochintesta, Simona; Romei, Marianna; D'Angelo, Maria Grazia; Pedotti, Antonio; Turconi, Anna Carla; Aliverti, Andrea
2012-01-01
Background Osteogenesis imperfecta (OI) is an inherited connective tissue disorder characterized by bone fragility, multiple fractures and significant chest wall deformities. Cardiopulmonary insufficiency is the leading cause of death in these patients. Methods Seven patients with severe OI type III, 15 with moderate OI type IV and 26 healthy subjects were studied. In addition to standard spirometry, rib cage geometry, breathing pattern and regional chest wall volume changes at rest in seated and supine position were assessed by opto-electronic plethysmography to investigate if structural modifications of the rib cage in OI have consequences on ventilatory pattern. One-way or two-way analysis of variance was performed to compare the results between the three groups and the two postures. Results Both OI type III and IV patients showed reduced FVC and FEV1 compared to predicted values, on condition that updated reference equations are considered. In both positions, ventilation was lower in OI patients than control because of lower tidal volume (p<0.01). In contrast to OI type IV patients, whose chest wall geometry and function was normal, OI type III patients were characterized by reduced (p<0.01) angle at the sternum (pectus carinatum), paradoxical inspiratory inward motion of the pulmonary rib cage, significant thoraco-abdominal asynchronies and rib cage distortions in supine position (p<0.001). Conclusions In conclusion, the restrictive respiratory pattern of Osteogenesis Imperfecta is closely related to the severity of the disease and to the sternal deformities. Pectus carinatum characterizes OI type III patients and alters respiratory muscles coordination, leading to chest wall and rib cage distortions and an inefficient ventilator pattern. OI type IV is characterized by lower alterations in the respiratory function. These findings suggest that functional assessment and treatment of OI should be differentiated in these two forms of the disease. PMID:22558284
Neuromotor control in chronic obstructive pulmonary disease.
Mantilla, Carlos B; Sieck, Gary C
2013-05-01
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the structure and function of the motor units (motoneurons and the muscle fibers they innervate) comprising the muscle. In most muscles, considerable diversity of contractile and fatigue properties exists across motor units, allowing a range of motor behaviors. In diseases such as chronic obstructive pulmonary disease (COPD), there may be disproportional primary (disease related) or secondary effects (related to treatment or other concomitant factors) on the size and contractility of specific muscle fiber types that would influence the relative contribution of different motor units. For example, with COPD there is a disproportionate atrophy of type IIx and/or IIb fibers that comprise more fatigable motor units. Thus fatigue resistance may appear to improve, while overall motor performance (e.g., 6-min walk test) and endurance (e.g., reduced aerobic exercise capacity) are diminished. There are many coexisting factors that might also influence motor performance. For example, in COPD patients, there may be concomitant hypoxia and/or hypercapnia, physical inactivity and unloading of muscles, and corticosteroid treatment, all of which may disproportionately affect specific muscle fiber types, thereby influencing neuromotor control. Future studies should address how plasticity in motor units can be harnessed to mitigate the functional impact of COPD-induced changes.
Serón, P; Riedemann, P; Muñoz, S; Doussoulin, A; Villarroel, P; Cea, X
2005-11-01
Chronic airflow limitation (CAL) is a significant cause of illness and death. Inspiratory muscle training has been described as a technique for managing CAL. The aim of the present study was to evaluate the effectiveness of inspiratory muscle training on improving physiological and functional variables. Randomized controlled trial in which 35 patients with CAL were assigned to receive either an experimental (n=17) or control (n=18) intervention. The experimental intervention consisted of 2 months of inspiratory muscle training using a device that administered a resistive load of 40% of maximal static inspiratory mouth pressure (PImax). Inspiratory muscle strength, exercise tolerance, respiratory function, and quality of life were assessed. Significant improvement in inspiratory muscle strength was observed in the experimental training group (P=.02). All patients improved over time in both groups (P<.001). PImax increased by 8.9 cm H2O per month of training. Likewise, the health-related quality of life scores improved by 0.56 points. Use of a threshold loading device is effective for strengthening inspiratory muscles as measured by PImax after the first month of training in patients with CAL. The long-term effectiveness of such training and its impact on quality of life should be studied in a larger number of patients.
Jiroutková, Kateřina; Krajčová, Adéla; Ziak, Jakub; Fric, Michal; Waldauf, Petr; Džupa, Valér; Gojda, Jan; Němcova-Fürstová, Vlasta; Kovář, Jan; Elkalaf, Moustafa; Trnka, Jan; Duška, František
2015-12-24
Mitochondrial damage occurs in the acute phase of critical illness, followed by activation of mitochondrial biogenesis in survivors. It has been hypothesized that bioenergetics failure of skeletal muscle may contribute to the development of ICU-acquired weakness. The aim of the present study was to determine whether mitochondrial dysfunction persists until protracted phase of critical illness. In this single-centre controlled-cohort ex vivo proof-of-concept pilot study, we obtained vastus lateralis biopsies from ventilated patients with ICU-acquired weakness (n = 8) and from age and sex-matched metabolically healthy controls (n = 8). Mitochondrial functional indices were measured in cytosolic context by high-resolution respirometry in tissue homogenates, activities of respiratory complexes by spectrophotometry and individual functional capacities were correlated with concentrations of electron transport chain key subunits from respiratory complexes II, III, IV and V measured by western blot. The ability of aerobic ATP synthesis (OXPHOS) was reduced to ~54% in ICU patients (p<0.01), in correlation with the depletion of complexes III (~38% of control, p = 0.02) and IV (~26% of controls, p<0.01) and without signs of mitochondrial uncoupling. When mitochondrial functional indices were adjusted to citrate synthase activity, OXPHOS and the activity of complexes I and IV were not different, whilst the activities of complexes II and III were increased in ICU patients 3-fold (p<0.01) respectively 2-fold (p<0.01). Compared to healthy controls, in ICU patients we have demonstrated a ~50% reduction of the ability of skeletal muscle to synthetize ATP in mitochondria. We found a depletion of complex III and IV concentrations and relative increases in functional capacities of complex II and glycerol-3-phosphate dehydrogenase/complex III.
Lanfranconi, F; Ferri, A; Corna, G; Bonazzi, R; Lunetta, C; Silani, V; Riva, N; Rigamonti, A; Maggiani, A; Ferrarese, C; Tremolizzo, L
2017-06-07
This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O 2 uptake ([Formula: see text]O 2peak ), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak ). pALS displayed: (1) 44% lower [Formula: see text]O 2peak vs. CTRL (p < 0.0001), paralleled by a 43% decreased peak skeletal muscle oxidative function (p < 0.01), with a linear regression between these two variables (r 2 = 0.64, p < 0.0001); (2) 46% reduced [Formula: see text]E peak vs. CTRL (p < 0.0001), achieved by using an inefficient breathing pattern (increasing respiratory frequency) from the onset until the end of exercise. Inefficient skeletal muscle O 2 function, when flanking the impaired motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O 2 transport and utilization chain.
Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh
2008-04-04
Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less
Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.
Baati, Narjes; Feillet-Coudray, Christine; Fouret, Gilles; Vernus, Barbara; Goustard, Bénédicte; Coudray, Charles; Lecomte, Jérome; Blanquet, Véronique; Magnol, Laetitia; Bonnieu, Anne; Koechlin-Ramonatxo, Christelle
2017-10-01
Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of respiratory muscle training on GLUT-4 in the sheep diaphragm.
Bhandari, A; Xia, Y; Cortright, R; Dohm, G L; Bazzy, A R
2000-08-01
Endurance exercise training is associated with enhanced glucose uptake and hence improvement in carbohydrate metabolism. Glucose transport (GLUT) membrane proteins are regulated by a variety of physiological stimuli, including exercise. In limb muscle, both acute exercise and endurance training enhance the expression of the skeletal muscle transporter, GLUT-4. The purpose of this study is to determine whether chronic loading enhances GLUT-4 expression in the diaphragm. The effect of chronic inspiratory flow resistive (IFR) loading on diaphragm GLUT-4 was studied in a model of respiratory muscle endurance training in sheep. IFR loads (resistance 50-100 cm H2O x L(-1) x s(-1)) were maintained for 3 h x d(-1), 5-6 d x wk(-1) for 3 wk. Loading was adjusted so that PaO2 was >60 Torr and PaCO2 <45 Torr in room air. Six untrained sheep were used as controls. GLUT-4 protein and mRNA were analyzed by Western and Northern analysis respectively. GLUT-4 protein levels were two-fold greater in trained animals when compared with controls (P < 0.01). GLUT-4 mRNA levels in the trained muscles was not significantly different from controls. We conclude that in the sheep diaphragm, chronic IFR loading increases GLUT-4 protein levels. This increase may be one of the mechanisms contributing to the improved respiratory muscle endurance previously demonstrated in this animal model of respiratory muscle training.
Percival, Justin M; Whitehead, Nicholas P; Adams, Marvin E; Adamo, Candace M; Beavo, Joseph A; Froehner, Stanley C
2012-09-01
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO-cGMP signalling with PDE5 inhibitors in dystrophin-deficient muscle. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga
2017-01-01
This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend.
Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga
2017-01-01
This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend. PMID:28977266
Alvarenga, Guilherme Medeiros de; Charkovski, Simone Arando; Santos, Larissa Kelin Dos; Silva, Mayara Alves Barbosa da; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio
2018-01-01
Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients.
Dominelli, Paolo B; Henderson, William R; Sheel, A William
2016-06-01
What is the central question of this study? Can a modern proportional assist ventilator (PAV) function sufficiently well to unload the respiratory muscles during exercise? What is the main finding and its importance? A PAV can be constructed with contemporary hardware and software and be used at all exercise intensities to unload the respiratory muscles by up to 70%. Previously, PAVs have allowed researchers to address many fundamental physiological problems in clinical and healthy populations, but those versions are no longer functional or available. We describe the creation of a PAV that permits researchers to use it as an experimental tool. Manipulation of the normally occurring work of breathing (WOB) during exercise can provide insights into whole-body regulatory mechanisms in clinical patients and healthy subjects. One method to reduce the WOB uses a proportional assist ventilator (PAV). Suitable commercially available units are not capable of being used during heavy exercise. This investigation was undertaken in order to create a PAV and assess the degree to which the WOB could be reduced during exercise. A PAV works by creating a positive mouth pressure (Pm ) during inspiration, which consequently reduces the WOB. Spontaneous breathing patterns can be maintained, and the amplitude of Pm is calculated using the equation of motion and predetermined proportionality constants. We generated positive Pm using a breathing apparatus consisting of rigid tubing, solenoid valves to control the airflow direction and a proportional valve connected to compressed gas. Healthy male and female subjects were able to use the PAV successfully while performing cycling exercise over a range of intensities (50-100% of maximal workload) for different durations (from 30 s to 20 min) and different protocols (constant versus progressive workload). Inspiratory WOB was reduced up to 90%, while total WOB was reduced by 70%. The greatest reduction in WOB (50-75%) occurred during submaximal exercise, but at maximal ventilations (>180 l min(-1) ) a 50% reduction was still possible. The calculated change in WOB and subsequent reduction in respiratory muscle oxygen consumption resulted in equivalent reductions in whole-body oxygen consumption. With adequate familiarization and practice, our PAV can consistently reduce the WOB across a range of exercise intensities. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Possible role of brain stem respiratory neurons in mediating vomiting during space motion sickness
NASA Technical Reports Server (NTRS)
Miller, A. D.; Tan, L. K.
1987-01-01
The object of this study was to determine if brain stem expiratory neurons control abdominal muscle activity during vomiting. The activity of 27 ventral respiratory group expiratory neurons, which are known to be of primary importance for control of abdominal muscle activity during respiration, was recorded. It is concluded that abdominal muscle activity during vomiting must be controlled not only by some brain stem expiratory neurons but also by other input(s).
Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence
2016-08-01
Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Deregulation of ZPR1 causes respiratory failure in spinal muscular atrophy.
Genabai, Naresh K; Kannan, Annapoorna; Ahmad, Saif; Jiang, Xiaoting; Bhatia, Kanchan; Gangwani, Laxman
2017-08-15
Spinal muscular atrophy (SMA) is caused by the low levels of survival motor neuron (SMN) protein and is characterized by motor neuron degeneration and muscle atrophy. Respiratory failure causes death in SMA but the underlying molecular mechanism is unknown. The zinc finger protein ZPR1 interacts with SMN. ZPR1 is down regulated in SMA patients. We report that ZPR1 functions downstream of SMN to regulate HoxA5 levels in phrenic motor neurons that control respiration. Spatiotemporal inactivation of Zpr1 gene in motor neurons down-regulates HoxA5 and causes defects in the function of phrenic motor neurons that results in respiratory failure and perinatal lethality in mice. Modulation in ZPR1 levels directly correlates and influences levels of HoxA5 transcription. In SMA mice, SMN-deficiency causes down-regulation of ZPR1 and HoxA5 that result in degeneration of phrenic motor neurons. Identification of ZPR1 and HoxA5 as potential targets provides a paradigm for developing strategies to treat respiratory distress in SMA.
Hilbert, M; Shushakov, V; Maassen, N
2012-02-01
Acidification has been reported to provide protective effects on force production in vitro. Thus, in this study, we tested if respiratory acid-base changes influence muscle function and excitability in vivo. Nine subjects performed strenuous, intermittent hand grip exercises (10 cycles of 15 s of work/45 s of rest) under respiratory acidosis by CO(2) rebreathing, alkalosis by hyperventilation, or control. The Pco(2), pH, K(+) concentration ([K(+)]), and Na(+) concentration were measured in venous and arterialized blood. Compound action potentials (M-wave) were elicited to examine the excitability of the sarcolemma. The surface electromyogram (EMG) was recorded to estimate the central drive to the muscle. The lowest venous pH during the exercise period was 7.24 ± 0.03 in controls, 7.31 ± 0.05 with alkalosis, and 7.17 ± 0.04 with acidosis (P < 0.001). The venous [K(+)] rose to similar maximum values in all conditions (6.2 ± 0.8 mmol/l). The acidification reduced the decline in contraction speed (P < 0.001) but decreased the M-wave area to 73.4 ± 19.8% (P < 0.001) of the initial value. After the first exercise cycle, the M-wave area was smaller with acidosis than with alkalosis, and, after the second cycle, it was smaller with acidosis than with the control condition (P < 0.001). The duration of the M-wave was not affected. Acidification diminished the reduction in performance, although the M-wave area during exercise was decreased. Respiratory alkalosis stabilized the M-wave area without influencing performance. Thus, we did not find a direct link between performance and alteration of excitability of the sarcolemma due to changes in pH in vivo.
Physiology of Exercise for Physical Education and Athletics. Second Edition.
ERIC Educational Resources Information Center
deVries, Herbert A.
This three-part text, which is concerned with human functions under stress of muscular activity, provides a basis for the study of physical fitness and athletic training. Part 1 reviews pertinent areas of basic physiology. Muscles, the nervous system, the heart, respiratory system, exercise metabolism, and the endocrine system are reviewed. Part 2…
Takotsubo-like Myocardial Dysfunction in a Patient with Botulism.
Tonomura, Shuichi; Kakehi, Yoshiaki; Sato, Masatoshi; Naito, Yuki; Shimizu, Hisao; Goto, Yasunobu; Takahashi, Nobuyuki
2017-11-01
Botulinum toxin A (BTXA) can disrupt the neuromuscular and autonomic functions. We herein report a case of autonomic system dysfunction that manifested as Takotsubo-like myocardial dysfunction in a patient with botulism. Takotsubo syndrome results in acute cardiac insufficiency, another fatal complication of botulism in addition to respiratory muscle paralysis, particularly in patients with cardiovascular disease.
Takotsubo-like Myocardial Dysfunction in a Patient with Botulism
Tonomura, Shuichi; Kakehi, Yoshiaki; Sato, Masatoshi; Naito, Yuki; Shimizu, Hisao; Goto, Yasunobu; Takahashi, Nobuyuki
2017-01-01
Botulinum toxin A (BTXA) can disrupt the neuromuscular and autonomic functions. We herein report a case of autonomic system dysfunction that manifested as Takotsubo-like myocardial dysfunction in a patient with botulism. Takotsubo syndrome results in acute cardiac insufficiency, another fatal complication of botulism in addition to respiratory muscle paralysis, particularly in patients with cardiovascular disease. PMID:28924131
Schwarzer, Michael; Schrepper, Andrea; Amorim, Paulo A; Osterholt, Moritz; Doenst, Torsten
2013-02-15
Years ago a debate arose as to whether two functionally different mitochondrial subpopulations, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), exist in heart muscle. Nowadays potential differences are often ignored. Presumably, SSM are providing ATP for basic cell function, whereas IFM provide energy for the contractile apparatus. We speculated that two distinguishable subpopulations exist that are differentially affected by pressure overload. Male Sprague-Dawley rats were subjected to transverse aortic constriction for 20 wk or sham operation. Contractile function was assessed by echocardiography. Heart tissue was analyzed by electron microscopy. Mitochondria were isolated by differential centrifugation, and respiratory capacity was analyzed using a Clark electrode. Pressure overload induced left ventricular hypertrophy with increased posterior wall diameter and impaired contractile function. Mitochondrial state 3 respiration in control was 50% higher in IFM than in SSM. Pressure overload significantly impaired respiratory rates in both IFM and SSM, but in SSM to a lower extent. As a result, there were no differences between SSM and IFM after 20 wk of pressure overload. Pressure overload reduced total citrate synthase activity, suggesting reduced total mitochondrial content. Electron microscopy revealed normal morphology of mitochondria but reduced total mitochondrial volume density. In conclusion, IFM show greater respiratory capacity in the healthy rat heart and a greater depression of respiratory capacity by pressure overload than SSM. The differences in respiratory capacity of cardiac IFM and SSM in healthy hearts are eliminated with pressure overload-induced heart failure. The strong effect of pressure overload on IFM together with the simultaneous appearance of mitochondrial and contractile dysfunction may support the notion of IFM primarily producing ATP for contractile function.
Increased capillaries in mitochondrial myopathy: implications for the regulation of oxygen delivery.
Taivassalo, Tanja; Ayyad, Karen; Haller, Ronald G
2012-01-01
Human skeletal muscle respiratory chain defects restrict the ability of working muscle to extract oxygen from blood, and result in a hyperkinetic circulation during exercise in which oxygen delivery is excessive relative to oxygen uptake and oxygen levels within contracting muscle are abnormally high. To investigate the role of the muscle microcirculation in this anomalous circulatory response and possible implications for the regulation of muscle angiogenesis, we assessed muscle oxidative capacity during cycle exercise and determined capillary levels and distribution and vascular endothelial growth factor expression in quadriceps muscle biopsies in patients with mitochondrial myopathy attributable to heteroplasmic mitochondrial DNA mutations. We found that in patients with mitochondrial myopathy, muscle capillary levels were twice that of sedentary healthy subjects (3.0 ± 0.9% compared with 1.4 ± 0.3%, P < 0.001) despite the fact that oxygen utilization during peak cycle exercise was half that of control subjects (11.1 ± 4.0 ml/kg/min compared with 20.7 ± 7.9 ml/kg/min, P < 0.01); that capillary area was greatest in patients with the most severe muscle oxidative defects and was more than two times higher around muscle fibre segments with defective (i.e. cytochrome oxidase negative/succinic dehydrogenase-positive or 'ragged-red' fibres) compared with more preserved respiratory chain function; and that vascular endothelial growth factor expression paralleled capillary distribution. The increased muscle capillary levels in patients correlated directly (r(2) = 0.68, P < 0.05) with the severity of the mismatch between systemic oxygen delivery (cardiac output) and oxygen utilization during cycle exercise. Our results suggest that capillary growth is increased as a result of impaired muscle oxidative phosphorylation in mitochondrial myopathy, thus promoting increased blood flow to respiration-incompetent muscle fibres and a mismatch between oxygen delivery and utilization during exercise. Furthermore, the finding of high capillary levels despite elevated tissue oxygen levels during exercise in respiration-deficient muscle fibres implies that mitochondrial metabolism activates angiogenesis in skeletal muscle by a mechanism that is independent of hypoxia.
Bhattacharya, Arunabh; Lustgarten, Michael; Shi, Yun; Liu, Yuhong; Jang, Youngmok C; Pulliam, Daniel; Jernigan, Amanda L; Van Remmen, Holly
2013-01-01
Previous studies have shown that muscle atrophy is associated with mitochondrial dysfunction and an increased rate of mitochondrial reactive oxygen species production. We recently demonstrated that fatty acid hydroperoxides (FA-OOH) are significantly elevated in mitochondria isolated from atrophied muscles. The purpose of the current study is to determine whether FA-OOH can alter skeletal muscle mitochondrial function. We found that FA-OOH (at low micromolar concentrations) induces mitochondrial dysfunction assessed by decrease in the rate of ATP production, oxygen consumption and activity of respiratory chain complexes I and III. Using methods to distinguish superoxide release towards the matrix and inter-membrane space, we demonstrate that FA-OOH significantly elevates oxidative stress in the mitochondrial matrix (and not the inter-membrane space) with complex I as the major site of superoxide production (most likely from a site upstream of the ubiquinone binding site but downstream from the flavin binding site-the iron sulfur clusters). Our results are the first to indicate that FA-OOH’s are important modulators of mitochondrial function and oxidative stress in skeletal muscle mitochondria and may play an important role in muscle atrophies that are associated with increased generation of FA-OOH’s, e.g., denervation-induced muscle atrophy. PMID:21172427
Management of respiratory problems in people with neurodegenerative conditions: a narrative review.
Jones, U; Enright, S; Busse, M
2012-03-01
Respiratory failure and dysfunction are common problems in many neurodegenerative conditions. Although physiotherapists manage these problems, it is not known which treatments have been studied and their efficacy. To review evidence on the management of respiratory problems in people with neurodegenerative conditions using the PRISMA approach. Comprehensive searches were conducted using the following electronic databases from inception to May 2010: HUGEnet, SIGLE, British Library Direct, CINAHL, Medline, AMED and Web of Knowledge. Bibliographies of all studies and systematic reviews were searched by hand. Studies were selected based on: self-ventilating participants with neurodegenerative conditions; interventions aimed at improving respiratory function; and any valid and reliable measures of respiratory function as outcomes. Studies were appraised by one reviewer using the Critical Appraisal Skills Programme. Data were synthesised using a narrative approach. Thirty-five studies were included in the review. The strongest evidence was for the use of non-invasive ventilation for people with amyotrophic lateral sclerosis, although this was weak. The evidence for the use of respiratory muscle training and methods to increase peak cough flow showed a positive effect, but was also weak. There is weak evidence for the positive effects of physiotherapeutic interventions for respiratory problems in people with neurodegenerative conditions. Further work is necessary in specific neurodegenerative conditions to identify why respiratory problems occur, and larger scale studies should be undertaken to investigate management of these problems. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Respiration in vitro: I. Spontaneous activity.
Hamada, O; Garcia-Rill, E; Skinner, R D
1992-01-01
The present report describes respiratory-like activity recorded from intercostal muscles in the neonatal rat in vitro brain stem-spinal cord, rib-attached preparation. In this preparation from 1- to 4-day-old rats, spontaneous rhythmic and synchronized upward movements of the rib cage coincided with the recorded muscle activity. Spontaneous respiratory-like activity showed a frequency in the range of 0.05-0.2 Hz, with single-, double-, and mixed-burst patterns. Spontaneous activity declined over time, but increased in frequency as temperature increased. Multilevel recordings showed a cephalocaudal order of bursting of intercostal muscles. Brain stem transections at the prepontine level did not affect spontaneous frequency, whereas premedullary transections resulted in an increase in spontaneous respiratory frequency. High spinal transections eliminated spontaneous respiratory-like activity. These results suggest that there is a well-organized pontomedullary pattern generator for respiratory-like activity in this preparation, which can be modulated by temperature. The characteristics of these electromyographic (EMG) recordings allow comparison with previous in vitro studies of respiratory-like activity using nerve activity and in vivo studies using EMG activity. These results provide basic information on the spontaneous activity of this preparation as a prelude to the study of the effects of electrical stimulation of the spinal cord to induce respiratory-like activity, as described in the companion article.
Venditti, Paola; Bari, Angela; Di Stefano, Lisa; Di Meo, Sergio
2009-02-01
We investigated whether swim training modifies the effect of T3-induced hyperthyroidism on metabolism and oxidative damage in rat muscle. Respiratory capacities, oxidative damage, levels of antioxidants, and susceptibility to oxidative challenge of homogenates were determined. Mitochondrial respiratory capacities, H2O2 release rates, and oxidative damage were also evaluated. T3-treated rats exhibited increases in muscle respiratory capacity, which were associated with enhancements in mitochondrial respiratory capacity and tissue mitochondrial protein content in sedentary and trained animals, respectively. Hormonal treatment induced muscle oxidative damage and GSH depletion. Both effects were reduced by training, which also attenuated tissue susceptibility to oxidative challenge. The changes in single antioxidant levels were slightly related to oxidative damage extent, but the examination of parameters affecting the susceptibility to oxidants indicated that training was associated with greater effectiveness of the muscle antioxidant system. Training also attenuated T3-induced increases in H2O2 production and, therefore, oxidative damage of mitochondria by lowering their content of autoxidizable electron carriers. The above results suggest that moderate training is able to reduce hyperthyroid state-linked tissue oxidative damage, increasing antioxidant protection and decreasing the ROS flow from the mitochondria to the cytoplasmic compartment.
Moreno, Marlene Aparecida; Zamunér, Antonio Roberto; Paris, Juliana Viana; Teodori, Rosana Macher; Barros, Ricardo M L
2012-06-01
The aim of this study was to evaluate the effects of wheelchair sports on respiratory muscle strength and the thoracic mobility of individuals with spinal cord injury. Thirty male subjects with chronic spinal cord injury (American Spinal Injury Association Impairment Scale grade A) took part in the study and were divided into four groups: sedentary subjects with quadriplegia (S-QUAD, n = 7), wheelchair rugby athletes with quadriplegia (A-QUAD, n = 8), sedentary subjects with paraplegia (S-PARA, n = 6), and wheelchair basketball athletes with paraplegia (A-PARA, n = 9). The main outcome measures were maximal inspiratory and expiratory pressure and the respiratory coefficients at the axillary and xiphoid levels. A-QUAD group presented values significantly higher for all respiratory variables studied compared with the S-QUAD group. No significant differences in any of the respiratory variables were observed between S-PARA and A-PARA groups. There was a negative correlation between spinal cord injury level and respiratory variables for the S-QUAD and S-PARA groups. There were positive correlations in the A-QUAD group between time of training and maximal inspiratory pressure (adjusted R = 0.84; P = 0.001) and respiratory coefficients at the axillary level (adjusted R = 0.80; P = 0.002). Physical training seems to have a positive influence on respiratory muscle strength and thoracic mobility, especially in subjects with quadriplegia.
The ICM research agenda on intensive care unit-acquired weakness.
Latronico, Nicola; Herridge, Margaret; Hopkins, Ramona O; Angus, Derek; Hart, Nicholas; Hermans, Greet; Iwashyna, Theodore; Arabi, Yaseen; Citerio, Giuseppe; Wesley Ely, E; Hall, Jesse; Mehta, Sangeeta; Puntillo, Kathleen; Van den Hoeven, Johannes; Wunsch, Hannah; Cook, Deborah; Dos Santos, Claudia; Rubenfeld, Gordon; Vincent, Jean-Louis; Van den Berghe, Greet; Azoulay, Elie; Needham, Dale M
2017-09-01
We present areas of uncertainty concerning intensive care unit-acquired weakness (ICUAW) and identify areas for future research. Age, pre-ICU functional and cognitive state, concurrent illness, frailty, and health trajectories impact outcomes and should be assessed to stratify patients. In the ICU, early assessment of limb and diaphragm muscle strength and function using nonvolitional tests may be useful, but comparison with established methods of global and specific muscle strength and physical function and determination of their reliability and normal values would be important to advance these techniques. Serial measurements of limb and respiratory muscle strength, and systematic screening for dysphagia, would be helpful to clarify if and how weakness of these muscle groups is independently associated with outcome. ICUAW, delirium, and sedatives and analgesics may interact with each other, amplifying the effects of each individual factor. Reduced mobility in patients with hypoactive delirium needs investigations into dysfunction of central and peripheral nervous system motor pathways. Interventional nutritional studies should include muscle mass, strength, and physical function as outcomes, and prioritize elucidation of mechanisms. At follow-up, ICU survivors may suffer from prolonged muscle weakness and wasting and other physical impairments, as well as fatigue without demonstrable weakness on examination. Further studies should evaluate the prevalence and severity of fatigue in ICU survivors and define its association with psychiatric disorders, pain, cognitive impairment, and axonal loss. Finally, methodological issues, including accounting for baseline status, handling of missing data, and inclusion of patient-centered outcome measures should be addressed in future studies.
[Specific aspects and care of lung involvement in adults with cystic fibrosis].
Pin, I; Grenet, D; Scheid, P; Domblides, P; Stern, M; Hubert, D
2000-08-01
Respiratory impairment is present in almost all adult cystic fibrosis patients and makes the prognosis. Viscous, infected and abundant secretions, inflammation and bronchial oedema, bronchoconstriction and respiratory muscle fatigue lead to airway obstruction, bronchiectasis and respiratory failure. The disease is preferentially located in the upper lobes. Exacerbations of the disease are due to bronchial infections and are often responsible for drops of the respiratory function. Regular spirometric surveillance is fundamental for the prognosis and the assessment of the effects of the treatment. Among adult patients chronic colonisation with mucoid and often multiresistant strains of Pseudomonas Aeruginosa are common. It is treated with i.v. high doses antibiotic courses and nebulized antibiotics between i.v. courses. Respiratory failure may require long term oxygen and non invasive mechanical ventilation. Systemic hypervascularization around the bronchiectasis may lead to moderate to severe hemoptysis, which may require embolization. Pneumothorax are associated with poor prognosis and are treated by pleural drainage and if failure by thoracoscopy.
Meex, Ruth C R; Schrauwen-Hinderling, Vera B; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K C
2010-03-01
Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
Meex, Ruth C.R.; Schrauwen-Hinderling, Vera B.; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K.C.
2010-01-01
OBJECTIVE Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (−64%; P < 0.01 in control subjects and −52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near–significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. PMID:20028948
Nisr, Raid B; Affourtit, Charles
2014-02-01
Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.
Nisr, Raid B.; Affourtit, Charles
2014-01-01
Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054
Maltais, François; Decramer, Marc; Casaburi, Richard; Barreiro, Esther; Burelle, Yan; Debigaré, Richard; Dekhuijzen, P N Richard; Franssen, Frits; Gayan-Ramirez, Ghislaine; Gea, Joaquim; Gosker, Harry R; Gosselink, Rik; Hayot, Maurice; Hussain, Sabah N A; Janssens, Wim; Polkey, Micheal I; Roca, Josep; Saey, Didier; Schols, Annemie M W J; Spruit, Martijn A; Steiner, Michael; Taivassalo, Tanja; Troosters, Thierry; Vogiatzis, Ioannis; Wagner, Peter D
2014-05-01
Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.
Maltais, François; Decramer, Marc; Casaburi, Richard; Barreiro, Esther; Burelle, Yan; Debigaré, Richard; Dekhuijzen, P. N. Richard; Franssen, Frits; Gayan-Ramirez, Ghislaine; Gea, Joaquim; Gosker, Harry R.; Gosselink, Rik; Hayot, Maurice; Hussain, Sabah N. A.; Janssens, Wim; Polkey, Micheal I.; Roca, Josep; Saey, Didier; Schols, Annemie M. W. J.; Spruit, Martijn A.; Steiner, Michael; Taivassalo, Tanja; Troosters, Thierry; Vogiatzis, Ioannis; Wagner, Peter D.
2014-01-01
Background: Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. Purpose: The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. Methods: An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. Results: We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. Conclusions: Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed. PMID:24787074
The Effects of Treadmill Running on Aging Laryngeal Muscle Structure
Kletzien, Heidi; Russell, John A.; Connor, Nadine P.
2015-01-01
Levels of Evidence NA (animal study) Objective Age-related changes in laryngeal muscle structure and function may contribute to deficits in voice and swallowing observed in elderly people. We hypothesized that treadmill running, an exercise that increases respiratory drive to upper airway muscles, would induce changes in thyroarytenoid muscle myosin heavy chain (MHC) isoforms consistent with a fast-slow transformation in muscle fiber type. Study Design Randomized parallel group controlled trial. Methods Fifteen young adult and 14 old Fischer 344/Brown Norway rats received either treadmill running or no exercise (5 days/week/8 weeks). Myosin heavy chain isoform composition in the thyroarytenoid muscle was examined at the end of 8 weeks. Results Significant age and treatment effects were found. The young adult group had the greatest proportion of superfast contracting MHCIIL. The treadmill running group had the lowest proportion of MHCIIL and the greatest proportion of MHCIIx. Conclusion Thyroarytenoid muscle structure was affected both by age and treadmill running in a fast-slow transition that is characteristic of exercise manipulations in other skeletal muscles. PMID:26256100
Tasca, Giorgio; Mirabella, Massimiliano; Broccolini, Aldobrando; Monforte, Mauro; Sabatelli, Mario; Biscione, Gian Luca; Piluso, Giulio; Gualandi, Francesca; Tonali, Pietro Attilio; Udd, Bjarne; Ricci, Enzo
2010-11-01
Hereditary myopathy with early respiratory failure (HMERF) is a rare disorder characterized by severe respiratory involvement at onset, muscle weakness starting in the early adulthood, and cytoplasmic bodies with peculiar immunohistochemical reactivity on muscle biopsy. Here we describe a patient who presented with hypercapnic coma at age 32. A detailed light and electron microscopy analysis on muscle biopsy was performed and, together with clinical data, led to the diagnosis. The R279W mutation in the TTN gene was excluded. This report expands the geographical region of incidence and encourages additional studies to clarify the genetic heterogeneity of the condition. Copyright © 2010 Elsevier B.V. All rights reserved.
Edwards, Lindsay M; Murray, Andrew J; Holloway, Cameron J; Carter, Emma E; Kemp, Graham J; Codreanu, Ion; Brooker, Helen; Tyler, Damian J; Robbins, Peter A; Clarke, Kieran
2011-03-01
We recently showed that a short-term high-fat diet blunted exercise performance in rats, accompanied by increased uncoupling protein levels and greater respiratory uncoupling. In this study, we investigated the effects of a similar diet on physical and cognitive performance in humans. Twenty sedentary men were assessed when consuming a standardized, nutritionally balanced diet (control) and after 7 d of consuming a diet comprising 74% kcal from fat. Efficiency was measured during a standardized exercise task, and cognition was assessed using a computerized assessment battery. Skeletal muscle mitochondrial function was measured using (31)P magnetic resonance spectroscopy. The diet increased mean ± se plasma free fatty acids by 44% (0.32±0.03 vs. 0.46±0.05 mM; P<0.05) and decreased whole-body efficiency by 3% (21±1 vs. 18±1%; P<0.05), although muscle uncoupling protein (UCP3) content and maximal mitochondrial function were unchanged. High-fat diet consumption also increased subjects' simple reaction times (P<0.01) and decreased power of attention (P<0.01). Thus, we have shown that a high-fat diet blunts whole-body efficiency and cognition in sedentary men. We suggest that this effect may be due to increased respiratory uncoupling.
Fiber-type differences in muscle mitochondrial profiles.
Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D
2003-10-01
Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.
Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva
2016-11-01
Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.
Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy
Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio
2016-01-01
IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca’ Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator–activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets, implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors—muscle-specificmyogenic factor 5, myoblast determination 1, and myogenin—were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes. PMID:25844556
Genetics Home Reference: hereditary myopathy with early respiratory failure
... Home Health Conditions HMERF Hereditary myopathy with early respiratory failure Printable PDF Open All Close All Enable ... expand/collapse boxes. Description Hereditary myopathy with early respiratory failure ( HMERF ) is an inherited muscle disease that ...
Free radicals in tetanic activity of isolated skeletal muscle.
Koren, A; Sauber, C; Sentjurc, M; Schara, M
1983-01-01
1. The concentration of the free radicals in muscle tissue mitochondria changes with the phase of muscle contraction. 2. Potassium cyanide (KCN) influences the shape of the isotonic tetani mechanograms; the contraction is still strong and qualitatively comparable in amplitude to untreated controls. 3. On the other hand, the correlation between the free radical concentration and muscle contraction is lost. 4. The free radical concentration in isolated mitochondria is influenced by KCN and potassium ferricyanide. 5. The free radical concentration changes due to the electron flow in the respiratory chain. 6. Inhibition of the respiratory phosphorylation by KCN could affect the free radical level.
A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency.
Boitier, E; Degoul, F; Desguerre, I; Charpentier, C; François, D; Ponsot, G; Diry, M; Rustin, P; Marsac, C
1998-01-01
We report severe coenzyme Q10 deficiency of muscle in a 4-year-old boy presenting with progressive muscle weakness, seizures, cerebellar syndrome, and a raised cerebro-spinal fluid lactate concentration. State-3 respiratory rates of muscle mitochondria with glutamate, pyruvate, palmitoylcarnitine, and succinate as respiratory substrates were markedly reduced, whereas ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine were oxidized normally. The activities of complexes I, II, III and IV of the electron transport chain were normal, but the activities of complexes I+III and II+III, both systems requiring coenzyme Q10 as an electron carrier, were dramatically decreased. These results suggested a defect in the mitochondrial coenzyme Q10 content. This was confirmed by the direct assessment of coenzyme Q10 level by high-performance liquid chromatography in patient's muscle homogenate and isolated mitochondria, revealing levels of 16% and 6% of the control values, respectively. We did not find any impairment of the respiratory chain either in a lymphoblastoid cell line or in skin cultured fibroblasts from the patient, suggesting that the coenzyme Q10 depletion was tissue-specific. This is a new case of a muscle deficiency of mitochondrial coenzyme Q in a patient suffering from an encephalomyopathy.
Respiratory Care Received by Individuals With Duchenne Muscular Dystrophy From 2000 to 2011.
Andrews, Jennifer G; Soim, Aida; Pandya, Shree; Westfield, Christina P; Ciafaloni, Emma; Fox, Deborah J; Birnkrant, David J; Cunniff, Christopher M; Sheehan, Daniel W
2016-10-01
Duchenne muscular dystrophy (DMD) causes progressive respiratory muscle weakness and decline in function, which can go undetected without monitoring. DMD respiratory care guidelines recommend scheduled respiratory assessments and use of respiratory assist devices. To determine the extent of adherence to these guidelines, we evaluated respiratory assessments and interventions among males with DMD in the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) from 2000 to 2011. MD STARnet is a population-based surveillance system that identifies all individuals born during or after 1982 residing in Arizona, Colorado, Georgia, Hawaii, Iowa, and western New York with Duchenne or Becker muscular dystrophy. We analyzed MD STARnet respiratory care data for non-ambulatory adolescent males (12-17 y old) and men (≥18 y old) with DMD, assessing whether: (1) pulmonary function was measured twice yearly; (2) awake and asleep hypoventilation testing was performed at least yearly; (3) home mechanical insufflation-exsufflation, noninvasive ventilation, and tracheostomy/ventilators were prescribed; and (4) pulmonologists provided evaluations. During 2000-2010, no more than 50% of both adolescents and men had their pulmonary function monitored twice yearly in any of the years; 67% or fewer were assessed for awake and sleep hypoventilation yearly. Although the use of mechanical insufflation-exsufflation and noninvasive ventilation is probably increasing, prior use of these devices did not prevent all tracheostomies, and at least 18 of 29 tracheostomies were performed due to acute respiratory illnesses. Fewer than 32% of adolescents and men had pulmonologist evaluations in 2010-2011. Since the 2004 publication of American Thoracic Society guidelines, there have been few changes in pulmonary clinical practice. Frequencies of respiratory assessments and assist device use among males with DMD were lower than recommended in clinical guidelines. Collaboration of respiratory therapists and pulmonologists with clinicians caring for individuals with DMD should be encouraged to ensure access to the full spectrum of in-patient and out-patient pulmonary interventions. Copyright © 2016 by Daedalus Enterprises.
Regulation of pulmonary inflammation by mesenchymal cells.
Alkhouri, Hatem; Poppinga, Wilfred Jelco; Tania, Navessa Padma; Ammit, Alaina; Schuliga, Michael
2014-12-01
Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hale, Melina E
2014-07-01
An animal may experience strikingly different functional demands on its body's systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate transitional periods, when the link of structure to function may be less taut, provides insight both into how animals contend with such change and into the developmental pressures that shape mature form and function. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.
Ray, Andrew D; Udhoji, Supriya; Mashtare, Terry L; Fisher, Nadine M
2013-10-01
To determine the effects of a short-duration, combined (inspiratory and expiratory), progressive resistance respiratory muscle training (RMT) protocol on respiratory muscle strength, fatigue, health-related quality of life, and functional performance in individuals with mild-to-moderate multiple sclerosis (MS). Quasi-experimental before-after trial. University rehabilitation research laboratory. Volunteers with MS (N=21) were divided into 2 groups: RMT (n=11; 9 women, 2 men; mean age ± SD, 50.9 ± 5.7y, mean Expanded Disability Status Scale score ± SD, 3.2 ± 1.9) and a control group that did not train (n=10; 7 women, 3 men; mean age ± SD, 56.2 ± 8.8y, mean Expanded Disability Status Scale score ± SD, 4.4 ± 2.1). Expanded Disability Status Scale scores ranged from 1 to ≤6.5. No patients withdrew from the study. Training was a 5-week combined progressive resistance RMT program, 3d/wk, 30 minutes per session. The primary outcome measures were maximal inspiratory pressure and expiratory pressure and the Modified Fatigue Impact Scale. All subjects completed secondary measures of pulmonary function, the six-minute walk test, the timed stair climb, the Multiple Sclerosis Self-Efficacy Scale, the Medical Outcomes Study 36-Item Short-Form Health Survey, and the Physical Activity Disability Scale. Maximal inspiratory pressure and expiratory pressure (mean ± SD) increased 35% ± 22% (P<.001) and 26% ± 17% (P<.001), respectively, whereas no changes were noted in the control group (12% ± 23% and -4% ± 17%, respectively). RMT improved fatigue (Modified Fatigue Impact Scale, P<.029), with no change or worsening in the control group. No changes were noted in the six-minute walk test, stair climb, Multiple Sclerosis Self-Efficacy Scale, or Physical Activity Disability Scale in the RMT group. The control group had decreases in emotional well-being and general health (Medical Outcomes Study 36-Item Short-Form Health Survey). A short-duration, combined RMT program improved inspiratory and expiratory muscle strength and reduced fatigue in patients with mild to moderate MS. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A
2016-01-01
Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.
de Alvarenga, Guilherme Medeiros; Charkovski, Simone Arando; dos Santos, Larissa Kelin; da Silva, Mayara Alves Barbosa; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio
2018-01-01
OBJECTIVE: Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. METHODS: The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. RESULTS: The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). CONCLUSION: The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients. PMID:29924184
Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype.
van Til, Niek P; Stok, Merel; Aerts Kaya, Fatima S F; de Waard, Monique C; Farahbakhshian, Elnaz; Visser, Trudi P; Kroos, Marian A; Jacobs, Edwin H; Willart, Monique A; van der Wegen, Pascal; Scholte, Bob J; Lambrecht, Bart N; Duncker, Dirk J; van der Ploeg, Ans T; Reuser, Arnold J J; Verstegen, Monique M; Wagemaker, Gerard
2010-07-01
Pompe disease (acid alpha-glucosidase deficiency) is a lysosomal glycogen storage disorder characterized in its most severe early-onset form by rapidly progressive muscle weakness and mortality within the first year of life due to cardiac and respiratory failure. Enzyme replacement therapy prolongs the life of affected infants and supports the condition of older children and adults but entails lifelong treatment and can be counteracted by immune responses to the recombinant enzyme. We have explored the potential of lentiviral vector-mediated expression of human acid alpha-glucosidase in hematopoietic stem cells (HSCs) in a Pompe mouse model. After mild conditioning, transplantation of genetically engineered HSCs resulted in stable chimerism of approximately 35% hematopoietic cells that overexpress acid alpha-glucosidase and in major clearance of glycogen in heart, diaphragm, spleen, and liver. Cardiac remodeling was reversed, and respiratory function, skeletal muscle strength, and motor performance improved. Overexpression of acid alpha-glucosidase did not affect overall hematopoietic cell function and led to immune tolerance as shown by challenge with the human recombinant protein. On the basis of the prominent and sustained therapeutic efficacy without adverse events in mice we conclude that ex vivo HSC gene therapy is a treatment option worthwhile to pursue.
Tsai, Ling-Ling; Liu, Hau-Min
2008-03-01
In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.
NASA Astrophysics Data System (ADS)
Kuraszkiewicz, Bożena
2011-01-01
The purpose of this review is to present selected tests available with the potential to detect the development of respiratory muscle fatigue in normal subjects and patients. All reviewed techniques represent a part of a variety of measures and indices, which have been employed to assess this complex process at the present time.
Effect of posture on oxygenation and respiratory muscle strength in convalescent infants
Dimitriou, G; Greenough, A; Pink, L; McGhee, A; Hickey, A; Rafferty, G
2002-01-01
Objective: To determine if differences in respiratory muscle strength could explain any posture related effects on oxygenation in convalescent neonates. Methods: Infants were examined in three postures: supine, supine with head up tilt of 45°, and prone. A subsequent study was performed to determine the influence of head position in the supine posture. In each posture/head position, oxygen saturation (SaO2) was determined and respiratory muscle strength assessed by measurement of the maximum inspiratory pressure (PIMAX). Patients: Twenty infants, median gestational age 34.5 weeks (range 25–43), and 10 infants, median gestational age 33 weeks (range 30–36), were entered into the first and second study respectively. Results: Oxygenation was higher in the prone and supine with 45° head up tilt postures than in the supine posture (p<0.001), whereas PIMAX was higher in the supine and supine with head up tilt of 45° postures than in the prone posture (p<0.001). Head position did not influence the effect of posture on PIMAX or oxygenation. Conclusion: Superior oxygenation in the prone posture in convalescent infants was not explained by greater respiratory muscle strength, as this was superior in the supine posture. PMID:11978742
Breathlessness, fatigue and the respiratory muscles.
Mioxham, John; Jolley, Caroline
2009-10-01
Breathlessness is a common symptom in respiratory, cardiovascular and malignant disease. It reduces exercise tolerance and mobility, and is an important determinant of quality of life. The multifactorial nature of the symptom often presents difficulties in understanding why individual patients are breathless, and how breathlessness should best be palliated, especially in advanced disease. However, insights into the neurophysiological factors underlying the symptom can be gained by considering the balance between the load on, and capacity of, the respiratory muscles and increased neural respiratory drive, reflecting increased respiratory effort. Mismatch between efferent neural respiratory drive and afferent feedback, reflecting the degree of neuromechanical dissociation, is also important. This paper describes mechanisms by which ventilatory load, capacity and drive may be affected by disease, and how these can be measured physiologically. The schema presented also provides a framework for understanding the mechanisms by which interventions that relieve breathlessness may have their effect.
Changes in respiratory activity induced by mastication during oral breathing in humans.
Daimon, Shigeru; Yamaguchi, Kazunori
2014-06-01
We examined the effect of oral breathing on respiratory movements, including the number of respirations and the movement of the thoracic wall at rest and while chewing gum. Forty normal nose breathers were selected by detecting expiratory airflow from the mouth using a CO2 sensor. Chest measurements were recorded using a Piezo respiratory belt transducer, and electromyographic (EMG) activity of the masseter and trapezius muscles were recorded at rest and while chewing gum during nasal or oral breathing. Oral breathing was introduced by completely occluding the nostrils with a nose clip. During oral breathing, the respiration rate was significantly lower while chewing gum than while at rest (P < 0.05). While chewing gum, the respiration rate was significantly lower during oral breathing than during nasal breathing (P < 0.05). During oral breathing, thoracic movement was significantly higher while chewing gum than while at rest (P < 0.05). Thoracic movement was significantly greater during oral breathing than during nasal breathing (P < 0.05). The trapezius muscle exhibited significant EMG activity when chewing gum during oral breathing. The activity of the trapezius muscle coincided with increased movement of the thoracic wall. Chewing food while breathing through the mouth interferes with and decreases the respiratory cycle and promotes unusual respiratory movement of the thoracic wall, which is directed by the activity of accessory muscles of respiration. Copyright © 2014 the American Physiological Society.
Sancho, Jesus; Servera, Emilio; Bañuls, Pilar; Marin, Julio
2015-04-01
Acute lower respiratory infections can impair muscle strength in patients with amyotrophic lateral sclerosis (ALS). When associated with an increase in load on the respiratory system, this situation may precipitate hypercapnic respiratory failure in non-ventilated patients with ALS. The aim of this study was to determine whether a clinical or functional parameter can predict the need for noninvasive ventilation (NIV) during an acute respiratory infection for medically stable, non-ventilated patients with ALS. This was a prospective study involving all non-ventilated subjects with ALS admitted due to an acute respiratory infection to a respiratory care unit from a tertiary hospital. Thirty-two non-ventilated subjects with ALS were admitted to our respiratory care unit due to an acute respiratory infection: 60.72 ± 10.54 y, 13 males, 23 with spinal onset, FVC of 1.58 ± 0.83 L, FVC of 56.21 ± 23.15% of predicted, peak cough flow of 3.41 ± 1.77 L/s, maximum insufflation capacity of 1.87 ± 0.94 L, revised Amyotrophic Lateral Sclerosis Functional Rating Scale score of 22.80 ± 8.83, and Norris bulbar score of 23.48 ± 12.14. Fifteen subjects required NIV during the episode. Logistic regression analysis showed that the only predictors of need for NIV were percent-of-predicted FVC (odds ratio of 1.06, 95% CI 1.01-1.11, P = .02) and peak cough flow (odds ratio of 2.57, 95% CI 1.18-5.59, P = .02). In medically stable, non-ventilated patients with ALS, measurement of percent-of-predicted FVC and peak cough flow can predict the need for NIV during an acute lower respiratory tract infection. Copyright © 2015 by Daedalus Enterprises.
Matsuoka, Takashi; Miwa, Yoshiyuki; Tajika, Makiko; Sawada, Madoka; Fujimaki, Koichiro; Soga, Takashi; Tomita, Hideshi; Uemura, Shigeru; Nishino, Ichizo; Fukuda, Tokiko; Sugie, Hideo; Kosuga, Motomichi; Okuyama, Torayuki; Umeda, Yoh
2016-12-01
Pompe disease is an autosomal recessive, lysosomal glycogen storage disease caused by acid α-glucosidase deficiency. Infantile-onset Pompe disease (IOPD) is the most severe form and is characterized by cardiomyopathy, respiratory distress, hepatomegaly, and skeletal muscle weakness. Untreated, IOPD generally results in death within the first year of life. Enzyme replacement therapy (ERT) with recombinant human acid alpha glucosidase (rhGAA) has been shown to markedly improve the life expectancy of patients with IOPD. However, the efficacy of ERT in patients with IOPD is affected by the presence of symptoms and cross-reactive immunologic material (CRIM) status. We have treated two siblings with IOPD with ERT at different ages: the first was symptomatic and the second was asymptomatic. The female proband (Patient 1) was diagnosed with IOPD and initiated ERT at 4 months of age. Her younger sister (Patient 2) was diagnosed with IOPD at 10 days of age and initiated ERT at Day 12. Patient 1, now 6 years old, is alive but bedridden, and requires 24-hour invasive ventilation due to gradually progressive muscle weakness. In Patient 2, typical symptoms of IOPD, including cardiac failure, respiratory distress, progressive muscle weakness, hepatomegaly and myopathic facial features were largely absent during the first 12 months of ERT. Her cardiac function and mobility were well-maintained for the first 3 years, and she had normal motor development. However, she developed progressive hearing impairment and muscle weakness after 3 years of ERT. Both siblings have had low anti-rhGAA immunoglobulin G (IgG) antibody titers during ERT and have tolerated the treatment well. These results suggest that initiation of ERT during the pre-symptomatic period can prevent and/or attenuate the progression of IOPD, including cardiomyopathy, respiratory distress, and muscle weakness for first several years of ERT. However, to improve the long-term efficacy of ERT for IOPD, new strategies for ERT for IOPD, e.g. modifying the enzyme to enhance uptake into skeletal muscle and/or to cross the blood brain barrier (BBB), will be required.
Louvaris, Zafeiris; Habazettl, Helmut; Wagner, Harrieth; Zakynthinos, Spyros G; Wagner, Peter D; Vogiatzis, Ioannis
2018-06-21
Reliability of Near-infrared spectroscopy (NIRS), measuring indocyanine green (ICG) for minimally invasive assessment of relative muscle blood flow during exercise has been examined in fit young individuals, but not in COPD. Here we ask whether it could be used to evaluate respiratory and locomotor muscle perfusion in COPD patients. Vastus lateralis muscle blood flow (MBF, the reference method calculated from arterial and muscle ICG concentration curves) and a blood flow index (BFI, calculated using only the (same) muscle ICG concentration curves) were compared in 10 patients (FEV 1 :51{plus minus}6%predicted) at rest and during cycling at 25%, 50%, 75% and 100% of WRpeak. Intercostal muscle MBF and BFI were also compared during isocapnic hyperpnea at rest, reproducing ventilation levels up to those at WRpeak. Intercostal and vastus lateralis BFI increased with increasing ventilation during hyperpnea (from 2.5{plus minus}0.3 to 4.5{plus minus}0.7nM/s) and cycling load (from 1.0{plus minus}0.2 to 12.8{plus minus}1.9nM/s), respectively. There were strong correlations between BFI and MBF for both intercostal (r=0.993 group mean data, r=0.872 individual data) and vastus lateralis (r=0.994 group mean data, r=0.895 individual data). Fold changes from rest in BFI and MBF did not differ for either the intercostal muscles or the vastus lateralis. Group mean BFI data showed strong interrelationships with respiratory and cycling workload, and whole body metabolic demand (r ranged from 0.913 to 0.989) simultaneously recorded during exercise. We conclude that BFI is a reliable and minimally invasive tool for evaluating relative changes in respiratory and locomotor muscle perfusion from rest to peak exercise in COPD patient groups.
Nogueira, Leonardo; Trisko, Breanna M; Lima-Rosa, Frederico L; Jackson, Jason; Lund-Palau, Helena; Yamaguchi, Masahiro; Breen, Ellen C
2018-05-23
Cigarette smoke components directly alter muscle fatigue resistance and intracellular muscle fibre Ca 2+ handling independent of a change in lung structure. Changes in muscle vascular structure are associated with a depletion of satellite cells. Sarcoplasmic reticulum Ca 2+ uptake is substantially impaired in myofibres during fatiguing contractions in mice treated with cigarette smoke extract. Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca 2+ accumulation, and a slowing in sarcoplasmic reticulum Ca 2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics
Porter, Craig; Herndon, David N.; Bhattarai, Nisha; Ogunbileje, John O.; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S.
2015-01-01
Altered skeletal muscle mitochondrial function contributes to the pathophysiological stress response to burns. However, the acute and chronic impact of burn trauma on skeletal muscle bioenergetics remains poorly understood. Here, we determined the temporal relationship between burn trauma and mitochondrial function in murine skeletal muscle local to and distal from burn wounds. Male BALB/c mice (8–10 weeks old) were burned by submersion of the dorsum in water (~95°C) to create a full thickness burn on ~30% of the body. Skeletal muscle was harvested from spinotrapezius underneath burn wounds (local) and the quadriceps (distal) of sham and burn treated mice at 3h, 24h, 4d and 10d post-injury. Mitochondrial respiration was determined in permeabilized myofiber bundles by high-resolution respirometry. Caspase 9 and caspase 3 protein concentration were determined by western blot. In muscle local to burn wounds, respiration coupled to ATP production was significantly diminished at 3h and 24h post-injury (P<0.001), as was mitochondrial coupling control (P<0.001). There was a 5- (P<0.05) and 8-fold (P<0.001) increase in respiration in response to cytochrome at 3h and 24h post burn, indicating damage to the outer mitochondrial membranes. Moreover, we also observed greater active caspase 9 and caspase 3 in muscle local to burn wounds, indicating the induction of apoptosis. Distal muscle mitochondrial function was unaltered by burn trauma until 10d post burn, where both respiratory capacity (P<0.05) and coupling control (P<0.05) was significantly lower than sham. These data highlight a differential response in muscle mitochondrial function to burn trauma, where the timing, degree and mode of dysfunction are dependent on whether the muscle is local or distal to the burn wound. PMID:26615714
Ramsook, Andrew H; Molgat-Seon, Yannick; Schaeffer, Michele R; Wilkie, Sabrina S; Camp, Pat G; Reid, W Darlene; Romer, Lee M; Guenette, Jordan A
2017-05-01
Inspiratory muscle training (IMT) has consistently been shown to reduce exertional dyspnea in health and disease; however, the physiological mechanisms remain poorly understood. A growing body of literature suggests that dyspnea intensity can be explained largely by an awareness of increased neural respiratory drive, as measured indirectly using diaphragmatic electromyography (EMGdi). Accordingly, we sought to determine whether improvements in dyspnea following IMT can be explained by decreases in inspiratory muscle electromyography (EMG) activity. Twenty-five young, healthy, recreationally active men completed a detailed familiarization visit followed by two maximal incremental cycle exercise tests separated by 5 wk of randomly assigned pressure threshold IMT or sham control (SC) training. The IMT group ( n = 12) performed 30 inspiratory efforts twice daily against a 30-repetition maximum intensity. The SC group ( n = 13) performed a daily bout of 60 inspiratory efforts against 10% maximal inspiratory pressure (MIP), with no weekly adjustments. Dyspnea intensity was measured throughout exercise using the modified 0-10 Borg scale. Sternocleidomastoid and scalene EMG was measured using surface electrodes, whereas EMGdi was measured using a multipair esophageal electrode catheter. IMT significantly improved MIP (pre: -138 ± 45 vs. post: -160 ± 43 cmH 2 O, P < 0.01), whereas the SC intervention did not. Dyspnea was significantly reduced at the highest equivalent work rate (pre: 7.6 ± 2.5 vs. post: 6.8 ± 2.9 Borg units, P < 0.05), but not in the SC group, with no between-group interaction effects. There were no significant differences in respiratory muscle EMG during exercise in either group. Improvements in dyspnea intensity ratings following IMT in healthy humans cannot be explained by changes in the electrical activity of the inspiratory muscles. NEW & NOTEWORTHY Exertional dyspnea intensity is thought to reflect an increased awareness of neural respiratory drive, which is measured indirectly using diaphragmatic electromyography (EMGdi). We examined the effects of inspiratory muscle training (IMT) on dyspnea, EMGdi, and EMG of accessory inspiratory muscles. IMT significantly reduced submaximal dyspnea intensity ratings but did not change EMG of any inspiratory muscles. Improvements in exertional dyspnea following IMT may be the result of nonphysiological factors or physiological adaptations unrelated to neural respiratory drive. Copyright © 2017 the American Physiological Society.
Molgat-Seon, Yannick; Schaeffer, Michele R.; Wilkie, Sabrina S.; Camp, Pat G.; Reid, W. Darlene; Romer, Lee M.
2017-01-01
Inspiratory muscle training (IMT) has consistently been shown to reduce exertional dyspnea in health and disease; however, the physiological mechanisms remain poorly understood. A growing body of literature suggests that dyspnea intensity can be explained largely by an awareness of increased neural respiratory drive, as measured indirectly using diaphragmatic electromyography (EMGdi). Accordingly, we sought to determine whether improvements in dyspnea following IMT can be explained by decreases in inspiratory muscle electromyography (EMG) activity. Twenty-five young, healthy, recreationally active men completed a detailed familiarization visit followed by two maximal incremental cycle exercise tests separated by 5 wk of randomly assigned pressure threshold IMT or sham control (SC) training. The IMT group (n = 12) performed 30 inspiratory efforts twice daily against a 30-repetition maximum intensity. The SC group (n = 13) performed a daily bout of 60 inspiratory efforts against 10% maximal inspiratory pressure (MIP), with no weekly adjustments. Dyspnea intensity was measured throughout exercise using the modified 0–10 Borg scale. Sternocleidomastoid and scalene EMG was measured using surface electrodes, whereas EMGdi was measured using a multipair esophageal electrode catheter. IMT significantly improved MIP (pre: −138 ± 45 vs. post: −160 ± 43 cmH2O, P < 0.01), whereas the SC intervention did not. Dyspnea was significantly reduced at the highest equivalent work rate (pre: 7.6 ± 2.5 vs. post: 6.8 ± 2.9 Borg units, P < 0.05), but not in the SC group, with no between-group interaction effects. There were no significant differences in respiratory muscle EMG during exercise in either group. Improvements in dyspnea intensity ratings following IMT in healthy humans cannot be explained by changes in the electrical activity of the inspiratory muscles. NEW & NOTEWORTHY Exertional dyspnea intensity is thought to reflect an increased awareness of neural respiratory drive, which is measured indirectly using diaphragmatic electromyography (EMGdi). We examined the effects of inspiratory muscle training (IMT) on dyspnea, EMGdi, and EMG of accessory inspiratory muscles. IMT significantly reduced submaximal dyspnea intensity ratings but did not change EMG of any inspiratory muscles. Improvements in exertional dyspnea following IMT may be the result of nonphysiological factors or physiological adaptations unrelated to neural respiratory drive. PMID:28255085
ERIC Educational Resources Information Center
da Silva, Vinicius Zacarias Maldaner; Barros, Jonatas de Franca; de Azevedo, Monique; de Godoy, Jose Roberto Pimenta; Arena, Ross; Cipriano, Gerson, Jr.
2010-01-01
The purpose of this study was to assess the respiratory muscle strength (RMS) in individuals with mental retardation (MR), with or without Down Syndrome (DS), and its association with bone mineral density (BMD). Forty-five male individuals (15 with DS, 15 with mental retardation (MR) and 15 apparently healthy controls), aged 20-35, participated in…
Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects.
Lanza, Fernanda de Cordoba; de Camargo, Anderson Alves; Archija, Lilian Rocha Ferraz; Selman, Jessyca Pachi Rodrigues; Malaguti, Carla; Dal Corso, Simone
2013-12-01
Chest wall mobility is often measured in clinical practice, but the correlations between chest wall mobility and respiratory muscle strength and lung volumes are unknown. We investigate the associations between chest wall mobility, axillary and thoracic cirtometry values, respiratory muscle strength (maximum inspiratory pressure and maximum expiratory pressure), and lung volumes (expiratory reserve volume, FEV(1), inspiratory capacity, FEV(1)/FVC), and the determinants of chest mobility in healthy subjects. In 64 healthy subjects we measured inspiratory capacity, FVC, FEV(1), expiratory reserve volume, maximum inspiratory pressure, and maximum expiratory pressure, and chest wall mobility via axillary and thoracic cirtometry. We used linear regression to evaluate the influence of the measured variables on chest wall mobility. The subjects' mean ± SD values were: age 24 ± 3 years, axillary cirtometry 6.3 ± 2.0 cm, thoracic cirtometry 7.5 ± 2.3 cm; maximum inspiratory pressure 90.4 ± 10.6% of predicted, maximum expiratory pressure 92.8 ± 13.5% of predicted, inspiratory capacity 99.7 ± 8.6% of predicted, FVC 101.9 ± 10.6% of predicted, FEV(1) 98.2 ± 10.3% of predicted, expiratory reserve volume 90.9 ± 19.9% of predicted. There were significant correlations between axillary cirtometry and FVC (r = 0.32), FEV(1) (r = 0.30), maximum inspiratory pressure (r = 0.48), maximum expiratory pressure (r = 0.25), and inspiratory capacity (r = 0.24), and between thoracic cirtometry and FVC (r = 0.50), FEV(1) (r = 0.48), maximum inspiratory pressure (r = 0.46), maximum expiratory pressure (r = 0.37), inspiratory capacity (r = 0.39), and expiratory reserve volume (r = 0.47). In multiple regression analysis the variable that best explained the axillary cirtometry variation was maximum inspiratory pressure (R(2) 0.23), and for thoracic cirtometry it was FVC and maximum inspiratory pressure (R(2) 0.32). Chest mobility in healthy subjects is related to respiratory muscle strength and lung function; the higher the axillary cirtometry and thoracic cirtometry values, the greater the maximum inspiratory pressure, maximum expiratory pressure, and lung volumes in healthy subjects.
Myoglobin and the regulation of mitochondrial respiratory chain complex IV.
Yamada, Tatsuya; Takakura, Hisashi; Jue, Thomas; Hashimoto, Takeshi; Ishizawa, Rie; Furuichi, Yasuro; Kato, Yukio; Iwanaka, Nobumasa; Masuda, Kazumi
2016-01-15
Mitochondrial respiration is regulated by multiple elaborate mechanisms. It has been shown that muscle specific O2 binding protein, Myoglobin (Mb), is localized in mitochondria and interacts with respiratory chain complex IV, suggesting that Mb could be a factor that regulates mitochondrial respiration. Here, we demonstrate that muscle mitochondrial respiration is improved by Mb overexpression via up-regulation of complex IV activity in cultured myoblasts; in contrast, suppression of Mb expression induces a decrease in complex IV activity and mitochondrial respiration compared with the overexpression model. The present data are the first to show the biological significance of mitochondrial Mb as a potential modulator of mitochondrial respiratory capacity. Mitochondria are important organelles for metabolism, and their respiratory capacity is a primary factor in the regulation of energy expenditure. Deficiencies of cytochrome c oxidase complex IV, which reduces O2 in mitochondria, are linked to several diseases, such as mitochondrial myopathy. Moreover, mitochondrial respiration in skeletal muscle tissue tends to be susceptible to complex IV activity. Recently, we showed that the muscle-specific protein myoglobin (Mb) interacts with complex IV. The precise roles of mitochondrial Mb remain unclear. Here, we demonstrate that Mb facilitates mitochondrial respiratory capacity in skeletal muscles. Although mitochondrial DNA copy numbers were not altered in Mb-overexpressing myotubes, O2 consumption was greater in these myotubes than that in mock cells (Mock vs. Mb-Flag::GFP: state 4, 1.00 ± 0.09 vs. 1.77 ± 0.34; state 3, 1.00 ± 0.29; Mock: 1.60 ± 0.53; complex 2-3-4: 1.00 ± 0.30 vs. 1.50 ± 0.44; complex IV: 1.00 ± 0.14 vs. 1.87 ± 0.27). This improvement in respiratory capacity could be because of the activation of enzymatic activity of respiratory complexes. Moreover, mitochondrial respiration was up-regulated in myoblasts transiently overexpressing Mb; complex IV activity was solely activated in Mb-overexpressing myoblasts, and complex IV activity was decreased in the myoblasts in which Mb expression was suppressed by Mb-siRNA transfection (Mb vector transfected vs. Mb vector, control siRNA transfected vs. Mb vector, Mb siRNA transfected: 0.15 vs. 0.15 vs. 0.06). Therefore, Mb enhances the enzymatic activity of complex IV to ameliorate mitochondrial respiratory capacity, and could play a pivotal role in skeletal muscle metabolism. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Clinical challenges in mechanical ventilation.
Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J
2016-04-30
Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ceelen, Judith J M; Schols, Annemie M W J; Thielen, Nathalie G M; Haegens, Astrid; Gray, Douglas A; Kelders, Marco C J M; de Theije, Chiel C; Langen, Ramon C J
2018-05-02
Pulmonary inflammation in response to respiratory infections can evoke muscle wasting. Increased activity of the ubiquitin (Ub)-proteasome system (UPS) and the autophagy lysosome pathway (ALP) have been implicated in inflammation-induced muscle atrophy. Since poly-Ub conjugation is required for UPS-mediated proteolysis and has been implicated in the ALP, we assessed the effect of impaired ubiquitin conjugation on muscle atrophy and recovery following pulmonary inflammation, and compared activation and suppression of these proteolytic systems to protein synthesis regulation. Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS. Proteolysis (UPS and ALP) and synthesis signaling were examined in gastrocnemius muscle homogenates. Ub-conjugation-dependency of muscle atrophy and recovery was addressed using Ub-K48R (K48R) mice with attenuated poly-ubiquitin conjugation, and compared to UBWT control mice. Pulmonary inflammation caused a decrease in skeletal muscle mass which was accompanied by a rapid increase in expression of UPS and ALP constituents and reduction in protein synthesis signaling acutely after LPS. Muscle atrophy was attenuated in K48R mice, while ALP and protein synthesis signaling were not affected. Muscle mass recovery starting 72 h post LPS, correlated with reduced expression of UPS and ALP constituents and restoration of protein synthesis signaling. K48R mice however displayed impaired recovery of muscle mass. Pulmonary inflammation-induced muscle atrophy is in part attributable to UPS-mediated proteolysis, as activation of ALP- and suppression of protein synthesis signaling occur independently of poly-Ub conjugation during muscle atrophy. Recovery of muscle mass following pulmonary inflammation involves inverse regulation of proteolysis and protein synthesis signaling, and requires a functional poly-Ub conjugation.
Evaluation of Skeletal Muscle Function in Lung Transplant Candidates.
Rozenberg, Dmitry; Singer, Lianne G; Herridge, Margaret; Goldstein, Roger; Wickerson, Lisa; Chowdhury, Noori A; Mathur, Sunita
2017-09-01
Lung transplantation (LTx) is offered to older and more complex patients who may be at higher risk of skeletal muscle dysfunction, but the clinical implications of this remain uncertain. The study aims were to characterize deficits in skeletal muscle mass, strength and physical performance, and examine the associations of these deficits with clinical outcomes. Fifty LTx candidates (58% men; age, 59 ± 9 years) were prospectively evaluated for skeletal muscle deficits: muscle mass using bioelectrical impedance, quadriceps, respiratory muscle and handgrip strength, and physical performance with the Short Physical Performance Battery. Comparisons between number of muscle deficits (low muscle mass, quadriceps strength and physical performance) and 6-minute walk distance (6MWD), London Chest Activity of Daily Living Questionnaire, and quality of life were assessed using one-way analysis of variance. Associations with pretransplant and posttransplant delisting/mortality, hospital duration, and 3-month posttransplant 6MWD were evaluated using Fisher exact test and Spearman correlation. Deficits in quadriceps strength (n = 27) and physical performance (n = 24) were more common than muscle mass (n = 8). LTx candidates with 2 or 3 muscle deficits (42%) compared with those without any deficits (26%) had worse 6MWD = -109 m (95% confidence interval [CI], -175 to -43), London Chest Activity of Daily Living Questionnaire = 18 (95% CI, 7-30), and St. George's Activity Domain = 12 (95% CI, 2-21). Number of muscle deficits was associated with posttransplant hospital stay (r = 0.34, P = 0.04), but not with delisting/mortality or posttransplant 6MWD. Deficits in quadriceps muscle strength and physical performance are common in LTx candidates and further research is needed to assess whether modifying muscle function pretransplant can lead to improved clinical outcomes.
Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms
Kubin, Leszek
2017-01-01
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. PMID:27783860
Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria.
Agrawal, Anurag; Mabalirajan, Ulaganathan
2016-01-15
Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases. Copyright © 2016 the American Physiological Society.
Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando
2012-07-06
A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.
Rehabilitation of patients admitted to a respiratory intensive care unit.
Nava, S
1998-07-01
Pulmonary rehabilitation has been shown to be of benefit to clinically stable patients with chronic obstructive pulmonary disease (COPD). This study examined the effect of pulmonary rehabilitation on some physiologic variables in COPD patients recovering from an episode of acute respiratory failure. A prospective, randomized study. A respiratory intensive care unit (RICU). Eighty COPD patients recovering from an episode of acute respiratory failure were randomized in a 3:1 fashion to receive stepwise pulmonary rehabilitation (group A, n=60 patients) or standard medical therapy (group B, n=20 patients). Improvements in exercise tolerance, sense of breathlessness, respiratory muscle function, and pulmonary function test values were measured, respectively, by exercise capacity (6-minute walking distance [6MWD]), dyspnea score (Visual Analog Scale [VAS]), maximal inspiratory pressure (MIP), forced expiratory volume in 1 second (FEV1), and forced vital capacity (FVC). Group A received pulmonary rehabilitation that consisted of passive mobilization (step I), early deambulation (step II), respiratory and lower skeletal muscle training (step III), and if the patients were able, complete lower extremity training on a treadmill (step IV). Group B received standard medical therapy plus a basic deambulation program. Sixty-one of 80 patients were mechanically ventilated at admission to the unit and most of them were bedridden. Twelve of the 60 group A patients and 4 of the 20 group B patients died during their RICU stay, and 9 patients required invasive mechanical ventilation at home after their discharge. The total length of RICU stay was 38+/-14 days for patients in group A versus 33.2+/-11 days for those in group B. Most patients from both groups regained the ability to walk, either unaided or aided. At discharge, 6 MWD results were significantly improved (p < .001) in Group A only. MIP improved in Group A only (p < .05), while VAS scores improved in both groups, but the improvement was more marked in group A (p < .001) than in group B (p < .05). COPD patients who were admitted to a RICU in critical condition after an episode of acute respiratory failure and who, in most cases, required mechanical ventilation benefited from comprehensive early pulmonary rehabilitation, compared with patients who received standard medical therapy and progressive ambulation.
Protti, Alessandro; Fortunato, Francesco; Caspani, Maria L.; Pluderi, Mauro; Lucchini, Valeria; Grimoldi, Nadia; Solimeno, Luigi P.; Fagiolari, Gigliola; Ciscato, Patrizia; Zella, Samis M. A.; Moggio, Maurizio; Comi, Giacomo P.; Gattinoni, Luciano
2014-01-01
Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs. PMID:24787741
Halabchi, Farzin; Alizadeh, Zahra; Sahraian, Mohammad Ali; Abolhasani, Maryam
2017-09-16
Multiple sclerosis (MS) can result in significant mental and physical symptoms, specially muscle weakness, abnormal walking mechanics, balance problems, spasticity, fatigue, cognitive impairment and depression. Patients with MS frequently decrease physical activity due to the fear from worsening the symptoms and this can result in reconditioning. Physicians now believe that regular exercise training is a potential solution for limiting the reconditioning process and achieving an optimal level of patient activities, functions and many physical and mental symptoms without any concern about triggering the onset or exacerbation of disease symptoms or relapse. Appropriate exercise can cause noteworthy and important improvements in different areas of cardio respiratory fitness (Aerobic fitness), muscle strength, flexibility, balance, fatigue, cognition, quality of life and respiratory function in MS patients. Aerobic exercise training with low to moderate intensity can result in the improvement of aerobic fitness and reduction of fatigue in MS patients affected by mild or moderate disability. MS patients can positively adapt to resistance training which may result in improved fatigue and ambulation. Flexibility exercises such as stretching the muscles may diminish spasticity and prevent future painful contractions. Balance exercises have beneficial effects on fall rates and better balance. Some general guidelines exist for exercise recommendation in the MS population. The individualized exercise program should be designed to address a patient's chief complaint, improve strength, endurance, balance, coordination, fatigue and so on. An exercise staircase model has been proposed for exercise prescription and progression for a broad spectrum of MS patients. Exercise should be considered as a safe and effective means of rehabilitation in MS patients. Existing evidence shows that a supervised and individualized exercise program may improve fitness, functional capacity and quality of life as well as modifiable impairments in MS patients.
Tamilselvan, Jayavelu; Sivarajan, Kumarasamy; Anusuyadevi, Muthuswamy; Panneerselvam, Chinnakkannu
2007-09-01
The release of mitochondrial cytochrome c followed by activation of caspase cascade has been reported with aging in various tissues, whereas little is known about the caspase-independent pathway involved in mitochondrial dysfunction. To determine the functional impact of cytochrome c loss on mitochondrial respiratory capacity, we monitored NADH redox transitions and oxygen consumption in isolated skeletal muscle mitochondria of 4- and 24-month-old rats in the presence and absence of exogenous cytochrome c; and assessed the efficacy of cosupplementation of carnitine and lipoic acid on age-related alteration in mitochondrial respiration. The loss of mitochondrial cytochrome c with age was accompanied with alteration in respiratory transition, which in turn was not rescued by exogenous addition of cytochrome c to isolated mitochondria. The analysis of mitochondrial and nuclear-encoded cytochrome c oxidase subunits suggests that the decreased levels of cytochrome c oxidase may be attributed for the irresponsiveness to exogenously added cytochrome c on mitochondrial respiratory transitions, possibly through reduction of upstream electron carriers. Oral supplementation of carnitine and lipoic acid to aged rats help to maintaining the mitochondrial oxidative capacity by regulating the release of cytochrome c and improves cytochrome c oxidase transcript levels. Thus, carnitine and lipoic acid supplementation prevents the loss of cytochrome c and their associated decline in cytochrome c oxidase activity; thereby, effectively attenuating any putative decrease in cellular energy and redox status with age.
Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.
2017-01-01
Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893
Murphy, Kate T; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Lynch, Gordon S
2013-09-01
Cancer cachexia describes the progressive skeletal muscle wasting and weakness associated with many cancers. Cachexia reduces mobility and quality of life and accounts for 20-30% of all cancer-related deaths. Activation of the renin-angiotensin system causes skeletal muscle wasting and weakness. We tested the hypothesis that treatment with the angiotensin converting enzyme (ACE) inhibitor, perindopril, would enhance whole body and skeletal muscle function in cachectic mice bearing Colon-26 (C-26) tumors. CD2F1 mice received a subcutaneous injection of phosphate buffered saline or C-26 tumor cells inducing either a mild or severe cachexia. The following day, one cohort of C-26 mice began receiving perindopril in their drinking water (4 mg kg(-1) day(-1) ) for 21 days. In mild and severe cachexia, perindopril increased measures of whole body function (grip strength and rotarod) and reduced fatigue in isolated contracting diaphragm muscle strips (p < 0.05). In severely cachectic mice, perindopril reduced tumor growth, improved locomotor activity and reduced fatigue of tibialis anterior muscles in situ (p < 0.05), which was associated with increased oxidative enzyme capacity (succinate deyhydrogenase, p < 0.05). Perindopril attenuated the increase in MuRF-1 and IL-6 mRNA expression and enhanced Akt phosphorylation in severely cachectic mice but neither body nor muscle mass was increased. These findings support the therapeutic potential of ACE inhibition for enhancing whole body function and reducing fatigue of respiratory muscles in early and late stage cancer cachexia and should be confirmed in future clinical trials. Since ACE inhibition alone did not enhance body or muscle mass, co-treatment with an anabolic agent may be required to address these aspects of cancer cachexia. Copyright © 2013 UICC.
Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial.
Castagnaro, Silvia; Pellegrini, Camilla; Pellegrini, Massimo; Chrisam, Martina; Sabatelli, Patrizia; Toni, Silvia; Grumati, Paolo; Ripamonti, Claudio; Pratelli, Loredana; Maraldi, Nadir M; Cocchi, Daniela; Righi, Valeria; Faldini, Cesare; Sandri, Marco; Bonaldo, Paolo; Merlini, Luciano
2016-12-01
A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorders caused by mutations of COL6 genes and for which no cure is yet available. Studies in col6 null mice revealed that myofiber degeneration involves autophagy defects and that forced activation of autophagy results in the amelioration of muscle pathology. Seven adult patients affected by COL6 myopathies underwent a controlled low-protein diet for 12 mo and we evaluated the presence of autophagosomes and the mRNA and protein levels for BECN1/Beclin 1 and MAP1LC3B/LC3B in muscle biopsies and blood leukocytes. Safety measures were assessed, including muscle strength, motor and respiratory function, and metabolic parameters. After one y of low-protein diet, autophagic markers were increased in skeletal muscle and blood leukocytes of patients. The treatment was safe as shown by preservation of lean:fat percentage of body composition, muscle strength and function. Moreover, the decreased incidence of myofiber apoptosis indicated benefits in muscle homeostasis, and the metabolic changes pointed at improved mitochondrial function. These data provide evidence that a low-protein diet is able to activate autophagy and is safe and tolerable in patients with COL6 myopathies, pointing at autophagy activation as a potential target for therapeutic applications. In addition, our findings indicate that blood leukocytes are a promising noninvasive tool for monitoring autophagy activation in patients.
Eckert, Danny J; Malhotra, Atul; Wellman, Andrew; White, David P
2014-04-01
The effect of common sedatives on upper airway physiology and breathing during sleep in obstructive sleep apnea (OSA) has been minimally studied. Conceptually, certain sedatives may worsen OSA in some patients. However, sleep and breathing could improve with certain sedatives in patients with OSA with a low respiratory arousal threshold. This study aimed to test the hypothesis that trazodone increases the respiratory arousal threshold in patients with OSA and a low arousal threshold. Secondary aims were to examine the effects of trazodone on upper airway dilator muscle activity, upper airway collapsibility, and breathing during sleep. Patients were studied on 4 separate nights according to a within-subjects cross-over design. Sleep physiology laboratory. Seven patients with OSA and a low respiratory arousal threshold. In-laboratory polysomnograms were obtained at baseline and after 100 mg of trazodone was administered, followed by detailed overnight physiology experiments under the same conditions. During physiology studies, continuous positive airway pressure was transiently lowered to measure arousal threshold (negative epiglottic pressure prior to arousal), dilator muscle activity (genioglossus and tensor palatini), and upper airway collapsibility (Pcrit). Trazodone increased the respiratory arousal threshold by 32 ± 6% (-11.5 ± 1.4 versus -15.3 ± 2.2 cmH2O, P < 0.01) but did not alter the apnea-hypopnea index (39 ± 12 versus 39 ± 11 events/h sleep, P = 0.94). Dilator muscle activity and Pcrit also did not systematically change with trazodone. Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold without major impairment in dilator muscle activity or upper airway collapsibility. However, the magnitude of change in arousal threshold was insufficient to overcome the compromised upper airway anatomy in these patients.
Zaharieva, Irina T.; Thor, Michael G.; Oates, Emily C.; van Karnebeek, Clara; Hendson, Glenda; Blom, Eveline; Witting, Nanna; Rasmussen, Magnhild; Gabbett, Michael T.; Ravenscroft, Gianina; Sframeli, Maria; Suetterlin, Karen; Sarkozy, Anna; D’Argenzio, Luigi; Hartley, Louise; Matthews, Emma; Pitt, Matthew; Vissing, John; Ballegaard, Martin; Krarup, Christian; Slørdahl, Andreas; Halvorsen, Hanne; Ye, Xin Cynthia; Zhang, Lin-Hua; Løkken, Nicoline; Werlauff, Ulla; Abdelsayed, Mena; Davis, Mark R.; Feng, Lucy; Phadke, Rahul; Sewry, Caroline A.; Morgan, Jennifer E.; Laing, Nigel G.; Vallance, Hilary; Ruben, Peter; Hanna, Michael G.; Lewis, Suzanne; Kamsteeg, Erik-Jan; Männikkö, Roope
2016-01-01
Abstract See Cannon (doi: 10.1093/brain/awv400 ) for a scientific commentary on this article. Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Na v 1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero - or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Na v 1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Na v 1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy. PMID:26700687
Zaharieva, Irina T; Thor, Michael G; Oates, Emily C; van Karnebeek, Clara; Hendson, Glenda; Blom, Eveline; Witting, Nanna; Rasmussen, Magnhild; Gabbett, Michael T; Ravenscroft, Gianina; Sframeli, Maria; Suetterlin, Karen; Sarkozy, Anna; D'Argenzio, Luigi; Hartley, Louise; Matthews, Emma; Pitt, Matthew; Vissing, John; Ballegaard, Martin; Krarup, Christian; Slørdahl, Andreas; Halvorsen, Hanne; Ye, Xin Cynthia; Zhang, Lin-Hua; Løkken, Nicoline; Werlauff, Ulla; Abdelsayed, Mena; Davis, Mark R; Feng, Lucy; Phadke, Rahul; Sewry, Caroline A; Morgan, Jennifer E; Laing, Nigel G; Vallance, Hilary; Ruben, Peter; Hanna, Michael G; Lewis, Suzanne; Kamsteeg, Erik-Jan; Männikkö, Roope; Muntoni, Francesco
2016-03-01
Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Sauvageau, Anny; Racette, Stéphanie
2007-07-01
The forensic literature on the pathophysiology of human hanging is still limited. Therefore, forensic pathologists often feel uncomfortable when confronted with related questions. Here presented is the filmed suicidal hanging of a 37-year-old man. This recording allows a unique analysis of agonal movement sequences: loss of consciousness (13 sec), convulsions (15 sec), decortication rigidity (21 sec), decerebration rigidity (46 sec), second decortication rigidity (1 min 11 sec), loss of muscle tone, (1 min 38 sec) and last isolated muscle movement (4 min 10 sec). As for respiratory responses, very deep respiratory attempts started at 20 sec. Respiratory movements progressively decreased and completely stopped at 2 min. Despite the fact that extending the presented data on all cases of hanging asphyxia would be a mistake, this case gives a very interesting insight into movement and respiratory response to asphyxia by hanging.
Early use of non invasive ventilation in patients with amyotrophic lateral sclerosis: what benefits?
Terzano, C; Romani, S
2015-11-01
The aim of this study was to analyze the efficacy of an early start of NIV in ALS patients, evaluating respiratory and ventilatory parameters. Functional respiratory parameters and arterial blood gas analysis were evaluated in forty-six patients. All patients were informed about the benefits and possible adverse effects of therapeutic support with NIV and divided in two groups based on the compliance to early start therapy with NIV (Group A) or not (Group B). Among 46 ALS patients consecutively visited in our Unit, we included 20 patients in the Group A and 16 in the Group B. We have emphasized the importance of the early use of NIV stressing the difference between two groups analyzed, particularly in terms of pulmonary function tests and arterial blood gas analysis. Significant correlation was observed between Vital Capacity (VC), Forced Expiratory volume in one second (FEV1), and maximal inspiratory pressures (PImax). Our study highlights the importance of noninvasive mechanical ventilation as a treatment for ALS patients and also shows the early start of NIV as an important approach in order to postpone the functional decline and the decrease of respiratory muscle strength.
Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy
Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice
2012-01-01
Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172
Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice.
Welch, Kevin D; Pfister, James A; Lima, Flavia G; Green, Benedict T; Gardner, Dale R
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. Published by Elsevier Inc.
Toro, Camilo; Olivé, Montse; Dalakas, Marinos C; Sivakumar, Kumaraswami; Bilbao, Juan M; Tyndel, Felix; Vidal, Noemí; Farrero, Eva; Sambuughin, Nyamkhishig; Goldfarb, Lev G
2013-03-20
Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin.
Acoustic, respiratory kinematic and electromyographic effects of vocal training
NASA Astrophysics Data System (ADS)
Mendes, Ana Paula De Brito Garcia
The longitudinal effects of vocal training on the respiratory, phonatory and articulatory systems were investigated in this study. During four semesters, fourteen voice major students were recorded while speaking and singing. Acoustic, temporal, respiratory kinematic and electromyographic parameters were measured to determine changes in the three systems as a function of vocal training. Acoustic measures of the speaking voice included fundamental frequency, sound pressure level (SPL), percent jitter and shimmer, and harmonic-to-noise ratio. Temporal measures included duration of sentences, diphthongs and the closure durations of stop consonants. Acoustic measures of the singing voice included fundamental frequency and sound pressure level of the phonational range, vibrato pulses per second, vibrato amplitude variation and the presence of the singer's formant. Analysis of the data revealed that vocal training had a significant effect on the singing voice. Fundamental frequency and SPL of the 90% level and 90--10% of the phonational range increased significantly during four semesters of vocal training. Physiological data was collected from four subjects during three semesters of vocal training. Respiratory kinematic measures included lung volume, rib cage and abdominal excursions extracted from spoken sung samples. Descriptive statistics revealed that rib cage and abdominal excursions increased from the 1st to the 2nd semester and decrease from the 2nd to the 3rd semester of vocal training. Electromyographic measures of the pectoralis major, rectus abdominis and external obliques muscles revealed that burst duration means decreased from the 1st to the 2nd semester and increased from the 2nd to the 3rd semester. Peak amplitude means increased from the 1st to the 2nd and decreased from the 2nd to the 3rd semester of vocal training. Chest wall excursions and muscle force generation of the three muscles increased as the demanding level and the length of the phonatory tasks increased.
Thaveau, Fabien; Zoll, Joffrey; Bouitbir, Jamal; N'guessan, Benoît; Plobner, Philippe; Chakfe, Nabil; Kretz, Jean-Georges; Richard, Ruddy; Piquard, François; Geny, Bernard
2010-06-01
Impaired skeletal muscle energetic participates in peripheral arterial disease (PAD) patient's morbidity and mortality. Angiotensin converting enzyme inhibition (ACEi), cornerstone for pharmacologic risk factor management in PAD patients, might also be interesting by protecting skeletal muscle energetic. We therefore determined whether chronic ACEi might reduce ischemia-induced mitochondrial respiratory chain dysfunction in the frequent setting of hindlimb ischemia-reperfusion. Ischemic legs of rats submitted to 5 h ischemia induced by a rubber band tourniquet applied on the root of the hindlimb followed by reperfusion without (IR, n = 11) or after ACEi (n = 14; captopril 40 mg/kg per day during 28 days before surgery) were studied and compared to that of sham-operated animals (n = 11). The effect of ACEi on the non-ischemic contralateral leg was also determined in the ACEi group. Maximal oxidative capacities (V(max)) and complexes I, II and IV activities of the mitochondrial respiratory chain of the gastrocnemius muscle were determined using glutamate-malate, succinate and TMPD-ascorbate substrates. Arterial blood pressure was significantly decreased after ACEi (124 +/- 2.8 vs. 108 +/- 4.19 mmHg; P = 0.01). Ischemia-reperfusion reduced V(max) (4.4 +/- 0.4 vs. 8.7 +/- 0.5 micromol O2/min/g dry weight, -49%, P < 0.001), affecting mitochondrial complexes I, II and IV activities. ACEi failed to modulate ischemia-induced dysfunction (V(max) 5.1 +/- 0.7 micromol O2/min/g dry weight) or the non-ischemic contralateral muscle respiratory rate. Ischemia-reperfusion significantly impaired the mitochondrial respiratory chain I, II and IV complexes of skeletal muscle. Pharmacologic pre-treatment with ACEi did not prevent or increase such alterations. Further studies might be useful to improve the pharmacologic conditioning of PAD patients needing arterial revascularization.
Role of the superior pharyngeal constrictor muscle in forced breathing in dogs.
Yaman, Z; Kogo, M; Senoo, H; Iida, S; Ishii, S; Matsuya, T
2000-03-01
Respiratory-related electromyographic (EMG) activity of the superior pharyngeal constrictor (SPC) muscle was analyzed during the early stage of forced breathing. Four adult dogs anesthetized with sodium pentobarbital were used. In the first part of the study, oral and nasal breathing tubes were placed into the respective cavities, and a tracheotomy tube was placed in the second part of the study. Two conditions, the presence (oral-nasal tube breathing) and absence (tracheotomy breathing) of airflow in the upper airway, were achieved in each dog. Following quiet breathing, animals were connected to a closed breathing system, first by an oral-nasal tube and then by a tracheotomy tube. We proposed to induce a forced breathing condition mechanically by using this system for 1 minute. We increased resistance to airflow during forced breathing by means of connecting tubes and a bag. Our aim was not to produce chemical drive but to produce a forced respiration by increasing the resistance to airflow. Tidal volume, breathing frequency, minute volume, chest wall movement, and EMG activity of the SPC muscle were measured and analyzed. During quiet breathing through an oral-nasal or tracheotomy tube, low-amplitude EMG activity of the SPC muscle corresponding to the expiratory cycle of the respiration was observed. In both study conditions, phasic expiratory EMG activity increased immediately after the advent of the breathing from the closed system. Tidal volumes and frequencies also increased rapidly during forced breathing. An increase in the resistance to airflow increased the activity of the SPC muscle. This augmented respiratory activity probably assists the patency of the upper airway. The augmented respiratory activity was independent of the local reflex pathways. Respiratory-related activity of the SPC muscle may help dilate and stiffen the pharyngeal airway, promoting airway patency.
Richard, C A; Waldrop, T G; Bauer, R M; Mitchell, J H; Stremel, R W
1989-03-13
It is known that muscle afferents and the hypothalamic locomotor region (HLR) both project to the nucleus reticularis gigantocellularis (NGC) and that the NGC is capable of influencing cardiovascular and respiratory variables. Therefore, the role of NGC in the cardiovascular and respiratory response to exercise-related signals was investigated in anesthetized cats. These signals were generated by stimulation of: (1) spinal ventral roots to induce hindlimb muscle contraction (MC) and (2) the HLR. Bilateral electrolytic lesion of the NGC at the pontomedullary border caused tidal volume, respiratory frequency and heart rate responses to HLR stimulation to be greater than the responses recorded prior to lesioning. Lesioning had no effect on the ventilatory or cardiovascular responses to MC but did decrease phrenic responsiveness; lesion had no effect on any resting values. In this preparation, the pontomedullary NGC acts as an inhibitory influence on tidal volume, breathing frequency and heart rate responses to the central command for exercise. In addition, NGC modulation of ventilation would appear to be selective for certain respiratory muscle groups.
Kulkarni, S R; Fletcher, E; McConnell, A K; Poskitt, K R; Whyman, M R
2010-11-01
The aim of this pilot study was to assess the effect of pre-operative inspiratory muscle training (IMT) on respiratory variables in patients undergoing major abdominal surgery. Respiratory muscle strength (maximum inspiratory [MIP] and expiratory [MEP] mouth pressure) and pulmonary functions were measured at least 2 weeks before surgery in 80 patients awaiting major abdominal surgery. Patients were then allocated randomly to one of four groups (Group A, control; Group B, deep breathing exercises; Group C, incentive spirometry; Group D, specific IMT). Patients in groups B, C and D were asked to train twice daily, each session lasting 15 min, for at least 2 weeks up to the day before surgery. Outcome measurements were made immediately pre-operatively and postoperatively. In groups A, B and C, MIP did not increase from baseline to pre-operative assessments. In group D, MIP increased from 51.5 cmH(2)O (median) pre-training to 68.5 cmH(2)O (median) post-training pre-operatively (P < 0.01). Postoperatively, groups A, B and C showed a fall in MIP from baseline (P < 0.01, P < 0.01) and P = 0.06, respectively). No such significant reduction in postoperative MIP was seen in group D (P = 0.36). Pre-operative specific IMT improves MIP pre-operatively and preserves it postoperatively. Further studies are required to establish if this is associated with reduced pulmonary complications.
Turnbull, Alison E; Sepulveda, Kristin A; Dinglas, Victor D; Chessare, Caroline M; Bingham, Clifton O; Needham, Dale M
2017-06-01
To identify the "core domains" (i.e., patient outcomes, health-related conditions, or aspects of health) that relevant stakeholders agree are essential to assess in all clinical research studies evaluating the outcomes of acute respiratory failure survivors after hospital discharge. A two-round consensus process, using a modified Delphi methodology, with participants from 16 countries, including patient and caregiver representatives. Prior to voting, participants were asked to review 1) results from surveys of clinical researchers, acute respiratory failure survivors, and caregivers that rated the importance of 19 preliminary outcome domains and 2) results from a qualitative study of acute respiratory failure survivors' outcomes after hospital discharge, as related to the 19 preliminary outcome domains. Participants also were asked to suggest any additional potential domains for evaluation in the first Delphi survey. Web-based surveys of participants representing four stakeholder groups relevant to clinical research evaluating postdischarge outcomes of acute respiratory failure survivors: clinical researchers, clinicians, patients and caregivers, and U.S. federal research funding organizations. None. None. Survey response rates were 97% and 99% in round 1 and round 2, respectively. There were seven domains that met the a priori consensus criteria to be designated as core domains: physical function, cognition, mental health, survival, pulmonary function, pain, and muscle and/or nerve function. This study generated a consensus-based list of core domains that should be assessed in all clinical research studies evaluating acute respiratory failure survivors after hospital discharge. Identifying appropriate measurement instruments to assess these core domains is an important next step toward developing a set of core outcome measures for this field of research.
Second-generation compound for the modulation of utrophin in the therapy of DMD
Guiraud, Simon; Squire, Sarah E.; Edwards, Benjamin; Chen, Huijia; Burns, David T.; Shah, Nandini; Babbs, Arran; Davies, Stephen G.; Wynne, Graham M.; Russell, Angela J.; Elsey, David; Wilson, Francis X.; Tinsley, Jon M.; Davies, Kay E.
2015-01-01
Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation. PMID:25935002
Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again
Taylor, Janet L.; Amann, Markus; Duchateau, Jacques; Meeusen, Romain; Rice, Charles L.
2016-01-01
During exercise, there is a progressive reduction in the ability to produce muscle forces. Processes within the nervous system, as well as within the muscles contribute to this fatigue. In addition to impaired function of the motor system, sensations associated with fatigue, and impairment of homeostasis can contribute to impairment of performance during exercise. This review discusses some of the neural changes that accompany exercise and the development of fatigue. The role of brain monoaminergic neurotransmitter systems in whole-body endurance performance is discussed, particularly with regard to exercise in hot environments. Next, fatigue-related alterations in the neuromuscular pathway are discussed in terms of changes in motor unit firing, motoneuron excitability and motor cortical excitability. These changes have mostly been investigated during single-limb isometric contractions. Finally, the small-diameter muscle afferents that increase firing with exercise and fatigue are discussed. These afferents have roles in cardiovascular and respiratory responses to exercise, and in impairment of exercise performance through interaction with the motor pathway, as well as providing sensations of muscle discomfort. Thus, changes at all levels of the nervous system including the brain, spinal cord, motor output, sensory input and autonomic function occur during exercise and fatigue. The mix of influences and the importance of their contribution varies with the type of exercise being performed. PMID:27003703
Respiration-related discharge of hyoglossus muscle motor units in the rat.
Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F
2014-01-01
Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.
The challenge of frailty and sarcopenia in heart failure with preserved ejection fraction.
Kinugasa, Yoshiharu; Yamamoto, Kazuhiro
2017-02-01
Frailty is a clinical state in which there is an increase in an individual's vulnerability for developing increased dependency and/or mortality when exposed to stressors. Frailty is often accompanied by heart failure with preserved ejection fraction (HFpEF), and frailty is likely to affect its clinical features and outcomes. Frail patients with HFpEF are frequently associated with sarcopenia (ie, muscle loss and weakness), which is a major component of the pathophysiology of frailty. Sarcopenia is a systemic skeletal muscle disease that impairs the function of limb skeletal muscles, as well as respiratory muscles, and this results in further functional decline. In addition, sarcopenia may contribute to cardiovascular remodelling and dysfunction, leading to the development of HFpEF through several metabolic and endocrine abnormalities. Although there is no established strategy for frail patients with HFpEF, a multidisciplinary approach, including various types of muscular training and nutritional intervention, may provide beneficial effects for these patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Acute Systemic Complications of Convulsive Status Epilepticus-A Systematic Review.
Sutter, Raoul; Dittrich, Tolga; Semmlack, Saskia; Rüegg, Stephan; Marsch, Stephan; Kaplan, Peter W
2018-01-01
Status epilepticus is a neurologic emergency with high morbidity and mortality requiring neurointensive care and treatment of systemic complications. This systematic review compiles the current literature on acute systemic complications of generalized convulsive status epilepticus in adults and their immediate clinical impact along with recommendations for optimal neurointensive care. We searched PubMed, Medline, Embase, and the Cochrane library for articles published between 1960 and 2016 and reporting on systemic complications of convulsive status epilepticus. All identified studies were screened for eligibility by two independent reviewers. Key data were extracted using standardized data collection forms. Thirty-two of 3,046 screened articles were included. Acute manifestations and complications reported in association with generalized convulsive status epilepticus can affect all organ systems fueling complex cascades and multiple organ interactions. Most reported complications result from generalized excessive muscle contractions that increase body temperature and serum potassium levels and may interfere with proper and coordinated function of respiratory muscles followed by hypoxia and respiratory acidosis. Increased plasma catecholamines can cause a decay of skeletal muscle cells and cardiac function, including stress cardiomyopathy. Systemic complications are often underestimated or misinterpreted as they may mimic underlying causes of generalized convulsive status epilepticus or treatment-related adverse events. Management of generalized convulsive status epilepticus should center on the administration of antiseizure drugs, treatment of the underlying causes, and the attendant systemic consequences to prevent secondary seizure-related injuries. Heightened awareness, systematic clinical assessment, and diagnostic workup and management based on the proposed algorithm are advocated as they are keys to optimal outcome.
Fujita, Kenya; Matsuo, Kiyoshi; Yuzuriha, Shunsuke
2013-01-01
We have previously reported that fascia lata grafts with peritendinous areolar tissue used to treat severe congenital blepharoptosis gradually shrink within 6 weeks postoperatively and maintain long-term shrinkage of 15.5% on average. Accordingly, it seemed possible that a fascia lata graft without peritendinous areolar tissue would shrink more than the one with peritendinous areolar tissue in a clinical setting. We evaluated this possibility in a patient with Klippel-Feil syndrome having postoperative deep atonic nasopharynx. In combination with intravelar veloplasty and palatal lengthening with modified bilateral buccinator sandwich pushback, a ringed fascia lata without peritendinous areolar tissue encircling the levator veli palatini and superior constrictor muscles was grafted to cure severe velopharyngeal incompetence. Obstructive sleep apnea did not occur following surgery. Pharyngoscopy, videofluoroscopy, and nasometry showed no amelioration of velopharyngeal incompetence at 1 month postoperatively, but marked velopharyngeal incompetence reduction was evident at 4 months and 2 years after surgery. The extended recovery period suggests that the anticipated postoperative shrinkage of the ringed fascia lata without peritendinous areolar tissue played a more prominent role than intravelar veloplasty and palatal lengthening, which posteroinferiorly elongated the atonic soft palate. Although the pharyngeal flap procedure is the most popular technique for treatment of velopharyngeal incompetence, it is sometimes accompanied by respiratory complications. Thus, the gradual postoperative shrinkage of a ringed fascia lata graft encircling the velopharyngeal muscles functions as an intravelar palatal lift and may be an additional surgical method with less respiratory complications to narrow atonic nasopharyngeal port.
An apparatus for altering the mechanical load of the respiratory system.
Younes, M; Bilan, D; Jung, D; Kroker, H
1987-06-01
We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.
The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity
Workman, Alan D.; Palmer, James N.; Adappa, Nithin D.
2016-01-01
Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function. PMID:26492878
The mechanisms of cachexia underlying muscle dysfunction in COPD.
Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J
2013-05-01
Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.
[Pathophysiology of respiratory muscle weakness].
Windisch, W
2008-03-01
The respiratory system consists of two parts which can be impaired independently from each other, the lungs and the respiratory pump. The latter is a complex system covering different anatomic structures: the breathing centre, the peripheral nervous system, the respiratory muscles, and the thorax. According to this complexity several underlying conditions can cause insufficiency of the respiratory pump, i. e. ventilatory failure. Disturbances of the breathing centre, different neuromuscular disorders, impairments of the mechanics, such as thoracic deformities or hyperinflation, and airway obstruction are example conditions responsible for ventilatory failure. Main characteristic of ventilatory failure is the occurrence of hypercapnia which is in contrast to pulmonary failure where diffusion disturbances typically not cause hypercapnia. Both acute and chronic ventilatory failure presenting with hypercapnia can develop. In acute ventilatory failure respiratory acidosis develops, but in chronic respiratory failure pH is normalized as a consequence of metabolic retention of bicarbonate. However, acute on chronic ventilatory failure can present with a combined picture, i. e. elevated bicarbonate levels, acidosis, and often severe hypercapnia. Clinical signs such as tachypnea, features of the underlying disease or hypercapnia are important diagnostic tools in addition to the measurement of pressures generated by the respiratory muscles. Non-invasive and widely available techniques, such as the assessment of the maximal ins- and expiratory mouth pressures (PImax, PEmax), should be used as screening instruments, but the reliability of these measurements is reduced due to the volitional character of the tests and due to the impossibility to define normal values. Inspiratory pressures can be assessed more accurately and independently from the patients' effort: with or without the insertion of oesophageal and gastric balloon catheters. However, this technique is more invasive and very complex. It is therefore restricted to centres with scientific aims.
... in SMA. What is Spinal Muscular Atrophy with Respiratory Distress (SMARD)? SMARD and SMA are separate diseases ... muscle weakness and atrophy. Spinal Muscular Atrophy with Respiratory Distress (SMARD) is a rare neuromuscular disease that ...
[Comparative study of respiratory mechanisms between professional lyrical singers and beginners].
Lassalle, A; Grini, M N; Amy de la Bretèque, B; Ouaknine, M; Giovanni, A
2002-01-01
The apprenticeship for classical singing requires years of training due to its complexity. This training is directed at the different levels of the vocal apparatus: the source of energy or air flow (lungs), the vibrator (vocal cords) and the resonators (bucco-pharyngeal cavity). For this study we have concentrated on the first level, that is, respiration. When a greater demand of vocal activity is required respiration becomes more sustained and more complex; this is when difficulties may be observed. Singers overcome these difficulties through different strategies according to their level of vocal training. Our study compared respiratory strategies used by professional singers and singing students (first year conservatoire students) during singing tasks; none of the subjects had any history of vocal pathology. Electromyographic analysis of muscle activity was registered for the rectus abdominals muscle, external oblique muscle and transverse muscle with surface electrodes. Kinetic analysis was used to measure thoracic cage displacement: pressure sensitive belts were placed around the pubis, the epigastric region and thorax. The subjects were asked to perform two vocal tasks: vocalization of a sustained "i" and singing of an extract of a vaccaï. Results were compared between the 7 professional singers and the 6 singing students. They allowed us to confirm the existence of distinct respiratory strategies according to the level of vocal training, as described in literature. Professional singers inhibited the activity of their rectus abdominals muscles during singing and used mostly their external oblique and transverse muscles, thus, sustaining an expanded ribcage and a longer expiratory breath. Singing students, on the other hand, worked intensively all the abdominal muscles leading to a collapse of the ribcage. Management of air was more difficult and breath was shorter. Future studies will consider a larger population sample in order to define quantitative parameters that might allow a significant differentiation of respiratory strategies between professional singers and singing students.
2012-01-01
Background Motor neurone disease (MND) is a devastating illness which leads to muscle weakness and death, usually within 2-3 years of symptom onset. Respiratory insufficiency is a common cause of morbidity, particularly in later stages of MND and respiratory complications are the leading cause of mortality in MND patients. Non Invasive Ventilation (NIV) is the current standard therapy to manage respiratory insufficiency. Some MND patients however do not tolerate NIV due to a number of issues including mask interface problems and claustrophobia. In those that do tolerate NIV, eventually respiratory muscle weakness will progress to a point at which intermittent/overnight NIV is ineffective. The NeuRx RA/4 Diaphragm Pacing System was originally developed for patients with respiratory insufficiency and diaphragm paralysis secondary to stable high spinal cord injuries. The DiPALS study will assess the effect of diaphragm pacing (DP) when used to treat patients with MND and respiratory insufficiency. Method/Design 108 patients will be recruited to the study at 5 sites in the UK. Patients will be randomised to either receive NIV (current standard care) or receive DP in addition to NIV. Study participants will be required to complete outcome measures at 5 follow up time points (2, 3, 6, 9 and 12 months) plus an additional surgery and 1 week post operative visit for those in the DP group. 12 patients (and their carers) from the DP group will also be asked to complete 2 qualitative interviews. Discussion The primary objective of this trial will be to evaluate the effect of Diaphragm Pacing (DP) on survival over the study duration in patients with MND with respiratory muscle weakness. The project is funded by the National Institute for Health Research, Health Technology Assessment (HTA) Programme (project number 09/55/33) and the Motor Neurone Disease Association and the Henry Smith Charity. Trial Registration: Current controlled trials ISRCTN53817913. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the HTA programme, NIHR, NHS or the Department of Health. PMID:22897892
Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi
2017-06-01
Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated as soon as possible to avoid adverse effects on normal growth, development, and physiological functions. Copyright © 2017 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Miller, Alan D.; Tan, L. K.; Suzuki, Ichiro
1987-01-01
The role of ventral respiratory group (VRG) expiratory (E) neurons in the control of abdominal and internal intercostal muscle activity during vomiting was investigated in cats. Two series of experiments were performed: in one, the activity of VRG E neurons was recorded during fictive vomiting in cats that were decerebrated, paralyzed, and artificially ventilated; in the second, the abdominal muscle activity during vomiting was compared before and after sectioning the axons of descending VRG E neurons in decerebrate spontaneously breathing cats. The results show that about two-thirds of VRG E neurons that project at least as far caudally as the lower thoracic cord contribute to internal intercostal muscle activity during vomiting. The remaining VRG E neurons contribute to abdominal muscle activation. As shown by severing the axons of the VRG E neurons, other, as yet unidenified, inputs (either descending from the brain stem or arising from spinal reflexes) can also produce abdominal muscle activation.
Molgat-Seon, Yannick; Hannan, Liam M.; Dominelli, Paolo B.; Peters, Carli M.; Fougere, Renee J.; McKim, Douglas A.; Sheel, A. William
2017-01-01
The aim of the present study was to determine whether lung volume recruitment (LVR) acutely increases respiratory system compliance (Crs) in individuals with severe respiratory muscle weakness (RMW). Individuals with RMW resulting from neuromuscular disease or quadriplegia (n=12) and healthy controls (n=12) underwent pulmonary function testing and the measurement of Crs at baseline, immediately after, 1 h after and 2 h after a single standardised session of LVR. The LVR session involved 10 consecutive supramaximal lung inflations with a manual resuscitation bag to the highest tolerable mouth pressure or a maximum of 50 cmH2O. Each LVR inflation was followed by brief breath-hold and a maximal expiration to residual volume. At baseline, individuals with RMW had lower Crs than controls (37±5 cmH2O versus 109±10 mL·cmH2O−1, p<0.001). Immediately after LVR, Crs increased by 39.5±9.8% to 50±7 mL·cmH2O−1 in individuals with RMW (p<0.05), while no significant change occurred in controls (p=0.23). At 1 h and 2 h post-treatment, there were no within-group differences in Crs compared to baseline (all p>0.05). LVR had no significant effect on measures of pulmonary function at any time point in either group (all p>0.05). During inflations, mean arterial pressure decreased significantly relative to baseline by 10.4±2.8 mmHg and 17.3±3.0 mmHg in individuals with RMW and controls, respectively (both p<0.05). LVR acutely increases Crs in individuals with RMW. However, the high airway pressures during inflations cause reductions in mean arterial pressure that should be considered when applying this technique. PMID:28326313
Mitochondrial function is altered in horse atypical myopathy.
Lemieux, Hélène; Boemer, François; van Galen, Gaby; Serteyn, Didier; Amory, Hélène; Baise, Etienne; Cassart, Dominique; van Loon, Gunther; Marcillaud-Pitel, Christel; Votion, Dominique-M
2016-09-01
Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov; Pfister, James A.; Lima, Flavia G.
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscularmore » paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.« less
Bajpeyi, Sudip; Pasarica, Magdalena; Conley, Kevin E; Newcomer, Bradley R; Jubrias, Sharon A; Gamboa, Cecilia; Murray, Kori; Sereda, Olga; Sparks, Lauren M; Smith, Steven R
2017-04-01
Pioglitazone (Pio) is known to improve insulin sensitivity in skeletal muscle. However, the role of Pio in skeletal muscle lipid metabolism and skeletal muscle oxidative capacity is not clear. The aim of this study was to determine the effects of chronic Pio treatment on skeletal muscle mitochondrial activity in individuals with type 2 diabetes (T2D). Twenty-four participants with T2D (13M/11F 53.38±2.1years; BMI 36.47±1.1kg/m 2 ) were randomized to either a placebo (CON, n=8) or a pioglitazone (PIO, n=16) group. Following 12weeks of treatment, we measured insulin sensitivity by hyperinsulinemic-euglycemic clamp (clamp), metabolic flexibility by calculating the change in respiratory quotient (ΔRQ) during the steady state of the clamp, intra- and extra-myocellular lipid content (IMCL and EMCL, respectively) by 1 H magnetic resonance spectroscopy ( 1 H-MRS) and muscle maximal ATP synthetic capacity (ATPmax) by 31 P-MRS. Following 12weeks of PIO treatment, insulin sensitivity (p<0.0005 vs. baseline) and metabolic flexibility (p<0.05 vs. CON) significantly increased. PIO treatment significantly decreased IMCL content and increased EMCL content in gastrocnemius, soleus and tibialis anterior muscles. ATPmax was unaffected by PIO treatment. These results suggest that 12weeks of pioglitazone treatment improves insulin sensitivity, metabolic flexibility and myocellular lipid distribution without any effect on maximal ATP synthetic capacity in skeletal muscle. Consequently, pioglitazone-induced enhancements in insulin responsiveness and fuel utilization are independent of mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.
Chadwick, Jessica A; Bhattacharya, Sayak; Lowe, Jeovanna; Weisleder, Noah; Rafael-Fortney, Jill A
2017-02-01
Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD. Copyright © 2017 the American Physiological Society.
LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F
2002-10-01
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.
LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F
2002-01-01
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (Pi), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise. PMID:12356901
Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E.
Semplicini, Claudio; Vissing, John; Dahlqvist, Julia R; Stojkovic, Tanya; Bello, Luca; Witting, Nanna; Duno, Morten; Leturcq, France; Bertolin, Cinzia; D'Ambrosio, Paola; Eymard, Bruno; Angelini, Corrado; Politano, Luisa; Laforêt, Pascal; Pegoraro, Elena
2015-04-28
To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. All LGMD2E patients followed in participating centers were included. A specific clinical protocol was created, including quantitative evaluation of motor, respiratory, and cardiac function. Phenotype was defined as severe or mild if the age at loss of ambulation occurred before or after 18 years. Molecular analysis of SGCB gene and biochemical features of muscle biopsies were reviewed. Thirty-two patients were included (16 male, 16 female; age 7-67 years; 15 severe, 12 mild, and 5 unknown). Neurologic examination showed proximal muscle weakness in all patients, but distal involvement was also observed in patients with severe disease early in the disease course. Cardiac involvement was observed in 20 patients (63%) even before overt muscle involvement. Six patients had restrictive respiratory insufficiency requiring assisted ventilation (19%). Seventeen different mutations were identified, and 3 were recurrent. The c.377_384dup (13 alleles) was associated with the severe form, the c.-22_10dup (10) with the milder form, and the c.341C>T (9) with both. The entire sarcoglycan complex was undetectable by muscle immunohistochemistry or Western blot in 9/10 severe cases and reduced in 7/7 mild cases. The residual amount of sarcoglycan in muscle resulted a predictor of age at loss of ambulation. This study expands the spectrum of phenotype in β-sarcoglycanopathy and provides strong evidence that severity of clinical involvement may be predicted by SGCB gene mutation and sarcoglycan protein expression. © 2015 American Academy of Neurology.
Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E
Semplicini, Claudio; Vissing, John; Dahlqvist, Julia R.; Stojkovic, Tanya; Bello, Luca; Witting, Nanna; Duno, Morten; Leturcq, France; Bertolin, Cinzia; D'Ambrosio, Paola; Eymard, Bruno; Angelini, Corrado; Politano, Luisa
2015-01-01
Objective: To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. Methods: All LGMD2E patients followed in participating centers were included. A specific clinical protocol was created, including quantitative evaluation of motor, respiratory, and cardiac function. Phenotype was defined as severe or mild if the age at loss of ambulation occurred before or after 18 years. Molecular analysis of SGCB gene and biochemical features of muscle biopsies were reviewed. Results: Thirty-two patients were included (16 male, 16 female; age 7–67 years; 15 severe, 12 mild, and 5 unknown). Neurologic examination showed proximal muscle weakness in all patients, but distal involvement was also observed in patients with severe disease early in the disease course. Cardiac involvement was observed in 20 patients (63%) even before overt muscle involvement. Six patients had restrictive respiratory insufficiency requiring assisted ventilation (19%). Seventeen different mutations were identified, and 3 were recurrent. The c.377_384dup (13 alleles) was associated with the severe form, the c.-22_10dup (10) with the milder form, and the c.341C>T (9) with both. The entire sarcoglycan complex was undetectable by muscle immunohistochemistry or Western blot in 9/10 severe cases and reduced in 7/7 mild cases. The residual amount of sarcoglycan in muscle resulted a predictor of age at loss of ambulation. Conclusions: This study expands the spectrum of phenotype in β-sarcoglycanopathy and provides strong evidence that severity of clinical involvement may be predicted by SGCB gene mutation and sarcoglycan protein expression. PMID:25862795
Porter, Craig; Herndon, David N; Børsheim, Elisabet; Bhattarai, Nisha; Chao, Tony; Reidy, Paul T; Rasmussen, Blake B; Andersen, Clark R; Suman, Oscar E; Sidossis, Labros S
2016-01-01
The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, the authors determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to 2 years postinjury. Biopsies were collected from the m. vastus lateralis of 16 healthy men (26 ± 4 years) and 69 children (8 ± 5 years) with burns encompassing ≥30% of their total BSA. Seventy-nine biopsies were collected from cohorts of burn victims at 2 weeks (n = 18), 6 months (n = 18), 12 months (n = 25), and 24 months (n = 18) postburn. Hypermetabolism was determined by the difference in predicted and measured metabolic rate. Mitochondrial respiration was determined in saponin-permeabilized myofiber bundles. Outcomes were modeled by analysis of variance, with differences in groups assessed by Tukey-adjusted contrasts. Burn patients were hypermetabolic for up to 2 years postinjury. Coupled mitochondrial respiration was lower at 2 weeks (17 [8] pmol/sec/mg; P < .001), 6 months (41 [30] pmol/sec/mg; P = .03), and 12 months (35 [14] pmol/sec/mg; P < .001) postburn compared with healthy controls (58 [13] pmol/sec/mg). Coupled respiration was greater at 6, 12, and 24 months postburn vs 2 weeks postburn (P < .001). Mitochondrial adenosine diphosphate and oligomycin sensitivity (measures of coupling control) were lower at all time-points postburn vs control (P < .05), but greater at 6, 12, and 24 months postburn vs 2 weeks postburn (P < .05). Muscle mitochondrial respiratory capacity remains significantly lower in burn victims for 1-year postinjury. Mitochondrial coupling control is diminished for up to 2 years postinjury in burn victims, resulting in greater mitochondrial thermogenesis. These quantitative and qualitative derangements in skeletal muscle bioenergetics likely contribute to the long-term pathophysiological stress response to burn trauma.
Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice.
Li, B; Nolte, L A; Ju, J S; Han, D H; Coleman, T; Holloszy, J O; Semenkovich, C F
2000-10-01
To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.
Ydfors, Mia; Hughes, Meghan C; Laham, Robert; Schlattner, Uwe; Norrbom, Jessica; Perry, Christopher G R
2016-06-01
Mitochondrial respiratory sensitivity to ADP is thought to influence muscle fitness and is partly regulated by cytosolic-mitochondrial diffusion of ADP or phosphate shuttling via creatine/phosphocreatine (Cr/PCr) through mitochondrial creatine kinase (mtCK). Previous measurements of respiration in vitro with Cr (saturate mtCK) or without (ADP/ATP diffusion) show mixed responses of ADP sensitivity following acute exercise vs. less sensitivity after chronic exercise. In human muscle, modelling in vivo 'exercising' [Cr:PCr] during in vitro assessments revealed novel responses to exercise that differ from detections with or without Cr (±Cr). Acute exercise increased ADP sensitivity when measured without Cr but had no effect ±Cr or with +Cr:PCr, whereas chronic exercise increased sensitivity ±Cr but lowered sensitivity with +Cr:PCr despite increased markers of mitochondrial oxidative capacity. Controlling in vivo conditions during in vitro respiratory assessments reveals responses to exercise that differ from typical ±Cr comparisons and challenges our understanding of how exercise improves metabolic control in human muscle. Mitochondrial respiratory control by ADP (Kmapp ) is viewed as a critical regulator of muscle energy homeostasis. However, acute exercise increases, decreases or has no effect on Kmapp in human muscle, whereas chronic exercise surprisingly decreases sensitivity despite greater mitochondrial content. We hypothesized that modelling in vivo mitochondrial creatine kinase (mtCK)-dependent phosphate-shuttling conditions in vitro would reveal increased sensitivity (lower Kmapp ) after acute and chronic exercise. The Kmapp was determined in vitro with 20 mm Cr (+Cr), 0 mm Cr (-Cr) or 'in vivo exercising' 20 mm Cr/2.4 mm PCr (Cr:PCr) on vastus lateralis biopsies sampled from 11 men before, immediately after and 3 h after exercise on the first, fifth and ninth sessions over 3 weeks. Dynamic responses to acute exercise occurred throughout training, whereby the first session did not change Kmapp with in vivo Cr:PCr despite increases in -Cr. The fifth session decreased sensitivity with Cr:PCr or +Cr despite no change in -Cr. Chronic exercise increased sensitivity ±Cr in association with increased electron transport chain content (+33-62% complexes I-V), supporting classic proposals that link increased sensitivity to oxidative capacity. However, in vivo Cr:PCr reveals a perplexing decreased sensitivity, contrasting the increases seen ±Cr. Functional responses occurred without changes in fibre type or proteins regulating mitochondrial-cytosolic energy exchange (mtCK, VDAC and ANT). Despite the dynamic responses seen with ±Cr, modelling in vivo phosphate-shuttling conditions in vitro reveals that ADP sensitivity is unchanged after high-intensity exercise and is decreased after training. These findings challenge our understanding of how exercise regulates skeletal muscle energy homeostasis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles.
Bataillé, Laetitia; Frendo, Jean-Louis; Vincent, Alain
2015-11-01
The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva. Copyright © 2015 Elsevier B.V. All rights reserved.
[Post-polio syndrome--symptomatology and measures].
Grimby, Gunnar
2002-05-20
New or increased symptoms often appear decades after the onset of polio. The definition of post polio syndrome (PPS) is: a confirmed history of polio, an interval of functional stability after initial recovery, non-disuse increased muscle weakness, and other complaints such as increased general fatigue and pain. Loss of motor units is compensated by collateral re-innervation and hypertrophy of muscle fibre. An elevenfold times increase in the motor unit region can be seen, and around double the muscle fibre area, corresponding to a fivefold increase in the number of muscle fibres in the motor unit. When loss of motor neurons can no longer be compensated for, muscle strength will decrease. Respiratory problems are present in a minority, but these need special attention and intervention. Evaluation and support through a special polio clinic is of value. The trainability varies according to the type and degree of polio changes. There may be a need for technical aids, especially for mobility, but time must be allowed for patients to accept reduced physical activity and changes in life habits recommended.
Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.
Poole, David C; Hirai, Daniel M; Copp, Steven W; Musch, Timothy I
2012-03-01
The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient exercise tolerance and quality of life are presented within their appropriate context of the O(2) transport pathway.
Pulmonary function and the risk of functional limitation in chronic obstructive pulmonary disease.
Eisner, Mark D; Iribarren, Carlos; Yelin, Edward H; Sidney, Stephen; Katz, Patricia P; Ackerson, Lynn; Lathon, Phenius; Tolstykh, Irina; Omachi, Theodore; Byl, Nancy; Blanc, Paul D
2008-05-01
The authors' objective was to analyze the impact of respiratory impairment on the risk of physical functional limitations among adults with chronic obstructive pulmonary disease (COPD). They hypothesized that greater pulmonary function decrement would result in a broad array of physical functional limitations involving organ systems remote from the lung, a key step in the pathway leading to overall disability. The authors used baseline data from the Function, Living, Outcomes, and Work (FLOW) study, a prospective cohort study of adults with COPD recruited from northern California in 2005-2007. They studied the impact of pulmonary function impairment on the risk of functional limitations using validated measures: lower extremity function (Short Physical Performance Battery), submaximal exercise performance (6-Minute Walk Test), standing balance (Functional Reach Test), skeletal muscle strength (manual muscle testing with dynamometry), and self-reported functional limitation (standardized item battery). Multiple variable analysis was used to control for confounding by age, sex, race, height, educational attainment, and cigarette smoking. Greater pulmonary function impairment, as evidenced by lower forced expiratory volume in 1 second (FEV(1)), was associated with poorer Short Physical Performance Battery scores and less distance walked during the 6-Minute Walk Test. Lower forced expiratory volume in 1 second was also associated with weaker muscle strength and with a greater risk of self-reported functional limitation (p < 0.05). In conclusion, pulmonary function impairment is associated with multiple manifestations of physical functional limitation among COPD patients. Longitudinal follow-up can delineate the impact of these functional limitations on the prospective risk of disability, guiding preventive strategies that could attenuate the disablement process.
Resting handgrip force and impaired cardiac function at rest and during exercise in COPD patients.
Cortopassi, Felipe; Divo, Miguel; Pinto-Plata, Victor; Celli, Bartolome
2011-05-01
Cardiac function measured as the oxygen pulse (O(2) pulse) is impaired during exercise (CPET) in patients with COPD. We investigated the relationship between handgrip force and O(2) pulse in COPD and controls. We measured anthropometrics, lung function, respiratory muscle force, handgrip (HG) force and fat free mass (FFM) at rest in 18 men with COPD (FEV(1)%=45±20) and 15 controls. We then performed a symptom limited cardiopulmonary exercise test (CPET) with similar load and used heart rate, and oxygen pulse (VO(2)/HR) to express cardiac function at rest and during exercise. We corrected the O(2) pulse by FFM. Patients and controls were similar in BMI and FFM. COPD patients had lower handgrip (37.8±7 vs. 55±2) kg. O(2) pulse and HG were associated (r=0.665). At rest, COPD patients had faster heart rate (76±11 vs. 61±5) and lower oxygen pulse. COPD patients had lower oxygen pulse mL/beat at exercise isotime (10.6±3.7 vs. 14.3±2.7), even adjusted by muscle mass. Handgrip is associated with impaired heart function at rest and during exercise in COPD patients even adjusting for muscle mass differences. Lower handgrip may be a marker of impaired cardiac function in COPD patients. Copyright © 2010 Elsevier Ltd. All rights reserved.
Morris, Theresa; Sumners, David Paul; Green, David Andrew
2014-01-01
Direct chest-wall percussion can reduce breathlessness in Chronic Obstructive Pulmonary Disease and respiratory function may be improved, in health and disease, by respiratory muscle training (RMT). We tested whether high-frequency airway oscillation (HFAO), a novel form of airflow oscillation generation can modulate induced dyspnoea and respiratory strength and/or patterns following 5 weeks of HFAO training (n = 20) compared to a SHAM-RMT (conventional flow-resistive RMT) device (n = 15) in healthy volunteers (13 males; aged 20–36 yrs). HFAO causes oscillations with peak-to-peak amplitude of 1 cm H2O, whereas the SHAM-RMT device was identical but created no pressure oscillation. Respiratory function, dyspnoea and ventilation during 3 minutes of spontaneous resting ventilation, 1 minute of maximal voluntary hyperventilation and 1 minute breathing against a moderate inspiratory resistance, were compared PRE and POST 5-weeks of training (2×30 breaths at 70% peak flow, 5 days a week). Training significantly reduced NRS dyspnoea scores during resistive loaded ventilation, both in the HFAO (p = 0.003) and SHAM-RMT (p = 0.005) groups. Maximum inspiratory static pressure (cm H2O) was significantly increased by HFAO training (vs. PRE; p<0.001). Maximum inspiratory dynamic pressure was increased by training in both the HFAO (vs. PRE; p<0.001) and SHAM-RMT (vs. PRE; p = 0.021) groups. Peak inspiratory flow rate (L.s−1) achieved during the maximum inspiratory dynamic pressure manoeuvre increased significantly POST (vs. PRE; p = 0.001) in the HFAO group only. HFAO reduced inspiratory resistive loading–induced dyspnoea and augments static and dynamic maximal respiratory manoeuvre performance in excess of flow-resistive IMT (SHAM-RMT) in healthy individuals without the respiratory discomfort associated with RMT. PMID:24651392
Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E
2016-02-01
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Common drive to the upper airway muscle genioglossus during inspiratory loading
Woods, Michael J.; Nicholas, Christian L.; Semmler, John G.; Chan, Julia K. M.; Jordan, Amy S.
2015-01-01
Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0–5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect. PMID:26378207
Bourguignon, Aurore; Rameau, Anaïs; Toullec, Gaëlle; Romestaing, Caroline; Roussel, Damien
2017-07-01
In the final stage of fasting, skeletal muscle mass and protein content drastically decrease when the maintenance of efficient locomotor activity becomes crucial for animals to reactivate feeding behaviour and survive a very long period of starvation. As mitochondrial metabolism represents the main physiological link between the endogenous energy store and animal performance, the aim of this study was to determine how a very long, natural period of fasting affected skeletal muscle mitochondrial bioenergetics in king penguin ( Aptenodytes patagonicus ) chicks. Rates of mitochondrial oxidative phosphorylation were measured in pectoralis permeabilized fibres and isolated mitochondria. Mitochondrial ATP synthesis efficiency and the activities of respiratory chain complexes were measured in mitochondria isolated from pectoralis muscle. Results from long-term (4-5 months) naturally fasted chicks were compared with those from short-term (10 day) fasted birds. The respiratory activities of muscle fibres and isolated mitochondria were reduced by 60% and 45%, respectively, on average in long-term fasted chicks compared with short-term fasted birds. Oxidative capacity and mitochondrial content of pectoralis muscle were lowered by long-term fasting. Bioenergetic analysis of pectoralis muscle also revealed that mitochondria were, on average, 25% more energy efficient in the final stage of fasting (4-5 months) than after 10 days of fasting (short-term fasted birds). These results suggest that the strong reduction in respiratory capacity of pectoralis muscle was partly alleviated by increased mitochondrial ATP synthesis efficiency. Such oxidative phosphorylation optimization can impact animal performance, e.g. the metabolic cost of locomotion or the foraging efficiency. © 2017. Published by The Company of Biologists Ltd.
Holtman, J R
1988-07-01
Retrograde tracing with a fluorescent dye (Fast Blue) combined with immunohistochemistry was used to determine if the putative neurotransmitters, serotonin and substance P, are present around posterior cricoarytenoid muscle motoneurons. Fast Blue was injected into the posterior cricoarytenoid muscle of the larynx. Following a 14-21 day survival time to allow for transport of the dye, the animals were perfusion fixed and the brainstem was removed for analysis under the fluorescence microscope. Retrogradely labeled cell bodies containing Fast Blue were found within the nucleus ambiguus from 0.5 to 3.0 mm rostral to obex. These motoneurons ranged in size from 23 to 38 micron. The same tissue sections containing labeled posterior cricoarytenoid muscle motoneurons were then used to determine the distribution of serotonin and substance P around these motoneurons using the indirect immunofluorescence technique. A dense network of serotonin-containing immunoreactive fibers was found around posterior cricoarytenoid muscle motoneurons. The fibers contained varicosities which were in close proximity, actually appearing to surround these motoneurons. Substance P immunoreactive fibers and varicosities were also found around posterior cricoarytenoid muscle motoneurons. The density and pattern of distribution of the substance P immunoreactivity was similar to that of the serotonin immunoreactivity. These results suggest that these putative neurotransmitters may be involved in influencing the activity of posterior cricoarytenoid muscle motoneurons. Serotonin and substance P are also present around other respiratory motoneurons such as phrenic motoneurons. Therefore, these two neurotransmitters may have a more general role in influencing respiratory motor outflow.
Chevalier, Marc; De Sa, Rafaël; Cardoit, Laura; Thoby-Brisson, Muriel
2016-01-01
Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo.
Chevalier, Marc; De Sa, Rafaël; Cardoit, Laura; Thoby-Brisson, Muriel
2016-01-01
Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo. PMID:27239348
The role of MicroRNAs in COPD muscle dysfunction and mass loss: implications on the clinic.
Barreiro, Esther
2016-09-01
Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable disease and a leading cause of morbidity and mortality worldwide. In COPD, comorbidities, acute exacerbations, and systemic manifestations negatively influence disease severity, prognosis, and progression regardless of the respiratory condition. Several factors and biological mechanisms are involved in the pathophysiology of COPD muscle dysfunction. The non-coding microRNAs were shown to be differentially expressed in the respiratory and limb muscles of patients with COPD. Moreover, a differential expression profile of muscle-specific microRNAs has also been demonstrated in the lower limb muscles of COPD patients with and without muscle mass loss and weakness. All these features are reviewed herein. The most relevant articles on the topic in question were selected from PubMed to write this review. Expert commentary: MicroRNAs are excellent targets for the design of specific therapeutic interventions in patients with muscle weakness. Selective enhancers of microRNAs that promote myogenesis (proliferation and differentiation of satellite cells) should be designed to alleviate the negative impact of skeletal muscle dysfunction and mass loss in COPD regardless of the degree of the airway obstruction.
[Two cases of Duchenne muscular dystrophy over 40 years after onset].
Ishizaki, Masatoshi; Ueyama, Hidetsugu; Masuda, Teruaki; Nishida, Yasuto; Imamura, Shigehiro; Ando, Yukio
2013-01-01
We report two 45 year old men with Duchenne muscular dystrophy. Case 1 showed a deleted exon 50 of the dystrophin gene by MLPA analysis, and Case 2 showed deleted exons 46-52. Both patients presented with severe weakness of the skeletal muscles and respiratory dysfunction, while cardiac involvement was mild and cognitive function was almost normal. The patients are able to shop at a mall, participate in activities, and attend hobbies, although they are bedridden with artificial respiration through tracheotomy. With the progress of the respiratory care and cardiac protective therapy, the prognosis of Duchenne muscular dystrophy has improved remarkably. At present, it is possible to survive over 40 years with maintenance of quality of life, if cardiac damage is not severe.
Patel, R G; Petrini, M F; Norman, J R
1995-06-01
Using indices to predict weaning outcome can avoid premature extubation and unnecessary prolongation of ventilatory support. Unfortunately, none of the indices is consistently able to predict outcome. The key to successful weaning is to assess respiratory function repeatedly with several indices, not just one. The patient should be able to sustain spontaneous breathing for at least 24 hours on minimal partial ventilatory support (a pressure support or a continuous positive airway pressure of 5 cm H2O or a T piece, for example). Indices of maximal inspiratory pressure; work of breathing; and rapid, shallow breathing are useful in evaluating a patient's respiratory muscle performance; airway occlusion pressure is helpful as well when increased neuromuscular drive is a problem.
Illi, Sabine K; Held, Ulrike; Frank, Irène; Spengler, Christina M
2012-08-01
Two distinct types of specific respiratory muscle training (RMT), i.e. respiratory muscle strength (resistive/threshold) and endurance (hyperpnoea) training, have been established to improve the endurance performance of healthy individuals. We performed a systematic review and meta-analysis in order to determine the factors that affect the change in endurance performance after RMT in healthy subjects. A computerized search was performed without language restriction in MEDLINE, EMBASE and CINAHL and references of original studies and reviews were searched for further relevant studies. RMT studies with healthy individuals assessing changes in endurance exercise performance by maximal tests (constant load, time trial, intermittent incremental, conventional [non-intermittent] incremental) were screened and abstracted by two independent investigators. A multiple linear regression model was used to identify effects of subjects' fitness, type of RMT (inspiratory or combined inspiratory/expiratory muscle strength training, respiratory muscle endurance training), type of exercise test, test duration and type of sport (rowing, running, swimming, cycling) on changes in performance after RMT. In addition, a meta-analysis was performed to determine the effect of RMT on endurance performance in those studies providing the necessary data. The multiple linear regression analysis including 46 original studies revealed that less fit subjects benefit more from RMT than highly trained athletes (6.0% per 10 mL · kg⁻¹ · min⁻¹ decrease in maximal oxygen uptake, 95% confidence interval [CI] 1.8, 10.2%; p = 0.005) and that improvements do not differ significantly between inspiratory muscle strength and respiratory muscle endurance training (p = 0.208), while combined inspiratory and expiratory muscle strength training seems to be superior in improving performance, although based on only 6 studies (+12.8% compared with inspiratory muscle strength training, 95% CI 3.6, 22.0%; p = 0.006). Furthermore, constant load tests (+16%, 95% CI 10.2, 22.9%) and intermittent incremental tests (+18.5%, 95% CI 10.8, 26.3%) detect changes in endurance performance better than conventional incremental tests (both p < 0.001) with no difference between time trials and conventional incremental tests (p = 0.286). With increasing test duration, improvements in performance are greater (+0.4% per minute test duration, 95% CI 0.1, 0.6%; p = 0.011) and the type of sport does not influence the magnitude of improvements (all p > 0.05). The meta-analysis, performed on eight controlled trials revealed a significant improvement in performance after RMT, which was detected by constant load tests, time trials and intermittent incremental tests, but not by conventional incremental tests. RMT improves endurance exercise performance in healthy individuals with greater improvements in less fit individuals and in sports of longer durations. The two most common types of RMT (inspiratory muscle strength and respiratory muscle endurance training) do not differ significantly in their effect, while combined inspiratory/expiratory strength training might be superior. Improvements are similar between different types of sports. Changes in performance can be detected by constant load tests, time trials and intermittent incremental tests only. Thus, all types of RMT can be used to improve exercise performance in healthy subjects but care must be taken regarding the test used to investigate the improvements.
Peragallo, Jason H
2017-05-01
Myasthenia gravis is a disorder of neuromuscular transmission that leads to fatigue of skeletal muscles and fluctuating weakness. Myasthenia that affects children can be classified into the following 3 forms: transient neonatal myasthenia, congenital myasthenic syndromes, and juvenile myasthenia gravis (JMG). JMG is an autoimmune disorder that has a tendency to affect the extraocular muscles, but can also affect all skeletal muscles leading to generalized weakness and fatigability. Respiratory muscles may be involved leading to respiratory failure requiring ventilator support. Diagnosis should be suspected clinically, and confirmatory diagnostic testing be performed, including serum acetylcholine receptor antibodies, repetitive nerve stimulation, and electromyography. Treatment for JMG includes acetylcholinesterase inhibitors, immunosuppressive medications, plasma exchange, intravenous immunoglobulins, and thymectomy. Children with myasthenia gravis require monitoring by a pediatric ophthalmologist for the development of amblyopia from ptosis or strabismus. Copyright © 2017 Elsevier Inc. All rights reserved.
Respiratory chain deficiency in aged spinal motor neurons☆
Rygiel, Karolina A.; Grady, John P.; Turnbull, Doug M.
2014-01-01
Sarcopenia, muscle wasting, and strength decline with age, is an important cause of loss of mobility in the elderly individuals. The underlying mechanisms are uncertain but likely to involve defects of motor nerve, neuromuscular junction, and muscle. Loss of motor neurons with age and subsequent denervation of skeletal muscle has been recognized as one of the contributing factors. This study investigated aspects of mitochondrial biology in spinal motor neurons from elderly subjects. We found that protein components of complex I of mitochondrial respiratory chain were reduced or absent in a proportion of aged motor neurons–a phenomenon not observed in fetal tissue. Further investigation showed that complex I-deficient cells had reduced mitochondrial DNA content and smaller soma size. We propose that mitochondrial dysfunction in these motor neurons could lead to the cell loss and ultimately denervation of muscle fibers. PMID:24684792
Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A
2015-06-01
Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.
Boutroy, M J
1994-01-01
Drugs have been in the past and will in the future still be liable to induce apnea in neonates, infants and older children. At these different stages of development, the child may be abnormally vulnerable to respiratory disorders and apnea, and doses of drugs, without any abnormal side effects in adult patients, can be harmful in younger subjects. Drugs responsible for apnea during development are numerous, but more than half of the problems are induced by sedatives and hypnotics, among which phenothiazines, barbiturates, benzodiazepines (included transplacentally acquired) and general anesthetics are a few. Other pharmacological families are apnea inducers in the neonatal period and childhood: analgesics and opioid narcotics, agents acting at the levels of neuromuscular function and autonomic ganglia, and cardiovascular agents. The pathogenesis of these apneas depends on the disturbance of any mechanism responsible for the respiratory activity: medullary centers and brain stem structures, afferent influx to CNS, sleep stages, upper airways, lungs and respiratory muscles. At key stages such as birth and infancy, drugs may emphasize the particular sensitivity of the mechanisms responsible for inducing apnea. This might explain unexpected respiratory disorders during development.
Inspiratory muscle training in bronchiectasis patients: a prospective randomized controlled study.
Liaw, Mei-Yun; Wang, Yi-Hsi; Tsai, Yu-Chin; Huang, Kuo-Tung; Chang, Pei-Wen; Chen, Yung-Che; Lin, Meng-Chih
2011-06-01
To investigate the efficacy and feasibility of home-based inspiratory muscle training in patients with bronchiectasis. A prospective, single-blind, randomized, controlled study. Outpatient clinic of a tertiary care medical centre. Twenty-six patients with bronchiectasis were randomly divided into inspiratory muscle training and control groups. In the inspiratory muscle training group (n = 13), the training programme started with an intensity of 30% maximal inspiratory pressure (MIP), which was increased by 2 cmH(2)O each week, for 30 minutes daily, 5 days a week for eight weeks. The control group (n = 13) did not receive inspiratory muscle training. Main outcome measures included spirometry, resting oxyhaemoglobin saturation by pulse oximetry (SpO(2)), lowest SpO(2) and Borg Scale during 6-minute walking tests, 6-minute walking distance (6MWD), 6-minute walking work (6M(work)), MIP, maximal expiratory pressure (MEP) and St George's Respiratory Questionnaire. There were significant differences in change from baseline in 6MWD (411.9 (133.5) vs. 473.2 (117.2) m, P = 0.021), 6M(work) (21 051.0 (8286.7) vs. 23 915.5 (8343.0) kg-m, P = 0.022), MIP (60.8 (21.8) vs. 84.6 (29.0) cmH(2)O, P = 0.004), and MEP (72.3 (31.1) vs. 104.2 (35.7) cmH(2)O, P = 0.004) in the inspiratory muscle training group. Significant improvements in both MIP (23.8 (25.3) vs. 2.3 (16.4) cmH(2)O, adjusted P-value = 0.005) and MEP (31.9 (30.8) vs. 11.5 (20.8) cmH(2)O, adjusted P-value = 0.038) levels after adjusting for age by linear regression analysis were observed between groups. An eight-week home-based inspiratory muscle training is feasible and effective in improving both inspiratory and expiratory muscle strength, but has no effect on respiratory function and quality of life in patients with bronchiectasis.
Díaz, Magda C; Ospina-Tascón, Gustavo A; Salazar C, Blanca C
2014-02-01
Respiratory muscle dysfunction, particularly of the diaphragm, may play a key role in the pathophysiological mechanisms that lead to difficulty in weaning patients from mechanical ventilation. The limited mobility of critically ill patients, and of the diaphragm in particular when prolonged mechanical ventilation support is required, promotes the early onset of respiratory muscle dysfunction, but this can also be caused or exacerbated by other factors that are common in these patients, such as sepsis, malnutrition, advanced age, duration and type of ventilation, and use of certain medications, such as steroids and neuromuscular blocking agents. In this review we will study in depth this multicausal origin, in which a common mechanism is altered protein metabolism, according to the findings reported in various models. The understanding of this multicausality produced by the same pathophysiological mechanism could facilitate the management and monitoring of patients undergoing mechanical ventilation. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.
Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound
NASA Astrophysics Data System (ADS)
Selzo, Mallory Renee
Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.
Healthy Living: Helping Your Child Breathe Easier
... cystic fibrosis. In terms of childhood disease, the respiratory system is the most critical. Here are some tips ... or “irritants” can cause the muscles of the respiratory system to contract, narrowing the airways. Breathing through these ...
Biofeedback-assisted relaxation training to decrease test anxiety in nursing students.
Prato, Catherine A; Yucha, Carolyn B
2013-01-01
Nursing students experiencing debilitating test anxiety may be unable to demonstrate their knowledge and have potential for poor academic performance. A biofeedback-assisted relaxation training program was created to reduce test anxiety. Anxiety was measured using Spielberger's Test Anxiety Inventory and monitoring peripheral skin temperature, pulse, and respiration rates during the training. Participants were introduced to diaphragmatic breathing, progressive muscle relaxation, and autogenic training. Statistically significant changes occurred in respiratory rates and skin temperatures during the diaphragmatic breathing session; respiratory rates and peripheral skin temperatures during progressive muscle relaxation session; respiratory and pulse rates, and peripheral skin temperatures during the autogenic sessions. No statistically significant difference was noted between the first and second TAI. Subjective test anxiety scores of the students did not decrease by the end of training. Autogenic training session was most effective in showing a statistically significant change in decreased respiratory and pulse rates and increased peripheral skin temperature.
ERIC Educational Resources Information Center
Casey, Amanda Faith; Emes, Claudia
2011-01-01
Reduced respiratory muscle strength in individuals with Down syndrome (DS) may affect speech respiratory variables such as maximum phonation duration (MPD), initiation volume, and expired mean airflow. Researchers randomly assigned adolescents with DS (N = 28) to either 12 weeks of swim training (DS-ST) or a control group (DS-NT). Repeated…
Eckert, Danny J.; Malhotra, Atul; Wellman, Andrew; White, David P.
2014-01-01
Study Objectives: The effect of common sedatives on upper airway physiology and breathing during sleep in obstructive sleep apnea (OSA) has been minimally studied. Conceptually, certain sedatives may worsen OSA in some patients. However, sleep and breathing could improve with certain sedatives in patients with OSA with a low respiratory arousal threshold. This study aimed to test the hypothesis that trazodone increases the respiratory arousal threshold in patients with OSA and a low arousal threshold. Secondary aims were to examine the effects of trazodone on upper airway dilator muscle activity, upper airway collapsibility, and breathing during sleep. Design: Patients were studied on 4 separate nights according to a within-subjects cross-over design. Setting: Sleep physiology laboratory. Patients: Seven patients with OSA and a low respiratory arousal threshold. Interventions: In-laboratory polysomnograms were obtained at baseline and after 100 mg of trazodone was administered, followed by detailed overnight physiology experiments under the same conditions. During physiology studies, continuous positive airway pressure was transiently lowered to measure arousal threshold (negative epiglottic pressure prior to arousal), dilator muscle activity (genioglossus and tensor palatini), and upper airway collapsibility (Pcrit). Measurements and Results: Trazodone increased the respiratory arousal threshold by 32 ± 6% (-11.5 ± 1.4 versus -15.3 ± 2.2 cmH2O, P < 0.01) but did not alter the apnea-hypopnea index (39 ± 12 versus 39 ± 11 events/h sleep, P = 0.94). Dilator muscle activity and Pcrit also did not systematically change with trazodone. Conclusions: Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold without major impairment in dilator muscle activity or upper airway collapsibility. However, the magnitude of change in arousal threshold was insufficient to overcome the compromised upper airway anatomy in these patients. Citation: Eckert DJ; Malhotra A; Wellman A; White DP. Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold. SLEEP 2014;37(4):811-819. PMID:24899767
Termination of respiratory events with and without cortical arousal in obstructive sleep apnea.
Jordan, Amy S; Eckert, Danny J; Wellman, Andrew; Trinder, John A; Malhotra, Atul; White, David P
2011-11-15
A total of 20-30% of respiratory events in obstructive sleep apnea are terminated without clear arousal. Arousals are thought to predispose to further events by promoting hyperventilation, hypocapnia, and upper-airway dilator muscle hypotonia. Therefore, events terminated without arousal may promote stable breathing. To compare physiologic changes at respiratory event termination with American Sleep Disorders Association (ASDA) Arousal to No Arousal, and determine whether secondary respiratory events are less common and have higher dilator muscle activity after No Arousal compared with ASDA Arousal. Patients with obstructive sleep apnea wore sleep staging, genioglossus (EMG(GG)), and tensor palatini (EMG(TP)) electrodes plus a nasal mask and pneumotachograph. During stable sleep, continuous positive airway pressure (CPAP) was lowered for 3-minute periods to induce respiratory events. Physiologic variables were compared between events terminated with (1) ASDA Arousal, (2) No Arousal, or (3) sudden CPAP increase (CPAPinc, control). Sixteen subjects had adequate data. EMG(GG), EMG(TP), and heart rate increased after ASDA Arousal (340 ± 57%, 215 ± 28%, and 110.7 ± 2.3%) and No Arousal (185 ± 32%, 167 ± 15%, and 108.5 ± 1.6%) but not CPAPinc (90 ± 10%, 94 ± 11%, and 102.1 ± 1%). Ventilation increased more after ASDA Arousal than No Arousal and CPAPinc, but not after accounting for the severity of respiratory event. Fewer No Arousals were followed by secondary events than ASDA Arousals. However, low dilator muscle activity did not occur after ASDA Arousal or No Arousal (EMG(GG) rose from 75 ± 5 to 125 ± 7%) and secondary events were less severe than initial events (ventilation rose 4 ± 0.4 to 5.5 ± 0.51 L/min). Respiratory events that were terminated with ASDA Arousal were more severely flow-limited, had enhanced hyperventilation after event termination, and were more often followed by secondary events than No arousal. However, secondary events were not associated with low dilator muscle activity and airflow was improved after both No Arousal and ASDA Arousal.
Termination of Respiratory Events with and without Cortical Arousal in Obstructive Sleep Apnea
Eckert, Danny J.; Wellman, Andrew; Trinder, John A.; Malhotra, Atul; White, David P.
2011-01-01
Rationale: A total of 20–30% of respiratory events in obstructive sleep apnea are terminated without clear arousal. Arousals are thought to predispose to further events by promoting hyperventilation, hypocapnia, and upper-airway dilator muscle hypotonia. Therefore, events terminated without arousal may promote stable breathing. Objectives: To compare physiologic changes at respiratory event termination with American Sleep Disorders Association (ASDA) Arousal to No Arousal, and determine whether secondary respiratory events are less common and have higher dilator muscle activity after No Arousal compared with ASDA Arousal. Methods: Patients with obstructive sleep apnea wore sleep staging, genioglossus (EMGGG), and tensor palatini (EMGTP) electrodes plus a nasal mask and pneumotachograph. During stable sleep, continuous positive airway pressure (CPAP) was lowered for 3-minute periods to induce respiratory events. Physiologic variables were compared between events terminated with (1) ASDA Arousal, (2) No Arousal, or (3) sudden CPAP increase (CPAPinc, control). Measurements and Main Results: Sixteen subjects had adequate data. EMGGG, EMGTP, and heart rate increased after ASDA Arousal (340 ± 57%, 215 ± 28%, and 110.7 ± 2.3%) and No Arousal (185 ± 32%, 167 ± 15%, and 108.5 ± 1.6%) but not CPAPinc (90 ± 10%, 94 ± 11%, and 102.1 ± 1%). Ventilation increased more after ASDA Arousal than No Arousal and CPAPinc, but not after accounting for the severity of respiratory event. Fewer No Arousals were followed by secondary events than ASDA Arousals. However, low dilator muscle activity did not occur after ASDA Arousal or No Arousal (EMGGG rose from 75 ± 5 to 125 ± 7%) and secondary events were less severe than initial events (ventilation rose 4 ± 0.4 to 5.5 ± 0.51 L/min). Conclusions: Respiratory events that were terminated with ASDA Arousal were more severely flow-limited, had enhanced hyperventilation after event termination, and were more often followed by secondary events than No arousal. However, secondary events were not associated with low dilator muscle activity and airflow was improved after both No Arousal and ASDA Arousal. PMID:21836132
Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori
2017-12-01
Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.
Murphy, Kate T; Ryall, James G; Snell, Sarah M; Nair, Lawrence; Koopman, René; Krasney, Philip A; Ibebunjo, Chikwendu; Holden, Kathryn S; Loria, Paula M; Salatto, Christopher T; Lynch, Gordon S
2010-05-01
Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle wasting and weakness, leading to premature death from respiratory and/or cardiac failure. A clinically relevant question is whether myostatin inhibition can improve function of the diaphragm, which exhibits a severe and progressive pathology comparable with that in DMD. We hypothesized that antibody-directed myostatin inhibition would improve the pathophysiology of diaphragm muscle strips from young mdx mice (when the pathology is mild) and adult mdx mice (when the pathology is quite marked). Five weeks treatment with a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg/week) increased muscle mass (P < 0.05) and increased diaphragm median fiber cross-sectional area (CSA, P < 0.05) in young C57BL/10 and mdx mice, compared with saline-treated controls. PF-354 had no effect on specific force (sPo, maximum force normalized to muscle CSA) of diaphragm muscle strips from young C57BL/10 mice, but increased sPo by 84% (P < 0.05) in young mdx mice. In contrast, 8 weeks of PF-354 treatment did not improve muscle mass, median fiber CSA, collagen infiltration, or sPo of diaphragm muscle strips from adult mdx mice. PF-354 antibody-directed myostatin inhibition completely restored the functional capacity of diaphragm strips to control levels when treatment was initiated early, but not in the later stages of disease progression, suggesting that such therapies may only have a limited window of efficacy for DMD and related conditions.
Asping, Magnus; Stride, Nis; Søgaard, Ditte; Dohlmann, Tine Lovsø; Helge, Jørn W; Dela, Flemming; Larsen, Steen
2017-06-01
Statins are used to lower cholesterol in plasma and are one of the most used drugs in the world. Many statin users experience muscle pain, but the mechanisms are unknown at the moment. Many studies have hypothesized that mitochondrial function could be involved in these side effects. The aim of the study was to investigate mitochondrial function after 2 weeks of treatment with simvastatin (S; n = 10) or pravastatin (P; n = 10) in healthy middle-aged participants. Mitochondrial respiratory capacity and substrate sensitivity were measured in permeabilized muscle fibers by high-resolution respirometry. Mitochondrial content (citrate synthase (CS) activity), antioxidant content, as well as coenzyme Q 10 concentration (Q 10 ) were determined. Fasting plasma glucose and insulin concentrations were measured, and whole body maximal oxygen uptake (VO 2max ) was determined. No differences were seen in mitochondrial respiratory capacity although a tendency was observed for a reduction when complex IV respiration was analyzed in both S (229 (169; 289 (95% confidence interval)) vs. 179 (146; 211) pmol/s/mg, respectively; P = 0.062) and P (214 (143; 285) vs. 162 (104; 220) pmol/s/mg, respectively; P = 0.053) after treatment. A tendency (1.64 (1.28; 2.00) vs. 1.28 (0.99; 1.58) mM, respectively; P = 0.092) for an increased mitochondrial substrate sensitivity (complex I-linked substrate; glutamate) was seen only in S after treatment. No differences were seen in Q 10 , CS activity, or antioxidant content after treatment. Fasting glucose and insulin as well as VO 2max were not changed after treatment. Two weeks of statin (S or P) treatment have no major effect on mitochondrial function. The tendency for an increased mitochondrial substrate sensitivity after simvastatin treatment could be an early indication of the negative effects linked to statin treatment.
Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta
2017-08-01
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.
Pazzianotto-Forti, Eli M; Peixoto-Souza, Fabiana S; Piconi-Mendes, Camila; Rasera-Junior, Irineu; Barbalho-Moulim, Marcela
2012-01-01
Studies on the behavior of respiratory muscle strength (RMS) in morbidly obese patients have found conflicting results. To evaluate RMS in morbidly obese women and to compare the results by using different predictive equations. This is a cross-sectional study that recruited 30 morbidly obese women and a control group of 30 normal-weight women. The subjects underwent anthropometric and maximal respiratory pressure measurement. Visual inspection of the Bland-Altman plots was performed to evaluate the correlation between the different equations, with a p value lower than 0.05 considered as statistically significant. The obese women showed a significant increase in maximal inspiratory pressure (MIP) values (-87.83±21.40 cmH(2)O) compared with normal-weight women (-72±15.23 cmH(2)O) and a significant reduction of MIP (-87.83±21.40 cmH(2)O) according to the values predicted by the EHarik equation (-130.71±11.98 cmH(2)O). Regarding the obtained maximal expiratory pressure (MEP), there were no between-group differences (p>0.05), and no agreeement was observed between obtained and predicted values of MEP and the ENeder and ECosta equations. Inspiratory muscle strength was greater in the morbidly obese subjects. The most appropriate equation for calculating the predicted MIP values for the morbidly obese seems to be Harik-Khan equation. There seem to be similarities between the respiratory muscle strength behavior of morbidly obese and normal-weight women, however, these findings are still inconclusive.
Lehti, Maarit; Donelan, Elizabeth; Abplanalp, William; Al-Massadi, Omar; Habegger, Kirk; Weber, Jon; Ress, Chandler; Mansfeld, Johannes; Somvanshi, Sonal; Trivedi, Chitrang; Keuper, Michaela; Ograjsek, Teja; Striese, Cynthia; Cucuruz, Sebastian; Pfluger, Paul T.; Krishna, Radhakrishna; Gordon, Scott M.; Silva, R. A. Gangani D.; Luquet, Serge; Castel, Julien; Martinez, Sarah; D'Alessio, David; Davidson, W. Sean; Hofmann, Susanna M.
2014-01-01
Background Abnormal glucose metabolism is a central feature of disorders with increased rates of cardio-vascular disease (CVD). Low levels of high density lipoprotein (HDL) are a key predictor for CVD. We used genetic mouse models with increased HDL levels (apoA-I tg) and reduced HDL levels (apoA-I ko) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. Methods and Results ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test (GTT) compared to wild type (wt) mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity (EC) during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate (OCR) in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved GTT, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of EC compared to wt mice. Circulating levels of fibroblast growth factor 21 (FGF21), a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high fat diet-induced impairment of glucose homeostasis. Conclusions In view of impaired mitochondrial function and decreased HDL levels in T2D, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of T2D beyond CVD. PMID:24170386
Detailed characterization of a long-term rodent model of critical illness and recovery.
Hill, Neil E; Saeed, Saima; Phadke, Rahul; Ellis, Matthew J; Chambers, Darren; Wilson, Duncan R; Castells, Josiane; Morel, Jerome; Freysennet, Damien G; Brett, Stephen J; Murphy, Kevin G; Singer, Mervyn
2015-03-01
To characterize a long-term model of recovery from critical illness, with particular emphasis on cardiorespiratory, metabolic, and muscle function. Randomized controlled animal study. University research laboratory. Male Wistar rats. Intraperitoneal injection of the fungal cell wall constituent, zymosan or n-saline. Following intervention, rats were followed for up to 2 weeks. Animals with zymosan peritonitis reached a clinical and biochemical nadir on day 2. Initial reductions were seen in body weight, total body protein and fat, and muscle mass. Leg muscle fiber diameter remained subnormal at 14 days with evidence of persisting myonecrosis, even though gene expression of regulators of muscle mass (e.g., MAFbx, MURF1, and myostatin) had peaked on days 2-4 but normalized by day 7. Treadmill exercise capacity, forelimb grip strength, and in vivo maximum tetanic force were also reduced. Food intake was minimal until day 4 but increased thereafter. This did not relate to appetite hormone levels with early (6 hr) rises in plasma insulin and leptin followed by persisting subnormal levels; ghrelin levels did not change. Serum interleukin-6 level peaked at 6 hours but had normalized by day 2, whereas interleukin-10 remained persistently elevated and high-density lipoprotein cholesterol persistently depressed. There was an early myocardial depression and rise in core temperature, yet reduced oxygen consumption and respiratory exchange ratio with a loss of diurnal rhythmicity that showed a gradual but incomplete recovery by day 7. This detailed physiological, metabolic, hormonal, functional, and histological muscle characterization of a model of critical illness and recovery reproduces many of the findings reported in human critical illness. It can be used to assess putative therapies that may attenuate loss, or enhance recovery, of muscle mass and function.
Physical inactivity and muscle oxidative capacity in humans.
Gram, Martin; Dahl, Rannvá; Dela, Flemming
2014-01-01
Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated in humans, and further studies are required to substantiate this hypothesis, which could expand our knowledge of the potential link between lifestyle-related diseases and muscle oxidative capacity. Furthermore, even though a large body of literature reports the effect of physical training on muscle oxidative capacity, the adaptations that occur with physical inactivity may not always be opposite to that of physical training. Thus, it is concluded that studies on the effect of physical inactivity per se on muscle oxidative capacity in functional human skeletal muscle are warranted.
Fujita, Kenya; Matsuo, Kiyoshi; Yuzuriha, Shunsuke
2013-01-01
Introduction: We have previously reported that fascia lata grafts with peritendinous areolar tissue used to treat severe congenital blepharoptosis gradually shrink within 6 weeks postoperatively and maintain long-term shrinkage of 15.5% on average. Accordingly, it seemed possible that a fascia lata graft without peritendinous areolar tissue would shrink more than the one with peritendinous areolar tissue in a clinical setting. We evaluated this possibility in a patient with Klippel-Feil syndrome having postoperative deep atonic nasopharynx. Methods: In combination with intravelar veloplasty and palatal lengthening with modified bilateral buccinator sandwich pushback, a ringed fascia lata without peritendinous areolar tissue encircling the levator veli palatini and superior constrictor muscles was grafted to cure severe velopharyngeal incompetence. Results: Obstructive sleep apnea did not occur following surgery. Pharyngoscopy, videofluoroscopy, and nasometry showed no amelioration of velopharyngeal incompetence at 1 month postoperatively, but marked velopharyngeal incompetence reduction was evident at 4 months and 2 years after surgery. Conclusions: The extended recovery period suggests that the anticipated postoperative shrinkage of the ringed fascia lata without peritendinous areolar tissue played a more prominent role than intravelar veloplasty and palatal lengthening, which posteroinferiorly elongated the atonic soft palate. Although the pharyngeal flap procedure is the most popular technique for treatment of velopharyngeal incompetence, it is sometimes accompanied by respiratory complications. Thus, the gradual postoperative shrinkage of a ringed fascia lata graft encircling the velopharyngeal muscles functions as an intravelar palatal lift and may be an additional surgical method with less respiratory complications to narrow atonic nasopharyngeal port. PMID:23814637
Respiratory Manifestations of Hypothyroidism: A Systematic Review.
Sorensen, Jesper Roed; Winther, Kristian Hillert; Bonnema, Steen Joop; Godballe, Christian; Hegedüs, Laszlo
2016-11-01
Hypothyroidism has been associated with increased pulmonary morbidity and overall mortality. A systematic review was conducted to identify the prevalence and underlying mechanisms of respiratory problems among patients with thyroid insufficiency. PubMed and EMBASE databases were searched for relevant literature from January 1950 through January 2015 with the following study eligibility criteria: English-language publications; adult subclinical or overt hypothyroid patients; intervention, observational, or retrospective studies; and respiratory manifestations. The Preferred Reporting Items for Systematic reviews and Meta-Analyses statement was followed, and Cochrane's risk of bias tool was used. A total of 1699 papers were screened by two independent authors for relevant titles. Of 109 relevant abstracts, 28 papers underwent full-text analyses, of which 22 were included in the review. Possible mechanisms explaining respiratory problems at multiple physiological levels were identified, such as the ventilator control system, diaphragmatic muscle function, pulmonary gas exchange, goiter caused upper airway obstruction, decreased capacity for energy transduction, and reduced glycolytic activity. Obstructive sleep apnea syndrome was found among 30% of newly diagnosed patients with overt hypothyroidism, and demonstrated reversibility following treatment. The evidence for or against a direct effect on pulmonary function was ambiguous. However, each of the above-mentioned areas was only dealt with in a limited number of studies. Therefore, it is not possible to draw any strong conclusions on any of these themes. Moreover, most studies were hampered by considerable risk of bias due for example to small numbers of patients, lack of control groups, randomization and blinding, and differences in body mass index, sex, and age between subjects and controls. Mechanistic data linking hypothyroidism and respiratory function are at best limited. This area of research is therefore open for retesting hypotheses, using appropriate study designs and methods.
Do 12-week yoga program influence respiratory function of elderly women?
Bezerra, Lídia Aguiar; de Melo, Helton Fabrício; Garay, Ana Paula; Reis, Victor Machado; Aidar, Felipe José; Bodas, Ana Rita; Garrido, Nuno Domingos; de Oliveira, Ricardo Jacó
2014-09-29
Aging produces several respiratory limitations and reduces tolerance to physical efforts, sometimes leading to pulmonary diseases in the elderly. The literature draws attention to the possible benefits of Yoga practice among the elderly, presenting evidence for significant improvements in quality of life. It was hypothesized that yoga practice can improve respiratory function in the elderly. The effects of a yoga program on pulmonary volumes and respiratory muscle strength were verified in 36 elderly women divided into a yoga group [YG] (63.1 ± 13.3 years of age) and a control group (61.0 ± 6.9 years of age). Maximal inspiratory and expiratory pressure (MIP and MEP) were assessed by a manovacuometer and tidal volume (VT), vital capacity (VC) and minute ventilation (VE) were measured by a ventilometer. The program comprised 65 min sessions, 3 times/week during 12 weeks. The heart rate and respiratory rate decreased significantly in the YG (76-39 ± 8-03 vs. 74-61±10.26 bpm and 18.61 ± 3.15 vs. 16.72 ± 3.12 resp/min, respectively). In the YG, VT and VE increased significantly (0.55 ± 0.22 vs. 0.64 ± 0.2 ml and 9.19 ± 2.39 vs. 10.05 ± 2.11 ml, respectively), as well as VC (1.48 ± 0.45 vs. 2.03 ± 0.72 ml). Improvements were also found in MIP and MEP in the YG (62.17 ± 14.77 vs. 73.06 ± 20.16 cmH2O and 80.56 ± 23.94 vs. 86.39 ± 20.16 cmH2O, respectively). It was concluded that a 12-week yoga program significantly improves pulmonary function of aged women.
Physical complications in acute lung injury survivors: a two-year longitudinal prospective study.
Fan, Eddy; Dowdy, David W; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Sevransky, Jonathan E; Shanholtz, Carl; Himmelfarb, Cheryl R Dennison; Desai, Sanjay V; Ciesla, Nancy; Herridge, Margaret S; Pronovost, Peter J; Needham, Dale M
2014-04-01
Survivors of severe critical illness frequently develop substantial and persistent physical complications, including muscle weakness, impaired physical function, and decreased health-related quality of life. Our objective was to determine the longitudinal epidemiology of muscle weakness, physical function, and health-related quality of life and their associations with critical illness and ICU exposures. A multisite prospective study with longitudinal follow-up at 3, 6, 12, and 24 months after acute lung injury. Thirteen ICUs from four academic teaching hospitals. Two hundred twenty-two survivors of acute lung injury. None. At each time point, patients underwent standardized clinical evaluations of extremity, hand grip, and respiratory muscle strength; anthropometrics (height, weight, mid-arm circumference, and triceps skin fold thickness); 6-minute walk distance, and the Medical Outcomes Short-Form 36 health-related quality of life survey. During their hospitalization, survivors also had detailed daily evaluation of critical illness and related treatment variables. Over one third of survivors had objective evidence of muscle weakness at hospital discharge, with most improving within 12 months. This weakness was associated with substantial impairments in physical function and health-related quality of life that persisted at 24 months. The duration of bed rest during critical illness was consistently associated with weakness throughout 24-month follow-up. The cumulative dose of systematic corticosteroids and use of neuromuscular blockers in the ICU were not associated with weakness. Muscle weakness is common after acute lung injury, usually recovering within 12 months. This weakness is associated with substantial impairments in physical function and health-related quality of life that continue beyond 24 months. These results provide valuable prognostic information regarding physical recovery after acute lung injury. Evidence-based methods to reduce the duration of bed rest during critical illness may be important for improving these long-term impairments.
Rey, Benjamin; Roussel, Damien; Rouanet, Jean-Louis; Duchamp, Claude
2013-01-01
Birds seem to employ powerful physiological strategies to curb the harmful effects of reactive oxygen species (ROS) because they generally live longer than predicted by the free radical theory of aging. However, little is known about the physiological mechanisms that confer protection to birds against excessive ROS generation. Hence, we investigated the ability of birds to control mitochondrial ROS generation during physiologically stressful periods. In our study, we analyzed the relationship between the thyroid status and the function of intermyofibrillar and subsarcolemmal mitochondria located in glycolytic and oxidative muscles of ducklings. We found that the intermyofibrillar mitochondria of both glycolytic and oxidative muscles down regulate ROS production when plasma T₃ levels rise. The intermyofibrillar mitochondria of the gastrocnemius muscle (an oxidative muscle) produced less ROS and were more sensitive than the pectoralis muscle (a glycolytic muscle) to changes in plasma T₃. Such differences in the ROS production by glycolytic and oxidative muscles were associated with differences in the membrane proton permeability and in the rate of free radical leakage within the respiratory chain. This is the first evidence which shows that in birds, the amount of ROS that the mitochondria release is dependent on: (1) their location within the muscle; (2) the type of muscle (glycolytic or oxidative) and (3) on the thyroid status. Reducing muscle mitochondrial ROS generation might be an important mechanism in birds to limit oxidative damage during periods of physiological stress.
Paisani, Denise de Moraes; Lunardi, Adriana Claudia; da Silva, Cibele Cristine Berto Marques; Porras, Desiderio Cano; Tanaka, Clarice; Carvalho, Celso Ricardo Fernandes
2013-08-01
Incentive spirometers are widely used in clinical practice and classified as flow-oriented (FIS) and volume-oriented (VIS). Until recently the respiratory inductive plethysmography used to evaluate the effects of incentive spirometry on chest wall mechanics presented limitations, which may explain why the impact of VIS and FIS remains poorly known. To compare the effects of VIS and FIS on thoracoabdominal mechanics and respiratory muscle activity in healthy volunteers. This cross-sectional trial assessed 20 subjects (12 female, ages 20-40 years, body mass index 20-30 kg/m(2)). All subjects performed 8 quiet breaths and 8 deep breaths with FIS and VIS, in a randomized order. We measured thoracoabdominal chest wall, upper and lower rib-cage, and abdominal volumes with optoelectronic plethysmography, and the muscle activity of the sternocleidomastoid and superior and inferior intercostal muscles with electromyography. VIS increased chest wall volume more than did FIS (P = .007) and induced a larger increase in the upper and lower rib-cages and abdomen (156%, 91%, and 151%, respectively, P < .001). By contrast, FIS induced more activity in the accessory muscles of respiration than did VIS (P < .001). VIS promotes a greater increase in chest wall volume, with a larger abdominal contribution and lower respiratory muscle activity, than does FIS in healthy adults.
The diaphragm: two physiological muscles in one
Pickering, Mark; Jones, James FX
2002-01-01
To the respiratory physiologist or anatomist the diaphragm muscle is of course the prime mover of tidal air. However, gastrointestinal physiologists are becoming increasingly aware of the value of this muscle in helping to stop gastric contents from refluxing into the oesophagus. The diaphragm should be viewed as two distinct muscles, crural and costal, which act in synchrony throughout respiration. However, the activities of these two muscular regions can diverge during certain events such as swallowing and emesis. In addition, transient crural muscle relaxations herald the onset of spontaneous acid reflux episodes. Studying the motor control of this muscular barrier may help elucidate the mechanism of these episodes. In the rat, the phrenic nerve divides into three branches before entering the diaphragm, and it is possible to sample single neuronal activity from the crural and costal branches. This review will discuss our recent findings with regard to the type of motor axons running in the phrenic nerve of the rat. In addition, we will outline our ongoing search for homologous structures in basal vertebrate groups. In particular, the pipid frogs (e.g. the African clawed frog, Xenopus laevis) possess a muscular band around the oesophagus that appears to be homologous to the mammalian crural diaphragm. This structure does not appear to interact directly with the respiratory apparatus, and could suggest a role for this region of the diaphragm, which was not originally respiratory. PMID:12430954
Upper arm anthropometrics versus DXA scan in survivors of acute respiratory distress syndrome.
Chan, Kitty S; Mourtzakis, Marina; Aronson Friedman, Lisa; Dinglas, Victor D; Hough, Catherine L; Ely, E Wesley; Morris, Peter E; Hopkins, Ramona O; Needham, Dale M
2018-04-01
Survivors of acute respiratory distress syndrome (ARDS) experience severe muscle wasting. Upper arm anthropometrics can provide a quick, non-invasive estimate of muscle status, but its accuracy is unknown. This study examines the accuracy of upper arm percent muscle area (UAMA) with reference measures of lean mass from dual energy X-ray absorptiometry (DXA). Data are from 120 ARDS survivors participating in a multicenter national study. Receiver operating characteristic (ROC) curves, by patient sex, demonstrated that UAMA did no better than chance in discriminating low appendicular skeletal muscle mass identified using DXA findings (c-statistics, 6 months: 0.50-0.59, 12 months: 0.54-0.57). Modest correlations of UAMA with DXA measures (whole-body: r = 0.46-0.49, arm-specific: r = 0.50-0.51, p < 0.001) and Bland-Altman plots indicate poor precision. UAMA is not an appropriate screening measure for estimating muscle mass when compared to a DXA reference standard. Alternate screening measures should be evaluated in ARDS survivors.
NASA Technical Reports Server (NTRS)
Lee, Mona D.; Tuttle, Ronald; Girten, Beverly
1995-01-01
There are limited data regarding changes in oxidative and antioxidant enzymes induced by simulated or actual weightlessness, and any additional information would provide insight into potential mechanisms involving other changes observed in muscles from animals previously flown in space. Thus, the NASA Biospecimen Sharing Program was an opportunity to collect valuable information. Oxidative and antioxidant enzyme levels, as well as lipid peroxidation, were measured in respiratory muscles from rates flown on board Space Shuttle mission STS-54. The results indicated that there was an increasing trend in citrate synthase activity in the flight diaphragm when compared to ground based controls, and there were no significant changes observed in the intercostal muscles for any of the parameters. However, the lipid peroxidation was significantly (p less than 0.05) decreased in the flight diaphragm. These results indicate that 6 day exposure to microgravity may have a different effect on oxidative and antioxidant activity in rat respiratory muscles when compared to data from previous 14 day hindlimb suspension studies.
Akatsu, Masahiko; Ikegami, Yukihiro; Tase, Choichiro; Nishikawa, Koichi
2017-03-15
Myasthenia gravis (MG) is an autoimmune disease characterized by the production of antibodies against the acetylcholine receptor, muscle-specific kinase (MuSK), or other proteins at the neuromuscular junction. MG with antibodies against MuSK (MuSK-MG) has been described recently. Here, we report the first case of anesthetic management of a patient with MuSK-MG undergoing an open cholecystectomy. In our case, propofol and remifentanil-based anesthesia were used for successful management without using muscle relaxants. Patients with MuSK-MG have predominantly ocular, bulbar, and respiratory symptoms that may increase the risk of aspiration. Anesthesiologists need to pay attention to perioperative respiratory failure and respiratory crisis.
Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre
2017-09-01
What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Respiratory modulation of human autonomic function on Earth.
Eckberg, Dwain L; Cooke, William H; Diedrich, André; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar
2016-10-01
We studied healthy supine astronauts on Earth with electrocardiogram, non-invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings. The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs. R-R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea. The subjects' responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled-frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R-R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R-R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long-term neuroplasticity in serial measurements made over 20 days during and following space travel? Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Respiratory modulation of human autonomic function on Earth
Cooke, William H.; Diedrich, André; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U. O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar
2016-01-01
Key points We studied healthy supine astronauts on Earth with electrocardiogram, non‐invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings.The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs.R‐R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea.The subjects’ responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. Abstract We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled‐frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R‐R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R‐R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long‐term neuroplasticity in serial measurements made over 20 days during and following space travel? PMID:27028958
Ryan, Terence E.; Schmidt, Cameron A.; Green, Thomas D.; Spangenburg, Espen E.; Neufer, P. Darrell
2016-01-01
Patients with type 2 diabetes respond poorly to treatments for peripheral arterial disease (PAD) and are more likely to present with the most severe manifestation of the disease, critical limb ischemia. The underlying mechanisms linking type 2 diabetes and the severity of PAD manifestation are not well understood. We sought to test whether diet-induced mitochondrial dysfunction and oxidative stress would increase the susceptibility of the peripheral limb to hindlimb ischemia (HLI). Six weeks of high-fat diet (HFD) in C57BL/6 mice was insufficient to alter skeletal muscle mitochondrial content and respiratory function or the size of ischemic lesion after HLI, despite reducing blood flow. However, 16 weeks of HFD similarly decreased ischemic limb blood flow, but also exacerbated limb tissue necrosis, increased the myopathic lesion size, reduced muscle regeneration, attenuated muscle function, and exacerbated ischemic mitochondrial dysfunction. Mechanistically, mitochondrial-targeted overexpression of catalase prevented the HFD-induced ischemic limb necrosis, myopathy, and mitochondrial dysfunction, despite no improvement in limb blood flow. These findings demonstrate that skeletal muscle mitochondria are a critical pathological link between type 2 diabetes and PAD. Furthermore, therapeutically targeting mitochondria and oxidant burden is an effective strategy to alleviate tissue loss and ischemic myopathy during PAD. PMID:27284110
A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.
Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A
2014-01-01
Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model can be used for simulation of closed-loop control of breathing under different conditions including respiratory disorders.
The health care provider will do a nervous system (neurological) and muscle exam. A careful medical history is also important, ... the legs and pelvis, then moves to the muscles of the shoulders, ... respiratory system Tests that may be done include: CPK blood ...
Tallis, Jason; James, Rob S; Little, Alexander G; Cox, Val M; Duncan, Michael J; Seebacher, Frank
2014-09-15
Previous isolated muscle studies examining the effects of ageing on contractility have used isometric protocols, which have been shown to have poor relevance to dynamic muscle performance in vivo. The present study uniquely uses the work-loop technique for a more realistic estimation of in vivo muscle function to examine changes in mammalian skeletal muscle mechanical properties with age. Measurements of maximal isometric stress, activation and relaxation time, maximal power output, and sustained power output during repetitive activation and recovery are compared in locomotory extensor digitorum longus (EDL) and core diaphragm muscle isolated from 3-, 10-, 30-, and 50-wk-old female mice to examine the early onset of ageing. A progressive age-related reduction in maximal isometric stress that was of greater magnitude than the decrease in maximal power output occurred in both muscles. Maximal force and power developed earlier in diaphragm than EDL muscle but demonstrated a greater age-related decline. The present study indicates that ability to sustain skeletal muscle power output through repetitive contraction is age- and muscle-dependent, which may help rationalize previously reported equivocal results from examination of the effect of age on muscular endurance. The age-related decline in EDL muscle performance is prevalent without a significant reduction in muscle mass, and biochemical analysis of key marker enzymes suggests that although there is some evidence of a more oxidative fiber type, this is not the primary contributor to the early age-related reduction in muscle contractility. Copyright © 2014 the American Physiological Society.
Respiratory pathophysiology: sleep-related breathing disorders
Schäfer, Thorsten
2006-01-01
A widespread network of respiratory-related neurons within the brainstem controls the regular respiratory cycle, which is dependent upon unspecific and specific drives like hypoxia or hypercapnia. This respiratory network and its respiratory drives are subjects to typical changes during the transition from wakefulness to sleep and within the various sleep states, which favor a destabilization of breathing during sleep. There is also a respiratory-related innervation of the dilating and stiffening pharyngeal muscles as well as a local reflex control of the basic tone of upper airway muscles, both of which are influenced by the different states of wakefulness and sleep. These sleep-related changes cause an increase in upper airway resistance during sleep. In healthy subjects, however, these features during sleep are almost completely compensated and the gas exchange is hardly hindered. However, in the case of illness, severe disordered breathing, disturbed gas exchange and interrupted sleep may occur. The central hypoventilation syndrome, central apnea-hypopnea syndromes, as well as the obstructive sleep apnea syndrome belong to these diseases. Because of the intense research, we have a detailed picture of the pathophysiological mechanisms of the origin and the maintenance of sleep-related breathing disorders. PMID:22073070
Respiratory outcomes of patients with amyotrophic lateral sclerosis: an Italian nationwide survey.
Vitacca, Michele; Vianello, Andrea
2013-09-01
Despite recommendations, respiratory therapies remain partially underutilized in patients with amyotrophic lateral sclerosis (ALS), and different practices are described in different countries. We surveyed attitudes and practice in Italy on ALS and other neuromuscular diseases (NMDs). A questionnaire on ALS/NMD management was mailed to 178 pneumology units, which we classified into high-volume and low-volume centers according to the number of ALS/NMD patients followed in the last 5 years. Seventy-six pneumology units (43%) responded, and the responding units had 1,772 ALS patients and 1,490 NMD patients. Difficulty clearing respiratory secretions and disturbed sleep were the main reasons the ALS patients were referred to pneumology units. Vital capacity (measured in the sitting position) and arterial blood gases were measured regularly, while respiratory muscle function and cough ability were routinely assessed in over 85% of the pneumology units (mainly in high-volume centers), and 94% of pneumology units could provide noninvasive ventilation. Treatment of NMDs was similar to that of ALS, except for tracheostomy, which was less frequently performed in patients with NMDs. A multidisciplinary team approach to care was employed in approximately 90% of the responding pneumology units. Approximately a third of the units accessed palliative care services. Combined pulmonary function evaluation, long-term noninvasive ventilation, and assisted cough have become usual practices for ALS patients. Italian practices for ALS did not significantly differ from the approach to other NMDs.
Brautbar, Ariel; Wang, Jing; Abdenur, Jose E; Chang, Richard C; Thomas, Janet A; Grebe, Theresa A; Lim, Cynthia; Weng, Shao-Wen; Graham, Brett H; Wong, Lee-Jun
2008-08-01
The mitochondrial 13513G>A (D393N) mutation in the ND5 subunit of the respiratory chain complex I was initially described in association with MELAS syndrome. Recent observations have linked this mutation to Leigh disease. We screened for the 13513G>A mutation in a cohort of 265 patients with Leigh and Leigh-like disease. The mutation was found in a total of 5 patients. An additional patient who had clinical presentation consistent with a Leigh-like phenotype but with a normal brain MRI was added to the cohort. None of an additional 88 patients meeting MELAS disease criteria, nor 56 patients with respiratory chain deficiency screened for the 13513G>A were found positive for the mutation. The most frequent clinical manifestations in our patients were hypotonia, ocular and cerebellar involvement. Low mutation heteroplasmy in the range of 20-40% was observed in all 6 patients. This observation is consistent with the previously reported low heteroplasmy of this mutation in some patients with the 13513G>A mutation and complex I deficiency. However, normal complex I activity was observed in two patients in our cohort. As most patients with Leigh-like disease and the 13513G>A mutation have been described with complex I deficiency, this report adds to the previously reported subset of patients with normal respiratory complex function. We conclude that in any patient with Leigh or Leigh-like disease, testing for the 13513G>A mutation is clinically relevant and low mutant loads in blood or muscle may be considered pathogenic, in the presence of normal respiratory chain enzyme activities.
Kromin, A A; Dvoenko, E E; Zenina, O Yu
2016-07-01
Reflection of the state of hunger in impulse activity of nose wing muscles and upper esophageal sphincter muscles was studied in chronic experiments on rabbits subjected to 24-h food deprivation in the absence of locomotion and during search behavior. In the absence of apparent behavioral activity, including sniffing, alai nasi muscles of hungry rabbits constantly generated bursts of action potentials synchronous with breathing, while upper esophageal sphincter muscles exhibited regular aperiodic low-amplitude impulse activity of tonic type. Latent form of food motivation was reflected in the structure of temporal organization of impulse activity of alai nasi muscles in the form of bimodal distribution of interpulse intervals and in temporal structure of impulse activity of upper esophageal sphincter muscles in the form of monomodal distribution. The latent form of food motivation was manifested in the structure of temporal organization of periods of the action potentials burst-like rhythm, generated by alai nasi muscles, in the form of monomodal distribution, characterized by a high degree of dispersion of respiratory cycle periods. In the absence of physical activity hungry animals sporadically exhibited sniffing activity, manifested in the change from the burst-like impulse activity of alai nasi muscles to the single-burst activity type with bimodal distribution of interpulse intervals and monomodal distribution of the burst-like action potentials rhythm periods, the maximum of which was shifted towards lower values, which was the cause of increased respiratory rate. At the same time, the monomodal temporal structure of impulse activity of the upper esophageal sphincter muscles was not changed. With increasing food motivation in the process of search behavior temporal structure of periods of the burst-like action potentials rhythm, generated by alai nasi muscles, became similar to that observed during sniffing, not accompanied by animal's locomotion, which is typical for the increased respiratory rhythm frequency. Increased hunger motivation was reflected in the temporal structure of impulse activity of upper esophageal sphincter muscles in the form of a shift to lower values of the maximum of monomodal distribution of interpulse intervals on the histogram, resulting in higher impulse activity frequency. The simultaneous increase in the frequency of action potentials bursts generation by alai nasi muscles and regular impulse activity of upper esophageal sphincter muscles is a reliable criterion for enhanced food motivation during search behavior in rabbits.
Kitano, Kosuke; Asakawa, Takashi; Kamide, Naoto; Yorimoto, Keisuke; Yoneda, Masaki; Kikuchi, Yutaka; Sawada, Makoto; Komori, Tetsuo
2018-03-31
To verify the effects of structured home-based exercises without supervision by a physical therapist in patients with early-stage amyotrophic lateral sclerosis (ALS). A historical controlled study that is part of a multicenter collaborative study. Rehabilitation departments at general hospitals and outpatient clinics with a neurology department. Patients (N=21) with ALS were enrolled and designated as the home-based exercise (Home-EX) group, and they performed unsupervised home-based exercises. As a control group, 84 patients with ALS who underwent supervised exercise with a physical therapist for 6 months were extracted from a database of patients with ALS and matched with the Home-EX group in terms of their basic attributes and clinical features. The Home-EX group was instructed to perform structured home-based exercises without supervision by a physical therapist that consisted of muscle stretching, muscle training, and functional training for 6 months. The primary outcome was the score on the ALS Functional Rating Scale-Revised (ALSFRS-R), which is composed of 3 domains: bulbar function, limb function, and respiratory function. The score ranges from 0 to 48 points, with a higher score indicating better function. In the Home-EX group, 15 patients completed the home-based exercises for 6 months, and 6 patients dropped out because of medical reasons or disease progression. No adverse events were reported. The Home-EX group was found to have a significantly higher respiratory function subscore and total score on the ALSFRS-R than the control group at follow-up (P<.001 and P<.05, respectively). Structured home-based exercises without supervision by a physical therapist could be used to alleviate functional deterioration in patients with early-stage ALS. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Mahalingam, Sajeni; McClelland, Grant B; Scott, Graham R
2017-07-15
Mitochondrial function changes over time at high altitudes, but the potential benefits of these changes for hypoxia resistance remains unclear. We used high-altitude-adapted populations of deer mice, which exhibit enhanced aerobic performance in hypoxia, to examine whether changes in mitochondrial physiology or intracellular distribution in the muscle contribute to hypoxia resistance. Permeabilized muscle fibres from the gastrocnemius muscle had higher respiratory capacities in high-altitude mice than in low-altitude mice. Highlanders also had higher mitochondrial volume densities, due entirely to an enriched abundance of subsarcolemmal mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. There were several effects of hypoxia acclimation on mitochondrial function, some of which were population specific, but they differed from the evolved changes in high-altitude natives, which probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. High-altitude natives that have evolved to live in hypoxic environments provide a compelling system to understand how animals can overcome impairments in oxygen availability. We examined whether these include changes in mitochondrial physiology or intracellular distribution that contribute to hypoxia resistance in high-altitude deer mice (Peromyscus maniculatus). Mice from populations native to high and low altitudes were born and raised in captivity, and as adults were acclimated to normoxia or hypobaric hypoxia (equivalent to 4300 m elevation). We found that highlanders had higher respiratory capacities in the gastrocnemius (but not soleus) muscle than lowlanders (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), due in large part to higher mitochondrial volume densities in the gastrocnemius. The latter was attributed to an increased abundance of subsarcolemmal (but not intermyofibrillar) mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. Hypoxia acclimation had no significant effect on these population differences, but it did increase mitochondrial cristae surface densities of mitochondria in both populations. Hypoxia acclimation also altered the physiology of isolated mitochondria by affecting respiratory capacities and cytochrome c oxidase activities in population-specific manners. Chronic hypoxia decreased the release of reactive oxygen species by isolated mitochondria in both populations. There were subtle differences in O 2 kinetics between populations, with highlanders exhibiting increased mitochondrial O 2 affinity or catalytic efficiency in some conditions. Our results suggest that evolved changes in mitochondrial physiology in high-altitude natives are distinct from the effects of hypoxia acclimation, and probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
[A case of respiratory dyskinesia due to clebopride malate].
Kawasaki, H; Yamamoto, M; Okayasu, H; Wakayama, Y
1991-08-01
Clebopride malate is therapeutically used for the treatment of peptic ulcer. This drug has potent antidopaminergic activity that causes acute dystonic reaction, parkinsonism and tardive dyskinesia as adverse effects. Here, we have reported an 86-year-old man who developed abnormal involuntary movement of respiratory muscles and lower limb muscles after this drug had been given for four months. This involuntary movement appeared spontaneously at resting state and disappeared during sleep. Surface EMG demonstrated a synchronous grouping discharge in m. orbicularis oris, m. sternocleidomastoideus and m. interstales which synchronized with diaphragmatic movement on cinefluorography. Involuntary movement of the lower limbs was synchronous bilaterally and had little relationship with diaphragmatic movement. This involuntary movement was irregular not only in rhythm but also in duration. According to this irregular nature, we diagnosed this involuntary movement as respiratory dyskinesia with limb dyskinesia that belongs to tardive dyskinesia. After cessation of clebopride malate limb dyskinesia disappeared rapidly and respiratory dyskinesia markedly decreased. We emphasize that respiratory dyskinesia should be differentiated from psychogenic hyperventilation as easily misdiagnosed on initial examination.
Diaphragm Dysfunction in Critical Illness.
Supinski, Gerald S; Morris, Peter E; Dhar, Sanjay; Callahan, Leigh Ann
2018-04-01
The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Wnuk, Bartosz; Frackiewicz, Joanna; Durmala, Jacek; Czernicki, Krzysztof; Wadolowski, Karol
2012-01-01
The aim of the study was to evaluate the positive effects of combination of several physiotherapy methods on the respiratory function on example of a case report. 14 years old girl with an adolescent idiopathic scoliosis (AIS), right thoracic (primary curve, Cobb angle = 40°, AVR = 12°) and left lumbar (secondary curve, Cobb angle = 33°, AVR = 24°) participated in the study. She was 2 years after menarche. She underwent stationary (in-patient) treatment for 3 weeks with use of standard medical care (DoboMed). Treatment also included manual therapy (OMT Kaltenborn-Evjenth) and Dynamic Brace System (DBC) device, produced by Meditrack. Then she continued exercises at home. Respiratory system function was analyzed with use of SpiroPro electronic spirometer (Jaeger) and the strength of respiratory muscles with use of portable digital pressure meter equipped with the Omega PX 25 ± 35 kPa pressure transducer. Range of movement of the spine was examined with Rippstein V plurimeter, angle of apical trunk rotation (ATR) with the Bunnell scoliometer. Measurement was performed 4 times: before treatment, after one week and 3 weeks after the beginning of the treatment and 3 months after finalization of the treatment period. Examination showed that DoboMed medical care treatment, manual therapy and use of DBC device in period of 3 weeks caused improvement of respiratory parameters (MIP - maximal inspiration pressure by 6.7%; MEP - maximal expiratory pressure by 12.6%, PEF - peak expiratory flow by 16.1%). Spinal range of lateral movement and angle of apical trunk rotation has also improved. In short term treatment, the manual therapy aided with DBC system has improved the respiratory parameters and trunk morphology values. Such a composition of various physiotherapy methods can help to conduct further specialized exercises of DoboMed method.
Cortical drive to breathe in amyotrophic lateral sclerosis: a dyspnoea-worsening defence?
Georges, Marjolaine; Morawiec, Elise; Raux, Mathieu; Gonzalez-Bermejo, Jésus; Pradat, Pierre-François; Similowski, Thomas; Morélot-Panzini, Capucine
2016-06-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing diaphragm weakness that can be partially compensated by inspiratory neck muscle recruitment. This disappears during sleep, which is compatible with a cortical contribution to the drive to breathe. We hypothesised that ALS patients with respiratory failure exhibit respiratory-related cortical activity, relieved by noninvasive ventilation (NIV) and related to dyspnoea.We studied 14 ALS patients with respiratory failure. Electroencephalographic recordings (EEGs) and electromyographic recordings of inspiratory neck muscles were performed during spontaneous breathing and NIV. Dyspnoea was evaluated using the Multidimensional Dyspnea Profile.Eight patients exhibited slow EEG negativities preceding inspiration (pre-inspiratory potentials) during spontaneous breathing. Pre-inspiratory potentials were attenuated during NIV (p=0.04). Patients without pre-inspiratory potentials presented more advanced forms of ALS and more severe respiratory impairment, but less severe dyspnoea. Patients with pre-inspiratory potentials had stronger inspiratory neck muscle activation and more severe dyspnoea during spontaneous breathing.ALS-related diaphragm weakness can engage cortical resources to augment the neural drive to breathe. This might reflect a compensatory mechanism, with the intensity of dyspnoea a negative consequence. Disease progression and the corresponding neural loss could abolish this phenomenon. A putative cognitive cost should be investigated. Copyright ©ERS 2016.
On the respiratory flow in the cuttlefish sepia officinalis.
Bone, Q; Brown, E; Travers, G
1994-09-01
The respiratory flow of water over the gills of the cuttlefish Sepia officinalis at rest is produced by the alternate activity of the radial muscles of the mantle and the musculature of the collar flaps; mantle circular muscle fibres are not involved. Inspiration takes place as the radial fibres contract, thinning the mantle and expanding the mantle cavity. The rise in mantle cavity pressure (up to 0.15 kPa), expelling water via the siphon during expiration, is brought about by inward movement of the collar flaps and (probably) mainly by elastic recoil of the mantle connective tissue network 'wound up' by radial fibre contraction during inspiration. Sepia also shows a second respiratory pattern, in which mantle cavity pressures during expiration are greater (up to 0.25 kPa). Here, the mantle circular fibres are involved, as they are during the large pressure transients (up to 10 kPa) seen during escape jetting. Active contraction of the muscles of the collar flaps is seen in all three patterns of expulsion of water from the mantle cavity, electrical activity increasing with increasing mantle cavity pressures. Respiratory expiration in the resting squid Loligo vulgaris is probably driven as in Sepia, whereas in the resting octopus Eledone cirrhosa, the mantle circular musculature is active during expiration. The significance of these observations is discussed.
High-volume resistance training session acutely diminishes respiratory muscle strength.
Hackett, Daniel A; Johnson, Nathan A; Chow, Chin-Moi
2012-01-01
This study investigated the effect of a high-volume compared to a low-volume resistance training session on maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). Twenty male subjects with resistance training experience (6.2 ± 3.2 y), in a crossover trial, completed two resistance training protocols (high-volume: 5 sets per exercise; low-volume: 2 sets per exercise) and a control session (no exercise) on 3 separate occasions. MIP and MEP decreased by 13.6% (p < 0.01) and 14.7% (p < 0.01) respectively from pre-session MIP and MEP, following the high-volume session. MIP and MEP were unaffected following the low-volume or the control sessions. MIP returned to pre-session values after 40 minutes, whereas MEP remained significantly reduced after 60 minutes post-session by 9.2% compared to pre-session (p < 0.01). The findings suggest that the high-volume session significantly decreased MIP and MEP post-session, implicating a substantially increased demand on the respiratory muscles and that adequate recovery is mandatory following this mode of training. Key pointsRespiratory muscular strength performance is acutely diminished following a high-volume whole-body resistance training session.Greater ventilatory requirements and generation of IAP during the high-volume resistance training session may have contributed to the increased demand placed on the respiratory muscles.Protracted return of respiratory muscular strength performance to baseline levels may have implications for individuals prior to engaging in subsequent exercise bouts.
Martín-Salvador, Adelina; Colodro-Amores, Gloria; Torres-Sánchez, Irene; Moreno-Ramírez, M Paz; Cabrera-Martos, Irene; Valenza, Marie Carmen
2016-04-01
Respiratory infections involve not only hospitalization due to pneumonia, but also acute exacerbations of COPD (AECOPD). The objective of the present study was to evaluate the effectiveness of a physical therapy intervention during hospitalization in patients admitted due to community-acquired pneumonia (CAP) and AECOPD. Randomized clinical trial, 44 patients were randomized into 2 groups: a control group which received standard medical therapy (oxygen therapy and pharmacotherapy) and an experimental group that received standard treatment and a physical therapy intervention (breathing exercises, electrostimulation, exercises with elastic bands and relaxation). Between-groups analysis showed that after the intervention (experimental vs. control) significant differences were found in perceived dyspnoea (P=.041), and right and left quadriceps muscle strength (P=.008 and P=.010, respectively). In addition, the subscale of "domestic activities" of the functional ability related to respiratory symptoms questionnaire showed significant differences (P=.036). A physical therapy intervention during hospitalization in patients with AECOPD and CAP can generate skeletal muscle level gains that exceed the deterioration caused by immobilization during hospitalization. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Peripheral muscle composition and health status in patients with COPD.
Montes de Oca, María; Torres, Sonia H; Gonzalez, Yudith; Romero, Elizabeth; Hernández, Noelina; Mata, Abdón; Tálamo, Carlos
2006-10-01
The present study evaluated the relationship between health status (HS) and peripheral muscle histochemical characteristics in chronic obstructive pulmonary disease (COPD), and identified selected independent respiratory and extrapulmonary variables that predicted the HS of these patients. Cross-sectional study. Outpatient respiratory clinic of a university hospital. We studied 29 patients (63+/-10 yrs) with a forced expiratory volume in 1s (FEV1) of 39+/-12%. All patients underwent vastus lateralis muscle biopsies for histochemical analysis. They also had spirometry, arterial blood gas analysis, body mass index (BMI), dyspnea determined with the MMRC scale and responded to the St. George's Respiratory Questionnaire (SGRQ) for HS assessment. SGRQ total score correlated with fiber type distribution. A stepwise multiple regression identified three independent predictors of SGRQ total score: type I fiber proportion, BMI, and FEV1; r = 0.78 and r2 = 0.61. These results indicate that impaired HS in COPD is related to the peripheral muscle changes characterized by less type I fibers proportion. The findings argue in favor of an important contribution of the systemic consequences on the HS in COPD independently from the airflow limitation severity, and help to explain the observation of the poor correlation between the degree of airflow limitation and SGRQ total score.
A conceptual disease model for adult Pompe disease.
Kanters, Tim A; Redekop, W Ken; Rutten-Van Mölken, Maureen P M H; Kruijshaar, Michelle E; Güngör, Deniz; van der Ploeg, Ans T; Hakkaart, Leona
2015-09-15
Studies in orphan diseases are, by nature, confronted with small patient populations, meaning that randomized controlled trials will have limited statistical power. In order to estimate the effectiveness of treatments in orphan diseases and extrapolate effects into the future, alternative models might be needed. The purpose of this study is to develop a conceptual disease model for Pompe disease in adults (an orphan disease). This conceptual model describes the associations between the most important levels of health concepts for Pompe disease in adults, from biological parameters via physiological parameters, symptoms and functional indicators to health perceptions and final health outcomes as measured in terms of health-related quality of life. The structure of the Wilson-Cleary health outcomes model was used as a blueprint, and filled with clinically relevant aspects for Pompe disease based on literature and expert opinion. Multiple observations per patient from a Dutch cohort study in untreated patients were used to quantify the relationships between the different levels of health concepts in the model by means of regression analyses. Enzyme activity, muscle strength, respiratory function, fatigue, level of handicap, general health perceptions, mental and physical component scales and utility described the different levels of health concepts in the Wilson-Cleary model for Pompe disease. Regression analyses showed that functional status was affected by fatigue, muscle strength and respiratory function. Health perceptions were affected by handicap. In turn, self-reported quality of life was affected by health perceptions. We conceptualized a disease model that incorporated the mechanisms believed to be responsible for impaired quality of life in Pompe disease. The model provides a comprehensive overview of various aspects of Pompe disease in adults, which can be useful for both clinicians and policymakers to support their multi-faceted decision making.
Vitamin D deficiency in patients with neuromuscular diseases with chronic respiratory failure.
Badireddi, Sridhar; Bercher, Anita J; Holder, Jason B; Mireles-Cabodevila, Eduardo
2014-07-01
The prevalence and clinical implications of vitamin D deficiency have never been studied in patients with underlying neuromuscular diseases complicated with chronic respiratory failure. The aim of this study is to demonstrate the prevalence of vitamin D deficiency, its relationship with other bone markers, and mode of nutrition. Serum 25-hydroxyvitamin D (25[OH]D) levels along with calcium, serum albumin, and phosphorus levels were obtained from 57 patients with chronic respiratory failure due to underlying neuromuscular diseases. These levels were obtained during their first visit to a chronic respiratory diseases clinic. Data with regard to nutrition, respiratory muscle function, and level of mobility were also obtained at the same time. Seventy-five percent of patients had serum 25(OH)D levels ≤ 30 ng/mL. There is a negative correlation between parathyroid hormone and 25(OH)D levels (P = .006) and corrected calcium levels (P = .066). Serum 25(OH)D levels varied with the mode of nutrition. Patients on enteral nutrition had the highest serum levels of 25(OH)D, whereas combined oral and tube feeds had the lowest 25(OH)D levels (P = .006). Low serum 25(OH)D levels are highly prevalent in patients with neuromuscular disease and chronic respiratory failure. The route of nutrition has an impact on these levels. © 2013 American Society for Parenteral and Enteral Nutrition.
Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms.
Phillips, William D; Vincent, Angela
2016-01-01
Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.
Falls in patients with chronic obstructive pulmonary disease: a call for further research
Roig, M; Eng, JJ; MacIntyre, DL; Road, JD; Reid, WD.
2012-01-01
Summary Chronic obstructive pulmonary disease (COPD) is a respiratory disease that results in airflow limitation and respiratory distress. The effects of COPD, however, are not exclusively limited to respiratory function and people with COPD face many non-respiratory manifestations that affect both function and mobility. Deficits in function and mobility have been associated with an increased risk for falling in older adults. The purpose of this study was to provide a theoretical framework to identify risks factors for falls in people with COPD. We have analyzed the literature to identify possible relationships between pathophysiological changes observed in COPD and common risk factors for falls. Well-established fall risk factors in people with COPD include lower limb muscle weakness and impaired activities of daily living. Other intrinsic risk factors such as gait and balance deficits, nutritional depletion, malnutrition, depression, cognitive impairments and medications are possible risk factors that need to be confirmed with more studies. There is no evidence that visual deficits are common in COPD. The role that precipitating factors such as syncope and postural hypotension may have on fall risk is unclear. Exacerbations and dyspnea do not have a precipitating effect on fall risk but they contribute to the progressive physical deterioration that may theoretically increase the risk for falls. While these results suggest that people with COPD might have an increased susceptibility to fall compared to their healthy peers, further research is needed to determine the prevalence of falls and specific risk factors for falls in people living with COPD. PMID:19419852
Effect of Rho-kinase inhibition on complexity of breathing pattern in a guinea pig model of asthma
Pazhoohan, Saeed; Javan, Mohammad; Hajizadeh, Sohrab
2017-01-01
Asthma represents an episodic and fluctuating behavior characterized with decreased complexity of respiratory dynamics. Several evidence indicate that asthma severity or control is associated with alteration in variability of lung function. The pathophysiological basis of alteration in complexity of breathing pattern in asthma has remained poorly understood. Regarding the point that Rho-kinase is involved in pathophysiology of asthma, in present study we investigated the effect of Rho-kinase inhibition on complexity of respiratory dynamics in a guinea pig model of asthma. Male Dunkin Hartley guinea pigs were exposed to 12 series of inhalations with ovalbumin or saline. Animals were treated by the Rho-kinase inhibitor Y-27632 (1mM aerosols) prior to each allergen challenge. We recorded respiration of conscious animals using whole-body plethysmography. Exposure to ovalbumin induced lung inflammation, airway hyperresponsiveness and remodeling including goblet cell hyperplasia, increase in the thickness of airways smooth muscles and subepithelial collagen deposition. Complexity analysis of respiratory dynamics revealed a dramatic decrease in irregularity of respiratory rhythm representing less complexity in asthmatic guinea pigs. Inhibition of Rho-kinase reduced the airway remodeling and hyperreponsiveness, but had no significant effect on lung inflammation and complexity of respiratory dynamics in asthmatic animals. It seems that airway hyperresponsiveness and remodeling do not significantly affect the complexity of respiratory dynamics. Our results suggest that inflammation might be the probable cause of shift in the respiratory dynamics away from the normal fluctuation in asthma. PMID:29088265
Chacon-Cabrera, Alba; Mateu-Jimenez, Mercè; Langohr, Klaus; Fermoselle, Clara; García-Arumí, Elena; Andreu, Antoni L; Yelamos, Jose; Barreiro, Esther
2017-12-01
Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1 -/- ) and Parp-2 -/- mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1 -/- , and Parp-2 -/- ), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1 -/- and Parp-2 -/- cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention. © 2017 Wiley Periodicals, Inc.
Changes in Physiology before, during, and after Yawning
Corey, Timothy P.; Shoup-Knox, Melanie L.; Gordis, Elana B.; Gallup, Gordon G.
2011-01-01
The ultimate function of yawning continues to be debated. Here, we examine physiological measurements taken before, during, and after yawns in humans, in an attempt to identify key proximate mechanisms associated with this behavior. In two separate studies we measured changes in heart rate, lung volume, eye closure, skin conductance, ear pulse, respiratory sinus arrhythmia, and respiratory rate. Data were depicted from 75 s before and after yawns, and analyzed at baseline, during, and immediately following yawns. Increases in heart rate, lung volume, and eye muscle tension were observed during or immediately following yawning. Patterns of physiological changes during yawning were then compared to data from non-yawning deep inhalations. In one study, respiration period increased following the execution of a yawn. Much of the variance in physiology surrounding yawning was specific to the yawning event. This was not the case for deep inhalation. We consider our findings in light of various hypotheses about the function of yawning and conclude that they are most consistent with the brain cooling hypothesis. PMID:22319494
Effect of hyperinflation on inspiratory function of the diaphragm.
Minh, V D; Dolan, G F; Konopka, R F; Moser, K M
1976-01-01
The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.
Supplemental Carbon Dioxide Stabilizes the Upper Airway in Volunteers Anesthetized with Propofol.
Ruscic, Katarina Jennifer; Bøgh Stokholm, Janne; Patlak, Johann; Deng, Hao; Simons, Jeroen Cedric Peter; Houle, Timothy; Peters, Jürgen; Eikermann, Matthias
2018-05-10
Propofol impairs upper airway dilator muscle tone and increases upper airway collapsibility. Preclinical studies show that carbon dioxide decreases propofol-mediated respiratory depression. We studied whether elevation of end-tidal carbon dioxide (PETCO2) via carbon dioxide insufflation reverses the airway collapsibility (primary hypothesis) and impaired genioglossus muscle electromyogram that accompany propofol anesthesia. We present a prespecified, secondary analysis of previously published experiments in 12 volunteers breathing via a high-flow respiratory circuit used to control upper airway pressure under propofol anesthesia at two levels, with the deep level titrated to suppression of motor response. Ventilation, mask pressure, negative pharyngeal pressure, upper airway closing pressure, genioglossus electromyogram, bispectral index, and change in end-expiratory lung volume were measured as a function of elevation of PETCO2 above baseline and depth of propofol anesthesia. PETCO2 augmentation dose-dependently lowered upper airway closing pressure with a decrease of 3.1 cm H2O (95% CI, 2.2 to 3.9; P < 0.001) under deep anesthesia, indicating improved upper airway stability. In parallel, the phasic genioglossus electromyogram increased by 28% (23 to 34; P < 0.001). We found that genioglossus electromyogram activity was a significant modifier of the effect of PETCO2 elevation on closing pressure (P = 0.005 for interaction term). Upper airway collapsibility induced by propofol anesthesia can be reversed in a dose-dependent manner by insufflation of supplemental carbon dioxide. This effect is at least partly mediated by increased genioglossus muscle activity.
Tsujisaka, Akiko; Haraki, Shingo; Nonoue, Shigeru; Mikami, Akira; Adachi, Hiroyoshi; Mizumori, Takahiro; Yatani, Hirofumi; Yoshida, Atsushi; Kato, Takafumi
2018-02-21
Concomitant occurrence of respiratory events can be often overlooked in the clinical practice of SB. This study assessed physiological characteristics of rhythmic masticatory muscle activity (RMMA) and concomitant respiratory events in young SB subjects asymptomatic to obstructive sleep apnea (OSA). Twenty-two subjects (age: 24.1±1.9years; F 8: M 14; BMI: 20.2±1.9kg/m 2 ) were polysomnographically diagnosed as moderate-severe SB. Sleep architecture, oromotor (RMMA and non-specific masseter activity [NSMA]) and apnea/hypopnea events were scored. All subjects showed normal sleep architecture whereas 6 exhibited respiratory events at a mild level of OSA. In all subjects, RMMA predominantly occurred in Stage N1+N2 while NSMA occurred in Stage N1+N2 (approximately 60 %) and in Stage R (up to 30 %). Up to 50% of respiratory events were scored in Stage R. RMMA occurred more frequently in close association (e.g., within 10s) with respiratory events in 6 subjects with OSA than those without. The percentage of RMMA occurring closely to respiratory events was positively correlated with apnea-hypopnea index (AHI) in Stage N1+N2 only while that of NSMA was positively correlated with AHI in Stage N1+N2 and Stage R. A sub-analysis in 6 subjects with OSA, RMMA after respiratory events was followed to arousals while those before respiratory events were mostly associated with central apnea. A subpopulation of young SB subjects can show concomitant respiratory events. Further large sample studies are needed to demonstrate that the occurrence of subclinical respiratory events represents a clinical subtype of SB. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Tefera, Tesfaye W.; Borges, Karin
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS. PMID:28119559
Bell, Sarah; Shaw-Dunn, John; Gollee, Henrik; Allan, David B; Fraser, Matthew H; McLean, Alan N
2007-08-01
Patients with tetraplegia often have respiratory complications because of paralysis of the abdominal and intercostal muscles. Functional electrical stimulation (FES) has been used to improve breathing in these patients by applying surface stimulation to the abdominal muscles. We aimed to find the best nerves to stimulate directly to increase tidal volume and make cough more effective. Surface electrodes were placed on a patient's abdominal wall to find the optimum points for surface stimulation. These positions were plotted on a transparent sheet. The abdomino-intercostal nerves were dissected in five male dissecting room cadavers matched for size with the patient. The plastic sheet was then superimposed over each of the dissections to clarify the relationship between optimum surface stimulation points and the underlying nerves. Results show that the optimum surface stimulation points overlie the course of abdomino-intercostal nerves T9, 10, and 11. The success with selecting stimulation points associated with T9, 10, and 11 is probably because of the large mass of abdominal muscle supplied by these nerves. The constant position of the nerves below the ribs makes the intercostal space a possible site for direct stimulation of the abdomino-intercostal nerves.
Fernandes, Shanlley Cristina da Silva; dos Santos, Rafaella Souza; Giovanetti, Erica Albanez; Taniguchi, Corinne; Silva, Cilene Saghabi de Medeiros; Eid, Raquel Afonso Caserta; Timenetsky, Karina Tavares; Carnieli-Cazati, Denise
2016-01-01
ABSTRACT Objective To evaluate the vital capacity after two chest therapy techniques in patients undergoing abdominal surgical. Methods A prospective randomized study carried out with patients admitted to the Intensive Care Unit after abdominal surgery. We checked vital capacity, muscular strength using the Medical Research Council scale, and functionality with the Functional Independence Measure the first time the patient was breathing spontaneously (D1), and also upon discharge from the Intensive Care Unit (Ddis). Between D1 and Ddis, respiratory therapy was carried out according to the randomized group. Results We included 38 patients, 20 randomized to Positive Intermittent Pressure Group and 18 to Volumetric Incentive Spirometer Group. There was no significant gain related to vital capacity of D1 and Ddis of Positive Intermittent Pressure Group (mean 1,410mL±547.2 versus 1,809mL±692.3; p=0.979), as in the Volumetric Incentive Spirometer Group (1,408.3mL±419.1 versus 1,838.8mL±621.3; p=0.889). We observed a significant improvement in vital capacity in D1 (p<0.001) and Ddis (p<0.001) and in the Functional Independence Measure (p<0.001) after respiratory therapy. The vital capacity improvement was not associated with gain of muscle strength. Conclusion Chest therapy, with positive pressure and volumetric incentive spirometer, was effective in improving vital capacity of patients submitted to abdominal surgery. PMID:27462894
Gouspillou, Gilles; Sgarioto, Nicolas; Kapchinsky, Sophia; Purves-Smith, Fennigje; Norris, Brandon; Pion, Charlotte H; Barbat-Artigas, Sébastien; Lemieux, Francois; Taivassalo, Tanja; Morais, José A; Aubertin-Leheudre, Mylène; Hepple, Russell T
2014-04-01
Mitochondrial dysfunction is implicated in skeletal muscle atrophy and dysfunction with aging, with strong support for an increased mitochondrial-mediated apoptosis in sedentary rodent models. Whether this applies to aged human muscle is unknown, nor is it clear whether these changes are caused by sedentary behavior. Thus, we examined mitochondrial function [respiration, reactive oxygen species (ROS) emission, and calcium retention capacity (CRC)] in permeabilized myofibers obtained from vastus lateralis muscle biopsies of healthy physically active young (23.7±2.7 yr; mean±SD) and older (71.2±4.9 yr) men. Although mitochondrial ROS and maximal respiratory capacity were unaffected, the acceptor control ratio was reduced by 18% with aging, suggesting mild uncoupling of oxidative phosphorylation. CRC was reduced by 50% with aging, indicating sensitization of the mitochondrial permeability transition pore (mPTP) to apoptosis. Consistent with the mPTP sensitization, older muscles showed a 3-fold greater fraction of endonuclease G (a mitochondrial proapoptotic factor)-positive myonuclei. Aged muscles also had lower mitophagic potential, based on a 43% reduction in Parkin to the voltage-dependent anion channel (VDAC) protein ratio. Collectively, these results show that mitochondrial-mediated apoptotic signaling is increased in older human muscle and suggest that accumulation of dysfunctional mitochondria with exaggerated apoptotic sensitivity is due to impaired mitophagy.
[An update on myasthenia gravis].
Martínez Torre, S; Gómez Molinero, I; Martínez Girón, R
2018-03-16
Myasthenia gravis is one of the most common disorders that affect neuromuscular transmission. It is currently one of the most understood and characterised autoimmune disorders Its typical symptoms are fluctuating weakness and fatigue that affects a combination of ocular muscles, bulbar functions, as well as limb and respiratory muscles, which are due to an immune attack against the postsynaptic membrane of the neuromuscular junction. The diagnosis of myasthenia gravis is based on clinical and serological test. It is a disease that can be effectively controlled with the current therapeutic lines, even achieving a complete remission. An update of this interesting disorder is now presented. Copyright © 2018 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
Mazzoleni, Stefano; Montagnani, Giulia; Vagheggini, Guido; Buono, Lorenzo; Moretti, Francesca; Dario, Paolo; Ambrosino, Nicolino
2014-10-01
To evaluate the effectiveness of an interactive videogame (IV) system in addition to a supervised pulmonary rehabilitation programme (PRP) in patients with chronic respiratory diseases. Randomised Controlled Trial comparing standard PRP (20 patients, control group: CG), and PRP + sessions of interactive videogame-aided exercises (20 patients, experimental group: EG). Lung and respiratory muscle function, arterial blood gases, exercise capacity, dyspnoea, health status and health-related quality of life (HRQL) and emotional response were measured before and after PRP. A questionnaire on acceptability of the PRP was administered. Exercise capacity, dyspnoea and HRQL significantly improved in both groups after the PRP, whereas the EG showed a greater improvement in six-minute walk test and transitional dyspnoea index than the CG. No difference in psychological status or acceptability of PRP was observed between the two groups. The addition of IV training was more effective for improving some parameters of exercise tolerance and dyspnoea, although did not result in better psychological status nor it was better accepted than the standard PRP in patients with chronic respiratory diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ontogeny and function of the fifth limb in Cypridocopain ostracods.
Kaji, Tomonari
2010-08-01
The exoskeleton of arthropods undergoes reformation at every molting. Accordingly, external morphology can metamorphose through molting. In some crustaceans, the function of appendages is modified through ontogeny. These morphological modifications require accordant modification of the correlation between different body parts because the morphological function depends on the combined correlation between different parts. In the case of crustacean morphology, exoskeleton and muscles are correlated to each other. The functional morphology of the fifth limb of cypridoid ostracods transforms from "walking leg + mouthparts (+ possibly respiratory parts)" to "mouthparts + respiratory parts + grasping hook (in males only)" through ontogeny. In this study, the three-dimensional structures of the exoskeleton and muscular systems were observed by confocal laser-scanning microscopy in some species of suborder Cypridocopina. The muscular system is reportedly not changed by the ontogeny of appendages in females, but it does change in males. Furthermore, regional cell proliferation, which was detected previously, represented the causal factor of exoskeletal modification. I therefore conclude that the enlarged endite in the female fifth limb is produced by exoskeletal modification based on regional cell proliferation, rather than by a change in the muscular system. In contrast, modification in the male requires a change in the muscular system in addition to exoskeletal modification.
Trewin, Adam J.; Levinger, Itamar; Parker, Lewan; Shaw, Christopher S.; Serpiello, Fabio R.; Anderson, Mitchell J.; McConell, Glenn K.; Hare, David L.
2017-01-01
Obesity, sedentary lifestyle and aging are associated with mitochondrial dysfunction and impaired insulin sensitivity. Acute exercise increases insulin sensitivity in skeletal muscle; however, whether mitochondria are involved in these processes remains unclear. The aim of this study was to investigate the effects of insulin stimulation at rest and after acute exercise on skeletal muscle mitochondrial respiratory function (JO2) and hydrogen peroxide emission (JH2O2), and the associations with insulin sensitivity in obese, sedentary men. Nine men (means ± SD: 57 ± 6 years; BMI 33 ± 5 kg.m2) underwent hyperinsulinemic-euglycemic clamps in two separate trials 1–3 weeks apart: one under resting conditions, and another 1 hour after high-intensity exercise (4x4 min cycling at 95% HRpeak). Muscle biopsies were obtained at baseline, and pre/post clamp to measure JO2 with high-resolution respirometry and JH2O2 via Amplex UltraRed from permeabilized fibers. Post-exercise, both JO2 and JH2O2 during ADP stimulated state-3/OXPHOS respiration were lower compared to baseline (P<0.05), but not after subsequent insulin stimulation. JH2O2 was lower post-exercise and after subsequent insulin stimulation compared to insulin stimulation in the rest trial during succinate supported state-4/leak respiration (P<0.05). In contrast, JH2O2 increased during complex-I supported leak respiration with insulin after exercise compared with resting conditions (P<0.05). Resting insulin sensitivity and JH2O2 during complex-I leak respiration were positively correlated (r = 0.77, P<0.05). We conclude that in obese, older and sedentary men, acute exercise modifies skeletal muscle mitochondrial respiration and H2O2 emission responses to hyperinsulinemia in a respiratory state-specific manner, which may have implications for metabolic diseases involving insulin resistance. PMID:29161316
Reilly, Beau D; Hickey, Anthony J R; Cramp, Rebecca L; Franklin, Craig E
2014-04-01
Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility, aestivating animals exhibit little skeletal muscle atrophy compared with artificially immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After 4 months of aestivation, C. alboguttata had significantly depressed whole-body metabolism by ~70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely to reflect those in vivo. The percentage ROS released per O2 molecule consumed was also ~94% less at these concentrations, indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal.
Respiratory muscle specific warm-up and elite swimming performance.
Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E
2014-05-01
Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, p<0.01) and the swim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.
Fukuda, H
1975-06-01
The following conclusions may be drawn from the results in this work. The respiratory cycles are formed by the neuronal machinery in the reticular formation under the posterior part of the vagal motor nucleus. The motor neurones or the neuronal networks composing the motor nucleus of the respiratory muscles tonically discharge the action potentials, when the neurones or the networks are released from the inhibitory influences of the interneurones connecting the neuronal machinery to the motor neurones. Furthermore, the interneurones probably generate the tonic discharges after removing the inhibitory influences of the other interneurones or the neuronal machinery on them. A reflex mouth closing is elicited by a mechanical stimulus applying on the upper lip. The motor neurones of the m. adductor mandibulae are activated via only one synapse in the reflex. The reflex action potentials recorded from the motor nerve reduce in amplitude at the resting phase of the nerve in the respiratory cycles. These results suggest that the respiratory motor neurones are by nature spontaneous generators of the tonic action potentials and, in the time of the normal breathing, the tonic activity is interrupted by an inhibitory influence of the neuronal machinery generating the respiratory cycles.
Bastedo, Timothy; Chan, Erin; Park, Eileen; Liu, Hattie; Horner, Richard L
2009-10-01
Histamine neurons comprise a major component of the aminergic arousal system and significantly influence sleep-wake states, with antihistamines widely used as sedative hypnotics. Unlike the serotonergic and noradrenergic components of this arousal system, however, the role of histamine in the central control of respiratory motor activity has not been determined. The aims of this study were to characterize the effects of histamine receptor agonists and antagonists at the hypoglossal motor pool on genioglossus muscle activity across sleep and awake states, and also determine if histamine contributes an endogenous excitatory drive to modulate hypoglossal motor outflow to genioglossus muscle. Thirty-three rats were implanted with electroencephalogram and neck electrodes to record sleep-wake states, and genioglossus and diaphragm electrodes for respiratory muscle recordings. Microdialysis probes were inserted into the hypoglossal motor nucleus. Histamine at the hypoglossal motor nucleus significantly increased tonic genioglossus muscle activity in wakefulness, non-REM sleep and REM sleep. The activating effects of histamine on genioglossus muscle activity also occurred with a histamine type-1 (H1) but not H2 receptor agonist. However, H1 receptor antagonism at the hypoglossal motor nucleus did not decrease genioglossus muscle activity in wakefulness or sleep. The results suggest that histamine at the hypoglossal motor pool increases genioglossus muscle activity in freely behaving rats in wakefulness, non-REM, and REM sleep via an H1 receptor mechanism.
Zhang, Xianming; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Du, Juan; Chen, Rongchang
2016-01-01
It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS. Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment. For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1). Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.
Influence of inspiratory resistive loading on expiratory muscle fatigue in healthy humans.
Peters, Carli M; Welch, Joseph F; Dominelli, Paolo B; Molgat-Seon, Yannick; Romer, Lee M; McKenzie, Donald C; Sheel, A William
2017-09-01
What is the central question of this study? This study is the first to measure objectively both inspiratory and expiratory muscle fatigue after inspiratory resistive loading to determine whether the expiratory muscles are activated to the point of fatigue when specifically loading the inspiratory muscles. What is the main finding and its importance? The absence of abdominal muscle fatigue suggests that future studies attempting to understand the neural and circulatory consequences of diaphragm fatigue can use inspiratory resistive loading without considering the confounding effects of abdominal muscle fatigue. Expiratory resistive loading elicits inspiratory as well as expiratory muscle fatigue, suggesting parallel coactivation of the inspiratory muscles during expiration. It is unknown whether the expiratory muscles are likewise coactivated to the point of fatigue during inspiratory resistive loading (IRL). The purpose of this study was to determine whether IRL elicits expiratory as well as inspiratory muscle fatigue. Healthy male subjects (n = 9) underwent isocapnic IRL (60% maximal inspiratory pressure, 15 breaths min -1 , 0.7 inspiratory duty cycle) to task failure. Abdominal and diaphragm contractile function was assessed at baseline and at 3, 15 and 30 min post-IRL by measuring gastric twitch pressure (P ga,tw ) and transdiaphragmatic twitch pressure (P di,tw ) in response to potentiated magnetic stimulation of the thoracic and phrenic nerves, respectively. Fatigue was defined as a significant reduction from baseline in P ga,tw or P di,tw . Throughout IRL, there was a time-dependent increase in cardiac frequency and mean arterial blood pressure, suggesting activation of the respiratory muscle metaboreflex. The P di,tw was significantly lower than baseline (34.3 ± 9.6 cmH 2 O) at 3 (23.2 ± 5.7 cmH 2 O, P < 0.001), 15 (24.2 ± 5.1 cmH 2 O, P < 0.001) and 30 min post-IRL (26.3 ± 6.0 cmH 2 O, P < 0.001). The P ga,tw was not significantly different from baseline (37.6 ± 17.1 cmH 2 O) at 3 (36.5 ± 14.6 cmH 2 O), 15 (33.7 ± 12.4 cmH 2 O) and 30 min post-IRL (32.9 ± 11.3 cmH 2 O). Inspiratory resistive loading elicits objective evidence of diaphragm, but not abdominal, muscle fatigue. Agonist-antagonist interactions for the respiratory muscles appear to be more important during expiratory versus inspiratory loading. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
State-dependent and reflex drives to the upper airway: basic physiology with clinical implications
Hughes, Stuart W.; Malhotra, Atul
2013-01-01
The root cause of the most common and serious of the sleep disorders is impairment of breathing, and a number of factors predispose a particular individual to hypoventilation during sleep. In turn, obstructive hypopneas and apneas are the most common of the sleep-related respiratory problems and are caused by dysfunction of the upper airway as a conduit for airflow. The overarching principle that underpins the full spectrum of clinical sleep-related breathing disorders is that the sleeping brain modifies respiratory muscle activity and control mechanisms and diminishes the ability to respond to respiratory distress. Depression of upper airway muscle activity and reflex responses, and suppression of arousal (i.e., “waking-up”) responses to respiratory disturbance, can also occur with commonly used sedating agents (e.g., hypnotics and anesthetics). Growing evidence indicates that the sometimes critical problems of sleep and sedation-induced depression of breathing and arousal responses may be working through common brain pathways acting on common cellular mechanisms. To identify these state-dependent pathways and reflex mechanisms, as they affect the upper airway, is the focus of this paper. Major emphasis is on the synthesis of established and recent findings. In particular, we specifically focus on 1) the recently defined mechanism of genioglossus muscle inhibition in rapid-eye-movement sleep; 2) convergence of diverse neurotransmitters and signaling pathways onto one root mechanism that may explain pharyngeal motor suppression in sleep and drug-induced brain sedation; 3) the lateral reticular formation as a key hub of respiratory and reflex drives to the upper airway. PMID:23970535
REV-ERB and ROR: therapeutic targets for treating myopathies
NASA Astrophysics Data System (ADS)
Welch, Ryan D.; Flaveny, Colin A.
2017-08-01
Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.
Heyland, Daren K; Stapleton, Renee D; Mourtzakis, Marina; Hough, Catherine L; Morris, Peter; Deutz, Nicolaas E; Colantuoni, Elizabeth; Day, Andrew; Prado, Carla M; Needham, Dale M
2016-10-01
Survivors of critical illness commonly experience neuromuscular abnormalities, including muscle weakness known as ICU-acquired weakness (ICU-AW). ICU-AW is associated with delayed weaning from mechanical ventilation, extended ICU and hospital stays, more healthcare-related hospital costs, a higher risk of death, and impaired physical functioning and quality of life in the months after ICU admission. These observations speak to the importance of developing new strategies to aid in the physical recovery of acute respiratory failure patients. We posit that to maintain optimal muscle mass, strength and physical function, the combination of nutrition and exercise may have the greatest impact on physical recovery of survivors of critical illness. Randomized trials testing this and related hypotheses are needed. We discussed key methodological issues and proposed a common evaluation framework to stimulate work in this area and standardize our approach to outcome assessments across future studies. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Ventilatory Dysfunction in Parkinson’s Disease
Baille, Guillaume; De Jesus, Anna Maria; Perez, Thierry; Devos, David; Dujardin, Kathy; Charley, Christelle Monaca; Defebvre, Luc; Moreau, Caroline
2016-01-01
In contrast to some other neurodegenerative diseases, little is known about ventilatory dysfunction in Parkinson’s disease (PD). To assess the spectrum of ventilation disorders in PD, we searched for and reviewed studies of dyspnea, lung volumes, respiratory muscle function, sleep breathing disorders and the response to hypoxemia in PD. Among the studies, we identified some limitations: (i) small study populations (mainly composed of patients with advanced PD), (ii) the absence of long-term follow-up and (iii) the absence of functional evaluations under “off-drug” conditions. Although there are many reports of abnormal spirometry data in PD (mainly related to impairment of the inspiratory muscles), little is known about hypoventilation in PD. We conclude that ventilatory dysfunction in PD has been poorly studied and little is known about its frequency and clinical relevance. Hence, there is a need to characterize the different phenotypes of ventilation disorders in PD, study their relationships with disease progression and assess their prognostic value. PMID:27314755
Microvascular oxygen partial pressure during hyperbaric oxygen in diabetic rat skeletal muscle.
Yamakoshi, Kohei; Yagishita, Kazuyoshi; Tsuchimochi, Hirotsugu; Inagaki, Tadakatsu; Shirai, Mikiyasu; Poole, David C; Kano, Yutaka
2015-12-15
Hyperbaric oxygen (HBO) is a major therapeutic treatment for ischemic ulcerations that perforate skin and underlying muscle in diabetic patients. These lesions do not heal effectively, in part, because of the hypoxic microvascular O2 partial pressures (PmvO2 ) resulting from diabetes-induced cardiovascular dysfunction, which alters the dynamic balance between O2 delivery (Q̇o2) and utilization (V̇o2) rates. We tested the hypothesis that HBO in diabetic muscle would exacerbate the hyperoxic PmvO2 dynamics due, in part, to a reduction or slowing of the cardiovascular, sympathetic nervous, and respiratory system responses to acute HBO exposure. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (control) groups. A small animal hyperbaric chamber was pressurized with oxygen (100% O2) to 3.0 atmospheres absolute (ATA) at 0.2 ATA/min. Phosphorescence quenching techniques were used to measure PmvO2 in tibialis anterior muscle of anesthetized rats during HBO. Lumbar sympathetic nerve activity (LSNA), heart rate (HR), and respiratory rate (RR) were measured electrophysiologically. During the normobaric hyperoxia and HBO, DIA tibialis anterior PmvO2 increased faster (mean response time, CONT 78 ± 8, DIA 55 ± 8 s, P < 0.05) than CONT. Subsequently, PmvO2 remained elevated at similar levels in CONT and DIA muscles until normobaric normoxic recovery where the DIA PmvO2 retained its hyperoxic level longer than CONT. Sympathetic nervous system and cardiac and respiratory responses to HBO were slower in DIA vs. CONT. Specifically the mean response times for RR (CONT: 6 ± 1 s, DIA: 29 ± 4 s, P < 0.05), HR (CONT: 16 ± 1 s, DIA: 45 ± 5 s, P < 0.05), and LSNA (CONT: 140 ± 16 s, DIA: 247 ± 34 s, P < 0.05) were greater following HBO onset in DIA than CONT. HBO treatment increases tibialis anterior muscle PmvO2 more rapidly and for a longer duration in DIA than CONT, but not to a greater level. Whereas respiratory, cardiovascular, and LSNA responses to HBO are profoundly slowed in DIA, only the cardiovascular arm (via HR) may contribute to the muscle vascular incompetence and these faster PmvO2 kinetics. Copyright © 2015 the American Physiological Society.
Sarmento, Antonio; Aliverti, Andrea; Marques, Layana; Pennati, Francesca; Dourado-Júnior, Mario Emílio; Fregonezi, Guilherme; Resqueti, Vanessa
2018-01-01
The relaxation rates and contractile properties of inspiratory muscles are altered with inspiratory muscle weakness and fatigue. This fact plays an important role in neuromuscular disorders patients and had never been extensively studied in amyotrophic lateral sclerosis (ALS). In this cross-sectional study, these parameters were investigated non-invasively through nasal inspiratory sniff pressure test (SNIP) in 39 middle stage spinal onset ALS subjects and compared with 39 healthy controls. ALS patients were also divided into three subgroups according to a decline in their percentage of predicted forced vital capacity (FVC %pred ) as well as a decline in the ALS functional rating scale score and its respiratory subscore (R-subscore) in order to determine the best parameter linked to early respiratory muscle weakness. When compared with healthy subjects, middle stage ALS subjects exhibited a significantly lower ( p < 0.0001) maximum relaxation rate and maximum rate of pressure development (MRPD), as well as a significantly higher ( p < 0.0001) tau (τ), contraction time, and half-relaxation time. The results from receiver operating characteristic curves showed that MRPD (AUC 0.735, p < 0.001) and FVC %pred (AUC 0.749, p = 0.009) were the best discriminator parameters between ALS patients with ≤30 and >30 points in the ALS functional rating scale. In addition, 1/2RT (AUC 0.720, p = 0.01), FVC %pred (AUC 0.700, p = 0.03), τ (AUC 0.824, p < 0.0001), and MRPD (AUC 0.721, p = 0.01) were the parameters more sensitive in detecting a fall of three points in the R-subscore. On the other hand, MRPD (AUC 0.781, p < 0.001), τ (AUC 0.794, p = 0.0001), and percentage of predicted of SNIP (AUC 0.769, p = 0.002) were the parameters able to detect a fall in 30% of the FVC %pred in middle stage ALS patients. The contractile properties and relaxation rates of the diaphragm are altered in middle stage spinal onset ALS when compared with healthy subjects. These parameters are able to discriminate between those middle stage ALS subjects with early decline in inspiratory muscle function and those who not.
Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses.
Singal, Ashish; Mattison, Lars M; Soule, Charles L; Ballard, John R; Rudie, Eric N; Cressman, Erik N K; Iaizzo, Paul A
2018-03-28
Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.
Work, exercise, and space flight. 2: Modification of adaptation by exercise (exercise prescription)
NASA Technical Reports Server (NTRS)
Thornton, William
1989-01-01
The fundamentals of exercise theory on earth must be rigorously understood and applied to prevent adaptation to long periods of weightlessness. Locomotor activity, not weight, determines the capacity or condition of the largest muscles and bones in the body and usually also determines cardio-respiratory capacity. Absence of this activity results in rapid atrophy of muscle, bone, and cardio-respiratory capacity. Upper body muscle and bone are less affected depending upon the individual's usual, or 1-g, activities. Methodology is available to prevent these changes but space operations demand that it be done in the most efficient fashion, i.e., shortest time. At this point in time we can reasonably select the type of exercise and methods of obtaining it, but additional work in 1-g will be required to optimize the time.
Respiratory-related activity in hypoglossal neurons across sleep-waking states in cats.
Richard, C A; Harper, R M
1991-02-22
Activity of behaviorally identified neurons in the hypoglossal nuclei supplying the genioglossal muscles was assessed in intact, unanesthetized cats across sleep-wake states. Nineteen of 37 recorded cells discharged on a breath-by-breath or tonic basis with the respiratory cycle in at least one state. Most respiratory-related cells discharged more slowly during quiet sleep, whereas rates during rapid eye movement sleep were similar to those of waking.
Li, Jie; Zhang, Yao-Bin
2011-02-25
The present study was aimed to investigate the effect of hypoxic training on mitochondrial antioxidants and activities of respiratory chain complexes in mitochondria of skeletal muscle in rats. Forty healthy male Wistar rats were randomized to 5 groups (n=8): living low-training low (LoLo), living high-training high (HiHi), living high-training low (HiLo), living low-training high (LoHi), and living high-exercise high-training low (HiHiLo). All the animals were subjected to 5-week training in normoxic (atmospheric pressure=632 mmHg, altitude of about 1 500 m) or hypoxic environment (atmospheric pressure=493 mmHg, simulated altitude of about 3 500 m). Before exhaustive running, the animals stayed in normoxia for 3 d. Skeletal muscles were prepared immediately after exhaustive running. Muscle mitochondria were extracted by differential centrifugation. Spectrophotometric analysis was used to evaluate activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), malondialdehyde (MDA) level and respiratory chain complex (C) I-III activities in muscle homogenate and mitochondria. Results showed that SOD, GSH-Px, CAT activities and MDA level in skeletal muscle homogenate in HiHi and HiHiLo groups were significantly increased (P<0.05 or P<0.01) compared with those in LoLo group. Muscle mitochondrial MDA level in HiHi and HiHiLo groups was significantly lower (P<0.01), while activities of SOD, GSH-Px and CAT were remarkably higher (P<0.01) than those in LoLo group. Meanwhile, C I-III activities in HiHi and HiHiLo groups were increased significantly (P<0.01), and C II activity in HiLo group also was increased remarkably (P<0.01) compared with those in LoLo group. These results suggest that HiHiLo might be an ideal hypoxic training mode.
Stegemöller, Elizabeth L; Radig, Hollie; Hibbing, Paul; Wingate, Judith; Sapienza, Christine
2017-03-01
Purpose Interventions focused on singing may provide additional benefits to established voice and respiratory therapies, due to their greater emphasis on the respiratory muscle control system in those with Parkinson's disease (PD) progresses. The purpose of this study was to examine if singing can improve voice, respiratory pressure and quality of life (QOL) in persons with PD. Methods This pilot study measured the effects of a singing intervention in 27 participants with PD. Participants were assigned to a high (met twice weekly) or low (met once weekly) dosage group. Voice, respiratory and QOL measures were recorded before and after an 8-week singing intervention. Sessions were led by board-certified music therapists and included a series of vocal and articulation exercises and group singing. Results Both groups demonstrated significant improvements in maximum inspiratory and expiratory pressure, as well as phonation time. While other voice measures improved, they did not reach statistical significance. Voice QOL and whole health QOL also significantly improved. Conclusion These results suggest singing may be a beneficial and engaging treatment choice for improving and maintaining vocal function and respiratory pressure in persons with PD. Implications for Rehabilitation In a small sample, group singing proved beneficial for improving voice and respiratory impairment in persons with Parkinson's disease. Completing group singing one time per week for 8 weeks was as effective as completing group singing two times per week for 8 weeks in persons with Parkinson's disease. Group singing is an effective means of improving overall quality of life in persons with Parkinson's disease.