Science.gov

Sample records for respiratory quinone profiles

  1. Respiratory quinones in Archaea: phylogenetic distribution and application as biomarkers in the marine environment.

    PubMed

    Elling, Felix J; Becker, Kevin W; Könneke, Martin; Schröder, Jan M; Kellermann, Matthias Y; Thomm, Michael; Hinrichs, Kai-Uwe

    2016-02-01

    The distribution of respiratory quinone electron carriers among cultivated organisms provides clues on both the taxonomy of their producers and the redox processes these are mediating. Our study of the quinone inventories of 25 archaeal species belonging to the phyla Eury-, Cren- and Thaumarchaeota facilitates their use as chemotaxonomic markers for ecologically important archaeal clades. Saturated and monounsaturated menaquinones with six isoprenoid units forming the alkyl chain may serve as chemotaxonomic markers for Thaumarchaeota. Other diagnostic biomarkers are thiophene-bearing quinones for Sulfolobales and methanophenazines as functional quinone analogues of the Methanosarcinales. The ubiquity of saturated menaquinones in the Archaea in comparison to Bacteria suggests that these compounds may represent an ancestral and diagnostic feature of the Archaea. Overlap between quinone compositions of distinct thermophilic and halophilic archaea and bacteria may indicate lateral gene transfer. The biomarker potential of thaumarchaeal quinones was exemplarily demonstrated on a water column profile of the Black Sea. Both, thaumarchaeal quinones and membrane lipids showed similar distributions with maxima at the chemocline. Quinone distributions indicate that Thaumarchaeota dominate respiratory activity at a narrow interval in the chemocline, while they contribute only 9% to the microbial biomass at this depth, as determined by membrane lipid analysis.

  2. Quinone

    Integrated Risk Information System (IRIS)

    Quinone ; CASRN 106 - 51 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  3. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  4. Cation transport by the respiratory NADH:quinone oxidoreductase (complex I): facts and hypotheses.

    PubMed

    Steffen, Wojtek; Steuber, Julia

    2013-10-01

    The respiratory complex I (electrogenic NADH:quinone oxidoreductase) has been considered to act exclusively as a H+ pump. This was questioned when the search for the NADH-driven respiratory Na+ pump in Klebsiella pneumoniae initiated by Peter Dimroth led to the discovery of a Na+-translocating complex in this enterobacterium. The 3D structures of complex I from different organisms support the idea that the mechanism of cation transport by complex I involves conformational changes of the membrane-bound NuoL, NuoM and NuoN subunits. In vitro methods to follow Na+ transport were compared with in vivo approaches to test whether complex I, or its individual NuoL, NuoM or NuoN subunits, extrude Na+ from the cytoplasm to the periplasm of bacterial host cells. The truncated NuoL subunit of the Escherichia coli complex I which comprises amino acids 1-369 exhibits Na+ transport activity in vitro. This observation, together with an analysis of putative cation channels in NuoL, suggests that there exists in NuoL at least one continuous pathway for cations lined by amino acid residues from transmembrane segments 3, 4, 5, 7 and 8. Finally, we discuss recent studies on Na+ transport by mitochondrial complex I with respect to its putative role in the cycling of Na+ ions across the inner mitochondrial membrane.

  5. Quinone profiles in lake sediments: Implications for microbial diversity and community structures.

    PubMed

    Hiraishi, Akira; Kato, Kenji

    1999-10-01

    Microbial quinone compositions of sediment mud samples from five different lakes in Japan were studied by spectrochromatography and mass spectrometry. The total quinone content of these samples ranged from 1.97 to 18.0 nmol/g dry weight of sediment, of which a combined fraction of ubiquinones and menaquinones accounted for 42 to 74%. The remaining fraction (26 to 58%) consisted of the photosynthetic quinones, plastoquinones and phylloquinone. The sediment samples produced PQ-9 or Q-8 as the most abundant quinone type regardless of their geographic locations and depths. These results indicate that oxygenic phototrophic microorganisms and Q-8-containing proteobacteria constituted major parts of microbial populations in the lake sediment. In the surface water of the same sampling sites, plastoquinones and phylloquinone occurred in much higher proportions. These findings suggested that the high abundance of oxygenic phototrophs in the sediment muds resulted from their constant movement or sedimentation from the surface water. Numerical analyses of the quinone profiles showed that the microbial communities of the sediment were diverse and different in different lakes but similar to each other in the diversity of bioenergetic modes. Three physiological groups of microbes showing ubiquinone-mediated aerobic respiration, oxygenic photosynthesis, and menaquinone-associated respiration were suggested to inhabit the lake sediments in balance.

  6. Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor

    SciTech Connect

    Hedrick, David B.; Peacock, Aaron; Lovley, Derek; Woodard, Trevor L.; Nevin, Kelly P.; Long, Philip E.; White, David C.

    2009-02-01

    The polar lipid fatty acids, lipopolysaccharide hydroxy-fatty acids, and respiratory quinones of Geobacter metallireducens str. GS-15, Geobacter sulfurreducens str. PCA, and Geobacter bemidjiensis str. Bem are reported. Also, the lipids of G. metallireducens were compared when grown with Fe3+ or nitrate as electron acceptors and G. sulfurreducens with Fe3+ or fumarate. In all experiments, the most abundant polar lipid fatty acids were 14:0, i15:0, 16:1*7c, 16:1*5c, and 16:0; lipopolysaccharide hydroxyfatty acids were dominated by 3oh16:0, 3oh14:0, 9oh16:0, and 10oh16:0; and menaquinone-8 was the most abundant respiratory quinone. Some variation in lipid proWles with strain were observed, but not with electron acceptor.

  7. Differentiation of Gram-Negative, Nonfermentative Bacteria Isolated from Biofilters on the Basis of Fatty Acid Composition, Quinone System, and Physiological Reaction Profiles

    PubMed Central

    Lipski, André; Klatte, Stefan; Bendinger, Bernd; Altendorf, Karlheinz

    1992-01-01

    Gram-negative, nonfermentative bacteria isolated from biofilters for off-gas treatment of animal-rendering-plant emissions were differentiated by whole-cell fatty acid analysis, quinone analysis, and numerical taxonomy based on their physiological reaction profiles. The last system consisted of 60 physiological tests and was arranged as a microtest system on microtitration plates. Based on fatty acid analyses, 31 isolates were separated into six clusters and five single-member clusters. The isolates of two clusters were identified as Alcaligenes faecalis and Pseudomonas diminuta. The remaining nine clusters were characterized by their fatty acid profiles, quinone systems, and physiological reaction profiles. Clusters resulting from fatty acid analyses were compared with those resulting from physiological reaction profiles. Six clusters could be confirmed this way. The efficiency of the physiological test system was increased by the prearrangement of the isolates according to their quinone type. PMID:16348724

  8. Discovery of quinone-directed antitumor agents selectively bioactivated by NQO1 over CPR with improved safety profile.

    PubMed

    Bian, Jinlei; Li, Xiang; Wang, Nan; Wu, Xingsen; You, Qidong; Zhang, Xiaojin

    2017-03-31

    In this work, we mainly focused on discovering compounds with good selectivity for NQO1 over CPR. The NQO1-mediated two-electron reduction of compounds would kill cancer cells selectively, while CPR-mediated one-electron reduction would induce potential hepatotoxicity. Several novel quinone-directed antitumor agents were discovered as specific NQO1 substrates through structure-activity relationship studies. Among them, compound 3,7,8-trimethylnaphtho[1,2-b]furan-4,5-dione (12b) emerged as the most specific substrate of the two-electron oxidoreductase NQO1 and could hardly be reduced by CPR. It afforded the highest selectivity between NQO1/CPR (selectivity ratio = 6.37), much higher than the control β-lapachone (selectivity ratio = 1.36), indicated 12b may possess superior safety profile. The electrochemical studies provided a reasonable explanation to the good selectivity toward NQO1. Molecular docking studies supported that 12b was capable of forming additional C-H … π interactions with Trp105 and Phe178 residues compared to the control β-lap. In addition, compound 12b was shown to kill cancer cells efficiently both in vitro and in vivo model. This work gave us a promising and novel scaffold for further investigation.

  9. Distinguishing between respiratory syncytial virus subgroups by protein profile analysis.

    PubMed Central

    Walpita, P; Mufson, M A; Stanek, R J; Pfeifer, D; Connor, J D

    1992-01-01

    We subgrouped 75 strains of respiratory syncytial virus by a protein profile method (PPM) which relies on different mobilities of the phosphoprotein in one-dimensional polyacrylamide gel electrophoresis and does not require monoclonal antibodies. When compared with enzyme immunoassay, PPM correctly subgrouped 54 of 56 subgroup A and all 19 subgroup B strains. Images PMID:1572961

  10. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2006-08-01

    Methamphetamine (METH) intoxication leads to persistent damage of dopamine (DA) nerve endings of the striatum. Recently, we and others have suggested that the neurotoxicity associated with METH is mediated by extensive microglial activation. DA itself has been shown to play an obligatory role in METH neurotoxicity, possibly through the formation of quinone species. We show presently that DA-quinones (DAQ) cause a time-dependent activation of cultured microglial cells. Microarray analysis of the effects of DAQ on microglial gene expression revealed that 101 genes were significantly changed in expression, with 73 genes increasing and 28 genes decreasing in expression. Among those genes differentially regulated by DAQ were those often associated with neurotoxic conditions including inflammation, cytokines, chemokines, and prostaglandins. In addition, microglial genes associated with a neuronally protective phenotype were among those that were downregulated by DAQ. These results implicate DAQ as one species that could cause early activation of microglial cells in METH intoxication, manifested as an alteration in the expression of a broad biomarker panel of genes. These results also link oxidative stress, chemical alterations in DA to its quinone, and microglial activation as part of a cascade of glial-neuronal crosstalk that can amplify METH-induced neurotoxicity.

  11. Development of an in silico profiler for respiratory sensitisation.

    PubMed

    Enoch, Steven J; Roberts, David W; Madden, Judith C; Cronin, Mark T D

    2014-12-01

    In this article, we outline work that led the QSAR and Molecular Modelling Group at Liverpool John Moores University to be jointly awarded the 2013 Lush Science Prize. Our research focuses around the development of in silico profilers for category formation within the Adverse Outcome Pathway paradigm. The development of a well-defined chemical category allows toxicity to be predicted via read-across. This is the central approach used by the OECD QSAR Toolbox. The specific work for which we were awarded the Lush Prize was for the development of such an in silico profiler for respiratory sensitisation. The profiler was developed by an analysis of the mechanistic chemistry associated with covalent bond formation in the lung. The data analysed were collated from clinical reports of occupational asthma in humans. The impact of the development of in silico profilers on the Three Rs is also discussed.

  12. Profiles of Glucosinolates, Their Hydrolysis Products, and Quinone Reductase Inducing Activity from 39 Arugula (Eruca sativa Mill.) Accessions.

    PubMed

    Ku, Kang-Mo; Kim, Moo Jung; Jeffery, Elizabeth H; Kang, Young-Hwa; Juvik, John A

    2016-08-31

    Glucosinolates, their hydrolysis product concentrations, and the quinone reductase (QR) inducing activity of extracts of leaf tissue were assayed from 39 arugula (Eruca sativa Mill.) accessions. Arugula accessions from Mediterranean countries (n = 16; Egypt, Greece, Italy, Libya, Spain, and Turkey) and Northern Europe (n = 2; Poland and United Kingdom) were higher in glucosinolates and their hydrolysis products, especially glucoraphanin and sulforaphane, compared to those from Asia (n = 13; China, India, and Pakistan) and Middle East Asia (n = 8; Afghanistan, Iran, and Israel). The QR inducing activity was also the highest in Mediterranean and Northern European arugula accessions, possibly due to a significant positive correlation between sulforaphane and QR inducing activity (r = 0.54). No nitrile hydrolysis products were found, suggesting very low or no epithiospecifier protein activity from these arugula accessions. Broad sense heritability (H(2)) was estimated to be 0.91-0.98 for glucoinolates, 0.55-0.83 for their hydrolysis products, and 0.90 for QR inducing activity.

  13. Velocity profiles in idealized model of human respiratory tract

    NASA Astrophysics Data System (ADS)

    Elcner, J.; Jedelsky, J.; Lizal, F.; Jicha, M.

    2013-04-01

    This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  14. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  15. Evaluation of Lightweight and Low Profile Communications Devices for Respiratory Protective System 21 (RESPO 21)

    DTIC Science & Technology

    1992-02-01

    AD-A253 393 Ir ic EREP ORT ELECTE" S JUL2,3 992 C FINAL REPORT Evaluation of Lightweight and Low Profile Communications Devices for Respiratory ...Evaluation of Lightweight and Low Profile Communications Devices for Respiratory Protective System 21 (RESPO21) to U.S. Army Chemical Research, Development...1 INTRODUCTION The Chemical Research, Development, and Engineering Center (CRDEC) is entering development of the next generation of respiratory

  16. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    NASA Astrophysics Data System (ADS)

    Jong, W. L.; Wong, J. H. D.; Ng, K. H.; Ung, N. M.

    2016-03-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved.

  17. Phospholipid-Derived Fatty Acids and Quinones as Markers for Bacterial Biomass and Community Structure in Marine Sediments

    PubMed Central

    Kunihiro, Tadao; Veuger, Bart; Vasquez-Cardenas, Diana; Pozzato, Lara; Le Guitton, Marie; Moriya, Kazuyoshi; Kuwae, Michinobu; Omori, Koji; Boschker, Henricus T. S.; van Oevelen, Dick

    2014-01-01

    Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure. PMID:24769853

  18. CYTOKINE MRNA PROFILES FOR ISOCYANATES WITH KNOWN AND UNKNOWN POTENTIAL TO INDUCE RESPIRATORY SENSITIZATION

    EPA Science Inventory

    Cytokine mRNA Profiles for Isocyanates with Known and Unknown Potential to Induce Respiratory Sensitization. Plitnick, L.M., Loveless, S.E., Ladics, G.S., Holsapple, M.P., Smialowicz, R.J., Woolhiser, M.R., Anderson, P.K., Smith, C., Sailstad, D.M. and Selgrade, M.J.K (2002) Tox...

  19. Intra-individual variability in cerebrovascular and respiratory chemosensitivity: Can we characterize a chemoreflex "reactivity profile"?

    PubMed

    Borle, Kennedy J; Pfoh, Jamie R; Boulet, Lindsey M; Abrosimova, Maria; Tymko, Michael M; Skow, Rachel J; Varner, Amy; Day, Trevor A

    2017-03-06

    Intra-individual variability in the magnitude of human cerebrovascular and respiratory chemoreflex responses is largely unexplored. By comparing response magnitudes of cerebrovascular CO2 reactivity (CVR; middle and posterior cerebral arteries; MCA, PCA), central (CCR; CO2) and peripheral respiratory chemoreflexes (PCR; CO2 and O2), we tested the hypothesis that a within-individual reactivity magnitude profile could be characterized. The magnitudes of CVR and CCR were tested with hyperoxic rebreathing and PCR magnitudes were tested through transient respiratory tests (TT-CO2, hypercapnia; TT-N2, hypoxia). No significant intra-individual relationships were found between CCR vs. CVR (MCA and PCA), CCR vs. PCR (TT-N2 or TT-CO2) (r<0.2, P>0.3) response magnitudes. Statistically significant relationships were found between MCA vs. PCA reactivity (r=0.45, P<0.01) and PCR TT-N2 vs. PCR TT-CO2 (r=0.79, P<0.001) responses. Using qualitative and quantitative comparisons, we conclude that an intra-individual chemoreflex reactivity magnitude profile cannot be characterized. These data highlight the considerable between- and within-individual variability that exists in human cerebrovascular and respiratory chemoreflexes.

  20. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to

  1. Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction.

    PubMed

    Sena, Filipa V; Batista, Ana P; Catarino, Teresa; Brito, José A; Archer, Margarida; Viertler, Martin; Madl, Tobias; Cabrita, Eurico J; Pereira, Manuela M

    2015-10-01

    A prerequisite for any rational drug design strategy is understanding the mode of protein-ligand interaction. This motivated us to explore protein-substrate interaction in Type-II NADH:quinone oxidoreductase (NDH-2) from Staphylococcus aureus, a worldwide problem in clinical medicine due to its multiple drug resistant forms. NDHs-2 are involved in respiratory chains and recognized as suitable targets for novel antimicrobial therapies, as these are the only enzymes with NADH:quinone oxidoreductase activity expressed in many pathogenic organisms. We obtained crystal and solution structures of NDH-2 from S. aureus, showing that it is a dimer in solution. We report fast kinetic analyses of the protein and detected a charge-transfer complex formed between NAD(+) and the reduced flavin, which is dissociated by the quinone. We observed that the quinone reduction is the rate limiting step and also the only half-reaction affected by the presence of HQNO, an inhibitor. We analyzed protein-substrate interactions by fluorescence and STD-NMR spectroscopies, which indicate that NADH and the quinone bind to different sites. In summary, our combined results show the presence of distinct binding sites for the two substrates, identified quinone reduction as the rate limiting step and indicate the establishment of a NAD(+)-protein complex, which is released by the quinone.

  2. Activity of quinone alkylating agents in quinone-resistant cells.

    PubMed

    Begleiter, A; Leith, M K

    1990-05-15

    The role of the quinone group in the antitumor activity of quinone alkylating agents, such as mitomycin C and 2,5-diaziridinyl-3,5-bis(carboethoxyamino)-1,4-benzoquinone, is still uncertain. The quinone group may contribute to antitumor activity by inducing DNA strand breaks through the formation of free radicals and/or by influencing the alkylating activity of the quinone alkylators. The cytotoxic activity and DNA damage produced by the model quinone alkylating agents, benzoquinone mustard and benzoquinone dimustard, were compared in L5178Y murine lymphoblasts sensitive and resistant to the model quinone antitumor agent, hydrolyzed benzoquinone mustard. The resistant cell lines, L5178Y/HBM2 and L5178Y/HBM10, have increased concentrations of glutathione and elevated catalase, superoxide dismutase, glutathione S-transferase, and DT-diaphorase activity. L5178Y/HBM2 and L5178Y/HBM10 cells were 7.4- and 8.5-fold less sensitive to benzoquinone mustard and 1.7- and 4.3-fold less sensitive to benzoquinone dimustard, respectively, compared with sensitive cells, but showed no resistance to the non-quinone alkylating agent, aniline mustard. The formation of DNA double strand breaks by benzoquinone mustard was reduced by 2- and 8-fold in L5178Y/HBM2 and L5178Y/HBM10 cells, respectively, while double strand break formation by benzoquinone dimustard was reduced only in the L5178Y/HBM10 cells. The number of DNA-DNA cross-links produced by benzoquinone mustard was 3- and 6-fold lower, and the number produced by benzoquinone dimustard was 35% and 2-fold lower in L5178Y/HBM2 and L5178Y/HBM10 cells, respectively, compared with L5178Y parental cells. In contrast, cross-linking by aniline mustard was unchanged in sensitive and resistant cells. Dicoumarol, an inhibitor of DT-diaphorase, increased the cytotoxic activity of both benzoquinone mustard and benzoquinone dimustard in L5178Y/HBM10 cells. This study provides evidence that elevated DT-diaphorase activity in the resistant cells

  3. Synthetic Strategies to Terpene Quinones/Hydroquinones

    PubMed Central

    Gordaliza, Marina

    2012-01-01

    The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described. PMID:22412807

  4. Muscle Transcriptional Profile Based on Muscle Fiber, Mitochondrial Respiratory Activity, and Metabolic Enzymes

    PubMed Central

    Liu, Xuan; Du, Yang; Trakooljul, Nares; Brand, Bodo; Muráni, Eduard; Krischek, Carsten; Wicke, Michael; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers. PMID:26681915

  5. Quantitative analysis of Porcine Reproductive and Respiratory Syndrome (PRRS) viremia profiles from experimental infection: a statistical modelling approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant viral disease facing the global swine industry. Viremia profiles of PRRS virus challenged pigs reflect the severity and progression of the infection within the host and provide crucial information for subsequen...

  6. Benzofuran-, benzothiophene-, indazole- and benzisoxazole- quinones: excellent substrates for NAD(P)H:quinone oxidoreductase 1

    PubMed Central

    Newsome, Jeffery J.; Hassani, Mary; Swann, Elizabeth; Bibby, Jane M.; Beall, Howard D.; Moody, Christopher J.

    2013-01-01

    A series of heterocyclic quinones based on benzofuran, benzothiophene, indazole and benzisoxazole has been synthesized, and evaluated for their ability to function as substrates for recombinant human NAD(P)H:quinone oxidoreductase (NQO1), a two-electron reductase upregulated in tumor cells. Overall, the quinones are excellent substrates for NQO1, approaching the reduction rates observed for menadione PMID:23635904

  7. Quinone Photoreactivity: An Undergraduate Experiment in Photochemistry

    ERIC Educational Resources Information Center

    Vaughan, Pamela P.; Cochran, Michael; Haubrich, Nicole

    2010-01-01

    An experiment exploring the photochemical properties of quinones was developed. Their unique photochemistry and highly reactive nature make them an ideal class of compounds for examining structure-activity relationships. For several substituted quinones, photochemical reactivity was related to structure and ultimately to the Gibbs energy for…

  8. Quinone project. Progress report. [Poly(acene quinone)

    SciTech Connect

    Rickert, S.E.

    1986-01-10

    This report is divided into sections appropriate for the four publications which were or will soon be published from this research. Additional references and information can be obtained from these papers. The basic premise behind this work has been, and continues to be, the preparation of stable electronic polymeric conductors, which have reversible, high capacity, oxidation-reduction characteristics. The heavy synthetic component to the initial papers is unavoidable, as new ground needed to be broken in synthetic methods for all compounds studied. Unfortunately, previous investigators had not done a thorough job of studying the complexities of these 'simple' reactions. In the next year, high quality, high capacity films and fibers of both PBHQ and poly(acene quinones) should be produced. 4 refs.

  9. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.

    PubMed

    Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S

    2016-11-15

    Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed.

  10. Outer Membrane Proteins and DNA Profiles in Strains of Haemophilus parasuis Recovered from Systemic and Respiratory Sites

    PubMed Central

    Ruiz, Alvaro; Oliveira, Simone; Torremorell, Montserrat; Pijoan, Carlos

    2001-01-01

    Polyserositis caused by Haemophilus parasuis is an important disease that affects mostly weaned pigs. Recent studies have shown that virulence can differ among strains recovered from distinct body sites and also that it may be related to the presence of certain outer membrane proteins (OMPs). The objective of this study was to compare the OMP and DNA profiles of H. parasuis strains isolated from systemic and respiratory sites from diseased and healthy pigs. Strains evaluated in this study were processed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and repetitive-PCR techniques. Two experiments were conducted in order to better define the relationship among genotype, phenotype, and site of isolation. Experiment 1 included 53 H. parasuis isolates recovered from healthy and diseased pigs from unrelated herds. Experiment 2 included 31 isolates of H. parasuis obtained from diseased pigs involved in an outbreak in a large, multifarm system. Results showed that strains recovered from systemic sites had more homogeneous OMP and DNA profiles than those isolated from respiratory sites. Evaluation of isolates involved in the multifarm outbreak showed that only two H. parasuis strains were causing disease. These strains had homogeneous OMP and DNA profiles. However, it was noted that these two parameters were unrelated, since strains classified in the same genotype group expressed different OMP profiles. The homogeneity of OMP and DNA profiles of strains isolated from systemic sites strongly suggests the existence of clonal relationships between virulent strains and also suggests that expression of certain OMP profiles may be related to virulence. PMID:11325986

  11. Changes in blood lactate and respiratory gas exchange measures in sports with discontinuous load profiles.

    PubMed

    Smekal, Gerhard; von Duvillard, Serge P; Pokan, Rochus; Tschan, Harald; Baron, Ramon; Hofmann, Peter; Wonisch, Manfred; Bachl, Norbert

    2003-06-01

    This study compares two different sport events (orienteering = OTC; tennis = TEC) with discontinuous load profiles and different activity/recovery patterns by means of blood lactate (LA), heart rate (HR), and respiratory gas exchange measures (RGME) determined via a portable respiratory system. During the TEC, 20 tennis-ranked male subjects [age: 26.0 (3.7) years; height: 181.0 (5.7) cm; weight: 73.2 (6.8) kg; maximal oxygen consumption (VO(2)max): 57.3 (5.1) ml.kg(-1).min(-1)] played ten matches of 50 min. During the OTC, 11 male members of the Austrian National Team [age: 23.5 (3.9) years; height: 183.6 (6.8) cm; weight: 72.4 (3.9) kg; VO(2)max: 67.9 (3.8) ml.kg(-1).min(-1)] performed a simulated OTC (six sections; average length: 10.090 m). In both studies data from the maximal treadmill tests (TT) were used as reference values for the comparison of energy expenditure of OTC and TEC. During TEC, the average VO(2) was considerably lower [29.1 (5.6) ml(.)kg(-1.)min(-1)] or 51.1 (10.9)% of VO(2)max and 64.8.0 (13.3)% of VO(2) determined at the individual anaerobic threshold (IAT) on the TT. The short high-intensity periods (activity/recovery = 1/6) did not result in higher LA levels [average LA of games: 2.07 (0.9) mmol.l(-1)]. The highest average VO(2 )value for a whole game was 47.8 ml.kg(-1.)min(-1) and may provide a reference for energy demands required to sustain high-intensity periods of tennis predominantly via aerobic mechanism of energy delivery. During OTC, we found an average VO(2) of 56.4 (4.5) ml.kg(-1).min(-1) or 83.0 (3.8)% of VO(2)max and 94.6 (5.2)% of VO(2) at IAT. In contrast to TEC, LA were relatively high [5.16 (1.5) mmol.l(-1)) although the average VO(2) was significantly lower than VO(2) at IAT. Our data suggest that portable RGEM provides valuable information concerning the energy expenditure in sports that cannot be interpreted from LA or HR measures alone. Portable RGEM systems provide valuable assessment of under- or over-estimation of

  12. The respiratory effects in man of altering the time profile of alveolar carbon dioxide and oxygen within each respiratory cycle.

    PubMed

    Cunningham, D J; Howson, M G; Pearson, S B

    1973-10-01

    1. Breathing hypoxic gas through an external dead space (ca. 1200 c.c.) stimulated ventilation disproportionately. A loop (ca. 250 c.c.) in the inspiratory pathway reduced the effect.2. The alveolar time patterns of P(CO) (2) and P(O) (2) characteristic of tube breathing with or without the loop have been simulated in moderate hypoxia by changing the composition of inspired gas at selected intervals after the beginning of inspiration.3. Supplying CO(2)-free gas in late inspiration usually stimulated ventilation, but less than did real tube breathing. Supplying CO(2)-free gas early in inspiration usually depressed ventilation. The difference between the ;CO(2)-free late' and ;CO(2)-free early' effects was 20% of the control ventilation (P < 0.001), i.e. was nearly the same as between the effects of real tube breathing without and with the loop.4. Tube-like P(A, O) (2) time patterns had no effects.5. A-a P(CO) (2) and P(O) (2) gradients remained constant throughout.6. The V(E), f and V(T) relations were unaltered in tube breathing.7. The respiratory system can discriminate between small differences in time patterns of P(A, CO) (2) but not of P(A, O) (2); the signal is amplified by steady hypoxia. The arterial chemoreceptors are probably responsible for these effects.

  13. Effects of several quinones on insulin aggregation.

    PubMed

    Gong, Hao; He, Zihao; Peng, Anlin; Zhang, Xin; Cheng, Biao; Sun, Yue; Zheng, Ling; Huang, Kun

    2014-07-10

    Protein misfolding and aggregation are associated with more than twenty diseases, such as neurodegenerative diseases and metabolic diseases. The amyloid oligomers and fibrils may induce cell membrane disruption and lead to cell apoptosis. A great number of studies have focused on discovery of amyloid inhibitors which may prevent or treat amyloidosis diseases. Polyphenols have been extensively studied as a class of amyloid inhibitors, with several polyphenols under clinical trials as anti-neurodegenerative drugs. As oxidative intermediates of natural polyphenols, quinones widely exist in medicinal plants or food. In this study, we used insulin as an amyloid model to test the anti-amyloid effects of four simple quinones and four natural anthraquinone derivatives from rhubarb, a traditional herbal medicine used for treating Alzheimer's disease. Our results demonstrated that all eight quinones show inhibitory effects to different extent on insulin oligomerization, especially for 1,4-benzoquinone and 1,4-naphthoquinone. Significantly attenuated oligomerization, reduced amount of amyloid fibrils and reduced hemolysis levels were found after quinones treatments, indicating quinones may inhibit insulin from forming toxic oligomeric species. The results suggest a potential action of native anthraquinone derivatives in preventing protein misfolding diseases, the quinone skeleton may thus be further explored for designing effective anti-amyloidosis compounds.

  14. Epidemiological profile of acute respiratory distress syndrome patients: A tertiary care experience

    PubMed Central

    Magazine, Rahul; Rao, Shobitha; Chogtu, Bharti; Venkateswaran, Ramkumar; Shahul, Hameed Aboobackar; Goneppanavar, Umesh

    2017-01-01

    Background: Acute respiratory distress syndrome (ARDS) is seen in critically ill patients. Its etiological spectrum in India is expected to be different from that seen in western countries due to the high prevalence of tropical infections. Aim: To study the epidemiological profile of ARDS patients. Setting: A tertiary care hospital in Karnataka, India. Materials and Methods: Retrospective analysis of 150 out of the 169 ARDS patients diagnosed during 2010–2012. Data collected included the clinical features and severity scoring parameters. Results: The mean age of the study population was 42.92 ± 13.91 years. The causes of ARDS included pneumonia (n = 35, 23.3%), scrub typhus (n = 33, 22%), leptospirosis (n = 11, 7.3%), malaria (n = 6, 4%), influenza (H1N1) (n = 10, 6.7%), pulmonary tuberculosis (n = 2, 1.3%), dengue (n = 1, 0.7%), abdominal sepsis (n = 16, 10.7%), skin infection (n = 3, 2%), unknown cause of sepsis (n = 18, 12%), and nonseptic causes (n = 15, 10%). A total of 77 (51.3%) patients survived, 66 (44%) expired, and 7 (4.7%) were discharged against medical advice (AMA). Preexisting comorbidities (46) were present in 13 survivors, 19 nonsurvivors, and four discharged AMA. History of surgery prior to the onset of ARDS was present in one survivor, 13 nonsurvivors, and one discharge AMA. Mean Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE III, and Sequential Organ Failure Assessment scores in survivors were 9.06 ± 4.3, 49.22 ± 14, and 6.43 ± 2.5 and in nonsurvivors 21.11 ± 7, 86.45 ± 23.5, and 10.6 ± 10, respectively. Conclusion: The most common cause of ARDS in our study was pneumonia, but a large percentage of cases were due to the tropical infections. Preexisting comorbidity, surgery prior to the onset of ARDS, higher severity scores, and organ failure scores were more frequently observed among nonsurvivors than survivors. PMID:28144059

  15. Atypical features of Thermus thermophilus succinate:quinone reductase.

    PubMed

    Kolaj-Robin, Olga; Noor, Mohamed R; O'Kane, Sarah R; Baymann, Frauke; Soulimane, Tewfik

    2013-01-01

    The Thermus thermophilus succinate:quinone reductase (SQR), serving as the respiratory complex II, has been homologously produced under the control of a constitutive promoter and subsequently purified. The detailed biochemical characterization of the resulting wild type (wt-rcII) and His-tagged (rcII-His(8)-SdhB and rcII-SdhB-His(6)) complex II variants showed the same properties as the native enzyme with respect to the subunit composition, redox cofactor content and sensitivity to the inhibitors malonate, oxaloacetate, 3-nitropropionic acid and nonyl-4-hydroxyquinoline-N-oxide (NQNO). The position of the His-tag determined whether the enzyme retained its native trimeric conformation or whether it was present in a monomeric form. Only the trimer exhibited positive cooperativity at high temperatures. The EPR signal of the [2Fe-2S] cluster was sensitive to the presence of substrate and showed an increased rhombicity in the presence of succinate in the native and in all recombinant forms of the enzyme. The detailed analysis of the shape of this signal as a function of pH, substrate concentration and in the presence of various inhibitors and quinones is presented, leading to a model for the molecular mechanism that underlies the influence of succinate on the rhombicity of the EPR signal of the proximal iron-sulfur cluster.

  16. Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes.

    PubMed

    Ryan, Ali; Kaplan, Elise; Nebel, Jean-Christophe; Polycarpou, Elena; Crescente, Vincenzo; Lowe, Edward; Preston, Gail M; Sim, Edith

    2014-01-01

    Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.

  17. Identification of NAD(P)H Quinone Oxidoreductase Activity in Azoreductases from P. aeruginosa: Azoreductases and NAD(P)H Quinone Oxidoreductases Belong to the Same FMN-Dependent Superfamily of Enzymes

    PubMed Central

    Ryan, Ali; Kaplan, Elise; Nebel, Jean-Christophe; Polycarpou, Elena; Crescente, Vincenzo; Lowe, Edward; Preston, Gail M.; Sim, Edith

    2014-01-01

    Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions. PMID:24915188

  18. Gene Expression Profiles Link Respiratory Viral Infection, Platelet Response to Aspirin, and Acute Myocardial Infarction

    PubMed Central

    Cyr, Derek D.; Lucas, Joseph E.; Zaas, Aimee K.; Woods, Christopher W.; Newby, L. Kristin; Kraus, William E.; Ginsburg, Geoffrey S.

    2015-01-01

    Background Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses that 1) a validated blood gene expression signature of respiratory viral infection (viral GES) was associated with MI and 2) respiratory viral exposure changes levels of a validated platelet gene expression signature (platelet GES) of platelet function in response to aspirin that is associated with MI. Methods A previously defined viral GES was projected into blood RNA data from 594 patients undergoing elective cardiac catheterization and used to classify patients as having evidence of viral infection or not and tested for association with acute MI using logistic regression. A previously defined platelet GES was projected into blood RNA data from 81 healthy subjects before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV) (n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24), Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES with viral exposure using linear mixed-effects regression and by symptom status. Results In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure increased platelet GES over time (time course p-value = 1e-04). Conclusions A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation. Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a platelet GES previously shown to be associated with MI. Together, these results highlight specific genes and pathways that link viral infection

  19. Towards a modern definition of vitamin E-evidence for a quinone hypothesis.

    PubMed

    Shrader, William D; Amagata, Akiko; Barnes, Adam; Hinman, Andrew; Jankowski, Orion; Lee, Edgar; Kheifets, Viktoria; Komatsuzaki, Ryo; Mollard, Paul; Murase, Katsuyuki; Rioux, Patrice; Wesson, Kieron; Miller, Guy

    2012-01-01

    We report on the synthesis, biological and pharmacological activity of the tocoquinone natural product, α-tocopherol quinone (ATQ); an oxidative metabolite of α-tocopherol. ATQ is a potent cellular protectant against oxidative stress, whose biological activity is dependent upon its ability to undergo reversible two-electron redox cycling. ATQ is orally bioavailable, with a favorable pharmacokinetic profile and has demonstrated a beneficial clinical response in patients with Friedreich's ataxia. ATQ is a member of a broader class of vitamin E derived quinone metabolites which may be ascribable in whole or in part to the activity of vitamin E.

  20. Multiplexed Salivary Protein Profiling for Patients with Respiratory Diseases using Fiber-Optic Bundles and Fluorescent Antibody-Based Microarrays

    PubMed Central

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R.

    2013-01-01

    Over the past 40 years, the incidence and prevalence of respiratory diseases have increased significantly throughout the world, damaging economic productivity and challenging health care systems. Current diagnoses of different respiratory diseases generally involve invasive sampling methods such as induced sputum or bronchoalveolar lavage that are uncomfortable, or even painful, for the patient. In this paper, we present a platform incorporating fiber-optic bundles and antibody based microarrays to perform multiplexed protein profiling of a panel of six salivary biomarkers for asthma and cystic fibrosis (CF) diagnosis. The platform utilizes an optical fiber bundle containing approximately 50,000 individual 4.5 μm diameter fibers that are chemically etched to create microwells in which modified microspheres decorated with monoclonal capture antibodies can be deposited. Based on a sandwich immunoassay format, the array quantifies human vascular endothelial growth factor (VEGF), interferon gamma-induced protein 10 (IP-10), interleukin 8 (IL-8), epidermal growth factor (EGF), matrix metalloproteinase 9 (MMP-9), and interleukin 1 beta (IL-1β) salivary biomarkers in the sub-picomolar range. Saliva supernatants collected from 291 individuals (164 asthmatics, 71 CF patients, and 56 healthy controls (HC)) were analyzed on the platform to profile each group of patients using this six-analyte suite. It was found that four of the six proteins were observed to be significantly elevated (p<0.01) in asthma and CF patients compared with HC. These results demonstrate the potential to use the multiplexed protein array platform for respiratory disease diagnosis. PMID:23972398

  1. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    PubMed Central

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  2. CYTOKINE PROFILES DO NOT PREDICT ANTIBODY RESPONSES AND RESPIRATORY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO ISOCYANATES

    EPA Science Inventory

    Rationale: Cytokine profiling of local lymph node responses following dermal exposure has been proposed as a test to identify chemicals that pose a risk of occupational asthma. The present study tested the hypothesis that relative differences in cytokine profiles for dini...

  3. Investigating the thermostability of succinate: quinone oxidoreductase enzymes by direct electrochemistry at SWNTs-modified electrodes and FTIR spectroscopy

    PubMed Central

    Melin, Frederic; Noor, Mohamed R.; Pardieu, Elodie; Boulmedais, Fouzia; Banhart, Florian; Cecchini, Gary; Soulimane, Tewfik

    2015-01-01

    Succinate Quinone reductases (SQRs) are the enzymes which couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. We compare herein the temperature-dependent activity and structural stability of two SQRs, the first one from the mesophilic bacterium E. coli and the second one from the thermophilic bacterium T. thermophilus by a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with the full membrane protein complexes at SWNTs-modified electrodes. The possible structural factors which contribute to the temperature-dependent activity of the enzymes and to the thermostability of the T. thermophiles SQR in particular, are discussed. PMID:25139263

  4. Whole Blood Gene Expression Profiles to Assess Pathogenesis and Disease Severity in Infants with Respiratory Syncytial Virus Infection

    PubMed Central

    Mejias, Asuncion; Dimo, Blerta; Suarez, Nicolas M.; Garcia, Carla; Suarez-Arrabal, M. Carmen; Jartti, Tuomas; Blankenship, Derek; Jordan-Villegas, Alejandro; Ardura, Monica I.; Xu, Zhaohui; Banchereau, Jacques; Chaussabel, Damien; Ramilo, Octavio

    2013-01-01

    Background Respiratory syncytial virus (RSV) is the leading cause of viral lower respiratory tract infection (LRTI) and hospitalization in infants. Mostly because of the incomplete understanding of the disease pathogenesis, there is no licensed vaccine, and treatment remains symptomatic. We analyzed whole blood transcriptional profiles to characterize the global host immune response to acute RSV LRTI in infants, to characterize its specificity compared with influenza and human rhinovirus (HRV) LRTI, and to identify biomarkers that can objectively assess RSV disease severity. Methods and Findings This was a prospective observational study over six respiratory seasons including a cohort of infants hospitalized with RSV (n = 135), HRV (n = 30), and influenza (n = 16) LRTI, and healthy age- and sex-matched controls (n = 39). A specific RSV transcriptional profile was identified in whole blood (training cohort, n = 45 infants; Dallas, Texas, US) and validated in three different cohorts (test cohort, n = 46, Dallas, Texas, US; validation cohort A, n = 16, Turku, Finland; validation cohort B, n = 28, Columbus, Ohio, US) with high sensitivity (94% [95% CI 87%–98%]) and specificity (98% [95% CI 88%–99%]). It classified infants with RSV LRTI versus HRV or influenza LRTI with 95% accuracy. The immune dysregulation induced by RSV (overexpression of neutrophil, inflammation, and interferon genes, and suppression of T and B cell genes) persisted beyond the acute disease, and immune dysregulation was greatly impaired in younger infants (<6 mo). We identified a genomic score that significantly correlated with outcomes of care including a clinical disease severity score and, more importantly, length of hospitalization and duration of supplemental O2. Conclusions Blood RNA profiles of infants with RSV LRTI allow specific diagnosis, better understanding of disease pathogenesis, and assessment of disease severity. This study opens new avenues for

  5. Benzofuran-, benzothiophene-, indazole- and benzisoxazole-quinones: excellent substrates for NAD(P)H:quinone oxidoreductase 1.

    PubMed

    Newsome, Jeffery J; Hassani, Mary; Swann, Elizabeth; Bibby, Jane M; Beall, Howard D; Moody, Christopher J

    2013-06-01

    A series of heterocyclic quinones based on benzofuran, benzothiophene, indazole and benzisoxazole has been synthesized, and evaluated for their ability to function as substrates for recombinant human NAD(P)H:quinone oxidoreductase (NQO1), a two-electron reductase upregulated in tumor cells. Overall, the quinones are excellent substrates for NQO1, approaching the reduction rates observed for menadione.

  6. The effect of positive end expiratory pressure on the respiratory profile during one-lung ventilation for thoracotomy.

    PubMed

    Leong, L M C; Chatterjee, S; Gao, F

    2007-01-01

    Summary In this randomised controlled trial we examined the effects of four different levels of positive end expiratory pressure (PEEP at 0, 5, 8 or 10 cmH(2)O), added to the dependent lung, on respiratory profile and oxygenation during one lung ventilation. Forty-six patients were recruited to receive one of the randomised PEEP levels during one lung ventilation. We did not find significant differences in lung compliance, intra-operative or postoperative oxygenation amongst the four different groups. However, the physiological deadspace to tidal volume ventilation ratio was significantly lower in the 8 cmH(2)O PEEP group compared with the other levels of PEEP (p < 0.0001). We concluded that the use of PEEP (< or =10 cmH(2)O) during one lung ventilation does not clinically improve lung compliance, intra-operative or postoperative oxygenation despite a statistically significant reduction in the physiological deadspace to tidal volume ratio.

  7. Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy

    PubMed Central

    Declerck, Ken; Traen, Sophie; Koppen, Gudrun; Van Camp, Guy; Schoeters, Greet; Vanden Berghe, Wim; De Boever, Patrick

    2016-01-01

    The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field

  8. Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy.

    PubMed

    Langie, Sabine A S; Szarc Vel Szic, Katarzyna; Declerck, Ken; Traen, Sophie; Koppen, Gudrun; Van Camp, Guy; Schoeters, Greet; Vanden Berghe, Wim; De Boever, Patrick

    2016-01-01

    The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field

  9. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family

    PubMed Central

    Marreiros, Bruno C.; Sena, Filipa V.; Sousa, Filipe M.; Oliveira, A. Sofia F.; Soares, Cláudio M.; Batista, Ana P.; Pereira, Manuela M.

    2017-01-01

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains. These proteins contribute indirectly to the establishment of the transmembrane difference of electrochemical potential by catalyzing the reduction of quinone by oxidation of NAD(P)H. NDH-2s are widespread enzymes being present in the three domains of life. In this work, we explored the catalytic mechanism of NDH-2 by investigating the common elements of all NDH-2s, based on the rationale that conservation of such elements reflects their structural/functional importance. We observed conserved sequence motifs and structural elements among 1762 NDH-2s. We identified two proton pathways possibly involved in the protonation of the quinone. Our results led us to propose the first catalytic mechanism for NDH-2 family, in which a conserved glutamate residue, E172 (in NDH-2 from Staphylococcus aureus) plays a key role in proton transfer to the quinone pocket. This catalytic mechanism may also be extended to the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, such as sulfide:quinone oxidoreductases. PMID:28181562

  10. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family.

    PubMed

    Marreiros, Bruno C; Sena, Filipa V; Sousa, Filipe M; Oliveira, A Sofia F; Soares, Cláudio M; Batista, Ana P; Pereira, Manuela M

    2017-02-09

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains. These proteins contribute indirectly to the establishment of the transmembrane difference of electrochemical potential by catalyzing the reduction of quinone by oxidation of NAD(P)H. NDH-2s are widespread enzymes being present in the three domains of life. In this work, we explored the catalytic mechanism of NDH-2 by investigating the common elements of all NDH-2s, based on the rationale that conservation of such elements reflects their structural/functional importance. We observed conserved sequence motifs and structural elements among 1762 NDH-2s. We identified two proton pathways possibly involved in the protonation of the quinone. Our results led us to propose the first catalytic mechanism for NDH-2 family, in which a conserved glutamate residue, E172 (in NDH-2 from Staphylococcus aureus) plays a key role in proton transfer to the quinone pocket. This catalytic mechanism may also be extended to the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, such as sulfide:quinone oxidoreductases.

  11. Discriminating between Terminal- and Non-Terminal Respiratory Unit-Type Lung Adenocarcinoma Based on MicroRNA Profiles.

    PubMed

    Kim, Mi-Hyun; Cho, Jeong Su; Kim, Yeongdae; Lee, Chang Hun; Lee, Min Ki; Shin, Dong Hoon

    2016-01-01

    Lung adenocarcinomas can be classified into terminal respiratory unit (TRU) and non-TRU types. We previously reported that non-TRU-type adenocarcinoma has unique clinical and morphological features as compared to the TRU type. Here we investigated whether micro (mi)RNA expression profiles can be used to distinguish between these two subtypes of lung adenocarcinoma. The expression of 1205 human and 144 human viral miRNAs was analyzed in TRU- and non-TRU-type lung adenocarcinoma samples (n = 4 each) by microarray. Results were validated by quantitative real-time (qRT-)PCR and in situ hybridization. A comparison of miRNA profiles revealed 29 miRNAs that were differentially expressed between TRU- and non-TRU adenocarcinoma types. Specifically, hsa-miR-494 and ebv-miR-BART19 were up regulated by > 5-fold, whereas hsa-miR-551b was down regulated by > 5-fold in the non-TRU relative to the TRU type. The miRNA signature was confirmed by qRT-PCR analysis using an independent set of paired adenocarcinoma (non-TRU-type, n = 21 and TRU-type, n = 12) and normal tissue samples. Non-TRU samples showed increased expression of miR-494 (p = 0.033) and ebv-miR-BART19 (p = 0.001) as compared to TRU-type samples. Both miRNAs were weakly expressed in the TRU type but strongly expressed in the non-TRU type. Neither subtype showed miR-551b expression. TRU- and non-TRU-type adenocarcinomas have distinct miRNA expression profiles, suggesting that tumorigenesis in lung adenocarcinoma occur via different pathways.

  12. Proteomic Profiles in Acute Respiratory Distress Syndrome Differentiates Survivors from Non-Survivors

    PubMed Central

    Bhargava, Maneesh; Becker, Trisha L.; Viken, Kevin J.; Jagtap, Pratik D.; Dey, Sanjoy; Steinbach, Michael S.; Wu, Baolin; Kumar, Vipin; Bitterman, Peter B.; Ingbar, David H.; Wendt, Christine H.

    2014-01-01

    Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days) and late-phase (8 to 35 days) groups based on time after initiation of mechanical ventilation for ARDS (Day 1). Isobaric tags for absolute and relative quantitation (iTRAQ) with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7), early-phase non-survivors (n = 8), and late-phase survivors (n = 7). Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS. PMID:25290099

  13. Specific Metabolome Profile of Exhaled Breath Condensate in Patients with Shock and Respiratory Failure: A Pilot Study

    PubMed Central

    Fermier, Brice; Blasco, Hélène; Godat, Emmanuel; Bocca, Cinzia; Moënne-Loccoz, Joseph; Emond, Patrick; Andres, Christian R.; Laffon, Marc; Ferrandière, Martine

    2016-01-01

    Background: Shock includes different pathophysiological mechanisms not fully understood and remains a challenge to manage. Exhaled breath condensate (EBC) may contain relevant biomarkers that could help us make an early diagnosis or better understand the metabolic perturbations resulting from this pathological situation. Objective: we aimed to establish the metabolomics signature of EBC from patients in shock with acute respiratory failure in a pilot study. Material and methods: We explored the metabolic signature of EBC in 12 patients with shock compared to 14 controls using LC-HRMS. We used a non-targeted approach, and we performed a multivariate analysis based on Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) to differentiate between the two groups of patients. Results: We optimized the procedure of EBC collection and LC-HRMS detected more than 1000 ions in this fluid. The optimization of multivariate models led to an excellent model of differentiation for both groups (Q2 > 0.4) after inclusion of only 6 ions. Discussion and conclusion: We validated the procedure of EBC collection and we showed that the metabolome profile of EBC may be relevant in characterizing patients with shock. We performed well in distinguishing these patients from controls, and the identification of relevant compounds may be promising for ICC patients. PMID:27598216

  14. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis

    PubMed Central

    Sugumaran, Manickam

    2016-01-01

    Melanin is an important biopolymeric pigment produced in a vast majority of organisms. Tyrosine and its hydroxylated product, dopa, form the starting material for melanin biosynthesis. Earlier studies by Raper and Mason resulted in the identification of dopachrome and dihydroxyindoles as important intermediates and paved way for the establishment of well-known Raper–Mason pathway for the biogenesis of brown to black eumelanins. Tyrosinase catalyzes the oxidation of tyrosine as well as dopa to dopaquinone. Dopaquinone thus formed, undergoes intramolecular cyclization to form leucochrome, which is further oxidized to dopachrome. Dopachrome is either converted into 5,6-dihydroxyindole by decarboxylative aromatization or isomerized into 5,6-dihydroxyindole-2-carboxylic acid. Oxidative polymerization of these two dihydroxyindoles eventually produces eumelanin pigments via melanochrome. While the role of quinones in the biosynthetic pathway is very well acknowledged, that of isomeric quinone methides, however, remained marginalized. This review article summarizes the key role of quinone methides during the oxidative transformation of a vast array of catecholamine derivatives and brings out the importance of these transient reactive species during the melanogenic process. In addition, possible reactions of quinone methides at various stages of melanogenesis are discussed. PMID:27657049

  15. Biochemistry: is pyrroloquinoline quinone a vitamin?

    PubMed

    Rucker, Robert; Storms, David; Sheets, Annemarie; Tchaparian, Eskouhie; Fascetti, Andrea

    2005-02-03

    The announcement by Kasahara and Kato of pyrroloquinoline quinone (PQQ) as a 'new' vitamin has received considerable attention. We have since attempted to reproduce the findings on which their conclusion is based, namely that defects in lysine metabolism occur in PQQ-deprived rodents. However, we find that the activity of alpha-aminoadipic acid-delta-semialdehyde (AAS) dehydrogenase in liver and plasma levels of alpha-aminoadipic acid (AAA), both of which act as indicators of lysine degradation in mammals, are not affected by changes in PQQ dietary status. Our results call into question the identification of PQQ as a new vitamin.

  16. Comparison between acute oral/respiratory and chronic stomatitis/gingivitis isolates of feline calicivirus: pathogenicity, antigenic profile and cross-neutralisation studies.

    PubMed

    Poulet, H; Brunet, S; Soulier, M; Leroy, V; Goutebroze, S; Chappuis, G

    2000-01-01

    Feline calicivirus (FCV) is a major oral and respiratory pathogen of cats, able to induce subclinical infection as well as acute disease. It is also characterized by a high degree of antigenic variation. This work sought to address the question of the existence of distinct biotypes of FCV. Eight French, 6 British and 9 American FCV isolates, responsible for acute oral/respiratory disease or chronic gingivitis/stomatitis, were compared for their pathogenicity, antigenic profiles and serological relationships. Antigenic profiles were assessed by an indirect immunofluorescence assay with a large panel of characterized monoclonal antibodies. Cross-neutralisation assays were performed with specific cat antisera collected at 30 days p.i., then analysed by calculation of antigenic bilateral relatedness and dominance. Whatever their pathogenic origin, all the isolates induced an acute upper-respiratory tract infection in oronasally infected SPF kittens. Their antigenic profiles were different and did not correlate with their geographical or pathological origin. Cross-neutralisation studies and calculation of the mean bilateral relatedness allowed us to distinguish chronic original isolates from acute original ones. This study did not confirm the existence of FCV biotypes but showed that the chronic carrier state is related to the emergence of antigenically distant viruses.

  17. Theoretical study of the adsorption of DOPA-quinone and DOPA-quinone chlorides on Cu (1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Chen, Shuang-Kou; Wang, Bo-Chu; Zhou, Tai-Gang; Huang, Wen-Zhang

    2011-07-01

    The marine mussel secreted adhesive proteins and could bind strongly to all kinds of surfaces. Studies indicated that there was an unusual amino acid 3,4-dihydroxy-L-phenylanine (DOPA). DOPA could be oxidized to DOPA-quinone easily, which had a superior ability to on surface directly. The technology of electrolyzing seawater was employed to generate HOCl solution to react with DOPA-quinone and form DOPA-quinone chlorides (DOPA-quinone-Cl) to hinder the adhesion. However, the detailed hinder-mechanism remained unknown to be fully explained. Herein, using quantum chemical density functional theory methods, we have systematically studied three kinds of adsorption for DOPA-quinone and DOPA-quinone-Cl on Cu (1 0 0) surface: hydroxyl oxygen-side vertical, carbonyl oxygen-side vertical, amino N-terminal vertical adsorptions and carried out geometry optimization and energy calculation. The results showed that two molecules could absorb on the Cu (1 0 0) through hydroxyl oxygen-side vertical adsorption, while the other two kinds of adsorption could not form an effective adsorption. Calculations of adsorption energy for hydroxyl oxygen-side vertical adsorption indicated that: after HOCl modification, adsorption energy decreased from -247.2310 kJ/mol to -177.0579 kJ/mol for DOPA-quinone and DOPA-quinone-Cl; and the Mulliken Charges Populations showed that the electrons transferred from surface to DOPA-quinone-Cl was less than that to DOPA-quinone, namely, the fewer the number of electrons transferred, the weaker interaction between molecular and surface. After the theoretical calculation, we found that the anti-foul goal had been achieved by electrolysis of seawater to generate HOCl to modify DOPA-quinone, which led to the reduction of adsorption energy and transferred electrons.

  18. Pharmacodynamic and pharmacokinetic profiling of delafloxacin in a murine lung model against community-acquired respiratory tract pathogens.

    PubMed

    Thabit, Abrar K; Crandon, Jared L; Nicolau, David P

    2016-11-01

    Increasing antimicrobial resistance in community-acquired pneumonia (CAP) pathogens has contributed to infection-related morbidity and mortality. Delafloxacin is a novel fluoroquinolone with broad-spectrum activity against Gram-positive and -negative organisms, including Streptococcus pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to define the pharmacodynamic profile of delafloxacin against CAP pathogens using a neutropenic murine lung infection model. Five S. pneumoniae, 2 methicillin-susceptible S. aureus (MSSA), 2 MRSA and 2 Klebsiella pneumoniae isolates were studied. Delafloxacin doses varied from 0.5 mg/kg/day to 640 mg/kg/day and were given as once-daily to every 3 h regimens over the 24-h treatment period. Efficacy was measured as the change in log10 CFU at 24 h compared with 0-h controls. Plasma and bronchopulmonary pharmacokinetic studies were conducted. Delafloxacin demonstrated potent in vitro and in vivo activity. Delafloxacin demonstrated high penetration into the lung compartment, as epithelial lining fluid concentrations were substantially higher than free drug in plasma. The ratio of the area under the free drug concentration-time curve to the minimum inhibitory concentration of the infecting organism (fAUC/MIC) was the parameter that best correlated with the efficacy of the drug, and the magnitude required to achieve 1 log10 CFU reduction was 31.8, 24.7, 0.4 and 9.6 for S. pneumoniae, MRSA, MSSA and K. pneumoniae, respectively. The observed in vivo efficacy of delafloxacin was supported by the high pulmonary disposition of the compound. The results derived from this pre-clinical lung model support the continued investigation of delafloxacin for the treatment of community-acquired lower respiratory tract infections.

  19. Mycological Profile of Sputum of HIV Positive Patients with Lower Respiratory Tract Infection and its Correlation with CD4+ T Lymphocyte Count

    PubMed Central

    Chandwani, Jyotsna; Vyas, Nitya; Hooja, Saroj; Maheshwari, Rakesh

    2016-01-01

    Introduction Fungal respiratory infections are important cause of mortality and morbidity among HIV positive individuals. They account for up to 70% of illness in Acquired Immunodeficiency Disease Syndrome cases (AIDS). The range of illness varies from asymptomatic mucosal candidiasis to overwhelming disseminated infections. In these patients dissemination of fungus leads to very serious outcomes hence, it is important to have the knowledge of prevailing profile of fungus causing infections, so that it can be treated at the onset. Low CD4+ T lymphocyte count is an excellent indicator of decreased immunity and can also be helpful to predict opportunistic fungal respiratory infections and other complications. Aim To define the fungal aetiology of lower respiratory tract infections in HIV positive patients and to correlate the occurrence of different fungi with CD4+ T lymphocyte count. Materials and Methods This was a cross sectional study conducted between May 2014 to April 2015, on 180 treatment naive HIV seropositive patients with lower respiratory tract infections attending the Integrated Counselling and Testing Centre, SMS Medical College, Jaipur, Rajasthan. Early morning expectorated and induced sputum samples were collected and processed for isolation and identification of fungal species. CD4+ T lymphocyte count estimation was done by BD FACS Calibur. Results Fungal species were isolated from 155 (86.1%) patients. The most common isolate was Candida albicans (31.7%), followed by Aspergillus niger (17.7%) and Aspergillus flavus (10%). The fungal species were most commonly isolated from patients with CD4+ T lymphocyte cell less than 200 cells/μl. Conclusion Fungal infections were seen in 86.1% of HIV positive patients with lower respiratory tract infections hence, high level of clinical suspicion for fungal aetiology of respiratory infections in HIV positive patients should be kept in mind. PMID:27790435

  20. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects

    PubMed Central

    2016-01-01

    Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve. PMID:27617882

  1. Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR

    PubMed Central

    Ji, Quanjiang; Zhang, Liang; Jones, Marcus B.; Sun, Fei; Deng, Xin; Liang, Haihua; Cho, Hoonsik; Brugarolas, Pedro; Gao, Yihe N.; Peterson, Scott N.; Lan, Lefu; Bae, Taeok; He, Chuan

    2013-01-01

    Quinone molecules are intracellular electron-transport carriers, as well as critical intra- and extracellular signals. However, transcriptional regulation of quinone signaling and its molecular basis are poorly understood. Here, we identify a thiol-stress-sensing regulator YodB family transcriptional regulator as a central component of quinone stress response of Staphylococcus aureus, which we have termed the quinone-sensing and response repressor (QsrR). We also identify and confirm an unprecedented quinone-sensing mechanism based on the S-quinonization of the essential residue Cys-5. Structural characterizations of the QsrR–DNA and QsrR–menadione complexes further reveal that the covalent association of menadione directly leads to the release of QsrR from operator DNA following a 10° rigid-body rotation as well as a 9-Å elongation between the dimeric subunits. The molecular level characterization of this quinone-sensing transcriptional regulator provides critical insights into quinone-mediated gene regulation in human pathogens. PMID:23479646

  2. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments.

  3. The quinones of benzocyclobutadiene: a computational study.

    PubMed

    Golas, Ewa; Lewars, Errol; Liebman, Joel F

    2009-08-27

    The conventional (excluding non-Kekulé, singlet diradical structures) quinones of benzocyclobutadiene were studied computationally. Eight structures were examined, namely (based on the CA names for benzocyclobutenedione), benzocyclobutenedione or bicyclo[4.2.0]octa-1,3,5-triene-7,8-dione, bicyclo[4.2.0]octa-3,5,8-triene-2,7-dione, bicyclo[4.2.0]octa-1,4,6-triene-3,8-dione, bicyclo[4.2.0]octa-1(6),4,7-triene-2,3-dione, bicyclo[4.2.0]octa-1(8), 4,6-triene-2,3-dione, bicyclo[4.2.0]octa-1(6),3,7-triene-2,5-dione, bicyclo[4.2.0]octa-1(8),3,6-triene-2,5-dione, and bicyclo[4.2.0]octa-1,5,7-triene-3,4-dione (the question of resonance or tautomerism for the 2,3-dione pair and the 2,5-dione pair is considered). Using DFT (B3LYP/6-31G*) and ab initio (MP2/6-31G*) methods the geometries of the eight species were optimized, giving similar results for the two methods. The heats of formation of the quinones were calculated, placing them in low-energy (-17 kJ mol(-1), 7,8-dione), medium-energy (79-137 kJ mol(-1), 2,7-, 3,8-, and 3,4-diones), and high-energy (260-275 kJ mol(-1), 2,3- and 2,5-diones) groups. Diels-Alder reactivity as dienophiles with butadiene indicated the 2,7-, 3,8-, and particularly the 3,4-quinone may be relatively unreactive toward dimerization or polymerization and are attractive synthesis goals. Isodesmic ring-opening reactions and NICS calculations showed aromatic/nonaromatic properties to be essentially as expected from the presence of a benzene or cyclobutadiene ring. UV spectra, ionization energy electron affinity, and HOMO/LUMO energies were also calculated.

  4. Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration.

    PubMed

    Simon, Jörg; Kern, Melanie

    2008-10-01

    Many quinone-reactive enzyme complexes that are part of membrane-integral eukaryotic or prokaryotic respiratory electron transport chains contain one or more haem b molecules embedded in the membrane. In recent years, various novel proteins have emerged that are devoid of haem b but are thought to fulfil a similar function in bacterial anaerobic respiratory systems. These proteins are encoded by genes organized in various genomic arrangements and are thought to form widespread membrane-bound quinone-reactive electron transport modules that exchange electrons with redox partner proteins located at the outer side of the cytoplasmic membrane. Prototypic representatives are the multihaem c-type cytochromes NapC, NrfH and TorC (NapC/NrfH family), the putative iron-sulfur protein NapH and representatives of the NrfD/PsrC family. Members of these protein families vary in the number of their predicted transmembrane segments and, consequently, diverse quinone-binding sites are expected. Only a few of these enzymes have been isolated and characterized biochemically and high-resolution structures are limited. This mini-review briefly summarizes predicted and experimentally demonstrated properties of the proteins in question and discusses their role in electron transport and bioenergetics of anaerobic respiration.

  5. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    PubMed

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease.

  6. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae.

    PubMed

    Yamashita, Tetsuo; Nakamaru-Ogiso, Eiko; Miyoshi, Hideto; Matsuno-Yagi, Akemi; Yagi, Takao

    2007-03-02

    To understand the biochemical basis for the function of the rotenone-insensitive internal NADH-quinone (Q) oxidoreductase (Ndi1), we have overexpressed mature Ndi1 in Escherichia coli membranes. The Ndi1 purified from the membranes contained one FAD and showed enzymatic activities comparable with the original Ndi1 isolated from Saccharomyces cerevisiae. When extracted with Triton X-100, the isolated Ndi1 did not contain Q. The Q-bound form was easily reconstituted by incubation of the Q-free Ndi1 enzyme with ubiquinone-6. We compared the properties of Q-bound Ndi1 enzyme with those of Q-free Ndi1 enzyme, with higher activity found in the Q-bound enzyme. Although both are inhibited by low concentrations of AC0-11 (IC(50) = 0.2 microm), the inhibitory mode of AC0-11 on Q-bound Ndi1 was distinct from that of Q-free Ndi1. The bound Q was slowly released from Ndi1 by treatment with NADH or dithionite under anaerobic conditions. This release of Q was prevented when Ndi1 was kept in the reduced state by NADH. When Ndi1 was incorporated into bovine heart submitochondrial particles, the Q-bound form, but not the Q-free form, established the NADH-linked respiratory activity, which was insensitive to piericidin A but inhibited by KCN. Furthermore, Ndi1 produces H(2)O(2) as isolated regardless of the presence of bound Q, and this H(2)O(2) was eliminated when the Q-bound Ndi1, but not the Q-free Ndi1, was incorporated into submitochondrial particles. The data suggest that Ndi1 bears at least two distinct Q sites: one for bound Q and the other for catalytic Q.

  7. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum.

    PubMed

    Kimura, Yuuka; Kawakami, Tomoaki; Yu, Long-Jiang; Yoshimura, Miku; Kobayashi, Masayuki; Wang-Otomo, Zheng-Yu

    2015-07-08

    Quinone distributions in the thermophilic purple sulfur bacterium Thermochromatium tepidum have been investigated at different levels of the photosynthetic apparatus. Here we show that, on average, the intracytoplasmic membrane contains 18 ubiquinones (UQ) and 4 menaquinones (MQ) per reaction center (RC). About one-third of the quinones are retained in the light-harvesting-reaction center core complex (LH1-RC) with a similar ratio of UQ to MQ. The numbers of quinones essentially remains unchanged during crystallization of the LH1-RC. There are 1-2 UQ and 1 MQ associated with the RC-only complex in the purified solution sample. Our results suggest that a large proportion of the quinones are confined to the core complex and at least five UQs remain invisible in the current LH1-RC crystal structure.

  8. Respiratory System

    MedlinePlus

    ... this page from the NHLBI on Twitter. The Respiratory System The respiratory system is made up of organs ... vessels, and the muscles that enable breathing. The Respiratory System Figure A shows the location of the respiratory ...

  9. Respiratory Care Therapist.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of respiratory care therapist, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general as well as those specific to the occupation of respiratory care therapist. The following…

  10. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    SciTech Connect

    Xiong, Rui; Siegel, David; Ross, David

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  11. Strong pH dependence of coupling efficiency of the Na+ - translocating NADH:quinone oxidoreductase (Na+-NQR) of Vibrio cholerae.

    PubMed

    Toulouse, Charlotte; Claussen, Björn; Muras, Valentin; Fritz, Günter; Steuber, Julia

    2017-02-01

    The Na+-translocating NADH:quinone oxidoreductase (NQR) is the entry site for electrons into the respiratory chain of Vibrio cholerae, the causative agent of cholera disease. NQR couples the electron transfer from NADH to ubiquinone to the translocation of sodium ions across the membrane. We investigated the pH dependence of electron transfer and generation of a transmembrane voltage (ΔΨ) by NQR reconstituted in liposomes with Na+ or Li+ as coupling cation. ΔΨ formation was followed with the voltage-sensitive dye oxonol. With Na+, ΔΨ was barely influenced by pH (6.5-8.5), while Q reduction activity exhibited a maximum at pH 7.5-8.0. With Li+, ΔΨ was generally lower, and the pH profile of electron transfer activity did not reveal a pronounced maximum. We conclude that the coupling efficiency of NQR is influenced by the nature of the transported cation, and by the concentration of protons. The 3D structure of NQR reveals a transmembrane channel in subunit NqrB. It is proposed that partial uncoupling of the NQR observed with the smaller Li+, or with Na+ at pH 7.5-8.0, is caused by the backflow of the coupling cation through the channel in NqrB.

  12. Pyrroloquinoline quinone: Metabolism and analytical methods

    SciTech Connect

    Smidt, C.R.

    1990-01-01

    Pyrroloquinoline quinone (PQQ) functions as a cofactor for bacterial oxidoreductases. Whether or not PQQ serves as a cofactor in higher plants and animals remains controversial. Nevertheless, strong evidence exists that PQQ has nutritional importance. In highly purified, chemically defined diets PQQ stimulates animal growth. Further PQQ deprivation impairs connective tissue maturation, particularly when initiated in utero and throughout perinatal development. The study addresses two main objectives: (1) to elucidate basic aspects of the metabolism of PQQ in animals, and (2) to develop and improve existing analytical methods for PQQ. To study intestinal absorption of PQQ, ten mice were administered [[sup 14]C]-PQQ per os. PQQ was readily absorbed (62%) in the lower intestine and was excreted by the kidney within 24 hours. Significant amounts of labeled-PQQ were retained only by skin and kidney. Three approaches were taken to answer the question whether or not PQQ is synthesized by the intestinal microflora of mice. First, dietary antibiotics had no effect on fecal PQQ excretion. Then, no bacterial isolates could be identified that are known to synthesize PQQ. Last, cecal contents were incubated anaerobically with radiolabeled PQQ-precursors with no label appearing in isolated PQQ. Thus, intestinal PQQ synthesis is unlikely. Analysis of PQQ in biological samples is problematic since PQQ forms adducts with nucleophilic compounds and binds to the protein fraction. Existing analytical methods are reviewed and a new approach is introduced that allows for detection of PQQ in animal tissue and foods. PQQ is freed from proteins by ion exchange chromatography, purified on activated silica cartridges, detected by a colorimetric redox-cycling assay, and identified by mass spectrometry. That compounds with the properties of PQQ may be nutritionally important offers interesting areas for future investigation.

  13. Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism.

    PubMed

    Hughes, Tyler B; Swamidass, S Joshua

    2017-02-20

    Many adverse drug reactions are thought to be caused by electrophilically reactive drug metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a safe dose. Using a deep learning approach, this study reports the first published method for predicting quinone formation: the formation of a quinone species by metabolic oxidation. We model both one- and two-step quinone formation, enabling accurate quinone formation predictions in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of quinones, one of the most common types of reactive metabolites, our method provides a rapid screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at http://swami.wustl.edu/xenosite/p/quinone .

  14. Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components.

    PubMed

    Volentini, Sabrina I; Farías, Ricardo N; Rodríguez-Montelongo, Luisa; Rapisarda, Viviana A

    2011-10-01

    Copper is both an essential nutrient and a toxic element able to catalyze free radicals formation which damage lipids and proteins. Although the available copper redox species in aerobic environment is Cu(II), proteins that participate in metal homeostasis use Cu(I). With isolated Escherichia coli membranes, we have previously shown that electron flow through the respiratory chain promotes cupric ions reduction by NADH dehydrogenase-2 and quinones. Here, we determined Cu(II)-reductase activity by whole cells using strains deficient in these respiratory chain components. Measurements were done by the appearance of Cu(I) in the supernatants of cells exposed to sub-lethal Cu(II) concentrations. In the absence of quinones, the Cu(II)-reduction rate decreased ~70% in respect to the wild-type strain, while this diminution was about 85% in a strain lacking both NDH-2 and quinones. The decrease was ~10% in the absence of only NDH-2. In addition, we observed that quinone deficient strains failed to grow in media containing either excess or deficiency of copper, as we have described for NDH-2 deficient mutants. Thus, the Cu(II)-reduction by E. coli intact cells is mainly due to quinones and to a lesser extent to NDH-2, in a quinone-independent way. To our knowledge, this is the first in vivo demonstration of the involvement of E. coli respiratory components in the Cu(II)-reductase activity which contributes to the metal homeostasis.

  15. The Domestication of ortho-Quinone Methides

    PubMed Central

    2015-01-01

    Conspectus An ortho-quinone methide (o-QM) is a highly reactive chemical motif harnessed by nature for a variety of purposes. Given its extraordinary reactivity and biological importance, it is surprising how few applications within organic synthesis exist. We speculate that their widespread use has been slowed by the complications that surround the preparation of their precursors, the harsh generation methods, and the omission of this stratagem from computer databases due to its ephemeral nature. About a decade ago, we discovered a mild anionic triggering procedure to generate transitory o-QMs at low temperature from readily available salicylaldehydes, particularly OBoc derivatives. This novel reaction cascade included both the o-QM formation and the subsequent consumption reaction. The overall transformation was initiated by the addition of the organometallic reagent, usually a Grignard reagent, which resulted in the formation of a benzyloxy alkoxide. Boc migration from the neighboring phenol produced a magnesium phenoxide that we supposed underwent β-elimination of the transferred Boc residue to form an o-QM for immediate further reactions. Moreover, the cascade proved controllable through careful manipulation of metallic and temperature levers so that it could be paused, stopped, or restarted at various intermediates and stages. This new level of domestication enabled us to deploy o-QMs for the first time in a range of applications including diastereocontrolled reactions. This sequence ultimately could be performed in either multipot or single pot processes. The subsequent reaction of the fleeting o-QM intermediates included the 1,4-conjugate additions that led to unbranched or branched ortho-alkyl substituted phenols and Diels–Alder reactions that provided 4-unsubstituted or 4-substituted benzopyrans and chroman ketals. The latter cycloadducts were obtained for the first time with outstanding diastereocontrol. In addition, the steric effects of the newly

  16. CS-8958, a Prodrug of the Novel Neuraminidase Inhibitor R-125489, Demonstrates a Favorable Long-Retention Profile in the Mouse Respiratory Tract▿

    PubMed Central

    Koyama, Kumiko; Takahashi, Makoto; Oitate, Masataka; Nakai, Naoko; Takakusa, Hideo; Miura, Shin-ichi; Okazaki, Osamu

    2009-01-01

    CS-8958 is a prodrug of the pharmacologically active form R-125489, a selective neuraminidase inhibitor, and has long-acting anti-influenza virus activity in vivo. In this study, the tissue distribution profiles after a single intranasal administration of CS-8958 (0.5 μmol/kg of body weight) to mice were investigated, focusing especially on the retention of CS-8958 in the respiratory tract by comparing it with R-125489 and a marketed drug, zanamivir. After administration of [14C]CS-8958, radioactivity was retained in the respiratory tract over long periods. At 24 h postdose, the radioactivity concentrations after administration of [14C]CS-8958 were approximately 10-fold higher in both the trachea and the lung than those of [14C]R-125489 and [14C]zanamivir. The [14C]CS-8958-derived radioactivity present in these two tissues consisted both of unchanged CS-8958 and of R-125489 at 1 h postdose, while only R-125489, and no other metabolites, was detected at 24 h postdose. After administration of unlabeled CS-8958, CS-8958 was rapidly eliminated from the lungs, whereas the lung R-125489 concentration reached a maximum at 3 h postdose and gradually declined, with an elimination half-life of 41.4 h. The conversion of CS-8958 to R-125489 was observed in mouse trachea and lung S9 fractions and was inhibited by esterase inhibitors, such as diisopropylfluorophosphate and bis-p-nitrophenylphosphate. These results demonstrated that CS-8958 administered intranasally to mice was efficiently converted to R-125489 by a hydrolase(s) such as carboxylesterase, and then R-125489 was slowly eliminated from the respiratory tract. These data support the finding that CS-8958 has potential as a long-acting neuraminidase inhibitor, leading to significant efficacy as an anti-influenza drug by a single treatment. PMID:19687241

  17. Multicomponent Condensation Reactions via ortho-Quinone Methides.

    PubMed

    Allen, Emily E; Zhu, Calvin; Panek, James S; Schaus, Scott E

    2017-03-30

    Iron(III) salts promote the condensation of aldehydes or acetals with electron-rich phenols to generate ortho-quinone methides that undergo Diels-Alder condensations with alkenes. The reaction sequence occurs in a single vessel to afford benzopyrans in up to 95% yield. The reaction was discovered while investigating a two-component strategy using 2-(hydroxy(phenyl)methyl)phenols to access the desired ortho-quinone methide in a Diels-Alder condensation. The two-component condensation also afforded the corresponding benzopyran products in yields up to 97%. Taken together, the two- and three-component strategies using ortho-quinone methide intermediates provide efficient access to benzopyrans in good yields and selectivities.

  18. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  19. Friedel Craft's synthesis and characterization of some acene quinone compounds

    SciTech Connect

    Galleguillos, R.; Litt, M.; Rickert, S.E.

    1987-01-01

    The synthesis and characterization of some linear acene quinones of up to nine fused rings prepared by the Friedel-Craft's reaction of hydroquinone (HQ) and 1,4,9,10 tetrahydroxy anthracene (THA) with pyromellitic dianhydride (PMDA), and fused AlCl/sub 3/, was carried out. The intermediate product of the reaction of THA and PMDA, 1,4 dihydroxy anthraquinone, 6,7 dicarboxylic acid (DADCA) was also isolated and its synthesis optimized. This material was reduced to 1,4,9,10-tetrahydroxy anthracene 6,7-dicarboxylic acid (TADCA) and further dehydrated to its anhydride (TADCAmh). These compounds contain the necessary chemical functionalities which may lead to the facile synthesis of higher molecular weight quinones. These acene quinones show electronic spectral absorptions extending far into the NIR region, an indication of their long conjunction length.

  20. Xenobiotic induction of quinone oxidoreductase activity in lens epithelial cells.

    PubMed

    Tumminia, S J; Rao, P V; Zigler, J S; Russell, P

    1993-12-08

    Xenobiotic regulatory elements have been identified for enzymes which ameliorate oxidative damage in cells. Zeta (zeta)-crystallin, a taxon-specific enzyme/crystallin shown to be a novel NADPH-dependent quinone reductase, is found in a number of tissues and cell types. This study shows that zeta-crystallin is present in mouse lens epithelium, as well as in the alpha TN4 mouse lens epithelial cell line. To determine whether zeta-crystallin is an inducible quinone reductase, cell cultures were exposed to the xenobiotics, 1,2-naphthoquinone and beta-naphthoflavone. Assays of cellular homogenates showed that quinone reductase activity was stimulated greater than 70% and 90%, respectively, over the control cells. This observed activity was sensitive to dicumarol, a potent inhibitor of quinone reductase activity. 1,2-Naphthoquinone- and beta-naphthoflavone-exposed cells were found to exhibit 1.47- and 1.68-fold increases, respectively, in zeta-crystallin protein concentration. A comparable increase in zeta-crystallin mRNA was indicative of an induction in zeta-crystallin expression in response to naphthalene challenge. Lens epithelial cells were also checked for DT-diaphorase, a well-known cellular protective enzyme which can catalyze the two-electron reduction of quinones. Slot blot analyses indicated that alpha TN4 cells exposed to 1,2-naphthoquinone and beta-naphthoflavone exhibited 2.71- and 6.81-fold increases in DT-diaphorase concentration when compared to the control cells. The data suggest that while DT-diaphorase is most likely responsible for the majority of the observed increase in quinone reductase activity, the zeta-crystallin gene also undergoes activation which is apparently mediated by a xenobiotic-responsive element.

  1. Chlorophyll-quinone photochemical electron transfer in liposomes

    SciTech Connect

    Hurley, J.K.; Castelli, F.; Tollin, G.

    1981-09-01

    A study is described which involves the reduction of electron acceptors (quinones) by photoexcited chlorophyll (Chl). The experimental samples consisted of Chl a (from spinach) incorporated into phosphatidylcholine (either synthetic or from hen egg yolks) liposomes suspended in 10 mM phosphate buffer (pH 7.0). The quinones were either present during liposome formation or added later, depending on their water solubility. The measurement technique employed was laser flash photolysis. Results have provided considerable insight into the ways in which membranes may modify the photochemical properties of Chl by allowing molecular compartmentalization and by permitting cooperative interactions.

  2. Process for Preparing Microcapsules Having Gelatin Walls Crosslinked with Quinone.

    DTIC Science & Technology

    A process for conveniently producing microcapsules containing a gelatin wall crosslinked with quinone and a core of an active compound such as a...provides microcapsules of excellent strength, storage stability, and resistance to aqueous exposure, such that the rate of release of the fouling reducing agent can be controlled with precision. jg

  3. Synthesis of azobenzenes from quinone acetals and arylhydrazines.

    PubMed

    Carreño, M Carmen; Mudarra, Gerardo Fernández; Merino, Estíbaliz; Ribagorda, María

    2004-05-14

    Direct reaction between quinone bisacetals and arylhydrazines gives azobenzenes. The presence of catalytic amounts of cerium ammonium nitrate strongly accelerates the reaction. When the bisacetal has a substituent at the 2,5-cyclohexadiene framework, only one regioisomer is formed. The method represents a simple, mild, and novel synthetic access to differently substituted azocompounds in high to excellent yield.

  4. Respiratory acidosis

    MedlinePlus

    ... Names Ventilatory failure; Respiratory failure; Acidosis - respiratory Images Respiratory system References Effros RM, Swenson ER. Acid-base balance. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  5. [Respiratory allergies].

    PubMed

    Chiriac, Anca Mirela; Demoly, Pascal

    2013-04-01

    Respiratory allergies represent a global and public health problem, due to their prevalence (still increasing), morbidity, impact on the quality of life and costs for the society. They mainly concern rhinitis (or rhinoconjunctivitis) and asthma. The diagnosis of allergy is dependent on a history of symptoms on exposure to an allergen together with the detection of allergen-specific IgE. Accurate diagnosis of allergies opens up therapeutic options that are otherwise not appropriate, such as allergen immunotherapy and allergen avoidance, that are prescribed following a stepwise approach. It has been a century since the first trial in specific immunotherapy was performed and this still remains the only disease modifying treatment for allergic individuals. In terms of route of administration, sublingual immunotherapy represents a good alternative to subcutaneous immunotherapy, considering its proven efficacy and better safety profile.

  6. Early detection of disease: The correlation of the volatile organic profiles from patients with upper respiratory infections with subjects of normal profiles

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1979-01-01

    A method is described whereby a transevaporator is used for sampling 60-100 microns of aqueous sample. Volatiles are stripped from the sample either by a stream of helium and collection on a porous polymer, Tenax, or by 0.8 ml of 2-chloropropane and collected on glass beads. The volatiles are thermally desorbed into a precolumn which is connected to a capillary gas chromatographic column for analysis. The technique is shown to be reproducible and suitable for determining chromatographic profiles for a wide variety of sample types. Using a transevaporator sampling technique, the volatile profiles from 70 microns of serum were obtained by capillary column gas chromatography. The complex chromatograms were interpreted by a combination of manual and computer techniques and a two peak ratio method devised for the classification of normal and virus infected sera. Using the K-Nearest Neighbor approach, 85.7 percent of the unknown samples were classified correctly. Some preliminary results indicate the possible use of the method for the assessment of virus susceptibility.

  7. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    PubMed

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  8. Genome Expression Profiling-Based Identification and Administration Efficacy of Host-Directed Antimicrobial Drugs against Respiratory Infection by Nontypeable Haemophilus influenzae

    PubMed Central

    Euba, Begoña; Moleres, Javier; Segura, Víctor; Viadas, Cristina; Morey, Pau; Moranta, David; Leiva, José; de-Torres, Juan Pablo; Bengoechea, José Antonio

    2015-01-01

    Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection. PMID:26416856

  9. The mechanism of catalysis by type-II NADH:quinone oxidoreductases

    PubMed Central

    Blaza, James N.; Bridges, Hannah R.; Aragão, David; Dunn, Elyse A.; Heikal, Adam; Cook, Gregory M.; Nakatani, Yoshio; Hirst, Judy

    2017-01-01

    Type II NADH:quinone oxidoreductase (NDH-2) is central to the respiratory chains of many organisms. It is not present in mammals so may be exploited as an antimicrobial drug target or used as a substitute for dysfunctional respiratory complex I in neuromuscular disorders. NDH-2 is a single-subunit monotopic membrane protein with just a flavin cofactor, yet no consensus exists on its mechanism. Here, we use steady-state and pre-steady-state kinetics combined with mutagenesis and structural studies to determine the mechanism of NDH-2 from Caldalkalibacillus thermarum. We show that the two substrate reactions occur independently, at different sites, and regardless of the occupancy of the partner site. We conclude that the reaction pathway is determined stochastically, by the substrate/product concentrations and dissociation constants, and can follow either a ping-pong or ternary mechanism. This mechanistic versatility provides a unified explanation for all extant data and a new foundation for the development of therapeutic strategies. PMID:28067272

  10. Respiratory papillomas

    PubMed Central

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas. PMID:27625447

  11. Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation.

    PubMed

    Chen, Muyan; Storey, Kenneth B

    2014-02-01

    The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing its metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|)≥1, FDR (false discovery rate)<0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation. High-throughput sequencing data and microarray data have been submitted to the GEO database with accession number: 16902695.

  12. Uranium Exerts Acute Toxicity by Binding to Pyrroloquinoline Quinone Cofactor

    SciTech Connect

    Michael R. VanEngelen; Robert I. Szilagyi; Robin Gerlach; Brady E. Lee; William A. Apel; Brent M. Peyton

    2011-02-01

    Uranium as an environmental contaminant has been shown to be toxic to eukaryotes and prokaryotes; however, no specific mechanisms of uranium toxicity have been proposed so far. Here a combination of in vivo, in vitro, and in silico studies are presented describing direct inhibition of pyrroloquinoline quinone (PQQ)-dependent growth and metabolism by uranyl cations. Electrospray-ionization mass spectroscopy, UV-vis optical spectroscopy, competitive Ca2+/uranyl binding studies, relevant crystal structures, and molecular modeling unequivocally indicate the preferred binding of uranyl simultaneously to the carboxyl oxygen, pyridine nitrogen, and quinone oxygen of the PQQ molecule. The observed toxicity patterns are consistent with the biotic ligand model of acute metal toxicity. In addition to the environmental implications, this work represents the first proposed molecular mechanism of uranium toxicity in bacteria, and has relevance for uranium toxicity in many living systems.

  13. Respiratory Failure

    MedlinePlus

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  14. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  15. Effects of AOX1a deficiency on plant growth, gene expression of respiratory components and metabolic profile under low-nitrogen stress in Arabidopsis thaliana.

    PubMed

    Watanabe, Chihiro K; Hachiya, Takushi; Takahara, Kentaro; Kawai-Yamada, Maki; Uchimiya, Hirofumi; Uesono, Yukifumi; Terashima, Ichiro; Noguchi, Ko

    2010-05-01

    Expression of alternative oxidase (AOX) and cyanide (CN)-resistant respiration are often highly enhanced in plants exposed to low-nitrogen (N) stress. Here, we examined the effects of AOX deficiency on plant growth, gene expression of respiratory components and metabolic profiles under low-N stress, using an aox1a knockout transgenic line (aox1a) of Arabidopsis thaliana. We exposed wild-type (WT) and aox1a plants to low-N stress for 7 d and analyzed their shoots and roots. In WT plants, the AOX1a mRNA levels and AOX capacity increased in proportion to low-N stress. Expression of the genes of the components for non-phosphorylating pathways and antioxidant enzymes was enhanced, but differences between WT and aox1a plants were small. Metabolome analyses revealed that AOX deficiency altered the levels of certain metabolites, such as sugars and sugar phosphates, in the shoots under low-N stress. However, the carbon (C)/N ratios and carbohydrate levels in aox1a plants were similar to those in the WT under low-N stress. Our results indicated that the N-limited stress induced AOX expression in A. thaliana plants, but the induced AOX may not play essential roles under stress due to low-N alone, and the C/N balance under low-N stress may be tightly regulated by systems other than AOX.

  16. Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of 'Royal Gala' apple after long-term storage.

    PubMed

    Both, Vanderlei; Thewes, Fabio Rodrigo; Brackmann, Auri; de Oliveira Anese, Rogerio; de Freitas Ferreira, Daniele; Wagner, Roger

    2017-01-15

    The effects of dynamic controlled atmosphere (DCA) storage based on chlorophyll fluorescence (DCA-CF) and respiratory quotient (DCA-RQ) on the quality and volatile profile of 'Royal Gala' apple were evaluated. DCA storage reduces ACC (1-aminocyclopropane-1-carboxylate) oxidase activity, ethylene production and respiration rate of apples stored for 9months at 1.0°C plus 7days at 20°C, resulting in higher flesh firmness, titratable acidity and lesser physiological disorders, and provided a higher proportion of healthy fruit. Storage in a regular controlled atmosphere gave higher levels of key volatiles (butyl acetate, 2-methylbutyl acetate and hexyl acetate), as compared to fruit stored under DCA-CF, but fruit stored under DCA-RQ 1.5 and RQ 2.0 also showed higher amounts of key volatile compounds, with increment in ethanol and ethyl acetate, but far below the odour threshold. Storage in DCA-CF reduces fruit ester production, especially 2-methylbutyl acetate, which is the most important component of 'Royal Gala' apple flavour.

  17. The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites.

    PubMed

    Ito, Shosuke; Yamanaka, Yuta; Ojika, Makoto; Wakamatsu, Kazumasa

    2016-01-27

    ortho-Quinones are produced in vivo through the oxidation of catecholic substrates by enzymes such as tyrosinase or by transition metal ions. Neuromelanin, a dark pigment present in the substantia nigra and locus coeruleus of the brain, is produced from dopamine (DA) and norepinephrine (NE) via an interaction with cysteine, but it also incorporates their alcoholic and acidic metabolites. In this study we examined the metabolic fate of ortho-quinones derived from the catecholamine metabolites, 3,4-dihydroxyphenylethanol (DOPE), 3,4-dihydroxyphenylethylene glycol (DOPEG), 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylmandelic acid (DOMA). The oxidation of catecholic substrates by mushroom tyrosinase was followed by UV-visible spectrophotometry. HPLC analysis after reduction with NaBH₄ or ascorbic acid enabled measurement of the half-lives of ortho-quinones and the identification of their reaction products. Spectrophotometric examination showed that the ortho-quinones initially formed underwent extensive degradation at pH 6.8. HPLC analysis showed that DOPE-quinone and DOPEG-quinone degraded with half-lives of 15 and 30 min at pH 6.8, respectively, and >100 min at pH 5.3. The major product from DOPE-quinone was DOPEG which was produced through the addition of a water molecule to the quinone methide intermediate. DOPEG-quinone yielded a ketone, 2-oxo-DOPE, through the quinone methide intermediate. DOPAC-quinone and DOMA-quinone degraded immediately with decarboxylation of the ortho-quinone intermediates to form 3,4-dihydroxybenzylalcohol (DHBAlc) and 3,4-dihydroxybenzaldehyde (DHBAld), respectively. DHBAlc-quinone was converted to DHBAld with a half-life of 9 min, while DHBAld-quinone degraded rapidly with a half-life of 3 min. This study confirmed the fact that ortho-quinones from DOPE, DOPEG, DOPAC and DOMA are converted to quinone methide tautomers as common intermediates, through proton rearrangement or decarboxylation. The unstable quinone

  18. Chlorophyll-quinone photochemical electron transfer in liposomes

    SciTech Connect

    Hurley, J.K.; Castelli, F.; Tollin, G.

    1981-09-01

    The study described involves the reduction of electron acceptors (quinones) by photoexcited Chloroplasts (Chl). Chl a (from spinach) is incorporated into phosphatidylcholine (either synthetic or from hen egg yolks) liposomes suspended in 10 mM phosphate buffer (pH 7.0). The quinones are either present during liposome formation or added later, depending upon their water solubility. The measurement technique employed is laser flash photolysis. A pulsed nitrogen laser pumps a dye laser, which delivers a short light flash (10 ns) to the sample at a wavelength (655-660 nm) within an absorption band of Chl. This raises Chl to an excited singlet level, which can rapidly cross to the lowest excited triple level (/sup 3/Chl). From this state Chl can transfer an electron to acceptors such as quinones, resulting in the formation of the Chl cation radical (Chl./sup +/) and the semiquinone anion radical (Q./sup +/). Transient absorbance changes ocurring within the sample cell are monitored and can be attributed to processes such as excited state quenching (of /sup 3/Chl by Q) and radical product formation and decay. (JMT)

  19. Respiratory alkalosis

    MedlinePlus

    ... shortness of breath. Alternative Names Alkalosis - respiratory Images Respiratory system References Effros RM, Swenson ER. Acid-base balance. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  20. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  1. Quinone Methide Bioactivation Pathway: Contribution to Toxicity and/or Cytoprotection?

    PubMed Central

    Bolton, Judy L.

    2014-01-01

    The formation of quinone methides (QMs) from either direct 2-electron oxidation of 2- or 4-alkylphenols, isomerization of o-quinones, or elimination of a good leaving group could explain the cytotoxic/cytoprotective effects of several drugs, natural products, as well as endogenous compounds. For example, the antiretroviral drug nevirapine and the antidiabetic agent troglitazone both induce idiosyncratic hepatotoxicity through mechanisms involving quinone methide formation. The anesthetic phencyclidine induces psychological side effects potentially through quinone methide mediated covalent modification of crucial macromolecules in the brain. Selective estrogen receptor modulators (SERMs) such as tamoxifen, toremifene, and raloxifene are metabolized to quinone methides which could potentially contribute to endometrial carcinogenic properties and/or induce detoxification enzymes and enhance the chemopreventive effects of these SERMs. Endogenous estrogens and/or estrogens present in estrogen replacement formulations are also metabolized to catechols and further oxidized to o-quinones which can isomerize to quinone methides. Both estrogen quinoids could cause DNA damage which could enhance hormone dependent cancer risk. Natural products such as the food and flavor agent eugenol can be directly oxidized to a quinone methide which may explain the toxic effects of this natural compound. Oral toxicities associated with chewing areca quid could be the result of exposure to hydroxychavicol through initial oxidation to an o-quinone which isomerizes to a p-quinone methide. Similar o-quinone to p-quinone methide isomerization reactions have been reported for the ubiquitous flavonoid quercetin which needs to be taken into consideration when evaluating risk-benefit assessments of these natural products. The resulting reaction of these quinone methides with proteins, DNA, and/or resulting modulation of gene expression may explain the toxic and/or beneficial effects of the parent

  2. The mitochondrial respiratory chain of Ustilago maydis.

    PubMed

    Juárez, Oscar; Guerra, Guadalupe; Martínez, Federico; Pardo, Juan Pablo

    2004-10-04

    Ustilago maydis mitochondria contain the four classical components of the electron transport chain (complexes I, II, III, and IV), a glycerol phosphate dehydrogenase, and two alternative elements: an external rotenone-insensitive flavone-sensitive NADH dehydrogenase (NDH-2) and an alternative oxidase (AOX). The external NDH-2 contributes as much as complex I to the NADH-dependent respiratory activity, and is not modulated by Ca2+, a regulatory mechanism described for plant NDH-2, and presumed to be a unique characteristic of the external isozyme. The AOX accounts for the 20% residual respiratory activity after inhibition of complex IV by cyanide. This residual activity depends on growth conditions, since cells grown in the presence of cyanide or antimycin A increase its proportion to about 75% of the uninhibited rate. The effect of AMP, pyruvate and DTT on AOX was studied. The activity of AOX in U. maydis cells was sensitive to AMP but not to pyruvate, which agrees with the regulatory characteristics of a fungal AOX. Interestingly, the presence of DTT during cell permeabilisation protected the enzyme against inactivation. The pathways of quinone reduction and quinol oxidation lack an additive behavior. This is consistent with the competition of the respiratory components of each pathway for the quinol/quinone pool.

  3. MicroRNA expression profiling in tonsils of calves challenged with a laboratory strain or field isolates of Bovine Respiratory Syncytial Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine respiratory syncytial virus (BRSV) is a leading cause of bovine respiratory disease in cattle worldwide. MicroRNAs have been suggested to play a role in viral infections via their regulation of cellular molecules involved in either viral replication or in host innate immunity to infection. Th...

  4. Design and Synthesis of Novel Isoxazole Tethered Quinone-Amino Acid Hybrids

    PubMed Central

    Ravi Kumar, P.; Sambaiah, M.; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A.; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield. PMID:25709839

  5. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  6. Respiratory alkalosis.

    PubMed

    Foster, G T; Vaziri, N D; Sassoon, C S

    2001-04-01

    Respiratory alkalosis is an extremely common and complicated problem affecting virtually every organ system in the body. This article reviews the various facets of this interesting problem. Respiratory alkalosis produces multiple metabolic abnormalities, from changes in potassium, phosphate, and calcium, to the development of a mild lactic acidosis. Renal handling of the above ions is also affected. The etiologies may be related to pulmonary or extrapulmonary disorders. Hyperventilation syndrome is a common etiology of respiratory alkalosis in the emergency department setting and is a diagnosis by exclusion. There are many cardiac effects of respiratory alkalosis, such as tachycardia, ventricular and atrial arrhythmias, and ischemic and nonischemic chest pain. In the lungs, vasodilation occurs, and in the gastrointestinal system there are changes in perfusion, motility, and electrolyte handling. Therapeutically, respiratory alkalosis is used for treatment of elevated intracranial pressure. Correction of a respiratory alkalosis is best performed by correcting the underlying etiology.

  7. Menaquinone as pool quinone in a purple bacterium

    PubMed Central

    Schoepp-Cothenet, Barbara; Lieutaud, Clément; Baymann, Frauke; Verméglio, André; Friedrich, Thorsten; Kramer, David M.; Nitschke, Wolfgang

    2009-01-01

    Purple bacteria have thus far been considered to operate light-driven cyclic electron transfer chains containing ubiquinone (UQ) as liposoluble electron and proton carrier. We show that in the purple γ-proteobacterium Halorhodospira halophila, menaquinone-8 (MK-8) is the dominant quinone component and that it operates in the QB-site of the photosynthetic reaction center (RC). The redox potentials of the photooxidized pigment in the RC and of the Rieske center of the bc1 complex are significantly lower (Em = +270 mV and +110 mV, respectively) than those determined in other purple bacteria but resemble those determined for species containing MK as pool quinone. These results demonstrate that the photosynthetic cycle in H. halophila is based on MK and not on UQ. This finding together with the unusual organization of genes coding for the bc1 complex in H. halophila suggests a specific scenario for the evolutionary transition of bioenergetic chains from the low-potential menaquinones to higher-potential UQ in the proteobacterial phylum, most probably induced by rising levels of dioxygen 2.5 billion years ago. This transition appears to necessarily proceed through bioenergetic ambivalence of the respective organisms, that is, to work both on MK- and on UQ-pools. The establishment of the corresponding low- and high-potential chains was accompanied by duplication and redox optimization of the bc1 complex or at least of its crucial subunit oxidizing quinols from the pool, the Rieske protein. Evolutionary driving forces rationalizing the empirically observed redox tuning of the chain to the quinone pool are discussed. PMID:19429705

  8. A new sesquiterpenoid quinone with cytotoxicity from Abelmoschus sagittifolius.

    PubMed

    Chen, De-Li; Zhang, Xiao-Po; Ma, Guo-Xu; Wu, Hai-Feng; Yang, Jun-Shan; Xu, Xu-Dong

    2016-01-01

    A new sesquiterpenoid quinone, Acyl hibiscone B (1), together with five known compounds, (R)-lasiodiplodin (2), (R)-de-O-methyllasiodiplodin, (3) dibutyl phthalate (4), (R)-9-phenylnonan-2-ol (5) and hibiscone B (6), was obtained from the stem tuber of Abelmoschus sagittifolius. The structure of compound 1 was elucidated by analysing its (1)H and (13)C NMR, (1)H-(1)H COSY, HSQC, HMBC, NOESY and HR-ESI-MS values. Compound 1 showed significant cytotoxicity against Hela and HepG-2 human cancer cell lines.

  9. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    PubMed

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  10. Cytokine profiles in pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus and relationships with viral load and fetal outcome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of extensive research, immunologic control mechanisms against Porcine Reproductive and Respiratory Syndrome virus (PRRSv) remain poorly understood. Cytokine responses have been exhaustively studied in nursery pigs and show contradictory results. Since no detailed reports on cytokine respons...

  11. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  12. Syntheses of covalently-linked porphyria-quinone complexes. I

    SciTech Connect

    Kong, J.L.Y.; Loach, P.A.

    1980-06-01

    A synthetic route for the preparation of covalently-linked prophyin-quinone and metalloporphyrinquinone complexes as models for the phototrap in bacterial photosynthesis is described. 5(5-Carboxyphenyl)-10,15,20-tritolylporphyrin, prepared by a mixed aldehyde approach, was attached to benzoquinone center with a propanediol bridge by means of ester linkages. The starting point for the benzoquinone moiety was 2,5-dihydroxyphenylacetic acid, whose hydroquinone function was first protected by preparing its dimethyl ether. The spacing between the two centers of the complex could be altered simply by varying the length of the bridging group (a diol) employed. Boron tribomide was used to unmask the quinol derivatives in the final coupled products. The zinc(II) derivative of porphyrin-quinone complex was prepared by addition of a saturated solution of zinc acetate in methanol to a solution of the corresponding prophyrin-hydroqyuinone complex in dichloromethane at room temperature. The structures of these complexes were confirmed by nmr spectroscopy, uv-visible absorption, and mass spectroscopy. Oxidation of the quinol moiety in the covalently-linked complex to its corresponding quinonoid derivative was accomplished by treating a solution of the complex in dichloromethane with a stoichiometric amount of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, a high potential benzoquinone.

  13. Biochemical and biophysical characterization of succinate: quinone reductase from Thermus thermophilus.

    PubMed

    Kolaj-Robin, Olga; O'Kane, Sarah R; Nitschke, Wolfgang; Léger, Christophe; Baymann, Frauke; Soulimane, Tewfik

    2011-01-01

    Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal

  14. Electron affinity of p-quinones. Improved method of electrochemical estimation

    NASA Astrophysics Data System (ADS)

    Jaworski, Jan S.

    1986-06-01

    Electron affinities of four p-quinones are estimated from enthalpy changes obtained on the basis of measured formal potentials and reaction entropies in the electroreduction process. A linear correlation between electron affinities of p-quinones and parent hydrocarbons is found.

  15. Application of modified supercritical carbon dioxide extraction to microbial quinone analysis.

    PubMed

    Irvan; Hasanudin, Udin; Faisal, Muhammad; Daimon, Hiroyuki; Fujie, Koichi

    2006-01-01

    Supercritical carbon dioxide (scCO2) was applied to extract microbial quinones from activated sludge. Identification and analysis was then performed using high-performance liquid chromatography (HPLC) equipped with ultraviolet-visible (UV-Vis) detector and photodiode array detector (PDA). Extracted microbial quinones were trapped and separated as menaquinones (MK) and ubiquinones (Q) species using two Sep-Pak Plus Silica cartridges joined in series. Four ubiquinones and 12 menaquinones species were identified in 0.1 g dried activated sludge based on retention time and spectrum analysis. Among the tested various polar solvents, methanol showed to be the best modifier, based on the highest total quinone content extracted and the lowest dissimilarity index. The diversity index of quinone and the number of quinone species using methanol-modified scCO2 were similar to that of the conventional method (organic solvent extraction).

  16. Structure of bacterial respiratory complex I.

    PubMed

    Berrisford, John M; Baradaran, Rozbeh; Sazanov, Leonid A

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  17. Quinone formation as a chemoprevention strategy for hybrid drugs: balancing cytotoxicity and cytoprotection.

    PubMed

    Dunlap, Tareisha; Chandrasena, R Esala P; Wang, Zhiqiang; Sinha, Vaishali; Wang, Zhican; Thatcher, Gregory R J

    2007-12-01

    Cellular defense mechanisms that respond to damage from oxidative and electrophilic stress, such as from quinones, represent a target for chemopreventive agents. Drugs bioactivated to quinones have the potential to activate antioxidant/electrophile responsive element (ARE) transcription of genes for cytoprotective phase 2 enzymes such as NAD(P)H-dependent quinone oxidoreductase (NQO1) but can also cause cellular damage. Two isomeric families of compounds were prepared, including the NO-NSAIDs (NO-donating nonsteroidal anti-inflammatory drugs) NCX 4040 and NCX 4016; one family was postulated to release a quinone methide on esterase bioactivation. The study of reactivity and GSH conjugation in model and cell systems confirmed the postulate. The quinone-forming family, including NCX 4040 and conisogenic bromides and mesylate, was rapidly bioactivated to a quinone, which gave activation of ARE and consequent induction of NQO1 in liver cells. Although the control family, including NCX 4016 and conisogenic bromides and mesylates, cannot form a quinone, ARE activation and NQO1 induction were observed, compatible with slower SN2 reactions with thiol sensor proteins, and consequent ARE-luciferase and NQO1 induction. Using a Chemoprevention Index estimate, the quinone-forming compounds suffered because of high cytoxicity and were more compatible with cancer therapy than chemoprevention. In the Comet assay, NCX 4040 was highly genotoxic relative to NCX 4016. There was no evidence that NO contributes to the observed biological activity and no evidence that NCX 4040 is an NO donor, instead, rapidly releasing NO3- and quinone. These results indicate a strategy for studying the quinone biological activity and reinforce the therapeutic attributes of NO-ASA through structural elements other than NO and ASA.

  18. Respiratory Therapists

    MedlinePlus

    ... programs typically include courses in human anatomy and physiology, chemistry, physics, microbiology, pharmacology, and math. Other courses ... and math skills. Respiratory therapists must understand anatomy, physiology, and other sciences and be able to calculate ...

  19. Molecular structures of porphyrin-quinone models for electron transfer

    SciTech Connect

    Fajer, J.; Barkigia, K.M.; Melamed, D.; Sweet, R.M.; Kurreck, H.; Gersdorff, J. von; Plato, M.; Rohland, H.C.; Elger, G.; Moebius, K.

    1996-08-15

    Synthetic porphyrin-quinone complexes are commonly used to mimic electron transport in photosynthetic reaction centers and to probe the effects of energetics, distances, and relative orientations on rates of electron transfer between donor-acceptor couples. The structures of two such models have been determined by X-ray diffraction. The redox pairs consist of a zinc porphyrin covalently linked to benzoquinone in cis and trans configurations via a cyclohexanediyl bridge. The crystallographic studies were undertaken to provide a structural foundation for the extensive body of experimental and theoretical results that exists for these compounds in both the ground and photoinduced charge-separated states. The results validate conclusions reached from theoretical calculations, EPR and two-dimensional NMR results for these states. 15 refs., 6 figs., 2 tabs.

  20. Hysteresis Behaviors of Poly (Naphthalene Quinone) Radical Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung J.; Cho, Min S.; Jhon, Myung S.

    As a potential electrorheological(ER) material, poly(naphthalene quinone) radical (PNQR) ER fluid was prepared, and its rheological behavior and hysteresis phenomenon were investigated. PNQR was synthesized by Friedel-Crafts acylation between naphthalene and phthalic anhydride, using zinc chloride as a catalyst at 256°C. A Physica rheometer equipped with a high voltage generator was used to measure the rheological properties of the ER fluids, which were prepared by dispersing PNQR in silicone oil at several particle concentrations. Shear stresses were observed to decrease as shear rate increased in the region of slow deformation rate. It was further found that ER fluid showed different hysteresis behaviors according to the shear rate ranges; thixotropy was observed in the low shear rate region (0.007-0.51/s) and anti-thixotropy in the high shear rate region (0.5-10001/s). Controlled shear stress mode was also applied to observe similar behaviors.

  1. [Respiratory distress].

    PubMed

    Galili, D; Garfunkel, A; Elad, S; Zusman, S P; Malamed, S F; Findler, M; Kaufman, E

    2002-01-01

    Dental treatment is usually conducted in the oral cavity and in very close proximity to the upper respiratory airway. The possibility of unintentionally compromising this airway is high in the dental environment. The accumulation of fluid (water or blood) near to the upper respiratory airway or the loosening of teeth fragmentations and fallen dental instruments can occur. Also, some of the drugs prescribed in the dental practice are central nervous system depressants and some are direct respiratory drive depressors. For this reason, awareness of the respiratory status of the dental patient is of paramount importance. This article focuses on several of the more common causes of respiratory distress, including airway obstruction, hyperventilation, asthma, bronchospasm, pulmonary edema, pulmonary embolism and cardiac insufficiency. The common denominator to all these conditions described here is that in most instances the patient is conscious. Therefore, on the one hand, valuable information can be retrieved from the patient making diagnosis easier than when the patient is unconscious. On the other hand, the conscious patient is under extreme apprehension and stress under such situations. Respiratory depression which occurs during conscious sedation or following narcotic analgesic medication will not be dealt with in this article. Advanced pain and anxiety control techniques such as conscious sedation and general anesthesia should be confined only to operators who undergo special extended training.

  2. Identification of quinone imine containing glutathione conjugates of diclofenac in rat bile.

    PubMed

    Waldon, Daniel J; Teffera, Yohannes; Colletti, Adria E; Liu, Jingzhou; Zurcher, Danielle; Copeland, Katrina W; Zhao, Zhiyang

    2010-12-20

    High-resolution accurate MS with an LTQ-Orbitrap was used to identify quinone imine metabolites derived from the 5-hydroxy (5-OH) and 4 prime-hydroxy (4'-OH) glutathione conjugates of diclofenac in rat bile. The initial quinone imine metabolites formed by oxidation of diclofenac have been postulated to be reactive intermediates potentially involved in diclofenac-mediated hepatotoxicity; while these metabolites could be formed using in vitro systems, they have never been detected in vivo. This report describes the identification of secondary quinone imine metabolites derived from 5-OH and 4'-OH diclofenac glutathione conjugates in rat bile. To verify the proposed structures, the diclofenac quinone imine GSH conjugate standards were prepared synthetically and enzymatically. The novel metabolite peaks displayed the identical retention times, accurate mass MS/MS spectra, and the fragmentation patterns as the corresponding authentic standards. The formation of these secondary quinone metabolites occurs only under conditions where bile salt homeostasis was experimentally altered. Standard practice in biliary excretion experiments using bile duct-cannulated rats includes infusion of taurocholic acid and/or other bile acids to replace those lost due to continuous collection of bile; for this experiment, the rats received no replacement bile acid infusion. High-resolution accurate mass spectrometry data and comparison with chemically and enzymatically prepared quinone imines of diclofenac glutathione conjugates support the identification of these metabolites. A mechanism for the formation of these reactive quinone imine containing glutathione conjugates of diclofenac is proposed.

  3. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.

    PubMed

    Li, Yi; Zhu, Tong; Zhao, Jincai; Xu, Bingye

    2012-09-18

    Quinones are toxicological substances in inhalable particulate matter (PM). The mechanisms by which quinones cause hazardous effects can be complex. Quinones are highly active redox molecules that can go through a redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species. Electron spin resonance spectra have been reported for semiquinone radicals in PM, indicating the importance of ascorbic acid and iron in quinone redox cycling. However, these findings are insufficient for understanding the toxicity associated with quinone exposure. Herein, we investigated the interactions among anthraquinone (AQ), ascorbic acid, and iron in hydroxyl radical (·OH) generation through the AQ redox cycling process in a physiological buffer. We measured ·OH concentration and analyzed the free radical process. Our results showed that AQ, ascorbic acid, and iron have synergistic effects on ·OH generation in quinone redox cycling; i.e., ascorbyl radical oxidized AQ to semiquinone radical and started the redox cycling, iron accelerated this oxidation and enhanced ·OH generation through Fenton reactions, while ascorbic acid and AQ could help iron to release from quartz surface and enhance its bioavailability. Our findings provide direct evidence for the redox cycling hypothesis about airborne particle surface quinone in lung fluid.

  4. A Structural Determinant of Chemical Reactivity and Potential Health Effects of Quinones from Natural Products

    PubMed Central

    Tu, Tingting; Giblin, Daryl; Gross, Michael L.

    2011-01-01

    Although many phenols and catechols found as polyphenol natural products are antioxidants and have putative disease-preventive properties, others have deleterious health effects. One possible route to toxicity is the bioactivation of the phenolic function to quinones that are electrophilic, redox-agents capable of modifying DNA and proteins. The structure-property relationships of biologically important quinones and their precursors may help understand the balance between their health benefits and risks. We describe a mass-spectrometry-based study of four quinones produced by oxidizing flavanones and flavones. Those with a C2-C3 double bond on ring C of the flavonoid stabilize by delocalization an incipient positive charge from protonation and render the protonated quinone particularly susceptible to nucleophilic attack. We hypothesize that the absence of this double bond is one specific structural determinant that is responsible for the ability of quinones to modify biological macromolecules. Those quinones containing a C2-C3 single bond have relative higher aqueous stability and longer half-lives than those with a double bond at the same position; the latter have short half-lives at or below ~ 1 s. Quinones with a C2-C3 double bond show little ability to depurinate DNA because they are rapidly hydrated to unreactive species. Molecular-orbital calculations support that quinone hydration by a highly structure-dependent mechanism accounts for their chemical properties. The evidence taken together support a hypothesis that those flavonoids and related natural products that undergo oxidation to quinones and are then rapidly hydrated are unlikely to damage important biological macromolecules. PMID:21721570

  5. Steroidal pyrazolines evaluated as aromatase and quinone reductase-2 inhibitors for chemoprevention of cancer.

    PubMed

    Abdalla, Mohamed M; Al-Omar, Mohamed A; Bhat, Mashooq A; Amr, Abdel-Galil E; Al-Mohizea, Abdullah M

    2012-05-01

    The aromatase and quinone reductase-2 inhibition of synthesized heterocyclic pyrazole derivatives fused with steroidal structure for chemoprevention of cancer is reported herein. All compounds were interestingly less toxic than the reference drug (Cyproterone(®)). The aromatase inhibitory activities of these compounds were much more potent than the lead compound resveratrol, which has an IC(50) of 80 μM. In addition, all the compounds displayed potent quinone reductase-2 inhibition. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). The aromatase and quinone reductase-2 inhibitors resulting from this study have potential value in the treatment and prevention of cancer.

  6. Monitoring Dopamine Quinone-Induced Dopaminergic Neurotoxicity Using Dopamine Functionalized Quantum Dots.

    PubMed

    Ma, Wei; Liu, Hui-Ting; Long, Yi-Tao

    2015-07-08

    Dopamine (DA) quinone-induced dopaminergic neurotoxicity is known to occur due to the interaction between DA quinone and cysteine (Cys) residue, and it may play an important a role in pathological processes associated with neurodegeneration. In this study, we monitored the interaction process of DA to form DA quinone and the subsequent Cys residue using dopamine functionalized quantum dots (QDs). The fluorescence (FL) of the QD bioconjugates changes as a function of the structure transformation during the interaction process, providing a potential FL tool for monitoring dopaminergic neurotoxicity.

  7. Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential

    SciTech Connect

    Fernandes, Andreia S.; Konstantinov, Alexander A.; Teixeira, Miguel; Pereira, Manuela M. . E-mail: mpereira@itqb.unl.pt

    2005-05-06

    Succinate:quinone oxidoreductase (SQR), a di-haem enzyme purified from Rhodothermus marinus, reveals an HQNO-sensitive succinate:quinone oxidoreductase activity with several menaquinone analogues as electron acceptors that decreases with lowering the redox midpoint potential of the quinones. A turnover with the low-potential 2,3-dimethyl-1,4-naphthoquinone that is the closest analogue of menaquinone, although low, can be detected in liposome-reconstituted SQR. Reduction of the quinone is not stimulated by an imposed K{sup +}-diffusion membrane potential of a physiological sign (positive inside the vesicles). Nor does the imposed membrane potential increase the reduction level of the haems in R. marinus SQR poised with the succinate/fumarate redox couple. The data do not support a widely discussed hypothesis on the electrogenic transmembrane electron transfer from succinate to menaquinone catalysed by di-haem SQRs. The role of the membrane potential in regulation of the SQR activity is discussed.

  8. Transimination of quinone imines: a mechanism for embedding exogenous redox activity into the nucleosome.

    PubMed

    Ye, Wenjie; Seneviratne, Uthpala I; Chao, Ming-Wei; Ravindra, Kodihalli C; Wogan, Gerald N; Tannenbaum, Steven R; Skipper, Paul L

    2012-12-17

    Aminophenols can redox cycle through the corresponding quinone imines to generate ROS. The electrophilic quinone imine intermediate can react with protein thiols as a mechanism of immobilization in vivo. Here, we describe the previously unkown transimination of a quinone imine by lysine as an alternative anchoring mechanism. The redox properties of the condensation product remain largely unchanged because the only structural change to the redox nucleus is the addition of an alkyl substituent to the imine nitrogen. Transimination enables targeting of histone proteins since histones are lysine-rich but nearly devoid of cysteines. Consequently, quinone imines can be embedded in the nucleosome and may be expected to produce ROS in maximal proximity to the genome.

  9. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst

    PubMed Central

    Wendlandt, Alison E.; Stahl, Shannon S.

    2014-01-01

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193

  10. Quinone and Hydroquinone Metabolites from the Ascidians of the Genus Aplidium

    PubMed Central

    Bertanha, Camila Spereta; Januário, Ana Helena; Alvarenga, Tavane Aparecida; Pimenta, Letícia Pereira; e Silva, Márcio Luis Andrade; Cunha, Wilson Roberto; Pauletti, Patrícia Mendonça

    2014-01-01

    Ascidians of the genus Aplidium are recognized as an important source of chemical diversity and bioactive natural products. Among the compounds produced by this genus are non-nitrogenous metabolites, mainly prenylated quinones and hydroquinones. This review discusses the isolation, structural elucidation, and biological activities of quinones, hydroquinones, rossinones, longithorones, longithorols, floresolides, scabellones, conicaquinones, aplidinones, thiaplidiaquinones, and conithiaquinones. A compilation of the 13C-NMR spectral data of these compounds is also presented. PMID:24927227

  11. Phylogenomic Analysis and Predicted Physiological Role of the Proton-Translocating NADH:Quinone Oxidoreductase (Complex I) Across Bacteria

    PubMed Central

    Spero, Melanie A.; Aylward, Frank O.; Currie, Cameron R.

    2015-01-01

    ABSTRACT The proton-translocating NADH:quinone oxidoreductase (complex I) is a multisubunit integral membrane enzyme found in the respiratory chains of both bacteria and eukaryotic organelles. Although much research has focused on the enzyme’s central role in the mitochondrial respiratory chain, comparatively little is known about its role in the diverse energetic lifestyles of different bacteria. Here, we used a phylogenomic approach to better understand the distribution of complex I across bacteria, the evolution of this enzyme, and its potential roles in shaping the physiology of different bacterial groups. By surveying 970 representative bacterial genomes, we predict complex I to be present in ~50% of bacteria. While this includes bacteria with a wide range of energetic schemes, the presence of complex I is associated with specific lifestyles, including aerobic respiration and specific types of phototrophy (bacteria with only a type II reaction center). A phylogeny of bacterial complex I revealed five main clades of enzymes whose evolution is largely congruent with the evolution of the bacterial groups that encode complex I. A notable exception includes the gammaproteobacteria, whose members encode one of two distantly related complex I enzymes predicted to participate in different types of respiratory chains (aerobic versus anaerobic). Comparative genomic analyses suggest a broad role for complex I in reoxidizing NADH produced from various catabolic reactions, including the tricarboxylic acid (TCA) cycle and fatty acid beta-oxidation. Together, these findings suggest diverse roles for complex I across bacteria and highlight the importance of this enzyme in shaping diverse physiologies across the bacterial domain. PMID:25873378

  12. Cyclooxygenase-independent neuroprotective effects of aspirin against dopamine quinone-induced neurotoxicity.

    PubMed

    Asanuma, Masato; Miyazaki, Ikuko; Kikkawa, Yuri; Kimoto, Naotaka; Takeshima, Mika; Murakami, Shinki; Miyoshi, Ko

    2012-09-01

    Prostaglandin H synthase exerts not only cyclooxygenase activity but also peroxidase activity. The latter activity of the enzyme is thought to couple with oxidation of dopamine to dopamine quinone. Therefore, it has been proposed that cyclooxygenase inhibitors could suppress dopamine quinone formation. In the present study, we examined effects of various cyclooxygenase inhibitors against excess methyl L-3,4-dihydroxyphenylalanine (L-DOPA)-induced quinoprotein (protein-bound quinone) formation and neurotoxicity using dopaminergic CATH.a cells. The treatment with aspirin inhibited excess methyl L-DOPA-induced quinoprotein formation and cell death. However, acetaminophen did not show protective effects, and indomethacin and meloxicam rather aggravated these methyl L-DOPA-induced changes. Aspirin and indomethacin did not affect the level of glutathione that exerts quenching dopamine quinone in dopaminergic cells. In contrast with inhibiting effects of higher dose in the previous reports, relatively lower dose of aspirin that affected methyl L-DOPA-induced quinoprotein formation and cell death failed to prevent cyclooxygenase-induced dopamine chrome generation in cell-free system. Furthermore, aspirin but not acetaminophen or meloxicam showed direct dopamine quinone-scavenging effects in dopamine-semiquinone generating systems. The present results suggest that cyclooxygenase shows little contribution to dopamine oxidation in dopaminergic cells and that protective effects of aspirin against methyl L-DOPA-induced dopamine quinone neurotoxicity are based on its cyclooxygenase-independent property.

  13. Quinone- and nitroreductase reactions of Thermotoga maritima peroxiredoxin-nitroreductase hybrid enzyme.

    PubMed

    Anusevičius, Žilvinas; Misevičienė, Lina; Šarlauskas, Jonas; Rouhier, Nicolas; Jacquot, Jean-Pierre; Čėnas, Narimantas

    2012-12-01

    Thermotoga maritima peroxiredoxin-nitroreductase hybrid enzyme (Prx-NR) consists of a FMN-containing nitroreductase (NR) domain fused to a peroxiredoxin (Prx) domain. These domains seem to function independently as no electron transfer occurs between them. The reduction of quinones and nitroaromatics by NR proceeded in a two-electron manner, and follows a 'ping-pong' scheme with sometimes pronounced inhibition by quinone substrate. The comparison of steady- and presteady-state kinetic data shows that in most cases, the oxidative half-reaction may be rate-limiting in the catalytic cycle of NR. The enzyme was inhibited by dicumarol, a classical inhibitor of oxygen-insensitive nitroreductases. The reduction of quinones and nitroaromatic compounds by Prx-NR was characterized by the linear dependence of their reactivity (logk(cat)/K(m)) on their single-electron reduction potentials E(7)(1), while the reactivity of quinones markedly exceeded the one with nitroaromatics. It shows that NR lacks the specificity for the particular structure of these oxidants, except their single-electron accepting potency and the rate of electron self-exchange. It points to the possibility of a single-electron transfer step in a net two-electron reduction of quinones and nitroaromatics by T. maritima Prx-NR, and to a significant diversity of the structures of flavoenzymes which may perform the two-electron reduction of quinones and nitroaromatics.

  14. Toxocara canis: anthelmintic activity of quinone derivatives in murine toxocarosis.

    PubMed

    Mata-Santos, T; Mata-Santos, H A; Carneiro, P F; De Moura, K C G; Fenalti, J M; Klafke, G B; Cruz, L A X; Martins, L H R; Pinto, N F; Pinto, M C F R; Berne, M E A; Da Silva, P E A; Scaini, C J

    2016-04-01

    Human toxocarosis is a chronic tissue parasitosis most often caused by Toxocara canis. The seroprevalence can reach up to 50%, especially among children and adolescents. The anthelmintics used in the treatment have moderate efficacy. The aim of this study was to evaluate the in vitro and in vivo anthelmintic activity of quinones and their derivatives against T. canis larvae and the cytotoxicity of the larvicidal compounds. The compounds were evaluated at 1 mg mL(-1) concentration in microculture plates containing third stage larvae in an Roswell Park Memorial Institute (RPMI) 1640 environment, incubated at 37 °C in 5% CO2 tension for 48 h. Five naphthoxiranes were selected for the cytotoxicity analysis. The cell viability evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays using murine peritoneal macrophages isolated from C57BL/6 mice revealed that the naphthoxiranes (1 and 3) were less cytotoxic at a concentration of 0.05 mg mL(-1). The efficacy of naphthoxiranes (1 and 3) was examined in murine toxocarosis also. The anthelmintic activity was examined by evaluating the number of larvae in the brain, carcass, liver, lungs, heart, kidneys and eyes. Compound (3) demonstrated anthelmintic activity similar to that of albendazole by decreasing the number of larvae in the organs of mice and thus could form the basis of the development of a new anthelmintic drug.

  15. Respiratory Home Health Care

    MedlinePlus

    ... Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition ... Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at home can contribute to improved ...

  16. Respiratory Distress

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.

  17. Syntrophic growth via quinone-mediated interspecies electron transfer

    PubMed Central

    Smith, Jessica A.; Nevin, Kelly P.; Lovley, Derek R.

    2015-01-01

    The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS) suggested that quinone-mediated interspecies electron transfer (QUIET) is feasible, but it was not determined if sufficient energy is available from QUIET to support the growth of both species. Furthermore, there have been no previous studies on the mechanisms for the oxidation of anthrahydroquinone-2,6-disulfonate (AHQDS). A co-culture of Geobacter metallireducens and G. sulfurreducens metabolized ethanol with the reduction of fumarate much faster in the presence of AQDS, and there was an increase in cell protein. G. sulfurreducens was more abundant, consistent with G. sulfurreducens obtaining electrons from acetate that G. metallireducens produced from ethanol, as well as from AHQDS. Co-cultures initiated with a citrate synthase-deficient strain of G. sulfurreducens that was unable to use acetate as an electron donor also metabolized ethanol with the reduction of fumarate and cell growth, but acetate accumulated over time. G. sulfurreducens and G. metallireducens were equally abundant in these co-cultures reflecting the inability of the citrate synthase-deficient strain of G. sulfurreducens to metabolize acetate. Evaluation of the mechanisms by which G. sulfurreducens accepts electrons from AHQDS demonstrated that a strain deficient in outer-surface c-type cytochromes that are required for AQDS reduction was as effective at QUIET as the wild-type strain. Deletion of additional genes previously implicated in extracellular electron transfer also had no impact on QUIET. These results demonstrate that QUIET can yield sufficient energy to support the growth of both syntrophic partners, but that the mechanisms by which electrons are derived from extracellular hydroquinones require further investigation. PMID

  18. Development of a Monoclonal Antibody Against Estrogen Quinone-Adducted Proteins as Potential Biomarkers of Breast Cancer Risk

    DTIC Science & Technology

    2002-06-01

    escape detoxification, e.g., methylation of the catechol or glutathione conjugation of the quinone, and form E2-3,4-Q adducts to proteins. The presence...benzoquinone (Figure 1). The reaction produced a characteristic red shift in the absorption spectrum of the quinone. The aminoquinone had an absorption ... absorption spectrum of the quinone. The aminoquinone exhibited a distinctive red color that permits convenient monitoring of the occurrence and progression of

  19. Quinones: reactions with hemoglobin, effects within erythrocytes and potential for antimalarial development

    SciTech Connect

    Denny, B.J.

    1986-01-01

    The focus of this research was to characterize the interactions of some simple quinone like compounds with purified hemoglobin and to study the effects of these compounds within erythrocytes. It is proposed that these sorts of agents can have an antimalarial effect. The simplest compounds chosen for study were benzoquinone, methylquinone (toluquinone) and hydroquinone. When /sup 14/C-quinone was reacted with purified hemoglobin (Hb) there was rapid binding of the first two moles of substrate per Hb molecule. An unusual property of the modified Hb's is that in the presence of a redox sensitive agent such as cytochrome c they are capable of generating superoxide anions. Within erythrocytes, quinone and toluquinone which differ only by a single methyl group have completely different effects. Toluquinone causes the cells to hemolyse and the effect was enhanced when the erythrocyte superoxide dismutase was inhibited; the effect was diminished when scavengers of activated oxygen such as histidine, mannitol and vital E were present. Benzoquinone on the other hand did not cause the cells to hemolyse and instead appeared to protect the cells from certain hemolytic stresses. Growth of malaria parasites in erythrocytes has been shown to be inhibited by activated forms of oxygen, also some quinone like agents in the past have been shown to inhibit the parasite's metabolism. An initial experiment with erythrocytes infected with malaria parasites showed that quinone and toluquinone could both inhibit the growth rate of parasites.

  20. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.

    PubMed

    Wolf, Manfred; Kappler, Andreas; Jiang, Jie; Meckenstock, Rainer U

    2009-08-01

    Humic substances (HS) and quinones can accelerate dissimilatory Fe(III) reduction by electron shuttling between microorganisms and poorly soluble iron(III) (hydr)oxides. The mechanism of electron shuttling for HS is not fully understood, but it is suggested that the most important redox-active components in HS are also quinones. Here we studied the influence of HS and different quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. The aquatic HS used were humic and fulvic acids (HA and FA) isolated from groundwater of a deep aquifer in Gorleben (Niedersachsen, Germany). HA stimulated iron reduction stronger than FA down to total HA concentrations as low as 1 mg/L. The quinones studied showed large differences: some had strong accelerating effects, whereas others showed only small effects, no effects, or even inhibitory effects on the kinetics of iron reduction. We found that the redox potentials of the most active quinones fall in a narrow range of -137 to -225 mV vs NHE at pH 7. These results give evidence that the kinetic of microbial iron reduction mediated by electron shuttles is mainly controlled by thermodynamic parameters, i.e., by the redox potential of the shuttle compound, rather than by the proportion of dissolved vs adsorbed compound.

  1. Chlorophyll-quinone photochemistry in liposomes: mechanisms of radical formation and decay

    SciTech Connect

    Hurley, J.K.; Tollin, G.

    1980-01-01

    Laser flash photolysis has been used to investigate the mechanism of formation and decay of the radical species generated by light induced electron transfer from chlorophyll a triplet to quinone in egg phosphatidyl choline bilayer vesicles. Chlorophyll triplet quenching by quinone is controlled by diffusion occurring within the bilayer membrane and reflects bilayer viscosity. Radical formation via separation of the intermediate ion pair is also inhibited by increased bilayer viscosity. Cooperativity is observed in this process due to an enhancement of radical separation by electron transfer from semiquinone anion radical to a neighboring quinone molecule. Two modes of radical decay are observed, a rapid recombination occurring within the bilayer and a much slower recombination occurring across the bilayer. The slow decay is only observed with quinones which are not tightly anchored into the bilayer, and is probably the result of electron transfer from semiquinone anion radical formed within the bilayer to a quinone molecule residing at the bilayer-water interface. With benzoquinone, approximately 60% of the radical decay occurs via the slow mode. Triplet to radical conversion efficiencies in the bilayer systems are comparable to those obtained in fluid solution (approx. 60%). However, radical recombination, at least for the slow decay mechanism, is considerably retarded.

  2. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides

    DOE PAGES

    Vermaas, Josh V.; Taguchi, Alexander T.; Dikanov, Sergei A.; ...

    2015-03-03

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, in this paper we have investigated and characterized themore » interactions of the protein with the quinones in the QA and QB sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the QB site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the QA and QB sites. Finally, disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the QA–QB– biradical and competitive binding assays.« less

  3. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae.

    PubMed

    Vorburger, Thomas; Nedielkov, Ruslan; Brosig, Alexander; Bok, Eva; Schunke, Emina; Steffen, Wojtek; Mayer, Sonja; Götz, Friedrich; Möller, Heiko M; Steuber, Julia

    2016-04-01

    For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration.

  4. Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells.

    PubMed

    Zhang, Jian; Meruvu, Sunitha; Bedi, Yudhishtar Singh; Chau, Jason; Arguelles, Andrix; Rucker, Robert; Choudhury, Mahua

    2015-09-01

    Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide ((+))-dependent protein deacetylases that are important to a number of mitochondrial-related functions; thus, identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a significant increase in nicotinamide phosphoribosyltransferase gene expression (as early as 18 hours) and increased NAD(+) activity at 24 hours. In addition, targets of Sirt1 and Sirt3 (peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2, and mitochondrial transcription factor A) were increased at 48 hours. This is the first report that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging. Based on our study and the available data in vivo, PQQ has the potential to serve as a therapeutic nutraceutical, when enhancing mitochondrial function.

  5. C-reactive protein, haptoglobin and Pig-Major acute phase protein profiles of pigs infected experimentally by different isolates of porcine reproductive and respiratory syndrome virus.

    PubMed

    Saco, Y; Martínez-Lobo, F; Cortey, M; Pato, R; Peña, R; Segalés, J; Prieto, C; Bassols, A

    2016-02-01

    Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) is the etiologic agent of PRRS, one of the most important diseases in swine worldwide. In the present work, the effects of different PRRSV strains were tested on a piglet experimental model to study the induced acute phase response. For this purpose, pigs (n=15 for each group) were intranasally inoculated with one of five PRRSV strains (isolates EU10, 12, 17, 18 from genotype 1 and isolate JA-142 from genotype 2). The acute phase response was monitored by measuring acute phase proteins (APPs). Specifically, the serum concentration of haptoglobin (Hp), C-reactive protein (CRP) and Pig-Major Acute Protein (Pig-MAP) was determined at 0, 3, 6, 9, 12, 15, 18 and 21 days p.i. Clinical signs and growth performance were also monitored during the experiment. All animals became viremic after inoculation during the study period. The APP response was heterogeneous and dependent on the strain, being strains EU10, EU 18 and JA-142 those that induced the highest response and the strongest clinical signs. In general, Hp was the most sensitive biomarker for PRRSV infection, CRP behaved as moderate and Pig-MAP was the less responsive during the course of PRRSV experimental infection. Hp and CRP were significantly discriminatory between infected and control pigs, but not Pig-MAP.

  6. [On the electron stabilization within the quinone acceptor part of Rhodobacter sphaeroides photosynthetic reaction centers].

    PubMed

    Noks, P P; Krasil'nikov, P M; Mamonov, P A; Seĭfullina, N Kh; Uchoa, A F; Baptista, M S

    2008-01-01

    The time evolution of the photoinduced differential absorption spectrum of isolated Rhodobacter sphaeroides photosynthetic reaction centers was investigated. The measurements were carried out in the spectral region of 400-500 nm on the time scale of up to 200 microseconds. The spectral changes observed can be interpreted in terms of the effects of proton shift along hydrogen bonds between the primary quinone acceptor and the protein. A theoretical analysis of the spectrum time evolution was performed, which is based on the consideration of the kinetics of proton tunneling along the hydrogen bond. It was shown that the stabilization of the primary quinone electronic state occurs within the first several tens of microseconds after quinone reduction. It slows down upon the deuteration of reaction centers as well as after adding 90% of glycerol; on the other hand, it accelerates as temperature rises up to 40 degrees C.

  7. Quinone-related hexacyclic by-products in the production process of exemestane.

    PubMed

    Giovenzana, Giovanni Battista; Masciocchi, Norberto; Negri, Roberto; Palmisano, Giovanni; Penoni, Andrea; Toma, Lucio

    2017-04-01

    Exemestane, a 3rd-generation aromatase inhibitor, is clinically used in the treatment of breast cancer in postmenopausal women. The key step of the industrial synthetic process, i.e., a dehydrogenation to introduce the Δ(1)-unsaturation, is normally performed with quinones such as p-chloranil or DDQ. We observed the formation of two different hexacyclic by-products, depending on the quinone used in the oxidation step. These compounds arise from an initial [4+2] cycloaddition between the precursor 6-methylenandrost-4-ene-3,17-dione and the quinone reagent, followed by a twofold dehydrohalogenation (with p-chloranil) or dehydrogenation (with DDQ). The structures of these unprecedented hexacyclic adducts were determined by a combination of mass spectrometry, NMR techniques and crystallographic analysis.

  8. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones.

    PubMed

    Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro

    2017-04-04

    The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p-quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values (R² = 0.957), followed by M06-2x (R² = 0.947) and PBE0 (R² = 0.942).

  9. Function of isoprenoid quinones and chromanols during oxidative stress in plants.

    PubMed

    Kruk, Jerzy; Szymańska, Renata; Nowicka, Beatrycze; Dłużewska, Jolanta

    2016-09-25

    Isoprenoid quinones and chromanols in plants fulfill both signaling and antioxidant functions under oxidative stress. The redox state of the plastoquinol pool (PQ-pool), which is modulated by interaction with reactive oxygen species (ROS) during oxidative stress, has a major regulatory function in both short- and long-term acclimatory responses. By contrast, the scavenging of ROS by prenyllipids affects signaling pathways where ROS play a role as signaling molecules. As the primary antioxidants, isoprenoid quinones and chromanols are synthesized under high-light stress in response to any increased production of ROS. During photo-oxidative stress, these prenyllipids are continuously synthesized and oxidized to other compounds. In turn, their oxidation products (hydroxy-plastochromanol, plastoquinol-C, plastoquinone-B) can still have an antioxidant function. The oxidation products of isoprenoid quinones and chromanols formed specifically in the face of singlet oxygen, can be indicators of singlet oxygen stress.

  10. Role of quinones on the ascorbate reduction rates of S-nitrosogluthathione

    PubMed Central

    Sanchez-Cruz, Pedro; Garcia, Carmelo; Alegria, Antonio E.

    2010-01-01

    Quinones are one of the largest class of antitumor agents approved for clinical use and several antitumor quinones are in different stages of clinical and preclinical development. Many of these are metabolites of, or are, environmental toxins. Due to their chemical structure these are known to enhance electron transfer processes such as ascorbate oxidation and NO reduction. The paraquinones 2,6-dimethyl-1,4-benzoquinone (DMBQ), 1,4-benzoquinone (BQ), methyl-1,4-benzoquinone (MBQ), 2,6-dimethoxy-1,4-benzoquinone (DMOBQ), 2-hydroxymethyl-6-methoxy-1,4-benzoquinone (HMOBQ), trimethyl-1,4-benzoquinone (TMQ), tetramethyl-1,4-benzoquinone (DQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UBQ-0), the paranaphthoquinones 1,4-naphthoquinone (NQ), menadione (MNQ), 1,4-naphthoquinone-2-sulfonate (NQ2S), juglone (JQ) and phenanthroquinone (PHQ) all enhance the anaerobic rate of ascorbate reduction of GSNO to produce NO and GSH. Rates of this reaction were much larger for p-benzoquinones and PHQ than for p-naphthoquinone derivatives with similar one-electron redox potentials. The quinone DMBQ also enhances the rate of NO production from S-nitrosylated bovine serum albumin (BSA-NO) upon ascorbate reduction. Density functional theory calculations suggest that stronger interactions between p-benzo- or phenanthrasemiquinones than those of p-naphthosemiquinones with GSNO are the major causes of these differences. Thus, quinones, and especially p-quinones and PHQ, could act as NO release enhancers from GSNO in biomedical systems in the presence of ascorbate. Since quinones are exogenous toxins which could enter the human body via a chemotherapeutic application or as an environmental contaminant, these could boost the release of NO from S-nitrosothiol storages in the body in the presence of ascorbate and thus enhance the responses elicited by a sudden increase in NO levels. PMID:20691779

  11. Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones - what makes a good extraction pathway?

    PubMed

    Longatte, G; Rappaport, F; Wollman, F-A; Guille-Collignon, M; Lemaître, F

    2016-08-04

    Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called "open center ratio" which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.

  12. Substituent effects on carbocation stability: the pK(R) for p-quinone methide.

    PubMed

    Toteva, Maria M; Moran, Michael; Amyes, Tina L; Richard, John P

    2003-07-23

    A value of k(H) = 1.5 x 10(-)(3) M(-)(1) s(-)(1) has been determined for the generation of simple p-quinone methide by the acid-catalyzed cleavage of 4-hydroxybenzyl alcohol in water at 25 degrees C and I = 1.0 (NaClO(4)). This was combined with k(s) = 5.8 x 10(6) s(-)(1) for the reverse addition of solvent water to the 4-hydroxybenzyl carbocation [J. Am. Chem. Soc. 2002, 124, 6349-6356] to give pK(R) = -9.6 as the Lewis acidity constant of O-protonated p-quinone methide. Values of pK(R) = 2.3 for the Lewis acidity constant of neutral p-quinone methide and pK(add) = -7.6 for the overall addition of solvent water to p-quinone methide to form 4-hydroxybenzyl alcohol are also reported. The thermodynamic driving force for transfer of the elements of water from formaldehyde hydrate to p-quinone methide to form formaldehyde and p-(hydroxymethyl)phenol (4-hydroxybenzyl alcohol) is determined as 6 kcal/mol. This relatively small driving force represents the balance between the much stronger chemical bonds to oxygen at the reactant formaldehyde hydrate than at the product p-(hydroxymethyl)phenol and the large stabilization of product arising from the aromatization that accompanies solvent addition to p-quinone methide. The Marcus intrinsic barrier for nucleophilic addition of solvent water to the "extended" carbonyl group at p-quinone methide is estimated to be 4.5 kcal/mol larger than that for the addition of water to the simple carbonyl group of formaldehyde. O-Alkylation of p-quinone methide to give the 4-methoxybenzyl carbocation and of formaldehyde to give a simple oxocarbenium ion results in very little change in the relative Marcus intrinsic barriers for the addition of solvent water to these electrophiles.

  13. Quinone-mediated decolorization of sulfonated azo dyes by cells and cell extracts from Sphingomonas xenophaga.

    PubMed

    Jiao, Ling; Lu, Hong; Zhou, Jiti; Wang, Jing

    2009-01-01

    The effects of various quinone compounds on the decolorization rates of sulfonated azo dyes by Sphingomonas xenophaga QYY were investigated. The results showed that anthraquinone-2-sulfonate (AQS) was the most effective redox mediator and AQS reduction was the rate-limited step of AQS-mediated decolorization of sulfonated azo dyes. Based on AQS biological toxicity tests, it was assumed that AQS might enter the cells and kill them. In the cytoplasmic extracts from strain QYY, AQS more effectively increased decolorization rates of sulfonated azo dyes than other quinone compounds. In addition, we found a NADH/FMN-dependent AQS reductase using nondenaturing polyacrylamide gel electrophoresis (Native-PAGE).

  14. Lungs and Respiratory System

    MedlinePlus

    ... Your 1- to 2-Year-Old Lungs and Respiratory System KidsHealth > For Parents > Lungs and Respiratory System Print ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't happen ...

  15. Lungs and Respiratory System

    MedlinePlus

    ... Your 1- to 2-Year-Old Lungs and Respiratory System KidsHealth > For Parents > Lungs and Respiratory System A ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't happen ...

  16. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae

    PubMed Central

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C.

    2016-01-01

    ABSTRACT We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2′,7′-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo. The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na+-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min−1 mg−1 membrane protein) compared to membranes from the mutant lacking Na+-NQR (0.18 ± 0.01 μmol min−1 mg−1). Overexpression of plasmid-encoded Na+-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min−1 mg−1). By analyzing a variant of Na+-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae. The impact of superoxide formation by the Na+-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na+-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na+-NQR as the site of superoxide formation in the cytoplasm of V. cholerae. Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on

  17. Environmental effects on electron transfer from chlorophyll triplet to quinone: role of dielectric constant, viscosity and quinone structure in cellulose acetate films

    SciTech Connect

    Cheddar, G.; Tollin, G.

    1981-01-01

    The effects of environmental parameters on chlorophyll triplet quenching and electron transfer to quinones have been investigated in a system consisting of donor and acceptor incorporated into a cellulose acetate film which was subsequently exposed to solvent. Triplet quenching by a diffusional mechanism was found to occur in the dry film, with steric effects being a major determinant of quencher effectiveness. No formation of separated radicals was found under these conditions, probably because the high viscosity prevented separation of the initially formed radical-ion pair. When the film was subsequently exposed to water, triplet quenching became more effective and separated radical production occurred. This is attributed to effects of decreased microviscosity and increased dielectric constant. Both steric effects and quinone redox potential were found to influence radical yields. Rate constants for reverse electron transfer were independent of quinone redox potential. When solvents other than pure water were used, radical yields were observed to increase with the dielectric constant. This is ascribed to an increase in the ease of separation of the radical-ion pair.

  18. Protonated paramagnetic redox forms of di-o-quinone bridged with p-phenylene-extended TTF: A EPR spectroscopy study

    PubMed Central

    Chalkov, Nikolay O; Cherkasov, Vladimir K; Abakumov, Gleb A; Starikov, Andrey G

    2016-01-01

    The chemical oxidation and reduction processes of deprotonated, direduced o-quinone-exTTF-o-quinone in protic solvents were studied by EPR spectroscopy. The formation of relatively stable paramagnetic protonated redox forms of the parent triad was very surprising. The character of spin-density distribution in the semiquinone–quinone and semiquinone–catechol redox forms indicates that the p-phenylene-extended tetrathiafulvalene connector provides a quite effective electronic communication channel between dioxolene coordination sites. It was found that the deprotonated, direduced o-quinone-exTTF-o-quinone is capable to reduction of the metal copper in solution. The radical anion species formed in this reaction exists in solution as a solvent-separated ion pair with a copper cation. A character of spin-density distribution in a radical anion species leads to the conclusion that the ligand corresponds to type III of the Robin–Day classification. PMID:28144312

  19. Preserving the adhesion of catechol-conjugated hydrogels by thiourea-quinone coupling.

    PubMed

    Xu, Yang J; Wei, Kongchang; Zhao, Pengchao; Feng, Qian; Choi, Chun Kit K; Bian, Liming

    2016-11-15

    Mussel adhesion has inspired the development of catechol-based adhesive polymers. However, conventional strategies require basic pH conditions and lead to the loss of adhesion. To solve the problem, we report the first attempt to use thiourea-functionalized polymers for preserving hydrogel adhesion. We believe that this simple thiourea-quinone coupling chemistry is instrumental to synthetic adhesive materials.

  20. Synthesis and Anti-Platelet Activity of Thiosulfonate Derivatives Containing a Quinone Moiety

    PubMed Central

    Bolibrukh, Khrystyna; Polovkovych, Svyatoslav; Khoumeri, Omar; Halenova, Tetyana; Nikolaeva, Irina; Savchuk, Olexiy; Terme, Thierry; Vanelle, Patrice; Lubenets, Vira; Novikov, Volodymyr

    2015-01-01

    Thiosulfonate derivatives based on quinones were synthesized for studying “structure-activity relationship” compounds with an acylated and a free amino-group. Anti-platelet activity of the synthesized compounds was determined and the influence of substituents on the activity of the derivatives was assessed. PMID:26839819

  1. Induction of micronuclei and aneuploidy by the quinone-forming agents benzene and o-phenylphenol.

    PubMed

    Eastmond, D A

    1993-04-01

    A number of carcinogens appear to exert their tumorigenic effects through the formation of quinone metabolites. These quinone-forming carcinogens are generally inactive or weakly active in standard gene mutation assays. Accumulating evidence indicates that this class of compounds may exert their genotoxic and carcinogenic effects through the induction of large-scale gene alterations. This article presents an overview of work that has been performed using recently developed molecular cytogenic techniques to investigate the aneuploidy-inducing and clastogenic properties of the major quinone-forming metabolites of benzene, a widely used industrial chemical, and o-phenylphenol, a fungicide and disinfectant. These metabolites of benzene (hydroquinone, catechol, and benzenetriol) and o-phenylphenol (phenylhydroquinone) have each been shown to be capable of interfering with chromosome segregation and inducing chromosomal breakage. These results indicate that both numerical and structural chromosomal aberrations induced by the quinone metabolites of benzene and o-phenylphenol may play a role in the carcinogenic effects of these two agents.

  2. Mixed donor quinone complexes of nickel, zinc, cobalt, manganese and vanadium

    SciTech Connect

    Scotto, C.S.

    1992-01-01

    Mixed donor complexes of several first row metals have been prepared and examined for variations in redox properties, charge distribution and stability in comparison with homoleptic metal quinone species. Schiff base condensation between 3,5-di-tert-butylcatechol and ammonia provided the 3,5 di-tert-butyl-1,2-quinone-1-(2-hydroxy-3,5-di-tert-butlyphenyl)imine ligand for known M(QNQ)[sub 2] compounds. X-ray diffraction, cyclic voltammetry and solution susceptibility measurements were employed to compare properties with the pure quinone complexes and, in the case of Mn(QNQ)[sub 2] and CO(QNQ)[sub 2], with mixed ligand pyridyl quinone compounds of the two metals. Synthesis of the V(QNQ)[sub 2] analog was undertaken with partial characterization achieved through EPR, cyclic voltammetry and mass spectrometry. The vanadium chemistry was extended to mixed ligand catecholate complexes of V[sup III] and V[sup IV]. Such species are currently of interest in tunicate vanadium studies and in the catalytic oxygenation of pyrocatechols. Tetrachlorocatecholate analogs of known compounds were prepared and fully characterized. The x-ray structure of V(bipyridyl)(tetrachlorocatecholate)[sub 2] provided an unusual example of trigonal prismataic geometry about the metal center. A proposed intermediate in the synthesis of the target complex anion [V(bipyridyl)(tetrachlorocatecholate)[sub 2

  3. Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex.

    PubMed

    Hasan, S Saif; Yamashita, Eiki; Baniulis, Danas; Cramer, William A

    2013-03-12

    As much as two-thirds of the proton gradient used for transmembrane free energy storage in oxygenic photosynthesis is generated by the cytochrome b6f complex. The proton uptake pathway from the electrochemically negative (n) aqueous phase to the n-side quinone binding site of the complex, and a probable route for proton exit to the positive phase resulting from quinol oxidation, are defined in a 2.70-Å crystal structure and in structures with quinone analog inhibitors at 3.07 Å (tridecyl-stigmatellin) and 3.25-Å (2-nonyl-4-hydroxyquinoline N-oxide) resolution. The simplest n-side proton pathway extends from the aqueous phase via Asp20 and Arg207 (cytochrome b6 subunit) to quinone bound axially to heme c(n). On the positive side, the heme-proximal Glu78 (subunit IV), which accepts protons from plastosemiquinone, defines a route for H(+) transfer to the aqueous phase. These pathways provide a structure-based description of the quinone-mediated proton transfer responsible for generation of the transmembrane electrochemical potential gradient in oxygenic photosynthesis.

  4. Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex

    PubMed Central

    Hasan, S. Saif; Yamashita, Eiki; Baniulis, Danas; Cramer, William A.

    2013-01-01

    As much as two-thirds of the proton gradient used for transmembrane free energy storage in oxygenic photosynthesis is generated by the cytochrome b6f complex. The proton uptake pathway from the electrochemically negative (n) aqueous phase to the n-side quinone binding site of the complex, and a probable route for proton exit to the positive phase resulting from quinol oxidation, are defined in a 2.70-Å crystal structure and in structures with quinone analog inhibitors at 3.07 Å (tridecyl-stigmatellin) and 3.25-Å (2-nonyl-4-hydroxyquinoline N-oxide) resolution. The simplest n-side proton pathway extends from the aqueous phase via Asp20 and Arg207 (cytochrome b6 subunit) to quinone bound axially to heme cn. On the positive side, the heme-proximal Glu78 (subunit IV), which accepts protons from plastosemiquinone, defines a route for H+ transfer to the aqueous phase. These pathways provide a structure-based description of the quinone-mediated proton transfer responsible for generation of the transmembrane electrochemical potential gradient in oxygenic photosynthesis. PMID:23440205

  5. Characterization of cytochrome b from European field isolates of Cercospora beticola with quinone outside inhibitor resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is the most important foliar disease of sugar beet worldwide. Control strategies for CLS rely heavily on quinone outside inhibitor (QOI) fungicides. Despite the dependence on QOIs for disease control for more than a de...

  6. LC-MS method for screening unknown microbial carotenoids and isoprenoid quinones.

    PubMed

    Kaiser, Philipp; Geyer, Roland; Surmann, Peter; Fuhrmann, Herbert

    2012-01-01

    The structure of secondary metabolites from microorganisms provides a useful tool for microbial characterization and chemotaxonomic classification. Microbial isoprenoid quinones, for example, are well described and used to distinguish among photosynthetic microorganism groups. In addition, isoprenoid quinones can also be found, together with carotenoids, in non-photosynthetic microorganisms. The aim of the present study was to develop a LC-MS/MS method which can analyze and identify these microbial isoprenoids. Positive atmospheric pressure chemical ionization (APCI) together with collisionally induced dissociation was applied for generation of informative fragment spectra by mass spectrometry. Enhanced product ion (EPI) scan in a linear ion trap with information dependent data acquisition (IDA) enabled generation of MS fragment data even from minor isoprenoids. The developed liquid chromatography method enabled separation of isoprenoid patterns from their ester derivatives. Discovery and structural characterization of isoprenoid quinones and carotenoids were carried out by comparing characteristics of fragment spectra from unknown compounds with fragment spectra of a range of isoprenoid standard compounds and using published data. Throughout the study 17 microorganisms (e.g., Acremonium butyri, Arthrobacter spp., Brevibacterium linens, Bullera variabilis, Exophiala dermatitidis, Lecythophora hoffmannii, Panthoea agglomerans, Rhodotorula spp., Xanthophyllomyces dendrorhous) were screened and probable structures of isoprenoid quinones and carotenoids were suggested. The method lays some foundations on the analysis of yet unknown isoprenoids in microorganisms by using LCMS/MS techniques.

  7. Mechanism of enhanced removal of quinonic intermediates during electrochemical oxidation of Orange II under ultraviolet irradiation.

    PubMed

    Li, Fazhan; Li, Guoting; Zhang, Xiwang

    2014-03-01

    The effect of ultraviolet irradiation on generation of radicals and formation of intermediates was investigated in electrochemical oxidation of the azo-dye Orange II using a TiO2-modified β-PbO2 electrode. It was found that a characteristic absorbance of quinonic compounds at 255 nm, which is responsible for the rate-determining step during aromatics degradation, was formed only in electrocatalytic oxidation. The dye can be oxidized by either HO radicals or direct electron transfer. Quinonic compounds were produced concurrently. The removal of TOC by photo-assisted electrocatalytic oxidation was 1.56 times that of the sum of the other two processes, indicating a significant synergetic effect. In addition, once the ultraviolet irradiation was introduced into the process of electrocatalytic oxidation, the degradation rate of quinonic compounds was enhanced by as much as a factor of two. The more efficient generation of HO radicals resulted from the introduction of ultraviolet irradiation in electrocatalytic oxidation led to the significant synergetic effect as well as the inhibiting effect on the accumulation of quinonic compounds.

  8. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.

    PubMed

    Huan, Long; Xie, Ju; Chen, Ming; Diao, Guowang; Zhao, Rongfang; Zuo, Tongfei

    2017-04-01

    The applicability of a novel macrocyclic multi-carbonyl compound, pillar[4]quinone (P4Q), as the cathode active material for lithium-ion batteries (LIBs) was assessed theoretically. The molecular geometry, electronic structure, Li-binding thermodynamic properties, and the redox potential of P4Q were obtained using density functional theory (DFT) at the M06-2X/6-31G(d,p) level of theory. The results of the calculations indicated that P4Q interacts with Li atoms via three binding modes: Li-O ionic bonding, O-Li···O bridge bonding, and Li···phenyl noncovalent interactions. Calculations also indicated that, during the LIB discharging process, P4Q could yield a specific capacity of 446 mAh g(-1) through the utilization of its many carbonyl groups. Compared with pillar[5]quinone and pillar[6]quinone, the redox potential of P4Q is enhanced by its high structural stability as well as the effect of the solvent. These results should provide the theoretical foundations for the design, synthesis, and application of novel macrocyclic carbonyl compounds as electrode materials in LIBs in the future. Graphical Abstract Schematic representation of the proposed charge-discharge mechanism of Pillar[4]quinone as cathode for lithium-ion batteries.

  9. Rates of hydroxyl radical production from transition metals and quinones in a surrogate lung fluid

    PubMed Central

    Charrier, Jessica G.; Anastasio, Cort

    2016-01-01

    Hydroxyl radical (.OH) is the most reactive, and perhaps most detrimental to health, of the reactive oxygen species. .OH production in lungs following inhalation of particulate matter (PM) can result from redox-active chemicals, including iron and copper, but the relative importance of these species is unknown. This work investigates .OH production from iron, copper, and quinones, both individually and in mixtures at atmospherically relevant concentrations. Iron, copper and three of the four quinones (1,2-naphthoquinone, phenanthrenequinone and 1,4-naphthoquinone) produce .OH. Mixtures of copper or quinones with iron synergistically produce .OH at a rate 20 - 130% higher than the sum of the rates of the individual redox-active species. We developed a regression equation from 20 mixtures to predict the rate of .OH production from the particle composition. For typical PM compositions, iron and copper account for most .OH production, while quinones are a minor source, although they can contribute if present at very high concentrations. This work shows that Cu contributes significantly to .OH production in ambient PM; other work has shown that Cu appears to be the primary driver of HOOH production and dithiothreitol (DTT) loss in ambient PM extracts. Taken together, these results indicate that copper appears to be the most important individual contributor to direct oxidant production from inhaled PM. PMID:26153923

  10. Rat liver mitochondrial and microsomal tests for the assessment of quinone toxicity

    SciTech Connect

    Bramble, L.A.; Boardman, G.D.; Dietrich, A.M. . Dept. of Civil Engineering); Bevan, D.R. . Dept. of Biochemistry)

    1994-02-01

    Short-term toxicity tests using mitochondrial and microsomal metabolism were developed and applied to a series of eight quinones. In the mitochondrial assay, the degree to which test compounds inhibited mitochondrial respiration varied from an effective concentration (EC50) of 9 to 125 [mu]M. In the microsomal assay, the maximum percentage of increase over control oxygen consumption rates elicited by the quinones ranged from 8 to 837%. The ability of the compounds to stimulate microsomal oxygen uptake reflects their capability to redox cycle and form reactive oxygen species. Results of the mitochondrial and microsomal assay were statistically correlated with several quinone physicochemical parameters and qualitatively compared to reduction potential. The biological response observed in both test systems appeared to be most strongly influenced by the reduction potential of the quinone. Biomechanisms of action were suggested on the basis of this relationship. To assess the ability of the mitochondrial and microsomal assays to indicate toxicity of the quinonoid compounds, results were statistically correlated with literature-derived toxicity data. It was concluded that the mitochondrial assay appears to be a valid indicator of acute toxicity, whereas the microsomal assay better portends the potential for chronic toxicity.

  11. Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant and quinone reductase (QR) inducing activities of American, Asian, and Siberian ginseng have been reported using various plant materials, solvents, and assays. To directly establish their comparative bioactivity, the effects of extracts obtained from acidified methanol (MeOH), a gas...

  12. EXAMINATION OF QUINONE TOXICITY USING YEAST SACCHAROMYCES CEREVISIAE MODEL SYSTEM. (R827352C007)

    EPA Science Inventory

    The toxicity of quinones is generally thought to occur by two mechanisms: the formation of covalent bonds with biological molecules by Michael addition chemistry and the catalytic reduction of oxygen to superoxide and other reactive oxygen species (ROS) (redox cycling). In an ...

  13. Realistic respiratory motion margins for external beam partial breast irradiation

    SciTech Connect

    Conroy, Leigh; Quirk, Sarah; Smith, Wendy L.

    2015-09-15

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  14. Update of the NAD(P)H:quinone oxidoreductase (NQO) gene family

    PubMed Central

    2006-01-01

    The NAD(P)H:quinone acceptor oxidoreductase (NQO) gene family belongs to the flavoprotein clan and, in the human genome, consists of two genes (NQO1 and NQO2). These two genes encode cytosolic flavoenzymes that catalyse the beneficial two-electron reduction of quinones to hydroquinones. This reaction prevents the unwanted one-electron reduction of quinones by other quinone reductases; one-electron reduction results in the formation of reactive oxygen species, generated by redox cycling of semiquinones in the presence of molecular oxygen. Both the mammalian NQO1 and NQO2 genes are upregulated as a part of the oxidative stress response and are inexplicably overexpressed in particular types of tumours. A non-synonymous mutation in the NQO1 gene, leading to absence of enzyme activity, has been associated with an increased risk of myeloid leukaemia and other types of blood dyscrasia in workers exposed to benzene. NQO2 has a melatonin-binding site, which may explain the anti-oxidant role of melatonin. An ancient NQO3 subfamily exists in eubacteria and the authors suggest that there should be additional divisions of the NQO family to include the NQO4 subfamily in fungi and NQO5 subfamily in archaebacteria. Interestingly, no NQO genes could be identified in the worm, fly, sea squirt or plants; because these taxa carry quinone reductases capable of one- and two-electron reductions, there has been either convergent evolution or redundancy to account for the appearance of these enzyme functions whenever they have been needed during evolution. PMID:16595077

  15. Isolation and Cr(VI) reduction characteristics of quinone respiration in Mangrovibacter plantisponsor strain CR1.

    PubMed

    Lian, Jing; Li, Zifu; Xu, Zhifang; Guo, Jianbo; Hu, Zhenzhen; Guo, Yankai; Li, Min; Yang, Jingliang

    2016-07-01

    A Cr(VI)-reducing Mangrovibacter plantisponsor strain, CR1, was isolated from tannery effluent sludge and had quinone respiration characteristics. Its chromate (CrO4 (2-) ) resistance, quinone respiration characteristics, and Cr(VI) reduction efficiencies were evaluated in detail. Strain CR1 exhibited a high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 32 mM in LB medium, and its quinone respiration could occur when an electron donor and strain CR1 both existed in the reaction system. Cr(VI) reduction by strain CR1 was significantly enhanced by a factor of 0.4-4.3 with five different quinone compounds: anthraquinone-2,7-disulfonate, anthraquinone-1-sulfonate, anthraquinone-2-sulfonate (AQS), anthraquinone-2,6-disulfonate, and anthraquinone-1,5-disulfonate. AQS was the best electron shuttle among them, and the greatest enhancement to the Cr(VI) bio-reduction was achieved with 0.96 mM AQS. The correlation between the reaction constant k (mg Cr(VI) g(-1) dry cell weight H(-1) ) and thermodynamic temperature T (K) was expressed as an Arrhenius equation lnk=-7662.9/T+27.931(R2=0.9486); the activation energy Ea was 63.71 kJ mol(-1) , and the pre-exponential factor A was 1.35 × 10(12)  mg Cr(VI) g(-1) dry cell weight H(-1) . During the Cr(VI) reduction process, the pH tended to become neutral, and the oxidation-reduction potential decreased to -440 mV. The efficient reduction of Cr(VI) mediated by a quinone respiration strain shows potential for the rapid anaerobic removal of Cr(VI).

  16. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    SciTech Connect

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D.

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  17. Respiratory chain supercomplexes of mitochondria and bacteria.

    PubMed

    Schägger, Hermann

    2002-09-10

    Respiratory chain complexes are fragments of larger structural and functional units, the respiratory chain supercomplexes or "respirasomes", which exist in bacterial and mitochondrial membranes. Supercomplexes of mitochondria and bacteria contain complexes III, IV, and complex I, with the notable exception of Saccharomyces cerevisiae, which does not possess complex I. These supercomplexes often are stable to sonication but sensitive to most detergents except digitonin. In S. cerevisiae, a major component linking complexes III and IV together is cardiolipin.In Paracoccus denitrificans, complex I itself is rather detergent-sensitive and thus could not be obtained in detergent-solubilized form so far. However, it can be isolated as part of a supercomplex. Stabilization of complex I by binding to complex III was also found in human mitochondria. Further functional roles of the organization in a supercomplex are catalytic enhancement by reducing diffusion distances of substrates or, depending on the organism, channelling of the substrates quinone and cytochrome c. This makes redox reactions less dependent of midpoint potentials of substrates, and permits electron flow at low degree of substrate reduction.A dimeric state of ATP synthase seems to be specific for mitochondria. Exclusively, monomeric ATP synthase was found in Acetobacterium woodii, in P. denitrificans, and in spinach chloroplasts.

  18. Detection of respiratory viruses and the associated chemokine responses in serious acute respiratory illness

    PubMed Central

    Sumino, Kaharu C.; Walter, Michael J.; Mikols, Cassandra L.; Thompson, Samantha A.; Gaudreault-Keener, Monique; Arens, Max. Q.; Agapov, Eugene; Hormozdi, David; Gaynor, Anne M.; Holtzman, Michael J.; Storch, Gregory A.

    2010-01-01

    Background A specific diagnosis of a lower respiratory viral infection is often difficult despite frequent clinical suspicion. This low diagnostic yield may be improved by use of sensitive detection methods and biomarkers. Methods We investigated the prevalence, clinical predictors and inflammatory mediator profile of respiratory viral infection in serious acute respiratory illness. Sequential bronchoalveolar lavage (BAL) fluids from all patients hospitalized with acute respiratory illness over 12 months (n=283) were tested for the presence of 17 respiratory viruses by multiplex PCR assay and for newly-discovered respiratory viruses (bocavirus, WU and KI polyomaviruses) by single-target PCR. BAL samples also underwent conventional testing (direct immunoflorescence and viral culture) for respiratory virus at the clinician’s discretion. 27 inflammatory mediators were measured in subset of the patients (n=64) using a multiplex immunoassay. Results We detected 39 respiratory viruses in 37 (13.1% of total) patients by molecular testing, including rhinovirus (n=13), influenza virus (n=8), respiratory syncytial virus (n=6), human metapneumovirus (n=3), coronavirus NL63 (n=2), parainfluenza virus (n=2), adenovirus (n=1), and newly-discovered viruses (n=4). Molecular methods were 3.8-fold more sensitive than conventional methods. Clinical characteristics alone were insufficient to separate patients with and without respiratory virus. The presence of respiratory virus was associated with increased levels of interferon-γ-inducible protein 10 (IP -10)(p<0.001) and eotaxin-1 (p=0.017) in BAL. Conclusions Respiratory viruses can be found in patients with serious acute respiratory illness by use of PCR assays more frequently than previously appreciated. IP-10 may be a useful biomarker for respiratory viral infection. PMID:20627924

  19. Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification.

    PubMed

    Sollner, Sonja; Nebauer, Ruth; Ehammer, Heidemarie; Prem, Anna; Deller, Sigrid; Palfey, Bruce A; Daum, Günther; Macheroux, Peter

    2007-03-01

    NAD(P)H:quinone acceptor oxidoreductases are flavoenzymes expressed in the cytoplasm of many tissues and afford protection against the cytotoxic effects of electrophilic quinones by catalyzing a strict two-electron reduction. Such enzymes have been reported from several mammalian sources, e.g. human, mouse and rat, and from plant species. Here, we report identification of Lot6p (YLR011wp), the first soluble quinone reductase from the unicellular model organism Saccharomyces cerevisiae. Localization studies using an antibody raised against Lot6p as well as microscopic inspection of Lot6p-GFP demonstrated accumulation of the enzyme in the cytosol of yeast cells. Despite sharing only 23% similarity to type 1 human quinone reductase, Lot6p possesses biochemical properties that are similar to its human counterpart. The enzyme catalyzes a two-electron reduction of a series of natural and artificial quinone substrates at the expense of either NADH or NADPH. The kinetic mechanism follows a ping-pong bi-bi reaction scheme, with K(M) values of 1.6-11 microm for various quinones. Dicoumarol and Cibacron Marine, two well-known inhibitors of the quinone reductase family, bind to Lot6p and inhibit its activity. In vivo experiments demonstrate that the enzymatic activity of Lot6p is consistent with the phenotype of both Deltalot6 and Lot6p overexpressing strains, suggesting that Lot6p may play a role in managing oxidative stress in yeast.

  20. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol.

    PubMed

    Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M

    2013-11-01

    , despite substantial differences in the sample mineralogy and eruptive styles. The value of the pro-inflammatory profiles in differentiating the potential respiratory health hazard of volcanic ashes remains uncertain in a protocol designed to inform public health risk assessment, and further research on their role in volcanic crises is warranted.

  1. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    PubMed

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  2. Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression.

    PubMed

    Rajpurohit, Yogendra Singh; Desai, Shruti Sumeet; Misra, Hari Sharan

    2013-06-01

    Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage.

  3. 2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H:quinone oxidoreductase (NQO1).

    PubMed

    Bian, Jinlei; Deng, Bang; Xu, Lili; Xu, Xiaoli; Wang, Nan; Hu, Tianhan; Yao, Zeyu; Du, Jianyao; Yang, Li; Lei, Yonghua; Li, Xiang; Sun, Haopeng; Zhang, Xiaojin; You, Qidong

    2014-07-23

    A series of L-shaped ortho-quinone analogs were designed by analyzing the binding mode with NQO1. Metabolic studies demonstrated that compounds 2m, 2n and 2q exhibited higher metabolic rates than β-lapachone. The docking studies, which supported the rationalization of the metabolic studies, constituted a prospective rational basis for the development of optimized ortho-quinone analogs. Besides, good substrates (2m, 2n and 2r) for NQO1 showed higher selective toxicity than β-lapachone toward A549 (NQO1-rich) cancer cells versus H596 (NQO1-deficient) cells. Determination of superoxide (O2(•-)) production and in vitro cytotoxicity evaluation in the presence of the NQO1 inhibitor dicoumarol confirmed that the ortho-quinones exerted their antitumor activity through NQO1-mediated ROS production by redox cycling. It was suggested that the L-shaped quinone substrates for NQO1 possessed better specificity and safety than β-lapachone.

  4. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  5. Novel chemistries and materials for grid-scale energy storage: Quinones and halogen catalysis

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian Thomas

    In this work I describe various approaches to electrochemical energy storage at the grid-scale. Chapter 1 provides an introduction to energy storage and an overview of the history and development of flow batteries. Chapter 2 describes work on the hydrogen-chlorine regenerative fuel cell, detailing its development and the record-breaking performance of the device. Chapter 3 dives into catalyst materials for such a fuel cell, focusing on ruthenium oxide based alloys to be used as chlorine redox catalysts. Chapter 4 introduces and details the development of a performance model for a hydrogen-bromine cell. Chapter 5 delves into the more recent work I have done, switching to applications of quinone chemistries in flow batteries. It focuses on the pairing of one particular quinone (2,7-anthraquinone disulfonic acid) with bromine, and highlights the promising performance characteristics of a device based on this type of chemistry.

  6. Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae).

    PubMed

    Ding, Hui; Hu, Zhijuan; Yu, Liyan; Ma, Zhongjun; Ma, Xiaoqiong; Chen, Zhe; Wang, Dan; Zhao, Xiaofeng

    2014-08-01

    In the present study, the EtOAc extract of the persistent calyx of Physalis angulata L. var. villosa Bonati (PA) was tested for its potential quinone reductase (QR) inducing activity with glutathione (GSH) as the substrate using an UPLC-ESI-MS method. The result revealed that the PA had electrophiles that could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, three new withanolides, compounds 3, 6 and 7, together with four known withanolides, compounds 1, 2, 4 and 5 were isolated from PA extract. Their structures were determined by spectroscopic techniques, including (1)H-, (13)C NMR (DEPT), and 2D-NMR (HMBC, HMQC, (1)H, (1)H-COSY, NOESY) experiments, as well as by HR-MS. All the seven compounds were tested for their QR induction activities towards mouse hepa 1c1c7 cells.

  7. Highly Efficient Catalysis of Retro-Claisen Reactions: From a Quinone Derivative to Functionalized Imidazolium Salts.

    PubMed

    Visbal, Renso; Laguna, Antonio; Gimeno, M Concepción

    2016-03-14

    A new and efficient method for the preparation of several imidazolium salts containing an ester group in the C4 position of the aromatic ring through a retro-Claisen reaction pathway between a quinone derivative and several alcohols is described. This new organic transformation proceeds in the absence of a catalyst, but it is greatly catalyzed by different Lewis acids, especially with AgOAc at a very low catalyst loading and in very short reaction times. The process takes place by the nucleophilic attack of the carbonyl groups by the alcohol functionality, thus promoting a double C-C bond cleavage and C-H and C-O bond formation. This reaction represents the first example of this type between a quinone derivative and alcohols.

  8. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease.

    PubMed

    Van Laar, Victor S; Dukes, April A; Cascio, Michael; Hastings, Teresa G

    2008-03-01

    Oxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron degeneration in Parkinson disease. We have previously shown that dopamine oxidation leads to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in vitro. In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the mitochondrial proteome following in vitro exposure to reactive dopamine quinone. A subset of proteins exhibit decreased fluorescence labeling following dopamine oxidation, suggesting a rapid loss of specific proteins. Amongst these proteins are mitochondrial creatine kinase, mitofilin, mortalin, the 75 kDa subunit of NADH dehydrogenase, and superoxide dismutase 2. Western blot analyses for mitochondrial creatine kinase and mitofilin confirmed significant losses in isolated brain mitochondria exposed to dopamine quinone and PC12 cells exposed to dopamine. These results suggest that specific mitochondrial proteins are uniquely susceptible to changes in abundance following dopamine oxidation, and carry implications for mitochondrial stability in Parkinson disease neurodegeneration.

  9. Quinone exchange at the A{sub 1} site in photosystem I [PSI

    SciTech Connect

    Barkoff, A.; Brunkan, N.; Snyder, S.W.; Ostafin, A.; Werst, M.; Thurnauer, M.C.; Biggins, J.

    1995-12-31

    Quinones play an essential role in light-induced electron transport in photosynthetic reaction centers (RC). Study of quinone binding within the protein matrix of the RC is a focal point of understanding the biological optimization of photosynthesis. In plant and cyanobacterial PSI, phylloquinone (K{sub 1}) is believed to be the secondary electron acceptor, A{sub 1}, similar to Q{sub a} in the purple bacterial RC. Photoinduced electron transfer is initiated by reduction of the electron acceptor (A{sub 0}), a chlorophyll species, by the photoexcited primary donor *P{sub 700}. A{sub 1} acts as a transient redox intermediate between A{sub 0} and the iron-sulfur centers (FeS). We have examined the characteristic PSI electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal as a marker of the interacting radical pairs developed during electron transfer.

  10. Synthesis and antimalarial activity of quinones and structurally-related oxirane derivatives.

    PubMed

    Carneiro, Paula F; Pinto, Maria C R F; Marra, Roberta K F; da Silva, Fernando de C; Resende, Jackson A L C; Rocha E Silva, Luiz F; Alves, Hilkem G; Barbosa, Gleyce S; de Vasconcellos, Marne C; Lima, Emerson S; Pohlit, Adrian M; Ferreira, Vitor F

    2016-01-27

    A series of eighteen quinones and structurally-related oxiranes were synthesized and evaluated for in vitro inhibitory activity against the chloroquine-sensitive 3D7 clone of the human malaria parasite Plasmodium falciparum. 2-amino and 2-allyloxynaphthoquinones exhibited important antiplasmodial activity (median inhibitory concentrations (IC50) < 10 μM). Oxiranes 6 and 25, prepared respectively by reaction of α-lapachone and tetrachloro-p-quinone with diazomethane in a mixture of ether and ethanol, exhibited the highest antiplasmodial activity and low cytotoxicity against human fibroblasts (MCR-5 cell line). The active compounds could represent a good prototype for an antimalarial lead molecule.

  11. New method for spectrophotometric determination of quinones and barbituric acid through their reaction. A kinetic study

    NASA Astrophysics Data System (ADS)

    Medien, H. A. A.

    1996-11-01

    A new and sensitive spectrophotometric method is described for the determination of p-benzoquinone, p-chloranil and 1.4-naphthoquinone. The method is based on the reaction between quinones and barbituric acid, by which a color is developed with maximum absorption between 485 and 555 nm in 50% methyl alcohol-water mixture. The absorption of the product obeys Beer's law within the concentration range 0.025-05 mM of orginal quinone. The kinetics of the reaction between p-benzoquinone and barbituric acid was studied in a range of methyl alcohol-water mixtures. The reaction follows overall second order kinetics, first order in each of the reactants. The rate increases with increasing dielectric constant. The method was applied for determination of barbituric acid with p-benzoquinone in the concentration range of 0.025-0.345 mM. Other barbiturates do not interfere.

  12. Inhibition of reverse transcriptase by tyrosinase generated quinones related to levodopa and dopamine.

    PubMed

    Wick, M M; Fitzgerald, G

    1981-12-01

    Several derivatives of levodopa have been shown to be potent inhibitors of the sulfhydryl enzyme, RNA dependent DNA polymerase, reverse transcriptase (RT). In the presence of the polyphenol oxidase, tyrosinase, the inhibitory values were between 10(-6) M and 10(-5) M. Structure-activity studies revealed that active oxidation or reduction was necessary for this potent inhibitory response. Spectrophotometric analysis showed that the presence of both the quinone and quinol was required for maximum inhibitory activity. These data suggest that the common intermediate of oxidation of quinols or reduction of quinones (i.e., semiquinone) is the active species. The use of tyrosinase provides a convenient model for the detection of the actual inhibitory interaction of a free-radical (semiquinone) with a biologically important macromolecule, reverse transcriptase.

  13. Heats of formation and protonation thermochemistry of gaseous benzaldehyde, tropone and quinone methides

    NASA Astrophysics Data System (ADS)

    Bouchoux, Guy

    2010-08-01

    Quantum chemistry calculations using composite G3B3, G3MP2B3 and CBS-QB3 methods were performed for benzaldehyde, 1, tropone, 2, ortho-quinone methide, 3, para-quinone methide, 4, their protonated forms 1H+- 4H+ and the isomeric meta-hydroxybenzyl cation 5H+. The G3B3 298 K heats of formation values obtained in this work are: -39, 61, 52, 39, 661, 679, 699, 680 and 733 kJ mol -1 for 1- 4, 1H+- 5H+, respectively. At the same level of theory, computed proton affinities are equal to 834, 916, 887 and 892 kJ mol -1 for molecules 1- 4. These results allow to correct discrepancies on the previously reported thermochemistry of molecules 2- 4 and cations 2H+- 5H+.

  14. Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae).

    PubMed

    Ji, Long; Yuan, Yonglei; Ma, Zhongjun; Chen, Zhe; Gan, Lishe; Ma, Xiaoqiong; Huang, Dongsheng

    2013-09-01

    In the present study, it was demonstrated that the dichloromethane extract of Physalis pubescens L. (DEPP) had weak potential quinone reductase (QR) inducing activity, but an UPLC-ESI-MS method with glutathione (GSH) as the substrate revealed that the DEPP had electrophiles (with an α,β-unsaturated ketone moiety). These electrophiles could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, four withanolides, including three new compounds physapubescin B (2), physapubescin C (3), physapubescin D (4), together with one known steroidal compound physapubescin (1) were isolated. Structures of these compounds were determined by spectroscopic analysis and that of physapubescin C (3) was confirmed by a combination of molecular modeling and quantum chemical DFT-GIAO calculations. Evaluation of the QR inducing activities of all withanolides indicated potent activities of compounds 1 and 2, which had a common α,β-unsaturated ketone moiety.

  15. An antibacterial ortho-quinone diterpenoid and its derivatives from Caryopteris mongolica.

    PubMed

    Saruul, Erdenebileg; Murata, Toshihiro; Selenge, Erdenechimeg; Sasaki, Kenroh; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2015-06-15

    To identify antibacterial components in traditional Mongolian medicinal plant Caryopteris mongolica, an ortho-quinone abietane caryopteron A (1) and three its derivatives caryopteron B-D (2-4) were isolated from the roots of the plant together with three known abietanes demethylcryptojaponol (5), 6α-hydroxydemethyl cryptojaponol (6), and 14-deoxycoleon U (7). The chemical structures of these abietane derivatives were elucidated on the basis of spectroscopic data. Compounds 1-4 had C-13 methylcyclopropane substructures, and 2-4 had a hexanedioic anhydride ring C instead of ortho-quinone in 1. The stereochemistry of these compound was assumed from NOE spectra and ECD Cotton effects. Compounds 1 and 5-7 showed antibacterial activities against the Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Micrococcus luteus, being 1 the more potent.

  16. Selective Alkylation of C-Rich Bulge Motifs in Nucleic Acids by Quinone Methide Derivatives.

    PubMed

    Lönnberg, Tuomas; Hutchinson, Mark; Rokita, Steven

    2015-09-07

    A quinone methide precursor featuring a bis-cyclen anchoring moiety has been synthesized and its capacity to alkylate oligonucleotide targets quantified in the presence and absence of divalent metal ions (Zn(2+) , Ni(2+) and Cd(2+) ). The oligonucleotides were designed for testing the sequence and secondary structure specificity of the reaction. Gel electrophoretic analysis revealed predominant alkylation of C-rich bulges, regardless of the presence of divalent metal ions or even the bis-cyclen anchor. This C-selectivity appears to be an intrinsic property of the quinone methide electrophile as reflected by its reaction with an equimolar mixture of the 2'-deoxynucleosides. Only dA-N1 and dC-N3 alkylation products were detected initially and only the dC adduct persisted for detection under conditions of the gel electrophoretic analysis.

  17. Characterizing Anharmonic Vibrational Modes of Quinones with Two-Dimensional Infrared Spectroscopy.

    PubMed

    Cyran, Jenée D; Nite, Jacob M; Krummel, Amber T

    2015-07-23

    Two-dimensional infrared (2D IR) spectroscopy was used to study the vibrational modes of three quinones--benzoquinone, naphthoquinone, and anthraquinone. The vibrations of interest were in the spectral range of 1560-1710 cm(-1), corresponding to the in-plane carbonyl and ring stretching vibrations. Coupling between the vibrational modes is indicated by the cross peaks in the 2D IR spectra. The diagonal and off-diagonal anharmonicities range from 4.6 to 17.4 cm(-1) for the quinone series. In addition, there is significant vibrational coupling between the in-plane carbonyl and ring stretching vibrations. The diagonal anharmonicity, off-diagonal anharmonicity, and vibrational coupling constants are reported for benzoquinone, naphthoquinone, and anthraquinone.

  18. A Catalyst-Controlled Aerobic Coupling of ortho-Quinones and Phenols Applied to the Synthesis of Aryl Ethers.

    PubMed

    Huang, Zheng; Lumb, Jean-Philip

    2016-09-12

    ortho-Quinones are underutilized six-carbon-atom building blocks. We herein describe an approach for controlling their reactivity with copper that gives rise to a catalytic aerobic cross-coupling with phenols. The resulting aryl ethers are generated in high yield across a broad substrate scope under mild conditions. This method represents a unique example where the covalent modification of an ortho-quinone is catalyzed by a transition metal, creating new opportunities for their utilization in synthesis.

  19. Copper-Catalyzed Borylative Aromatization of p-Quinone Methides: Enantioselective Synthesis of Dibenzylic Boronates

    PubMed Central

    2015-01-01

    In this report, we establish that DM-Segphos copper(I) complexes are efficient catalysts for the enantioselective borylation of para-quinone methides. This method provides straightforward access to chiral monobenzylic and dibenzylic boronic esters, with enantiomeric ratios up to 96:4, using a commercially available chiral phosphine. Standard manipulations of the C–B bond afford a variety of chiral diaryl derivatives. PMID:27088045

  20. Phasic Motor Activity of Respiratory and Non-Respiratory Muscles in REM Sleep

    PubMed Central

    Fraigne, Jimmy J.; Orem, John M.

    2011-01-01

    Objectives: In this study, we quantified the profiles of phasic activity in respiratory muscles (diaphragm, genioglossus and external intercostal) and non-respiratory muscles (neck and extensor digitorum) across REM sleep. We hypothesized that if there is a unique pontine structure that controls all REM sleep phasic events, the profiles of the phasic twitches of different muscle groups should be identical. Furthermore, we described how respiratory parameters (e.g., frequency, amplitude, and effort) vary across REM sleep to determine if phasic processes affect breathing. Methods: Electrodes were implanted in Wistar rats to record brain activity and muscle activity of neck, extensor digitorum, diaphragm, external intercostal, and genioglossal muscles. Ten rats were studied to obtain 313 REM periods over 73 recording days. Data were analyzed offline and REM sleep activity profiles were built for each muscle. In 6 animals, respiratory frequency, effort, amplitude, and inspiratory peak were also analyzed during 192 REM sleep periods. Results: Respiratory muscle phasic activity increased in the second part of the REM period. For example, genioglossal activity increased in the second part of the REM period by 63.8% compared to the average level during NREM sleep. This profile was consistent between animals and REM periods (η2 = 0.58). This increased activity seen in respiratory muscles appeared as irregular bursts and trains of activity that could affect rythmo-genesis. Indeed, the increased integrated activity seen in the second part of the REM period in the diaphragm was associated with an increase in the number (28.3%) and amplitude (30%) of breaths. Non-respiratory muscle phasic activity in REM sleep did not have a profile like the phasic activity of respiratory muscles. Time in REM sleep did not have an effect on nuchal activity (P = 0.59). Conclusion: We conclude that the concept of a common pontine center controlling all REM phasic events is not supported by our

  1. Upper respiratory tract (image)

    MedlinePlus

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  2. Avian respiratory system disorders

    USGS Publications Warehouse

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  3. MSFC Respiratory Protection Services

    NASA Technical Reports Server (NTRS)

    CoVan, James P.

    1999-01-01

    An overview of the Marshall Space Flight Center Respiratory Protection program is provided in this poster display. Respiratory protection personnel, building, facilities, equipment, customers, maintenance and operational activities, and Dynatech fit testing details are described and illustrated.

  4. Antioxidant and quinone reductase-inducing constituents of black chokeberry (Aronia melanocarpa) fruits.

    PubMed

    Li, Jie; Deng, Ye; Yuan, Chunhua; Pan, Li; Chai, Heebyung; Keller, William J; Kinghorn, A Douglas

    2012-11-21

    Using in vitro hydroxyl radical-scavenging and quinone reductase-inducing assays, bioactivity-guided fractionation of an ethyl acetate-soluble extract of the fruits of the botanical dietary supplement, black chokeberry (Aronia melanocarpa), led to the isolation of 27 compounds, including a new depside, ethyl 2-[(3,4-dihydroxybenzoyloxy)-4,6-dihydroxyphenyl] acetate (1), along with 26 known compounds (2-27). The structures of the isolated compounds were identified by analysis of their physical and spectroscopic data ([α](D), NMR, IR, UV, and MS). Altogether, 17 compounds (1-4, 9, 15-17, and 19-27) showed significant antioxidant activity in the hydroxyl radical-scavenging assay, with hyperin (24, ED(50) = 0.17 μM) being the most potent. The new compound (1, ED(50) = 0.44 μM) also exhibited potent antioxidant activity in this assay. Three constituents of black chokeberry fruits doubled quinone reductase activity at concentrations <20 μM, namely, protocatechuic acid [9, concentration required to double quinone reductase activity (CD) = 4.3 μM], neochlorogenic acid methyl ester (22, CD = 6.7 μM), and quercetin (23, CD = 3.1 μM).

  5. Density Functional Theory-Based First Principles Calculations of Rhododendrol-Quinone Reactions: Preference to Thiol Binding over Cyclization

    NASA Astrophysics Data System (ADS)

    Kishida, Ryo; Kasai, Hideaki; Meñez Aspera, Susan; Lacdao Arevalo, Ryan; Nakanishi, Hiroshi

    2017-02-01

    Using density functional theory-based first principles calculations, we investigated the changes in the energetics and electronic structures of rhododendrol (RD)-quinone for the initial step of two important reactions, viz., cyclization and thiol binding, to give significant insights into the mechanism of the cause of cytotoxic effects. We found that RD-quinone in the electroneutral structure cannot undergo cyclization, indicating a slow cyclization of RD-quinone at neutral pH. Furthermore, using methane thiolate ion as a model thiol, we found that the oxidized form of the cyclized RD-quinone, namely RD-cyclic quinone, exhibited a reduced binding energy for thiols. However, this reduction of binding energy is clearly smaller than the case of dopaquinone, which is a molecule originally involved in the melanin synthesis. This study clearly shows that RD-quinone has a preference toward thiol bindings than cyclization compared to the case of dopaquinone. Considering that thiol bindings have been reported to induce cytotoxic effects in various ways, the preference toward thiol bindings is an important chemical property for the cytotoxicity caused by RD.

  6. Respiratory Syncytial Virus

    MedlinePlus

    ... Your 1- to 2-Year-Old Respiratory Syncytial Virus KidsHealth > For Parents > Respiratory Syncytial Virus A A A What's in this article? About ... RSV When to Call the Doctor en español Virus respiratorio sincitial About RSV Respiratory syncytial (sin-SISH- ...

  7. Lungs and Respiratory System

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Lungs and Respiratory System KidsHealth > For Teens > Lungs and Respiratory System Print ... didn't breathe, you couldn't live. Lungs & Respiratory System Basics Each day we breathe about 20,000 ...

  8. Lungs and Respiratory System

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Lungs and Respiratory System KidsHealth > For Teens > Lungs and Respiratory System A ... didn't breathe, you couldn't live. Lungs & Respiratory System Basics Each day we breathe about 20,000 ...

  9. [Music and respiratory pathology].

    PubMed

    Herer, B

    2001-04-01

    Musical performance, especially in singers and wind instrument players, depends on an effective pulmonary function. Performing artists may be seriously impaired by respiratory diseases that, comparatively, may produce only modest inconvenience for non-musicians. The report of two cases of respiratory diseases occurring in musicians herein provides an introduction to a review of the interactions between music and the human respiratory system. The following points are considered: epidemiological data; pulmonary function in musicians; favorable effects of music on the respiratory system; description of the main respiratory problems that may affect musicians.

  10. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  11. Asthmatics with exacerbation during acute respiratory illness exhibit unique transcriptional signatures within the nasal mucosa

    PubMed Central

    2014-01-01

    Background Acute respiratory illness is the leading cause of asthma exacerbations yet the mechanisms underlying this association remain unclear. To address the deficiencies in our understanding of the molecular events characterizing acute respiratory illness-induced asthma exacerbations, we undertook a transcriptional profiling study of the nasal mucosa over the course of acute respiratory illness amongst individuals with a history of asthma, allergic rhinitis and no underlying respiratory disease. Methods Transcriptional profiling experiments were performed using the Agilent Whole Human Genome 4X44K array platform. Time point-based microarray and principal component analyses were conducted to identify and distinguish acute respiratory illness-associated transcriptional profiles over the course of our study. Gene enrichment analysis was conducted to identify biological processes over-represented within each acute respiratory illness-associated profile, and gene expression was subsequently confirmed by quantitative polymerase chain reaction. Results We found that acute respiratory illness is characterized by dynamic, time-specific transcriptional profiles whose magnitudes of expression are influenced by underlying respiratory disease and the mucosal repair signature evoked during acute respiratory illness. Most strikingly, we report that people with asthma who experience acute respiratory illness-induced exacerbations are characterized by a reduced but prolonged inflammatory immune response, inadequate activation of mucosal repair, and the expression of a newly described exacerbation-specific transcriptional signature. Conclusion Findings from our study represent a significant contribution towards clarifying the complex molecular interactions that typify acute respiratory illness-induced asthma exacerbations. PMID:24433494

  12. Directly probing redox-linked quinones in photosystem II membrane fragments via UV resonance Raman scattering.

    PubMed

    Chen, Jun; Yao, Mingdong; Pagba, Cynthia V; Zheng, Yang; Fei, Liping; Feng, Zhaochi; Barry, Bridgette A

    2015-01-01

    In photosynthesis, photosystem II (PSII) harvests sunlight with bound pigments to oxidize water and reduce quinone to quinol, which serves as electron and proton mediators for solar-to-chemical energy conversion. At least two types of quinone cofactors in PSII are redox-linked: QA, and QB. Here, we for the first time apply 257-nm ultraviolet resonance Raman (UVRR) spectroscopy to acquire the molecular vibrations of plastoquinone (PQ) in PSII membranes. Owing to the resonance enhancement effect, the vibrational signal of PQ in PSII membranes is prominent. A strong band at 1661 cm(-1) is assigned to ring CC/CO symmetric stretch mode (ν8a mode) of PQ, and a weak band at 469 cm(-1) to ring stretch mode. By using a pump-probe difference UVRR method and a sample jet technique, the signals of QA and QB can be distinguished. A frequency difference of 1.4 cm(-1) in ν8a vibrational mode between QA and QB is observed, corresponding to ~86 mV redox potential difference imposed by their protein environment. In addition, there are other PQs in the PSII membranes. A negligible anharmonicity effect on their combination band at 2130 cm(-1) suggests that the 'other PQs' are situated in a hydrophobic environment. The detection of the 'other PQs' might be consistent with the view that another functional PQ cofactor (not QA or QB) exists in PSII. This UVRR approach will be useful to the study of quinone molecules in photosynthesis or other biological systems.

  13. Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones.

    PubMed

    Itoh, S; Iwaki, M; Ikegami, I

    2001-10-30

    The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.

  14. Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor

    PubMed Central

    Scherzer-Attali, Roni; Pellarin, Riccardo; Convertino, Marino; Frydman-Marom, Anat; Egoz-Matia, Nirit; Peled, Sivan; Levy-Sakin, Michal; Shalev, Deborah E.; Caflisch, Amedeo; Gazit, Ehud; Segal, Daniel

    2010-01-01

    The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease. PMID:20559435

  15. The Role of Glycine Residues 140 and 141 of Subunit B in the Functional Ubiquinone Binding Site of the Na+-pumping NADH:quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Juárez, Oscar; Neehaul, Yashvin; Turk, Erin; Chahboun, Najat; DeMicco, Jessica M.; Hellwig, Petra; Barquera, Blanca

    2012-01-01

    The Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na+-NQR with its electron acceptor, ubiquinone. PMID:22645140

  16. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides

    SciTech Connect

    Vermaas, Josh V.; Taguchi, Alexander T.; Dikanov, Sergei A.; Wraight, Colin A.; Tajkhorshid, Emad

    2015-03-03

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, in this paper we have investigated and characterized the interactions of the protein with the quinones in the QA and QB sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the QB site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the QA and QB sites. Finally, disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the QA–QB– biradical and competitive binding assays.

  17. Leflunomide induces NAD(P)H quinone dehydrogenase 1 enzyme via the aryl hydrocarbon receptor in neonatal mice.

    PubMed

    Shrestha, Amrit Kumar; Patel, Ananddeep; Menon, Renuka T; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2017-03-25

    Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.

  18. Biomarkers for Gastroesophageal Reflux in Respiratory Diseases

    PubMed Central

    Gíslason, Þórarinn; Olin, Anna-Carin; Janson, Christer; Ólafsson, Ísleifur

    2013-01-01

    Gastroesophageal reflux (GER) is commonly associated with respiratory symptoms, either through a vagal bronchoconstrictive reflex or through microaspiration of gastric contents. No diagnostic test is available, however, to diagnose when respiratory illnesses are caused by GER and when not, but research in this field has been moving forward. Various biomarkers in different types of biosamples have been studied in this context. The aim of this review is to summarize the present knowledge in this field. GER patients with respiratory diseases seem to have a different biochemical profile from similar patients without GER. Inflammatory biomarkers differ in asthmatics based on GER status, tachykinins are elevated in patients with GER-related cough, and bile acids are elevated in lung transplant patients with GER. However, studies on these biomarkers are often limited by their small size, methods of analysis, and case selections. The two pathogenesis mechanisms are associated with different respiratory illnesses and biochemical profiles. A reliable test to identify GER-induced respiratory disorders needs to be developed. Bronchoalveolar lavage is too invasive to be of use in most patients. Exhaled breath condensate samples need further evaluation and standardization. The newly developed particles in exhaled air measurements remain to be studied further. PMID:23653634

  19. Early complications. Respiratory failure.

    PubMed

    Zwischenberger, J B; Alpard, S K; Bidani, A

    1999-08-01

    Pulmonary complications following thoracic surgery are common and associated with significant morbidity and mortality. Respiratory failure after pneumonectomy occurs in approximately 5% to 15% of cases and significantly increases patient mortality. Strategies for ventilator support are based on the nature of the underlying complication and the pathophysiology of respiratory failure. This article describes the cause and pathophysiology of respiratory failure and pulmonary embolus postpneumonectomy. Diagnosis, management, and innovative therapies are also reviewed.

  20. Michael Additions of Highly Basic Enolates to ortho-Quinone Methides.

    PubMed

    Lewis, Robert S; Garza, Christopher J; Dang, Ann T; Pedro, Te Kie A; Chain, William J

    2015-05-01

    A protocol by which ketone or ester enolates and ortho-quinone methides (o-QMs) are generated in situ in a single reaction flask from silylated precursors under the action of anhydrous fluoride is reported. The reaction partners are joined to give a variety of β-(2-hydroxyphenyl)-carbonyl compounds in 32-94% yield in a single laboratory operation. The intermediacy of o-QMs is supported by control experiments utilizing enolate precursors and conventional alkyl halides as competitive alkylating agents and the isolation of 1,5-dicarbonyl products resulting from conjugate additions that do not restore the aromatic system.

  1. A quinone-assisted photoformation of energy-rich chemical bonds

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Adachi, T.; Stillwell, W.

    1980-01-01

    In a study of biochemical means of solar energy conversion, ADP and inorganic phosphates were converted to ATP by white light in the nonaqueous solvent dimethylformamide in the presence of tetrachloro-p-quinone or ubiquinone. Conversion of ADP to ATP has been accomplished in aqueous suspension by the use of cell-like structures aggregated from poly(aspartic acid, glutamic acid, tyrosine). This is believed to occur through the formation of dopaquinone in the peptide structure during illumination. The way in which the quantitative yield of ATP has been influenced by pH and by added substances, such as FeCl2, was studied.

  2. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  3. Homologation of α-aryl amino acids through quinone-catalyzed decarboxylation/Mukaiyama-Mannich addition.

    PubMed

    Haugeberg, Benjamin J; Phan, Johnny H; Liu, Xinyun; O'Connor, Thomas J; Clift, Michael D

    2017-03-09

    A new method for amino acid homologation by way of formal C-C bond functionalization is reported. This method utilizes a 2-step/1-pot protocol to convert α-amino acids to their corresponding N-protected β-amino esters through quinone-catalyzed oxidative decarboxylation/in situ Mukaiyama-Mannich addition. The scope and limitations of this chemistry are presented. This methodology provides an alternative to the classical Arndt-Eistert homologation for accessing β-amino acid derivatives. The resulting N-protected amine products can be easily deprotected to afford the corresponding free amines.

  4. Novel prenylated bichalcone and chalcone from Humulus lupulus and their quinone reductase induction activities.

    PubMed

    Yu, Liyan; Zhang, Fuxian; Hu, Zhijuan; Ding, Hui; Tang, Huifang; Ma, Zhongjun; Zhao, Xiaofeng

    2014-03-01

    A new prenylated chalcone xanthohumol M (1), a novel prenylated bichalcone humulusol (2) and six known chalcones (3-8) were found from Humulus lupulus. Their structures were determined by spectroscopic methods. All the chalcones' electrophilic abilities were assessed by GSH (glutathione) rapid screening, and their QR (quinone reductase) induction activities were evaluated using hepa 1c1c7 cells. The results of electrophilic assay and QR induction activity assay were quite well. New compounds 1 and 2, along with some known prenylated chalcones, displayed certain QR induction activity.

  5. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging.

    PubMed

    Shrader, William D; Amagata, Akiko; Barnes, Adam; Enns, Gregory M; Hinman, Andrew; Jankowski, Orion; Kheifets, Viktoria; Komatsuzaki, Ryo; Lee, Edgar; Mollard, Paul; Murase, Katsuyuki; Sadun, Alfredo A; Thoolen, Martin; Wesson, Kieron; Miller, Guy

    2011-06-15

    We report that α-tocotrienol quinone (ATQ3) is a metabolite of α-tocotrienol, and that ATQ3 is a potent cellular protectant against oxidative stress and aging. ATQ3 is orally bioavailable, crosses the blood-brain barrier, and has demonstrated clinical response in inherited mitochondrial disease in open label studies. ATQ3 activity is dependent upon reversible 2e-redox-cycling. ATQ3 may represent a broader class of unappreciated dietary-derived phytomolecular redox motifs that digitally encode biochemical data using redox state as a means to sense and transfer information essential for cellular function.

  6. Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f

    PubMed Central

    Bujnowicz, Łukasz; Bhaduri, Satarupa; Singh, Sandeep K.; Cramer, William A.; Osyczka, Artur

    2017-01-01

    Oxygenic respiration and photosynthesis based on quinone redox reactions face a danger of wasteful energy dissipation by diversion of the productive electron transfer pathway through the generation of reactive oxygen species (ROS). Nevertheless, the widespread quinone oxido-reductases from the cytochrome bc family limit the amounts of released ROS to a low, perhaps just signaling, level through an as-yet-unknown mechanism. Here, we propose that a metastable radical state, nonreactive with oxygen, safely holds electrons at a local energetic minimum during the oxidation of plastohydroquinone catalyzed by the chloroplast cytochrome b6f. This intermediate state is formed by interaction of a radical with a metal cofactor of a catalytic site. Modulation of its energy level on the energy landscape in photosynthetic vs. respiratory enzymes provides a possible mechanism to adjust electron transfer rates for efficient catalysis under different oxygen tensions. PMID:28115711

  7. The human respiratory gate

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.

  8. Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al. 2014 as Verticia sediminum gen. nov., comb. nov.

    PubMed

    Vandamme, Peter A; Peeters, Charlotte; Cnockaert, Margo; Inganäs, Elisabeth; Falsen, Enevold; Moore, Edward R B; Nunes, Olga C; Manaia, Célia M; Spilker, Theodore; LiPuma, John J

    2015-10-01

    The phenotypic and genotypic characteristics of four Bordetella hinzii-like strains from human respiratory specimens and representing nrdA gene sequence based genogroups 3, 14 and 15 were examined. In a 16S rRNA gene sequence based phylogenetic tree, the four strains consistently formed a single coherent lineage but their assignment to the genus Bordetella was equivocal. The respiratory quinone, polar lipid and fatty acid profiles generally conformed to those of species of the genus Bordetella and were characterized by the presence of ubiquinone 8, of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several aminolipids, and of high percentages of C16 : 0, cyclo-C17 : 0 and summed feature 2, as major chemotaxonomic marker molecules, respectively. The DNA G+C content was about 66 mol%, which corresponded with that of the high-percentage DNA G+C content genera of the family Alcaligenaceae including the genus Bordetella. DNA–DNA hybridization experiments revealed the presence of three distinct genomospecies and thus confirmed phenotypic differences as revealed by means of extensive biochemical characterization. We therefore propose to formally classify Bordetella genogroups 3, 14 and 15 as Bordetella bronchialis sp. nov. (type strain LMG 28640T = AU3182T = CCUG 56828T), Bordetella sputigena sp. nov. (type strain LMG 28641T = CCUG 56478T) and Bordetella flabilis sp. nov. (type strain LMG 28642T = AU10664T = CCUG 56827T). In addition, we propose to reclassify Achromobacter sediminum into the novel genus Verticia, as Verticia sediminum, gen. nov., comb. nov., on the basis of its unique phylogenetic position, its marine origin and its distinctive phenotypic, fatty acid and polar lipid profile.

  9. Photoionization studies on various quinones by an infrared laser desorption/tunable VUV photoionization TOF mass spectrometry.

    PubMed

    Pan, Yang; Zhang, Lidong; Zhang, Taichang; Guo, Huijun; Hong, Xin; Qi, Fei

    2008-12-01

    Photoionization and dissociative photoionization characters of six quinones, including 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthroquinone (PQ), 9,10-anthraquinone (AQ), benz[a]- anthracene-7,12-dione (BAD) and 1,2-acenaphthylenedione (AND) have been studied with an infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IR LD/VUV PIMS) technique. Mass spectra of these compounds are obtained at different VUV photon energies. Consecutive losses of two carbon monoxide (CO) groups are found to be the main fragmentation pathways for all the quinones. Detailed dissociation processes are discussed with the help of ab initio B3LYP calculations. Ionization energies (IEs) of these quinones and appearance energies (AEs) of major fragments are obtained by measuring the photoionization efficiency (PIE) spectra. The experimental results are in good agreement with the theoretical data.

  10. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.

    PubMed

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2014-11-15

    Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative.

  11. Structural analysis and molecular docking of trypanocidal aryloxy-quinones in trypanothione and glutathione reductases: a comparison with biochemical data.

    PubMed

    Vera, Brenda; Vázquez, Karina; Mascayano, Carolina; Tapia, Ricardo A; Espinosa, Victoria; Soto-Delgado, Jorge; Salas, Cristian O; Paulino, Margot

    2016-07-15

    A set of aryloxy-quinones, previously synthesized and evaluated against Trypanosoma cruzi epimastigotes cultures, were found more potent and selective than nifurtimox. One of the possible mechanisms of the trypanocidal activity of these quinones could be inhibition of trypanothione reductase (TR). Considering that glutathione reductase (GR) is the equivalent of TR in humans, biochemical, kinetic, and molecular docking studies in TR and GR were envisaged and compared with the trypanocidal and cytotoxic data of a set of aryloxy-quinones. Biochemical assays indicated that three naphthoquinones (Nq-h, Nq-g, and Nq-d) selectively inhibit TR and the TR kinetic analyses indicated that Nq-h inhibit TR in a noncompetitive mechanism. Molecular dockings were performed in TR and GR in the following three putative binding sites: the catalytic site, the dimer interface, and the nicotinamide adenine dinucleotide phosphate-binding site. In TR and GR, the aryloxy-quinones were found to exhibit high affinity for a site near it cognate-binding site in a place in which the noncompetitive kinetics could be justified. Taking as examples the three compounds with TR specificity (TRS) (Nq-h, Nq-g, and Nq-d), the presence of a network of contacts with the quinonic ring sustained by the triad of Lys62, Met400', Ser464' residues, seems to contribute hardly to the TRS. Compound Nq-b, a naphthoquinone with nitrophenoxy substituent, proved to be the best scaffold for the design of trypanocidal compounds with low toxicity. However, the compound displayed only a poor and non-selective effect toward TR indicating that TR inhibition is not the main reason for the antiparasitic activity of the aryloxy-quinones.

  12. Identification of the Binding Position of Amilorides in the Quinone Binding Pocket of Mitochondrial Complex I.

    PubMed

    Ito, Takeshi; Murai, Masatoshi; Morisaka, Hironobu; Miyoshi, Hideto

    2015-06-16

    We previously demonstrated that amilorides bind to the quinone binding pocket of bovine mitochondrial complex I, not to the hitherto suspected Na⁺/H⁺ antiporter-like subunits (ND2, ND4, and ND5) [Murai, M., et al. (2015) Biochemistry 54, 2739-2746]. To characterize the binding position of amilorides within the pocket in more detail, we conducted specific chemical labeling [alkynylation (-C≡CH)] of complex I via ligand-directed tosyl (LDT) chemistry using a newly synthesized amide-type amiloride AAT as a LDT chemistry reagent. The inhibitory potency of AAT, in terms of its IC50 value, was markedly higher (∼1000-fold) than that of prototypical guanidine-type amilorides such as commercially available EIPA and benzamil. Detailed proteomic analyses in combination with click chemistry revealed that the chemical labeling occurred at Asp160 of the 49 kDa subunit (49 kDa Asp160). This labeling was significantly suppressed in the presence of an excess amount of other amilorides or ordinary inhibitors such as quinazoline and acetogenin. Taking into consideration the fact that 49 kDa Asp160 was also specifically labeled by LDT chemistry reagents derived from acetogenin [Masuya, T., et al. (2014) Biochemistry 53, 2307-2317, 7816-7823], we found this aspartic acid to elicit very strong nucleophilicity in the local protein environment. The structural features of the quinone binding pocket in bovine complex I are discussed on the basis of this finding.

  13. On the importance of anion-π interactions in the mechanism of sulfide:quinone oxidoreductase.

    PubMed

    Bauzá, Antonio; Quiñonero, David; Deyà, Pere M; Frontera, Antonio

    2013-11-01

    Sulfide:quinone oxidoreductase (SQR) is a flavin-dependent enzyme that plays a physiological role in two important processes. First, it is responsible for sulfide detoxification by oxidizing sulfide ions (S(2-) and HS(-)) to elementary sulfur and the electrons are first transferred to flavin adenine dinucleotide (FAD), which in turn passes them to the quinone pool in the membrane. Second, in sulfidotrophic bacteria, SQRs play a key role in the sulfide-dependent respiration and anaerobic photosynthesis, deriving energy for their growth from reduced sulfur. Two mechanisms of action for SQR have been proposed: first, nucleophilic attack of a Cys residue on the C4 of FAD, and second, an alternate anionic radical mechanism by direct electron transfer from Cys to the isoalloxazine ring of FAD. Both mechanisms involve a common anionic intermediate that it is stabilized by a relevant anion-π interaction and its previous formation (from HS(-) and Cys-S-S-Cys) is also facilitated by reducing the transition-state barrier, owing to an interaction that involves the π system of FAD. By analyzing the X-ray structures of SQRs available in the Protein Data Bank (PDB) and using DFT calculations, we demonstrate the relevance of the anion-π interaction in the enzymatic mechanism.

  14. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.

    PubMed

    Kather, B; Stingl, K; van der Rest, M E; Altendorf, K; Molenaar, D

    2000-06-01

    The only enzyme of the citric acid cycle for which no open reading frame (ORF) was found in the Helicobacter pylori genome is the NAD-dependent malate dehydrogenase. Here, it is shown that in this organism the oxidation of malate to oxaloacetate is catalyzed by a malate:quinone oxidoreductase (MQO). This flavin adenine dinucleotide-dependent membrane-associated enzyme donates electrons to quinones of the electron transfer chain. Similar to succinate dehydrogenase, it is part of both the electron transfer chain and the citric acid cycle. MQO activity was demonstrated in isolated membranes of H. pylori. The enzyme is encoded by the ORF HP0086, which is shown by the fact that expression of the HP0086 sequence from a plasmid induces high MQO activity in mqo deletion mutants of Escherichia coli or Corynebacterium glutamicum. Furthermore, this plasmid was able to complement the phenotype of the C. glutamicum mqo deletion mutant. Interestingly, the protein predicted to be encoded by this ORF is only distantly related to known or postulated MQO sequences from other bacteria. The presence of an MQO shown here and the previously demonstrated presence of a 2-ketoglutarate:ferredoxin oxidoreductase and a succinyl-coenzyme A (CoA):acetoacetyl-CoA transferase indicate that H. pylori possesses a complete citric acid cycle, but one which deviates from the standard textbook example in three steps.

  15. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone.

    PubMed

    Freguia, Stefano; Masuda, Masaki; Tsujimura, Seiya; Kano, Kenji

    2009-09-01

    Lactococcus lactis is a gram-positive, normally homolactic fermenter that is known to produce several kinds of membrane associated quinones, which are able to mediate electron transfer to extracellular electron acceptors such as Fe(3+), Cu(2+) and hexacyanoferrate. Here we show that this bacterium is also capable of performing extracellular electron transfer to anodes by utilizing at least two soluble redox mediators, as suggested by the two-step catalytic current developed. One of these two mediators was herein suggested to be 2-amino-3-dicarboxy-1,4-naphthoquinone (ACNQ), via evaluation of standard redox potential, ability of the bacterium to exploit the quinone when exogenously provided, as well as by high performance liquid chromatography coupled with UV spectrum analysis. During electricity generation, L. lactis slightly deviated from its normal homolactic metabolism by excreting acetate and pyruvate in stoichiometric amounts with respect to the electrical current. In this metabolism, the anode takes on the role of electron sink for acetogenic fermentation. The finding that L. lactis self-catalyses anodic electron transfer by excretion of redox mediators is remarkable as the mechanisms of extracellular electron transfer by pure cultures of gram-positive bacteria had previously never been elucidated.

  16. Direct and quinone-mediated palladium reduction by Geobacter sulfurreducens: mechanisms and modeling.

    PubMed

    Pat-Espadas, Aurora M; Razo-Flores, Elías; Rangel-Mendez, J Rene; Cervantes, Francisco J

    2014-01-01

    Palladium(II) reduction to Pd(0) nanoparticles by Geobacter sulfurreducens was explored under conditions of neutral pH, 30 °C and concentrations of 25, 50, and 100 mg of Pd(II)/L aiming to investigate the effect of solid species of palladium on their microbial reduction. The influence of anthraquinone-2,6-disulfonate was reported to enhance the palladium reaction rate in an average of 1.7-fold and its addition is determining to achieve the reduction of solid species of palladium. Based on the obtained results two mechanisms are proposed: (1) direct, which is fully described considering interactions of amide, sulfur, and phosphoryl groups associated to proteins from bacteria on palladium reduction reaction, and (2) quinone-mediated, which implies multiheme c-type cytochromes participation. Speciation analysis and kinetic results were considered and integrated into a model to fit the experimental data that explain both mechanisms. This work provides elements for a better understanding of direct and quinone-mediated palladium reduction by G. sulfurreducens, which could facilitate metal recovery with concomitant formation of valuable palladium nanoparticles in industrial processes.

  17. Antineoplastic Isoflavonoids Derived from Intermediate ortho-Quinone Methides Generated from Mannich Bases.

    PubMed

    Frasinyuk, Mykhaylo S; Mrug, Galyna P; Bondarenko, Svitlana P; Khilya, Volodymyr P; Sviripa, Vitaliy M; Syrotchuk, Oleksandr A; Zhang, Wen; Cai, Xianfeng; Fiandalo, Michael V; Mohler, James L; Liu, Chunming; Watt, David S

    2016-03-17

    The regioselective condensations of various 7-hydroxyisoflavonoids with bis(N,N-dimethylamino)methane in a Mannich reaction provided C-8 N,N-dimethylaminomethyl-substituted isoflavonoids in good yield. Similar condensations of 7-hydroxy-8-methylisoflavonoids led to the C-6-substituted analogs. Thermal eliminations of dimethylamine from these C-6 or C-8 N,N-dimethylaminomethyl-substituted isoflavonoids generated ortho-quinone methide intermediates within isoflavonoid frameworks for the first time. Despite other potential competing outcomes, these ortho-quinone methide intermediates trapped dienophiles including 2,3-dihydrofuran, 3,4-dihydro-2H-pyran, 3-(N,N-dimethylamino)-5,5-dimethyl-2-cyclohexen-1-one, 1-morpholinocyclopentene, and 1-morpholinocyclohexene to give various inverse electron-demand Diels-Alder adducts. Several adducts derived from 8-N,N-dimethylaminomethyl-substituted isoflavonoids displayed good activity in the 1-10 μm concentration range in an in vitro proliferation assay using the PC-3 prostate cancer cell line.

  18. Determination of total proteins: a study of reaction between quinones and proteins.

    PubMed

    Zaia, D A; Verri, W A; Zaia, C T

    1999-06-14

    A previous study was undertaken to test the reaction of several quinones (p-benzoquinone; 2,5-dichloro and 2,6-dichloro p-benzoquinone; tetrachloro-p-benzoquinone; tetrachloro-o-benzoquinone; 2,5-dichloro-3,6-dihydroxy-p-benzoquinone; benz[a]anthracene-7,12-dione) with bovine serum albumin (BSA). From this study, we have devised a spectrophotometric method for determination of total proteins. The quinone, tetrachloro-p-benzoquinone (p-chloranil), showed the best result. The product of reaction between proteins and p-chloranil absorbed at 360 nm and Beer's law was followed up to 200 mug ml(-1) of BSA. The product of reaction of BSA/p-chloranil was stable for 30 min, after that the absorbance increased 16% and kept stable for 24 h. The p-chloranil method showed a limit of detection (1.25 mug ml(-1)) lower than the biuret method (52.0 mug ml(-1)) or p-benzoquinone (PBQ) method (2.6-4.0 mug ml(-1)). The method was applied to spectrophotometric determination of total proteins in blood plasma; the results were compared with the biuret method that is widely used in clinical analysis.

  19. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein

    PubMed Central

    Akagawa, Mitsugu; Minematsu, Kenji; Shibata, Takahiro; Kondo, Tatsuhiko; Ishii, Takeshi; Uchida, Koji

    2016-01-01

    Pyrroloquinoline quinone (PQQ), a redox-active o-quinone, is an important nutrient involved in numerous physiological and biochemical processes in mammals. Despite such beneficial functions, the underlying molecular mechanisms remain to be established. In the present study, using PQQ-immobilized Sepharose beads as a probe, we examined the presence of protein(s) that are capable of binding PQQ in mouse NIH/3T3 fibroblasts and identified five cellular proteins, including l-lactate dehydrogenase (LDH) A chain, as potential mammalian PQQ-binding proteins. In vitro studies using a purified rabbit muscle LDH show that PQQ inhibits the formation of lactate from pyruvate in the presence of NADH (forward reaction), whereas it enhances the conversion of lactate to pyruvate in the presence of NAD+ (reverse reaction). The molecular mechanism underlying PQQ-mediated regulation of LDH activity is attributed to the oxidation of NADH to NAD+ by PQQ. Indeed, the PQQ-bound LDH oxidizes NADH, generating NAD+, and significantly catalyzes the conversion of lactate to pyruvate. Furthermore, PQQ attenuates cellular lactate release and increases intracellular ATP levels in the NIH/3T3 fibroblasts. Our results suggest that PQQ, modulating LDH activity to facilitate pyruvate formation through its redox-cycling activity, may be involved in the enhanced energy production via mitochondrial TCA cycle and oxidative phosphorylation. PMID:27230956

  20. Living with Respiratory Failure

    MedlinePlus

    ... smoking. Emotional Issues and Support Living with respiratory failure may cause fear, anxiety, depression, and stress. Talk about how you feel with your health care team. Talking to a professional counselor also can ... to living with respiratory failure. You can see how other people who have ...

  1. Structure-function studies of the photosynthetic reaction center using herbicides that compete for the quinone binding site

    SciTech Connect

    Bylina, E.J.

    1995-12-31

    Certain classes of herbicides act as competitive inhibitors of the photosynthetic reaction center. Genetic engineering techniques can be used to generate photosynthetic reaction centers which contain altered quinone binding sites. A genetic system for rapidly screening herbicides developed in the photosynthetic bacterium Rhodobacter capsulatus has been used to examine the effect of different s-triazine herbicides on the growth of bacteria containing reaction centers with altered quinone binding sites. Structural insights into herbicide binding have been obtained by determining the level of resistance or sensitivity to structurally related herbicides in these modified reaction centers.

  2. Synergistic Rhodium/Phosphoric Acid Catalysis for the Enantioselective Addition of Oxonium Ylides to ortho-Quinone Methides.

    PubMed

    Alamsetti, Santosh Kumar; Spanka, Matthias; Schneider, Christoph

    2016-02-12

    We report herein a powerful and highly stereoselective protocol for the domino-type reaction of diazoesters with ortho-quinone methides generated in situ to furnish densely functionalized chromans with three contiguous stereogenic centers. A transition-metal and a Brønsted acid catalyst were shown to act synergistically to produce a transient oxonium ylide and ortho-quinone methide, respectively, in two distinct cycles. These intermediates underwent subsequent coupling in a conjugate-addition-hemiacetalization event in generally good yield with excellent diastereo- and enantioselectivity.

  3. A respiratory compensating system: design and performance evaluation.

    PubMed

    Chuang, Ho-Chiao; Huang, Ding-Yang; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2014-05-08

    This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory

  4. Antineoplastic agents 552. Oxidation of combretastatin A-1: Trapping the o-Quinone intermediate considered metabolic product of the corresponding phosphate prodrug

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The very unstable (< 10 min at rt) o-quinone derived from the vicinol diphenol anticancer drug combretastatin A-1 has been obtained by careful oxidation with NaIO4 employing tetrabutylammonium bromide in water/dichloromethane. Immediate reaction with phenylenediamine allowed o-quinone 5 to be trapp...

  5. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.

    PubMed

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  6. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    PubMed Central

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  7. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  8. Other Community Respiratory Viruses.

    PubMed

    Wunderink, Richard G

    2017-03-01

    Polymerase chain reaction-based diagnosis has become the standard for viral pneumonia and other respiratory tract infections. Expansion of respiratory viral panels (RVPs) outside of influenza and, possibly, respiratory syncytial virus has led to the ability to diagnose viral infections for which no approved specific antiviral treatment exists. Careful clinical evaluation of the patient with a positive RVP is, therefore, critical given the limited repertoire of treatments. Generic treatments with intravenous immunoglobulin, ribavirin, and interferons may benefit select severe viral pneumonia patients, whereas cidofovir has activity for severe adenoviral pneumonia.

  9. Respiratory medicine of reptiles.

    PubMed

    Schumacher, Juergen

    2011-05-01

    Noninfectious and infectious causes have been implicated in the development of respiratory tract disease in reptiles. Treatment modalities in reptiles have to account for species differences in response to therapeutic agents as well as interpretation of diagnostic findings. Data on effective drugs and dosages for the treatment of respiratory diseases are often lacking in reptiles. Recently, advances have been made on the application of advanced imaging modalities, especially computed tomography for the diagnosis and treatment monitoring of reptiles. This article describes common infectious and noninfectious causes of respiratory disease in reptiles, including diagnostic and therapeutic regimen.

  10. Kinetics and mechanism of bimolecular electron transfer reaction in quinone-amine systems in micellar solution

    SciTech Connect

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2005-02-22

    Photoinduced electron transfer (ET) reactions between anthraquinone derivatives and aromatic amines have been investigated in sodium dodecyl sulphate (SDS) micellar solutions. Significant static quenching of the quinone fluorescence due to high amine concentration in the micellar phase has been observed in steady-state measurements. The bimolecular rate constants for the dynamic quenching in the present systems k{sub q}{sup TR}, as estimated from the time-resolved measurements, have been correlated with the free energy changes {delta}G{sup 0} for the ET reactions. Interestingly it is seen that the k{sub q}{sup TR} vs {delta}G{sup 0} plot displays an inversion behavior with maximum k{sub q}{sup TR} at around 0.7 eV, a trend similar to that predicted in Marcus ET theory. Like the present results, Marcus inversion in the k{sub q}{sup TR} values was also observed earlier in coumarin-amine systems in SDS and TX-100 micellar solutions, with maximum k{sub q}{sup TR} at around the same exergonicity. These results thus suggest that Marcus inversion in bimolecular ET reaction is a general phenomenon in micellar media. Present observations have been rationalized on the basis of the two-dimensional ET (2DET) theory, which seems to be more suitable for micellar ET reactions than the conventional ET theory. For the quinone-amine systems, it is interestingly seen that k{sub q}{sup TR} vs {delta}G{sup 0} plot is somewhat wider in comparison to that of the coumarin-amine systems, even though the maxima in the k{sub q}{sup TR} vs {delta}G{sup 0} plots appear at almost similar exergonicity for both the acceptor-donor systems. These observations have been rationalized on the basis of the differences in the reaction windows along the solvation axis, as envisaged within the framework of the 2DET theory, and arise due to the differences in the locations of the quinones and coumarin dyes in the micellar phase.

  11. Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: implications for mitochondrial dysfunction in Parkinson disease.

    PubMed

    Bisaglia, Marco; Soriano, Maria Eugenia; Arduini, Irene; Mammi, Stefano; Bubacco, Luigi

    2010-09-01

    Oxidative stress and mitochondrial dysfunction, especially at the level of complex I of the electronic transport chain, have been proposed to be involved in the pathogenesis of Parkinson disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine (DA) and produce various toxic molecules, i.e., free radicals and quinone species (DAQ). It has been shown that DA oxidation products can induce various forms of mitochondrial dysfunction, such as mitochondrial swelling and decreased electron transport chain activity. In the present work, we analyzed the potentially toxic effects of DAQ on mitochondria and, specifically, on the NADH and GSH pools. Our results demonstrate that the generation of DAQ in isolated respiring mitochondria triggers the opening of the permeability transition pore most probably by inducing oxidation of NADH, while GSH levels are not affected. We then characterized in vitro, by UV and NMR spectroscopy, the reactivity of different DA-derived quinones, i.e., dopamine-o-quinone (DQ), aminochrome (AC) and indole-quinone (IQ), toward NADH and GSH. Our results indicate a very diverse reactivity for the different DAQ studied that may contribute to unravel the complex molecular mechanisms underlying oxidative stress and mitochondria dysfunction in the context of PD.

  12. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone.

    PubMed

    Anderson, David G; Mariappan, S V Santhana; Buettner, Garry R; Doorn, Jonathan A

    2011-07-29

    The oxidation and toxicity of dopamine is believed to contribute to the selective neurodegeneration associated with Parkinson disease. The formation of reactive radicals and quinones greatly contributes to dopaminergic toxicity through a variety of mechanisms. The physiological metabolism of dopamine to 3,4-dihydroxyphenylacetaldehyde (DOPAL) via monoamine oxidase significantly increases its toxicity. To more adequately explain this enhanced toxicity, we hypothesized that DOPAL is capable of forming radical and quinone species upon oxidation. Here, two unique oxidation products of DOPAL are identified. Several different oxidation methods gave rise to a transient DOPAL semiquinone radical, which was characterized by electron paramagnetic resonance spectroscopy. NMR identified the second oxidation product of DOPAL as the ortho-quinone. Also, carbonyl hydration of DOPAL in aqueous media was evident via NMR. Interestingly, the DOPAL quinone exists exclusively in the hydrated form. Furthermore, the enzymatic and chemical oxidation of DOPAL greatly enhance protein cross-linking, whereas auto-oxidation results in the production of superoxide. Also, DOPAL was shown to be susceptible to oxidation by cyclooxygenase-2 (COX-2). The involvement of this physiologically relevant enzyme in both oxidative stress and Parkinson disease underscores the potential importance of DOPAL in the pathogenesis of this condition.

  13. Coupling of cytochrome and quinone turnovers in the photocycle of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides.

    PubMed Central

    Osváth, S; Maróti, P

    1997-01-01

    A minimal kinetic model of the photocycle, including both quinone (Q-6) reduction at the secondary quinone-binding site and (mammalian) cytochrome c oxidation at the cytochrome docking site of isolated reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides, was elaborated and tested by cytochrome photooxidation under strong continuous illumination. The typical rate of photochemical excitation by a laser diode at 810 nm was 2.200 s-1, and the rates of stationary turnover of the reaction center (one-half of that of cytochrome photooxidation) were 600 +/- 70 s-1 at pH 6 and 400 +/- 50 s-1 at pH 8. The rate of turnover showed strong pH dependence, indicating the contribution of different rate-limiting processes. The kinetic limitation of the photocycle was attributed to the turnover of the cytochrome c binding site (pH < 6), light intensity and quinone/quinol exchange (6 < pH < 8), and proton-coupled second electron transfer in the quinone acceptor complex (pH > 8). The analysis of the double-reciprocal plot of the rate of turnover versus light intensity has proved useful in determining the light-independent (maximum) turnover rate of the reaction center (445 +/- 50 s-1 at pH 7.8). PMID:9251814

  14. KefF, the regulatory subunit of the potassium efflux system KefC, shows quinone oxidoreductase activity.

    PubMed

    Lyngberg, Lisbeth; Healy, Jessica; Bartlett, Wendy; Miller, Samantha; Conway, Stuart J; Booth, Ian R; Rasmussen, Tim

    2011-09-01

    Escherichia coli and many other Gram-negative pathogenic bacteria protect themselves from the toxic effects of electrophilic compounds by using a potassium efflux system (Kef). Potassium efflux is coupled to the influx of protons, which lowers the internal pH and results in immediate protection. The activity of the Kef system is subject to complex regulation by glutathione and its S conjugates. Full activation of KefC requires a soluble ancillary protein, KefF. This protein has structural similarities to oxidoreductases, including human quinone reductases 1 and 2. Here, we show that KefF has enzymatic activity as an oxidoreductase, in addition to its role as the KefC activator. It accepts NADH and NADPH as electron donors and quinones and ferricyanide (in addition to other compounds) as acceptors. However, typical electrophilic activators of the Kef system, e.g., N-ethyl maleimide, are not substrates. If the enzymatic activity is disrupted by site-directed mutagenesis while retaining structural integrity, KefF is still able to activate the Kef system, showing that the role as an activator is independent of the enzyme activity. Potassium efflux assays show that electrophilic quinones are able to activate the Kef system by forming S conjugates with glutathione. Therefore, it appears that the enzymatic activity of KefF diminishes the redox toxicity of quinones, in parallel with the protection afforded by activation of the Kef system.

  15. The effect of glassy carbon surface oxides in non-aqueous voltammetry: the case of quinones in acetonitrile.

    PubMed

    Staley, Patrick A; Newell, Christina M; Pullman, David P; Smith, Diane K

    2014-11-04

    Glassy carbon (GC) electrodes are well-known to contain oxygenated functional groups such as phenols, carbonyls, and carboxylic acids on their surface. The effects of these groups on voltammetry in aqueous solution are well-studied, but there has been little discussion of their possible effects in nonaqueous solution. In this study, we show that the acidic functional groups, particularly phenols, are likely causes of anomalous features often seen in the voltammetry of quinones in nonaqueous solution. These features, a too small second cyclic voltammetric wave and extra current between the two waves that sometimes appears to be a small, broad third voltammetric wave, have previously been attributed to different types of dimerization. In this work, concentration-dependent voltammetry in acetonitrile rules out dimerization with a series of alkyl-benzoquinones because the anomalous features get larger as the concentration decreases. At low concentrations, solution bimolecular reactions will be relatively less important than reactions with surface groups. Addition of substoichiometric amounts of naphthol at higher quinone concentrations produces almost identical behavior as seen at low quinone concentrations with no added naphthol. This implicates hydrogen bonding and proton transfer from the surface phenolic groups as the cause of the anomalous features in quinone voltammetry at GC electrodes. This conclusion is supported by the perturbation of surface oxide coverage on GC electrodes through different electrode pretreatments.

  16. Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

    PubMed

    Cheng, Beijun; Kaifer, Angel E

    2015-08-12

    The cathodic voltammetric behavior of pillar[5]quinone was investigated in dichloromethane solution. Our data show that the symmetry of the macrocycle has a pronounced effect on the electron uptake sequence. The uptake of the first five electrons follows a 2-1-2 pattern, and only a total of eight electrons could be injected into the macrocycle under our experimental conditions.

  17. The microbiota of the respiratory tract: gatekeeper to respiratory health.

    PubMed

    Man, Wing Ho; de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2017-03-20

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts as a gatekeeper that provides resistance to colonization by respiratory pathogens. The respiratory microbiota might also be involved in the maturation and maintenance of homeostasis of respiratory physiology and immunity. The ecological and environmental factors that direct the development of microbial communities in the respiratory tract and how these communities affect respiratory health are the focus of current research. Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the physiology of the human host are being studied in detail. In this Review, we will discuss the epidemiological, biological and functional evidence that support the physiological role of the respiratory microbiota in the maintenance of human health.

  18. Respiratory Syncytial Virus

    MedlinePlus

    ... respiratory syncytial virus (RSV) using indirect immunofluorescence technique. Biology & Genetics For more than 50 years, NIAID’s commitment ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  19. Respiratory Syncytial Virus Infections

    MedlinePlus

    Respiratory syncytial virus (RSV) causes mild, cold-like symptoms in adults and older healthy children. It can cause serious problems in ... tests can tell if your child has the virus. There is no specific treatment. You should give ...

  20. Respiratory muscle plasticity.

    PubMed

    Rowley, Katharine L; Mantilla, Carlos B; Sieck, Gary C

    2005-07-28

    Plasticity of respiratory muscles must be considered in the context of their unique physiological demands. The continuous rhythmic activation of respiratory muscles makes them among the most active in the body. Respiratory muscles, especially the diaphragm, are non-weight-bearing, and thus, in contrast to limb muscles, are not exposed to gravitational effects. Perturbations in normal activation and load known to induce plasticity in limb muscles may not cause similar adaptations in respiratory muscles. In this review, we explore the structural and functional properties of the diaphragm muscle and their response to alterations in load and activity. Overall, relatively modest changes in diaphragm structural and functional properties occur in response to perturbations in load or activity. However, disruptions in the normal influence of phrenic innervation by frank denervation, tetrodotoxin nerve block and spinal hemisection, induce profound changes in the diaphragm, indicating the substantial trophic influence of phrenic motoneurons on diaphragm muscle.

  1. Noninvasive respiratory monitoring

    SciTech Connect

    Nochomovitz, M.L.; Cherniack, N.S.

    1986-01-01

    This book contains 10 selections. Some of the titles are: Transcutaneous Monitoring of Respiratory Gases; Computed Tomography of the Chest; Measurement and Monitoring of Exhaled Carbon Dioxide; Oximetry; and Ultrasonic Evaluation of the Chest Wall and Pleura.

  2. What Causes Respiratory Failure?

    MedlinePlus

    ... Conditions Causing Respiratory Failure Figure A shows the location of the lungs, airways, diaphragm, rib cage, pulmonary arteries, brain, and spinal cord ... STATEMENT FOIA NO FEAR ACT OIG CONTACT US ...

  3. Crystal Structure of ChrR -- A Quinone Reductase with the Capacity to Reduce Chromate

    SciTech Connect

    Eswaramoorthy S.; Poulain, S.; Hienerwadel, R.; Bremond, N.; Sylvester, M. D.; Zhang, Y.-B.; Berthomieu, C.; van der Lelie, D.; Matin, A.

    2012-04-01

    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 {angstrom} resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction.

  4. Peltomexicanin, a Peltogynoid Quinone Methide from Peltogyne Mexicana Martínez Purple Heartwood.

    PubMed

    Gutiérrez-Macías, Paulina; Peralta-Cruz, Javier; Borja-de-la-Rosa, Amparo; Barragán-Huerta, Blanca E

    2016-02-04

    Peltomexicanin (7,10-dihydroxy-6,12-dioxa-5H-tetraphen-3-one) is a new peltogynoid quinone methide isolated from Palo Morado (Peltogyne mexicana Martínez) heartwood by column chromatography. Its chemical structure was elucidated by IR, NMR (¹H, (13)C), 2D NMR experiments (COSY, NOESY, HMQC, and HSQC), ESI-MS, and UV-Vis spectroscopic analysis. According to HPLC quantification, this compound is the main pigment and accounts for 1.21% of Palo Morado heartwood material. The antioxidant activity of peltomexicanin and dried methanolic extract (DEx) of purple heartwood was evaluated using the radical of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay, and the corresponding values expressed as Trolox equivalents (µmol TE/mg sample) were 4.25 and 4.57, respectively.

  5. Reactions of oxygen radicals with the quinone ring of coenzyme Q.

    PubMed

    Fiorentini, D; Cabrini, L; Sechi, A M; Landi, L

    1991-01-01

    Coenzyme Q, besides its role in electron transfer reactions, may act as a radical scavenger. The effect of oxygen radicals produced by ultrasonic irradiation on the quinone ring was investigated. Aqueous solutions of a Q homologue, completely lacking the side chain, were irradiated and the modifications were spectrophotometrically followed. The experimental results show that both degradation and reduction of the benzoquinone ring took place when the irradiation was performed in water. Data obtained when ultrasonic irradiation was carried out in the presence of OH. scavengers, as formate, organic and inorganic buffers, suggest: a) the responsible species for most the ubiquinol generated by sonication appeared to be the superoxide radical b) addition reactions of OH. radicals with the aromatic ring led probably to the degradation of Coenzyme Q molecules.

  6. Photoinduced reduction of divalent mercury by quinones in the presence of formic acid under anaerobic conditions.

    PubMed

    Berkovic, Andrea M; Bertolotti, Sonia G; Villata, Laura S; Gonzalez, Mónica C; Pis Diez, Reinaldo; Mártire, Daniel O

    2012-11-01

    The laser flash photolysis technique (λ(exc)=355 nm) was used to investigate the mechanism of the HgCl(2) reduction mediated by CO(2)(-) radicals generated from quenching of the triplet states of 1,4-naphthoquinone (NQ) by formic acid. Kinetic simulations of the experimental signals support the proposed reaction mechanism. This system is of potential interest in the development of UV-A photoinduced photolytic procedures for the treatment of Hg(II) contaminated waters. The successful replacement of NQ with a commercial fulvic acid, as a model compound of dissolved organic matter, showed that the method is applicable to organic matter-containing waters without the addition of quinones.

  7. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates.

    PubMed

    Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Sang-Ngern, Mayuramas; Wall, Marisa M; Wei, Yanzhang; Pezzuto, John M; Chang, Leng Chee

    2016-06-24

    A new fatty acid ester disaccharide, 2-O-(β-d-glucopyranosyl)-1-O-(2E,4Z,7Z)-deca-2,4,7-trienoyl-β-d-glucopyranose (1), a new ascorbic acid derivative, 2-caffeoyl-3-ketohexulofuranosonic acid γ-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (3), were isolated along with 13 known compounds (4-16) from fermented noni fruit juice (Morinda citrifolia). The structures of the new compounds, together with 4 and 5, were determined by 1D and 2D NMR experiments, as well as comparison with published values. Compounds 2 and 7 showed moderate inhibitory activities in a TNF-α-induced NF-κB assay, and compounds 4 and 6 exhibited considerable quinone reductase-1 (QR1) inducing effects.

  8. Quinone Induced Activation of Keap1/Nrf2 Signaling by Aspirin Prodrugs Masquerading as Nitric Oxide

    PubMed Central

    Dunlap, Tareisha; Piyankarage, Sujeewa C.; Wijewickrama, Gihani T.; Abdul-Hay, Samer; Vanni, Michael; Litosh, Vladislav; Luo, Jia; Thatcher, Gregory R. J.

    2013-01-01

    The promising therapeutic potential of the NO-donating hybrid aspirin prodrugs (NO-ASA), includes induction of chemopreventive mechanisms, and has been reported in almost 100 publications. One example, NCX-4040 (pNO-ASA), is bioactivated by esterase to a quinone methide (QM) electrophile. In cell cultures, pNO-ASA and QM-donating X-ASA prodrugs that cannot release NO rapidly depleted intracellular GSH and caused DNA damage; however, induction of Nrf2 signaling elicited cellular defense mechanisms including upregulation of NAD(P)H:quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase (GCL). In HepG2 cells, the “NO-specific” 4,5-diaminofluorescein reporter, DAF-DA, responded to NO-ASA and X-ASA, with QM-induced oxidative stress masquerading as NO. LC-MS/MS analysis demonstrated efficient alkylation of Cys residues of proteins including glutathione-S-transferase-P1 (GST-P1) and Kelch-like ECH-associated protein 1 (Keap1). Evidence was obtained for alkylation of Keap1 Cys residues associated with Nrf2 translocation to the nucleus, nuclear translocation of Nrf2, activation of antioxidant response element (ARE), and upregulation of cytoprotective target genes. At least in cell culture, pNO-ASA acts as a QM-donor, bioactivated by cellular esterase activity to release salicylates, NO3−, and an electrophilic QM. Finally, two novel aspirin prodrugs were synthesized, both potent activators of ARE, designed to release only the QM and salicylates on bioactivation. Current interest in electrophilic drugs acting via Nrf2 signaling suggests that QM-donating hybrid drugs can be designed as informative chemical probes in drug discovery. PMID:23035985

  9. Photochemical formation and chemistry of long-lived adamantylidene-quinone methides and 2-adamantyl cations.

    PubMed

    Basarić, Nikola; Zabcić, Ivana; Mlinarić-Majerski, Kata; Wan, Peter

    2010-01-01

    Hydroxymethylphenols strategically substituted with the 2-hydroxy-2-adamantyl moiety, AdPh 8-10, were synthesized, and their photochemical reactivity was investigated. On excitation to the singlet excited state, AdPh 8 undergoes intramolecular proton transfer coupled with a loss of H(2)O giving quinone methide 8QM. The presence of 8QM has been detected by laser flash photolysis (CH(3)CN-H(2)O 1:1, tau = 0.55 s) and UV-vis spectroscopy. Singlet excited states of AdPh 9 and 10 in the presence of H(2)O dehydrate giving 9QM and 10QM. Photochemically formed QMs are trapped by nucleophiles giving the addition products (e.g., Phi for methanolysis of 8 is 0.55). In addition, the zwitterionic 9QM undergoes an unexpected rearrangement involving transformation of the 2-phenyl-2-adamantyl cation into the 4-phenyl-2-adamantyl cation (Phi approximately 0.03). An analogous rearrangement was observed with methoxy derivatives 9a and 10a. Zwitterionic 9QM was characterized by LFP in 2,2,2-trifluoroethanol (tau = 1 mus). In TFE, in the ground state, AdPh 10 is in equilibrium with 10QM, which allowed for recording the (1)H and (13)C NMR spectra of the QM. Introduction of the adamantyl substituent into the o-hydroxymethylphenol moiety increased the quantum yield of the associated QM formation by up to 3-fold and significantly prolonged their lifetimes. Furthermore, adamantyl substituent made the study of the alkyl-substituted quinone methides easier by LFP by prolonging their lifetimes and increasing the quantum yields of formation.

  10. Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity

    PubMed Central

    Xia, Tian; Korge, Paavo; Weiss, James N.; Li, Ning; Venkatesen, M. Indira; Sioutas, Constantinos; Nel, Andre

    2004-01-01

    Particulate pollutants cause adverse health effects through the generation of oxidative stress. A key question is whether these effects are mediated by the particles or their chemical compounds. In this article we show that aliphatic, aromatic, and polar organic compounds, fractionated from diesel exhaust particles (DEPs), exert differential toxic effects in RAW 264.7 cells. Cellular analyses showed that the quinone-enriched polar fraction was more potent than the polycyclic aromatic hydrocarbon (PAH)–enriched aromatic fraction in O2•− generation, decrease of membrane potential (ΔΨm), loss of mitochondrial membrane mass, and induction of apoptosis. A major effect of the polar fraction was to promote cyclosporin A (CsA)–sensitive permeability transition pore (PTP) opening in isolated liver mitochondria. This opening effect is dependent on a direct effect on the PTP at low doses as well as on an effect on ΔΨm at high doses in calcium (Ca2+)-loaded mitochondria. The direct PTP effect was mimicked by redox-cycling DEP quinones. Although the aliphatic fraction failed to perturb mitochondrial function, the aromatic fraction increased the Ca2+ retention capacity at low doses and induced mitochondrial swelling and a decrease in ΔΨm at high doses. This swelling effect was mostly CsA insensitive and could be reproduced by a mixture of PAHs present in DEPs. These chemical effects on isolated mitochondria could be reproduced by intact DEPs as well as ambient ultrafine particles (UFPs). In contrast, commercial polystyrene nanoparticles failed to exert mitochondrial effects. These results suggest that DEP and UFP effects on the PTP and ΔΨm are mediated by adsorbed chemicals rather than the particles themselves. PMID:15471724

  11. Respiratory Toxicity of Dimethyl Sulfoxide.

    PubMed

    Takeda, Kotaro; Pokorski, Mieczyslaw; Sato, Yutaka; Oyamada, Yoshitaka; Okada, Yasumasa

    2016-01-01

    Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents for hydrophobic substances in biological experiments. In addition, the compound exhibits a plethora of bioactivities, which makes it of potential pharmacological use of its own. The influence on respiration, and thus on arterial blood oxygenation, of DMSO is unclear, contentious, and an area of limited study. Thus, in the present investigation we set out to determine the influence on lung ventilation of cumulated doses of DMSO in the amount of 0.5, 1.5, 3.5, 7.5, and 15.5 g/kg; each dose given intraperitoneally at 1 h interval in conscious mice. Ventilation and its responses to 7 % hypoxia (N(2) balanced) were recorded in a whole body plethsymograph. We demonstrate a dose-dependent inhibitory effect of DMSO on lung ventilation and its hypoxic responsiveness, driven mostly by changes in the tidal component. The maximum safe dose of DMSO devoid of meaningful consequences for respiratory function was 3.5 g/kg. The dose of 7.5 g/kg of DMSO significantly dampened respiration, with yet well preserved hyperventilatory response to hypoxia. The highest dose of 15.5 g/kg severely impaired ventilation and its responses. The study delineates the safety profile of DMSO regarding the respiratory function which is essential for maintaining proper tissue oxygenation. Caution should be exercised concerning dose concentration of DMSO.

  12. Structure and function of quinones in biological solar energy transduction: a differential pulse voltammetry, EPR, and hyperfine sublevel correlation (HYSCORE) spectroscopy study of model benzoquinones.

    PubMed

    Weyers, Amanda M; Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

    2009-11-19

    Quinones are widely used electron transport cofactors in photosynthetic reaction centers. Previous studies have suggested that the structure of the quinone cofactors and the protein interactions or "smart" matrix effects from the surrounding environment govern the redox potential and hence the function of quinones in photosynthesis. In the present study, a series of 1,4-benzoquinone models are examined via differential pulse voltammetry to provide relative redox potentials. In parallel, CW and pulsed EPR methods are used to directly determine the electronic properties of each benzoquinone in aprotic and protic environments. The shifts in the redox potential of the quinones are found to be dependent on the nature of the substituent group and the number of substituent groups on the quinone molecule. Further, we establish a direct correlation between the nature of the substituent group and the change in electronic properties of the benzosemiquinone by analysis of the isotropic and anisotropic components of the electron-nuclear hyperfine interactions observed by CW and pulsed EPR studies, respectively. Examination of an extensive library of model quinones in both aprotic and protic solvents indicates that hydrogen-bonding interactions consistently accentuate the effects of the substituent groups of the benzoquinones. This study provides direct support for the tuning and control of quinone cofactors in biological solar energy transduction through interactions with the surrounding protein matrix.

  13. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  14. Respiratory factors limiting exercise.

    PubMed

    Bye, P T; Farkas, G A; Roussos, C

    1983-01-01

    The question of respiratory factors limiting exercise has been examined in terms of possible limitations arising from the function of gas exchange, the respiratory mechanics, the energetics of the respiratory muscles, or the development of respiratory muscle fatigue. Exercise capacity is curtailed in the presence of marked hypoxia, and this is readily observed in patients with chronic airflow limitation and interstitial lung disease and in some athletes at high intensities of exercise. In patients with interstitial lung disease, gas exchange abnormality--partly the result of diffusion disequilibrium for oxygen transfer--occurs during exercise despite abnormally high ventilations. In contrast, in certain athletes arterial hypoxemia has been documented during heavy exercise, apparently as a result of relative hypoventilation. During strenuous exercise the maximum expiratory flow volume curves are attained both by patients with chronic airflow limitation and by normal subjects, in particular when they breathe dense gas, so that a mechanical constraint is imposed on further increases in ventilation. Similarly, the force velocity characteristics of the inspiratory muscles may also impose a constraint to further increases in inspiratory flows that affects the ability to increase ventilation. In addition, the oxygen cost of maintaining high ventilations is large. Analysis of results from blood flow experiments reveal a substantial increase in blood flow to the respiratory muscles during exercise, with the result that oxygen supply to the rest of the body may be lessened. Alternatively, high exercise ventilations may not be sustained indefinitely owing to the development of respiratory muscle fatigue that results in hypoventilation and reduced arterial oxygen tension.

  15. Bioactivation of Nevirapine to a Reactive Quinone Methide: Implications for Liver Injury

    PubMed Central

    2012-01-01

    Nevirapine (NVP) treatment is associated with a significant incidence of liver injury. We developed an anti-NVP antiserum to determine the presence and pattern of covalent binding of NVP to mouse, rat, and human hepatic tissues. Covalent binding to hepatic microsomes from male C57BL/6 mice and male Brown Norway rats was detected on Western blots; the major protein had a mass of ∼55 kDa. Incubation of NVP with rat CYP3A1 and 2C11 or human CYP3A4 also led to covalent binding. Treatment of female Brown Norway rats or C57BL/6 mice with NVP led to extensive covalent binding to a wide range of proteins. Co-treatment with 1-aminobenzotriazole dramatically changed the pattern of binding. The covalent binding of 12-hydroxy-NVP, the pathway that leads to a skin rash, was much less than that of NVP, both in vitro and in vivo. An analogue of NVP in which the methyl hydrogens were replaced by deuterium also produced less covalent binding than NVP. These data provide strong evidence that covalent binding of NVP in the liver is due to a quinone methide formed by oxidation of the methyl group. Attempts were made to develop an animal model of NVP-induced liver injury in mice. There was a small increase in ALT in some NVP-treated male C57BL/6 mice at 3 weeks that resolved despite continued treatment. Male Cbl-b–/– mice dosed with NVP had an increase in ALT of >200 U/L, which also resolved despite continued treatment. Liver histology in these animals showed focal areas of complete necrosis, while most of the liver appeared normal. This is a different pattern from the histology of NVP-induced liver injury in humans. This is the first study to report hepatic covalent binding of NVP and also liver injury in mice. It is likely that the quinone methide metabolite is responsible for NVP-induced liver injury. PMID:22793666

  16. Design, Synthesis, and Biological Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors of Quinone Reductase 2†

    PubMed Central

    Reddy, P. V. Narasimha; Jensen, Katherine C.; Mesecar, Andrew D.; Fanwick, Phillip E.; Cushman, Mark

    2012-01-01

    A variety of ammosamide B analogues have been synthesized and evaluated as inhibitors of quinone reductase 2 (QR2). The potencies of the resulting series of QR2 inhibitors range from 4.1 to 25,200 nM. The data provide insight into the structural parameters necessary for QR2 inhibitory activity. The natural product ammosamide B proved to be a potent QR2 inhibitor, and the potencies of the analogues generally decreased as their structures became more distinct from that of ammosamide B. Methylation of the 8-amino group of ammosamide B was an exception, resulting in an increase in quinone reductase 2 inhibitory activity from IC50 of 61 nM to IC50 4.1 nM. PMID:22206487

  17. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer.

    PubMed

    Morales, Paula; Blasco-Benito, Sandra; Andradas, Clara; Gómez-Cañas, María; Flores, Juana María; Goya, Pilar; Fernández-Ruiz, Javier; Sánchez, Cristina; Jagerovic, Nadine

    2015-03-12

    Triple-negative breast cancer (TNBC) represents a subtype of breast cancer characterized by high aggressiveness. There is no current targeted therapy for these patients whose prognosis, as a group, is very poor. Here, we report the synthesis and evaluation of a potent antitumor agent in vivo for this type of breast cancer designed as a combination of quinone/cannabinoid pharmacophores. This new compound (10) has been selected from a series of chromenopyrazolediones with full selectivity for the nonpsychotropic CB2 cannabinoid receptor and with efficacy in inducing death of human TNBC cell lines. The dual concept quinone/cannabinoid was supported by the fact that compound 10 exerts antitumor effect by inducing cell apoptosis through activation of CB2 receptors and through oxidative stress. Notably, it did not show either cytotoxicity on noncancerous human mammary epithelial cells nor toxic effects in vivo, suggesting that it may be a new therapeutic tool for the management of TNBC.

  18. Inhibition of the water oxidizing complex of photosystem II and the reoxidation of the quinone acceptor QA- by Pb2+.

    PubMed

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert

    2013-01-01

    The action of the environmental toxic Pb(2+) on photosynthetic electron transport was studied in thylakoid membranes isolated from spinach leaves. Fluorescence and thermoluminescence techniques were performed in order to determine the mode of Pb(2+) action in photosystem II (PSII). The invariance of fluorescence characteristics of chlorophyll a (Chl a) and magnesium tetraphenylporphyrin (MgTPP), a molecule structurally analogous to Chl a, in the presence of Pb(2+) confirms that Pb cation does not interact directly with chlorophyll molecules in PSII. The results show that Pb interacts with the water oxidation complex thus perturbing charge recombination between the quinone acceptors of PSII and the S2 state of the Mn4Ca cluster. Electron transfer between the quinone acceptors QA and QB is also greatly retarded in the presence of Pb(2+). This is proposed to be owing to a transmembrane modification of the acceptor side of the photosystem.

  19. Transition metal-free direct C-H functionalization of quinones and naphthoquinones with diaryliodonium salts: synthesis of aryl naphthoquinones as β-secretase inhibitors.

    PubMed

    Wang, Dawei; Ge, Bingyang; Li, Liang; Shan, Jie; Ding, Yuqiang

    2014-09-19

    A novel ligand-free, transition metal-free direct C-H functionalization of quinones with diaryliodonium salts has been developed for the first time. The transformation was promoted only through the use of a base and gave aryl quinone derivatives in moderate to good yields. This methodology provided an effective and easy way to synthesize β-secretase inhibitors. The radical trapping experiments showed that this progress was the radical mechanism.

  20. 3-Methoxy-2-methyl-carbazole-1,4-quinone, carbazomycins D and F from Streptomyces sp. CMU-JT005.

    PubMed

    Ruanpanun, Pornthip; Dame, Zerihun Teklemariam; Laatsch, Hartmut; Lumyong, Saisamorn

    2011-09-01

    3-Methoxy-2-methyl-carbazole-1,4-quinone (1) together with carbazomycins D (2) and F (3) were isolated from the crude extract of Streptomyces CMU-JT005, an actinomycete with nematicidal activity. 3-Methoxy-2-methyl-carbazole-1,4-quinone is reported here for the first time from nature. In this paper, we describe the isolation and structure elucidation of the compounds together with the characterization of the Streptomyces strain CMU-JT005.

  1. Rapid and Complete Surface Modification with Strain‐Promoted Oxidation‐Controlled Cyclooctyne‐1,2‐Quinone Cycloaddition (SPOCQ)

    PubMed Central

    Sen, Rickdeb; Escorihuela, Jorge; van Delft, Floris

    2017-01-01

    Abstract Strain‐promoted oxidation‐controlled cyclooctyne‐1,2‐quinone cycloaddition (SPOCQ) between functionalized bicyclo[6.1.0]non‐4‐yne (BCN) and surface‐bound quinones revealed an unprecedented 100 % conjugation efficiency. In addition, monitoring by direct analysis in real time mass spectrometry (DART‐MS) revealed the underlying kinetics and activation parameters of this immobilization process in dependence on its microenvironment. PMID:28198134

  2. Examining the Role of Quinone Moieties in the Photochemistry of Colored Dissolved Organic Matter in Coastal Waters

    DTIC Science & Technology

    2002-09-30

    ring substituents. Ubiquinone 50 is a naturally occurring complex quinone compound with a 50-unit C side chain that is found in the mitochondria of...were completed in collaboration with Dr. Rod Zika at RSMAS over the last year and two manuscript published on the methodology for CDOM in natural...February 2002, Honolulu). My co-conveners were Dr. Paula Coble (USF) and Dr. Rod Zika (RSMAS). This session served as a focused venue for results

  3. [Respiratory complications after transfusion].

    PubMed

    Bernasinski, M; Mertes, P-M; Carlier, M; Dupont, H; Girard, M; Gette, S; Just, B; Malinovsky, J-M

    2014-05-01

    Respiratory complications of blood transfusion have several possible causes. Transfusion-Associated Circulatory Overload (TACO) is often the first mentioned. Transfusion-Related Acute Lung Injury (TRALI), better defined since the consensus conference of Toronto in 2004, is rarely mentioned. French incidence is low. Non-hemolytic febrile reactions, allergies, infections and pulmonary embolism are also reported. The objective of this work was to determine the statistical importance of the different respiratory complications of blood transfusion. This work was conducted retrospectively on transfusion accidents in six health centers in Champagne-Ardenne, reported to Hemovigilance between 2000 and 2009 and having respiratory symptoms. The analysis of data was conducted by an expert committee. Eighty-three cases of respiratory complications are found (316,864 blood products). We have counted 26 TACO, 12 TRALI (only 6 cases were identified in the original investigation of Hemovigilance), 18 non-hemolytic febrile reactions, 16 cases of allergies, 5 transfusions transmitted bacterial infections and 2 pulmonary embolisms. Six new TRALI were diagnosed previously labeled TACO for 2 of them, allergy and infection in 2 other cases and diagnosis considered unknown for the last 2. Our study found an incidence of TRALI 2 times higher than that reported previously. Interpretation of the data by a multidisciplinary committee amended 20% of diagnoses. This study shows the imperfections of our system for reporting accidents of blood transfusion when a single observer analyses the medical records.

  4. Obesity and respiratory diseases.

    PubMed

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-10-20

    The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD) and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population.

  5. Obesity and respiratory diseases

    PubMed Central

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-01-01

    The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD) and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population. PMID:21116339

  6. Textbook of respiratory medicine

    SciTech Connect

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis.

  7. Respiratory muscle plasticity.

    PubMed

    Gransee, Heather M; Mantilla, Carlos B; Sieck, Gary C

    2012-04-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle's plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles.

  8. Middle East respiratory syndrome.

    PubMed

    Zumla, Alimuddin; Hui, David S; Perlman, Stanley

    2015-09-05

    Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel single-stranded, positive-sense RNA betacoronavirus (MERS-CoV). Dromedary camels, hosts for MERS-CoV, are implicated in direct or indirect transmission to human beings, although the exact mode of transmission is unknown. The virus was first isolated from a patient who died from a severe respiratory illness in June, 2012, in Jeddah, Saudi Arabia. As of May 31, 2015, 1180 laboratory-confirmed cases (483 deaths; 40% mortality) have been reported to WHO. Both community-acquired and hospital-acquired cases have been reported with little human-to-human transmission reported in the community. Although most cases of MERS have occurred in Saudi Arabia and the United Arab Emirates, cases have been reported in Europe, the USA, and Asia in people who travelled from the Middle East or their contacts. Clinical features of MERS range from asymptomatic or mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. No specific drug treatment exists for MERS and infection prevention and control measures are crucial to prevent spread in health-care facilities. MERS-CoV continues to be an endemic, low-level public health threat. However, the virus could mutate to have increased interhuman transmissibility, increasing its pandemic potential.

  9. Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity.

    PubMed

    Valiauga, Benjaminas; Williams, Elsie M; Ackerley, David F; Čėnas, Narimantas

    2017-01-15

    NfsA, a major FMN-associated nitroreductase of E. coli, reduces nitroaromatic compounds via consecutive two-electron transfers. NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy. However, the catalytic mechanism of NfsA is poorly characterized. Here we examined the NADPH-dependent reduction of quinones (n = 16) and nitroaromatic compounds (n = 12) by NfsA. We confirmed a general "ping-pong" reaction scheme, and preliminary rapid reaction studies of the enzyme reduction by NADPH showed that this step is much faster than the steady-state turnover number, i.e., the enzyme turnover is limited by the oxidative half-reaction. The reactivity of nitroaromatic compounds (log kcat/Km) followed a linear dependence on their single-electron reduction potential (E(1)7), indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones was lower than that of nitroaromatics having similar E(1)7 values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones, consistent with observations previously made for the group B nitroreductase of Enterobacter cloacae. We present evidence that the reduction of quinones by NfsA is most consistent with a single-step (H(-)) hydride transfer mechanism.

  10. Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite.

    PubMed

    Doong, Ruey-an; Lee, Chun-chi; Lien, Chia-min

    2014-02-01

    The effect of naturally occurring quinones including lawsone (LQ), ubiquinone (UQ), juglone (JQ), and 1,4-naphthoquinone (NQ) on the biotransformation of carbon tetrachloride (CT) in the presence of Geobacter sulfurreducens and ferrihydrite was investigated. AQDS was used as the model compound for comparison. The reductive dissolution of ferrihydrite by G. sulfurreducens was enhanced by AQDS, NQ, and LQ. However, addition of UQ and JQ had little enhancement effect on Fe(II) production. The bioreduction efficiency and rate of ferrihydrite was highly dependent on the natural property and concentration of quinone compounds and the addition of low concentrations of LQ and NQ significantly accelerated the biotransformation rate of CT. The pseudo-first-order rate constants for CT dechlorination (kobsCT) in AQDS-, LQ- and NQ-amended batches were 5.4-5.8, 4.6-7.4 and 2.4-5.8 times, respectively, higher than those in the absence of quinone. A good relationship between kobsCT for CT dechlorination and bioreduction ratio of ferrihydrite was observed, indicating the important role of biogenic Fe(II) in dechlorination of CT under iron-reducing conditions. Spectroscopic analysis showed that AQDS and NQ could be reduced to semiquinones and hydroquinones, while only hydroquinones were generated in LQ-amended batches.

  11. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    PubMed

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  12. Towards configurationally stable [4]helicenes: enantioselective synthesis of 12-substituted 7,8-dihydro[4]helicene quinones.

    PubMed

    Carreño, M Carmen; Enríquez, Alvaro; García-Cerrada, Susana; Sanz-Cuesta, M Jesús; Urbano, Antonio; Maseras, Feliu; Nonell-Canals, Alfons

    2008-01-01

    The synthesis of enantiopure C-12 methoxy- or alkyl-substituted 5,7,8,12b-tetrahydro[4]helicene quinones 16 and 17 and the 7,8-dihydroaromatic analogues 4 and 5 has been achieved from (SS)-2-(p-tolylsulfinyl)-1,4-benzoquinone. In the first series, with a structure containing both central and helical chiralities, the R absolute configuration of the stereogenic carbon atom was defined after the asymmetric cycloaddition step, whereas the P or M helicity was shown to be dependent on the nature of the C-12 substituent. The size of this group was also defining the configurational stability of the final (P)-7,8-dihydro[4]helicene quinones 4 and 5. The interconversion barriers between the P and M helimers in the latter, computed with a DFT B3LYP method, matched well with the experimentally observed stability. Our study provided evidence that, in addition to steric effects, a small but significant role of electronic effects is governing the configurational stability of such helical quinones.

  13. Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress.

    PubMed

    Verrax, J; Beck, R; Dejeans, N; Glorieux, C; Sid, B; Pedrosa, R Curi; Benites, J; Vásquez, D; Valderrama, J A; Calderon, P Buc

    2011-02-01

    Cancer cells are particularly vulnerable to treatments impairing redox homeostasis. Reactive oxygen species (ROS) can indeed play an important role in the initiation and progression of cancer, and advanced stage tumors frequently exhibit high basal levels of ROS that stimulate cell proliferation and promote genetic instability. In addition, an inverse correlation between histological grade and antioxidant enzyme activities is frequently observed in human tumors, further supporting the existence of a redox dysregulation in cancer cells. This biochemical property can be exploited by using redox-modulating compounds, which represent an interesting approach to induce cancer cell death. Thus, we have developed a new strategy based on the use of pharmacologic concentrations of ascorbate and redox-active quinones. Ascorbate-driven quinone redox cycling leads to ROS formation and provoke an oxidative stress that preferentially kill cancer cells and spare healthy tissues. Cancer cell death occurs through necrosis and the underlying mechanism implies an energetic impairment (ATP depletion) that is likely due to glycolysis inhibition. Additional mechanisms that participate to cell death include calcium equilibrium impairment and oxidative cleavage of protein chaperone Hsp90. Given the low systemic toxicity of ascorbate and the impairment of crucial survival pathways when associated with redox-active quinones, these combinations could represent an original approach that could be combined to standard cancer therapy.

  14. A new approach to evaluating the extent of Michael adduct formation to PAH quinones: tetramethylammonium hydroxide (TMAH) thermochemolysis with GC/MS.

    PubMed

    Briggs, Mary K; Desavis, Emmanuel; Mazzer, Paula A; Sunoj, R B; Hatcher, Susan A; Hadad, Christopher M; Hatcher, Patrick G

    2003-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are converted to cytotoxic and carcinogenic metabolites, quinones, by detoxifying enzyme systems in animals. PAH metabolites such as the quinones can form Michael adducts with biological macromolecules containing reactive nucleophiles, making detection of exposure to PAHs difficult using conventional techniques. A technique has been developed for detecting exposure to PAHs. Tetramethylammonium hydroxide (TMAH) thermochemolysis coupled with GC/MS is proposed as an assay method for PAH quinones that have formed Michael adducts with biological molecules. Three PAH quinones (1,4-naphthoquinone, 1,2-naphthoquinone, and 1,4-anthraquinone) and 1,4-benzoquinone were reacted with cysteine, and the TMAH thermochemolysis method was used to assay for both thiol and amine adduction between the quinones and the cysteine. Additional studies with 1,4-naphthoquinone adducts to glutathione and bovine serum albumin showed the same thiol and amine TMAH thermochemolysis products with larger peptides as was observed with cysteine adducts. The TMAH GC/MS method clearly shows great promise for detecting PAH quinones, produced by enzymatic conversion of PAHs in biological systems, that have been converted to respective Michael adducts.

  15. Mitochondrial Sulfide Quinone Oxidoreductase Prevents Activation of the Unfolded Protein Response in Hydrogen Sulfide*

    PubMed Central

    Horsman, Joseph W.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous molecule with important roles in cellular signaling. In mammals, exogenous H2S improves survival of ischemia/reperfusion. We have previously shown that exposure to H2S increases the lifespan and thermotolerance in Caenorhabditis elegans, and improves protein homeostasis in low oxygen. The mitochondrial SQRD-1 (sulfide quinone oxidoreductase) protein is a highly conserved enzyme involved in H2S metabolism. SQRD-1 is generally considered important to detoxify H2S. Here, we show that SQRD-1 is also required to maintain protein translation in H2S. In sqrd-1 mutant animals, exposure to H2S leads to phosphorylation of eIF2α and inhibition of protein synthesis. In contrast, global protein translation is not altered in wild-type animals exposed to lethally high H2S or in hif-1(ia04) mutants that die when exposed to low H2S. We demonstrate that both gcn-2 and pek-1 kinases are involved in the H2S-induced phosphorylation of eIF2α. Both ER and mitochondrial stress responses are activated in sqrd-1 mutant animals exposed to H2S, but not in wild-type animals. We speculate that SQRD-1 activity in H2S may coordinate proteostasis responses in multiple cellular compartments. PMID:26677221

  16. Complex and charge transfer between TiO2 and pyrroloquinoline quinone.

    PubMed

    Dimitrijevic, Nada M; Poluektov, Oleg G; Saponjic, Zoran V; Rajh, Tijana

    2006-12-21

    Pyrroloquinoline quinone (PQQ) forms a tridentate complex with coordinatively unsaturated titanium atoms on the surface of approximately 4.5 nm TiO2 particles; an association constant of K = 550 M-1 per Ti(IV)surf has been determined. Low-temperature electron paramagnetic resonance was employed in identification of localized charges and consequently produced radicals and in determination of charge-transfer processes. The photoexcitation of the PQQ-TiO2 complex results in the transfer of conduction band electrons from TiO2 to bound PQQ and the formation of the semiquinone radical. Attaching dopamine (DA) as an electron donor and PQQ as an electron acceptor on the surface of TiO2 results in spatial separation of photogenerated charges; the holes localize on dopamine and electrons on PQQ, with higher yields than for each component separately. In this triad-type assembly (PQQ-TiO2/DA) the PQQ that is bound to the particles acts as a sink for electrons allowing their almost complete scavenging even at temperature as low as 4 K.

  17. Pyrroloquinoline quinone-dependent carbohydrate dehydrogenase: activity enhancement and the role of artificial electron acceptors.

    PubMed

    Kulys, Juozas; Tetianec, Lidija; Bratkovskaja, Irina

    2010-08-01

    Pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (PQQ-GDH) offers a variety of opportunities for applications, e.g. in highly sensitive biosensors and electrosynthetic reactions. Here we report on the acceleration (up to 4.9 x 10(4)-fold) of enzymatic ferricyanide reduction by artificial redox mediators (enhancers). The reaction mechanism includes reduction of the PQQ-GDH by glucose followed by oxidation of the reduced PQQ cofactor with either ferricyanide or a redox mediator. A synergistic effect occurs through the oxidation of a reduced mediator by ferricyanide. Using kinetic description of the coupled reaction, the second order rate constant for the reaction of an oxidized mediator with the reduced enzyme cofactor (k(ox)) can be calculated. For different mediators this value is 2.2 x 10(6)-1.6 x 10(8) M(-1)s(-1) at pH 7.2 and 25 degrees C. However, no correlation of the rate constant with the midpoint redox potential of the mediator could be established. For low-potential mediators the synergistic effect is proportional to the ratio of k(ox(med))/k(ox(ferricyanide)), whereas for the high-potential mediators the effect depends on both this ratio and the concentration of the oxidized mediator, which can be calculated from the Nernst equation. The described effect can be applied in various ways, e.g. for substrate reactivity determination, electrosynthetic PQQ cofactor regeneration or building of new highly sensitive biosensors.

  18. NAD(P)H:quinone oxidoreductase 1 inducer activity of some novel anilinoquinazoline derivatives

    PubMed Central

    Ghorab, Mostafa M; Alsaid, Mansour S; Higgins, Maureen; Dinkova-Kostova, Albena T; Shahat, Abdelaaty A; Elghazawy, Nehal H; Arafa, Reem K

    2016-01-01

    The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements pathway enables cells to survive oxidative stress conditions through regulating the expression of cytoprotective enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1). This work presents the design and synthesis of novel anilinoquinazoline derivatives (2–16a) and evaluation of their NQO1 inducer activity in murine cells. Molecular docking of the new compounds was performed to assess their ability to inhibit Keap1–Nrf2 protein–protein interaction through occupying the Keap1–Nrf2-binding domain, which leads to Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds can potentially interact with Keap1; however, 1,5-dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-dihydropyrazol-3-one (9), the most potent inducer, showed the largest number of interactions with key amino acids in the binding pocket (Arg483, Tyr525, and Phe478) compared to the native ligand or any other compound in this series. PMID:27540279

  19. Pyrroloquinoline Quinone (PQQ) Prevents Cognitive Deficit Caused by Oxidative Stress in Rats

    PubMed Central

    Ohwada, Kei; Takeda, Hironobu; Yamazaki, Makiko; Isogai, Hirosi; Nakano, Masahiko; Shimomura, Masao; Fukui, Koji; Urano, Shiro

    2008-01-01

    The effects of pyrroloquinoline quinone (PQQ) and coenzyme Q10 (Co Q10), either alone or together, on the learning ability and memory function of rats were investigated. Rats fed a PQQ-supplemented diet showed better learning ability than rats fed a CoQ10-supplemented diet at the early stage of the Morris water maze test. The combination of both compounds resulted in no significant improvement in the learning ability compared with the supplementation of PQQ alone. At the late stage of the test, rats fed PQQ-, CoQ10- and PQQ + CoQ10-supplemented diets showed similar improved learning abilities. When all the groups were subjected to hyperoxia as oxidative stress for 48 h, rats fed the PQQ- and CoQ10 supplemented diets showed better memory function than the control rats. The concurrent diet markedly improved the memory deficit of the rats caused by oxidative stress. Although the vitamin E-deficient rats fed PQQ or CoQ10 improved their learning function even when subjected to hyperoxia, their memory function was maintained by PQQ rather than by CoQ10 after the stress. These results suggest that PQQ is potentially effective for preventing neurodegeneration caused by oxidative stress, and that its effect is independent of either antioxidant’s interaction with vitamin E. PMID:18231627

  20. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  1. A cannabigerol quinone alleviates neuroinflammation in a chronic model of multiple sclerosis.

    PubMed

    Granja, Aitor G; Carrillo-Salinas, Francisco; Pagani, Alberto; Gómez-Cañas, María; Negri, Roberto; Navarrete, Carmen; Mecha, Miriam; Mestre, Leyre; Fiebich, Bend L; Cantarero, Irene; Calzado, Marco A; Bellido, Maria L; Fernandez-Ruiz, Javier; Appendino, Giovanni; Guaza, Carmen; Muñoz, Eduardo

    2012-12-01

    Phytocannabinoids like ∆(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) show a beneficial effect on neuroinflammatory and neurodegenerative processes through cell membrane cannabinoid receptor (CBr)-dependent and -independent mechanisms. Natural and synthetic cannabinoids also target the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ), an attractive molecular target for the treatment of neuroinflammation. As part of a study on the SAR of phytocannabinoids, we have investigated the effect of the oxidation modification in the resorcinol moiety of cannabigerol (CBG) on CB(1), CB(2) and PPARγ binding affinities, identifying cannabigerol quinone (VCE-003) as a potent anti-inflammatory agent. VCE-003 protected neuronal cells from excitotoxicity, activated PPARγ transcriptional activity and inhibited the release of pro-inflammatory mediators in LPS-stimulated microglial cells. Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis (MS) was used to investigate the anti-inflammatory activity of this compound in vivo. Motor function performance was evaluated and the neuroinflammatory response and gene expression pattern in brain and spinal cord were studied by immunostaining and qRT-PCR. We found that VCE-003 ameliorated the symptoms associated to TMEV infection, decreased microglia reactivity and modulated the expression of genes involved in MS pathophysiology. These data lead us to consider VCE-003 to have high potential for drug development against MS and perhaps other neuroinflammatory diseases.

  2. Purification and properties of a quinone-dependent p-nitrophenylphosphatase from Clostridium sticklandii.

    PubMed

    Davis, J N; Stadtman, T C

    1985-06-01

    A highly specialized phosphatase that depends on both a quinone (e.g., 2-methyl-1,4-napthoquinone) and a sulfhydryl compound for activity was purified to homogeneity from extracts of Clostridium sticklandii. Selective adsorption to Cibacron Blue-Sepharose 4B followed by elution with p-nitrophenylphosphate was an effective enrichment procedure. An affinity matrix containing vitamin K5 (4-amino-2-methyl-1-naphthol) covalently attached to Sepharose 4B selectively retained the enzyme and was also used in its purification. The only known substate for the enzyme, p-nitrophenylphosphate, is hydrolyzed to equivalent amounts of orthophosphate and p-nitrophenol. Although a protein phosphotyrosine residue seemed a likely candidate as the natural substrate, the enzyme failed to hydrolyze 32P-labeled phosphotyrosine residues in casein, in vinculin, or in denatured glutamine synthetase. Also, free O-phosphotyrosine and numerous phosphate esters that serve as substrates for common phosphomonoesterases were not hydrolyzed. The molecular weight of the native enzyme, estimated by Sephacryl-S-200 gel chromatography, is 27,600. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis showed a single component with a molecular weight of 28,600. From the amino acid composition, a minimum molecular weight of 28,000 was calculated.

  3. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation.

  4. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    PubMed

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  5. Determination of oxygen radical absorbance capacity of black cumin (Nigella sativa) seed quinone compounds.

    PubMed

    Tesarova, Hana; Svobodova, Blanka; Kokoska, Ladislav; Marsik, Petr; Pribylova, Marie; Landa, Premysl; Vadlejch, Jaroslav

    2011-02-01

    In this study, the antioxidant capacities of main quinone constituents of Nigella sativa seeds, namely dithymoquinone (1), thymohydroquinone (2) and thymoquinone (3), were compared using DPPH and ORAC methods. The best scavenging activity was produced by 2, which showed a remarkable activity of 2.60 Trolox equivalents (TE) in a concentration range between 1.6 and 6.4 microg/mL and IC50 value of 2.4 microg/mL in ORAC and DPPH assays, respectively. Contrastingly, 3 possessed only weak DPPH scavenging efficacy (IC50 = 170 microg/mL) but significant antioxidative action of 1.91 TE in ORAC assay. No effect has been observed for 1. Additionally, modified protocol for synthesis of 2 has been developed with aim to enhance its availability for further studies as well as for its future potential use. Based on the results of this study, we conclude that 2 could be considered as a compound with prospective antioxidative properties.

  6. Cytotoxicity of a Quinone-containing Cockroach Sex Pheromone in Human Lung Adenocarcinoma Cells.

    PubMed

    Ma, Bennett; Carr, Brian A; Krolikowski, Paul; Chang, Frank N

    2007-01-01

    The cytotoxic effects of blattellaquinone (BTQ), a sex pheromone produced by adult female German cockroaches, have been studied using human lung adenocarcinoma A549 cells. 1,4-Benzoquinone (BQ), a toxic chemical implicated in benzene toxicity, was used as a reference compound. Both BQ and BTQ showed comparable toxicity toward A549 cells, with LD50 values estimated to be 14 and 19 microM, respectively. These two compounds increased the formation of an oxidized fluorescent probe, 2',7'-dichlorofluorescein, but had no effect on the cellular GSSG level. Interestingly, BTQ increased the level of 8-epi-prostaglandin F2alpha and was 4-fold more efficient in depleting cellular GSH content than BQ. Of the five GSH adducts of BTQ isolated, three were identified as mono-GSH conjugates, and the other two were di-conjugates. Mass spectrometric and NMR analyses of the di-conjugates showed that the second GSH molecule displaced the isovaleric acid moiety, potentially via a nucleophilic substitution reaction. The ability of BTQ to conjugate a second GSH molecule without quinone regeneration indicated that it may be a more effective cross-linking agent than BQ. Future experiments may be needed to evaluate the overall safety of BTQ before the commercialization of the compound as a cockroach attractant.

  7. Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats.

    PubMed

    Kumar, Narendra; Kar, Anand; Panda, Sunanda

    2014-08-01

    Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l-thyroxin (L-T4 )-induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4 ) and triiodothyronine (T3 ); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high-density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l-T4 (500-µg kg(-1) body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg(-1) for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization.

  8. Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Song, Xixi; Fang, Jie; Han, Xiaojiao; He, Xuelian; Liu, Mingying; Hu, Jianjun; Zhuo, Renying

    2016-01-15

    Quinone reductase (QR) is an oxidative-related gene and few studies have focused on its roles concerning salt stress tolerance in plants. In this study, we cloned and analyzed the QR gene from Salix matsudana, a willow with tolerance of moderate salinity. The 612-bp cDNA corresponding to SmQR encodes 203 amino acids. Expression of SmQR in Escherichia coli cells enhanced their tolerance under salt stress. In addition, transgenic Arabidopsis thaliana lines overexpressing SmQR exhibited higher salt tolerance as compared with WT, with higher QR activity and antioxidant enzyme activity as well as higher chlorophyll content, lower methane dicarboxylic aldehyde (MDA) content and electric conductivity under salt stress. Nitro blue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining also indicated that the transgenic plants accumulated less reactive oxygen species compared to WT when exposed to salt stress. Overall, our results suggested that SmQR plays a significant role in salt tolerance and that this gene may be useful for biotechnological development of plants with improved tolerance of salinity.

  9. Enhanced rat sciatic nerve regeneration through silicon tubes filled with pyrroloquinoline quinone.

    PubMed

    Liu, Shiqing; Li, Haohuan; Ou Yang, Jingping; Peng, Hao; Wu, Ke; Liu, Yongming; Yang, Jingwei

    2005-01-01

    Pyrroloquinoline quinone (PQQ) is an antioxidant that also stimulates nerve growth factor (NGF) synthesis and secretion. In an earlier pilot study in our laboratory, Schwann cell growth was accelerated, and NGF mRNA expression and NGF secretion were promoted. The present study was designed to explore the possible nerve-inducing effect of PQQ on a nerve tube model over a 1-cm segmental deficit. An 8-mm sciatic nerve deficit was created in a rat model and bridged by a 1-cm silicone tube. Then,10 mul of 0.03 mmol/l PQQ were perfused into the silicone chamber in the PQQ group. The same volume of normal saline was delivered in the control group. Each animal underwent functional observation (SFI) at 2-week intervals and electrophysiological studies at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed at the end of the experiment, 12 weeks after tube implantation. Using a digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity and amplitude of activity potential), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the PQQ group and controls (P < 0.05). More mature, high-density, newly regenerated nerve was observed in the PQQ group. We conclude that PQQ is a potent enhancer for the regeneration of peripheral nerves.

  10. Quinone-formaldehyde polymer as an active material in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Pirnat, Klemen; Mali, Gregor; Gaberscek, Miran; Dominko, Robert

    2016-05-01

    A benzoquinone polymer is synthesized by the polymerisation of hydrobenzoquinone and formaldehyde, followed by oxidation process using a hydrogen peroxide to convert hydroquinone to quinone. As prepared materials are characterized with FTIR, 1H-13C CPMAS NMR, pyrolysis coupled with gas chromatography (GC) and mass spectrometer (MS), TGA-MS analysis, EDX, elemental analysis, XRD, SEM and TEM microscopies and BET nitrogen adsorption. The benzoquinone polymer shows an excellent electrochemical performance when used as a positive electrode material in Li-ion secondary batteries. Using an electrolyte consisting 1 M bis(trifluoromethane)-sulfonimide lithium salt dissolved in 1,3-dioxolane and dimethoxyethane in a vol. ratio 1:1 (1 M LiTFSI/DOL + DME = 1:1) a stable capacity close to 150 mAh/g can be obtained. Compared to other electroactive materials based on benzoquinones it has a supreme capacity stability and is prepared by a simple synthesis using easily accessible starting materials. Further improvements in the capacity value (up to the theoretical value of 406 mAh/g) can be foreseen by achieving a higher degree of oxidation and by modification of polymerization process to enhance the electronic and ionic conductivity.

  11. Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum.

    PubMed

    Chan, Leong-Keat; Morgan-Kiss, Rachael M; Hanson, Thomas E

    2009-02-01

    Sulfide:quinone oxidoreductase (SQR) catalyzes sulfide oxidation during sulfide-dependent chemo- and phototrophic growth in bacteria. The green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum) can grow on sulfide as the sole electron donor and sulfur source. C. tepidum contains genes encoding three SQR homologs: CT0117, CT0876, and CT1087. This study examined which, if any, of the SQR homologs possess sulfide-dependent ubiquinone reduction activity and are required for growth on sulfide. In contrast to CT0117 and CT0876, transcripts of CT1087 were detected only when cells actively oxidized sulfide. Mutation of CT0117 or CT1087 in C. tepidum decreased SQR activity in membrane fractions, and the CT1087 mutant could not grow with >or=6 mM sulfide. Mutation of both CT0117 and CT1087 in C. tepidum completely abolished SQR activity, and the double mutant failed to grow with >or=4 mM sulfide. A C-terminal His(6)-tagged CT1087 protein was membrane localized, as was SQR activity. Epitope-tagged CT1087 was detected only when sulfide was actively consumed by cells. Recombinantly produced CT1087 and CT0117 proteins had SQR activity, while CT0876 did not. In summary, we conclude that, under the conditions tested, both CT0117 and CT1087 function as SQR proteins in C. tepidum. CT0876 may support the growth of C. tepidum at low sulfide concentrations, but no evidence was found for SQR activity associated with this protein.

  12. Limited Practice Respiratory Care Course.

    ERIC Educational Resources Information Center

    Anderson, Amy L.

    This 36-46 hour basic respiratory care course has been designed to enhance the skills of health professionals in providing limited respiratory care during those hours when a respiratory care practitioner is not available. Persons taking the course are assumed to have a basic knowledge of anatomy and physiology, administration of medications, and…

  13. Your Lungs and Respiratory System

    MedlinePlus

    ... dientes Video: Getting an X-ray Your Lungs & Respiratory System KidsHealth > For Kids > Your Lungs & Respiratory System Print A A A What's in this article? ... in your body, and they work with your respiratory system to allow you to take in fresh air, ...

  14. Climate change and respiratory disease: European Respiratory Society position statement.

    PubMed

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  15. A new look at the respiratory stimulant doxapram.

    PubMed

    Yost, C Spencer

    2006-01-01

    A number of life-threatening clinical disorders may be amenable to treatment with a drug that can stimulate respiratory drive. These include acute respiratory failure secondary to chronic obstructive pulmonary disease, post-anesthetic respiratory depression, and apnea of prematurity. Doxapram has been available for over forty years for the treatment of these conditions and it has a low side effect profile compared to other available agents. Generally though, the use of doxapram has been limited to these clinical niches involving patients in the intensive care, post-anesthesia care and neonatal intensive care units. Recent basic science studies have made considerable progress in understanding the molecular mechanism of doxapram's respiratory stimulant action. Although it is unlikely that doxapram will undergo a clinical renaissance based on this new understanding, it represents a significant advance in our knowledge of the control of breathing.

  16. Respiratory fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James B.

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  17. [Asbestos and respiratory diseases].

    PubMed

    Scherpereel, Arnaud

    2016-01-01

    Previous occupational asbestos exposure (more rarely environmental or domestic exposure) may induce various pleural and/or pulmonary, benign or malignant diseases, sometimes with a very long latency for malignant mesothelioma (MM). Asbestos has been widely extracted and used in Western countries and in emerging or developing countries, resulting in a peak of MM incidence in France around 2020 and likely in a world pandemic of asbestos-induced diseases. These patients have mostly benign respiratory diseases (pleural plugs) but may also be diagnosed with lung cancer or malignant pleural mesothelioma, and have a global poor outcome. New therapeutic tools (targeted therapies, immunotherapy…) with first promising results are developed. However, it is crucial to obtain a full ban of asbestos use worldwide, and to do a regular follow-up of asbestos-exposed subjects, mostly if they are already diagnosed with benign respiratory diseases. Finally, new cancers (larynx and ovary) were recently added to the list of asbestos-induced tumors.

  18. Respiratory fluid mechanics

    PubMed Central

    Grotberg, James B.

    2011-01-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from “capillary-elastic instabilities,” as well as nonlinear stabilization from oscillatory core flow which we call the “oscillating butter knife;” liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg–Borgas–Gaver shock. PMID:21403768

  19. Respiratory fluid mechanics.

    PubMed

    Grotberg, James B

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  20. Ocular tropism of respiratory viruses.

    PubMed

    Belser, Jessica A; Rota, Paul A; Tumpey, Terrence M

    2013-03-01

    Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism.

  1. Respiratory assessment in centronuclear myopathies

    PubMed Central

    Smith, Barbara K; Goddard, Melissa; Childers, Martin K.

    2014-01-01

    The centronuclear myopathies (CNMs) are a group of inherited neuromuscular disorders classified as congenital myopathies. While several causative genes have been identified, some patients do not harbor any of the currently known mutations. These diverse disorders have common histological features, which include a high proportion of centrally-nucleated muscle fibers, and clinical attributes of muscle weakness and respiratory insufficiency. Respiratory problems in CNMs may manifest initially during sleep, but daytime symptoms, ineffective airway clearance, and hypoventilation predominate as more severe respiratory muscle dysfunction evolves. Respiratory muscle capacity can be evaluated using a variety of clinical tests selected with consideration for the age and baseline motor function of the patient. Similar clinical tests of respiratory function can also be incorporated into preclinical CNM canine models to offer insight for clinical trials. Since respiratory problems account for significant morbidity in patients, routine assessments of respiratory muscle function are discussed. PMID:24668768

  2. Middle East Respiratory Syndrome

    PubMed Central

    Zumla, Alimuddin; Hui, David S; Perlman, Stanley

    2016-01-01

    SUMMARY The Middle East Respiratory Syndrome (MERS) is a newly recognized highly lethal respiratory disease caused by a novel single stranded, positive sense RNA betacoronavirus (MERS-CoV). Dromedary camels, host species for MERS-CoV are implicated in the direct or indirect transmission to humans, although the exact mode of transmission remains unknown. First isolated from a patient who died from a severe respiratory illness in June 2012 in Jeddah, Saudi Arabia, as of 16 February 2015, 983 laboratory-confirmed cases of MERS-CoV (360 deaths; 36.6% mortality) were reported to the WHO. Cases have been acquired in both the community and hospitals with limited human-to-human transmission reported in the community. Whilst the majority of MERS cases have occurred in Saudi Arabia and the United Arab Emirates, cases have been reported from Europe, USA and Asia in people who traveled from the Middle East or their contacts. Clinical features of MERS range from asymptomatic or mild disease to acute respiratory distress syndrome and multi-organ failure resulting in death, especially in individuals with underlying co-morbidities. There is no specific drug treatment for MERS and infection prevention and control measures are crucial to prevent spread of MERS-CoV in health care facilities. MERS-CoV continues to be an endemic,low level public health threat. However, the concern remains that the virus could mutate to exhibit increased interhuman transmissibility, increasing pandemic potential. Our seminar presents an overview of current knowledge and perspectives on the epidemiology, virology, mode of transmission, pathogen-host responses, clinical features, diagnosis and development of new drugs and vaccines. PMID:26049252

  3. Nanotechnology in respiratory medicine.

    PubMed

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  4. Induction of immunogenic cell death of tumors by newly synthesized heterocyclic quinone derivative.

    PubMed

    Son, Keum-Joo; Choi, Ki Ryung; Ryu, Chung-Kyu; Lee, Seog Jae; Kim, Ho Jeong; Lee, Hyunah

    2017-01-01

    Many cancer types are serious diseases causing mortality, and new therapeutics with improved efficacy and safety are required. Immuno-(cell)-therapy is considered as one of the promising therapeutic strategies for curing intractable cancer. In this study, we tested R2016, a newly developed heterocyclic quinone derivative, for induction of immunogenic tumor cell death and as a possible novel immunochemotherapeutic. We studied the anti-cancer effects of R2016 against LLC, a lung cancer cell line and B16F10, a melanoma cell line. LLC (non-immunogenic) and B16F10 (immunogenic) cells were killed by R2016 in dose-dependent manner. R2016 reduced the viability of both LLC and B16F10 tumor cells by inducing apoptosis and necrosis, while it demonstrated no cytotoxicity against normal splenocytes. Expression of immunogenic death markers on the cell surface of R2016 treated tumor cells including calreticulin (CRT) and heat shock proteins (HSPs) was increased along with the induction of their genes. Increased CRT expression correlated with dendritic cell (DC) uptake of dying tumor cells: the proportion of CRT+CD11c+cells was increased in the R2016-treated group. The gene transcription of Calr3, Hspb1, and Tnfaip6, which are related to immunogenicity induction of dead cells, was up-regulated in the R2016 treated tumor cells. On the other hand, ANGPT1, FGF7, and URGCP gene levels were down-regulated by R2016 treatment. This data suggests that R2016 induced immunogenic tumor cell death, and suggests R2016 as an effective anti-tumor immunochemotherapeutic modality.

  5. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties 'Dwarf Blue Curled Vates' and 'Red Winter' in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar 'Red Winter' in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined

  6. Induction of immunogenic cell death of tumors by newly synthesized heterocyclic quinone derivative

    PubMed Central

    Ryu, Chung-Kyu; Lee, Seog Jae; Kim, Ho Jeong

    2017-01-01

    Many cancer types are serious diseases causing mortality, and new therapeutics with improved efficacy and safety are required. Immuno-(cell)-therapy is considered as one of the promising therapeutic strategies for curing intractable cancer. In this study, we tested R2016, a newly developed heterocyclic quinone derivative, for induction of immunogenic tumor cell death and as a possible novel immunochemotherapeutic. We studied the anti-cancer effects of R2016 against LLC, a lung cancer cell line and B16F10, a melanoma cell line. LLC (non-immunogenic) and B16F10 (immunogenic) cells were killed by R2016 in dose-dependent manner. R2016 reduced the viability of both LLC and B16F10 tumor cells by inducing apoptosis and necrosis, while it demonstrated no cytotoxicity against normal splenocytes. Expression of immunogenic death markers on the cell surface of R2016 treated tumor cells including calreticulin (CRT) and heat shock proteins (HSPs) was increased along with the induction of their genes. Increased CRT expression correlated with dendritic cell (DC) uptake of dying tumor cells: the proportion of CRT+CD11c+cells was increased in the R2016-treated group. The gene transcription of Calr3, Hspb1, and Tnfaip6, which are related to immunogenicity induction of dead cells, was up-regulated in the R2016 treated tumor cells. On the other hand, ANGPT1, FGF7, and URGCP gene levels were down-regulated by R2016 treatment. This data suggests that R2016 induced immunogenic tumor cell death, and suggests R2016 as an effective anti-tumor immunochemotherapeutic modality. PMID:28282460

  7. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    PubMed Central

    CALAMINI, Barbara; SANTARSIERO, Bernard D.; BOUTIN, Jean A.; MESECAR, Andrew D.

    2011-01-01

    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC 1.10.99.2) which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certain cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 Å (1 Å =0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (Ki = 7.2 μM) and uncompetitive against menadione (Ki = 92 μM), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2. PMID:18254726

  8. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    SciTech Connect

    Calamini, Barbara; Santarsiero, Bernard D.; Boutin, Jean A.; Mesecar, Andrew D.

    2008-09-12

    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC 1.10.99.2) which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certain cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 {angstrom} (1 {angstrom} = 0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (K{sub i} = 7.2 {mu}M) and uncompetitive against menadione (K{sub i} = 92 {mu}M), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2.

  9. The Three-Dimensional Structure of NAD(P)H:Quinone Reductase, a Flavoprotein Involved in Cancer Chemoprotection and Chemotherapy: Mechanism of the Two-Electron Reduction

    NASA Astrophysics Data System (ADS)

    Li, Rongbao; Bianchet, Mario A.; Talalay, Paul; Amzel, L. Mario

    1995-09-01

    Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-Å crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP^+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH_2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.

  10. Recurrent respiratory papillomatosis.

    PubMed

    Venkatesan, Naren N; Pine, Harold S; Underbrink, Michael P

    2012-06-01

    Recurrent respiratory papillomatosis (RRP) is a rare, benign disease with no known cure. RRP is caused by infection of the upper aerodigestive tract with the human papillomavirus (HPV). Passage through the birth canal is thought to be the initial transmission event, but infection may occur in utero. HPV vaccines have helped to provide protection from cervical cancer; however, their role in the prevention of RRP is undetermined. Clinical presentation of initial symptoms of RRP may be subtle. RRP course varies, and current management focuses on surgical debulking of papillomatous lesions with or without concurrent adjuvant therapy.

  11. Acute respiratory distress syndrome.

    PubMed

    Gibbons, Cynthia

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is a life-threatening condition with multiple causes and a high mortality rate. Approximately 150,000 cases are reported in the United States annually, making ARDS a public health concern. Management of the condition is complex because of its severity, and medical imaging is essential for both the diagnosis and management of ARDS. This article introduces common signs, symptoms, risk factors, and causes of ARDS. Diagnostic criteria, histopathology, treatment strategies, and prognostic information also are discussed. The article explains the value of medical imaging studies of ARDS, especially radiography, computed tomography, and ultrasonography.

  12. Adult respiratory distress syndrome.

    PubMed

    Cutts, S; Talboys, R; Paspula, C; Prempeh, E M; Fanous, R; Ail, D

    2017-01-01

    Adult respiratory distress syndrome (ARDS) has now been described as a sequela to such diverse conditions as burns, amniotic fluid embolism, acute pancreatitis, trauma, sepsis and damage as a result of elective surgery in general. Patients with ARDS require immediate intubation, with the average patient now being ventilated for between 8 and 11 days. While the acute management of ARDS is conducted by the critical care team, almost any surgical patient can be affected by the condition and we believe that it is important that a broader spectrum of hospital doctors gain an understanding of the nature of the pathology and its current treatment.

  13. [Respiratory synchronization and breast radiotherapy].

    PubMed

    Mège, A; Ziouèche-Mottet, A; Bodez, V; Garcia, R; Arnaud, A; de Rauglaudre, G; Pourel, N; Chauvet, B

    2016-10-01

    Adjuvant radiation therapy following breast cancer surgery continues to improve locoregional control and overall survival. But the success of highly targeted-conformal radiotherapy such as intensity-modulated techniques, can be compromised by respiratory motion. The intrafraction motion can potentially result in significant under- or overdose, and also expose organs at risk. This article summarizes the respiratory motion and its effects on imaging, dose calculation and dose delivery by radiotherapy for breast cancer. We will review the methods of respiratory synchronization available for breast radiotherapy to minimize the respiratory impact and to spare organs such as heart and lung.

  14. Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer's disease.

    PubMed

    SantaCruz, Karen S; Yazlovitskaya, Eugenia; Collins, Julie; Johnson, Jeff; DeCarli, Charles

    2004-01-01

    Converging evidence supports the role of oxidative stress in the pathology of Alzheimer's disease (AD). This notion is further supported by recent findings of increased NAD(P)H:quinone oxidodreductase (NQO1) activity, a potent antioxidant system, in association with hippocampal AD pathology. If increased NQO1 activity is truly related to the AD process, however, we would expect to see regional co-localization of NQO1 activity with AD pathology throughout affected brain regions and the absence of NQO1 activity in regions unaffected by AD. We examined this hypothesis by measuring NQO1 enzymatic activity and NQO1 immunohistochemical staining in regions commonly affected by the AD process such as frontal cortex and compared this to regions generally unaffected by the AD process such as occipital cortex, cerebellum, and substantia nigra for a group of AD patients and controls. The ratio of frontal to cerebellar NQO1 enzymatic activity was significantly increased in patients with AD (2.07 +/- 1.90) versus controls (0.60 +/- 0.31; P < 0.03). Moreover, regional immunohistochemical staining revealed specific localization of NQO1 staining to astrocytes and neurites surrounding senile plaques. The extent of immunohistochemical staining also closely correlated with the extent of local AD pathology across the various brain regions examined. Neuronal NQO1 staining seen in frontal cortex of AD patients was absent in frontal cortex of controls, but was found to the same extent in neurons of the substantia nigra of both AD patients and controls. We conclude that NQO1 activity co-localizes closely with AD pathology supporting a presumed role as an antioxidant system upregulated in response to the oxidative stress of the AD process. The antioxidant role for NQO1 is further supported by finding increased neuronal NQO1 activity in substantia nigra neurons of both AD patients and controls as this neuronal population is known to be under constant oxidative stress. While requiring further

  15. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    PubMed Central

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to

  16. Respiratory sounds compression.

    PubMed

    Yadollahi, Azadeh; Moussavi, Zahra

    2008-04-01

    Recently, with the advances in digital signal processing, compression of biomedical signals has received great attention for telemedicine applications. In this paper, an adaptive transform coding-based method for compression of respiratory and swallowing sounds is proposed. Using special characteristics of respiratory sounds, the recorded signals are divided into stationary and nonstationary portions, and two different bit allocation methods (BAMs) are designed for each portion. The method was applied to the data of 12 subjects and its performance in terms of overall signal-to-noise ratio (SNR) values was calculated at different bit rates. The performance of different quantizers was also considered and the sensitivity of the quantizers to initial conditions has been alleviated. In addition, the fuzzy clustering method was examined for classifying the signal into different numbers of clusters and investigating the performance of the adaptive BAM with increasing the number of classes. Furthermore, the effects of assigning different numbers of bits for encoding stationary and nonstationary portions of the signal were studied. The adaptive BAM with variable number of bits was found to improve the SNR values of the fixed BAM by 5 dB. Last, the possibility of removing the training part for finding the parameters of adaptive BAMs for each individual was investigated. The results indicate that it is possible to use a predefined set of BAMs for all subjects and remove the training part completely. Moreover, the method is fast enough to be implemented for real-time application.

  17. [Acute respiratory distress syndrome].

    PubMed

    Matĕjovic, M; Novák, I; Srámek, V; Rokyta, R; Hora, P; Nalos, M

    1999-04-26

    Acute respiratory distress syndrome (ARDS) is the general term used for severe acute respiratory failure of diverse aetiology. It is associated with a high morbidity, mortality (50-70%), and financial costs. Regardless of aetiology, the basic pathogenesis of ARDS is a systemic inflammatory response leading to a diffuse inflammatory process that involves both lungs, thus causing diffuse alveolar and endothelial damage with increased pulmonary capillary permeability and excessive extravascular lung water accumulation. ARDS is commonly associated with sepsis and multiple organ failure. The clinical picture involves progressive hypoxaemia, radiographic evidence of pulmonary oedema, decreased lung compliance and pulmonary hypertension. Despite the scientific and technological progress in critical care medicine, there is no specific ARDS therapy available at the moment and its management remains supportive. Therapeutic goals include resolution of underlying conditions, maintenance of acceptable gas exchange and tissue oxygenation and prevention of iatrogenic lung injury. Many new specific therapeutic strategies have been developed, however, most of them require further scientific evaluation. The paper reviews definition, basic pathogenesis and pathophysiology of ARDS and discusses current concepts of therapeutic possibilities of ARDS.

  18. A partition experimental evidence of molecular complex formation of some quinones with sodium dodecyl sulphate anion in aqueous phase by spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ray, Asim K.; Saha, Avijit; Mukherjee, Asok K.

    2005-01-01

    In an experiment involving partition of four different quinones between their saturated solutions in CCl 4 and aqueous solution of sodium dodecyl sulphate (SDS), done spectrophotometrically, it was observed that below the critical micellisation concentration (c.m.c.) of SDS, the solubility of each quinone in aqueous phase increased linearly with [SDS], just above c.m.c. it dropped sharply and then again increased, becoming nearly constant at very high [SDS]. The absorption λmax of each quinone (excepting o-chloranil) in aqueous SDS showed a red shift relative to that in CCl 4 and the red-shifted λmax is independent of [SDS]. These observations were rationalised by considering complexation and phase equilibria.

  19. Respiratory effort from the photoplethysmogram.

    PubMed

    Addison, Paul S

    2017-03-01

    The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (p<0.001 across all probes tested) with increasing upper airway pressure repeatable across the range of respiratory rates and flow constrictions studied. These were: the three fundamental modulations in amplitude (AM-Effort), baseline (BM-Effort) and respiratory sinus arrhythmia (RSA-Effort); two pulse transit time modulations - one using a pulse oximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper

  20. Synthesis of phenol and quinone metabolites of benzo[a]pyrene, a carcinogenic component of tobacco smoke implicated in lung cancer.

    PubMed

    Xu, Daiwang; Penning, Trevor M; Blair, Ian A; Harvey, Ronald G

    2009-01-16

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. PAHs are present in automobile exhaust and tobacco smoke, and they have recently been designated as human carcinogens. Current evidence indicates that PAHs are activated enzymatically to mutagenic metabolites that interact with DNA. There is evidence for three pathways of activation: the diol epoxide path, the radical-cation path, and the quinone path. The relative importance of these paths for human lung cancer has not been established. We now report syntheses of the principal phenol and quinone isomers of the prototype PAH carcinogen benzo[a]pyrene (BP) that are known or are suspected to be formed as metabolites of BP in human bronchoalveolar cells. The methods of synthesis were designed to be adaptable to the preparation of the (13)C-labeled analogues of the BP metabolites. These compounds are needed as standards for sensitive LC-MS/MS methods for analysis of BP metabolites formed in lung cells. Efficient novel syntheses of the 1-, 3-, 6-, 9-, and 12-BP phenols and the BP 1,6-, 3,6-, 6,12-, and 9,10-quinones are now reported. The syntheses of the BP phenols (except 6-HO-BP) involve the key steps of Pd-catalyzed Suzuki-Miyaura cross-coupling of a naphthalene boronate ester with a substituted aryl bromide or triflate ester. The BP quinones were synthesized from the corresponding BP phenols by direct oxidation with the hypervalent iodine reagents IBX or TBI. These reagents exhibited different regiospecificities. IBX oxidation of the 7- and 9-BP phenols provided the ortho-quinone isomers (BP 7,8- and 9,10-diones, respectively), whereas TBI oxidation of the 1-, 3-, and 12-BP phenols furnished BP quinone isomers with carbonyl functions in separate rings (BP 1,6-, 3,6-, and 6,12-diones, respectively).

  1. Synthesis of Phenol and Quinone Metabolites of Benzo[a]pyrene, a Carcinogenic Component of Tobacco Smoke Implicated in Lung Cancer

    PubMed Central

    Xu, Daiwang; Penning, Trevor M.; Blair, Ian A.; Harvey, Ronald G.

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. PAHs are present in automobile exhaust and tobacco smoke, and they have recently been designated as human carcinogens. Current evidence indicates that PAHs are activated enzymatically to mutagenic metabolites that interact with DNA. There is evidence for three pathways of activation, the diol epoxide path, the radical-cation path, and the quinone path. The relative importance of these paths for human lung cancer has not been established. We now report syntheses of the principal phenol and quinone isomers of the prototype PAH carcinogen benzo[a]pyrene (BP) that are known or are suspected to be formed as metabolites of BP in human bronchoalveolar cells. The methods of synthesis were designed to be adaptable to preparation of the 13C-labelled analogues of the BP metabolites. These compounds are needed as standards for sensitive LC-MS/MS methods for analysis of BP metabolites formed in lung cells. Efficient novel syntheses of the 1-, 3-, 6-, 9-, and 12-BP phenols, and the BP 1,6-, 3,6-, 6,12-, and 9,10-quinones are now reported. The syntheses of the BP phenols (except 6-HO-BP) involve in the key steps Pd-catalyzed Suzuki-Miyaura cross-coupling of a naphthalene boronate ester with a substituted aryl bromide or triflate ester. The BP quinones were synthesized from the corresponding BP phenols by direct oxidation with the hypervalent iodine reagents IBX or TBI. These reagents exhibited different regiospecificities. IBX oxidation of the 7- and 9- BP phenols provided the ortho-quinone isomers (BP 7,8-, and 9.10-dione), whereas TBI oxidation of the 1-, 3-, and 12-BP phenols furnished BP quinone isomers with carbonyl functions in separate rings (BP 1,6-, 3,6-, and 6,12-dione). PMID:19132942

  2. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    SciTech Connect

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  3. Quinone-rich polydopamine functionalization of yttria stabilized zirconia for apatite biomineralization: The effects of coating temperature

    NASA Astrophysics Data System (ADS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Abdul Kadir, Mohammed Rafiq

    2015-08-01

    The use of yttria stabilized zirconia (YSZ) as biomedical implants is often offset by its bioinert nature that prevents its osseointegration to occur. Therefore, the functionalization of YSZ surface by polydopamine to facilitate the biomineralization of apatite layer on top of the coated film has incessantly been studied. In this study YSZ discs were first immersed in 2 mg/mL of stirred dopamine solution at coating temperatures between 25 and 80 °C. The specimens were then incubated for 7d in 1.5 SBF. The effect of coating temperature on the properties (chemical compositions and wettability) and the apatite mineralization on top of the generated films was investigated. It was found that at 50 °C, the specimen displayed the highest intensity of Ca 2p peak (1.55 ± 0.42 cps) with Ca/P ratio of 1.67 due to the presence of abundant quinone groups (Cdbnd O). However, the hydrophilicity (40.9 ± 01.7°) was greatly improved at 60 °C accompanied by the highest film thickness of 306 nm. Therefore, it was concluded that the presence of high intensity of quinone groups (Cdbnd O) in polydopamine film at elevated temperature affects the chelation of Ca2+ ions and thus enhance the growth of apatite layer on top of the functionalized YSZ surface.

  4. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death.

    PubMed

    Bana, Emilie; Sibille, Estelle; Valente, Sergio; Cerella, Claudia; Chaimbault, Patrick; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc; Bagrel, Denyse

    2015-03-01

    Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure.

  5. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    PubMed

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  6. Remote position substituents as modulators of conformational and reactive properties of quinones. Relevance of the pi/pi intramolecular interaction.

    PubMed

    Roura-Pérez, Guillermo; Quiróz, Beatriz; Aguilar-Martínez, Martha; Frontana, Carlos; Solano, Alejandro; Gonzalez, Ignacio; Bautista-Martínez, José Antonio; Jiménez-Barbero, Jesús; Cuevas, Gabriel

    2007-03-16

    Several studies have described that quinoid rings with electron-rich olefins at remote position experience changes in their redox potential. Since the original description of these changes, different approaches have been developed to describe the properties of the binding sites of ubiquinones. The origin of this phenomenon has been attributed to lateral chain flexibility and its effect on the recognition between proteins and substrates associated with their important biological activity. The use of electrochemical-electron spin resonance (EC-ESR) assays and theoretical calculations at MP2/6-31G(d,p) and MP2/6-31++G(d,p)//MP2/6-31G(d,p) levels of several conformers of perezone [(2-(1,5-dimethyl-4-hexenyl)-3-hydroxy-5-methyl-1,4-benzoquinone] established that a weak pi-pi interaction controls not only the molecular conformation but also its diffusion coefficient and electrochemical properties. An analogous interaction can be suggested as the origin of similar properties of ubiquinone Q10. The use of nuclear magnetic resonance rendered, for the first time, direct evidence of the participation of different perezone conformers in solution and explained the cycloaddition process observed when the aforementioned quinone is heated to form pipitzols, sesquiterpenes with a cedrene skeleton. The fact that biological systems can modulate the redox potential of this type of quinones depending on the conformer recognized by an enzyme during a biological transformation is of great relevance.

  7. Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition for sensitive and selective protein biosensing.

    PubMed

    Su, Zhaohong; Xu, Haitao; Xu, Xiaolin; Zhang, Yi; Ma, Yan; Li, Chaorong; Xie, Qingji

    2017-03-01

    Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition (a Michael addition) for sensitive and selective protein (with thrombin as the model) biosensing is reported, with a detection limit down to 20 fM for thrombin. Briefly, the thiol addition reaction of a gold electrode-supported 1,6-hexanedithiol (HDT) with p-benzoquinone (BQ) yielded BQ-HDT/Au, and the similar reaction of thiolated thrombin aptamer (TTA) with activated BQ-HDT/Au under 0.3V led to formation of a gold electrode-supported novel electrochemical probe TTA-BQ-HDT/Au. The thus-prepared TTA-BQ-HDT/Au exhibits a pair of well-defined redox peaks of quinone moiety, and the TTA-thrombin interaction can sensitively decrease the electrochemical signal. Herein the thiol addition acts as an effective and convenient binding protocols for aptasensing, and a new method (electrochemical conversion of Michael addition complex for signal generation) for the fabrication of biosensor is presented. The cyclic voltammetry (CV) was used to characterize the film properties. In addition, the proposed amperometric aptasensor exhibits good sensitivity, selectivity, and reproducibility. The aptasensor also has acceptable recovery for detection in complex protein sample.

  8. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds.

  9. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    PubMed

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-04

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  10. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation

    PubMed Central

    Kato, Yuki; Nagao, Ryo; Noguchi, Takumi

    2016-01-01

    Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB−/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB−/QB), in combination with the known large upshift of Em(QA−/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA−. PMID:26715751

  11. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    PubMed

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  12. Constituents of Musa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase.

    PubMed

    Jang, Dae Sik; Park, Eun Jung; Hawthorne, Michael E; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Santarsiero, Bernard D; Mesecar, Andrew D; Fong, Harry H S; Mehta, Rajendra G; Pezzuto, John M; Kinghorn, A Douglas

    2002-10-23

    A new bicyclic diarylheptanoid, rel-(3S,4aR,10bR)-8-hydroxy-3-(4-hydroxyphenyl)-9-methoxy-4a,5,6,10b-tetrahydro-3H-naphtho[2,1-b]pyran (1), as well as four known compounds, 1,2-dihydro-1,2,3-trihydroxy-9-(4-methoxyphenyl)phenalene (2), hydroxyanigorufone (3), 2-(4-hydroxyphenyl)naphthalic anhydride (4), and 1,7-bis(4-hydroxyphenyl)hepta-4(E),6(E)-dien-3-one (5), were isolated from an ethyl acetate-soluble fraction of the methanol extract of the fruits of Musa x paradisiaca cultivar, using a bioassay based on the induction of quinone reductase (QR) in cultured Hepa1c1c7 mouse hepatoma cells to monitor chromatographic fractionation. The structure and relative stereochemistry of compound 1 were elucidated unambiguously by one- and two-dimensional NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC, and NOESY) and single-crystal X-ray diffraction analysis. Isolates 1-5 were evaluated for their potential cancer chemopreventive properties utilizing an in vitro assay to determine quinone reductase induction and a mouse mammary organ culture assay.

  13. Respiratory Effects of Passive Smoking

    PubMed Central

    Shephard, Roy J.

    1991-01-01

    The acute and chronic respiratory effects of environmental cigarette smoke (other than lung cancer) are reviewed. Effects observed are not easily explained. There is strong evidence for an increased incidence of chronic respiratory disease in children of smokers and mounting evidence that occupational and domestic exposure increases the risk of chronic obstructive lung disease in adults. Imagesp962-a PMID:21229076

  14. Respiratory diseases of global consequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Respiratory diseases are one of the two major categories of poultry diseases that cause the most severe economic losses globally (the other being enteric disease). The economic impact of respiratory disease is both direct, from the production losses caused by primary disease and indirect from preve...

  15. Porcine Reproductive and Respiratory Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome (PRRS) is the number one disease affecting US swine. It is caused by the PRRS virus (PRRSV) and is recognized as reproductive failure of sows and respiratory problems of piglets and growing pigs. This book chapter is part of the Office of International E...

  16. Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties.

    PubMed

    Šarlauskas, Jonas; Tamulienė, Jelena; Čėnas, Narimantas

    2017-05-05

    The detailed structure, chemical and spectroscopic properties of the derivatives of the selected 2,5-bis(1-aziridinyl)-benzo-1,4-quinone conformers were studied by applying quantum chemical and experimental methods. The relationship between the structure and chemical activity of the selected 3 bifunctional bioreductive quinonic anticancer agents - aziridinyl benzoquinones (AzBQ compounds) was obtained. The results obtained showed that the position of aziridine rings influenced by the chemical activity of the investigated compound were more significant than the substitutions of the benzene ring of the AzBQ compounds. The solvents influencing this activity were obtained, too.

  17. Characterization of estrogen quinone-derived protein adducts and their identification in human serum albumin derived from breast cancer patients and healthy controls.

    PubMed

    Chen, Dar-Ren; Chen, Shou-Tung; Wang, Tzu-Wen; Tsai, Chen-His; Wei, Hz-Han; Chen, Guan-Jie; Yang, Tsung-Chou; Lin, Che; Lin, Po-Hsiung

    2011-05-10

    Both 17β-estradiol-2,3-quinone (E₂-2,3-Q) and 17β-estradiol-3,4-quinone (E₂-3,4-Q) are reactive metabolites of estrogen that are thought to be responsible for the estrogen-induced genotoxicity. The aim of this study was to establish a methodology to analyze estrogen quinone-derived protein adducts and to measure the background levels of these adducts in human serum albumin (Alb) derived from female blood donors in Taiwan. Results from in vitro experiments confirmed that the production of estrogen quinone-derived adducts on serum Alb increased with increased concentration of estrogen quinones. Time-course experiments suggested that both E₂-2,3-Q- and E₂-3,4-Q-derived adducts rapidly reached maximum values at 10 min mark and remained constant thereafter for up to 24 h. Additionally, with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) pretreatment, the production of estrogen quinone-derived protein adducts was detected in human MCF-7 breast cancer cells exposed to estrogen. Co-treatment of a catechol-O-methyl transferase inhibitor further enhanced the production of estrogen quinone-derived adducts in all cases. When we investigated the levels of estrogen quinone-derived adducts in human serum Alb, cysteinyl adducts of E₂-2,3-Q-1-S-Alb, E₂-2,3-Q-4-S-Alb, and E₂-3,4-Q-2-S-Alb were detected in all healthy female controls (n=10) with median levels at 147 (range 14.1-533), 197 (range 30.0-777), and 65.6 (range 17.6-1360) (pmol/g), respectively. We noticed that levels of E₂-2,3-Q-derived adducts were 2-fold greater than those of E₂-3,4-Q-2-S-Alb in controls whereas levels of E₂-3,4-Q-2-S-Alb were 2-fold higher than those of E₂-2,3-Q-derived adducts in patients (n = 20). Additionally, levels of E₂-2,3-Q-4-S-Alb correlated significantly with those of E₂-3,4-Q-2-S-Alb (correlation coefficient r = 0.684-0.850, p < 0.05). Overall, we conclude that cumulative body burden of E₂-3,4-Q is a significant predictor of breast cancer.

  18. Identification of a quinone dehydrogenase from a Bacillus sp. involved in the decolourization of the lignin-model dye, Azure B.

    PubMed

    Bandounas, Luaine; Pinkse, Martijn; de Winde, Johannes H; Ruijssenaars, Harald J

    2013-01-25

    In this study we have investigated the molecular background of the previously reported dye decolourization potential of Bacillus sp. LD003. Strain LD003 was previously isolated on Kraft lignin and was able to decolourize various lignin model dyes. Specifically Azure B (AB) was decolourized efficiently. Proteins possibly involved in AB decolourization were partially purified, fractionated by gel electrophoresis and identified via mass spectrometry. Five candidate enzymes were selected and expressed in Escherichia coli. Of these, only a quinone dehydrogenase was shown to decolourize AB. Thus, this quinone dehydrogenase was identified as an AB decolourizing enzyme of Bacillus sp. LD003.

  19. [Acute respiratory distress syndrome].

    PubMed

    Hecker, M; Weigand, M A; Mayer, K

    2012-05-01

    Acute respiratory distress syndrome (ARDS) is the clinical manifestation of an acute lung injury caused by a variety of direct and indirect injuries to the lung. The cardinal clinical feature of ARDS, refractory arterial hypoxemia, is the result of protein-rich alveolar edema with impaired surfactant function, due to vascular leakage and dysfunction with consequently impaired matching of ventilation to perfusion. Better understanding of the pathophysiology of ARDS has led to the development of novel therapies, pharmacological strategies, and advances in mechanical ventilation. However, protective ventilation is the only confirmed option in ARDS management improving survival, and few other therapies have translated into improved oxygenation or reduced ventilation time. The development of innovative therapy options, such as extracorporeal membrane oxygenation, have the potential to further improve survival of this devastating disease.

  20. Ventilation and respiratory mechanics.

    PubMed

    Sheel, Andrew William; Romer, Lee M

    2012-04-01

    During dynamic exercise, the healthy pulmonary system faces several major challenges, including decreases in mixed venous oxygen content and increases in mixed venous carbon dioxide. As such, the ventilatory demand is increased, while the rising cardiac output means that blood will have considerably less time in the pulmonary capillaries to accomplish gas exchange. Blood gas homeostasis must be accomplished by precise regulation of alveolar ventilation via medullary neural networks and sensory reflex mechanisms. It is equally important that cardiovascular and pulmonary system responses to exercise be precisely matched to the increase in metabolic requirements, and that the substantial gas transport needs of both respiratory and locomotor muscles be considered. Our article addresses each of these topics with emphasis on the healthy, young adult exercising in normoxia. We review recent evidence concerning how exercise hyperpnea influences sympathetic vasoconstrictor outflow and the effect this might have on the ability to perform muscular work. We also review sex-based differences in lung mechanics.

  1. Dysrhythmias of the respiratory oscillator

    NASA Astrophysics Data System (ADS)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  2. Developing a framework for assessing chemical respiratory sensitization: A workshop report.

    PubMed

    North, Colin M; Ezendam, Janine; Hotchkiss, Jon A; Maier, Curtis; Aoyama, Kohji; Enoch, Steve; Goetz, Amber; Graham, Cynthia; Kimber, Ian; Karjalainen, Antti; Pauluhn, Juergen; Roggen, Erwin L; Selgrade, MaryJane; Tarlo, Susan M; Chen, Connie L

    2016-10-01

    Respiratory tract sensitization can have significant acute and chronic health implications. While induction of respiratory sensitization is widely recognized for some chemicals, validated standard methods or frameworks for identifying and characterizing the hazard are not available. A workshop on assessment of respiratory sensitization was held to discuss the current state of science for identification and characterization of respiratory sensitizer hazard, identify information facilitating development of validated standard methods and frameworks, and consider the regulatory and practical risk management needs. Participants agreed on a predominant Th2 immunological mechanism and several steps in respiratory sensitization. Some overlapping cellular events in respiratory and skin sensitization are well understood, but full mechanism(s) remain unavailable. Progress on non-animal approaches to skin sensitization testing, ranging from in vitro systems, -omics, in silico profiling, and structural profiling were acknowledged. Addressing both induction and elicitation phases remains challenging. Participants identified lack of a unifying dose metric as increasing the difficulty of interpreting dosimetry across exposures. A number of research needs were identified, including an agreed list of respiratory sensitizers and other asthmagens, distinguishing between adverse effects from immune-mediated versus non-immunological mechanisms. A number of themes emerged from the discussion regarding future testing strategies, particularly the need for a tiered framework respiratory sensitizer assessment. These workshop present a basis for moving towards a weight-of-evidence assessment.

  3. Respiratory function in handicapped children.

    PubMed

    Ishida, C; Fujita, M; Umemoto, H; Taneda, M; Sanae, N; Tazaki, T

    1990-01-01

    The aim of this study was to evaluate respiratory function of severely handicapped children. Tidal volumes and respiratory rates were determined in a total of 130 children with different clinical motor abilities. Tidal volume of non-sitters (n = 39) was significantly lower than ambulators (n = 49) or sitters (n = 42) (p less than 0.01). There was no difference in respiratory rate among the three groups. Among 45 children whose vital capacity could be determined, the tidal volumes showed a significant correlation with vital capacity (r = 0.56, p less than 0.001). Among four children whose tidal volume was less than 200 ml and respiratory rate was more than 30 cpm, blood gas analysis revealed hypoxia in three of them. The tidal volumes, therefore, would be a useful guide to estimate respiratory functions. It was concluded that the respiratory function in a non-sitter with reduced tidal volume is impaired, and that preventive measures must be taken against respiratory infection.

  4. Stress and acute respiratory infection

    SciTech Connect

    Graham, N.M.; Douglas, R.M.; Ryan, P.

    1986-09-01

    To examine the relationship between stress and upper respiratory tract infection, 235 adults aged 14-57 years, from 94 families affiliated with three suburban family physicians in Adelaide, South Australia, participated in a six-month prospective study. High and low stress groups were identified by median splits of data collected from the Life Events Inventory, the Daily Hassles Scale, and the General Health Questionnaire, which were administered both before and during the six months of respiratory diary data collection. Using intra-study stress data, the high stress group experienced significantly more episodes (mean of 2.71 vs. 1.56, p less than 0.0005) and symptom days (mean of 29.43 vs. 15.42, p = 0.005) of respiratory illness. The two groups were almost identical with respect to age, sex, occupational status, smoking, passive smoking, exposure to air pollution, family size, and proneness to acute respiratory infection in childhood. In a multivariate model with total respiratory episodes as the dependent variable, 21% of the variance was explained, and two stress variables accounted for 9% of the explained variance. Significant, but less strong relationships were also identified between intra-study stress variables and clinically definite episodes and symptom days in both clinically definite and total respiratory episodes. Pre-study measures of stress emphasized chronic stresses and were less strongly related to measures of respiratory illness than those collected during the study. However, significantly more episodes (mean of 2.50 vs. 1.75, p less than 0.02) and symptom days (mean of 28.00 vs. 17.06, p less than 0.03) were experienced in the high stress group. In the multivariate analyses, pre-study stress remained significantly associated with total respiratory episodes nd symptom days in total and ''definite'' respiratory episodes.

  5. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase.

    PubMed

    Wu, K; Knox, R; Sun, X Z; Joseph, P; Jaiswal, A K; Zhang, D; Deng, P S; Chen, S

    1997-11-15

    Human NAD(P)H:quinone acceptor oxidoreductase-2 (NQO2) has been prepared using an Escherichia coli expression method. NQO2 is thought to be an isoform of DT-diaphorase (EC 1.6.99.2) [also referred to as NAD(P)H:quinone acceptor oxidoreductase] because there is a 49% identity between their amino acid sequences. The present investigation has revealed that like DT-diaphorase, NQO2 is a dimer enzyme with one FAD prosthetic group per subunit. Interestingly, NQO2 uses dihydronicotinamide riboside (NRH) rather than NAD(P)H as an electron donor. It catalyzes a two-electron reduction of quinones and oxidation-reduction dyes. One-electron acceptors, such as potassium ferricyanide, cannot be reduced by NQO2. This enzyme also catalyzes a four-electron reduction, using methyl red as the electron acceptor. The NRH-methyl red reductase activity of NQO2 is 11 times the NADH-methyl red reductase activity of DT-diaphorase. In addition, through a four-electron reduction reaction, NQO2 can catalyze nitroreduction of cytotoxic compound CB 1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. NQO2 is 3000 times more effective than DT-diaphorase in the reduction of CB 1954. Therefore, NQO2 is a NRH-dependent oxidoreductase which catalyzes two- and four-electron reduction reactions. NQO2 is resistant to typical inhibitors of DT-diaphorase, such as dicumarol, Cibacron blue, and phenindone. Flavones are inhibitors of NQO2. However, structural requirements of flavones for the inhibition of NQO2 are different from those for DT-diaphorase. The most potent flavone inhibitor tested so far is quercetin (3,5,7,3',4'-. 6pentahydroxyflavone). It has been found that quercetin is a competitive inhibitor with respect to NRH (Ki = 21 nM). NQO2 is 43 amino acids shorter than DT-diaphorase, and it has been suggested that the carboxyl terminus of DT-diaphorase plays a role in substrate binding (S. Chen et al., Protein Sci. 3, 51-57, 1994). In order to understand better the basis of catalytic differences between

  6. Auscultation of the respiratory system

    PubMed Central

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  7. [Travel and chronic respiratory insufficiency].

    PubMed

    Bonnet, D; Marotel, C; Miltgen, J; N'Guyen, G; Cuguilliere, A; L'Her, P

    1997-01-01

    Changes in climate, altitude and lifestyle during travel confronts patients presenting chronic respiratory insufficiency with special problems. A major challenge is related to high altitude during air travel. To limit risks, a preflight examination is necessary to ascertain respiratory status. Patients requiring oxygen therapy must ensure availability both during the flight and at the destination. Patients with asthma or chronic bronchitis must bring along a sufficient supply of usual inhalers. All patients should carry a doctor's letter describing their condition and listing medications. Using these elementary precautions, patients with chronic respiratory insufficiency can safely enjoy sightseeing and outdoor leisure activities.

  8. Assessing Respiratory System Mechanical Function.

    PubMed

    Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo

    2016-12-01

    The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function.

  9. Multiplex detection of respiratory pathogens

    DOEpatents

    McBride, Mary [Brentwood, CA; Slezak, Thomas [Livermore, CA; Birch, James M [Albany, CA

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  10. The Chilliwack Respiratory Survey, 1963

    PubMed Central

    Anderson, Donald O.; Ferris, Benjamin G.; Davis, T. W.

    1965-01-01

    In order to ascertain the prevalence of chronic respiratory disease in residents of a rural town and to determine the relative importance of tobacco smoking and air pollution, a survey was conducted of 726 persons living at Chilliwack, British Columbia, in May and June, 1963. Over 95% of a random sample of adults was interviewed and performed simple tests of respiratory function. The sample was selected from a commercial census. An analysis of the demographic characteristics of the sample indicated that the group, aged 25 to 74 years, was reasonably representative for detailed study of chronic respiratory disease. PMID:14289136

  11. Electronic structure and energy decomposition analyses as a tool to interpret the redox potential ranking of naphtho-, biphenyl- and biphenylene-quinone isomers.

    PubMed

    Tomerini, D; Politano, O; Gatti, C; Frayret, C

    2016-09-29

    By calling on modelling approaches we have performed a comparative study on the redox properties of various naphtho-, biphenyl- and biphenylene-quinone isomers. These different compounds exhibit as a whole a redox potential range between 2.09 and 2.90 V vs. Li(+)/Li. A specific methodology was used to decrypt the interplay among isomerism, aromaticity and antiaromaticity modifications and the stabilization/destabilization effects due to other molecular components on this key electrochemical feature for electrode materials of batteries. In particular, energy decomposition analysis, within the Quantum Theory of Atoms in Molecules, along with the electron and electron spin population changes upon reduction nicely rationalise the observed potential trends. While 1,2- and 2,3-isomers show the highest/lowest redox potential in the biphenylene-quinone series, a reverse trend is observed for the naphtho-quinone, the compound having the two carbonyl groups on distinct rings being characterized by an intermediate value in both cases. There is instead almost no differentiation between 1,2 and 2,3 isomers for the biphenyl-quinone family.

  12. All Three Endogenous Quinone Species of Escherichia coli Are Involved in Controlling the Activity of the Aerobic/Anaerobic Response Regulator ArcA

    PubMed Central

    van Beilen, Johan W. A.; Hellingwerf, Klaas J.

    2016-01-01

    The enteron Escherichia coli is equipped with a branched electron transfer chain that mediates chemiosmotic electron transfer, that drives ATP synthesis. The components of this electron transfer chain couple the oxidation of available electron donors from cellular metabolism (e.g., NADH, succinate, lactate, formate, etc.) to the reduction of electron acceptors like oxygen, nitrate, fumarate, di-methyl-sulfoxide, etc. Three different quinones, i.e., ubiquinone, demethyl-menaquinone and menaquinone, couple the transfer of electrons between the dehydrogenases and reductases/oxidases that constitute this electron transfer chain, whereas, the two-component regulation system ArcB/A regulates gene expression, to allow the organism to adapt itself to the ambient conditions of available electron donors and acceptors. Here, we report that E. coli can grow and adjust well to transitions in the availability of oxygen, with any of the three quinones as its single quinone. In all three ‘single-quinone’ E. coli strains transitions in the activity of ArcB are observed, as evidenced by changes in the level of phosphorylation of the response regulator ArcA, upon depletion/readmission of oxygen. These results lead us to conclude that all quinol species of E. coli can reduce (i.e., activate) the sensor ArcB and all three quinones oxidize (i.e., de-activate) it. These results also confirm our earlier conclusion that demethyl-menaquinone can function in aerobic respiration. PMID:27656164

  13. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  14. Metabolism of a representative oxygenated polycyclic aromatic hydrocarbon (PAH) phenanthrene-9,10-quinone in human hepatoma (HepG2) cells.

    PubMed

    Huang, Meng; Zhang, Li; Mesaros, Clementina; Zhang, Suhong; Blaha, Michael A; Blair, Ian A; Penning, Trevor M

    2014-05-19

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH.

  15. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  16. Bifunctional squaramide-catalyzed synthesis of chiral dihydrocoumarins via ortho-quinone methides generated from 2-(1-tosylalkyl)phenols.

    PubMed

    Zhou, Ji; Wang, Mao-Lin; Gao, Xiang; Jiang, Guo-Fang; Zhou, Yong-Gui

    2017-03-23

    A bifunctional squaramide-catalyzed reaction of azlactones with o-quinone methides in situ generated from 2-(1-tosylalkyl)-phenols has been successfully developed under basic conditions, providing an efficient and mild access to chiral dihydrocoumarins bearing adjacent tertiary and quaternary stereogenic centers in high yields with excellent diastereo- and enantioselectivities.

  17. N-Heterocyclic Carbene-Catalyzed [4 + 2] Cyclization of Saturated Carboxylic Acid with o-Quinone Methides through in Situ Activation: Enantioselective Synthesis of Dihydrocoumarins.

    PubMed

    Wang, Yuanfeng; Pan, Jian; Dong, Jingjiao; Yu, Chenxia; Li, Tuanjie; Wang, Xiang-Shan; Shen, Shide; Yao, Changsheng

    2017-02-03

    An N-heterocyclic carbene (NHC)-catalyzed formal [4 + 2] synthesis of dihydrocoumarins was realized from saturated carboxylic acids and o-quinone methides via an in situ activation strategy. This protocol results in excellent diastereoselectivity and enantioselectivity and good yields and uses readily available and inexpensive starting materials.

  18. REACTIONS OF BENZO[A]PYRENE-7,8-QUINONE WITH DEOXYGUANOSINE AND DEOXYADENOSINE AT PHYSIOLOGICAL pH: IDENTIFICATION AND CHARACTERIZATION OF STABLE ADDUCTS

    EPA Science Inventory

    Reactions of Benzo[a]pyrene-7,8-quinone with Deoxyguanosine and Deoxyadenosine at Physiological pH: Identification and Characterization of Stable Adducts

    Narayanan Balu, William T. Padgett, Guy Lambert, Adam E. Swank,
    Ann M. Richard, and Stephen Nesnow

    Environmen...

  19. Cp*Rh(III) and Cp*Ir(III)-catalysed redox-neutral C-H arylation with quinone diazides: quick and facile synthesis of arylated phenols.

    PubMed

    Zhang, Shang-Shi; Jiang, Chun-Yong; Wu, Jia-Qiang; Liu, Xu-Ge; Li, Qingjiang; Huang, Zhi-Shu; Li, Ding; Wang, Honggen

    2015-06-25

    Cp*Rh(III)- and Cp*Ir(III)-catalysed direct C-H arylation with quinone diazides as efficient coupling partners is disclosed. This redox-neutral protocol offers a facile, operationally simple and environmentally benign access to arylated phenols. The reaction represents the first example of Cp*Ir(III)-catalysed C-H direct arylation reaction.

  20. Tech-Prep Competency Profiles within the Health Technologies Cluster.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains competency profiles for Ohio tech prep courses in the following 12 health technologies occupations: radiographer, respiratory care therapist, occupational therapy assistant, physical therapist assistant, registered nurse (associate degree), pharmacy technologist, medical laboratory technician, histotechnologist, emergency…

  1. Respiratory chain proteins.

    PubMed

    Kadenbach, B; Schneyder, B; Mell, O; Stroh, S; Reimann, A

    1991-01-01

    Mammalian mitochondrial DNA codes for 13 proteins, which are all components of energy transducing enzyme complexes of the respiratory chain, i.e. the complexes which translocate protons across the inner mitochondrial membrane. The number of subunits of these enzyme complexes increase with increasing evolutionary stage of the organism. The additional nuclear coded subunits of the enzyme complexes from higher organisms are involved in the regulation of respiration, as demonstrated by the influence of intraliposomal ATP and ADP on the reconstituted cytochrome c oxidase (COX) from bovine heart. This regulation is not found with the reconstituted enzyme from P. denitrificans, which lacks the nuclear coded subunits. Some of the nuclear coded subunits occur in tissue-specific isoforms, as reported for COX and NADH dehydrogenase. Tissue-specific regulation of COX activity is also demonstrated by the differential effects of intraliposomal ADP on the kinetics of reconstituted COX from bovine liver and heart, which differ in subunits VIa, VIIa and VIII. At least 3 different COX isozymes occur in bovine liver, heart or skeletal muscle and smooth muscle. An evolutionary relationship between COX subunits VIa and VIc and between VIIa and VIIb is suggested based on the crossreactivity of monoclonal antibodies, amino acid sequence homology and hybridization at low stringency of PCR-amplified cDNAs for subunits VIa-1, VIa-h and VIc from the rat.

  2. Chlorinated Biphenyl Quinones and Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid Sulfotransferase hSULT2A1

    PubMed Central

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M.; Robertson, Larry W.; Duffel, Michael W.

    2013-01-01

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2′-chlorophenyl-2,5-benzoquinone (2′-Cl-BQ), 4′-chlorophenyl-2,5-benzoquinone (4′-Cl-BQ), 4′-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4′-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1. PMID:24059442

  3. The two common polymorphic forms of human NRH-quinone oxidoreductase 2 (NQO2) have different biochemical properties.

    PubMed

    Megarity, Clare F; Gill, James R E; Caraher, M Clare; Stratford, Ian J; Nolan, Karen A; Timson, David J

    2014-05-02

    There are two common forms of NRH-quinone oxidoreductase 2 (NQO2) in the human population resulting from SNP rs1143684. One has phenylalanine at position 47 (NQO2-F47) and the other leucine (NQO2-L47). Using recombinant proteins, we show that these variants have similar steady state kinetic parameters, although NQO2-L47 has a slightly lower specificity constant. NQO2-L47 is less stable towards proteolytic digestion and thermal denaturation than NQO2-F47. Both forms are inhibited by resveratrol, but NQO2-F47 shows negative cooperativity with this inhibitor. Thus these data demonstrate, for the first time, clear biochemical differences between the variants which help explain previous biomedical and epidemiological findings.

  4. The pattern and control of isoprenoid quinone and tocopherol metabolism in the germinating grain of wheat (Triticum vulgare)

    PubMed Central

    Hall, G. S.; Laidman, D. L.

    1968-01-01

    1. The syntheses of ubiquinone-9 and plastoquinone-9 were used as parameters respectively of mitochondrial and proplastid development in the germinating wheat grain. 2. The changes in the amounts of the tocopherols were also studied and the possible biological significance of these changes is discussed. During germination, the dimethyl tocopherols of the resting grain are probably not utilized for the synthesis of α-tocopherol. 3. It was demonstrated that ubiquinone synthesis, and hence probably mitochondrial development, in the aleurone cells during germination, is independent of control by gibberellic acid from the embryo. 4. The influence of light on the syntheses of the isoprenoid quinones in the etiolated wheat shoot was investigated. In particular, illumination did not stimulate the synthesis of either α-tocopherol or α-tocopherolquinone. PMID:5667257

  5. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.

    PubMed

    Qian, Hongmei; Sun, Bo; Miao, Huiying; Cai, Congxi; Xu, Chaojiong; Wang, Qiaomei

    2015-02-01

    The variation of glucosinolates and quinone reductase (QR) activity in fourteen varieties of Chinese kale (Brassica oleracea var. alboglabra Bailey) was investigated in the present study. Results showed that gluconapin (GNA), instead of glucoraphanin (GRA), was the most predominant glucosinolate in all varieties, and QR activity was remarkably positively correlated with the glucoraphanin level. AOP2, a tandem 2-oxoglutarate-dependent dioxygenase, catalyzes the conversion of glucoraphanin to gluconapin in glucosinolate biosynthesis. Here, antisense AOP2 was transformed into Gailan-04, the variety with the highest gluconapin content and ratio of GNA/GRA. The glucoraphanin content and corresponding QR activity were notably increased in transgenic plants, while no significant difference at the level of other main nutritional compounds (total phenolics, vitamin C, carotenoids and chlorophyll) was observed between the transgenic lines and the wide-type plants. Taken together, metabolic engineering is a good practice for improvement of glucoraphanin in Chinese kale.

  6. Dielectric studies on the heterogeneity and interfacial property of composites made of polyacene quinone radical polymers and sulfonated polyurethanes.

    PubMed

    Zhu, Dan; Zhang, Juan; Bin, Yuezhen; Xu, Chunye; Shen, Jian; Matsuo, Masaru

    2012-03-08

    Sulfonated polyurethane (PUI, matrix) is synthesized and composited with polyacene quinone radical polymers (PAQRs, filler). The polarization mechanism of these polymers and composites were investigated in terms of their frequency, temperature, and filler-concentration-dependent dielectric properties. We found that PUI/PAQR composites have a high permittivity, which is attributed to the filler-matrix interfacial polarization and the contact effect. The PAQR-concentration-dependent permittivity of different PUI/PAQR composites reveals a percolation threshold at 20-30 wt % with scaling exponents that indicate the intercluster polarization. The frequency dependence of dielectric response is well-fitted by using the Debye and Cole-Cole functions on the basis of the structural diagrams and equivalent circuit, leading to a detailed evaluation on heterogeneous structures of different PUI/PAQR composites.

  7. Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes. [Chlamydomonas

    SciTech Connect

    Kyle, D.J.; Ohad, I.; Arntzen, C.J.

    1984-07-01

    A loss of electron transport capacity in chloroplast membranes was induced by high-light intensities (photoinhibition). The primary site of inhibition was at the reducing side of photosystem II (PSII) with little damage to the oxidizing side or to the reaction center core of PSII. Addition of herbicides (atrazine or diuron) partially protected the membrane from photoinhibition; these compounds displace the bound plastoquinone (designated as Q/sub B/), which functions as the secondary electron acceptor on the reducing side of PSII. Loss of function of the 32-kilodalton Q/sub B/ apoprotein was demonstrated by a loss of binding sites for (/sup 14/C)atraazine. We suggest that quinone anions, which may interact with molecular oxygen to produce an oxygen radical, selectively damage the apoprotein of the secondary acceptor of PSII, thus rendering it inactive and thereby blocking photosynthetic electron flow under conditions of high photon flux densities. 21 references, 4 figures, 2 tables.

  8. PQQ: Biosynthetic studies in Methylobacterium AM1 and Hyphomicrobium X using specific TC labeling and NMR. [Pyrroloquinoline quinones

    SciTech Connect

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.; van Kleef, M.A.G.; Duine, J.A.

    1988-01-01

    Using TC labeling and NMR spectroscopy we have determined biosynthetic precursors of pyrroloquinoline quinone (PQQ) in two closely related serine-type methylotrophs, Methylobacterium AM1 and Hyphomicrobium X. Analysis of the TC-labeling data revealed that PQQ is constructed from two amino acids: the portion containing N-6, C-7,8,9 and the two carboxylic acid groups, C-7' and 9', is derived-intact-from glutamate. The remaining portion is derived from tyrosine; the phenol side chain provides the six carbons of the ring containing the orthoquinone, whereas internal cyclization of the amino acid backbone forms the pyrrole-2-carboxylic acid moiety. This is analogous to the cyclization of dopaquinone to form dopachrome. Dopaquinone is a product of the oxidation of tyrosine (via dopa) in reactions catalyzed by monophenol monooxygenase (EC 1.14.18.1). Starting with tyrosine and glutamate, we will discuss possible biosynthetic routes to PQQ. 29 refs., 4 figs., 2 tabs.

  9. Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans

    PubMed Central

    Xie, Fei; Chang, Wenqiang; Zhang, Ming; Li, Ying; Li, Wei; Shi, Hongzhuo; Zheng, Sha; Lou, Hongxiang

    2016-01-01

    One of the main azole-resistance mechanisms in Candida pathogens is the upregulation of drug efflux pumps, which compromises the efficacy of azoles and results in treatment failure. The combination of azole-antifungal agents with efflux pump inhibitors represents a promising strategy to combat fungal infection. High-throughput screening of 150 extracts obtained from endolichenic fungal cultures led to the discovery that the extract of Phialocephala fortinii exhibits potent activity for the reversal of azole resistance. From P. fortinii cultures, a total of 15 quinone derivatives, comprising 11 new derivatives and 4 known compounds, were obtained. Among these compounds, palmarumycin P3 (3) and phialocephalarin B (8) specifically modulate the expression of MDR1 to inhibit the activity of drug efflux pumps and therefore reverse azole resistance. The present study revealed Mdr1 targeting as an alternative mechanism for the discovery of new agents to fight antifungal drug resistance. PMID:27650180

  10. Thermodynamic contribution to the regulation of electron transfer in the Na(+)-pumping NADH:quinone oxidoreductase from Vibrio cholerae.

    PubMed

    Neehaul, Yashvin; Juárez, Oscar; Barquera, Blanca; Hellwig, Petra

    2012-05-15

    The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is a fundamental enzyme of the oxidative phosphorylation metabolism and ionic homeostasis in several pathogenic and marine bacteria. To understand the mechanism that couples electron transfer with sodium translocation in Na(+)-NQR, the ion dependence of the redox potential of the individual cofactors was studied using a spectroelectrochemical approach. The redox potential of one of the FMN cofactors increased 90 mV in the presence of Na(+) or Li(+), compared to the redox potentials measured in the presence of other cations that are not transported by the enzyme, such as K(+), Rb(+), and NH(4)(+). This shift in redox potential of one FMN confirms the crucial role of the FMN anionic radicals in the Na(+) pumping mechanism and demonstrates that the control of the electron transfer rate has both kinetic (via conformational changes) and thermodynamic components.

  11. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems.

    PubMed

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N

    2005-08-17

    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  12. Activity-guided isolation of constituents of Tephrosia purpurea with the potential to induce the phase II enzyme, quinone reductase.

    PubMed

    Chang, L C; Gerhäuser, C; Song, L; Farnsworth, N R; Pezzuto, J M; Kinghorn, A D

    1997-09-01

    An isoflavone, 7,4'-dihydroxy-3',5'-dimethoxyisoflavone (1), and a chalcone, (+)-tephropurpurin (2), both novel compounds, as well as six constituents of known structure, (+)-purpurin (3), pongamol (4), lanceolatin B (5), (-)-maackiain (6), (-)-3-hydroxy-4-methoxy-8,9-methylene-dioxypterocarpan (7), and (-)-medicarpin (8), were obtained as active compounds from Tephrosia purpurea, using a bioassay based on the induction of quinone reductase (QR) activity with cultured Hepa 1c1c7 mouse hepatoma cells. Additionally, three inactive compounds of known structure, 3'-methoxydaidzein, desmoxyphyllin B, and 3,9-dihydroxy-8-methoxycoumestan, were isolated and identified. The structure elucidation of compounds 1 and 2 was carried out by spectral data interpretation.

  13. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    ... also been found in camels and in one bat. While it is believed to come from animals, ... Prevention. Middle East Respiratory Syndrome (MERS): Frequently Asked Questions and Answers. Updated December 2, 2015. www.cdc. ...

  14. How Is Respiratory Failure Treated?

    MedlinePlus

    ... to treat the underlying cause of the condition. Oxygen Therapy and Ventilator Support If you have respiratory ... mask that fits over your nose and mouth. Oxygen Therapy The image shows how a nasal cannula ...

  15. Higher activity of polymorphic NAD(P)H:quinone oxidoreductase in liver cytosols from blacks compared to whites.

    PubMed

    Covarrubias, Vanessa Gonzalez; Lakhman, Sukhwinder S; Forrest, Alan; Relling, Mary V; Blanco, Javier G

    2006-07-14

    In human liver, the two-electron reduction of quinone compounds, such as menadione is catalyzed by cytosolic carbonyl reductase (CBR) and NAD(P)H:quinone oxidoreductase (NQO1) activities. We assessed the relative contributions of CBR and NQO1 activities to the total menadione reducing capacity in liver cytosols from black (n=31) and white donors (n=63). Maximal menadione reductase activities did not differ between black (13.0+/-5.0 nmol/min mg), and white donors (11.4+/-6.6 nmol/min mg; p=0.208). In addition, both groups presented similar levels of CBR activities (CBR(blacks)=10.9+/-4.1 nmol/min mg) versus CBR(whites)=10.5+/-5.8 nmol/min mg; p=0.708). In contrast, blacks showed higher NQO1 activities (two-fold) than whites (NQO1(blacks)=2.1+/-3.0 nmol/min mg versus NQO1(whites)=0.9+/-1.6 nmol/min mg, p<0.01). To further explore this disparity, we tested whether NQO1 activity was associated with the common NQO1(*)2 genetic polymorphism by using paired DNA samples for genotyping. Cytosolic NQO1 activities differed significantly by NQO1 genotype status in whites (NQO1(whites[NQO1*1/*1])=1.3+/-1.7 nmol/min mg versus NQO1(whites[NQO1*1/*2+NQO1*2/*2])=0.5+/-0.7 nmol/min mg, p<0.01), but not in blacks (NQO1(blacks[NQO1*1/*1])=2.6+/-3.4 nmol/min mg versus NQO1(blacks[NQO1*1/*2])=1.1+/-1.2 nmol/min mg, p=0.134). Our findings pinpoint the presence of significant interethnic differences in polymorphic hepatic NQO1 activity.

  16. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass.

    PubMed

    Mathieu, Yann; Piumi, Francois; Valli, Richard; Aramburu, Juan Carro; Ferreira, Patricia; Faulds, Craig B; Record, Eric

    2016-04-01

    Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus.

  17. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass

    PubMed Central

    Piumi, Francois; Valli, Richard; Aramburu, Juan Carro; Ferreira, Patricia; Faulds, Craig B.; Record, Eric

    2016-01-01

    Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger. Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (P. cinnabarinus GDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii. Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus. PMID:26873317

  18. Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers.

    PubMed

    Harb, Frédéric; Prunetti, Laurence; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne; Tinland, Bernard

    2015-10-01

    Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.

  19. Succinate dehydrogenase activity regulates PCB3-quinone induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes

    PubMed Central

    Xiao, Wusheng; Sarsour, Ehab H.; Wagner, Brett A.; Doskey, Claire M.; Buettner, Garry R.; Domann, Frederick E.; Goswami, Prabhat C.

    2015-01-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone-metabolite of 4-Monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ induced toxicity. PMID:25417049

  20. Odoriferous Defensive Stink Gland Transcriptome to Identify Novel Genes Necessary for Quinone Synthesis in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Li, Jianwei; Lehmann, Sabrina; Weißbecker, Bernhard; Ojeda Naharros, Irene; Schütz, Stefan; Joop, Gerrit; Wimmer, Ernst A.

    2013-01-01

    Chemical defense is one of the most important traits, which endow insects the ability to conquer a most diverse set of ecological environments. Chemical secretions are used for defense against anything from vertebrate or invertebrate predators to prokaryotic or eukaryotic parasites or food competitors. Tenebrionid beetles are especially prolific in this category, producing several varieties of substituted benzoquinone compounds. In order to get a better understanding of the genetic and molecular basis of defensive secretions, we performed RNA sequencing in a newly emerging insect model, the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). To detect genes that are highly and specifically expressed in the odoriferous gland tissues that secret defensive chemical compounds, we compared them to a control tissue, the anterior abdomen. 511 genes were identified in different subtraction groups. Of these, 77 genes were functionally analyzed by RNA interference (RNAi) to recognize induced gland alterations morphologically or changes in gland volatiles by gas chromatography-mass spectrometry. 29 genes (38%) presented strong visible phenotypes, while 67 genes (87%) showed alterations of at least one gland content. Three of these genes showing quinone-less (ql) phenotypes – Tcas-ql VTGl; Tcas-ql ARSB; Tcas-ql MRP – were isolated, molecularly characterized, their expression identified in both types of the secretory glandular cells, and their function determined by quantification of all main components after RNAi. In addition, microbe inhibition assays revealed that a quinone-free status is unable to impede bacterial or fungal growth. Phylogenetic analyses of these three genes indicate that they have evolved independently and specifically for chemical defense in beetles. PMID:23874211

  1. Quinone-induced activation of Keap1/Nrf2 signaling by aspirin prodrugs masquerading as nitric oxide.

    PubMed

    Dunlap, Tareisha; Piyankarage, Sujeewa C; Wijewickrama, Gihani T; Abdul-Hay, Samer; Vanni, Michael; Litosh, Vladislav; Luo, Jia; Thatcher, Gregory R J

    2012-12-17

    The promising therapeutic potential of the NO-donating hybrid aspirin prodrugs (NO-ASA) includes induction of chemopreventive mechanisms and has been reported in almost 100 publications. One example, NCX-4040 (pNO-ASA), is bioactivated by esterase to a quinone methide (QM) electrophile. In cell cultures, pNO-ASA and QM-donating X-ASA prodrugs that cannot release NO rapidly depleted intracellular GSH and caused DNA damage; however, induction of Nrf2 signaling elicited cellular defense mechanisms including upregulation of NAD(P)H:quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase (GCL). In HepG2 cells, the "NO-specific" 4,5-diaminofluorescein reporter, DAF-DA, responded to NO-ASA and X-ASA, with QM-induced oxidative stress masquerading as NO. LC-MS/MS analysis demonstrated efficient alkylation of Cys residues of proteins including glutathione-S-transferase-P1 (GST-P1) and Kelch-like ECH-associated protein 1 (Keap1). Evidence was obtained for alkylation of Keap1 Cys residues associated with Nrf2 translocation to the nucleus, nuclear translocation of Nrf2, activation of antioxidant response element (ARE), and upregulation of cytoprotective target genes. At least in cell culture, pNO-ASA acts as a QM donor, bioactivated by cellular esterase activity to release salicylates, NO(3)(-), and an electrophilic QM. Finally, two novel aspirin prodrugs were synthesized, both potent activators of ARE, designed to release only the QM and salicylates on bioactivation. Current interest in electrophilic drugs acting via Nrf2 signaling suggests that QM-donating hybrid drugs can be designed as informative chemical probes in drug discovery.

  2. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    PubMed Central

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  3. Climate Change and Respiratory Infections.

    PubMed

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  4. Surveillance for emerging respiratory viruses.

    PubMed

    Al-Tawfiq, Jaffar A; Zumla, Alimuddin; Gautret, Philippe; Gray, Gregory C; Hui, David S; Al-Rabeeah, Abdullah A; Memish, Ziad A

    2014-10-01

    Several new viral respiratory tract infectious diseases with epidemic potential that threaten global health security have emerged in the past 15 years. In 2003, WHO issued a worldwide alert for an unknown emerging illness, later named severe acute respiratory syndrome (SARS). The disease caused by a novel coronavirus (SARS-CoV) rapidly spread worldwide, causing more than 8000 cases and 800 deaths in more than 30 countries with a substantial economic impact. Since then, we have witnessed the emergence of several other viral respiratory pathogens including influenza viruses (avian influenza H5N1, H7N9, and H10N8; variant influenza A H3N2 virus), human adenovirus-14, and Middle East respiratory syndrome coronavirus (MERS-CoV). In response, various surveillance systems have been developed to monitor the emergence of respiratory-tract infections. These include systems based on identification of syndromes, web-based systems, systems that gather health data from health facilities (such as emergency departments and family doctors), and systems that rely on self-reporting by patients. More effective national, regional, and international surveillance systems are required to enable rapid identification of emerging respiratory epidemics, diseases with epidemic potential, their specific microbial cause, origin, mode of acquisition, and transmission dynamics.

  5. Respiratory manifestations in endocrine diseases

    PubMed Central

    LENCU, CODRUŢA; ALEXESCU, TEODORA; PETRULEA, MIRELA; LENCU, MONICA

    2016-01-01

    The control mechanisms of respiration as a vital function are complex: voluntary – cortical, and involuntary – metabolic, neural, emotional and endocrine. Hormones and hypothalamic neuropeptides (that act as neurotrasmitters and neuromodulators in the central nervous system) play a role in the regulation of respiration and in bronchopulmonary morphology. This article presents respiratory manifestations in adult endocrine diseases that evolve with hormone deficit or hypersecretion. In hyperthyroidism, patients develop ventilation disorders, obstructive and central sleep apnea, and pleural collection. The respiratory abnormalities in hyperthyroidism as a result of the hypermetabolic action of thyroid hormones are hyperventilation, myopathy and cardiovascular involvement; recent studies have reported pulmonary arterial hypertension in Graves’ disease, as a result of the association of several mechanisms. Thyroid hypertrophy can induce through compression of the upper airways dyspnea, stridor, wheezing and cough. The respiratory disorders in acromegaly are ventilatory dysfunction and sleep apnea, which contribute to an unfavorable evolution of the disease. Respiratory changes in parathyroid, adrenal and reproductive system diseases have been described. Respiratory disorders should be recognized, investigated and monitored by medical practitioners of various specialties (family physicians, internists, endocrinologists, pneumologists, cardiologists). They are frequently severe, causing an unfavorable evolution of the associated endocrine and respiratory disease. PMID:27857512

  6. Far- and mid-infrared spectroscopic analysis of the substrate-induced structural dynamics of respiratory complex I.

    PubMed

    Hielscher, Ruth; Friedrich, Thorsten; Hellwig, Petra

    2011-01-17

    The catalytic activity of the respiratory NADH:ubiquinone oxidoreductase (complex I) is based on conformational reorganizations. Herein we probe the effect of substrates on the conformational flexibility of complex I by means of (1)H/(2)H exchange kinetics at the level of the amide proton in the mid-infrared spectral range (1700-1500 cm(-1)). Slow, medium, and fast exchanging domains are distinguished that reveal different accessibilities to the solvent. Whereas amide hydrogens undergo rapid exchange with the solvent in an open structure, hydrogens experience much slower exchange when they are involved in H-bonded structures or when they are sterically inaccessible for the solvent. The results indicate a structure that is more open in the presence of both NADH and quinon. Complementary information on the overall internal hydrogen bonding of the protein was probed in the far infrared (300-30 cm(-1)), a spectral range that includes a continuum mode of the hydrogen bonding signature.

  7. Burden of respiratory viruses in patients with acute respiratory failure.

    PubMed

    Schnell, David; Gits-Muselli, Maud; Canet, Emmanuel; Lemiale, Virginie; Schlemmer, Benoît; Simon, François; Azoulay, Elie; Legoff, Jérôme

    2014-07-01

    Respiratory viruses (RVs) are ubiquitous pathogens that represent a major cause of community-acquired pneumonia and chronic pulmonary diseases exacerbations. However, their contribution to acute respiratory failure events requiring intensive care unit admission in the era of rapid multiplex molecular assay deserves further evaluation. This study investigated the burden of viral infections in non immunocompromised patients admitted to the intensive care unit for acute respiratory failure using a multiplex molecular assay. Patients were investigated for RVs using immunofluoresence testing and a commercial multiplex molecular assay, and for bacteria using conventional culture. Half the patients (34/70, 49%) had a documented RVs infection. No other pathogen was found in 24 (71%) patients. Viral infection was detected more frequently in patients with obstructive respiratory diseases (64% vs. 29%; P = 0.0075). Multiplex molecular assay should be considered as an usefull diagnostic tool in patients admitted to the intensive care unit with acute respiratory failure, especially those with acute exacerbations of chronic obstructive pulmonary disease and asthma.

  8. Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I.

    PubMed

    Kaila, Ville R I; Wikström, Mårten; Hummer, Gerhard

    2014-05-13

    Complex I serves as the primary electron entry point into the mitochondrial and bacterial respiratory chains. It catalyzes the reduction of quinones by electron transfer from NADH, and couples this exergonic reaction to the translocation of protons against an electrochemical proton gradient. The membrane domain of the enzyme extends ∼180 Å from the site of quinone reduction to the most distant proton pathway. To elucidate possible mechanisms of the long-range proton-coupled electron transfer process, we perform large-scale atomistic molecular dynamics simulations of the membrane domain of complex I from Escherichia coli. We observe spontaneous hydration of a putative proton entry channel at the NuoN/K interface, which is sensitive to the protonation state of buried glutamic acid residues. In hybrid quantum mechanics/classical mechanics simulations, we find that the observed water wires support rapid proton transfer from the protein surface to the center of the membrane domain. To explore the functional relevance of the pseudosymmetric inverted-repeat structures of the antiporter-like subunits NuoL/M/N, we constructed a symmetry-related structure of a possible alternate-access state. In molecular dynamics simulations, we find the resulting structural changes to be metastable and reversible at the protein backbone level. However, the increased hydration induced by the conformational change persists, with water molecules establishing enhanced lateral connectivity and pathways for proton transfer between conserved ionizable residues along the center of the membrane domain. Overall, the observed water-gated transitions establish conduits for the unidirectional proton translocation processes, and provide a possible coupling mechanism for the energy transduction in complex I.

  9. [Respiratory problems in severe scoliosis].

    PubMed

    Barois, A

    1999-01-01

    In kyphoscoliosis restrictive ventilatory defect occurs. In idiopathic scoliosis vital capacity failure is significantly correlated with Cobb angle, vertebral rotation, and thoracic lordosis. Maximum voluntary ventilation is the most affected measurement. Forced expiratory volume in 1 second is reduced. Residual volume remains longtime normal. Hypoxemia due to decrease of diffusing capacity occurs, with initially reflex hyperventilation hypocapnia, and secondary hypercapnia. Pulmonary hypertension and cor pulmonale is related to hypoventilation and hypoxia. The lung situated on the concave side of the scoliosis curve shows a more functional derangement. Ventilatory pattern consists of low tidal volume and high respiratory rate with increase of ventilatory work. Scoliosis that appears in the earlier stage of the life has the worst respiratory prognosis (before 5 years of age) with impairement of lung and thoracic growth. To stimulate pulmonary and thoracic growth, intermittent ventilatory assistance by pressure preset ventilator should be performed as soon as possible and pursued up to 8 years of age, at least, more if necessity. In over 60 degrees angle idiopathic scoliosis, respiratory failure appears after 40 to 50 years of age. Non invasive ventilatory assistance with preset pressure ventilator by oral way in moderate cases and nocturnal nasal ventilation by volume ventilator or inspiratory assistance ventilator, in the most severe cases are efficient. In very severe and acute respiratory insufficiency (scoliosis over 90 degrees) ventilation by intubation then tractheostomy may be required. Earlier orthopedic management and surgical procedure to correct and stabilize spinal deformities is the best to prevent respiratory insufficiency. For scoliosis below 60 degrees, post operative pulmonary complications are very low, with no requirement of post operative ventilatory support. In very severe respiratory insufficiency treatment of respiratory failure precedes, and

  10. Probiotics in respiratory virus infections.

    PubMed

    Lehtoranta, L; Pitkäranta, A; Korpela, R

    2014-08-01

    Viral respiratory infections are the most common diseases in humans. A large range of etiologic agents challenge the development of efficient therapies. Research suggests that probiotics are able to decrease the risk or duration of respiratory infection symptoms. However, the antiviral mechanisms of probiotics are unclear. The purpose of this paper is to review the current knowledge on the effects of probiotics on respiratory virus infections and to provide insights on the possible antiviral mechanisms of probiotics. A PubMed and Scopus database search was performed up to January 2014 using appropriate search terms on probiotic and respiratory virus infections in cell models, in animal models, and in humans, and reviewed for their relevance. Altogether, thirty-three clinical trials were reviewed. The studies varied highly in study design, outcome measures, probiotics, dose, and matrices used. Twenty-eight trials reported that probiotics had beneficial effects in the outcome of respiratory tract infections (RTIs) and five showed no clear benefit. Only eight studies reported investigating viral etiology from the respiratory tract, and one of these reported a significant decrease in viral load. Based on experimental studies, probiotics may exert antiviral effects directly in probiotic-virus interaction or via stimulation of the immune system. Although probiotics seem to be beneficial in respiratory illnesses, the role of probiotics on specific viruses has not been investigated sufficiently. Due to the lack of confirmatory studies and varied data available, more randomized, double-blind, and placebo-controlled trials in different age populations investigating probiotic dose response, comparing probiotic strains/genera, and elucidating the antiviral effect mechanisms are necessary.

  11. Respiratory care management information systems.

    PubMed

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  12. The role of the local microbial ecosystem in respiratory health and disease.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Sanders, Elisabeth A M; Bogaert, Debby

    2015-08-19

    Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form-together with harmless commensal bacteria, viruses and fungi-intricate ecological networks, collectively known as the 'microbiome'. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections.

  13. The role of the local microbial ecosystem in respiratory health and disease

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.; Sanders, Elisabeth A. M.; Bogaert, Debby

    2015-01-01

    Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form—together with harmless commensal bacteria, viruses and fungi—intricate ecological networks, collectively known as the ‘microbiome’. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections. PMID:26150660

  14. Middle East respiratory syndrome and severe acute respiratory syndrome.

    PubMed

    Vijay, Rahul; Perlman, Stanley

    2016-02-01

    The recent emergence of the Middle East respiratory syndrome (MERS)-CoV, a close relative of the Severe Acute respiratory syndrome (SARS)-CoV, both of which caused a lethal respiratory infection in humans, reinforces the need for further understanding of coronavirus pathogenesis and the host immune response. These viruses have evolved diverse strategies to evade and block host immune responses, facilitating infection and transmission. Pathogenesis following infection with these viruses is characterized by a marked delay in the induction of Type I interferon (IFN I) and, subsequently, by a poor adaptive immune response. Therapies that expedite IFN I induction as well as interventions that antagonize immunoevasive virus proteins are thus promising candidates for immune modulation.

  15. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  16. [Respiratory treatments in neuromuscular disease].

    PubMed

    Martínez Carrasco, C; Cols Roig, M; Salcedo Posadas, A; Sardon Prado, O; Asensio de la Cruz, O; Torrent Vernetta, A

    2014-10-01

    In a previous article, a review was presented of the respiratory pathophysiology of the patient with neuromuscular disease, as well as their clinical evaluation and the major complications causing pulmonary deterioration. This article presents the respiratory treatments required to preserve lung function in neuromuscular disease as long as possible, as well as in special situations (respiratory infections, spinal curvature surgery, etc.). Special emphasis is made on the use of non-invasive ventilation, which is changing the natural history of many of these diseases. The increase in survival and life expectancy of these children means that they can continue their clinical care in adult units. The transition from pediatric care must be an active, timely and progressive process. It may be slightly stressful for the patient before the adaptation to this new environment, with multidisciplinary care always being maintained.

  17. Respiratory weight losses during exercise.

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Nadel, E. R.; Stolwijk, J. A. J.

    1972-01-01

    Evaporative water loss from the respiratory tract was determined over a wide range of exercise. The absolute humidity of the expired air was the same at all levels of exercise and equal to that measured at rest. The rate of respiratory water loss during exercise was found to be 0.019 of the oxygen uptake times (44 minus water vapor pressure). The rate of weight loss during exercise due to CO2-O2 exchange was calculated. For exercise at oxygen consumption rates exceeding 1.5 L/min in a dry environment with a water vapor pressure of 10 mm Hg, the total rate of weight loss via the respiratory tract is on the order of 2-5 g/min.

  18. Respiratory psychophysiology and behavior modification.

    PubMed

    Ley, R

    2001-09-01

    This article was written as an introduction to a special issue of Behavior Modification dedicated to studies in the field of respiratory psychophysiology. Although the invited articles that constitute this special issue cover a fairly broad range of topics, priority was given to articles that focus on the role of respiration in panic disorder. Attention is directed to the fundamental role of breathing in applied psychophysiology and to the encouragement of research in the modification of breathing behavior. The connection between respiratory psychophysiology and behavior modification is explained by reference to (a) a recent article on Pavlovian and operant control of breathing behavior and (b) four published volumes of selected articles dedicated exclusively to the field of respiratory psychophysiology. The present special issue of Behavior Modification marks the fifth volume.

  19. Macrophage Heterogeneity in Respiratory Diseases

    PubMed Central

    Boorsma, Carian E.; Draijer, Christina; Melgert, Barbro N.

    2013-01-01

    Macrophages are among the most abundant cells in the respiratory tract, and they can have strikingly different phenotypes within this environment. Our knowledge of the different phenotypes and their functions in the lung is sketchy at best, but they appear to be linked to the protection of gas exchange against microbial threats and excessive tissue responses. Phenotypical changes of macrophages within the lung are found in many respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. This paper will give an overview of what macrophage phenotypes have been described, what their known functions are, what is known about their presence in the different obstructive and restrictive respiratory diseases (asthma, COPD, pulmonary fibrosis), and how they are thought to contribute to the etiology and resolution of these diseases. PMID:23533311

  20. Respiratory disease surveillance in Hungary

    SciTech Connect

    Agocs, M.M.; Rudnai, P.; Etzel, R.A. )

    1992-08-28

    In October 1989, the Hungarian National Institute of Hygiene initiated the Children's Acute Respiratory Morbidity (CHARM) Surveillance System to assess the association between nine reportable respiratory diseases and air pollution. The weekly number of physician-diagnosed, reportable respiratory diseases among four age groups of children (less than 1, 1-2, 3-5, and 6-14 years) was tabulated for Sopron, a city with 60,000 residents. We calculated the proportion of diseases occurring during weeks with low, moderate, and high sulfur dioxide (SO2) and nitrogen dioxide (NO2) concentrations. The weekly averages of the 24-hour median SO2 concentrations were divided into thirds at less than or equal to 17.6, greater than 17.6 to less than or equal to 26.3, and greater than 26.3 micrograms/m3 (range: 0.9-79.6 micrograms/m3), and the NO2 concentrations at less than or equal to 29.8, greater than 29.8 to less than or equal to 44.1, and greater than 44.1 micrograms/m3 (range: 4.2-90.1 micrograms/m3). During 1990, 11,474 respiratory disease cases occurred among the 4,020 children less than 15 years of age living in Sopron and monitored by the CHARM system. The two most frequently reported disease categories were rhinitis/tonsillitis/pharyngitis (71.5%) and acute bronchitis (8.5%). Sixty-seven percent of pneumonia cases occurred when SO2 concentrations were highest. We found no association between levels of NO2 and respiratory diseases. The CHARM Surveillance System may characterize more fully which groups of children develop particular respiratory diseases following exposure to air pollution.

  1. Thresholds in chemical respiratory sensitisation.

    PubMed

    Cochrane, Stella A; Arts, Josje H E; Ehnes, Colin; Hindle, Stuart; Hollnagel, Heli M; Poole, Alan; Suto, Hidenori; Kimber, Ian

    2015-07-03

    There is a continuing interest in determining whether it is possible to identify thresholds for chemical allergy. Here allergic sensitisation of the respiratory tract by chemicals is considered in this context. This is an important occupational health problem, being associated with rhinitis and asthma, and in addition provides toxicologists and risk assessors with a number of challenges. In common with all forms of allergic disease chemical respiratory allergy develops in two phases. In the first (induction) phase exposure to a chemical allergen (by an appropriate route of exposure) causes immunological priming and sensitisation of the respiratory tract. The second (elicitation) phase is triggered if a sensitised subject is exposed subsequently to the same chemical allergen via inhalation. A secondary immune response will be provoked in the respiratory tract resulting in inflammation and the signs and symptoms of a respiratory hypersensitivity reaction. In this article attention has focused on the identification of threshold values during the acquisition of sensitisation. Current mechanistic understanding of allergy is such that it can be assumed that the development of sensitisation (and also the elicitation of an allergic reaction) is a threshold phenomenon; there will be levels of exposure below which sensitisation will not be acquired. That is, all immune responses, including allergic sensitisation, have threshold requirement for the availability of antigen/allergen, below which a response will fail to develop. The issue addressed here is whether there are methods available or clinical/epidemiological data that permit the identification of such thresholds. This document reviews briefly relevant human studies of occupational asthma, and experimental models that have been developed (or are being developed) for the identification and characterisation of chemical respiratory allergens. The main conclusion drawn is that although there is evidence that the

  2. Behavioral inspiratory inhibition: inactivated and activated respiratory cells.

    PubMed

    Orem, J

    1989-11-01

    1. Eleven adult cats were trained to stop inspiration in response to a conditioning stimulus. The conditioning stimuli were presented at the onset of inspiration at intervals of approximately 20-30 s. Intratracheal pressures, diaphragmatic activity, and the extracellular activity of single medullary respiratory neurons were recorded while the animals performed this response. 2. Inactivation of the diaphragm to the conditioning stimuli occurred at latencies that varied from 40 to 110 ms and averaged 74 +/- 32 (SD) ms. 3. The subjects of this report are 38 inspiratory neurons that were inactivated and 19 cells that were activated when inspiration was stopped behaviorally. These cells were located in the region of n. ambiguus and the ventrolateral n. of tractus solitarius. 4. The inspiratory cells that were inactivated behaviorally had the following characteristics: 1) Most had an augmenting inspiratory profile with (n = 14) or without (n = 9) postinspiratory activity. Other types were inspiratory throughout (n = 5), decrementing inspiratory (n = 3), tonic inspiratory (n = 4), early inspiratory (n = 2), and expiratory-inspiratory (n = 1). 2) Their mean discharge rate was 39 +/- 2.7 (SE) Hz. 3) The latency of their inactivation in response to the task averaged 81 +/- 4.9 (SE) ms, and 4) Their activity corresponded closely to breathing not only during the behavioral response but also during eupnea (eta 2 = 0.62 +/- 0.04, mean +/- SE) and respiratory acts such as sneezing, sniffing, meowing, and purring. 5. The cells that were activated when inspiration was stopped behaviorally had the following characteristics. 1) As a group, they had discharge profiles related to every phase of the respiratory cycle. 2) They were recorded in the same region as, and often simultaneously with, respiratory cells that were inactivated. 3) Their activity patterns were highly variable such that the signal strength and consistency of the respiratory component of that activity were weak (eta 2

  3. State Profiles.

    ERIC Educational Resources Information Center

    State-Federal Information Clearinghouse for Exceptional Children, Reston, VA.

    State-by-state public policy profiles are provided by the Council for Exceptional Children's State-Federal Information Clearinghouse. These profiles summarize the present legal base for the delivery of educational services to handicapped children in the United States. Included in each profile is information from various avenues used to establish…

  4. Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part I: Xanthones, Quinones, Steroids, Coumarins, Phenolics and other Classes of Compounds.

    PubMed

    Simoben, Conrad V; Ibezim, Akachukwu; Ntie-Kang, Fidele; Nwodo, Justina N; Lifongo, Lydia L

    2015-01-01

    Cancer is known to be the second most common disease-related cause of death among humans. In drug discovery programs anti-cancer chemotherapy remains quite challenging due to issues related to resistance. Plants used in traditional medicine are known to contribute significantly within a large proportion of the African population. A survey of the literature has led to the identification of ~400 compounds from African medicinal plants, which have shown anti-cancer, anti-proliferation, anti-tumor and/or cytotoxic activities, tested by in vitro and in vivo assays (from mildly active to very active), mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylates, xanthones, quinones, steroids and lignans. The first part of this review series focuses on xanthones, quinones, steroids, coumarins, phenolics and other compound classes, while part II is focused on alkaloids, terpenoids, flavonoids.

  5. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase

    SciTech Connect

    Koland, J.G.; Miller, M.J.; Gennis, R.B.

    1984-01-31

    Pyruvate oxidase is a flavoprotein dehydrogenase located on the inner surface of the Escherichia coli cytoplasmic membrane and coupled to the E. coli aerobic respiratory chain. The role of quinones in the pyruvate oxidase system is investigated, and a minimal respiratory chain is described consisting of only two pure proteins plus ubiquinone 8 incorporated in phospholipid vesicles. The enzymes used in this reconstitution are the flavorprotein and the recently purified E. coli cytochrome d terminal oxidase. The catalytic velocity of the reconstituted liposome system is about 30% of that observed when the flavoprotein is reconstituted with E. coli membranes. It is also shown that electron transport from pyruvate to oxygen in the liposome system generates a transmembrane potential of at least 180 mV (negative inside), which is sensitive to the uncouplers carbonyl cyanide p-(trichloromethoxy)phenylhydrazone and valinomycin. A transmembrane potential is also generated by the oxidation of ubiquinol 1 by the terminal oxidase in the absence of the flavoprotein. It is concluded that: the flavoprotein can directly reduce ubiquinone 8 within the phospholipid bilayer; menaquinone 8 will not effectively substitute for ubiquinone 8 in this electron-transfer chain; and the cytochrome d terminal oxidase functions as a ubiquinol 8 oxidase and serves as a coupling site in the E. coli aerobic respiratory chain. These investigations suggest a relatively simple organization for the E. coli respiratory chain.

  6. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase.

    PubMed

    Koland, J G; Miller, M J; Gennis, R B

    1984-01-31

    Pyruvate oxidase is a flavoprotein dehydrogenase located on the inner surface of the Escherichia coli cytoplasmic membrane and coupled to the E. coli aerobic respiratory chain. In this paper, the role of quinones in the pyruvate oxidase system is investigated, and a minimal respiratory chain is described consisting of only two pure proteins plus ubiquinone 8 incorporated in phospholipid vesicles. The enzymes used in this reconstitution are the flavoprotein and the recently purified E. coli cytochrome d terminal oxidase. The catalytic velocity of the reconstituted liposome system is about 30% of that observed when the flavoprotein is reconstituted with E. coli membranes. It is also shown that electron transport from pyruvate to oxygen in the liposome system generates a transmembrane potential of at least 180 mV (negative inside), which is sensitive to the uncouplers carbonyl cyanide p-(tri-chloromethoxy)phenylhydrazone and valinomycin. A trans-membrane potential is also generated by the oxidation of ubiquinol 1 by the terminal oxidase in the absence of the flavoprotein. It is concluded that (1) the flavoprotein can directly reduce ubiquinone 8 within the phospholipid bilayer, (2) menaquinone 8 will not effectively substitute for ubiquinone 8 in this electron-transfer chain, and (3) the cytochrome d terminal oxidase functions as a ubiquinol 8 oxidase and serves as a "coupling site" in the E. coli aerobic respiratory chain. These investigations suggest a relatively simple organization for the E. coli respiratory chain.

  7. Brønsted Acid Catalyzed Addition of Enamides to ortho-Quinone Methide Imines-An Efficient and Highly Enantioselective Synthesis of Chiral Tetrahydroacridines.

    PubMed

    Kretzschmar, Martin; Hodík, Tomáš; Schneider, Christoph

    2016-08-08

    The direct and highly enantioselective synthesis of tetrahydroacridines was achieved through the phosphoric acid catalyzed addition of enamides to in situ generated ortho-quinone methide imines and subsequent elimination. This novel one-step process constitutes a very efficient, elegant, and selective synthetic approach to valuable N-heterocycles with a 1,4-dihydroquinoline motif. By subsequent highly diastereoselective hydrogenation and N-deprotection the reaction products were easily converted into free hexahydroacridines with a total of three new stereogenic centers.

  8. [3+2] versus [4+2] cycloadditions of quinone monoimide with azadienes: a Lewis acid-free access to 5-amino-2,3-dihydrobenzofuranes.

    PubMed

    Lomberget, Thierry; Baragona, Fabien; Fenet, Bernard; Barret, Roland

    2006-08-31

    The reaction between p-quinone monoimide 1a and various azadienes 2 is described in the absence of a Lewis acid promoter. When alpha,beta-unsaturated hydrazones are substituted by proton or alkyl groups, 2,3-dihydrobenzofuranes 4, a motif that is present in numerous biologically active products, are obtained in moderate to excellent yields. The regio- and stereoselectivity of this reaction has been proved by a complete NMR study, including 1H-15N correlations.

  9. Free radical-derived quinone methide mediates skin tumor promotion by butylated hydroxytoluene hydroperoxide: expanded role for electrophiles in multistage carcinogenesis.

    PubMed Central

    Guyton, K Z; Bhan, P; Kuppusamy, P; Zweier, J L; Trush, M A; Kensler, T W

    1991-01-01

    Free radical derivatives of peroxides, hydroperoxides, and anthrones are thought to mediate tumor promotion by these compounds. Further, the promoting activity of phorbol esters is attributed, in part, to their ability to stimulate the cellular generation of oxygen radicals. A hydroperoxide metabolite of butylated hydroxytoluene, 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHTOOH), has previously been shown to be a tumor promoter in mouse skin. BHTOOH is extensively metabolized by murine keratinocytes to several radical species. The primary radical generated from BHTOOH is a phenoxyl radical that can disproportionate to form butylated hydroxytoluene quinone methide, a reactive electrophile. Since electrophilic species have not been previously postulated to mediate tumor promotion, the present study was undertaken to examine the role of this electrophile in the promoting activity of BHTOOH. The biological activities of two chemical analogs of BHTOOH, 4-trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH, were compared with that of the parent compound. 4-Trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH have a reduced ability or inability, respectively, to form a quinone methide; however, like the parent compound, they both generate a phenoxyl radical when incubated with keratinocyte cytosol. The potency of BHTOOH, 4-trideuteromethyl-BHTOOH, and 4-tert-butyl-BHTOOH as inducers of ornithine decarboxylase, a marker of tumor promotion, was commensurate with their capacity for generating butylated hydroxytoluene quinone methide. These initial results were confirmed in a two-stage tumor promotion protocol in female SENCAR mice. Together, these data indicate that a quinone methide is mediating tumor promotion by BHTOOH, providing direct evidence that an electrophilic intermediate can elicit this stage of carcinogenesis. PMID:1846971

  10. Changes in [14C]Atrazine Binding Associated with the Oxidation-Reduction State of the Secondary Quinone Acceptor of Photosystem II 1

    PubMed Central

    Jursinic, Paul; Stemler, Alan

    1983-01-01

    One hypothesis of triazine-type herbicide action in photosynthetic material is that the herbicide molecule competes with a secondary quinone acceptor, B, for a binding site at the reaction center of photosystem II. The binding affinity of B has been suggested to change with its level of reduction, being most strongly bound in its semiquinone form. To test this hypothesis, [14C]atrazine binding studies have been carried out under different photochemically induced levels of B reduction in Pisum sativum. It is found that herbicide binding is reduced in continuously illuminated samples compared to dark-adapted samples. Decreased binding of atrazine corresponds to an increase in the semiquinone form of B. With flash excitation, the herbicide binding oscillates with a cycle of two, being low on odd-numbered flashes when the amount of semiquinone form of B is greatest. Treatment with NH2OH was found to significantly decrease the strength of herbicide binding in the dark as well as stop the ability of p-benzoquinone to oxidize the semiquinone form of B. It is suggested that the mode of action of NH2OH is disruption of quinones or their environment on both the oxidizing and reducing sides of photosystem II. Herbicide binding was found to be unaltered under conditions when p-benzosemiquinone oxidation of the reduced primary acceptor, Q−, is herbicide insensitive; weak herbicide binding cannot explain this herbicide insensitivity. It is concluded that the quinone-herbicide competition theory of herbicide action is correct. Also, since quinones are lipophilic the importance of the lipid composition of the thylakoid membrane in herbicide interactions is stressed. PMID:16663286

  11. The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones.

    PubMed

    Coates, Christopher S; Ziegler, Jessica; Manz, Katherine; Good, Jacob; Kang, Bernard; Milikisiyants, Sergey; Chatterjee, Ruchira; Hao, Sijie; Golbeck, John H; Lakshmi, K V

    2013-06-20

    Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions.

  12. Photosensitized Oxidation of Hypoxanthine and Xanthine by Aluminum Phthalocyanine Tetrasulfonate. Role of the Alkylating Quinone 2,5-Dichloro-diaziridinyl-1,4-benzoquinone

    PubMed Central

    Alegria, Antonio E.; Inostroza, Yaritza; Kumar, Ajay

    2009-01-01

    Photoirradiation of nitrogen-saturated aqueous solutions containing aluminum phthalocyanine tetrasulfonate (AlPcS4) at 675 nm in the presence of 2,5-dichloro-diaziridinyl-1,4-benzoquinone (AZDClQ) and hypoxanthine (HX) produces the oxidized HX derivatives, xanthine (X) and uric acid (UA). Concentrations of the AZDClQ semiquinone, X and UA increase at the expense of HX with an increase in irradiation time. Almost negligible decomposition of HX, as well as very low amounts of X, are detected if photolysis occurs under identical conditions but in the absence of AZDClQ. Addition of calf-thymus DNA produces quinone-DNA covalent adducts after photolysis of anaerobic samples containing quinone, DNA and AlPcS4, in the presence or absence of HX and at pH 5.5. However, larger amounts of quinone-DNA adducts are detected if HX is present. The results presented here could have applications in the photodynamic treatment of hypoxic tissues such as solid tumors, under conditions of high HX concentration, where Type-I pathways could be more important than singlet oxygen generation. PMID:18627517

  13. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1.

    PubMed

    Kuleta, Patryk; Sarewicz, Marcin; Postila, Pekka; Róg, Tomasz; Osyczka, Artur

    2016-10-01

    Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site.

  14. Characterization of two quinone radicals in the NADH:ubiquinone oxidoreductase from Escherichia coli by a combined fluorescence spectroscopic and electrochemical approach.

    PubMed

    Hielscher, Ruth; Yegres, Michelle; Voicescu, Mariana; Gnandt, Emmanuel; Friedrich, Thorsten; Hellwig, Petra

    2013-12-17

    The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. It was proposed that the electron transfer involves quinoid groups localized at the end of the electron transfer chain. To identify these groups, fluorescence excitation and emission spectra of Escherichia coli complex I and its fragments, namely, the NADH dehydrogenase fragment containing the flavin mononucleotide and six iron-sulfur (Fe-S) clusters, and the quinone reductase fragment containing three Fe-S clusters were measured. Signals sensitive to reduction by either NADH or dithionite were detected within the complex and the quinone reductase fragment and attributed to the redox transition of protonated ubiquinone radicals. A fluorescence spectroscopic electrochemical redox titration revealed midpoint potentials of -37 and- 235 mV (vs the standard hydrogen electrode) for the redox transitions of the quinone radicals in complex I at pH 6 with an absorption around 325 nm and a fluorescence emission at 460/475 nm. The role of these cofactor(s) for electron transfer is discussed.

  15. Health Instruction Packages: Respiratory Therapy.

    ERIC Educational Resources Information Center

    Lavich, Margot; And Others

    Text, illustrations, and exercises are utilized in these four learning modules to teach respiratory therapy students a variety of job-related skills. The first module, "Anatomy and Physiology of the Central Controls of Respiration" by Margot Lavich, describes the functions of the five centers of the brain that control respiration and…

  16. Respiratory Therapy Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a respiratory therapy technology program. The guide contains four sections. The General Information section contains an introduction giving an overview and defining the purpose and objectives, a program…

  17. Respiratory effects of borax dust.

    PubMed

    Garabrant, D H; Bernstein, L; Peters, J M; Smith, T J; Wright, W E

    1985-12-01

    The relation of respiratory symptoms, pulmonary function, and abnormalities of chest radiographs to estimated exposures of borax dust has been investigated in a cross sectional study of 629 actively employed borax workers. Ninety three per cent of the eligible workers participated in the study and exposures ranged from 1.1 mg/m3 to 14.6 mg/m3. Symptoms of acute respiratory irritation such as dryness of the mouth, nose, or throat, dry cough, nose bleeds, sore throat, productive cough, shortness of breath, and chest tightness were related to exposures of 4.0 mg/m3 or more, and were infrequent at exposures of 1.1 mg/m3. Symptoms of persistent respiratory irritation meeting the definition of chronic simple bronchitis were related to exposure among non-smokers. Decrements in the FEV1 as a percentage of predicted were seen among smokers who had heavy cumulative borax exposures (greater than or equal to 80 mg/m3 years) but were not seen among less exposed smokers or among non-smokers. Radiographic abnormalities were uncommon and were not related to dust exposure. Borax dust appears to act as a simple respiratory irritant and perhaps causes small changes in the FEV1 among smokers who are heavily exposed.

  18. Respiratory effects of mesquite broiling

    SciTech Connect

    Johns, R.E. Jr.; Lee, J.S.; Agahian, B.; Gibbons, H.L.; Reading, J.C.

    1986-11-01

    Mesquite wood charcoal has been widely promoted for the unique taste it imparts to broiled food. We recently examined a 21-year-old mesquite broiler cook with evidence suggestive of respiratory allergy or irritation following exposure to mesquite broiler smoke in a Salt Lake City restaurant. We subsequently surveyed 13 mesquite and 17 gas-flame (charcoal) broiler cooks to determine the prevalence of respiratory symptoms among workers exposed to broiler smoke. The survey demonstrated statistically significant (P less than or equal to .05) respiratory irritation in the mesquite broiler group compared with the gas-flame broiler group in one of four symptom categories. Two other symptom categories strongly suggested the presence of (P less than .10) respiratory irritation in the mesquite broiler group. Personal air sampling was conducted or two mesquite broiler cooks and two gas-flame broiler cooks and compared. Unidentified saturated and unsaturated aliphatic hydrocarbons (C8 through C12) with high molecular weights from 108 to 182 were present in air samples from the mesquite broiler cooks and not in the air samples from the gas-flame broiler cooks.

  19. Respiratory Therapy Assistant. Student's Manual.

    ERIC Educational Resources Information Center

    Jones, Judy A.

    This manual is one in a new series of self-contained materials for students enrolled in training with the allied health field. It includes competencies that are associated with the performance of skills by students beginning the study of respiratory therapy assistance. Intended to be used for individualized instruction under the supervision of an…

  20. [Respiratory function in glass blowers].

    PubMed

    Zuskin, E; Butković, D; Mustajbegović, J

    1992-01-01

    The prevalence of chronic and acute respiratory symptoms and diseases and changes in lung function in a group of 80 glass blowers have been investigated. In addition a group of 80 not exposed workers was used as a control group for respiratory symptoms and diseases. In glass blowers, there was significant increase in prevalence of chronic bronchitis, nasal catarrh, and sinusitis than in the controls. Glass blowers exposed for more and less than 10 years had similar prevalences of respiratory symptoms. A large number of glass blowers complained of acute across-shift symptoms. Significant increase in FVC, FEF50 and FEF25 was documented at the end of the work shift. Comparison with predicted normal values showed that glass blowers had FVC and FEF25 significantly lower than predicted. RV and RV/TLC were significantly increased compared with the predicted normal values. DLCO was within the normal values in most glass blowers. It is concluded that work in the glass blower industry is likely to lead the development of chronic respiratory disorders.

  1. Respiratory burst oxidase of fertilization.

    PubMed Central

    Heinecke, J W; Shapiro, B M

    1989-01-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product. PMID:2537493

  2. Quinone 1 e and 2 e /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    SciTech Connect

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.; Stahl, Shannon S.; Hammes-Schiffer, Sharon

    2016-11-10

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e and 2 e/2 H+ reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e reduction potentials, pKa values, and 2 e/2 H+ reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident for quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e versus 2 e /2 H+ reduction potentials, have important implications for designing quinones with tailored redox properties.

  3. [Respiratory diseases in metallurgy production workers].

    PubMed

    Shliapnikov, D M; Vlasova, E M; Ponomareva, T A

    2012-01-01

    The authors identified features of respiratory diseases in workers of various metallurgy workshops. Cause-effect relationships are defined between occupational risk factors and respiratory diseases, with determining the affection level.

  4. Self-Calibrating Respiratory-Flowmeter Combination

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne R.; Orr, Joseph A.

    1990-01-01

    Dual flowmeters ensure accuracy over full range of human respiratory flow rates. System for measurement of respiratory flow employs two flowmeters; one compensates for deficiencies of other. Combination yields easily calibrated system accurate over wide range of gas flow.

  5. Cystic Fibrosis (CF) Respiratory Screen: Sputum

    MedlinePlus

    ... Cystic Fibrosis (CF) Chloride Sweat Test Lungs and Respiratory System Cystic Fibrosis: Diet and Nutrition Cystic Fibrosis Cystic Fibrosis: Diet and Nutrition Lungs and Respiratory System Contact Us Print Resources Send to a Friend ...

  6. Cystic Fibrosis (CF) Respiratory Screen: Sputum

    MedlinePlus

    ... Cystic Fibrosis (CF) Chloride Sweat Test Lungs and Respiratory System Cystic Fibrosis: Diet and Nutrition Cystic Fibrosis Cystic Fibrosis: Diet and Nutrition Lungs and Respiratory System Contact Us Print Resources Send to a friend ...

  7. Coal Mining-Related Respiratory Diseases

    MedlinePlus

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  8. Thymoquinone: An edible redox-active quinone for the pharmacotherapy of neurodegenerative conditions and glial brain tumors. A short review.

    PubMed

    Elmaci, Ilhan; Altinoz, Meric A

    2016-10-01

    There exist few efficient agents in the neurological and neurosurgical armamentarium for treatment of neurotrauma, refractory seizures and high grade glial tumors. Pathophysiological conditions of diverse neural injuries have converging common pathways including oxidative stress and apoptosis. Targeted therapies have been throughly investigated, but limited success has been achieved until now. Phytochemical drugs may provide easily achievable and cheap adjunctive sources. Thymoquinone is an edible quinone obtained from Nigella sativa seed oil and exerts powerful antiinflammatory, antioxidant and antitumor activities in experimental models. Recently emerging studies conducted with animal models suggest that thymoquinone - bearing a very simple molecular structure - significantly crosses the blood brain barrier and exerts neuromodulatory activities. Indeed, in animal studies, the following actions of thymoquinone were demonstrated: 1-Protection against ischemic brain damage. 2-Reduction of epileptic seizures and associated cerebral oxidative injury. 3-Reduction of morphine tolerance and associated oxidative brain damage. 4-Anxiolytic effects and reduction of immobility stress-associated cerebral oxidative injury. 5-Reduction of diabetes-induced cerebral oxidative stress, 6-Reduction of cerebral oxidative injuries induced by noxious exposures including toluene, lead and ionizing radiation. Substantial in vitro data suggest that thymoquinone may be beneficial in treatment of glial tumors. However, there is no clinical study investigating its antitumor effects. In fact, thymoquinone suppresses growth and invasion, and induces apoptosis of glial tumor cells via degrading tubulins and inhibiting 20S proteasome, telomerase, autophagy, FAK and metalloproteinases. A simple and easily available agent may be a promising adjunctive treatment option in neurological and neurosurgical practice.

  9. Role of quinones in electron transfer of PQQ–glucose dehydrogenase anodes—mediation or orientation effect

    DOE PAGES

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; ...

    2015-06-16

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-sGDH anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introducedmore » in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.« less

  10. Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect

    SciTech Connect

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-24

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ–sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  11. Synergistic effect of pyrroloquinoline quinone and graphene nano-interface for facile fabrication of sensitive NADH biosensor.

    PubMed

    Han, Shanying; Du, Tianyu; Jiang, Hui; Wang, Xuemei

    2017-03-15

    A self-assembly composite of graphene-pyrroloquinoline quinone (PQQ) was fabricated and modified on glassy carbon electrode (GCE) for sensitive detection of nicotinamide adenine dinucleotide (NADH). Chitosan (CTS) was applied to disperse graphene to form a stable robust film on GCE. A synergistic effect between PQQ and graphene was observed during the electrocatalytic oxidation of NADH, with about 260mV reduction in the oxidation potential and 2.5-fold increase in the oxidation current compared with those on the bare GCE. The electrochemical sensors based on the modified electrodes allowed the detection of NADH with a good linear dependence from 0.32 to 220µM with a high sensitivity of 0.421µAµM(-1)cm(-2) and a low detection limit of 0.16µM (S/N=3). It could also eliminate the interference of electroactive substances like ascorbic acid (AA), uric acid, and dopamine and its derivatives. The outstanding performances of graphene-PQQ/CTS composite capable of improving the electrical conductivity and accelerating the electron transport suggested its promising applications for design of different graphene based composites used in electrochemical sensing and energy fields.

  12. "Quinone Millipedes" Reconsidered: Evidence for a Mosaic-Like Taxonomic Distribution of Phenol-Based Secretions across the Julidae.

    PubMed

    Bodner, Michaela; Vagalinski, Boyan; Makarov, Slobodan E; Antić, Dragan Ž; Vujisić, Ljubodrag V; Leis, Hans-Jörg; Raspotnig, Günther

    2016-03-01

    The defensive chemistry of juliformian millipedes is characterized mainly by benzoquinones ("quinone millipedes"), whereas the secretions of the putative close outgroup Callipodida are considered to be exclusively phenolic. We conducted a chemical screening of julid secretions for phenolic content. Most species from tribes Cylindroiulini (15 species examined), Brachyiulini (5 species examined), Leptoiulini (15 species examined), Uncigerini (2 species examined), Pachyiulini (3 species examined), and Ommatoiulini (2 species examined) had non-phenolic, in most cases exclusively benzoquinonic secretions. In contrast, tribes Cylindroiulini, Brachyiulini, and Leptoiulini also contained representatives with predominantly phenol-based exudates. In detail, p-cresol was a major compound in the secretions of the cylindroiulines Styrioiulus pelidnus and S. styricus (p-cresol content 93 %) and an undetermined Cylindroiulus species (p-cresol content 51 %), in the brachyiulines Brachyiulus lusitanus (p-cresol content 21 %) and Megaphyllum fagorum (p-cresol content 92 %), as well as in an undescribed Typhloiulus species (p-cresol content 32 %, Leptoiulini). In all species, p-cresol was accompanied by small amounts of phenol. The secretion of M. fagorum was exclusively phenolic, whereas phenols were accompanied by benzoquinones in all other species. This is the first incidence of clearly phenol-dominated secretions in the Julidae. We hypothesize a shared biosynthetic route to phenols and benzoquinones, with benzoquinones being produced from phenolic precursors. The patchy taxonomic distribution of phenols documented herein supports multiple independent regression events in a common pathway of benzoquinone synthesis rather than multiple independent incidences of phenol biosynthesis.

  13. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer.

    PubMed

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M; Mesecar, Andrew D; Cushman, Mark

    2010-07-15

    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC50 0.59 microM) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC50 70 nM) and 84 (IC50 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC50 of 80 microM. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC50 1.7 microM and 0.27 microM, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  14. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat.

    PubMed

    Bauerly, K A; Storms, D H; Harris, C B; Hajizadeh, S; Sun, M Y; Cheung, C P; Satre, M A; Fascetti, A J; Tchaparian, E; Rucker, R B

    2006-11-01

    Pyrroloquinoline quinone (PQQ) added to purified diets devoid of PQQ improves indices of perinatal development in rats and mice. Herein, PQQ nutritional status and lysine metabolism are described, prompted by a report that PQQ functions as a vitamin-like enzymatic cofactor important in lysine metabolism (Nature 422 [2003] 832). Alternatively, we propose that PQQ influences lysine metabolism, but by mechanisms that more likely involve changes in mitochondrial content. PQQ deprivation in both rats and mice resulted in a decrease in mitochondrial content. In rats, alpha-aminoadipic acid (alphaAA), which is derived from alpha-aminoadipic semialdehyde (alphaAAS) and made from lysine in mitochondria, and the plasma levels of amino acids known to be oxidized in mitochondria (e.g., Thr, Ser, and Gly) were correlated with changes in the liver mitochondrial content of PQQ-deprived rats, but not PQQ-supplemented rats. In contrast, the levels of NAD dependent alpha-aminoadipate-delta-semialdehyde dehydrogenase (AASDH), a cytosolic enzyme important to alphaAA production from alphaAAS, was not influenced by PQQ dietary status. Moreover, the levels of U26 mRNA were not significantly changed even when diets differed markedly in PQQ and dietary lysine content. U26 mRNA levels were measured, because of U26's proposed, albeit questionable role as a PQQ-dependent enzyme involved in alphaAA formation.

  15. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A.

    PubMed

    Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua

    2017-02-15

    A novel quinone-modified metal-organic frameworks NH2-MIL-101(Fe) was synthesized using a simple chemical method under mild condition. The introduced 2-anthraquinone sulfonate (AQS) can be covalently modified with NH2-MIL-101(Fe) and acts as a redox mediator to enhance the degradation of bisphenol A (BPA) via persulfate activation. The obtained AQS-NH-MIL-101(Fe) was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectra, cyclic voltammetry and electrochemical impedance spectroscopy. AQS-NH-MIL-101(Fe) exhibited better catalytic performance compared with NH2-MIL-101(Fe) and NH2-MIL-101(Fe) with free AQS (NH2-MIL-101(Fe)/AQS). That is, AQS-NH-MIL-101(Fe) was proved to be the most effective in that more than 97.7% of BPA was removed. The degradation rate constants (k) of AQS-NH-MIL-101(Fe) was 9-fold higher than that of NH2-MIL-101(Fe) and 7-fold higher than NH2-MIL-101(Fe)/AQS, indicating that AQS is a great electron-transfer mediator when modified with NH2-MIL-101(Fe). Based on the above results, the possible mechanism of catalytic reaction has been investigated in view of the trapping experiments. In addition, the AQS-NH-MIL-101(Fe) catalyst exhibited excellent stability and can be used several times without significant deterioration in performance.

  16. Effects of psoralen from Psoralea corylifolia on quinone reductase, ornithine decarboxylase, and JB6 cells transformation promotion.

    PubMed

    Lee, Sung-Jin; Nam, Kung-Woo; Mar, Woongchon

    2011-01-01

    The cancer chemopreventive effect of psoralen isolated from the seeds of Psoralea corylifolia was investigated in the induction of quinone reductase (QR) activity, intracellular detoxification enzyme, inhibition of 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity, a key regulatory enzyme for polyamine metabolism, and tumor promotion in mouse epidermal JB6 cells, sensitive to tumor promoters (clone 415a P+ cells), which are related to suppress multistage carcinogenesis including initiation and promotion. Psoralen was isolated and identified from the ethyl acetate-soluble fraction of the methanolic extract from the seeds. Psoralen was active in induction of QR activity, the concentration of psoralen required to induce 1.5 fold QR activity was 14.8 μg/mL. Also, this pure compound inhibited TPA-induced ODC activity by 50% (designated IC(50)) at the concentration 15.6 μg/mL and exhibited inhibition of TPA-induced tumor promotion in mouse epidermal JB6 cells with an IC(50) value of 17.1 μg/mL. Therefore, it is extrapolated that psoralen has the potential capable of inhibiting the initiation and/or promotion stage of carcinogenesis by induction of QR activity, inhibition of TPA-induced ODC activity and mouse epidermal JB6 cells tumor promotion.

  17. Role of quinones in electron transfer of PQQ–glucose dehydrogenase anodes—mediation or orientation effect

    SciTech Connect

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-16

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-sGDH anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  18. Hydrogen peroxide formation in a surrogate lung fluid by transition metals and quinones present in particulate matter.

    PubMed

    Charrier, Jessica G; McFall, Alexander S; Richards-Henderson, Nicole K; Anastasio, Cort

    2014-06-17

    Inhaled ambient particulate matter (PM) causes adverse health effects, possibly by generating reactive oxygen species (ROS), including hydrogen peroxide (HOOH), in the lung lining fluid. There are conflicting reports in the literature as to which chemical components of PM can chemically generate HOOH in lung fluid mimics. It is also unclear which redox-active species are most important for HOOH formation at concentrations relevant to ambient PM. To address this, we use a cell-free, surrogate lung fluid (SLF) to quantify the initial rate of HOOH formation from 10 transition metals and 4 quinones commonly identified in PM. Copper, 1,2-naphthoquinone, 1,4-naphthoquinone, and phenanthrenequinone all form HOOH in a SLF, but only copper and 1,2-naphthoquinone are likely important at ambient concentrations. Iron suppresses HOOH formation in laboratory solutions, but has a smaller effect in ambient PM extracts, possibly because organic ligands in the particles reduce the reactivity of iron. Overall, copper produces the majority of HOOH chemically generated from typical ambient PM while 1,2-naphthoquinone generally makes a small contribution. However, measured rates of HOOH formation in ambient particle extracts are lower than rates calculated from soluble copper by an average (±1σ) of 44 ± 22%; this underestimate is likely due to either HOOH destruction by Fe or a reduction in Cu reactivity due to organic ligands from the PM.

  19. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer

    SciTech Connect

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M.; Mesecar, Andrew D.; Cushman, Mark

    2012-07-11

    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC{sub 50} 0.59 {mu}M) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC{sub 50} 70 nM) and 84 (IC{sub 50} 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC{sub 50} of 80 {mu}M. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC{sub 50} 1.7 {mu}M and 0.27 {mu}M, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  20. Voltammetric method for determining the trace moisture content of organic solvents based on hydrogen-bonding interactions with quinones.

    PubMed

    Hui, Yanlan; Chng, Elaine Lay Khim; Chua, Louisa Pei-Lyn; Liu, Wan Zhen; Webster, Richard D

    2010-03-01

    Voltammetry experiments were performed on the natural quinone, vitamin K(1) (VK(1)), in a range of organic solvents of varying dielectric constant that are commonly used for electrochemical measurements [dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), acetonitrile (MeCN), propionitrile (EtCN), butyronitrile (PrCN), 1,2-dichloroethane (DCE), dichloromethane (DCM), and 1,1,2,2-tetrachloroethane (TCE)]. The water content of the solvents was accurately measured using Karl Fischer (KF) coulometric titrations, and the voltammetric data were used to estimate the degree of hydrogen-bonding interactions between the reduced forms of VK(1) and variable levels of water, thereby allowing a ranking of water-substrate interactions in the different solvents. The voltammetric data were analyzed based on interactions that occur between reduced forms of VK(1) and the water, the solvent, and the supporting electrolyte. Calibration data were obtained that are independent of the nature of the reference electrode and allow the water content of the solvents to be calculated by performing a single voltammetric scan in the presence of VK(1) and 0.2 M supporting electrolyte (Bu(4)NPF(6)).

  1. Regulation of the primary quinone binding conformation by the H subunit in reaction centers from Rhodobacter sphaeroides.

    PubMed

    Sun, Chang; Taguchi, Alexander T; Beal, Nathan J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2015-11-19

    Unlike photosystem II (PSII) in higher plants, bacterial photosynthetic reaction centers (bRCs) from Proteobacteria have an additional peripheral membrane subunit "H". The H subunit is necessary for photosynthetic growth, but can be removed chemically in vitro. The remaining LM dimer retains its activity to perform light-induced charge separation. Here we investigate the influence of the H subunit on interactions between the primary semiquinone and the protein matrix, using a combination of site-specific isotope labeling, pulsed electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations. The data reveal substantially weaker binding interactions between the primary semiquinone and the LM dimer than observed for the intact bRC; the amount of electron spin transferred to the nitrogen hydrogen bond donors is significantly reduced, the methoxy groups are more free to rotate, and the spectra indicate a heterogeneous mixture of bound semiquinone states. These results are consistent with a loosening of the primary quinone binding pocket in the absence of the H subunit.

  2. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile.

    PubMed

    Namazian, Mansoor; Coote, Michelle L

    2007-08-02

    Standard ab initio molecular orbital theory and density functional theory calculations have been used to calculate absolute one-electron reduction potentials of several para-quinones in acetonitrile. The high-level composite method of G3(MP2)-RAD is used for the gas-phase calculations and a continuum model of solvation, CPCM, has been employed to calculate solvation energies. To compare the theoretical reduction potentials with experiment, the reduction potentials relative to a standard calomel electrode (SCE) have also been calculated and compared to experimental values. The average error of the calculated reduction potentials using the proposed method is 0.07 V without any additional approximation. An ONIOM method in which the core is studied at G3(MP2)-RAD and the substituent effect of the rest of the molecule is studied at R(O)MP2/6-311+G(3df,2p) provides an accurate low-cost alternative to G3(MP2)-RAD for larger molecules.

  3. Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohyWdrazide

    NASA Astrophysics Data System (ADS)

    Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed

    2015-01-01

    A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 μM). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.

  4. Differently substituted sulfonated polyanilines: the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase.

    PubMed

    Sarauli, David; Xu, Chenggang; Dietzel, Birgit; Schulz, Burkhard; Lisdat, Fred

    2013-09-01

    Sulfonated polyanilines have become promising building blocks in the construction of biosensors, and therefore we use here differently substituted polymer forms to investigate the role of their structural composition and properties in achieving a direct electron transfer with the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). To this end, new copolymers containing different ratios of 2-methoxyaniline-5-sulfonic acid (MAS), 3-aminobenzenesulfonic acid (ABS) and 3-aminobenzoic acid (AB) units have been chemically synthesized. All polymers have been studied with respect to their ability to react directly with PQQ-GDH. This interaction has been monitored initially in solution, and subsequently on electrode surfaces. The results show that only copolymers with MAS and aniline units can directly react with PQQ-GDH in solution; the background can be mainly ascribed to the emeraldine salt redox state of the polymer, allowing rather easy reduction. However, when polymers and the enzyme are immobilized on the surface of carbon nanotube-containing electrodes, direct bioelectrocatalysis is also feasible in the case of copolymers composed of ABS/AB and MAS/AB units, existing initially in pernigraniline base form. This verifies that a productive interaction of the enzyme with differently substituted polymers is feasible when the electrode potential can be used to drive the reaction towards the oxidation of the substrate-reduced enzyme. These results clearly demonstrate that enzyme electrodes based on sulfonated polyanilines and direct bioelectrocatalysis can be successfully constructed.

  5. High and low potential forms of the QA quinone electron acceptor in Photosystem II of Thermosynechococcus elongatus and spinach.

    PubMed

    Ido, Kunio; Gross, Christine M; Guerrero, Fernando; Sedoud, Arezki; Lai, Thanh-Lan; Ifuku, Kentaro; Rutherford, A William; Krieger-Liszkay, Anja

    2011-01-01

    The redox potential of Q(A) in Photosystem II (PSII) from Thermosynechococcus elongatus was titrated monitoring chlorophyll fluorescence. A high potential form (E(m)=+60 ± 25 mV) was found in the absence of Mn(4)Ca, the active site for water oxidation. The low potential form (E(m)=-60 ± 48 mV), which is difficult to measure in conventional titration experiments, could be "locked in" by cross-linking the active enzyme. This indicates that the presence of Mn(4)Ca is relayed to the quinone site by significant structural changes in the protein. The presence of high and low potential forms agrees with what has been seen in plants, algae from our lab and in T. elongatus (Shibamoto et al., Biochemistry 48 (2009) 10682-10684). In the latter work, the potentials of Q(A) were shifted to lower potentials compared to other measurements. The redox potential of Q(A) in Mn-depleted PSII from spinach was titrated in the presence of redox mediators and the midpoint potential was shifted by 80 mV towards a more negative value compared to titrations without mediators. The lower values of the midpoint potential of the (Q(A)/Q(A)(-)) redox couple in the literature could be due to a perturbation due to a specific mediator.

  6. Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study.

    PubMed

    Zhu, Ben-Zhan; Zhao, Hong-Tao; Kalyanaraman, Balaraman; Frei, Balz

    2002-03-01

    The metal-independent production of hydroxyl radicals (*OH) from H(2)O(2) and tetrachloro-1,4-benzoquinone (TCBQ), a carcinogenic metabolite of the widely used wood-preservative pentachlorophenol, was studied by electron spin resonance methods. When incubated with the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), TCBQ and H(2)O(2) produced the DMPO/*OH adduct. The formation of DMPO/*OH was markedly inhibited by the *OH scavenging agents dimethyl sulfoxide (DMSO), ethanol, formate, and azide, with the concomitant formation of the characteristic DMPO spin trapping adducts with *CH(3), *CH(CH(3))OH, *COO(-), and *N(3), respectively. The formation of DMPO/*OH and DMPO/*CH(3) from TCBQ and H(2)O(2) in the absence and presence, respectively, of DMSO was inhibited by the trihydroxamate compound desferrioxamine, accompanied by the formation of the desferrioxamine-nitroxide radical. In contrast, DMPO/*OH and DMPO/*CH(3) formation from TCBQ and H(2)O(2) was not affected by the nonhydroxamate iron chelators bathophenanthroline disulfonate, ferrozine, and ferene, as well as the copper-specific chelator bathocuproine disulfonate. A comparative study with ferrous iron and H(2)O(2), the classic Fenton system, strongly supports our conclusion that *OH is produced by TCBQ and H(2)O(2) through a metal-independent mechanism. Metal-independent production of *OH from H(2)O(2) was also observed with several other halogenated quinones.

  7. Cellobiose quinone oxidoreductase from the white rot fungus Phanerochaete chrysosporium is produced by intracellular proteolysis of cellobiose dehydrogenase.

    PubMed

    Raíces, Manuel; Montesino, Raquel; Cremata, José; García, Bianca; Perdomo, Walmer; Szabó, István; Henriksson, Gunnar; Hallberg, B Martin; Pettersson, Göran; Johansson, Gunnar

    2002-06-07

    The fungus Phanerochaete chrysosporium was grown in a 10-l automatic fermenter using cellobiose as carbon source to monitor the induction of cellobiose dehydrogenase (CDH) and cellobiose quinone oxidoreductase (CBQ) enzymes, and to search for tentative cbq and cdh genes and their transcriptional products. After 24 h of induction, CDH was detected in the culture supernatant and a protein was recognized by a specific anti-CDH polyclonal antibody in the sonicated biomass. Northern blot experiments performed with several fungal RNA samples showed, after 24 h of induction, only one single species of an mRNA transcript corresponding in size to the cdh gene (2.5 kb) The relative amount of this transcript decreased as a function of time. Southern blot experiments done with genomic DNA and database search in the recently available genome information also ruled out the presence in this strain of a separate cbq gene distinct from the cdh gene. Taken together, these results demonstrated that CBQ originates from the cdh gene. Furthermore, it is not produced by differential splicing but by a posttranslational, predominantly intracellular, proteolytic cleavage.

  8. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    PubMed Central

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a higher fluorescence quantum yield in EtOH (0.41 ± 0.02) than in buffer solution (0.089 ± 0.002), which is also higher than that of the PHEO monomer (0.28). Quenching of the PHEO fluorescence by DNA nucleosides and double-stranded oligonucleotides was also observed and the bimolecular quenching rate constants were determined. The quenching rate constant increase as the oxidation potential of the DNA nucleoside increases. Larger quenching constants were obtained in the presence of CARBOQ suggesting that CARBOQ enhances DNA photo-oxidation, presumably by inhibiting the back–electron-transfer reaction from the photoreduced PHEO to the oxidized base. Thus, the enhanced DNA-base photosensitized oxidation by PHEO in the presence of CARBOQ may be related to the large extent by which this quinone covalently binds to DNA, as previously reported. PMID:21138440

  9. Aripiprazole increases NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells.

    PubMed

    Kaneko, Yoko S; Takayanagi, Takeshi; Nagasaki, Hiroshi; Kodani, Yu; Nakashima, Akira; Mori, Keiji; Suzuki, Atsushi; Itoh, Mitsuyasu; Kondo, Kazunao; Nagatsu, Toshiharu; Ota, Miyuki; Ota, Akira

    2015-06-01

    We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production. Therefore, our aim was to determine whether aripiprazole activates Nrf2 in PC12 cells. Aripiprazole increased mRNA expression of Nrf2-dependent genes (NAD(P)H-quinone oxidoreductase-1, Nqo1; heme oxygenase-1, HO1; and glutamate-cysteine ligase catalytic subunit) and protein expression of Nqo1 and HO1 in these cells (p < 0.05). To maintain increased Nrf2 activity, it is necessary to inhibit Nrf2 degradation; this is done by causing Nrf2 to dissociate from Keap1 or β-TrCP. However, in aripiprazole-treated cells, the relative amount of Nrf2 anchored to Keap1 or β-TrCP was unaffected and Nrf2 in the nuclear fraction decreased (p < 0.05). Aripiprazole did not affect phosphorylation of Nrf2 at Ser40 and decreased the relative amount of acetylated Nrf2 (p < 0.05). The increase in Nqo1 and HO1 in aripiprazole-treated cells cannot be explained by the canonical Nrf2-degrading pathways. Further experiments are needed to determine the biochemical mechanisms underlying the aripiprazole-induced increase in these enzymes.

  10. Hydrogen Peroxide Formation in a Surrogate Lung Fluid by Transition Metals and Quinones Present in Particulate Matter

    PubMed Central

    2015-01-01

    Inhaled ambient particulate matter (PM) causes adverse health effects, possibly by generating reactive oxygen species (ROS), including hydrogen peroxide (HOOH), in the lung lining fluid. There are conflicting reports in the literature as to which chemical components of PM can chemically generate HOOH in lung fluid mimics. It is also unclear which redox-active species are most important for HOOH formation at concentrations relevant to ambient PM. To address this, we use a cell-free, surrogate lung fluid (SLF) to quantify the initial rate of HOOH formation from 10 transition metals and 4 quinones commonly identified in PM. Copper, 1,2-naphthoquinone, 1,4-naphthoquinone, and phenanthrenequinone all form HOOH in a SLF, but only copper and 1,2-naphthoquinone are likely important at ambient concentrations. Iron suppresses HOOH formation in laboratory solutions, but has a smaller effect in ambient PM extracts, possibly because organic ligands in the particles reduce the reactivity of iron. Overall, copper produces the majority of HOOH chemically generated from typical ambient PM while 1,2-naphthoquinone generally makes a small contribution. However, measured rates of HOOH formation in ambient particle extracts are lower than rates calculated from soluble copper by an average (±1σ) of 44 ± 22%; this underestimate is likely due to either HOOH destruction by Fe or a reduction in Cu reactivity due to organic ligands from the PM. PMID:24857372

  11. Managing common neonatal respiratory conditions during transport.

    PubMed

    Coe, Kristi L; Jamie, Scott F; Baskerville, Rosland M

    2014-10-01

    As neonatal care in the tertiary setting advances, neonatal transport teams are challenged with incorporating these innovations into their work environment. One of the largest areas of advancement over the last decade involves respiratory support and management. Many major respiratory treatments and the equipment required have been adapted for transport, whereas others are not yet feasible. This article reviews the history of respiratory management during neonatal transport and discusses current methodologies and innovations in transport respiratory management.

  12. Physiology of respiratory disturbances in muscular dystrophies

    PubMed Central

    Lo Mauro, Antonella

    2016-01-01

    Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e. when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. Key points A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination. In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia. Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness. Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase. The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and

  13. Sci—Thur PM: Planning and Delivery — 04: Respiratory margin derivation and verification in partial breast irradiation

    SciTech Connect

    Quirk, S; Conroy, L; Smith, WL

    2014-08-15

    Partial breast irradiation (PBI) following breast-conserving surgery is emerging as an effective means to achieve local control and reduce irradiated breast volume. Patients are planned on a static CT image; however, treatment is delivered while the patient is free-breathing. Respiratory motion can degrade plan quality by reducing target coverage and/or dose homogeneity. A variety of methods can be used to determine the required margin for respiratory motion in PBI. We derive geometric and dosimetric respiratory 1D margin. We also verify the adequacy of the typical 5 mm respiratory margin in 3D by evaluating plan quality for increasing respiratory amplitudes (2–20 mm). Ten PBI plans were used for dosimetric evaluation. A database of volunteer respiratory data, with similar characteristics to breast cancer patients, was used for this study. We derived a geometric 95%-margin of 3 mm from the population respiratory data. We derived a dosimetric 95%-margin of 2 mm by convolving 1D dose profiles with respiratory probability density functions. The 5 mm respiratory margin is possibly too large when 1D coverage is assessed and could lead to unnecessary normal tissue irradiation. Assessing margins only for coverage may be insufficient; 3D dosimetric assessment revealed degradation in dose homogeneity is the limiting factor, not target coverage. Hotspots increased even for the smallest respiratory amplitudes, while target coverage only degraded at amplitudes greater than 10 mm. The 5 mm respiratory margin is adequate for coverage, but due to plan quality degradation, respiratory management is recommended for patients with respiratory amplitudes greater than 10 mm.

  14. 29 CFR 1915.154 - Respiratory protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1915.154 Section 1915.154 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... (PPE) § 1915.154 Respiratory protection. Respiratory protection for shipyard employment is covered...

  15. 33 CFR 127.1209 - Respiratory protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of...

  16. 46 CFR 154.1405 - Respiratory protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Respiratory protection. 154.1405 Section 154.1405... Equipment § 154.1405 Respiratory protection. When Table 4 references this section, a vessel carrying the listed cargo must have: (a) Respiratory protection equipment for each person on board that protects...

  17. Respiratory Protection Performance: Impact of Helmet Integration

    DTIC Science & Technology

    2016-09-01

    helmet system .1 The objective of this effort was to determine the respiratory protection impact of integrating the helmet and respirator into one...demonstrate that integrated helmet respirator systems that use ballistic protective materials with greater mass can achieve similar levels of respiratory ...ECBC-TR-1418 RESPIRATORY PROTECTION PERFORMANCE: IMPACT OF HELMET INTEGRATION Daniel J. Barker Corey M. Grove RESEARCH AND TECHNOLOGY

  18. Effects of Aging on the Respiratory System.

    ERIC Educational Resources Information Center

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  19. 46 CFR 154.1405 - Respiratory protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Respiratory protection. 154.1405 Section 154.1405... Equipment § 154.1405 Respiratory protection. When Table 4 references this section, a vessel carrying the listed cargo must have: (a) Respiratory protection equipment for each person on board that protects...

  20. 33 CFR 127.1209 - Respiratory protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of...

  1. 29 CFR 1915.154 - Respiratory protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Respiratory protection. 1915.154 Section 1915.154 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... (PPE) § 1915.154 Respiratory protection. Respiratory protection for shipyard employment is covered...

  2. 46 CFR 154.1405 - Respiratory protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Respiratory protection. 154.1405 Section 154.1405... Equipment § 154.1405 Respiratory protection. When Table 4 references this section, a vessel carrying the listed cargo must have: (a) Respiratory protection equipment for each person on board that protects...

  3. 33 CFR 127.1209 - Respiratory protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of...

  4. 46 CFR 154.1405 - Respiratory protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Respiratory protection. 154.1405 Section 154.1405... Equipment § 154.1405 Respiratory protection. When Table 4 references this section, a vessel carrying the listed cargo must have: (a) Respiratory protection equipment for each person on board that protects...

  5. 33 CFR 127.1209 - Respiratory protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of...

  6. 29 CFR 1915.154 - Respiratory protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Respiratory protection. 1915.154 Section 1915.154 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... (PPE) § 1915.154 Respiratory protection. Respiratory protection for shipyard employment is covered...

  7. 29 CFR 1915.154 - Respiratory protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Respiratory protection. 1915.154 Section 1915.154 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... (PPE) § 1915.154 Respiratory protection. Respiratory protection for shipyard employment is covered...

  8. 46 CFR 154.1405 - Respiratory protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Respiratory protection. 154.1405 Section 154.1405... Equipment § 154.1405 Respiratory protection. When Table 4 references this section, a vessel carrying the listed cargo must have: (a) Respiratory protection equipment for each person on board that protects...

  9. 29 CFR 1915.154 - Respiratory protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Respiratory protection. 1915.154 Section 1915.154 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... (PPE) § 1915.154 Respiratory protection. Respiratory protection for shipyard employment is covered...

  10. 33 CFR 127.1209 - Respiratory protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of...

  11. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols.

    PubMed

    Zhang, Li; Jin, Yi; Chen, Mo; Huang, Meng; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2011-07-22

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[³H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. ¹H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.

  12. Profiling the NIH Small Molecule Repository for Compounds That Generate H2O2 by Redox Cycling in Reducing Environments

    PubMed Central

    2010-01-01

    We have screened the Library of Pharmacologically Active Compounds (LOPAC) and the National Institutes of Health (NIH) Small Molecule Repository (SMR) libraries in a horseradish peroxidase–phenol red (HRP-PR) H2O2 detection assay to identify redox cycling compounds (RCCs) capable of generating H2O2 in buffers containing dithiothreitol (DTT). Two RCCs were identified in the LOPAC set, the ortho-naphthoquinone β-lapachone and the para-naphthoquinone NSC 95397. Thirty-seven (0.02%) concentration-dependent RCCs were identified from 195,826 compounds in the NIH SMR library; 3 singleton structures, 9 ortho-quinones, 2 para-quinones, 4 pyrimidotriazinediones, 15 arylsulfonamides, 2 nitrothiophene-2-carboxylates, and 2 tolyl hydrazides. Sixty percent of the ortho-quinones and 80% of the pyrimidotriazinediones in the library were confirmed as RCCs. In contrast, only 3.9% of the para-quinones were confirmed as RCCs. Fifteen of the 251 arylsulfonamides in the library were confirmed as RCCs, and since we screened 17,868 compounds with a sulfonamide functional group we conclude that the redox cycling activity of the arylsulfonamide RCCs is due to peripheral reactive enone, aromatic, or heterocyclic functions. Cross-target queries of the University of Pittsburgh Drug Discovery Institute (UPDDI) and PubChem databases revealed that the RCCs exhibited promiscuous bioactivity profiles and have populated both screening databases with significantly higher numbers of active flags than non-RCCs. RCCs were promiscuously active against protein targets known to be susceptible to oxidation, but were also active in cell growth inhibition assays, and against other targets thought to be insensitive to oxidation. Profiling compound libraries or the hits from screening campaigns in the HRP-PR H2O2 detection assay significantly reduce the timelines and resources required to identify and eliminate promiscuous nuisance RCCs from the candidates for lead optimization. PMID:20070233

  13. Activation of dioxin response element (DRE)-associated genes by benzo(a)pyrene 3,6-quinone and benzo(a)pyrene 1,6-quinone in MCF-10A human mammary epithelial cells

    SciTech Connect

    Burchiel, Scott W. . E-mail: SBurchiel@salud.unm.edu; Thompson, Todd A.; Lauer, Fredine T.; Oprea, Tudor I.

    2007-06-01

    Benzo(a)pyrene (BaP) is a known human carcinogen and a suspected breast cancer complete carcinogen. BaP is metabolized by several metabolic pathways, some having bioactivation and others detoxification properties. BaP-quinones (BPQs) are formed via cytochrome P450 and peroxidase dependent pathways. Previous studies by our laboratory have shown that BPQs have significant growth promoting and anti-apoptotic activities in human MCF-10A mammary epithelial cells examined in vitro. Previous results suggest that BPQs act via redox-cycling and oxidative stress. However, because two specific BPQs (1,6-BPQ and 3,6-BPQ) differed in their ability to produce reactive oxygen species (ROS) and yet both had strong proliferative and EGF receptor activating activity, we utilized mRNA expression arrays and qRT-PCR to determine potential pathways and mechanisms of gene activation. The results of the present studies demonstrated that 1,6-BPQ and 3,6-BPQ activate dioxin response elements (DRE, also known as xenobiotic response elements, XRE) and anti-oxidant response elements (ARE, also known as electrophile response elements, EpRE). 3,6-BPQ had greater DRE activity than 1,6-BPQ, whereas the opposite was true for the activation of ARE. Both 3,6-BPQ and 1,6-BPQ induced oxidative stress-associated genes (HMOX1, GCLC, GCLM, and SLC7A11), phase 2 enzyme genes (NQO1, NQO2, ALDH3A1), PAH metabolizing genes (CYP1B1, EPHX1, AKR1C1), and certain EGF receptor-associated genes (EGFR, IER3, ING1, SQSTM1 and TRIM16). The results of these studies demonstrate that BPQs activate numerous pathways in human mammary epithelial cells associated with increased cell growth and survival that may play important roles in tumor promotion.

  14. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    SciTech Connect

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.; Lauer, Fredine T.; Burchiel, Scott W.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  15. Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses

    PubMed Central

    Andres-Terre, Marta; McGuire, Helen M; Pouliot, Yannick; Bongen, Erika; Sweeney, Timothy E.; Tato, Cristina M; Khatri, Purvesh

    2015-01-01

    Respiratory viral infections are a significant burden to healthcare worldwide. Many whole genome expression profiles have identified different respiratory viral infection signatures, but these have not translated to clinical practice. Here, we performed two integrated, multi-cohort analyses of publicly available transcriptional data of viral infections. First, we identified a common host signature across different respiratory viral infections that could distinguish (a) individuals with viral infections from healthy controls and from those with bacterial infections, and (b) symptomatic from asymptomatic subjects prior to symptom onset in challenge studies. Second, we identified an influenza-specific host response signature that (a) could distinguish influenza-infected samples from those with bacterial and other respiratory viral infections, (b) was a diagnostic and prognostic marker in influenza-pneumonia patients and influenza challenge studies, and (c) was predictive of response to influenza vaccine. Our results have applications in the diagnosis, prognosis, and identification of drug targets in viral infections. PMID:26682989

  16. Hypnosis in paediatric respiratory medicine.

    PubMed

    McBride, Joshua J; Vlieger, Arine M; Anbar, Ran D

    2014-03-01

    Hypnotherapy is an often misunderstood yet effective therapy. It has been reported to be useful within the field of paediatric respiratory medicine as both a primary and an adjunctive therapy. This article gives a brief overview of how hypnotherapy is performed followed by a review of its applications in paediatric patients with asthma, cystic fibrosis, dyspnea, habit cough, vocal cord dysfunction, and those requiring non-invasive positive pressure ventilation. As the available literature is comprised mostly of case series, retrospective studies, and only a single small randomized study, the field would be strengthened by additional randomized, controlled trials in order to better establish the effectiveness of hypnosis as a treatment, and to identify the processes leading to hypnosis-induced physiologic changes. As examples of the utility of hypnosis and how it can be taught to children with respiratory disease, the article includes videos that demonstrate its use for patients with cystic fibrosis.

  17. Boomerang pillows and respiratory capacity.

    PubMed

    Roberts, K L; Brittin, M; Cook, M A; deClifford, J

    1994-05-01

    An experimental study was done to determine whether subjects placed on boomerang pillows would have lower vital capacities than subjects placed on straight pillows after 30 minutes. A sample of 42 subjects took part in the study in a nursing laboratory. A crossover design was used in which subjects were measured in both conditions. The findings indicated that there was no significant difference in the vital capacities of subjects in the two conditions. An associated finding was that the vital capacities were significantly lower in a semi-Fowler's position than in a straight chair. It was concluded that boomerang pillows are safe to use for persons without respiratory problems. Further research is needed into the effect of boomerang pillows on persons with respiratory deficits.

  18. Acute Respiratory Infections in Children

    PubMed Central

    Laxdal, Oliver E.; Robertson, H. E.; Braaten, Virgil; Walker, W. Alan

    1963-01-01

    During a seven-month period from November 1960 to May 1961, 181 infants and children, hospitalized because of acute respiratory infections, were studied intensively to determine the responsible etiologic agents. Forty-two per cent of the illnesses in this group appeared to be caused by bacterial agents, either primary or secondary to virus. Parainfluenza viruses were identified as causes of laryngotracheobronchitis in nearly 50% of the cases. Adenoviruses were also found to be important pathogens, particularly as causes of pneumonia in infants. The over-all infection rate attributed to adenoviruses was 11.6%. An epidemic due to Influenza B virus affected approximately 40% of children in this city just following the hospital study. This study was conducted as the first step in a long-term project undertaken at the Regina General Hospital to determine the effectiveness of vaccines in the prevention and treatment of respiratory infections in children. PMID:20327546

  19. Respiratory syncytial virus and bronchiolitis.

    PubMed

    Lemen, R J

    1995-01-01

    Viral bronchiolitis is a common world-wide disease of infants and children resulting in respiratory failure and occasionally death. The major underlying pathophysiology is airway inflammation of peripheral airways and airway hyperresponsiveness to bronchoprovocation. Management is primarily prevention through strict hand washing and avoidance of exposures during respiratory seasons, especially in small infants who have underlying heart or lung disease. Careful supportive therapy, including fluid hydration, good nutrition, and aerosolized bronchodilators, steroids or ribavirin may be helpful. Long term follow-up for these children is important because a significant number will have recurrent episodes of bronchiolitis and wheezing, and many will develop clinical asthma. There's some evidence that long term abnormalities of airway function, perhaps secondary to airway fibrosis, may result from bronchiolitis infections. Avoidance of exposure to passive smoking, cold air and air pollutants is also beneficial to long term recovery from RSV bronchiolitis.

  20. Respiratory complications of relapsing polychondritis

    PubMed Central

    Gibson, G. J.; Davis, P.

    1974-01-01

    Gibson, G. J. and Davis, P. (1974).Thorax, 29, 726-731. Respiratory complications of relapsing polychondritis. The respiratory function of a patient with relapsing polychondritis is described. He had severe airflow obstruction due to disease of both the extra and intrathoracic large airways. Evidence of small airways disease was lacking. The airflow obstruction was probably due to a combination of structural narrowing and an enhanced dynamic effect. Despite the severity of his disease the patient's exercise capacity was only slightly reduced but he developed carbon dioxide retention on exercise. Involvement of the airways is a common feature of this rare disease and demands full physiological and radiographic assessment if tracheostomy or other surgical procedure is contemplated. Images PMID:4450183